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1
Introduction

In the medical world, specialists and patients are often interested in the time it takes to a certain event
to happen. For example, when a certain fatal disease is diagnosed, the specialists want to know how
long this patient will live. Or maybe another specialist wants to know how long it takes to cure a patient
when he uses a specific treatment for his patient.

The time until the certain events happens may be strongly dependent of characteristics of the pa-
tient. One can imagine that for a specific disease a child will probably be cured faster than an elderly
woman with the same type of disease. This can be influenced by many different variables and special-
ists would want to know what variables have the biggest influence on the survival time of a patient.

Survival analysis is a branch of statistics for analyzing the time until a certain event happens, which
is used in plenty of applied fields, such as medicine, economics, biology and engineering. In this thesis,
there will be focused on an application in medicine.
In survival analysis, the term survival time is commonly used for the time a certain event happens,
where in medical applications the event is often seen as death. One important function in survival
analysis is the survival function, which is defined as the probability that an object (or in the medical
approach this is a patient) will survive until time 𝑡. In medical research survival functions are often
plotted to give an idea about the probability of surviving beyond a specific time. An example of a sur-
vival plot can be found below in figure 1.1. In this figure there can be seen that as time is increasing
the probability of surviving beyond that time is decreasing.
Another important function is the hazard rate function, which is proportional to the the probability that
an event will happen in a small interval after time 𝑡, given that the event has not yet happened at time
𝑡. This is often referred to as the rate of mortality or the rate of an event.

One well known model in survival analysis is the Cox proportional hazards model, which was in-
vented by Sir David Cox in 1972. Nowadays, this is one of the most important models in survival
analysis [1]. In such a model the time to a certain event is related to many explanatory variabels
which may or may not have an influence on the time to the event.

To analyse what explanatory variables are most related to the distribution of on the time to an
event, Robert Tibshirani proposed a method for variable selection and shrinkage in the Cox propor-
tional hazards model [2]. This method, which is called the Least Absolute Shrinkage and Selection
Operator (LASSO) results in a subset of explanatory variables from which the parameters are shrunken
towards zero. The parameters related to the other explanatory variables are all equal to zero.

Patients with breast cancer at the same stage of disease can have different treatment responses
and different outcome. Besides analyzing standard clinical risk factors such as diagnosis age and the
diameter of the tumor, L. van ’t Veer proposed to look at DNA measurements of the patients [3]. In the
period between 1984 and 1995, 144 patients with breast cancer were monitored at the Netherlands
Cancer Institute [4]. Those patients were selected among all patients that were diagnosed with breast
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2 1. Introduction

Figure 1.1

cancer according to several criteria: the diameter of the tumor at the moment of diagnose was less
than 5 centimeters, the age of the patients at moment of diagnose was less than 53 years old and
there was a lymph-node-positive disease diagnosed (which means that the cancer cells have spread
throughout the whole body which results in a higher risk). For all monitored patients there were 5
clinical risk variables and 70 genetical measurements monitored. In this thesis, the Cox Proportional
Hazards model and the method of LASSO are used to look at the relation of the gene expression mea-
surements and the standard clinical and histological variables on the distribution of survival time of the
patients.

The main aim of this thesis is to use Tibshirani’s method of LASSO on the Cox proportional hazards
model. First there will be focus on the stochastic model of the proportional hazards model. Then in the
second part we will focus on algorithms for solving the optimization problems that need to be solved
in order to fit the Cox proportional hazards model to data. Afterwards this model is applied to the data
of breast cancer patients of the Netherlands Cancer Institute in order to see what variables are most
related to te distribution of survival time of the patients.



2
Stochastic model for survival data

The main aim of survival analysis is to analyze the distribution of the time until a certain event happens.
For the application in medicine, this event is often seen as death, but it can also be defined differently,
such as the time until the patient is cured. The time until the event if often referred to as survival
time. In this thesis, there will be spoken about time to death and therefore the event is death. In
this section, first some basic concepts of survival analysis will be introduced that will be used for the
introduction of the Cox proportional hazards model later this section.

2.1. The basic concepts of survival analysis
In survival analysis a few basic functions are used to describe certain characteristics of survival data.
Those functions are introduced in this section.

Let 𝑇 be the random variable which denotes the time to death of a specific patient. Often the aim is
to make a good prediction about the time until death, based on the characteristics of the patient. This
can be done using the survival function, which is one of the most used functions in survival analysis.
Define 𝑆(𝑡) as the survival function, which is the probability that the patient will survive at least until
time 𝑡. Then 𝑆(𝑡) is given by:

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝑃(𝑇 ≤ 𝑡) = 1 − 𝐹(𝑡) (2.1)

where 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) is the cumulative distribution function of 𝑇, which is the probability that the
event time is smaller than or equal to time 𝑡. Let 𝑓(𝑡) = ፝

፝፭𝐹(𝑡) be the probability density function of
𝑡 when 𝑇 is continuous.

Another main function in survival analysis is the hazard rate function. The hazard rate function
evaluated at time 𝑡 is, for 𝜖 > 0 sufficiently small, proportional to the probability that the patient will
die within the small interval [𝑡, 𝑡 + 𝜖] given that the patient survives beyond time 𝑡. In a mathematical
way, the hazard rate function 𝜆(𝑡) is defined as:

𝜆(𝑡) = lim
Ꭸ↓ኺ

𝑃(𝑇 ∈ [𝑡, 𝑡 + 𝜖] | 𝑇 ≥ 𝑡)
𝜖 (2.2)

The hazard rate function is often referred to as the rate of mortality or the rate of an event. The
hazard rate function can also be expressed in terms of the survival function, which can be proved using
the definition of the survival function to rewrite the definition of the hazard rate function:

𝜆(𝑡) = lim
Ꭸ↓ኺ

𝑃(𝑇 ∈ [𝑡, 𝑡 + 𝜖] | 𝑇 ≥ 𝑡)
𝜖 = lim

Ꭸ↓ኺ
1
𝜖
𝑃(𝑇 ∈ [𝑡, 𝑡 + 𝜖])

𝑃(𝑇 ≥ 𝑡) = 𝑓(𝑡)
𝑆(𝑡) (2.3)

Also, using that 𝑆(𝑡) = 1 − 𝐹(𝑡), another expression for the hazard rate function is:

𝜆(𝑡) = 𝑓(𝑡)
𝑆(𝑡) =

ዅ፝ፒ(፭)
፝፭
𝑆(𝑡) = − 𝑑𝑑𝑡 ln(𝑆(𝑡))

3



4 2. Stochastic model for survival data

When integrating the hazard rate until time 𝑡, one obtains the cumulative hazard rate, which is
represented as Λ(𝑡). Λ(𝑡) is an increasing function with Λ(0) = 0. Rewriting the previous relation gives
an expression of the survival function in terms of the cumulative hazard function Λ(𝑡):

ln(𝑆(𝑡)) = −∫
፭

ኺ
𝜆(𝑠)𝑑𝑠 + 𝐶 = −Λ(𝑡)

where 𝐶 is zero since 𝑆(0) = 1 and Λ(0) = 0.

2.2. The Cox proportional hazards model
In the previous section, the basic tools for survival analysis were introduced for a general continuous
random variable. One can imagine that this hazard rate function or survival function can be strongly
influenced by certain characteristics of the patient. Characteristics of a patient can for example be age,
sex, blood pressure or the type of treatment a patient was given.

The Cox proportional hazards model was introduced by Sir David Cox in 1972. Nowadays, it is one
of the most used models in survival analysis and it is also known as the Cox model [1]. This model
introduces a definition for the hazard rate function which is dependent on the explanatory variables.

Suppose there are 𝑛 patients observed over a period of time, and suppose 𝑝 explanatory variables
are known. Let 𝑋 be a 𝑛 × 𝑝-matrix containing the variables for all objects. Then the 𝑖፭፡ row of
this matrix, which contains the 𝑝 explanatory variables of the 𝑖፭፡ patient, is denoted by 𝑋። and the
𝑗፭፡ column, which contains information about a certain variable for all 𝑛 patients, is notated by 𝑋፣.
Suppose the measured event time of the event, depending on 𝑋። is 𝑡።. Then according to the Cox
proportional hazards model the conditional hazard rate function of the 𝑖፭፡ object is defined as:

𝜆(𝑡|𝑋።) = 𝜆ኺ(𝑡)𝑒ᎏ
ᑋዢᏥ (2.4)

where 𝜆ኺ(𝑡) is called the baseline hazard function and 𝛽 = (𝛽ኻ, … , 𝛽፩) are the regression parameters
of the model. The baseline hazard rate function describes the risk at time 𝑡 for a patient with 𝑋። = 0,
where 0 is a 𝑝-dimensional vector. This patient with explanatory variables equal to zero can be seen
as a reference cell or pivot. The factor 𝑒ᎏᑋፗᑚ is the relative risk, which increases or reduces the risk in
proportion to the explanatory variables 𝑋።. Not that the increase or reduce in risk is independent of
the time 𝑡.

Given that the hazard rate function is dependent on the explanatory variables, the cumulative hazard
function will also be dependent on the explanatory variables. Therefore, in the Cox proportional hazards
model, one can define the cumulative hazard function as:

Λ(𝑡|𝑋።) = ∫
፭

ኺ
𝜆(𝑠|𝑋።) 𝑑𝑠

Therefore, the survival function is also dependent on the explanatory variables and can be defined
as:

𝑆(𝑡|𝑋።) = 𝑒ዅጉ(፭|ፗᑚ) = 𝑒ዅ∫
ᑥ
Ꮂ ᎘(፬|ፗᑚ) ፝፬ (2.5)

In the Cox model it is assumed that the hazard rate of a patient is dependent on the explanatory
variables of the patient in a specific mathematical way. Knowing the explanatory variables, which
are stored in the matrix 𝑋, one can estimate the regression parameters 𝛽 = (𝛽ኻ, … , 𝛽፩) by maximum
likelihood estimation. Once the regression parameters are known, for example the expected lifetime
of a patient can be estimated. The maximum likelihood estimation can be done by maximizing two
different types of likelihoods, the likelihood function and the partial likelihood function. Both functions
will be introduced in the following sections and the differences will also be discussed
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2.2.1. Likelihood function of the Cox model
Suppose there are 𝑛 patients observed over a period of time, which are denoted by 1,… , 𝑛. Let 𝑡ኻ, … , 𝑡፧
be the measured event times of the patients and let 𝑋 again be the matrix of all 𝑝 explanatory variables
of all patients, where 𝑋። denotes the explanatory variables for the 𝑖፭፡ patient.

The likelihood can be derived by computing the joint density function for the event times. Then
using independence, the hazard rate function in terms of the survival function (as was introduced in
equation 2.3) and the survival function as defined in equation 2.5, the likelihood function is given by:

𝐿(𝛽) = 𝑓(𝑡ኻ, … , 𝑡፧|𝛽) =
፧

∏
።዆ኻ

𝑓(𝑡።|𝛽) =
፧

∏
።዆ኻ

𝜆(𝑡።|𝛽) ⋅ 𝑆(𝑡።|𝛽)

=
፧

∏
።዆ኻ

𝜆ኺ(𝑡።)𝑒ᎏ
ᑋፗᑚ ⋅ 𝑒ዅጉ(፭ᑚ|ᎏ) =

፧

∏
።዆ኻ

𝜆ኺ(𝑡።)𝑒ᎏ
ᑋፗᑚ ⋅ exp(−∫

፭ᑚ

ኺ
𝜆ኺ(𝑠)𝑒ᎏ

ᑋፗᑚ𝑑𝑠)

=
፧

∏
።዆ኻ

𝜆ኺ(𝑡።)𝑒ᎏ
ᑋፗᑚ ⋅ exp(−∫

፭ᑚ

ኺ
𝜆ኺ(𝑠)𝑑𝑠 𝑒ᎏ

ᑋፗᑚ)

Rewriting this a little gives that the likelihood function equals:

𝐿(𝛽) =
፧

∏
።዆ኻ

𝜆ኺ(𝑡።)𝑒ᎏ
ᑋፗᑚ

exp (∫፭ᑚኺ 𝜆ኺ(𝑠)𝑑𝑠 𝑒ᎏ
ᑋፗᑚ)

(2.6)

Then according to the method of maximum likelihood estimation, one should maximize 𝐿(𝛽) in
order to estimate the regression parameters 𝛽 = (𝛽ኻ, … , 𝛽፩).

Define ℓ(𝛽) = − ln(𝐿(𝛽)) as the minus-log-likelihood then instead of maximizing 𝐿(𝛽), it is equiv-
alent to minimize the minus-log-likelihood which equals:

ℓ(𝛽) = − ln(𝐿(𝛽)) = − ln(
፧

∏
።዆ኻ

𝜆ኺ(𝑡።)𝑒ᎏ
ᑋፗᑚ

exp (∫፭ᑚኺ 𝜆ኺ(𝑠)𝑑𝑠 𝑒ᎏ
ᑋፗᑚ)

)

= −
፧

∑
።዆ኻ

ln( 𝜆ኺ(𝑡።)𝑒ᎏ
ᑋፗᑚ

exp (∫፭ᑚኺ 𝜆ኺ(𝑠)𝑑𝑠 𝑒ᎏ
ᑋፗᑚ)

)

= −
፧

∑
።዆ኻ
(ln (𝜆ኺ(𝑡።)𝑒ᎏ

ᑋፗᑚ) − ln(exp(∫
፭ᑚ

ኺ
𝜆ኺ(𝑠)𝑑𝑠 𝑒ᎏ

ᑋፗᑚ)))

= −
፧

∑
።዆ኻ
(ln(𝜆ኺ(𝑡።)) + 𝛽ፓ𝑋። −∫

፭ᑚ

ኺ
𝜆ኺ(𝑠)𝑑𝑠 𝑒ᎏ

ᑋፗᑚ) (2.7)

The estimation of the regression parameters according to the minus-log-likelihood function can be
found in section 5.1.

Note that the likelihood function (and the minus-log-likelihood function) are dependent of the base-
line hazard function. Since this baseline hazard function should be integrated in order to compute the
minus-log-likelihood of the model, this may cause problems in case the baseline hazard function is un-
bounded. That will result in an unbounded minus-log-likelihood, which causes difficulties in estimating
the regression parameters.

Because of this disadvantage of the likelihood function, Sir David Cox proposed to look a likelihood
type of function, which is called the partial likelihood function. This partial likelihood function leaves
the baseline hazard function completely unspecified.
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Figure 2.1: Visualization of the situation

2.2.2. Partial likelihood function of the Cox model
Again, suppose that there are 𝑛 patients observed over a period of time. Let 𝑡ኻ, … , 𝑡፧ be the measured
event times, but now also assume that they are untied and ordered such that 𝑡ኻ < ⋯ < 𝑡፧. Let 1,… , 𝑛
denote the patients corresponding to event time 𝑡። and the patient’s explanatory variables 𝑋።.

Since the event times are ordered, one can derive a likelihood type of function by looking at the data
at an alternative view. Because of the ordering, it is known that at time 𝑡። patients {1, … , 𝑖 − 1} have
already experienced the event and that persons {𝑖, … , 𝑛} are at risk to experience the event. Knowing
that there is exactly one patient that will experience the event at time 𝑡።, what is the probability that
this will be exactly patient 𝑖, with explanatory variables 𝑋።? The situation is sketched in figure 2.1.

Let 𝑃።(𝜖) be the probability that patient 𝑖 with explanatory variables 𝑋። experiences the event at
time 𝑡።, with 𝜖 > 0 sufficiently small. This probability 𝑃።(𝜖) can then be expressed as the following
conditional probability [5]:

𝑃።(𝜖) = 𝑃 (𝑇። ∈ [𝑡። , 𝑡። + 𝜖] | {𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖] for exactly one 𝑘 = 𝑖, … , 𝑛} ∩ {𝑇፤ ≥ 𝑡።∀ 𝑘 = 𝑖, … , 𝑛}) (2.8)

Let 𝐴 = {𝑇። ∈ [𝑡። , 𝑡። + 𝜖]}, 𝐵 = {𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖] for exactly one 𝑘 = 𝑖, … , 𝑛} and 𝐶 = {𝑇፤ ≥ 𝑡። ∀ 𝑘 =
𝑖, … , 𝑛}. Note that the conditional probability in equation 2.8 is of the form 𝑃(𝐴|𝐵∩𝐶), which can easily
be rewritten as:

𝑃(𝐴|𝐵 ∩ 𝐶) = 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶)
𝑃(𝐵 ∩ 𝐶) = 𝑃(𝐴 ∩ 𝐵|𝐶)𝑃(𝐶)

𝑃(𝐵|𝐶)𝑃(𝐶) = 𝑃(𝐴 ∩ 𝐵|𝐶)
𝑃(𝐵|𝐶)

Using this, equation 2.8 can be rewritten as:

𝑃።(𝜖) =
𝑃({𝑇። ∈ [𝑡። , 𝑡። + 𝜖]} ∩ {𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖] for exactly one 𝑘 = 𝑖, … , 𝑛} | 𝑇፤ ≥ 𝑡። ∀ 𝑘 = 𝑖, … , 𝑛)

𝑃(𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖] for exactly one 𝑘 = 𝑖, … , 𝑛 | 𝑇፤ ≥ 𝑡። ∀ 𝑘 = 𝑖, … , 𝑛)
(2.9)

When taking a closer look at the numerator of equation 2.9, note that since there can only be one
event time in the interval [𝑡። , 𝑡። + 𝜖] and 𝑇። has to be in that same interval, all other event times can
not be within the interval [𝑡። , 𝑡። + 𝜖]. Given that all remaining event times are bigger than 𝑡።, all event
times 𝑇፤ with 𝑘 = 𝑖 + 1,… , 𝑛 must be bigger than 𝑡። + 𝜖.

Then using the definition of a conditional probability and the previous finding, the numerator of
equation 2.9 can be rewritten as:
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𝑃({𝑇። ∈ [𝑡። , 𝑡። + 𝜖]} ∩ {𝑇፤ > 𝑡። + 𝜖 ∀ 𝑘 = 𝑖 + 1,… , 𝑛} | 𝑇፤ ≥ 𝑡። ∀ 𝑘 = 𝑖, … , 𝑛)

=𝑃(
{𝑇። ∈ [𝑡። , 𝑡። + 𝜖]} ∩ {𝑇፤ > 𝑡። + 𝜖 ∀ 𝑘 = 𝑖 + 1,… , 𝑛 } ∩ {𝑇፤ ≥ 𝑡።∀ 𝑘 = 𝑖, … , 𝑛})

𝑃(𝑇፤ ≥ 𝑡። ∀ 𝑘 = 𝑖, … , 𝑛)

=𝑃(
{𝑇። ∈ [𝑡። , 𝑡። + 𝜖]} ∩ {𝑇። ≥ 𝑡።} ∩ {∩፧፤዆።ዄኻ {{𝑇፤ > 𝑡። + 𝜖} ∩ {𝑇፤ ≥ 𝑡።}}}

𝑃(𝑇፤ ≥ 𝑡።∀ 𝑘 = 𝑖, … , 𝑛)
Using independence of the event times this becomes:

𝑃({𝑇። ∈ [𝑡። , 𝑡። + 𝜖]} ∩ {𝑇። ≥ 𝑡።})
𝑃(𝑇። ≥ 𝑡።)

⋅ 𝑃(∩
፧
፤዆።ዄኻ {{𝑇፤ > 𝑡። + 𝜖} ∩ {𝑇፤ ≥ 𝑡።}})

𝑃(∩፧፤዆።ዄኻ{𝑇፤ ≥ 𝑡።})

= 𝑃(𝑇። ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇። ≥ 𝑡።) ⋅
፧

∏
፤዆።ዄኻ

𝑃(𝑇፤ > 𝑡። + 𝜖 | 𝑇፤ ≥ 𝑡።) (2.10)

Having another representation of the numerator of equation 2.9, it is instructive to have a closer
look at the denominator of equation 2.9 too.

Note that at event time 𝑡።, all patients 𝑖, 𝑖 + 1,… , 𝑛 are still at risk to experience the event. Suppose
that patient 𝑘 = 𝑖, 𝑖 + 1,… , 𝑛 has the event within the interval [𝑡። , 𝑡። + 𝜖], then since there can be only
one event in that interval all remaining event times must be bigger than 𝑡። + 𝜖. So let 𝑘 be a patient
with event time bigger than 𝑡።, then the probability that object 𝑘 is the only object with event time in
the interval [𝑡። , 𝑡።+𝜖] equals: 𝑃({𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖]}∩{𝑇፣ > 𝑡። + 𝜖 ∀ 𝑗 ≠ 𝑘} |𝑇፣ ≥ 𝑡። ∀ 𝑗 = 𝑖, … , 𝑛). Knowing
that there is one patient that experiences the event within the interval [𝑡። , 𝑡። +𝜖], gives that one of the
patients 𝑖, 𝑖 + 1,… , 𝑛 should experience the event.

Using this and independence of the event times, the denominator of equation 2.9 can be rewritten
as:

𝑃(𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖] for exactly one 𝑘 = 𝑖, … , 𝑛 | 𝑇፤ ≥ 𝑡። ∀ 𝑘 = 𝑖, … , 𝑛)

=
፧

∑
፤዆።
𝑃 ({𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖]} ∩ {𝑇፣ > 𝑡። + 𝜖 ∀ 𝑗 ≠ 𝑘} |𝑇፣ ≥ 𝑡። ∀ 𝑗 = 𝑖, … , 𝑛)

=
፧

∑
፤዆።

𝑃 ({𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖]} ∩ {𝑇፣ > 𝑡። + 𝜖 ∀ 𝑗 ≠ 𝑘} ∩ {𝑇፣ ≥ 𝑡። ∀ 𝑗 = 𝑖, … , 𝑛})
𝑃(𝑇፣ ≥ 𝑡። ∀ 𝑗 = 𝑖, … , 𝑛)

=
፧

∑
፤዆።
(𝑃

({𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖]} ∩ {𝑇፤ ≥ 𝑡።})
𝑃 (𝑇፤ ≥ 𝑡።)

⋅
𝑃 ({𝑇፣ > 𝑡። + 𝜖 ∀ 𝑗 ≠ 𝑘} ∩ {𝑇፣ ≥ 𝑡። ∀ 𝑗 ≠ 𝑘})

𝑃 (𝑇፣ ≥ 𝑡። ∀ 𝑗 ≠ 𝑘)
)

=
፧

∑
፤዆።
(𝑃 (𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇፤ ≥ 𝑡።) ⋅∏

፣ጽ፤
𝑃 (𝑇፣ > 𝑡። + 𝜖 | 𝑇፣ ≥ 𝑡።)) (2.11)

Then substituting equations 2.10 and 2.11 into equation 2.9 gives that:

𝑃።(𝜖) =
𝑃(𝑇። ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇። ≥ 𝑡።) ⋅ ∏፧፣዆።ዄኻ 𝑃(𝑇፣ > 𝑡። + 𝜖 | 𝑇፣ ≥ 𝑡።)

∑፧፤዆። (𝑃 (𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇፤ ≥ 𝑡።) ⋅ ∏፣ጽ፤ 𝑃 (𝑇፣ > 𝑡። + 𝜖 | 𝑇፣ ≥ 𝑡።))

= 𝑃(𝑇። ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇። ≥ 𝑡።) ⋅ 𝑃(𝑇፤ > 𝑡። + 𝜖 | 𝑇፤ ≥ 𝑡።)
∑፧፤዆። 𝑃 (𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇፤ ≥ 𝑡።) ⋅ 𝑃(𝑇። > 𝑡። + 𝜖 | 𝑇። ≥ 𝑡።)

= 𝑃(𝑇። ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇። ≥ 𝑡።) / 𝑃(𝑇። > 𝑡። + 𝜖 | 𝑇። ≥ 𝑡።)
∑፧፤዆። 𝑃 (𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇፤ ≥ 𝑡።) / 𝑃(𝑇፤ > 𝑡። + 𝜖 | 𝑇፤ ≥ 𝑡።)

= 𝑃(𝑇። ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇። ≥ 𝑡።)
∑፧፤዆። 𝑃 (𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇፤ ≥ 𝑡።)
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Figure 2.2: Visualization of the situation

Recall from section 2.1 that the hazard rate function was introduced as:

𝜆(𝑡) = lim
Ꭸ↓ኺ

𝑃(𝑇 ∈ [𝑡, 𝑡 + 𝜖] | 𝑇 ≥ 𝑡)
𝜖

Now let 𝑃። = limᎨ↓ኺ 𝑃።(𝜖) be the probability 𝑃።(𝜖), with 𝜖 > 0 very small. Then using the definition for
the hazard rate function, will result in a representation of the probability 𝑃። in terms of the hazard rate
function:

𝑃። = lim
Ꭸ↓ኺ

𝑃።(𝜖)

= limᎨ↓ኺ 𝑃(𝑇። ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇። ≥ 𝑡።)
limᎨ↓ኺ ∑፧፤዆። 𝑃(𝑇፤ ∈ [𝑡። , 𝑡። + 𝜖] | 𝑇፤ ≥ 𝑡።)

= limᎨ↓ኺ 𝜖 ⋅ 𝜆።(𝑡።)
∑፧፤዆። limᎨ↓ኺ 𝜖 ⋅ 𝜆፤(𝑡።)

= 𝜆።(𝑡።)
∑፧፤዆። 𝜆፤(𝑡።)

(2.12)

Then according to the Cox model, the hazard rate function equals 𝜆።(𝑡።|𝑋።) = 𝜆ኺ(𝑡።)𝑒ᎏ
ᑋፗᑚ , which

gives that the probability 𝑃። in terms of the regression parameters 𝛽 and the variables 𝑋። equals:

𝑃። =
𝜆።(𝑡።|𝑋።)

∑፧፤዆። 𝜆፤(𝑡።|𝑋፤)
= 𝜆ኺ(𝑡።)𝑒ᎏ

ᑋፗᑚ

∑፧፤዆። 𝜆ኺ(𝑡።)𝑒ᎏ
ᑋፗᑜ

= 𝑒ᎏᑋፗᑚ
∑፧፤዆። 𝑒ᎏ

ᑋፗᑜ
(2.13)

So when the event times are ordered and untied, it is possible to express the probability 𝑃። that
exactly patient 𝑖 with explanatory variables 𝑋። experiences the event at time 𝑡። in terms of the hazard
rate function.

Now assume that all event times 𝑡ኻ, … , 𝑡፧ are known. The so called partial likelihood, which was
introduced by Sir David Cox, can be found by taking the probability that for every 𝑖 = 1,… , 𝑛 patient 𝑖
experiences the event at event time 𝑡።. The so called partial likelihood describes the probability that at
time 𝑡ኻ patient 1 experiences the event and at time 𝑡ኼ patient 2 experiences the event and at time 𝑡ኽ
patient 3 experiences the event, and so on until time 𝑡፧. The main idea can be found in figure 2.2.

The partial likelihood 𝐿፩(𝛽) can be found by computing the probability:
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𝐿፩(𝛽) = lim
Ꭸ↓ኺ

𝑃({only 𝑇ኻ ∈ [𝑡ኻ, 𝑡። + 𝜖]} ∩ ⋯ ∩ {only 𝑇፧ ∈ [𝑡፧ , 𝑡፧ + 𝜖]} | 𝑇ኻ ≥ 𝑡ኻ, … , 𝑇፧ ≥ 𝑡፧)

= lim
Ꭸ↓ኺ

𝑃(only 𝑇ኻ ∈ [𝑡ኻ, 𝑡። + 𝜖] | 𝑇ኻ, 𝑇ኼ, … , 𝑇፧ ≥ 𝑡ኻ) ⋅ ⋯ ⋅ 𝑃(only 𝑇፧ ∈ [𝑡፧ , 𝑡፧ + 𝜖] | 𝑇፧ ≥ 𝑡፧)

= lim
Ꭸ↓ኺ

𝑃ኻ(𝜖) ⋅ ⋯ ⋅ 𝑃፧(𝜖)

= 𝑃ኻ ⋅ ⋯ ⋅ 𝑃፧

Then using the expression for the probability 𝑃። from equation 2.13, gives that the partial likelihood
equals:

𝐿፩(𝛽) =
፧

∏
።዆ኻ

𝑒ᎏᑋፗᑚ
∑፧፤዆። 𝑒ᎏ

ᑋፗᑜ
(2.14)

Define ℓ፩(𝛽) = − ln 𝐿፩(𝛽) as the minus-log-partial-likelihood, then this equals:

ℓ፩(𝛽) = − ln(𝐿፩(𝛽))

= − ln(
፧

∏
።዆ኻ

𝑒ᎏᑋፗᑚ
∑፧፤዆። 𝑒ᎏ

ᑋፗᑜ
)

= −
፧

∑
።዆ኻ

ln( 𝑒ᎏᑋፗᑚ
∑፧፤዆። 𝑒ᎏ

ᑋፗᑜ
)

= −
፧

∑
።዆ኻ
(ln (𝑒ᎏᑋፗᑚ) − ln(

፧

∑
፤዆።
𝑒ᎏᑋፗᑜ))

=
፧

∑
።዆ኻ
(ln(

፧

∑
፤዆።
𝑒ᎏᑋፗᑜ) − 𝛽ፓ𝑋።) (2.15)

Note that in the computations in equation 2.13 the baseline hazard rate function cancels out. The
probability that patient 𝑖 with explanatory variables 𝑋። has event time 𝑡። is therefore independent on
the baseline hazard rate function. This results in a so called partial likelihood that is also independent
on the baseline hazard rate function, which is in contrast to the likelihood function of equation 2.6,
which is dependent on the baseline hazard rate function.

2.2.3. Differences likelihood and partial likelihood
In the previous sections, the likelihood (equation 2.6) and the partial likelihood (equation 2.14) for the
Cox model have been derived. Both functions can be used for the maximum likelihood estimation of
the regression parameters, see section 5.1.

The most important difference between those functions is the appearance of the baseline hazard
rate function. In the computation of the probability 𝑃። the baseline hazard rate function cancels out,
see equation 2.13. The partial likelihood is therefore independent on the baseline hazard rate function,
in contrast to the likelihood function which is dependent on the baseline hazard rate function.

One disadvantage of using the baseline hazard function is in the case that the baseline hazard
rate function is unbounded. Since the baseline hazard rate function should be integrated in order to
compute the likelihood function, this would result in an unbounded likelihood function, which causes
difficulties in estimating the regression parameters when using maximum likelihood estimation.

Another disadvantage of the appearance of the baseline hazard rate function is the difficulty to
determine the baseline hazard rate function. For determining this function, specific assumptions for
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the distribution of baseline hazard rate function should be made.

Due to the absence of the baseline hazard function in the partial likelihood function, the partial
likelihood function is preferred over the likelihood function. So when applying maximum likelihood
estimation for estimating the regression parameters, the partial likelihood function is used instead of
the likelihood function. In this thesis the partial likelihood function is used for further computations,
but in section 5.1 both functions are used to estimate the regression parameters.

2.2.4. Censored data
In survival analysis, one common problem which has to be dealt with is the one of censored data.
Censoring occurs when event times are known to occur within a certain interval. There are several
types of censoring, such as right-censoring, left-censoring and interval censoring.

In medical applications, event times are typically right-censored. Therefore, in this thesis only right-
censoring is taken in consideration. In the case of right-censored data, an event time 𝑇 is observed if
𝑇 ≤ 𝐶, where 𝐶 > 0 is called the censoring time. So if the event time of an patient is not observed, the
only thing known is that 𝑇 > 𝐶. Right-censoring occurs in case patients disappear before the event has
actually happened. This can have several reasons, such as death due to another cause, or the choice
to discontinue their participation in the study or the patient moving away.

Suppose there are 𝑛 patients with event times 𝑇ኻ, … 𝑇፧, define 𝐶ኻ, … 𝐶፧ as the censoring times. Then
one way to model right-censored data in a mathematical is by defining:

Δ። = {
1 if 𝑇። ≤ 𝐶።
0 if 𝑇። > 𝐶።

and 𝑌። =min(𝑇። , 𝐶።).

Let the data be (𝑦። , 𝛿።), 𝑖 = 1,… , 𝑛, where 𝑦። is the realization of 𝑌። and 𝛿። the realization of Δ።.
When censoring is taken in consideration, the only way a patient could have an event time at 𝑡።, is
when the event is actually noticed so when 𝛿። = 1. In the case that 𝛿። = 0, the only thing that was
measured, is that patient 𝑖 was still alive at time 𝑡።, but the specific event was not noticed.

So at event time 𝑡። the patients 𝑖, 𝑖 + 1,… , 𝑛 are still at risk, whether their event times are censored
or not. In case the event time of patient 𝑖 is censored, it is known that the event does not happen
at time 𝑡።, but somewhere in the future. Then the probability that patient 𝑖 actually experiences the
event time within the interval [𝑡። , 𝑡። + 𝜖] is zero, since it is already known the event takes place further
in the future. At the next event time 𝑡።ዄኻ patient 𝑖 is not taken in consideration anymore, since the
patient disappeared in our study. The main idea is sketched in figure 2.3. Note that if patient 𝑖 has a
censored event time, this patient can not be left out in the whole study, since this patient is still at risk
for experiencing the event until time 𝑡።.

Define the index 𝐼 = {𝑖 ∈ [1, 𝑛] ∶ 𝛿። = 1}. Then 𝐼 only consists of the patients whose events were
actually noticed. All patients that are not in 𝐼 are still taken in consideration, since they are still at risk
for experiencing the event until their censoring time. After their censoring time, those patients are not
taken in consideration.

Then due to the censoring, the partial likelihood as was introduced in section 2.2.2 is adapted to:

𝐿፩፜(𝛽) =∏
።∈ፈ
( 𝑒ᎏᑋፗᑚ
∑፧፤዆። 𝑒ᎏ

ᑋፗᑜ
)

And the minus-log-partial likelihood equals:

ℓ፩፜(𝛽) =∑
።∈ፈ
(ln(

፧

∑
፤዆።
𝑒ᎏᑋፗᑜ) − 𝛽ፓ𝑋።) (2.16)
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Figure 2.3: Visualization of the situation





3
Variable selection and shrinkage

In the medical application of survival analysis, there are often many potential explanatory variables
involved. There may be so many variables involved, that the model might become over parameterized
or difficult to interpret. In such a case, there are several regression methods that can be used to limit
the number of used explanatory variables.

One method which can be used is variable selection, which is a discrete process where variables
are either retained or discarded. When there are a large number of explanatory variables, it is often
instructive to determine a smaller subset of the variables which exhibit the strongest effects. One
disadvantage of variable selection is that unless the produced model possibly has a smaller prediction
error than the full model, the produced model often exhibits large variance [6].

Another type of method is shrinkage, which are more continuous type of methods and hence do
not suffer as much from variability. However, shrinkage does not discard certain variables and hence
does not give an easily interpretable model. [6]

Robert Tibshirani proposed to use a method called The Least Absolute Shrinkage and Selection
Operator for variable selection and shrinkage in the Cox model [2]. This method is also known as the
LASSO, and produces coefficients that are shrunken towards zero but also coefficients that are exactly
zero.

The original LASSO minimizes the residual sum of squares subject to the sum of the absolute values
of the coefficients being less than a certain constant. Because of this constraint, this method shrinks
some coefficients and set others to be exactly zero and hence uses the good features of both subset
selection and shrinkage.

The LASSO is attractive as a regularization method because it simultaneously performs variable se-
lection and shrinkage. It shrinks all regression coefficients towards zero and automatically sets many
of them exactly to zero, depending on the amount of regularization employed. This can be especially
useful in high-dimensional data, in which there are more regression coefficients than observations. In
this case strong variable selection is desirable in order to obtain an interpretable prediction rule, and
shrinkage is desirable to prevent overfit.

Consider the data (𝑌። , 𝑥።፣), 𝑖 = 1,… , 𝑛, where 𝑥።፣ is the explanatory variable 𝑗 for patient 𝑖 and 𝑌። is
the event time for patient 𝑖. Then for a linear regression model of the form 𝛽ኺ +∑፩፣዆ኻ 𝑥።፣𝛽፣ the LASSO
estimate for 𝛽 is defined by:

𝛽̂ =min
ᎏ

፧

∑
።዆ኻ
(𝑦። − 𝛽ኺ −

፩

∑
፣዆ኻ
𝑥።፣𝛽፣)

ኼ

subject to
፩

∑
፣዆ኻ
|𝛽፣| ≤ 𝑠 (3.1)

where 𝑠 ≥ 0 is a tuning parameter. 𝑠 is also known as the shrinkage parameter. Note that the function

13
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to minimize is equal to the residual sum of squares.

This method is similar to the method of ridge regression, since only the penalty function differs. In
the case that the penalty function equals ∑፩፣዆ኻ 𝛽ኼ፣ ≤ 𝑠, the method is known as ridge regression.

Tibshirani proposed to use the method of LASSO on the Cox proportional hazards model by im-
plementing the constraints of equation 3.1 to the partial likelihood function [2]. This results in the
following optimization problem:

𝛽̂ =min
ᎏ
ℓ፩፜(𝛽) subject to

፩

∑
፣዆ኻ
|𝛽፣| ≤ 𝑠 (3.2)

where ℓ፩፜(𝛽) is the log-partial-likelihood for right-censored data as in equation 2.16. Another repre-
sentation of the optimization problem in 3.2 is the Lagrangian form:

𝛽̂ =min
ᎏ
ℓ፩፜(𝛽) + 𝛼

፩

∑
፣዆ኻ
|𝛽፣| (3.3)

where ℓ፩፜(𝛽) + 𝛼 ∑፩፣዆ኻ |𝛽፣| is called the penalized partial likelihood of the model, and will therefore
be notated as ℓ፩፞፧(𝛽). Note that the second part of the penalized likelihood function is equal to the
𝐿ኻ-norm. In this function 𝛼 > 0 is the tuning parameter, also known as the shrinkage parameter. This
parameter is strongly related to the shrinkage parameter 𝑠.

Computing the LASSO estimate requires solving a quadratic programming problem with linear in-
equality constraints. Solving this problem requires the use of certain algorithms, see section 4. Before
those algorithms can be used, it is worthwhile to have a closer look at the penalized likelihood function
ℓ፩፞፧(𝛽) to see what characteristics it has.

3.1. Characteristics of the penalized partial likelihood function
To minimize the penalized likelihood function, it is important to know more about characteristics of the
function to see if it meets the conditions needed to apply certain algorithms for minimizing functions.
In section 4 those algorithms will be discussed.

Note that the penalized likelihood function is the sum of two terms. The first term is the minus-
log-partial-likelihood function from equation 2.15 and the second term is called the penalty function,
which is equal to the 𝐿ኻ-norm.

This minus-log-partial-likelihood-function is well behaved, since it is a convex function and it is at
least twice differentiable. In definition 1, a convex function is defined.

Definition 1. A function 𝑓 ∶ 𝑋 → ℝ is called convex if ∀ 𝑥, 𝑦 ∈ 𝑋 and 𝑡 ∈ [0, 1] holds that:
𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦)

Theorem 1. The minus-log-partial-likelihood function is a convex function
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Proof. Let 𝛽, 𝛾 ∈ ℝ፩ and 𝑡 ∈ [0, 1]. Then:

ℓ፩፜(𝑡𝛽 + (1 − 𝑡)𝛾) =∑
።∈ፈ
(ln(

፧

∑
፤዆።
𝑒(፭ᎏዄ(ኻዅ፭)᎐)ᑋፗᑜ) − (𝑡𝛽 + (1 − 𝑡)𝛾)ፓ 𝑋።)

=∑
።∈ፈ
(ln(

፧

∑
፤዆።
𝑒(፭ᎏ)ᑋፗᑜ ⋅ 𝑒((ኻዅ፭)᎐)ᑋፗᑜ) − 𝑡𝛽ፓ𝑋። − (1 − 𝑡)𝛾ፓ𝑋።)

=∑
።∈ፈ
(ln(

፧

∑
፤዆።
|𝑒(፭ᎏ)ᑋፗᑜ ⋅ 𝑒((ኻዅ፭)᎐)ᑋፗᑜ |) − 𝑡𝛽ፓ𝑋። − (1 − 𝑡)𝛾ፓ𝑋።)

For proving the inequality, Hölder’s inequality is used. Hölder’s inequality states that for 𝑝, 𝑞 > 1
with ኻ

፩ +
ኻ
፪ = 1 and 𝑎፤ , 𝑏፤ ∈ ℝ there holds that:

፧

∑
፤዆ኻ

|𝑎፤𝑏፤| ≤ (
፧

∑
፤዆ኻ

|𝑎፤|፩)

Ꮃ
ᑡ

(
፧

∑
፤዆ኻ

|𝑏፤|፪)

Ꮃ
ᑢ

Since 𝑡 ∈ [0, 1], Hölder’s inequality can be used with ኻ
፩ = 𝑡 and

ኻ
፪ = 1 − 𝑡, which gives that:

ℓ፩፜(𝑡𝛽 + (1 − 𝑡)𝛾) ≤∑
።∈ፈ
(ln((

፧

∑
፤዆።
|𝑒፭ᎏᑋፗᑜ |

Ꮃ
ᑥ )

፭

⋅ (
፧

∑
፤዆።
|𝑒(ኻዅ፭)᎐ᑋፗᑜ |

Ꮃ
ᎳᎽᑥ)

ኻዅ፭

)− 𝑡𝛽ፓ𝑋። − (1 − 𝑡)𝛾ፓ𝑋።)

=∑
።∈ፈ
(ln((

፧

∑
፤዆።
|𝑒ᎏᑋፗᑜ |)

፭

⋅ (
፧

∑
፤዆።
|𝑒᎐ᑋፗᑜ |)

ኻዅ፭

)− 𝑡𝛽ፓ𝑋። − (1 − 𝑡)𝛾ፓ𝑋።)

=∑
።∈ፈ
(ln(

፧

∑
፤዆።
|𝑒ᎏᑋፗᑜ |)

፭

+ ln(
፧

∑
፤዆።
|𝑒᎐ᑋፗᑜ |)

ኻዅ፭

− 𝑡𝛽ፓ𝑋። − (1 − 𝑡)𝛾ፓ𝑋።)

=∑
።∈ፈ
(𝑡 ln(

፧

∑
፤዆።
𝑒ᎏᑋፗᑜ) − 𝑡𝛽ፓ𝑋። + (1 − 𝑡) ln(

፧

∑
፤዆።
𝑒᎐ᑋፗᑜ) − (1 − 𝑡)𝛾ፓ𝑋።)

= 𝑡∑
።∈ፈ
(ln(

፧

∑
፤዆።
𝑒ᎏᑋፗᑜ) − 𝛽ፓ𝑋።) + (1 − 𝑡)∑

።∈ፈ
(ln(

፧

∑
፤዆።
𝑒᎐ᑋፗᑜ) − 𝛾ፓ𝑋።)

= 𝑡ℓ፩፜(𝛽) + (1 − 𝑡)ℓ፩፜(𝛾)

There follows that indeed, the log-partial-likelihood function is a convex function.

The second term, which is the penalty function 𝑃(𝛽) = 𝛼∑፩፣዆ኻ |𝛽፣|, is less well behaved than ℓ፩፜(𝛽).
Note that this penalty function is the 𝐿ኻ-norm. A plot of this function can be seen in figure 3.1. As can
be seen in this figure, the penalty function is only differentiable in the case that 𝛽፣ ≠ 0. Besides that,
the penalty function is a convex function.

Theorem 2. The penalty function is a convex function
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Figure 3.1

Proof. Let 𝛽, 𝛾 ∈ ℝ፩ and 𝑡 ∈ [0, 1]. Then using the triangle inequality there holds that:

𝑃(𝑡𝛽 + (1 − 𝑡)𝛾) = 𝛼
፩

∑
፣዆ኻ
|𝑡𝛽፣ + (1 − 𝑡)𝛾፣| (3.4)

≤ 𝛼
፩

∑
፣዆ኻ
(𝑡|𝛽፣| + (1 − 𝑡)|𝛾፣|) (triangle inequality) (3.5)

= 𝛼𝑡
፩

∑
፣዆ኻ
|𝛽፣| + 𝛼(1 − 𝑡)

፩

∑
፣዆ኻ
|𝛾፣| (3.6)

= 𝑡𝑃(𝛽) + (1 − 𝑡)𝑃(𝛾) (3.7)

And therefore, the penalty function is a convex function.

Now since both ℓ፩፜(𝛽) and the penalty function 𝑃(𝛽) are convex functions and the penalized like-
lihood function is the sum of those functions, the penalized likelihood function is a convex function as
well.

Also note that since the penalty function 𝑃(𝛽) is not differentiable everywhere, the penalized like-
lihood function ℓ፩፞፧(𝛽) is also not differentiable everywhere. This is something that has to be dealt
with when searching for the solution of optimization problem 3.3.

3.2. The LASSO-plot
When the LASSO-method is applied to data, a way to visualize the results is in a plot where the regres-
sion coefficients are plotted against the shrinkage parameter 𝛼. An example of such a plot is found in
figure 3.2. This figure is made using the penalized-package [7] in the statistical software package
R. In his package J. Goeman uses the notation 𝜆ኻ for the shrinkage parameter 𝛼 [7]. For the imple-
mentation that resulted in this plot, see section 5.1 and Appendix A.

There are a few things that are important to notice about this plot. To begin with, the coefficients
where 𝛼 = 0 equal the coefficients for the optimization problem from equation 3.3 where 𝛼 = 0. These
coefficients are the solution to the unpenalized optimization problem where no variable selection or
shrinkage is involved.
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Figure 3.2: A LASSO-plot

Secondly, it is important to notice that as the shrinkage parameter increases, all coefficients are
shrunken towards zero. Eventually the coefficients are exactly zero, which is a result of the variable
selection in the method of LASSO. So for a certain value of 𝛼 one can see in this plot which coefficients
are set equal to zero and which coefficients are shrunken. For example, for 𝛼 = 30, one can see that
the variables 𝑥1, 𝑥2 and 𝑥3 are already set equal to zero. So for that value of 𝛼 only the variables 𝑥4
and 𝑥5 should be taken in consideration.

3.3. Choosing the shrinkage parameter
As can be seen in figure 3.2 the shrinkage parameter 𝛼 determines what variables should be taken
in consideration. Robert Tibshirani proposed to determine this parameter using cross validation [2].
Cross-validation is one of the simplest and most widely used methods for estimating prediction errors
to determine a parameter [8]. In cross-validation it is typical to test the performance of the predicted
model on another part of the data that is not yet used for the estimation.
In 𝑘-fold cross validation the data is split up into 𝑘 parts so that 𝑘−1 parts can be used to fit the model
and the other part can be used to test the model. The last part is then used to calculate the prediction
error of the fitted model. This prediction error is then dependent of the parameter to be estimated.
The parameter can then be found by minimizing the prediction error.

Next to Robert Tibshirani [2], J. Goeman also uses the method of cross validation to select the
shrinkage parameter [7]. He also implemented this in the penalized-package [7]. In the case of
the data which was used to produce figure 3.2, this results in a value of 𝛼 = 1, 814474 and variable 𝑥3
that is already shrunken to zero, see Appendix A.





4
Algorithms for computing the

parameter estimates

In section 2.2 it was proposed to estimate the regression parameters of the Cox proportional hazards
model by maximum likelihood estimation. The likelihood function and the partial likelihood function
were derived. Since it is often easier to find the optimal points for the log-likelihood function instead
of finding the optima for the likelihood function, the minus-log likelihoods were computed. It was also
argued that the partial likelihood is preferred over the normal likelihood and also censoring was intro-
duced for the partial likelihood. Those likelihoods have not yet been used to estimate the regression
parameters, since there are algorithms needed to solve the optimization problem. The optimization
problem that needs to be solved is given by:

min
ᎏ
ℓ፩፜(𝛽) =min

ᎏ
∑
።∈ፉ
(ln(

፧

∑
፤዆።
𝑒ᎏᑋፗᑜ) − 𝛽ፓ𝑋።) (4.1)

In section 3 it was proposed to add constraints to the optimization problem in 4.1 in order to apply
variable selection and shrinkage. For applying the LASSO method, the following quadratic programming
problem with linear constraints should be solved:

min
ᎏ
ℓ፩፜(𝛽) subject to

፩

∑
፣዆ኻ
|𝛽፣| ≤ 𝑠 (4.2)

where 𝑠 ≥ 0 is the tuning parameter.

In order to solve the optimization problem in equation 4.1 Robert Tibshirani proposed to use New-
ton’s method [2]. In order to solve the last optimization problem J. Goeman proposed to use a com-
bination of Newton’s method and the Gradient Descent algorithm [7].

4.1. Newton’s Method
In order to solve the unconstrained optimization problems, Robert Tibshirani proposed to use Newton’s
Method [2]. Newton’s method is an iterative algorithm for estimating the minimum of an at least twice
differentiable and convex function.

Let 𝛽ኺ be an initial guess to the solution of optimization problem 4.1. Then Newton’s method fits a
paraboloid at 𝛽ኺ and searches for the minimum point of that paraboloid. That minimum is then used
to find 𝛽ኻ, then again a parabola is fitted at 𝛽ኻ. This is done until the sequence of 𝛽ኺ, 𝛽ኻ, … converges
to a vector 𝛽̂. The main idea of Newton’s method in the 1-dimensional case can be found in figure 4.1.
It is clear that in the case this paraboloid should be an approximation of the function to be minimized,

19
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Figure 4.1: Visualization of Newton’s method in 1-dimensional case

this function should be a convex function and should be at least twice differentiable.

Suppose 𝛽፤ is known, then in order to find the next point in the sequence 𝛽፤ዄኻ, the second order
Taylor approximation is computed to fit a parabola at 𝛽፤.
Let

𝑢፣(𝛽) =
𝜕
𝜕𝛽፣

ℓ(𝛽), 𝑢(𝛽) = ∇ℓ(𝛽)

and

𝐴።፣(𝛽) =
𝜕ኼ

𝜕𝛽።𝜕𝛽፣
ℓ(𝛽), 𝐴(𝛽) = Δℓ(𝛽)

Then the second order Taylor approximation of ℓ(𝛽) at 𝛽፤ equals:

ℓ፪(𝛽፤ዄኻ) = ℓ(𝛽፤) + (𝛽፤ዄኻ − 𝛽፤)ፓ𝑢(𝛽፤) +
1
2(𝛽

፤ዄኻ − 𝛽፤)ፓ𝐴(𝛽፤)(𝛽፤ዄኻ − 𝛽፤) (4.3)

where 𝑢(𝛽፤) is the gradient of ℓ(𝛽) at 𝛽፤ and 𝐴(𝛽፤) is the hessian matrix of ℓ(𝛽) at 𝛽፤.

Then in order to find the minimum of this parabola, which is defined as 𝛽፤ዄኻ, the derivative of
ℓ፪(𝛽፤ዄኻ) must be equal to zero. This derivative equals:

∇ℓ፪(𝛽፤ዄኻ) = ∇(ℓ(𝛽፤) + (𝛽፤ዄኻ − 𝛽፤)ፓ𝑢(𝛽፤) +
1
2(𝛽

፤ዄኻ − 𝛽፤)ፓ𝐴(𝛽፤)(𝛽፤ዄኻ − 𝛽፤))

= 𝑢(𝛽፤) + 12 ⋅ 2𝐴(𝛽
፤)(𝛽፤ዄኻ − 𝛽፤)

= 𝑢(𝛽፤) + 𝐴(𝛽፤)(𝛽፤ዄኻ − 𝛽፤)

By computing the roots of this derivative there follows that 𝛽፤ዄኻ can be found by solving:

𝐴(𝛽፤)𝛽፤ዄኻ = 𝐴(𝛽፤)𝛽፤ − 𝑢(𝛽፤)
Assuming that matrix 𝐴(𝛽፤) is nonsingular, there follows that:
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Figure 4.2: Newton’s method converges to local minimum

𝛽፤ዄኻ = 𝛽፤ − 𝐴ዅኻ(𝛽፤)𝑢(𝛽፤)
Summarizing, the estimations of the regression parameters 𝛽 can be found by using Newton’s

method, which is given by:

Newton’s method:

1. Set 𝛽ኺ equal to 0 for 𝑘 = 0

2. Compute the the gradient 𝑢(𝛽፤) and the hessian 𝐴(𝛽፤)

3. Let 𝛽፤ዄኻ be the solution of min ℓ፪(𝛽፤)

4. Repeat steps 2 and 3 until 𝛽፤ does not change

One thing that should be noticed is that Newton’s method is not guaranteed to converge, since
the efficiency of the method is strongly dependent on the initial guess. For example, in case that the
function to be minimized contains several local optima, it is possible that Newton’s method converges
to an optimum that is not the global optimum, see figure 4.2. In this case the method converges, but
not to the solution that is wanted.

Another issue that could occur is when the initial guess has a derivative equal to zero, for example
when the initial guess is equal to a local minimum or maximum. In such a case, the method does not
converge.

4.2. Gradient Descent algorithm
In order to solve the constrained optimization problem in equation 4.2, J. Goeman proposed to use a
combination of the Gradient Descent algorithm and Newton’s method [7]. In his article, J. Goeman
first applies the Gradient Descent algorithm and then afterwards the Gradient Descent algorithm is
combined with Newton’s method. In this thesis, the approach will be similar.

The gradient descent is a first-order iterative optimization algorithm to find the minimum of a func-
tion using the gradient of the function. To find a local minimum, the gradient descent algorithm makes
a step proportional to the negative of the gradient of the function in a current point. The gradient
descent is also known as the method of steepest descent.
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Figure 4.3

Let 𝛽ኺ be an initial guess to the optimization problem in 4.2. Then the Gradient Descent algorithm
computes the gradient of ℓ፩፞፧(𝛽) at 𝛽ኺ. Since the penalized likelihood function should be minimized,
one is interested in the direction where the gradient of the function is going downhill. Then in order to
find 𝛽ኻ there is moved in the direction of the gradient that is going downhill with a stepsize 𝑡. In the
one dimensional example, one moves in the direction of the derivative in case the derivative is negative
and one moves in the negative direction of the gradient in the case the derivative is positive. Then the
gradient is determined at 𝛽ኻ and then there will be moved in the downhill direction again in order to
find 𝛽ኼ. This is done until the sequence 𝛽ኺ, 𝛽ኻ, … converges to a vector 𝛽̂ which satisfies 𝑣(𝛽̂) = 0.
The point in the sequence 𝛽ኺ, 𝛽ኻ, … can then be found by:

𝛽፤ዄኻ = 𝛽፤ − 𝑡(𝛽፤) ⋅ 𝑣(𝛽፤)

where 𝑡(𝛽፤) is the stepsize, which can differ at each step and 𝑣(𝛽፤) is the gradient of ℓ፩፞፧(𝛽) in 𝛽፤.
The main idea of the gradient descent algorithm can be found in figure 4.3.

Note that for applying this algorithm the function to be minimized should be at least once differ-
entiable and should be convex. In section 3.1 there was proved that indeed the penalized likelihood
function is a convex function. But in that section there was also noted that the penalty function is not
everywhere differentiable. So when applying this algorithm the lack of differentiability is a thing that
has to be dealt with. For doing this, the original gradient descent algorithm should be adapted a little.

Since the penalized likelihood function is only differentiable in the case that 𝛽፣ ≠ 0 ∀ 𝑗 = 1,… , 𝑝,
the gradient can in that case be easily determined by:

𝑣(𝛽) = lim
፭↓ኺ

ℓ፩፞፧(𝛽 + 𝑡) − ℓ፩፞፧(𝛽)
𝑡 = lim

፭↓ኺ
ℓ፩፜(𝛽 + 𝑡) − ℓ፩(𝛽)

𝑡 + lim
፭↓ኺ

𝑃(𝛽 + 𝑡) − 𝑃(𝛽)
𝑡

= 𝑢(𝛽) + lim
፭↓ኺ

𝑃(𝛽 + 𝑡) − 𝑃(𝛽)
𝑡

where 𝑢(𝛽) is the gradient of the unpenalized likelihood function.
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Then for 𝛽፣ > 0, there holds that:

𝑣፣(𝛽) = 𝑢፣(𝛽) + lim
፭↓ኺ

𝑃(𝛽፣ + 𝑡) − 𝑃(𝛽፣)
𝑡 = 𝑢፣(𝛽) + lim

Ꭸ↓ኺ
𝛼
𝛽፣ + 𝑡 − 𝛽፣

𝑡 = 𝑢፣(𝛽) + 𝛼

And for 𝛽፣ < 0, there holds that:

𝑣፣(𝛽) = 𝑢፣(𝛽) + lim
፭↓ኺ

𝑃(𝛽፣ + 𝑡) − 𝑃(𝛽፣)
𝑡 = 𝑢፣(𝛽) + lim

፭↓ኺ
𝛼
−(𝛽፣ + 𝑡) + 𝛽፣

𝑡 = 𝑢፣(𝛽) − 𝛼

Since the penalized likelihood function is not differentiable for any 𝛽፣ = 0, it is only possible to
define a directional derivative for every 𝛽 in every direction 𝑤 ∈ ℝ፩ by:

ℓᖣ፩፞፧(𝛽, 𝑤) = lim
፭↓ኺ

ℓ፩፞፧(𝛽 + 𝑡𝑤) − ℓ፩፞፧(𝛽)
𝑡

Since the penalized likelihood function consists of two functions, of which one is differentiable and
the other is not differentiable for 𝛽፣ = 0, the direction will be based on the direction of the differentiable
function, which is in this case the unpenalized likelihood function. Therefore, we choose to define the
gradient the penalized likelihood function in the case that 𝛽፣ = 0 as:

𝑣፣(𝛽) = 𝛼 + sign(𝑢፣(𝛽)) if |𝑢፣(𝛽)| ≥ 𝛼

Summarizing, the gradient of the penalized likelihood can be calculated by:

𝑣፣(𝛽) =
⎧⎪
⎨⎪⎩

𝑢፣(𝛽) + 𝛼 if 𝛽፣ > 0
𝑢፣(𝛽) − 𝛼 if 𝛽፣ < 0
𝑢፣(𝛽) + 𝛼 ⋅ sign(𝑢፣(𝛽)) if 𝛽፣ = 0 and |𝑢፣(𝛽)| ≥ 𝛼
0 otherwise

(4.4)

where

sign(𝑢፣) = {
1 if 𝑢፣(𝛽) > 0
0 if 𝑢፣(𝛽) = 0
−1 if 𝑢፣(𝛽) < 0

The discontinuities of the gradient divide the domain of ℓ፩፞፧(𝛽) into 3፩ subdomains in which the
gradient is continuous. In the Gradient Descent algorithm, this gradient can only be used within a
certain subdomain, because of this discontinuities. To stay in such a subdomain non of the 𝛽፤ዄኻ፣ ’s can
equal zero, which gives that:

𝛽፤ዄኻ = 𝛽፤ − 𝑡(𝛽፤)𝑣(𝛽፤) ≠ 0 ∀ 𝑗 = 1,… , 𝑝
This results in a constraint for the step size 𝑡(𝛽፤), since 𝑡(𝛽፤) can not be bigger than the value for

𝑡(𝛽፤) where one of the 𝛽፤፣ equals zero. Therefore this constraint equals 0 < 𝑡(𝛽፤) < 𝑡፞፝፠፞(𝛽፤) with:

𝑡፞፝፠፞(𝛽፤) =min
፣
{
𝛽፤፣
𝑣(𝛽፤፣ )

∶ sign(𝛽፤፣ ) = −sign(𝛽፤፣ ) ≠ 0}

In order to choose the optimal step size for a step in the gradient descent algorithm, second order
Taylor approximations for ℓ፩፞፧(𝛽፤) are used to approximate ℓ፩፞፧(𝛽፤ዄኻ).

Therefore, the second derivative of the penalized likelihood function should be determined. Since
the penalty function is not differentiable, the second derivate can only be determined within a certain
subdomain of gradient continuity. Within such a subdomain, the second derivative of the penalty func-
tion is zero, so the second derivative of the penalized likelihood function equals the second derivative
of the unpenalized likelihood function, which is:

ℓᖥ፩፞፧(𝛽, 𝑤) = 𝑤ፓ𝐴(𝛽)𝑤 (4.5)
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where 𝐴(𝛽) is as described in section 4.1.

In the gradient descent algorithm, the second order Taylor approximations are used at each step to
approximate ℓ፩፞፧(𝛽፤ዄኻ) locally form 𝛽፤ in the direction of the gradient. Then using the defined gradient
as in equation 4.4 and the hessian defined as in equation 4.5, the second order Taylor approximation
for ℓ፩፞፧(𝛽) in 𝛽፤ is given by:

ℓ፪̃(𝛽፤ዄኻ) = ℓ፩፞፧(𝛽፤) + (𝛽፤ዄኻ − 𝛽፤)ፓ𝑣(𝛽፤) +
1
2(𝛽

፤ዄኻ − 𝛽፤)ፓ𝐴(𝛽፤)(𝛽፤ዄኻ − 𝛽፤)

Using that 𝛽፤ዄኻ = 𝛽፤ − 𝑡(𝛽፤)𝑣(𝛽፤) according to the gradient descent algorithm, gives that 𝛽፤ዄኻ −
𝛽፤ = −𝑡(𝛽፤)𝑣(𝛽፤), which gives that this second order Taylor approximation equals:

ℓ፪̃(𝛽፤ዄኻ) = ℓ፩፞፧(𝛽፤) − 𝑡(𝛽፤)𝑣(𝛽፤)ፓ𝑣(𝛽፤) +
1
2𝑡(𝛽

፤)ኼ𝑣(𝛽፤)ፓ𝐴(𝛽፤)𝑣(𝛽፤) (4.6)

Then the optimum of the Taylor approximation can be found by taking the derivative of 4.6 with
respect to 𝑡(𝛽፤) and equal that to 0. The derivative of the Taylor approximation equals:

∇ (ℓ፪̃(𝛽፤ዄኻ)) = ∇(ℓ፩፞፧(𝛽፤) − 𝑡(𝛽፤)𝑣(𝛽፤)ፓ𝑣(𝛽፤) +
1
2𝑡(𝛽

፤)ኼ𝑣(𝛽፤)ፓ𝐴(𝛽፤)𝑣(𝛽፤))

= −𝑣(𝛽፤)ፓ𝑣(𝛽፤) + 𝑡(𝛽፤)𝑣(𝛽፤)ፓ𝐴(𝛽፤)𝑣(𝛽፤) (4.7)

Equal this derivative to 0 gives that the optimum of the Taylor approximation of ℓ፩፞፧(𝛽፤) can be
found at a value of 𝑡፨፩፭(𝛽፤) with

𝑡፨፩፭(𝛽፤) =
𝑣(𝛽፤)ፓ𝑣(𝛽፤)

𝑣(𝛽፤)ፓ𝐴(𝛽፤)𝑣(𝛽፤)

Then for finding the minimum value of the penalized likelihood function, the step size 𝑡፨፩፭(𝛽፤)
should be chosen in order to find the optimum. But if this step size is greater than 𝑡፞፝፠፞(𝛽፤), one will
not stay within a subdomain of gradient continuity, which is not allowed. Therefore, the next point in
the sequence 𝛽ኺ, 𝛽ኻ, … can be found by:

𝛽፤ዄኻ = 𝛽፤ −min {𝑡፨፩፭(𝛽፤), 𝑡፞፝፠፞(𝛽፤)} ⋅ 𝑣(𝛽፤) (4.8)

Summarizing, the the Gradient Descent algorithm can be found below:

Gradient descent algorithm

1. Set 𝛽ኺ equal to an initial guess for 𝑘 = 0

2. Compute the gradient 𝑣(𝛽፤) for 𝛽፤

3. Let 𝛽፤ዄኻ = 𝛽፤ −min {𝑡፨፩፭(𝛽፤), 𝑡፞፝፠፞(𝛽፤)} ⋅ 𝑣(𝛽፤)

4. Repeat steps 2 and 3 until 𝛽፤ does not change

Similar to Newton’s Method, convergence of the Gradient Descent algorithm is not guaranteed.
Again, the convergence is strongly dependent on the initial guess of the solution. If the initial guess is
near a local minimum, it is likely the algorithm does not find the global minimum of the function. And
also the algorithm will not converge in the case the initial guess is equal a point with zero gradient.

But for the Gradient Descent algorithm, the chosen step size is of importance too. When a step
size is chosen that is too large, algorithm may jump over the minimum and will continue ’zigzagging’
to the solution, see figure 4.4. By determining 𝑡፨𝑝𝑡(𝛽) this problem does not arise in this application.
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Figure 4.4

4.2.1. Combined Gradient Descent and Newton’s method
In the previous section, the Gradient Descent algorithm is introduced to solve the optimization problem
in equation 4.2. One main disadvantage of the Gradient descent algorithm, is that it requires a large
number of steps to converge [7]. This can be avoided by giving the algorithm the option to switch
to Newton’s method, which is known to converge much faster than the Gradient Descent algorithm [7].

As was derived in section 4.1, a step according to Newton’s method is given by:

𝛽፤ዄኻ = 𝛽፤ − 𝐴(𝛽፤)ዅኻ𝑣(𝛽፤)
where 𝐴(𝛽፤) is the hessian of the penalized likelihood function function. In order to use Newton’s
method, the function to be minimized should be at least twice differentiable and a concave function
[7]. In section 3.1 there was proved that indeed the penalized likelihood function is convex, but it is not
everywhere twice differentiable, but as we have seen in section 4.2, the penalized likelihood function
is at least twice differentiable in a subdomain of the gradient continuity. Therefore, within a certain
subdomain, Newton’s method can be used.

So suppose the vector 𝛽፤ is known and suppose that 𝑡፨፩፭(𝛽፤) < 𝑡፞፝፠፞(𝛽፤), then while computing
𝛽፤ዄኻ one will stay in the subdomain of gradient continuity. Then for this step, Newton’s method can
be used, instead of the Gradient Descent algorithm. Note that this can only be a valid step in the case
that for every value of 𝑗 = 1,… , 𝑝 holds that sign(𝛽፤፣ ) = sign(𝛽፤ዄኻ፣ ). If that would not be the case,
the Gradient Descent algorithm should be used. In the case that 𝑡፨፩፭(𝛽፤) > 𝑡፞፝፠፞(𝛽፤) the Gradient
Descent algorithm should be used to jump to the next subdomain of gradient continuity.

One problem that may arise is that 𝛽፤፣ set equal to zero for one or more 𝑗 = 1,… , 𝑝. In such a case,
it is not possible to make a step according to Newton’s method, since the Hessian matrix would not be
invertible. This problem can be avoided by dismissing the 𝛽፤፣ ’s that equal zero.
Let 𝐽 = {𝑗 ∶ 𝛽፣ ≠ 0} be the index set of the active variables. Then constrained to a single subdomain,
the target function ℓ፩፞፧(𝛽) can be viewed as an 𝑚-dimensional function, with 𝑚 = #𝐽 ≤ 𝑝.
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For this 𝑚-dimensional function the gradient and the hessian can be computed. Let ̃𝛽፤ = (𝛽፤ፉᎳ , … , 𝛽፤ፉᑞ)
the vector of 𝛽፤፣ ’s unequal to 0. Then the gradient of the 𝑚-dimensional equals 𝑣( ̃𝛽፤) and the Hessian
𝐴( ̃𝛽፤) can be computed by:

𝐴።፣(𝛽̃፤) =
𝛿ኼ

𝛿𝛽̂፤። 𝛿𝛽̂፤፣
ℓ፩፞፧(𝛽̂፤) =

𝛿ኼ
𝛿𝛽̂፤። 𝛿𝛽̂፤፣

ℓ፩(𝛽̂፤)

The next step is then computed by: 𝛽̂፤ዄኻ = 𝛽̂፤ − 𝐴ዅኻ( ̂𝛽፤)𝑣( ̃𝛽፤). This 𝑚-dimensional vector can
then be mapped back to a 𝑝-dimensional vector by augmenting 𝛽̂፤ዄኻ with zero’s for all non-active
variables.

Summarizing, the combined algorithm based on the Gradient Descent algorithm and Newton’s
method is:

The combined Gradient Descent and Newton’s method algorithm:

1. Set 𝛽ኺ equal to an initial guess for 𝑘 = 0

2. Compute the gradient 𝑣(𝛽፤) and the Hessian 𝐴(𝛽፤) for 𝛽፤

3. Let

𝛽፤ዄኻ = {
𝛽፤ − 𝑡፞፝፠፞𝑣(𝛽፤) if 𝑡፨፩፭ ≥ 𝑡፞፝፠፞
𝛽፤ − 𝐴(𝛽፤)ዅኻ𝑣(𝛽፤) if 𝑡፨፩፭ < 𝑡፞፝፠፞ and sign(𝛽፤ዄኻፍፑ ) = sign(𝛽፤)
𝛽፤ − 𝑡፨፩፭𝑣(𝛽፤) otherwise

(4.9)

4. Repeat steps 2 and 3 until 𝛽፤ does not change
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Simulation

In the previous sections, the Cox model was introduced together with methods to fit this model to data.
This was done for the unpenalized likelihood function where no LASSO method is applied and for the
penalized likelihood function, where the LASSO is applied.

Now that it is known how to fit the Cox model to data, data is needed to implement this. In this
section the Cox model will be fitted to a real dataset of breast cancer patients and to data which is
generated randomly according to the Cox model.

5.1. Generating data according to the Cox model
Generating some random data according to the Cox model is very instructive to create a feeling with the
model. This can be done using the basic concepts survival analysis, which were introduced in section
2.1, and the basic concepts of the Cox model, which were introduced in section 2.2. The implementa-
tion of this section can be found in Appendix A.

To begin with, the explanatory variables are randomly generated and stored in matrix 𝑋. Then
values for 𝛽 are chosen between -1 and 1.

Now that the variables and the regression parameters are known, the event times can be generated
according to the Cox model. Let 𝑇 denote the random variable for the event time, then by using the
characteristics of the Cox model, there can be derived that the cumulative hazard function is standard
exponentially distributed, by:

𝑃(Λ(𝑇) ≤ 𝑣) = 𝑃(𝑇 ≤ Λዅኻ(𝑣)) = 1 − 𝑃(𝑇 > Λዅኻ(𝑣))
= 1 − 𝑆(Λዅኻ(𝑣)) = 1 − 𝑒ጉ(ጉᎽᎳ(፯)) = 1 − 𝑒ዅ፯

Given that the cumulative hazard function evaluated at 𝑇 is exponentially distributed, which means
that Λ(𝑇) ∼ exp(1), gives that the event time 𝑇 could be generated by the inverse cumulative hazard
function. For simplicity, there is assumed that the baseline hazard rate function is constant in this case,
which gives that the cumulative hazard rate function equals: Λ(𝑡|𝑋።) = 𝜆ኺ𝑒ᎏ

ᑋፗᑚ𝑡. Then the event times
are distributed according to the inverse of the cumulative hazard rate function, which equals:

Λዅኻ(𝑣) = 1
𝜆ኺ
𝑒ዅᎏᑋፗ ⋅ 𝑣 (5.1)

Now the data is generated according to the Cox model, and can be used to estimate the regression
parameters 𝛽. This will be done for either the partial likelihood as the likelihood. This results in differ-
ent estimations of 𝛽, which can be seen in figure 5.1. Note that both methods give good estimations
of the chosen value of 𝛽.

27
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Figure 5.1: Different estimations for beta

chosen value likelihood partial likelihood coxph
𝛽ኻ -0.3 -0.1370292 -0.04789277 -0.04789277
𝛽ኼ 0.6 0.6828860 0.70859639 0.70859639
𝛽ኽ -0.3 -0.4671500 -0.32474223 -0.32474223
𝛽ኾ 0.4 0.4050273 0.39661637 0.39661637
𝛽኿ -0.8 -0.7532476 -0.65904476 -0.65904476

Table 5.1: Different estimations for betar

In the software package R, there is a so called survival-package, which can be used to fit the
Cox model to data using the coxph-function. This function is also used to estimate the regression
parameters and as can be seen in table 5.1, it gives exactly the same regression coefficients as the
ones estimated using the partial likelihood.

In section 2.2.4 the problem of censored data was introduced. Taking censoring in consideration,
means that the estimations of the regression parameters will change. The censoring times are randomly
chosen, according to the Cox model. This is similar to choosing the event times. Then 𝑌 and 𝛿 are
determined as was defined in section 2.2.4. Censoring can have a big influence fitting the model to
data, which results in different regression parameters, which results in different expectations of survival
times. In this example, the censoring causes that the expected lifetime of a patient is longer than when
there is no censoring involved, as can be seen in figure 5.2.

5.2. Breast cancer data
In the Netherlands, one in seven women suffers from breast cancer. Women with breast cancer at
the same stage - which can be measured by standard measurements such as the diameter of the
tumor and the diagnosis age - can have different treatment response and different outcome [3]. So
apparently, the stage of disease might not be a good predictor of the outcome of the disease. Instead
of looking at the standard clinical and histologic criteria of a patient L. van ’t Veer proposed to look at
gene expression measurements [3]. Using DNA microarray analysis on primary breast tumors, there
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Figure 5.2

was stated that the gene expression measurements are a more powerful predictor of the outcome than
the standard clinical and histologic criteria [3].

In the period between 1984 and 1995, 295 patients with breast cancer were monitored at the
Netherlands Cancer Institute. Those patients were selected among all patients that were diagnosed
with breast cancer according to some criteria: the diameter of the tumor at the moment of diagnose was
less than 5 centimeters, the lymph nodes were tumor negative and the age of the patients at moment
of diagnose was less than 53 years old. Among all patients 144 of them had a lymph-node-positive
disease, which means that lymph nodes in the whole body contain cancer cells, which increases the
risk of the cancer spreading. For all patients there are five standard clinical and histologic risk variables
and gene expression measurements of 70 genes monitored [4].

In this thesis the data for the patients with a lymph-node-positive disease are analyzed to verify
wether the gene expression measurements are a more powerful predictor of the outcome than the
standard clinical and histologic criteria [4].

The data consist of 144 patients with a survival time, a variable which denotes whether the data is
censored or not, five standard explanatory variables and 70 gene expression measurement variables.
The data consists of 48 events and 96 censored observations. The median of the survival time is 7
years and the survival times vary from 0.05 years to 17.7 years. An overview of the survival times can
be found in figure 5.3. In the case that the event actually happened within the time the patient was
diagnosed, the median is 3.17 years and in the case of censoring the median is 7.8 years.

To compare the impact of the explanatory variables on the survival time, first an analysis will be
made of the five standard clinical and histologic variables, and afterwards this will be compared to the
analysis of the 70-gene expression measurements.

5.2.1. The standard clinical and histological variables
For the 144 patients diagnosed with a lymph-node-positive disease, five standard clinical and histolog-
ical variables measured:

• Diam: The diameter of the tumor, which is measured in two levels: Diam ≤ 2 and Diam > 2.

• 𝑁: number of affected lymph nodes, which is measured in two levels: 1 ≤ 𝑁 ≤ 3 and 𝑁 > 3
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Figure 5.3: Visualization of the data

Variable Regression parameter
Diam 0.04368370
N 0.05662764
ER -0.27530076

Grade -0.19700911
Age -0.06935407

Table 5.2: Estimated regression parameters for the unpenalized optimization problem

• ER: Estrogen receptor status, which can either be positive or negative

• Grade: the grade of the tumor, which is measured in three levels: Poorly diff < Intermediate <
Well diff

• Age: the diagnosis age, which is measured in years

The survival function for this data, which is only based on the events that actually happened and
those five variables, can be found in figure 5.4.

Then according to Newton’s method, that was explained in section 4.1, the solution to the unpe-
nalized optimization problem can be found in table 5.2

For solving the constrained optimization problem, where the method of LASSO is applied, the com-
bination of the Gradient Descent algorithm and Newton’s method is used, as was explained in section
4.2.1. The solution to this optimization problem strongly depends on the value of the shrinkage pa-
rameter 𝛼. The value of this parameter is determined by cross-validation, as was explained in section
3.3. This method gives that the optimal value for 𝛼 equals 9.652105. Using this value for estimating
the regression parameters, gives that shrinkage and variable selection is applied until only one vari-
able should be taken in consideration. This variable is the diagnosis age and for this value of 𝛼 the
regression parameter of the diagnosis age equals −0.06999444. And therefore the solution the the
constrained optimization problem can be found in table 5.3.

The penalized-package that was written by J. Goeman [7] is used to make the LASSO-plot, which
introduced in section 3.2. This plot can be found in figure 5.5. The grey dotted line represents the
value for 𝛼 that was determined by cross-validation. Note that the diagnosis age is the variable that
has most influence on the survival time.
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Figure 5.4: Survival plot based on the standard clinical and histological variables

Variable Regression parameter
Diam 0
N 0
ER 0

Grade 0
Age -0.06999444

Table 5.3: Estimated regression parameters for the constrained optimization problem

Figure 5.5: LASSO-plot
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Figure 5.6: Different survival plots

DNA type Regression parameter
SCUBE2 -0.3793645

Table 5.4: Estimated regression coefficient

5.2.2. The variables based on DNA
Next to the five clinical and histological variables, there are 70 variables based on DNA microarray
analysis in the database. Those variables can be found in Appendix B.

Since there are so many variables involved that for solving the unpenalized optimization problem
the algorithm does not seem to converge, the data was split into two parts. The first 35 variables are
stored in the matrix 𝑋ፃፍፀኻ and the other 35 are stored in the matrix 𝑋ፃፍፀኼ. Then for each part of
the data the regression parameters can be estimated and the survival plots can be plotted. In figure
5.6 there are three survival curves plotted, one for the first part of the data based on DNA, on for
the second part of the data based on DNA and the survival curve based on the standard clinical and
histological data. Note that the survival curves for the data based on DNA have approximately the
same shape.

One noticeable thing in figure 5.6 is that the different types of variables indeed have a different
influence on the survival time of the patient. Based on the DNA data, it is less plausible that a patient
survives more than 5 years, while based on the standard clinical variables that would be more plausible.

The influence of the DNA based data will become more clear when the method of LASSO is applied
to the data. This can be done for the whole dataset, so the data does not have to be split up anymore.
Before the LASSO is applied, cross-validation is used to determine the optimal value for the shrinkage
parameter 𝛼. According to cross-validation this value is 𝛼 = 4.601118. For that shrinkage parameter,
the algorithm states that there is only one variable taken in consideration, which can be found in table
5.4 together with the regression parameter.

Since there are so many variables involved a LASSO-plot is made where the regression parameter
𝛼 does not reach the value of 0. Because the regression parameter does not reach 0, not all variables
are shown, since some of them already shrunk to zero. This makes that the plot stays insightful. The
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Figure 5.7: LASSO plot DNA variables

plot is shown in figure 5.7. Again, the grey dotted line shows the value for the regression parameter
that was determined by cross-validation.

Note that the variable SCUBE2 is least sensitive to the LASSO and therefore SCUBE2 is the variable
which has most impact on the survival time of the patients. Furthermore the variables ZNF533, ALD4A,
GPR150, TSPYL5 and SLC2A3 seem to have a pretty big influence on the survival time of the patients
as well.

5.2.3. All variables
Now that the two type of variables have been analyzed separately, one can have a look at the combined
data. Applying the method of LASSO to this data, gives us the LASSO-plot in figure 5.8. Using cross-
validation it is possible to determine the optimal value for the shrinkage parameter for the combined
data. Using the 11 variables that have the most impact on the survival time according to the method
of LASSO, a new survival plot can be plotted, see figure 5.9. Here, the black curve is based on the 11
variables which are also visible in the LASSO-plot in figure 5.8. Note that this curve is approximately
the average of the curves based on the standard clinical variables and the curves based on the DNA
data.

So based on the method of LASSO, the conclusion of M. van de Vijver [4] that the DNA variables are
a more powerful predictor than the standard clinical and histologic variables is doubtable. Using cross-
validation gives that the diagnosis age is the most powerful predictor, followed by the DNA variable
SCUBE2. It is true that within the 11 variables with most impact 9 of them are genetic variables against
two clinical variables.

The two variables that have biggest impact on the survival time are the diagnosis age and SCUBE2.
To see how big the impact of both variables are the median of both variables are determined. For age
the median is 43 years, then the data is split up into two parts: one for all patients younger than 43
and one for all patients older than 43. The survival curves for both cases can be seen in figure 5.10.
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Figure 5.8: LASSO-plot all variables

Figure 5.9: Survival plot all variables
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Figure 5.10: Survival plots based on different ages

Note that the younger you are the shorter your expected survival time is The same is done for the
variable SCUBE2, which has a median of approximately −0.39, see figure 5.11.
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Figure 5.11: Survival plots based on SCUBE2
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Summary

During this research, there was shown how the Cox proportional hazards model can be fitted to data.
Suppose the survival data consists of 𝑛 observed patients with 𝑝 explanatory variables. In the Cox
proportional hazards model, the hazard rate function of a patient is dependent of the 𝑝 explanatory
variables of a patient equals:

𝜆(𝑡|𝑋።) = 𝜆ኺ(𝑡)𝑒ᎏ
ᑋዢᏥ

where 𝑋። contains all explanatory variables of the 𝑖፭፡ patient, 𝜆ኺ(𝑡) is the baseline hazard function and
𝛽 = (𝛽ኻ, … , 𝛽፩) are the regression parameters of the model.

Maximum likelihood estimation is used to determine the regression parameters of the model. There-
fore the likelihood and the so called partial likelihood of the Cox proportional hazards model were con-
structed. For the construction of the partial likelihood an alternative view on survival data where the
event times are ordered is used. Then the partial likelihood is based on the conditional probabilities
that patient 𝑖 with explanatory variables 𝑋። has event time 𝑡። for every 𝑖 = 1,… , 𝑛.

One complication that frequently occurs in survival analysis is the one of censored data. This occurs
when the exact event time is not known, but it is only known that the event happened within a certain
time interval. The constructed partial likelihood was slightly adapted to take censoring into account,
which resulted in the minus-log-partial likelihood:

ℓ፩፜(𝛽) =∑
።∈ፈ
(ln(

፧

∑
፤዆።
𝑒ᎏᑋፗᑜ) − 𝛽ፓ𝑋።)

where 𝐼 is the index set of the patients whose data is not censored.
Searching for the minimum of this minus-log-partial-likelihood function requires an efficient algo-

rithm. In this research Newton’s method is used to solve this optimization problem.
In applications of survival analysis, there are often so many explanatory variables involved that the

model becomes difficult to interpret. Therefore Robert Tibshirani proposed to use the method of the
Least Absolute Shrinkage and Selection Operator (LASSO) to apply variable selection and shrinkage to
the Cox proportional hazards model [2]. Applying this method of LASSO to the Cox model, results in
the following optimization problem:

𝛽̂ =min
ᎏ
ℓ፩፜(𝛽) + 𝛼

፩

∑
፣዆ኻ
|𝛽፣|

where ∑፩፣዆ኻ |𝛽፣| is known as the 𝐿ኻ-norm.
Due to the lack of differentiability of the 𝐿ኻ-norm this optimization problem requires a more com-

plex algorithm, so a combination of the Gradient Descent algorithm and Newton’s method is used for
solving, according to [7].
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This Cox proportional hazards model with the Least Absolute Shrinkage and Selection Operator is
then applied to data of breast cancer patients. This data contains some standard clinical and histological
variables and variables based on DNA measurements. Medical research stated that the DNA based
variables are a much more powerful predictor than the standard clinical variables [3]. According to this
method, the most important variable is the diagnosis age, which is followed by the DNA based variable
SCUBE2.

This method resulted in a subset of variables that are shrunken towards zero that made the model
easier to interpret. Besides that, the model helped to determine what variables are a good predictor
of survival time and what variabels are not. Therefore, there can be concluded that is useful to apply
the method of LASSO to the Cox proportional hazards model.



7
Discussion

In this research several decisions were made, where one may make another decision. First of all, there
was decided to assume that all explanatory variables are not dependent of time, which may often not be
the case in reality. For example, one can imagine that certain explanatory variables can vary within the
time that a patient is observed (which can be for several years). The Cox proportional hazards model
is able to deal with time dependent variables, although this was not taken in consideration in this thesis.

One common problem in survival data is the one of censoring, which was explained in section 2.2.4.
In this thesis, only right-censoring is taken in consideration, since survival data in medical applications
are typically right-censored. Obviously, one can also construct the Cox proportional hazards model for
left-censored or interval censored data.

When there is concluded that a regression model is needed in order to handle the large number
of explanatory variables, there was chosen to use the Least Absolute Shrinkage and Selection Opera-
tor, also known as the method of LASSO. Although this method gave a good result, there are several
other penalization methods available which can be applied to the Cox proportional hazards model. One
example of another penalization model, which can also be applied in combination with the method of
LASSO is ridge regression [7]. In order to improve the model, this regression model could be taken in
consideration.

In the method of LASSO a shrinkage parameter 𝛼 is involved, in order to determine the amount of
shrinkage. In this research there was decided to use cross-validation to determine the optimal value
for 𝛼. There are several other methods to determine the value 𝛼, which can be used instead of cross-
validation.

In order to apply the maximum likelihood estimation on the different likelihood functions, Newton’s
method (in combination with the Gradient Descent algorithm) is used in order to make a good estimation
for the regression parameters. Other algorithms could be used to find the minima of the minus-
log-partial likelihood function, which would probably give slightly different results for the regression
parameters. But since the penalty function is not differentiable everywhere, many popular algorithms
for finding minima can not be used, which should be kept in mind.

39





A
Appendix A

A.1. Console
1 rm(list = ls())
2 setwd(”~/Documents/BEP/Rcodes/Final/Likelihood_estimation_censored”)
3
4 library(survival)
5 library(pracma)
6 library(matrixcalc)
7 library(penalized)
8
9 source(”l.R”)
10 source(”lp_uncensored.R”)
11 source(”lp_censored.R”)
12 source(”fitting_cox.R”)
13
14 #CREATE EXPLANATORY VARIABLES
15 n <- 300; #set the sample size
16 p <- 5; #set amount of different variables
17
18 x1 <- rnorm(n,1,0.6) #variable 1
19 x2 <- sample(0:1,n,replace = TRUE); #variable 2
20 x3 <- sample(1:2,n,replace = TRUE); #variable 3
21 x4 <- rnorm(n,0,1); #variable 4
22 x5 <- sample(1:3, n, replace = TRUE); #variable 5
23 df <- data.frame(x1, x2, x3, x4, x5); #make dataframe from explanatory variables
24 X <- data.matrix(df); #convert dataframe to matrix
25
26 #SETTINGS
27 beta <- 0.1 * sample(-10:10, p, replace = TRUE); #choose beta’s randomly between -1 and 1
28 tol <- 1e-8; #set the tolerance size
29 beta0 <- numeric(p); #set intial value of beta
30
31 #Compute the baseline hazard, the hazard, the cumulative hazard and the survival function
32 lambda <- 1; #For simplicity, set lambda equal to 1
33
34 lambda_0 <- function(t) #the baseline hazard function
35 {
36 lambda #suppose the baseline hazard is constant
37 }
38
39 hazard <-function(t, X, beta) #the hazard function
40 {
41 lambda_0(t) * exp(X %*% beta)
42 }
43
44 cumhazard <- function(t, X, beta) #the cumulative hazard function
45 {
46 exp(X %*% beta) * t #because lambda_0 is constant
47 }
48
49 S <- function(t, X, beta) #the survival function
50 {
51 exp(-cumhazard(t, X, beta))
52 }
53
54 #COMPUTING THE EVENT TIMES
55 E <- rexp(n); #exponential distribution
56 F <- rexp(n); #exponential distribution
57 T <- E * (1/lambda) * exp(-1* (X %*% beta)); #compute event times according to cox model
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58 C <- F * (1/lambda) * exp(-1* (X %*% beta)); #compute censoring times according to cox model
59 Y <- pmin(T,C); #take minimum of censoring and event times
60 delta <- as.numeric(T<=C); #set delta 1 if T<=C, and 0 otherwise
61 data <- data.frame(Y, delta, X); #create dataframe of all data
62 data_ordered <- data[order(data$Y),]; #order the data according to the event times
63 X_ordered <- data.matrix(data_ordered[1:p+2]);
64 data_cens <- data_ordered[data_ordered$delta ==1,];
65 X_cens <- data.matrix(data_cens[1:p+2]); #create matrix of ordered explanatory variables
66
67 #COMPUTATIONS UNPENALIZED OPTIMIZATION PROBLEM
68 beta_unpen_l <- fitting_cox(beta0,l, tol); #Use function fitting_cox to estimate

beta using likelihood
69 beta_unpen_lp <- fitting_cox(beta0, lp_uncensored, tol); #Use function fitting_cox to estimate

beta using partial likelihood
70
71 fit_unpen <- coxph(Surv(T) ~ x1 + x2 + x3 + x4 + x5, data = data); #use the coxph function to estimate

beta
72 beta_unpen_coxph <- coef(fit_unpen) #Coefficients of beta
73
74 #PLOT THE DIFFERENT ESTIMATIONS OF BETA
75 plot(beta, ylim = c(-1,1), main = ”Different estimations on beta”)
76 points(beta_unpen_l, col = ”blue”, ylim = c(-1,1))
77 points(beta_unpen_lp, col = ”red”, ylim = c(-1,1))
78 points(beta_unpen_lp, col = ”red”, ylim = c(-1,1))
79 legend(”topright”, c(”chosen beta”, ”estimated by likelihood”, ”estimated by partial likelihood”), lty = c

(1,1,1), col = c(”black”, ”blue”, ”red”))
80
81 #COMPUTATIONS PENALIZED OPTIMIZATION PROBLEM
82 beta_unpen_lp_cens <- fitting_cox(beta0, lp_censored, tol); #Use function fitting_cox to estimate

beta using partial likelihood
83 fit_unpen_cens <- coxph(Surv(Y, delta == 1) ~ x1 + x2 + x3 + x4 + x5, data = data); #use the coxph

function to estimate beta
84 beta_unpen_coxph_cens <- coef(fit_unpen_cens);
85
86 #PLOT SURVIVAL FUNCTIONS
87 plot(survfit(fit_unpen), conf.int = FALSE, col = ”blue”, main = ”Survival plot”, ylab = ”Survival

probability”, xlab = ”time”); #plot the survival function
88 par(new = TRUE)
89 plot(survfit(fit_unpen_cens), conf.int = FALSE, col = ”red”); #plot the survival function censored
90 legend(”topright”, c(”uncensored”, ”censored”), lty = c(1,1), col = c(”blue”, ”red”))
91
92
93 #USE CROSS_VALIDATION TO DETERMINE ALPHA
94 opt <- optL1(Surv(Y, delta), penalized = X_cens, data = data_cens, lambda2 = 0);
95 alpha <- opt$lambda;
96
97 #USE PENALIZED PACKAGE TO MAKE LASSO-PLOT
98 pen_plot <- penalized(Surv(Y, delta), penalized = X_cens, data = data_cens, lambda1 = 0, lambda2 = 0,

startbeta = beta0, steps = 20) #Make penalized opbject
99 plotpath(pen_plot, main = ”LASSO-plot”)
100 pen <- penalized(Surv(Y, delta), penalized = X_cens, data = data_cens, lambda1 = alpha, lambda2 = 0,

startbeta = beta0) #Make penalized opbject
101 coef_pen <- coefficients(pen)

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_estimation_censored/console_censored.R

A.2. Minus-log-likelihood function
1 l <- function(beta){ # -loglikelihood function
2 temp1 <- as.vector(X %*% beta);
3 temp2 <- as.vector(T * exp(temp1));
4 return(-n*log(lambda) - sum(temp1) + lambda * sum(temp2))
5 }

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_estimation_censored/l.R

A.3. Minus-log-partial-likelihood function
1 lp_uncensored <- function(beta){ # -log partial likelihood function
2 temp1 <- as.vector(X_ordered %*% beta)
3 som <- sum(temp1)
4 e <- exp(temp1)
5 temp2 <- numeric(n);
6 for(i in 1:n){
7 temp2[i] <- log(sum(e[i:n]))
8 }
9 return(sum(temp2) - som)

10 }
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/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_estimation_censored/lp_uncensored.R

A.4. Minus-log-partial-likelihood function for censoring
1 lp_censored <- function(beta){ # -log partial likelihood function
2 temp1 <- as.vector(X_cens %*% beta)
3 som <- sum(temp1)
4 e <- exp(temp1)
5 temp2 <- numeric(nrow(X_cens));
6 for(i in 1:nrow(X_cens)){
7 temp2[i] <- log(sum(e[i:nrow(X_cens)]))
8 }
9 return(sum(temp2) - som)
10 }

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_estimation_censored/lp_censored.R

A.5. Newton’s method for fitting Cox(unpenalized)
1 fitting_cox <- function(beta0, l, tol) #this function includes the Newton-Raphson algorithm
2 {
3 u <- grad(l, beta0); #compute the gradient of l(beta0)
4 A <- hessian(l, beta0); #compute the hessian of l(beta0)
5 beta_est <- as.vector(beta0 - inv(A) %*% u); #compute beta^{k+1}
6 print(beta_est)
7 if(max(abs(beta0-beta_est)) > tol) #check if sequence is converging
8 {
9 fitting_cox(beta_est, l, tol)
10 }
11 else
12 {
13 return(beta_est)
14 }
15 }

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_estimation_censored/fitting_cox.R
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DNA types
TSPYL5 Contig63649_RC
DIAPH3 NUSAP1
AA555029_RC ALDH4A1
QSCN6L1 FGF18
DIAPH3.1 Contig32125_RC
BBC3 DIAPH3.2
RP5.860F19.3 C16orf61
SCUBE2 EXT1
FLT1 GNAZ
OXCT1 MMP9
RUNDC1 Contig3525_RC
ECT2 GMPS
KNTC2 WISP1
CDC42BPA SERF1A
AYTL2 GSTM3
GPR180 RAB6B
ZNF533 RTN4RL1
UCHL5 PECI
MTDH Contig40831_RC
TGFB3 MELK
COL4A2 DTL
STK32B DCK
FBXO31 GPR126
SLC2A3 PECI.1
ORC6L RFC4
CDCA7 LOC643008
MS4A7 MCM6
AP2B1 C9orf30
IGFBP5 HRASLS
PITRM1 IGFBP5.1
NMU PALM2.AKAP2
LGP2 PRC1
Contig20217_RC CENPA
EGLN1 NM_004702
ESM1 C20orf46

Table B.1
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C.1. Console
1 rm(list = ls())
2 setwd(”~/Documents/BEP/Rcodes/Final/Likelihood_penalized”)
3
4 library(survival)
5 library(pracma)
6 library(matrixcalc)
7 library(penalized)
8 library(gdata)
9
10 source(”lp.R”)
11 source(”v_grad.R”)
12 source(”t_edge.R”)
13 source(”t_opt.R”)
14 source(”fitting_cox.R”)
15 source(”gradient_descent.R”)
16 source(”newton_raphson.R”)
17
18 data(”nki70”)
19
20 #CREATE EXPLANATORY VARIABLES
21 n <- nrow(nki70); #set the sample size
22 P <- ncol(nki70)-2; #set amount of different variables
23
24 #SETTINGS
25 tol <- 1e-8; #set the tolerance size
26
27 #COMPUTING THE EVENT TIMES
28 data_ordered <- nki70[order(nki70$time),]; #order the data according to the event times
29 data_cens <- data_ordered[data_ordered$event == 1, ]; #only use data if delta is 1
30 X_ordered <- data.matrix(data_ordered[3:75]); #create matrix of ordered explantory

variables
31 X_cens <- data.matrix(data_cens[1:P+2]); #create matrix of explanatory variables
32 T_cens <- data_cens$time; #create vector of event times
33
34 ######COMPUTATIONS FOR STANDARD VARIABLES######
35 X_standard <- X_cens[,1:5]; #create matrix for only standard clinical variables
36 p <- ncol(X_standard); #set p equal to number of variables
37 N <- nrow(X_standard); #set N equal to number of patients with an event
38 beta0_standard <- numeric(p); #set beta0_standard equal to a p-vector of zero’s
39
40 #SOLVING THE UNPENALIZED OPTIMIZATION PROBLEM
41 beta_unpen_standard <- fitting_cox(beta0_standard, lp, tol) #solve the

unpenalized optimization problem using Newton’s method
42 fit_unpen_standard <- coxph(Surv(time, event == 1) ~ X_standard, data = data_cens); #use the coxph

function to solve the unpenalized optimazation problem
43 plot(survfit(fit_unpen_standard), conf.int = FALSE, main = ”Survival plot”, ylab = ”Survival probability”

, xlab = ”time”); #plot the survival function
44
45 #USE CROSSVALIDATION TO ESTIMATE ALPHA
46 opt_standard <- optL1(Surv(time, event), penalized = X_standard, data = data_cens, lambda2 = 0); #use

penalized-package to make cross-validation object
47 alpha_standard <- opt_standard$lambda; #set

alpha equal to optimal lambda1 of the cross-validation object
48
49 #SOLVING THE PENALIZED OPTIMIZATION PROBLEM
50 beta_gd_standard <- gradient_descent(beta0_standard, tol, alpha_standard) #solve the penalized

optimization problem using gradient descent

47
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51 beta_NR_standard <- newton_raphson(beta0_standard, tol, alpha_standard) #solve the penalized
optimization problem using gradient descent & Newton’s method

52 pen_standard <- penalized(Surv(time, event), penalized = X_standard, data = data_cens, lambda1 = alpha_
standard, lambda2 = 0, startbeta = beta0_standard) #use penalized package to make penalize object

53 coef_pen_standard <- coefficients(pen) #calculate the
coefficients of the penalized objects

54 pen_plot_standard <- penalized(Surv(time, event), penalized = X_standard, data = data_cens, lambda1 = 0,
lambda2 = 0, startbeta = beta0_standard, steps = 20) #use penalized package to make penalize object
with steps

55 plotpath(pen_plot_standard, main = ”Lasso”) #make LASSO-plot
56
57
58
59 ######COMPUTATIONS FOR DNA VARIABLES######
60 X_dna <- X_cens[,6:75]; #create matrix for only DNA variables
61 X_dna1 <- X_cens[,6:40]; #create matrix for only the first 35 DNA variables
62 X_dna2 <- X_cens[,41:75]; #create matrix for only the second 35 DNA variables
63 p <- ncol(X_dna); #set p equal to number of variables
64 N <- nrow(X_dna); #set N equal to number of patients with an event
65 beta0_dna1 <- numeric(ncol(X_dna1)); #set beta0_standard equal to a p-vector of zero’s
66 beta0_dna2 <- numeric(ncol(X_dna2));
67 beta0_dna <- numeric(p);
68
69 #SOLVING THE UNPENALIZED OPTIMIZATION PROBLEM
70 beta_unpen_dna <- fitting_cox(beta0_dna, lp, tol) #solve the unpenalized

optimization problem using Newton’s method --> does not converge
71 beta_unpen_dna1 <- fitting_cox(beta0_dna1, lp, tol) #solve the unpenalized

optimization problem using Newton’s method
72 beta_unpen_dna2 <- fitting_cox(beta0_dna2, lp, tol) #solve the unpenalized

optimization problem using Newton’s method
73
74 fit_unpen_dna1 <- coxph(Surv(time, event == 1) ~ X_dna1, data = data_cens); #use the coxph function

to solve the unpenalized optimazation problem
75 fit_unpen_dna2 <- coxph(Surv(time, event == 1) ~ X_dna2, data = data_cens); #use the coxph function

to solve the unpenalized optimazation problem
76
77 #USE CROSSVALIDATION TO ESTIMATE ALPHA
78 opt_dna <- optL1(Surv(time, event), penalized = X_dna, data = data_cens, lambda2 = 0); #use penalized-

package to make cross-validation object
79 alpha_dna <- opt_dna$lambda; #set alpha equal

to optimal lambda1 of the cross-validation object
80
81 #SOLVING THE PENALIZED OPTIMIZATION PROBLEM
82 beta_gd_dna <- gradient_descent(beta0_dna, tol, alpha_dna) #solve the

penalized optimization problem using gradient descent
83 beta_NR_dna <- newton_raphson(beta0_dna, tol, alpha_dna) #solve the

penalized optimization problem using gradient descent & Newton’s method
84 pen_dna <- penalized(Surv(time, event), penalized = X_dna, data = data_cens, lambda1 = alpha_dna, lambda2

= 0, startbeta = beta0_dna) #use penalized package to make penalize object
85 coef_pen_dna <- coefficients(pen_dna) #calculate the

coefficients of the penalized objects
86 pen_plot_dna <- penalized(Surv(time, event), penalized = X_dna, data = data_cens, lambda1 = alpha_dna/3,

lambda2 = 0, startbeta = beta0_dna, steps = 20) #use penalized package to make penalize object with
steps

87 plotpath(pen_plot_dna, main = ”LASSO-plot”) #make LASSO-plot
88
89 ######COMPUTATIONS FOR ALL VARIABLES######
90 p <- ncol(X_cens);
91 N <- nrow(X_cens);
92 beta0 <- numeric(ncol(X_cens));
93 opt <- optL1(Surv(time, event), penalized = X_cens, data = data_cens, lambda2 = 0); #use penalized-

package to make cross-validation object
94 alpha <- opt$lambda;
95 pen <- penalized(Surv(time, event), penalized = X_cens, data = data_cens, lambda1 = alpha/6, lambda2 = 0,

startbeta = beta0) #use penalized package to make penalize object with steps
96 coef_pen <- coefficients(pen);
97 beta_NR <- newton_raphson(beta0, tol, alpha)
98 pen_plot <- penalized(Surv(time, event), penalized = X_cens, data = data_cens, lambda1 = alpha/6, lambda2

= 0, startbeta = beta0, steps = 20) #use penalized package to make penalize object with steps
99 plotpath(pen_plot, main = ”LASSO-plot”) #make LASSO-plot
100
101 fit <- coxph(Surv(time, event == 1) ~ Age + SCUBE2 + ALDH4A1 + GPR180 + ZNF533 + Contig40831_RC + SLC2A3 +

Grade + PRC1 + CENPA + NM_004702, data = data_cens)
102
103 #PLOT THE SURVIVAL FUNCTIONS
104 plot(survfit(fit_unpen_dna1), col = ”green”, conf.int = FALSE, main = ”Survival plots”, ylab = ”Survival

probability”, xlab = ”time”); #plot the survival function
105 par(new = TRUE)
106 plot(survfit(fit_unpen_dna2), col = ”blue”, conf.int = FALSE); #plot the survival function
107 par(new = TRUE)
108 plot(survfit(fit_unpen_standard), col = ”red”, conf.int = FALSE); #plot the survival function
109 par(new = TRUE)
110 plot(survfit(fit), conf.int = FALSE)
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111 legend(”topright”, c(”DNA_1”, ”DNA_2”, ”standard variables”,”highest impact variables”), lty = c(1,1,1,1),
col=c(”green”, ”blue”,”red”,”black”)) # gives the legend lines the correct color and width)

112
113 ######PLOTTING SURVIVAL CURVES FOR AGE AND SCUBE2######
114 median(data_cens$Age)
115 age1 <- data_cens[data_cens$Age < 43,];
116 age2 <- data_cens[data_cens$Age >= 43,];
117
118 fit1 <- coxph(Surv(time, event) ~ Age , data = age1);
119 fit2 <- coxph(Surv(time, event) ~ Age , data = age2);
120
121 plot(survfit(fit1), conf.int = FALSE, col = ”blue”, main = ”Survival based on age”, xlab = ”time”, ylab =

”Survival probability”, xlim = c(0,14))
122 par(new = TRUE);
123 plot(survfit(fit2), conf.int = FALSE, col = ”red”, xlim = c(0,14))
124 par(new = TRUE)
125 plot(survfit(fit), conf.int = FALSE, xlim = c(0,14))
126 legend(”topright”, c(”Age < 43”, ”Age >= 43”, ”Overall survival”), lty = c(1,1,1), col=c(”blue”,”red”, ”

black”)) # gives the legend lines the correct color and width)
127
128 median(data_cens$SCUBE2)
129 scube21 <- data_cens[data_cens$SCUBE2 < -0.39,];
130 scube22<- data_cens[data_cens$SCUBE2 >= -0.39,];
131
132 fit3 <- coxph(Surv(time, event) ~ SCUBE2 , data = scube21);
133 fit4 <- coxph(Surv(time, event) ~ SCUBE2 , data = scube22);
134
135 plot(survfit(fit3), conf.int = FALSE, col = ”blue”, main = ”Survival based on SCUBE2”, xlab = ”time”, ylab

= ”Survival probability”, xlim = c(0,14))
136 par(new = TRUE);
137 plot(survfit(fit4), conf.int = FALSE, col = ”red”, xlim = c(0,14))
138 par(new = TRUE)
139 plot(survfit(fit), conf.int = FALSE, xlim = c(0,14))
140 legend(”topright”, c(”SCUBE2 < -0.39”, ”SCUBE2 >= -0.39”, ”Overall survival”), lty = c(1,1,1), col=c(”blue

”,”red”, ”black”)) # gives the legend lines the correct color and width)

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_penalized/console_nki.R

C.2. Minus-log-partial-likelihood function
1 lp <- function(beta){ # -log partial likelihood function
2 temp1 <- as.vector(X_cens %*% beta);
3 som <- sum(temp1);
4 e <- exp(temp1);
5 temp2 <- numeric(N);
6 for(i in 1:N){
7 temp2[i] <- log(sum(e[i:N]))
8 }
9 return(sum(temp2) - som)
10 }

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_penalized/lp.R

C.3. Newton’s method for fitting Cox (unpenalized)
1 fitting_cox <- function(beta0, l, tol) #this function includes the Newton-Raphson algorithm
2 {
3 u <- grad(l, beta0); #compute the gradient of l(beta0)
4 A <- hessian(l, beta0); #compute the hessian of l(beta0)
5 beta_est <- as.vector(beta0 - inv(A) %*% u); #compute beta^{k+1}
6 if( max(abs(beta0-beta_est)) > tol) #check if sequence is converging
7 {
8 fitting_cox(beta_est, l, tol)
9 }
10 else
11 {
12 return(beta_est)
13 }
14 }

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_penalized/fitting_cox.R

C.4. Function for computing 𝑡𝑒𝑑𝑔𝑒
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1 t_edge <- function(beta, alpha){ #Function for calculating t_edge
2 temp <- numeric(p);
3 v <- v_grad(beta,alpha);
4 if(all(beta == 0) == TRUE){
5 return(0)
6 } else{
7 for(j in 1:p){
8 if(sign(beta[j]) == sign(v[j]) & sign(beta[j]) != 0){
9 temp[j] <- beta[j]/(v[j])

10 } else
11 temp[j] <- 0;
12 }
13 if(all(temp == 0)){
14 return(0)
15 } else{
16 return( min(temp[temp>0])) #return the mimimum of temp such that temp>0
17 }
18 }
19 }

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_penalized/t_edge.R

C.5. Function for computing 𝑡𝑜𝑝𝑡
1 t_opt <- function(beta, alpha){
2 A <- hessian(lp, beta);
3 v <- v_grad(beta, alpha);
4 temp1 <- (v %*% v);
5 temp2 <- (v %*% A) %*% v;
6 return(as.double(temp1/temp2))
7 }

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_penalized/t_opt.R

C.6. Function for computing the gradient
1 v_grad <- function(beta, alpha){
2 v <- numeric(p);
3 u <- grad(lp, beta)
4 for(j in 1:p){
5 if(beta[j] != 0){
6 v[j] <- u[j] + sign(beta[j])*alpha
7 } else if(beta[j] == 0 & abs(u[j]) >= alpha) {
8 v[j] <- u[j] + alpha * sign(u[j])
9 } else

10 v[j] <- 0
11 }
12 return(v)
13 }

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_penalized/v_grad.R

C.7. Gradient Descent algorithm for applying LASSO
1 gradient_descent <- function(beta, tol, alpha) #this function includes the Newton-Raphson algorithm
2 {
3 t_edge <- t_edge(beta, alpha);
4 t_opt <- t_opt(beta, alpha);
5 t <- min(t_edge[t_edge>0], t_opt);
6 v <- as.vector(v_grad(beta, alpha));
7 beta_gd <- as.vector(beta - t * v);
8 print(beta_gd);
9 if(max(abs(beta-beta_gd)) > tol)

10 {
11 gradient_descent(beta_gd, tol, alpha)
12 }
13 else
14 {
15 print(beta_gd)
16 }
17 }

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_penalized/gradient_descent.R
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C.8. Combined Gradient Descent and Newton’s method for ap-
plying LASSO

1 newton_raphson <- function(beta, tol, alpha)
2 {
3 t_edge <- t_edge(beta, alpha);
4 t_opt <- t_opt(beta, alpha);
5 t <- min(t_edge[t_edge>0], t_opt);
6 v <- v_grad(beta, alpha);
7
8 if(t == t_edge){
9 beta_NR <- as.vector(beta - t_edge * v);
10 } else if(all(beta == 0) == FALSE) {
11 A <- hessian(lp, beta);
12 v <- v_grad(beta, alpha);
13
14 if(any(beta == 0) == TRUE){
15 index <- numeric(p);
16 for(j in 1:p){
17 if(beta[j] == 0){
18 index[j] <- j
19 }
20 }
21 index <- index[index != 0];
22 beta_nonzero <- beta[beta !=0];
23 A_nonzero <- as.matrix(A[-index, -index]);
24 v_nonzero <- v[-index];
25
26 beta_NR <- as.vector(beta_nonzero - inv(A_nonzero) %*% v_nonzero);
27 for(j in 1:length(index)){
28 beta_NR <- append(beta_NR, 0, after=(index[j]-1));
29 }
30 } else{
31 beta_NR <- as.vector(beta - inv(A) %*% v);
32 }
33
34 if(all(sign(beta) == sign(beta_NR)) == TRUE){
35 beta_NR <- beta_NR
36 } else{
37 beta_NR <- as.vector(beta - t_opt %*% v);
38 }
39 } else{
40 beta_NR <- as.vector(beta - t_opt %*% v);
41 }
42 if(max(abs(beta_NR - beta)) > tol){
43 newton_raphson(beta_NR, tol, alpha)
44 } else{
45 return(beta_NR[beta_NR !=0])
46 }
47 }

/Users/ruthkoole/Documents/BEP/Rcodes/Final/Likelihood_penalized/newton_raphson.R
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