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Numerical results for the velocity and attenuation of surface wave modes in fully permeable liquid/
partially saturated porous solid plane interfaces are reported in a broadband of frequencies
�100 Hz–1 MHz�. A modified Biot theory of poromechanics is implemented which takes into
account the interaction between the gas bubbles and both the liquid and the solid phases of the
porous material through acoustic radiation and viscous and thermal dissipation. This model was
previously verified by shock wave experiments. In the present paper this formulation is extended to
account for grain compressibility. The dependence of the frequency-dependent velocities and
attenuation coefficients of the surface modes on the gas saturation is studied. The results show a
significant dependence of the velocities and attenuation of the pseudo-Stoneley wave and the
pseudo-Rayleigh wave on the liquid saturation in the pores. Maximum values in the attenuation
coefficient of the pseudo-Stoneley wave are obtained in the 10–20 kHz range of frequencies. The
attenuation value and the characteristic frequency of this maximum depend on the liquid saturation.
In the high-frequency limit, a transition is found between the pseudo-Stoneley wave and a true
Stoneley mode. This transition occurs at a typical saturation below which the slow compressional
wave propagates faster than the pseudo-Stoneley wave. © 2006 Acoustical Society of America.
�DOI: 10.1121/1.2164997�
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I. INTRODUCTION

The presence of gas bubbles can dramatically influence
the acoustic properties of a liquid. The bulk modulus of the
liquid becomes frequency-dependent and attenuation effects
arise due to oscillations of the bubbles �radiation� and heat
transfer to the surrounding liquid.1 It is particularly interest-
ing to consider the problem of a gas-liquid mixture filling the
pore space of a porous medium. In this case, even more
dissipative mechanisms have to be taken into account,
namely the interaction between the gas and both the liquid
and the solid elastic matrix. In the case that only liquid satu-
rates the pore space, the interaction between the liquid and
the solid matrix can be understood in terms of the Biot
theory.2,3 This theory was previously extended in order to
include the effects of gas saturation on the bulk elastic waves
in partially saturated porous media by among others White,4

Dutta and Ode,5,6 Berryman et al.,7 Smeulders and Van
Dongen,8 Johnson,9 and Carcione et al.10

A great deal of attention has been given to the influence
of the gas saturation on the velocities and attenuation of
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seismic waves since the pioneering work of White.4 The
White model describes the air fraction as spherical gas pock-
ets distributed in a cubic array in the liquid-saturated porous
medium. This model will be referred to as the “gas pocket
model.” Dutta and Ode5,6 provided a more complete solution
based on Biot’s theory for the bulk modulus of a single
bubble surrounded by a fluid-saturated porous spherical
shell. Berryman et al.7 formulated a model based on varia-
tional principles for the bulk acoustic properties of a porous
medium saturated with a mixture of two fluids. Experiments
were carried out by Smeulders and Van Dongen8 on com-
pressional wave propagation in porous columns saturated by
an air-water mixture. Their theoretical model is based on the
study of the response of a gas bubble in a fully saturated
porous medium to an external oscillating pressure field.
Damping mechanisms due to radiation into the two compres-
sional waves, viscous dilatation at the bubble surface, and
heat exchange with the solid matrix are considered. De-
grande et al.11 used this model to study the effects of satura-
tion on the wave propagation phenomena in a porous layer
adjacent to a water table. An interpretation of laboratory ve-
locity measurements in a variety of partially gas-saturated
rocks is given by Gist.12 Cadoret et al.13,14 reported experi-

mental results using a resonant-bar technique to determine
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the velocity and attenuation of acoustic waves in partially
saturated limestones at a sonic frequency of 1 kHz. Similar
experiments were previously performed by Lucet.15

Despite all the efforts and attention to study saturation
effects on seismic and acoustic waves, there is, to our best
knowledge, no study concerning the influence of the liquid
saturation on surface waves. The purpose of this work is to
investigate the effects of the gas fraction on the propagation
of surface waves along a plane interface between a liquid and
a partially saturated porous medium. The bulk acoustic prop-
erties of the partially saturated porous medium are described
according to the model of Smeulders and Van Dongen.8 The
high-frequency properties of the surface waves for the fully
saturated case were studied in detail by Feng and
Johnson.16,17 There are three surface modes that can propa-
gate depending on the relation between the mechanical prop-
erties of the porous material and the liquid, and the charac-
teristics of the interface regarding the possibility for the
liquid to flow between the two half-spaces �surface perme-
ability�. The three modes are the Stoneley wave, the pseudo-
Stoneley wave and the pseudo-Rayleigh wave. The Stoneley
wave is a true surface wave which propagates almost un-
damped along the interface with an exponential decay in the
normal direction away from the interface. The pseudomodes
are significantly damped in the direction of propagation and
radiate energy into the slow compressional wave only
�pseudo-Stoneley wave� or both into the slow compressional
wave and the acoustic wave in the liquid half-space �pseudo-
Rayleigh wave�. Recently, Gubaidullin et al.18 considered the
effects of viscous losses in the dispersive properties of the
surface waves. In this paper we consider the influence of gas
bubbles in the porous solid on the properties of the surface
waves. First we investigate the high-frequency limit, where
the viscous interaction can be neglected. Then the frequency-
dependent dispersion of the pseudo modes is analyzed.

The paper is organized as follows. In Sec. II we review
the theoretical model for acoustic wave propagation for the
case that a liquid-gas mixture saturates the porous material.
In Sec. III the results for the velocity and attenuation of the
surface modes propagating along a liquid-poroelastic plane
interface are presented and discussed. First the high-
frequency limit is examined and the different waves are dis-
cussed, followed by the analysis of the frequency-dependent
results. The study is summarized and the conclusions are
given in Sec. IV.

II. ACOUSTIC PROPERTIES OF A PARTIALLY
SATURATED POROUS MEDIUM

Acoustic wave propagation through a fully saturated po-
rous media can be described in terms of the Biot equations.
In the frequency domain these equations are expressed as

− �2��̃11ũ + �̃12Ũ� = �P − N� � � · ũ + N�2ũ + Q � � · Ũ

�1�

and

2 ˜ ˜ ˜ ˜ ˜
− � ��12u + �22U� = R � � · U + Q � � · u , �2�
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where ũ is the solid displacement and Ũ is the fluid displace-
ment. N is the shear modulus of the composite material and
P, Q, and R are the so-called generalized elastic coefficients.
They are related to the porosity �, the solid frame bulk
modulus Kb, the solid grain bulk modulus Ks, the pore-fluid
modulus, Kf and N through the so-called Gedanken experi-
ments. The parameters �̃11, �̃12, and �̃22 are the complex-
valued frequency-dependent densities. They are functions
of the density of the fluid � f, the density of the solid �s,
the porosity �, and the frequency-dependent tortuosity
�̃���. It is not the purpose of this section to review Biot’s
theory and for further details the reader is referred to clas-
sical books on the subject �see, e.g., Allard19 and Bourbie
et al.20�.

In our case, the pore space is saturated by a mixture of
water and air. Therefore, new interaction mechanisms be-
tween the gas and the liquid and the gas and the solid matrix
have to be taken into account. The oscillations of the air
bubbles will induce radiation of the two compressional
waves at the bubble surfaces. The liquid dilatation at the
bubble surface causes viscous attenuation. Finally, heat
transport from the bubble to the surrounding media is also
considered. In this work, the dissipative phenomena men-
tioned above are described in terms of a complex-valued
frequency-dependent bulk modulus of the mixture of water
and air.8 In this section we will review the main results of
this theory and analyze its implications for the bulk modes.
The compressibility of the solid grains is also considered,
which was neglected in the cited paper.8 The model is based
on the calculation of the volume variation of a single bubble
as a response to an external oscillating pressure field �Ap-
pendix A�. The dynamics of the bubble is determined by the
solution of the Biot equations at the spherical interface be-
tween the gas-saturated and the liquid-saturated porous me-
dia. Mathematically, it is possible to solve the Biot equations
in spherical coordinates in the two domains, inside and out-
side the bubble. The solutions are then matched using appro-
priate boundary conditions and the bubble volume change
due to the harmonic pressure can be calculated. In this way
the bulk modulus of the bubble can be computed and, ne-
glecting the interaction between the bubbles it will be con-
sidered as the bulk modulus of the gas phase in the mixture,
Kg���. The frequency-dependent bulk modulus of the mix-
ture, Kf��� is obtained through a modified Wood’s formula21

1

Kf���
=

s

Kl
+

1 − s

Kg���
, �3�

where Kl is the bulk modulus of the liquid phase and s is the
liquid saturation. The expression for Kf��� given in Eq. �3�
differs from the original Wood’s formula in which both the
bulk modulus for the gas and liquid phases are constant.

Strictly speaking, the original Wood’s formula is only
valid for highly homogeneous mixtures and at frequencies
sufficiently low so that the wavelengths are considerably
larger than the size of the heterogeneities. In this case it is
possible to assume that the external oscillating pressure field
is spatially homogeneous at a local scale. In our case this

scale is determined by the size of the gas bubbles and the
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distance between them. This assumption is valid for the
range of bubble sizes and frequencies considered in this
work. At higher frequencies or heterogeneous mixtures, scat-
tering effects cannot be neglected and it is no longer possible
to define a homogeneous external driving pressure at a local
scale. In this work a bubble radius of 1 mm is considered, in
accordance with experimental values reported for air-water
mixtures saturating the pores of artificial sandstones.8 In this
scenario, a threshold frequency of 1.5 MHz can be defined,
below which the assumption of this model is valid. At this
threshold frequency, the wavelength of the fast compres-
sional wave equals the diameter of the gas bubble.

Figure 1 shows the absolute and phase values of the bulk
modulus of the mixture as a function of the frequency for
different liquid saturations. A Berea sandstone saturated by a
water-air mixture is considered. The properties of the porous
material and the saturating fluids are given in Table I. On one
hand, at low frequencies, the bulk modulus of the gas phase

FIG. 1. Frequency-dependent bulk modulus for a mixture of water and air
saturating a Berea sandstone porous rock. The radius of the air bubbles is
1 mm and the gas pressure is 0.01 GPa �100 bars�. Different liquid satura-
tion s are considered.
equals 0.01 GPa and therefore a decrease in liquid saturation
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causes a decrease in the bulk modulus of the mixture since
Kl�Kg. On the other hand, at high frequencies, the gas
phase becomes highly incompressible ��Kg�→�� and Kf

=Kl /s. In this limit, Kf increases with concentration of air in
the water. The transition between the two limits shows a
minimum in the compressibility of the mixture, which corre-
sponds to the antiresonance frequency of the bubble. At this
frequency the bubbles oscillate out-of-phase with the exter-
nal pressure field, which results in a highly incompressible
medium. The relevant parameters in this model are the pres-
sure of the gas, its saturation in the pore space, and the radius
of the gas bubbles. The outcome of the velocities and attenu-
ation of the compressional waves that propagate in this par-
tially saturated porous media are shown in Fig. 2 for a liquid
saturation s of 0.95 and a bubble radius of 1 mm. The results
for the wave velocities can be explained by the arguments
about the changes in the compressibility of the mixture dis-
cussed above. The presence of air decreases the bulk modu-
lus of the mixture at low frequencies which results in com-
pressional waves propagating slower in the partially
saturated case. This behavior is reversed at high frequencies
where the compressional waves propagate faster when the air
saturation is increased. More interesting are the modifica-
tions induced by the air phase in the attenuation coefficients.
The decrease in the liquid content of the mixture result in a
significant increase of the attenuation for the fast compres-
sional wave, which is observed throughout the complete
range of frequencies studied. The slow compressional wave
presents a maximum in the attenuation for the partially satu-
rated case. This maximum is not observed for the fully satu-
rated case. The model presented here assumes that the shear
wave is influenced by the presence of the gas phase only due
to changes in density. The frequency-dependent mechanisms
incorporated in this model have been experimentally cor-
roborated by shock-induced transmission/reflection wave ex-
periments carried out in a shock tube.8

III. SATURATION EFFECTS ON THE VELOCITIES AND
ATTENUATION OF THE SURFACE WAVES

In this section the numerical results for the phase veloci-

TABLE I. Physical properties of the Berea sandstone and the saturating
fluids: water and air.

Solid density �s �kg/m3� 2644
Porosity � 0.20
Permeability k0 �mD� 360
Tortuosity �� 2.4
Frame bulk modulus Kb �GPa� 10.37
Shear modulus N �GPa� 7.02
Grain bulk modulus Ks �GPa� 36.5
Liquid bulk modulus Kl �GPa� 2.25
Gas pressure �bulk modulus� pg �GPa� 0.01
Liquid density �l �kg/m3� 1000
Gas density �g �kg/m3� 100
Liquid viscosity �l �mPa s� 1
Gas viscosity �g �mPa s� 1.5�10−2

Gas thermal diffusivity ag 1.8�10−7
ties and attenuation coefficients of the surface wave modes
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that propagate along a liquid/partially saturated poroelastic
plane interface are discussed. The configuration is depicted
in Fig. 3. The mathematical procedure involves the numeri-
cal solution of the boundary value problem which follows

FIG. 2. Phase velocities �a� and attenuation coefficients �b� of the body
waves in a water/air-saturated Berea sandstone. The effects of air saturation
are shown for the compressional waves in solid lines, the gas pressure is
0.01 GPa, the bubble radius 1 mm, and s=0.95. The Biot predictions for the
fully saturated case are shown in dotted lines.
FIG. 3. Liquid/partially saturated porous medium plane interface.
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from the application of the boundary conditions at the inter-
face �see Appendix B�. The oscillating gas bubble model8

outlined in the previous section is employed to describe the
bulk modulus of the fluid phase, which in this case is com-
posed of a mixture of water and air. The properties of the
solid matrix correspond to the Berea sandstone characterized
in Table I. We adopt the surface wave terminology given by
Feng and Johnson.16 In order to avoid confusion, it is worth-
while to mention that the pseudo-Stoneley wave propagating
along a liquid/poroelastic interface is the generalization of
the classical Stoneley wave in a liquid/elastic interface. In
the poroelastic case it becomes a pseudo wave due to radia-
tion into the slow P wave. It is important to note that in this
work we will assume that the interface is fully permeable so
that continuity of pressure holds across the interface. The
effect of sealed or partially sealed pores at the interface has
been modelled in the past using the empirical concept of
surface flow impedance. We restrict ourselves to the open
pore boundary case.

We first examine the high-frequency limit, for which the
velocities of the bulk modes become real valued and the
slow wave is propagative. It also holds that the bulk modulus
of the mixture saturating the pore space becomes real-valued
�Kl /s�. Therefore, the dissipative mechanisms induced by the
oscillation of the gas bubbles are not present in this limit as
can be clearly observed in Fig. 1. The dependence of the
surface wave velocities and attenuation on the water satura-
tion is shown in Fig. 4. For reference, the bulk wave veloci-
ties are also displayed.

For the fully water-saturated case s=1, two surface
modes are found: the pseudo-Stoneley wave and the pseudo-
Rayleigh wave. The pseudo-Stoneley wave has a velocity
which is faster than the velocity of the slow wave and slower
than the speed of the rest of the bulk modes. This implies
that it radiates energy into the slow wave and therefore it is
called a pseudo or leaky mode. The pseudo-Rayleigh wave
leaks energy into the fluid half-space and into the slow wave,
its velocity is faster than that of the slow wave and the fluid
wave but slower than that of the shear and the fast wave �the
fast wave is not plotted�. The velocity of the slow wave
decreases with increasing water saturation as can be ob-
served in Fig. 4, while the shear mode speed is slightly af-
fected due to density effects only. The behavior of the slow
wave as a function of saturation and its relation with the
other bulk modes plays an important role in the properties of
the surface waves. For water saturations higher than 0.47, the
velocity of the pseudo-Stoneley wave is higher than that of
the slow wave. In this range of saturations both the pseudo-
Stoneley wave and the pseudo-Rayleigh wave exist. The ve-
locity of the pseudo-Stoneley wave decreases with increasing
water saturation. For s values below 0.47 the pseudo-
Stoneley wave becomes a true Stoneley wave due to the fact
that the slow wave becomes faster than it. This transition is
neatly illustrated in the attenuation coefficient �Fig. 4�b��,
which shows the attenuation in terms of the inverse quality
factor Q−1. When the pseudo-Stoneley wave becomes the
true Stoneley wave, the damping necessarily disappears be-
cause radiation ceases to exist for saturation values below

0.47. The attenuation of the pseudo-Stoneley wave has a
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sharp minimum at 0.64 and over the entire range of satura-
tions it is significantly less damped than the pseudo-Rayleigh
mode. The pseudo-Rayleigh wave ceases to radiate into the
slow wave for water saturations below 0.43, because its ve-
locity becomes lower than that of the slow wave. A sharp
increase in Q−1 is observed for water saturations below 0.43
where the pseudo-Rayleigh wave ceases to radiate into the
slow wave. The only dissipative mechanism here is radiation
into the fluid wave. It is worthwhile to note that the study of
the high-frequency limit provides a first insight on the com-
pressibility effects on the surface modes due to the presence
of the gas fraction.

We now extend the study to more realistic frequency-
dependent surface waves and we consider the dissipative
mechanisms which were neglected previously. In this case
we calculate the dispersive results for the leaky modes for
different liquid saturations. Figure 5 shows the results for the

FIG. 4. Saturation effects on the phase velocity �a� and attenuation �b� of the
surface waves that propagate in a flat interface between water and a porous
Berea sandstone saturated by a mixture of air and water. The high-frequency
limit is considered. The bulk wave velocities are plotted in dashed lines.
pseudo-Stoneley wave. The phase velocity decreases with
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saturation at high frequencies. This is consistent with the
high-frequency results. At low frequencies, the phase veloci-
ties are considerably less than at high frequencies for all
saturations, although a clear trend with saturation is not
found. The results for the attenuation coefficient show a mo-
notonous increase with the air fraction occupying the pore
space. This influence of the gas fraction is most significant in
the 1–100 kHz range. The characteristic frequency for the
maximum of Q−1 depends on saturation. It is found that
when s increases this characteristic frequency moves towards
higher values.

The influence of the saturation on the properties of the
pseudo-Rayleigh is depicted in Fig. 6. At low and high fre-
quencies the pseudo-Rayleigh wave propagates slower when
the liquid fraction in the pore space is decreased. Interesting
features occur at intermediate frequencies �1–150 kHz�. In
this range of frequencies the speed of the pseudo-Rayleigh

FIG. 5. Frequency-dependent phase velocities �a� and attenuation coeffi-
cients �b� of the pseudo-Stoneley wave along a water/partially saturated
poroelastic interface. The porous material is a Berea sandstone saturated
with a water-air mixture. Different liquid saturations s are considered.
mode decreases with increasing saturation. Furthermore, a
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peak in the phase velocity is predicted. For the values of
liquid saturation studied in this work, this maximum lies in
frequencies between 10 and 20 kHz. The position of this
maximum on the frequency axis slightly depends on satura-
tion; lower characteristic frequencies are obtained for lower
values of s. It is interesting to note the presence of additional
local maxima for the s=0.95, s=0.9, and s=0.8 cases, which
become more pronounced for lower saturation values. The
characteristic frequency of this secondary maximum in-
creases with decreasing saturation.

The higher attenuation values are obtained in the low-
frequency range and a maximum is observed. This maximum
is associated with the presence of air bubbles and becomes
sharper when the saturation decreases. For the lower liquid
saturation cases considered here, s=0.9 and s=0.8, a second

FIG. 6. Frequency-dependent phase velocities �a� and attenuation coeffi-
cients �b� of the pseudo-Rayleigh wave in a water/partially saturated po-
roelastic interface. The porous material is a Berea sandstone saturated with
a water-air mixture. Different liquid saturations s are considered.
local maximum is observed at higher frequencies. The at-
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tenuation coefficient Q−1 diminishes at high frequencies and
in this limit a clear dependence on liquid saturation is found
where the attenuation increases with saturation.

IV. CONCLUSIONS AND DISCUSSION

In this work we have studied the saturation effects on
the properties of the surface waves that propagate along a
plane interface between a liquid and a partially saturated po-
rous solid. The numerical results for the pseudo-Stoneley
wave and the pseudo-Rayleigh wave show interesting fea-
tures when the pore space of the poroelastic medium is filled
with a mixture of water and air. In the high-frequency limit
where only compressibility effects are present, the full range
of liquid saturations was studied. A transition between the
leaky pseudo-Stoneley wave and the true Stoneley wave is
found at a characteristic saturation for which the slow P
wave propagates faster than the pseudo-Stoneley wave. This
transition is neatly illustrated in the behavior of the attenua-
tion coefficient Q−1 which drastically decreases for water
saturations lower than s=0.46. This indicates that the
pseudo-Stoneley wave becomes a true unattenuated surface
wave, the Stoneley wave.

When the frequency-dependent dissipative mechanisms
are included, interesting features arise in the velocity and
attenuation of the surface waves. The pseudo-Stoneley wave
shows a well-defined maximum in the attenuation. This
maximum is located in the range of frequencies which is
relevant to borehole geophysical applications �5–30 kHz�.
The characteristic frequency of this maximum depends on
the liquid saturation. In acoustic borehole logging techniques
the pseudo-Stoneley plays an important role in reservoir
characterization. In this context, our numerical results indi-
cate that the attenuation of the pseudo-Stoneley can provide
valuable information on the liquid saturation in the pores.
Similar conclusions can be drawn for the phase velocity of
the pseudo-Rayleigh wave though it should be noted that this
wave is difficult to detect in field or laboratory measure-
ments. An independent determination of the bubble size re-
mains the main obstacle for a direct application of this model
to practical situations.
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APPENDIX A: FREQUENCY-DEPENDENT BULK
MODULUS Kg„�…

The purpose of this appendix is to highlight the main
conceptual steps involved in the derivation of the complex-
valued bulk modulus of the gas phase, Kg���. In the remain-
ing of the appendixes and in order to simplify the notation,
the tilde above the functions and quantities in the frequency
domain is omitted. The tilde above the density terms and the
tortuosity is used to denote the frequency-dependent nature
of these functions �see, e.g., Allard19�.

Let us consider a spherical air bubble immersed in a
fully water saturated porous medium in the presence of an

external oscillating pressure field. First, we will focus on the
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external domain �fully water-saturated porous medium out-
side the bubble�. We introduce the displacement potentials
	c1 and 	c2 associated with the fast wave and the slow
compressional wave as follows:

u = �	c1 + �	c2, �A1�

and

U = Gc1 � 	c1 + Gc2 � 	c2, �A2�

where

Gc1 =
P − vc1

2 �̃11

vc1
2 �̃12 − Q

, �A3�

and

Gc2 =
P − vc2

2 �̃11

vc2
2 �̃12 − Q

. �A4�

In the above equations vc1 and vc2 refer to the frequency-
dependent wave velocities of the fast wave and the slow
wave.

Assuming an ei�t temporal variation, the linearized ra-
dial momentum equation for the liquid phase can be written
as follows:

�2�� fUr = �
�pf

�r
+ ��̃��� − 1��2�� f�ur − Ur� . �A5�

The above equation is integrated from the bubble radius �r
=a� to infinity in order to find an equation of motion for the
bubble, which reads

�� f�
2�Gc1	c1 + Gc2	c2� = − ��pf� − pfa�

+ �2�� f��̃��� − 1��	c1a�1

− Gc1� + 	c2a�1 − Gc2�� .

�A6�

We seek solutions for the potentials outside the bubble
in the form

	c1 =
Ac1e−ik1r

r
, �A7�

and

	c2 =
Ac2e−ik2r

r
, �A8�

where k1 and k2 are the radial wave numbers associated with
the fast compressional wave and the slow compressional
wave respectively. Then, substitution of the solutions given
by Eqs. �A7� and �A8� into Eq. �A6�, leads to the momentum
equation in terms of the two unknowns Ac1 and Ac2. The
boundary conditions at the bubble surface provide the re-
maining relations to close the problem. Inside the bubble we
neglect the interaction between the air and the solid matrix
and the matrix is considered as acoustically compact. It can
be shown that this condition implies that the velocity of the
solid phase linearly depends on r. We assume continuity of
the radial velocity of the solid phase and its radial derivative

across the bubble surface. This last condition allows a closed
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analytical solution and it is consistent with numerical calcu-
lations based on the gas pocket model.5,6 This leads to the
following relation:

�2ur

�r�t
�a+� =

1

r

�ur

�t
�a+� , �A9�

which holds at the outside of the bubble �a+�. The continuity
of fluid volume provides an equation for the change in the
volume of the gas bubble 
Vg in terms of the fluid and solid
displacements at the bubble surface


Vg = 4�a2��1 − ��ur + �Ur� . �A10�

We also consider that the pressure difference across the
bubble surface is balanced by the radial viscous stress in the
fluid at the bubble surface

pf�a+� − pg =
4

3
�

�2Ur

�r�t
�a� , �A11�

where pf�a+� denotes the pressure outside the bubble evalu-
ated at the bubble radius and pg is the gas pressure inside the
bubble.

Substitution of the expressions for 	c1 and 	c2 in the
boundary conditions �Eqs. �A9�–�A11��, followed by some
algebraic manipulations lead to the following relation be-
tween the volume of the air bubble and the external pressure
pf�:

�2� f�a1b2 − a2b1

a1c2 − a2c1
+

4

3

i��a1a2�Gc2 − Gc1�
�� f�a1c2 − a2c1� � Vg

4��a

= pf� − pg, �A12�

where

aj = kj
2�1 − 3

1 + ikja

kj
2a2 	 , �A13�

bj = �Gcj − �Gcj − 1�
�̃12 + �� f�̃���

� f
, �A14�

and

cj = �1 + ikja��1 − � + �Gcj� . �A15�

The last dissipative mechanism considered in this model
is the thermal damping. It arises due to the heat exchange
between the gas phase and the solid matrix induced by the
oscillations of the bubble. Its contribution to the bulk modu-
lus of the gas phase can be expressed as npg. Here we have
introduced a complex-valued polytropic coefficient, n:

n = ��1 + 3�� − 1�
 coth��8��k0/��1/2�
�8��k0/��1/2

−
1

��8��k0/��1/2�2�	−1

, �A16�

where = �1+ i��� /2ag�, ag being the thermal diffusivity of
the gas and � being the specific heat ratio of the gas �for air
�=1.4�. Champoux and Allard22 and Henry et al.23 re-
ported a slightly different expression for the polytropic

exponent n.
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Finally, the following expression is found for the
frequency-dependent bulk modulus of the gas phase Kg

=−Vg��Vg /�pf��−1:

Kg��� =
1

3
a2�2� f� 3npg

a2�2� f
−

a1b2 − a2b1

a1c2 − a2c1

−
4

3

i��a1a2�Gc2 − Gc1�
�� f�a1c2 − a2c1� � . �A17�

APPENDIX B: DISPLACEMENT POTENTIAL
FORMULATION FOR THE SURFACE MODES

In this appendix a displacement potential formulation is
developed in order to describe the surface waves that propa-
gate along a plane interface between a fluid half-space and a
liquid-saturated porous half-space. The configuration studied
is displayed in Fig. 3.

The surface modes propagate parallel to the interface,
depend exponentially on the distance z from the interface and
can be expressed in terms of the bulk mode solutions. In the
liquid �z�0�, the compressional waves are described by the
following potential:

	 f = Afe
�fzei�kxx−�t�. �B1�

The potentials associated to each of the bulk modes which
propagate in the porous half-space are

	c1 = Ac1e−�c1zei�kxx−�t�, �B2�

	c2 = Ac2e−�c2zei�kxx−�t�, �B3�

and

�sh = Be−�shzei�kxx−�t�êy , �B4�

where êy is the cartesian basis vector in the y direction. The
above potentials describe waves that propagate parallel to the
interface. The wave numbers in the z direction are related to
the horizontal wave number kx through the following rela-
tions:

� j =�kx
2 −

�2

cj
2 , j = 1,2,sh, f , �B5�

where cj is the velocity of the corresponding bulk mode.
The surface modes can be written as a frequency-

dependent linear combination of the potentials stated above.
The different contributions of the bulk modes are determined
by the boundary conditions, namely: continuity of averaged
normal displacement, total stress, and pressure. The displace-
ments of the solid phase and the fluid phase in the porous
medium can be expressed as follows:

u = ��	c1 + 	c2� + � � �sh, �B6�

and

U = Gc1 � 	c1 + Gc2 � 	c2 + Gsh � � �sh, �B7�

where u refers to the displacement of the matrix and U to the
displacement of the pore fluid. In the liquid half-space, the
displacement U f is �	 f. Therefore the continuity of average

normal displacement at the interface
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�1 − ��uz + �Uz = Ufz, �B8�

can be expressed as:

�1 − � + �Gc1�
�	c1

�z
+ �1 − � + �Gc2�

�	c2

�z

+ �1 − � + �Gsh�
��sh

�x
=

�	 f

�z
. �B9�

The continuity of the normal component of the total stress
implies

�zz − �p = − pf . �B10�

Using the Biot’s stress-strain relations �see, e.g., Allard19�,
the above equation can be written in terms of the potentials
as follows:

�P − 2N + Q + Gc1�Q + R���2	c1 + 2N
�2	c1

�z2

+ �P − 2N + Q + Gc2�Q + R���2	c2 + 2N
�2	c2

�z2

+ 2N
�2�sh

�z�x
= − �2�w	 f . �B11�

The absence of tangential stress in the liquid requires �xz

=0 at the interface, and this condition implies that

N�2� �2	c1

�z�x
+

�2	c2

�z�x
	 +

�2�sh

�x2 −
�2�sh

�z2 � = 0. �B12�

Finally, the continuity of pressure leads to

−
1

�
��Q + RGc1��2	c1 + �Q + RGc2��2	c2� = �w�2	 f .

�B13�

Substituting Eqs. �B1�–�B4� into Eqs. �B9� and �B11�–
�B13� and after some algebraic manipulations a linear system
for the amplitudes of the potentials is found

N�kx,�� · a = 0, �B14�

where the matrix N contains information about the mechani-
cal properties of the fully saturated porous medium and the
water half-space and a is a vector containing the amplitude
of the wave potentials, aT= �Af ,Ac1 ,Ac2 ,B�. The elements of
the matrix N are given in Appendix C. The surface modes
satisfy the condition that the determinant of N equals zero

det�N�kx,��� = 0. �B15�

At a fixed frequency �, Eq. �B15� is numerically solved
for complex kx using a Newton-Raphson algorithm. In this
way, frequency-dependent phase velocities, V���
=� Re−1�kx�, and specific attenuation coefficients, Q−1���
= �2 Im�kx� /Re�kx�� are obtained. The frequency-dependent
bulk modulus of the mixture of fluids Kf���, enters the
model via the generalized elastic coefficients P, Q, and R,
which themselves also influence the complex velocities of

the compressional waves c1 and c2.
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APPENDIX C: MATRIX COEFFICIENTS

In this appendix the elements nij of the matrix N of Eq.
�B14� are explicitly given

n11 = � f ,

n12 = �c1�1 − � + �Gc1� ,

n13 = �c2�1 − � + �Gc2� ,

n14 = − ikx�1 − � + �Gsh� ,

n21 = 0,

n22 = 2N�c1ikx,

n23 = 2N�c2ikx,

n24 = ��sh
2 + kx

2�N ,

n31 = �2� f ,

n32 = − ��P − 2N� + Q + Gc1�Q + R��� �

c1
	2

+ 2N�c1
2 ,

n33 = − ��P − 2N� + Q + Gc2�Q + R��� �

c2
	2

+ 2N�c2
2 ,

n34 = − 2Nikx�sh,

n41 = �2� f ,

n42 = − � �

c1
	2 1

�
�Q + RGc1� ,

n43 = − � �

c2
	2 1

�
�Q + RGc2� ,

n44 = 0.
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