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Experimental Investigation of Turbulence
Diffusion A Factor in Transportation

of Sediment in Open-Channel Flow',

Turbulence. diffusion in open-channel flow was investi-
gated experimentally by photographing the spread of
globules formed by the injection of an immiscible fluid
into water. The mean-square transverse deviations of the
globules at various distances downstream from the source
were computed and analyzed in an effort to determine the
shape of the velocity-correlation curve. Comparison was
made between two types of curve which fitted the devia-
tion data, one corresponding to a power-correlation law
and the other to an exponential.correlation law.

INTRODUCTION

T1JRBULENCE
diffusion in flowing water has for a long

time 'been of interest.to the fluid technician and the hy-
draulic engineer. Inherent in the turbulence of the water,

this diffusion is responsible for the existence of many internal
phenomena such as eddy heat transfer and sediment suspension.
Although the findings of the investigation will be of interest in
many' fields; this work, was undertaken primarily because of, its
importance in sediment s,isPension and sediment transportation.

Diffusion in water may be characterized by the diffusion co-
efficient. A detailed experimental investigation of this coefficient
is neceizary therefore in order to understand more completely
the diffusion mechanism of open-channel flow and to apply it to
the' various diffusion phenomena. Of particular importance is a
knowledge of the functional variation of the diffusion coefficient
from point to point, for without that, integration of the funda
mental equation for sediment suspension is impossible.

Some observations (1)1 on diffusion in water have been'made,
but most investigations have been conducted in air, either in the
wind tunnel (2) or in the atmosphere (3).

THEORY

The diffusion theory for the turbulent motion of a fluid is
closely analogous to the theory of the 'diffusion of gases and of
particles in the Brownian movement. For this reason the latter
theory will be reviewed first.
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In the kinetic theory of gases the fundamental equation for one-
dimensional steady-state molecular diffusion is given by

[11dx

where n is the timerate of diffusion of certain selected molecules
through a unit area normal to the x axis and' in the positive di-
rection' of this axis, N is the concentration of sueh.molecul'es at
the point in question, and D is the diffusion coefficient. Then, if
N is a function of time and space, and D is allowed to vary from
point to pOint, it ean readily be ihown that the general equa-
tion for diffusion of certain molecules in a laminar gas streax
vith compressibiliy neglected is

oN ON ON ON 0 / ON\ 0 / ON

In this expression U, V, and W are the components of fluid
velocity in the x-, y-, and z-directions, respectively. If the fluid is
at rest, and N and D are funCtions of y only, Equation [2] reduces
to the one-dimensional case

ON 02N...............................13]
it is next assumed that. Equation [1] holds for very small solid

particles suspended in a liquid by molecular collision (Brownian
movement) and subjected to an extraneous field of force such as
gravity. If the particles have a mean settling velocity , and
the y-direction is upward, Equation (31 must be rewritten to read

ON ON 02N

and in the steady state

[4]
dy

Equation [4] is the law governing the suspension of minute
particles ma liquid at rest, suspension being due solely to mo-
lecular coffision. The law 'was verified experimentally by Perrin
(4) in '1908.

In the self-diffusion of gases, a derivation by Jeans (5) gives

D3cL [5]

where 'h the mean velocity of the gas molecules and L is their
mean free path. Here it is supposed that the molecules passing
through a plane have traveled, on the average, uninterruptedly
from various regions at distances perpendicular to the plane
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equal to the projections of the mean free path of the molecules.
On the other hand, in the Brownian movement, the coefficient of
diffusion may be determined by measurement of displacement of
the particles in an interval of time. Einstein (6) proved that for
such particles (or molecules)

D=2 [6]

in which yi isthe mean-square displacement of the particles in
ie y-direetion during an interval of time r. It is assumed that

is of such magnitude that successive iiovements of a particle are
randomly distributed and independent of each other. Iü other
words, the interval r is sufficiently long to insure that the effects
on displacement of correlation of velocities after successive bumps
are negligible.

An important feature of the diffusion of molecules is the trans-
portatidn of -energy and momentum as well as of mass of the
molecules. However, the idea alone of movement of molecules
from one, region to another is not sitfflcient to explain the dis-
tribution of mean temperature or velocity lithe parallel flow of a
nonturbulent gas; it is necessary to assume, furthermore, that,
upon arrival of a molecule at a new layer, the molecule gives up
the excess or takes on the deficiency of mean energy or momentum
which it had at the old layer where it started its path. The
distance between the layers for each excursion of a typical mole-
cule is taken as the projection of the mean free path on the line
normal to the layers. The effect of energy transport in this
manner is heat conduction; thus if temperature is substituted for
concentration in Equation [2], there results the heat-conduction
equation for a moving gas when compressibility and dissipation
are neglected (this equation also holds for heat conduction in a
liquid stream). The effect of traulfer of momentum is the well-
known phenomenon called viscosity.

TUBBULxNCE DIPFusIoNTaArspEB PHENOMENA

Fluids in turbulent motion exhibit a turbulence diffusion in
addition to a diffusion due to molecular activity.- By analogy
with the kinetic theory of gases, the concept of a "mixing" process
coincident with the diffusion of particles of fluid has been brought
forward to account for the distribution of mean properties of a
fluid in a turbulent field. In the so-called mixing process, prop-
erties of a fluid are supposedly transferred by the motion of small
fluid masses each of which moi,és from One layer in which its
property is that of the mean flOw iii the neighborhood to another
layer at a transverse distanCe X. After eaOh mass has moyed a
distance X, - retaining its original property, it is supposed to mix
with the -surrounding fluid until its initial identity is lost, thereby
assuming the average property of the new regiOn. Transferable
properties of a fluid may be internal energy, salinity, concentra-
tion of sediment, etc. Momentum has been assumed such a
property, giving rise to eddy viscosity, analogous to moleCula
viscosity in the kinetic theory of gases.

Now it is readily shown (7) that the fundamental equation for
the mean rate of turbulence transfer m of any local property M
through a unit area normal to the y axis in the positive direc-
tion is given by, - - -

__dM
- [71dy -

in which v is the instantaneous transveise-velocity fluctuation,
the bar indicating the mean value over the plane surface in ques-
tion. In correspondence with the molecular theory, vX is called
the diffusion or transfer coefficient. If this mean product is
written as the product Of ámen velocity and a mèañ length, thus

'.: [8]

-
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1 becomes, by definition of Equation [8], 'the effective mean
length of travel of a fluid mass before it loses its property identity
in the surrounding fluid. In this manner may be defined as
the mixing length. It is analogous to the-mean free path of
molecular diffusion. If sediment of concentration N and fall
velocity , is under consideration, then, upon equilibrium, there
results an equation identical with Equation [4j for the suspension
of sediment due to turbulence.

There is some question as to whether e/j, or rather 1, is the
same for the transfer of different -properties. Thus far, some ex-
periments (8) have been conducted to compare the transfer co-
efficieñts for momentum and sediment-transfer.

In contrast with the discontinuous mixing process in which a
lump of fluid moves a distance and then mixes with its surround-
ings, Taylor (9) has developed a theory of diffusion in which no
aisurnption of mixture is made. Taylor showed that it is again
possible to derive an equation similar to Eimtein's Brownian-
movement formula, Equation [6], thus

1 y2

2r
where Yi is the mean-square displacement of fluid particles andr
is again an interval of time of such duration that the infitience of
correlation of successive velocities upon the observations is
negligible.

Ttnsrjzxwcx DrrpusIoNCOsrINtrou5 Movmimq'rs
In Taylors development of a theory fOr turbulence diffusion,

cognizance is taken of the fact that the diffusion process is not a
discontinuous one, but rather a continuous one, since the veloci-
ties and movements of the particles are continuous. This idea
of continuity of motion is the essential difference between Tay-
lOr's theory è.nd the transfer theory, as well as the molecular
theory. -

In order to describe the continuoui motion of particles of fluid,;
Taylor has introduced the statistical correlation between succes-
sive velocities of a particle of fluid The development; is as fol-
lows:

Consider the randOm migration of particles of fluid in the y-
direction and let v be the instantaneous fluctuating velocity
parallel to that direction. The correlation coefficient R between
the velocity of a particle of fluid at time and the velocity of the
same parti-Cle after an interval of time E is given by

-

RE [10)

If the turbulence is considered unilàrzn with respect to space and
time, and RE is an even function of E, thei -

and - - ' - -.

RE=- - - -

-

Vg

The value of the definite integral J is next considered,
whence by the definition of the-correlation cOefficient there follows

flRvd -= v,'JREd ..... .-[11]
Now

vY-=!

[9]
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where Y is the displacement of a particle in time t, s that by
Equation [111

_fe_ldY2(121
integration of which yields

255fTjti
(13]

It is therefore seen that diffusion in a field of uniform turbulence
is dependent upon two quantities i e, the energy of turbulence
and.the coefficient of correlation RE.

Equation [13] offers a. means of measuring the intensity of
turbulence "/. By observing the displacement of particles sô
close to a point source that RE - 1, it f011ows that

Yi=viTi
or

T
which leads to

= [141

if the point is fixed and the fluid is moving with the meaii velocity
U in a direction z transverse to the migration.

Of more importance is the case when R - 0. If it can be
assumed that such a time interval T1 exists that the velocity of a
particle at the end ofthe interval T1 has no correlation with the
velocity at the beginning of the interval, then JT2REd is finite,
and

v2j0 REdE = vgY = conat [15

for all values of T> T1. Hence T is the true average time re-
quired for-a particle to lose its velocity identity in the surround-
ing fluid.

According to the condition of Equation [15], it is possible to
defiuie a length l by the relation

= /fTIR [16]

so that
- - 1d UdY'

= vY = =

whence

= 2S./4T + const................[18]
or

2 V811 x+ conat...............[19]

which is the equation of the straight line to which the i diffusion
curve becomes tangent. -

It can be seen by Equation [18] that, when T is sufficiently
large, y2 becomes directly proportional to time i' as mentioned
previously in Equation [9], thus

2V1liT [20]

Comparison of Equation [a)] for turbulence diffusion with Ein-
stein's Equation [61 for the Brownian movement readily indicates
that '%,/l may be called the turbulence-diffusiOn coefficient
with l corresponding to the mean free path L in the case of
moleculardiffusion.

[17]

It followsbyEquation -[161 that the diffusion length t is,
like the mixing length, some mean effective transverse distance
which a particle of fluid travels before losing its identity in the
fluid neighborhood,, but it is to be noted that here the specific
identity is that of velocity and not necessarily that of any property.
It might also be agreed by Equation [16] that J Edis the
effective average time required fOt a particle to lose its velocity
identity as compared to T11 which is the true average time re-
quired for such a loss.

Equation 1171 showS that the diffusiOn coefficient can be deter-
mined by direct measurement of the slope of the mean-square
deviation line when data are taken at times longer than that for
which RE " 0.. However, sometimes it-may be difficult to ob-
tam diffusion data for such a direct measurement, since T1 may
be quite large. This is in contrast with measurements in the
Brownianmovemént, where it is hardly possible to make observa-
tions at intervals of time so short that persistence of velocities
would affect successive displacements.

COÜELATION

Since the correlation between successive velocities of a fluid
particle has been shown to play an important part in the de-
velopment of the theory of turbulence diffusion, further discus-
sion of the meaning of correlatiOn is desirable.

The term correlation refers generally to the statistical inter-
dependence of variables, whereas the coefficient of correlation is
a statistic which is a numerical measure of the degree of inter-
dependence of variables. The coefficient as used previotly
(Equation [101) is deflhed as the algebraicmean value of the
product of successive velocities of a partiCle dividedby the prod-
uct of the root-mean-square values of the fluctuations at the
beginning and end of the time interval; of course, a sufficient
number of observations are necessary to insure a true mean
Fig 1 shows schematically various degrees of correlation be-
tweCn velocities, the high correlation corresponding to a short
time interval, the low correspOnding to a long time interval.
Other types of correlation (10, 11) exist between velocities ma
turbulent field.

There is one important limitation to the correlation coeffi-
cient as previously defined, it can be applied only to data which
scatter about a straight line. HO*ever, iii cOrrelatiiig velocities
of the eam particle the regression is assumed to be linear, and
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there is no reason to believe that in the random fluctuations,
which are encountered in a uniformly turbulent field, the trend
will be anything but linear.

LABORATORY EXPERIMENTS

The experiments were conducted in a closed-circuit flume
(see Figs. 2 and 3), 10'/ in. wide, 10 in. deep, and 40 ft long.
The slope could be adjusted by means of a jack-and-pivot com-
bination. On either side of the flume was a glass window 5 ft
long and 7 ft from the downstream end. Also at the downstream
end was a motor-and-propeller-pump assembly, the discharge of
which was measured by a Venturi meter. Two channel conditions
were used in the investigation, smooth walls and bottom, and
rough walls and bottom. Smooth surfaces were obtained by the
application of bitumastic paint; rough surfaces were produced
by covering soft bitumastic paint with sand grains having a
mean size of 0.89 mm.

Fig. 4 shows the injection apparatus in position. A mixture of
carbon tetrachioride and benzene, having the same density as
the water, was injected into the flow through a 24-gage stainles-
steel tube which had an internal diameter of 0.0123 in. Upon
leaving the tube, the mixture broke up into small immiscible
globules which could be photographed.

The proper injection velocity was obtained by adjusting the
level of the fluid in a burette tube. The injection tube was aligned
with an adjustable index plate which was located at a convenient
point downstream. The globules were photographed with a
Leica camera on Kodak Plus-X film.

In the smooth channel, three discharges were studied: 0.58
cfs, 1.08 cfs, and 1.76 cfs; in the rough channel, one discharge was
otudied, 1.51 cfs. The flow in the rough channel had the same
slope as the high flow in the smooth channel In all flows the
maximum depth was held at 0.65 ft. Measurements were made
at five points in the vertical center line of the channel for the
lowest flow, while only two points in the center line were investi-
gated in the remaining flows. The Reynolds numbers ranged
from 27,200 to 82,500 using the hydraulic radius as the charac-
teristic length.

A particular discharge and depth of water at uniform flow were

Fm. 4 INJECTION APPARATUS

JOURNAL OF APPLIED MECHANiCS JUNE, 1945

Fia. 2 Di&aw&auric SKETCH OF 10-IN. CLOSED-CIRCUIT FLmx

L

Fxo. 3 Sina Vrxw OI FLUME SHowING ADJUSTABLE AND PrvOT
SUPPORTS, OBSERVATION WINDow, AND VENTURI METER
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Fin. 5 TYPICAL DIFFUSION PHOTOGRAPHS
(Note the periodic wandering which gives eozne indication of a definite turbulence pattern. The globuies have been touched up for

illustrative purposes.)

established by adjusting the slope of the flume and speed of the
pump. After the flow became steady, the immiscible fluid was
injected and about thirty photographs (one roll) were taken in
rapid succession. Four or five rolls of film were used for each
depth in a particular flow. After each roll of photographs had
been exposed, the water was freed of globules by circulating it
through two layers of cheese cloth. Fig. 5 shows reproductions
of three typical instantaneous photographs of diffusion at the
same injection depth and discharge.

After development, the films were projected on a screen to
exactly full size. At various distances downstream from the in-
jector tube, the vertical positive and negative displacements
within a narrow band were read off the screen to the nearest
0.01 in. by means of co-ordinate paper. For the study of the
two lower discharges, displacements were obtained at the follow-
ing downstream points: 1/4 1, 1/2, 2, 3, 13 in., and as far
as 30 in. at one depth. For the higher discharges, the following
points were used: 1/ 1/i, 1/s, 1, 11/2, 2, 3, 13 in., or 1/i,

1/a, 1, 11/2,2,3,4,6, 8, 14 and, in one case to 32 in. downstream.
The mean-square values of these displacements were then cal-
culated at the various distances from the point source, each value
arrived at representing the mean of about 400 measurements.

ANALYSIS OF DATA

PowER-Co1utE1&TIoN LAw

The mean-square deviation data show considerable scatter
when plotted on Cartesian co-ordinate paper, Fig. 6, despite
the great number of measurements taken for each mean. Be-
cause of this scatter, the author was not able to measure directly

the slope of the limiting deviation line to determine the diffusion
coefficient. If, however, the data are plotted on log-log paper,
Figs. 7 to 10, they are found to adhere closely to & straight line,
except near the origin, the straight-line plot meaning that the
data in that range may be approximated by a power law

= Cx" [21]

where n must lie between 2 and 1, as required by Equations [14]
and [19], respectively. The fitted curves, obtained from the
logarithmic plot in Fig. 7, are transferred to the Cartesian paper,
as shown in Fig. 6.

The adoption of such a power law to represent the data allows
the calculation of the correlation coefficient from

if u \',2j
I _J-2i/j dx2 [22]

which is obtained upon differentiation of Equation [12] and use of
= (7grn Thus upon substitution of Equation [21] into Equation

122], there is obtained

RE - 1)x'2 [23]

It is seen that the use of this equation requires an independent

determination ofY, which is obtained from the slope of the Y

curve at the origin through Equation [14].
While Equation [23] indicates a possible shape of the cor-

relation curve, its chief drawback is that its integral is infinite,
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which leads to an infinite diffusion length l and, consequently,
an infinite diffusion coefficient. In the case of the open-channel
flow investigated herein, such a condition is not expected to exist,
since the size of the eddies is limited by the width of the channel,
and it is expected that the correlation of successive velocities
would approach zero rapidly after a particle of fluid was carried
about by a number of eddies.

However, a condition in which the diffusion length Z may be-
come indefinitely large is that which exists in the atmosphere
where there is no a priori reason that the eddies should have a

limiting size. This case was investigated by Sutton (12), using
data collected by Richardson and Proctor (3) on the diffusion
of balloons in the atmosphere. Sutton plotted the data on log-
log paper and found that a linear variation with a 1.75 ap-
proximated the data, a perfect agreement with the author's 1.74
in the low flow, Fig. 7. It is to be noted, however, that the
values for the author's r&nsining flows do not agree with Sut-
ton's value.

Of interest is the fact that in each flow the straight-line por-
tions of the curves are parallel. This means, of course, that the
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powers for each flow condition, as controlled by the channel, are
the. same and seems to indicate proportionality between the
mean-square deviations at any two depths. Furthermore, for
all smooth-channel flows, the ratio of diffusion t the 1- and 4-
in. depths is the same; the effect of channel roughness is to alter
this ratio.

EXPONENTL&L-CORnaLATION LAW

Another type of diffusion curve which may approximate the
data is that corresponding to the exponential-correlation law

= e_x/xo [24]

suggested by Dryden (13). It is then readily shown that sub-
stitution of this law into Equation [22] yields, upon integration

= 2(-)Xo[Z - x,(1 - [25]

This equation is of particular interest, since, at small values of
x compared to xo, it reduces to Equation [14], and, at large
values of z compared to x, it reduces to Equation [19], viz.

llU
where x, = -=, or = zo The mtegral of the correla-

Vv2 U

tion function is thus finite (= = ),
leading to a finite

diffusion length and diffusion coefficient.
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Fia. 11 TTPICAL POWER AND EXPONENTIAL-CORRELATION CURVES

Unlike the power law for diffusion, there is no simple form of
plotting Equation [25] to give a straight line, so that it is neces-
sary to fit the equation to the data by trial and error, using the
usual Ctesian co-ordinate paper; however, from each fit there
are obtained both V'/U and so, meaning that it is unnecessary to
make a separate determination of as in .the case of the
power-correlation law.

Equation [25] has been fitted to the data of only the low flow,
= 0.58 cfs, for the purpose of comparison with power curves.

The fitted curves, including the limiting parabolas and asymp-
totic straight lines, are shown in Fig 6, along with the power curves
In Fig 11 are shown two correlation curves at the 1-in depth
(again for the purpose of comparison), one corresponding to
Equation [24] and the other, to EquatiOn [23], using the values
of xi and obtained from the fitting of Equation [25]. Al-
though it is evident- from the plots of the mean-square deviation
curves that there is little choice as to which type of curve fits the
data, it is nevertheless obvious that the resulting correlation
curves are quite different It may therefore be concluded that
the data presented are not of sufficient precision to determine the
shape of the correlation curve. If, however, the assumption is
made that the curve, corresponding to the exponential correla-
tion law, represente the data, values of 11'and can be com-
puted and will appear as shown in Fig. 12.

A diniensionless plot Of the data is suggested by Equation [251,
which can be written in the following form

1'
. _=2[-_(1_e/x0)

Thus all the data should fall around the single curve, Fig. 13.
It is to be noted that in the fitting process the value of 5o = 7

in was found to satisfy the data at each injection pomt in the low
flow. This corresponds to. the constancy of the power n in the

ULILIIII

uiiuiiaiiirnrni

0.0.58 .

£4

8.

007
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power equation and again indicates proportionality, between
diffusion at any two depths.

Su&ia&ny tn CONCLUSION

An experiment was conducted for the purpose of measuring
certain diffusion properties of water flowing in an open channeL
By measuring the, displacements of immiscible globules, mean-
square deviation data were obtained at various depths for th±ee
rates of flow in a smooth channel, and for one rate in an arti-
ficially roughened channel, all flows having the same total depth
Theory was reviewed to provide the reader with the necessary
background for analysis of the data.

It was seen that it was possible to fit either one of two types
of curve to the data presented in this paper, one corresponding
to a power-correlation law and the other to an exponential-
correlation law Since the two curves differed widely in their
characteristics, it was cOncluded that the. experimental data, in
spite of the fact that about 400 observations were taken for each
mean-square de iiation point, were not of sufficient precision to
warrant the computation of second derivatives and, consequently,
the determination of the shape of the correlation curve.

Of the tivo curves suggested, the one oorrespouding to the
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exponential-ëorrelation.law is of more interest because of its close
conformity to the expected nature of the correlation curve, i.e.,
at a time interval of zero the value of the Correlation coefficient
is unity, and at a time interval large compared tà T5 the value of
the. definite integral of the correlation function approaches a
finite quantity. If the assumption is made that such a type of
curve represents the data, the parameters. of diffusion,
li,. and along the vertical, center line of the flow will appear
as shown in Fig. 12.

Despite the appreciable scatter of the mean-square deviation
data, it is interesting to note the proportionality of diffusion at
all depths.
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