
Differential Dynamic Programming for
Aerial Robots

using an Aerodynamics Model

N.O. Abuter Grebe

June 5, 2017

F
a
c
u
lt
y
o
f
A
e
r
o
s
p
a
c
e
E
n
g
in
e
e
r
in
g

Differential Dynamic Programming for
Aerial Robots

using an Aerodynamics Model

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering

at Delft University of Technology

N.O. Abuter Grebe

June 5, 2017

Faculty of Aerospace Engineering · Delft University of Technology

Delft University of Technology

Copyright c© N.O. Abuter Grebe
All rights reserved.

Delft University Of Technology

Department Of

Control and Simulation

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance a thesis entitled “Differential Dynamic Program-

ming for Aerial Robots ” by N.O. Abuter Grebe in partial fulfillment of the require-
ments for the degree of Master of Science.

Dated: June 5, 2017

Readers:
S. Stoneman, DLR

Ir. C. de Wagter, TU Delft

Ir. J.A. Melkert, TU Delft

Prof. dr. ir. M. Mulder, TU Delft

Acknowledgment

At this point, I want to thank everyone who directly or indirectly supported me in my thesis
work.

Most importantly I want to thank both my daily supervisors Samantha Stoneman and Teodor
Tomić from the German Aerospace Center (DLR) for all their guidance, support and energy
throughout these months. I have great respect for their experience and knowledge and I am
very grateful for having had me the opportunity to learn from them.

I started the search for a thesis topic with two criterias in mind. Firstly, I was driven to work
and gain experience with flying robots in a research environment. Secondly, as I completed
both my B.Sc. and M.Sc. studies at TU Delft, I wanted use this opportunity to set a foot
in my hometown Munich for my future professional development. This led me to doing my
thesis work at the DLR in Oberpfaffenhofen with Christophe de Wagter being my mentor at
TU Delft. I want to thank again Christophe de Wagter for enabling this collaboration with
DLR and for his guidance.

I also want to thank all my friends at DLR with whom I had many interesting conversations
and who made my time DLR a unique experience, most importantly Pascal Möller, Wim van
Ekeren, Jongseok Lee, Stefan Büttner, Tim Wunderlich, Ulrike Leipscher und Arne Sachtler.

This work concludes my 6 years of study at TU Delft. Therefore I feel this is the moment to
express my gratitude to my parents and to my three sisters Maria, Francisca and Sofia for
their love and unconditional support. I also want to express my appreciation to my girlfriend
Simone for her love and patience.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

vi Acknowledgment

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Summary

State of the art trajectory generation schemes for quadrotors assume a simple dynamic model.
They neglect aerodynamic effects such as induced drag and blade flapping and assume that no
wind is present. In order to overcome this limitation, this thesis investigates a trajectory op-
timization scheme based upon Differential Dynamic Programming (DDP). There are various
software-implementations of the DDP scheme. For future deployment on robotic hardware
the software is required to be computationally efficient and to be open-source. The C++
template-based optimization library named GCOP developed at JHU was deemed suitable so
it was selected for this purpose. Before implementing the solver, a full model of the Crazyflie
Nano Quadcopter is identified experimentally. The model considers a first order term for the
aerodynamic forces in each axis of the body frame. The solver is validated, normalized and
the performance is benchmarked. This method yields reliable minimum control-effort trajec-
tories. The computation time required to reach the optimum solution is studied for different
dicretizations, and for different choices of solver parameters. A control scheme is proposed
and studied in Monte-Carlo simulations. It is robust and able to handle large modelling errors
in mass and moment of inertia while ensuring minimal error on the final state.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

viii Summary

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Acronyms

ACADO Automatic Control and Dynamic Optimization Toolkit
DDP Differential Dynamic Programming
DOF Degrees of Freedom
DP Dynamic Programming
EOM Equations of Motion
GCOP Geometric Control Optimization and Planning Library
GPM Gauss Pseudospectral Method
GPOPS General Purpose Optimal Control Software
MEMS Microelectromechanical System
NLP Nonlinear Program
SNOPT Automatic Control and Dynamic Optimization Toolkit
SOS Sparse Optimization Suite

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

x Acronyms

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

List of Symbols

Greek Symbols

Γc contact torque

Γd aerodynamic torque

Γm modelling error torque

Γp propulsion torque

λi rotation direction of i -th rotor

µ advance ratio

ω rotational speed of quadcopter

ωi rotational speed of i -th rotor

φ roll angle

ψ yaw angle

ρ air density

τ c contact wrench

τ d aerodynamic wrench

τ d,i aerodynamic wrench for i -th propeller

τm modelling error wrench

τ p propulsion wrench

θ pitch angle

Roman Symbols

0m×n m × n null matrix

A rotor disk surface area

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

xii List of Symbols

Ad,i drag matrix

B body frame

cf,lat lateral flapping drag coefficient

cf,lon longitudinal flapping drag coefficient

ci,1 induced drag coefficient

ci,2 induced drag coefficient

Cp power coefficient

P propeller power

CQ torque coefficient

Ct thrust coefficient

CB
x linear drag constants in body frame along x-axis

CB
y linear drag constants in body frame along y-axis

CB
z linear drag constants in body frame along z-axis

D rotor diameter

di location of i -th rotor with respect to origin of the body frame

fc contact force

fd aerodynamic force

fm modeling error force

fp propulsion force

g standard acceleration due to gravity

h timestep

I inertial reference frame

Im×n m× n identity matrix

I moment of inertia matrix

Iy moment of inertia around y-axis of quadcopter

J objective function

k number of DDP iterations

L rotor arm of quadcopter

M generalized inertia matrix

m quadcopter mass

N discretization size

OB origin of body reference frame

OI origin of inertial reference frame

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

List of Symbols xiii

Qi torque of i -th rotor

Qf final state weighing matrix

R rotor radius

r displacement of OB with respect to OI

R input weighing matrix

Rbi rotation matrix from inertial to body frame of reference

T total thrust force

t0 trajectory start time

tf trajectory end time

Th hover thrust

Ti thrust force of i -th rotor

U slipstream velocity

u(t) control input

u∗ optimal control input

î, ĵ, k̂ unit vectors in right-handed frame of reference

vh induced velocity in hover

vi induced velocity

v∞ freestream airspeed

v∞,i freestream velocity at i -th rotor

vr true airspeed

vw windspeed

vr,x true airspeed in x-direction of inertial frame

V (x, i) cost-to-go function at discrete timestep t = i

vxy freestream velocity in rotor plane

vr,z true airspeed in z-direction of inertial frame

vz freestream velocity perpendicular to rotor plane

x(t) state vector

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

xiv List of Symbols

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

List of Figures

1-1 Flowchart showing thesis structure. 3

3-1 Sketch of quadrotor, showing axes and frames. 10

3-2 Illustration of blade flapping . 12

3-3 Planar model of the quadrotor. 14

4-1 Normalization Procedure in GCOP solver . 22

4-2 Normalized Cost vs iterations and computation cost, shown for normalized and not
normalized solver. 23

4-3 Illustration of GPOPS linkages between phases. 26

5-1 Trajectories for vertical flight with unit weights on Qf and R, for the analytical
solution, GCOP initialization and solutions from GCOP and GCOP solver. 30

5-2 Trajectories for vertical flight with heuristically determined weights on Qf and
R, for the analytical solution, GCOP initialization and solutions from GCOP and
GCOP solver. 31

5-3 Validation trajectories for the vertical flight problem without (ND) and with (D)
drag model for both solvers. 32

5-4 Example cost function highlighting step phenomena in normalized cost. 35

5-5 Normalized cost, vs computation time, number of iterations and discretization for
vertical case. 36

5-6 Comparison of trajectories for constant computation time and different discretiza-
tions and iterations. 37

5-7 Comparison of trajectories for constant discretization and different iterations and
computation times. 38

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

xvi List of Figures

5-8 Comparison of trajectories with constant iterations and varying discretization and
computation times. 39

5-9 Normalized cost, vs computation time, number of iterations and discretization for
vertical case with cosined discretization. 40

5-10 Trajectories obtained with cosine discretization for a constant no. of iterations and
varying discretization size . 41

6-1 Crazyflie nano quadcopter. 44

6-2 Comparison of Trajectories with zero and nonzero weights on the seconds deriva-
tives of the final state error. 46

6-3 Schematic of Simulation Experiment . 47

6-4 Identification of thrust coefficient through least squares fitting of experimental data. 48

6-5 Experimental Data used to identify drag constants of crazyflie quadrotor. 49

6-6 Experimental Data used to identify drag constants for Bebop Quadrotor. 50

6-7 Position trajectory for openloop controller. 53

6-8 Position trajectory for attitude controller. 55

6-9 Position trajectory for trajectory tracking controller. 57

6-10 Position trajectory for the trajecotry tracking controller with aerodynamic drag
force feedforward. 59

6-11 Schematic of Trajectory Tracking Controller with Drag Force Feedforward 60

6-12 Complete Trajectories for Diagonal Flight. 61

6-13 Energy consumption for the 4 tested controllers. 62

6-14 Unit Cost on the final state Error for the 4 tested controller. 64

6-15 Average power consumption for the timeseries from tf = 2. s to tf = 5 s 65

6-16 Energy consumption for trajectories in timeseries. 66

8-1 Validation trajectories for the horizontal flight problem without (ND) and with (D)
drag model for both solvers. 73

8-2 Validation trajectories for diagonal flight problem without (ND) and with (D) drag
model for both solvers. 74

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

List of Tables

4-1 Characterization of GCOP and GPOPS Optimization Methods 24

5-1 NRMS in percentage for GCOP and GPOPS model, for the horizontal, vertical and
diagonal flight problem . 33

5-2 Error in Cost between GCOP and GPOPS for the horizontal, vertical and diagonal
flight problem, expressed as percentage. 34

6-1 GCOP cost weights used for the results in chapter 6 44

6-2 Gains used in controller . 47

xviii List of Tables

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Contents

Acknowledgment v

Summary vii

Acronyms ix

List of Symbols xi

1 Introduction 1

1-1 General Introduction . 1

1-2 Research Question . 2

1-3 Thesis outline . 3

2 Related Work 5

2-1 Aerodynamic Model . 5

2-2 Trajectory Optimization . 6

3 Quadcopter System Model 9

3-1 Six degrees of freedom equations of motions . 9

3-1-1 Reference Frames . 9

3-1-2 Rigid body equations of motion . 9

3-1-3 Propulsion Model . 11

3-1-4 Blade flapping and induced drag . 12

3-2 Planar Model . 13

3-3 Differential Flatness . 14

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

xx Contents

4 Optimal Control Problem Definition 17

4-1 Optimal Control Problem . 17

4-2 Performance Measures . 18

4-3 Problem Definition . 19

4-3-1 Objective Function . 19

4-3-2 Planar Unit-Model . 19

4-3-3 Full Planar Model . 20

4-3-4 Modelling of Control Constraints . 21

4-3-5 Normalization . 22

4-4 Solvers . 22

4-4-1 Differential Dynamic Programming . 23

4-4-2 Pseudospectral Methods . 25

5 Solver Validation 27

5-1 Discrete Objective Function . 28

5-2 Benchmark Problems . 28

5-2-1 Optimality of Solution . 29

5-2-2 Validation of Full Model . 32

5-3 Parameter Analysis . 35

5-3-1 Normalized Cost Function . 36

5-3-2 Iterations . 38

5-3-3 Discretization Size . 39

5-3-4 Discretization Type . 39

6 Results 43

6-1 Setup . 43

6-1-1 Solver Setup . 44

6-1-2 Simulink Model . 47

6-1-3 Parameter Identification . 48

6-1-4 Performance Metrics . 51

6-2 Simulation Results . 52

6-2-1 Open Loop Controller . 52

6-2-2 Attitude Controller . 54

6-2-3 Trajectory Tracking Controller . 56

6-2-4 Trajectory Tracking with Aerodynamic Force Feed-forward 58

6-2-5 Energy Consumption . 62

6-2-6 Final State Error . 63

6-2-7 Variations in simulation time . 65

6-2-8 Backwind Results . 66

7 Conclusion and Recommendations 67

7-1 Conclusion . 67

7-2 Recommendations . 68

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Contents xxi

8 APPENDIX 71

8-1 Trajectory Initialization . 71

8-2 Validation Trajectories . 72

Bibliography 75

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

xxii Contents

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Chapter 1

Introduction

In this work a method for optimizing quadrotor trajectories is developed. This method in-
cludes a drag model and takes advantage of local wind information, reducing the error between
the generated trajectory and the real world. The generated trajectory is then exploited in a
feedforward manner. To conclude, this system is tested in a simulation in order to benchmark
and study its performance.

This chapter will first give a general introduction to the problem. In section 1-2, the research
question is then presented. Finally, the thesis outline is given in section 1-3.

1-1 General Introduction

Multicopters and especially quadrotors have received a lot of public attention since the early
2000s due to the increased availability of Microelectromechanical System (MEMS) compo-
nents as well as advances in low-cost hardware. A multicopter is a rotorcraft consisting of
multiple rotors mounted to electric motors on a frame. This frame typically consists of rods
which are coupled in the centre. There the electronic hardware such as batteries, electronic
speed controllers, and sensing units are attached.

Multicopters are mechanically simple and robust since typically stiff propeller blades are
the only moving parts. They have a high thrust-to-weight ratio and are capable of large
angular accelerations, thus they are highly maneuverable. Their ability to hover and to
takeoff and land vertically creates many use-cases. Some current and future applications of
multicopters include inspection of power grids in the energy industry (Luque-Vega, Castillo-
Toledo, Loukianov, & Gonzalez-Jimenez, 2014), autonomous planting and harvesting in the
agricultural industry (Zairi, Hazry, et al., 2010), (IPATE, VOICU, & DINU, 2015), and mail
delivery (Mathew, Smith, & Waslander, 2015). In the consumer electronics market they
are increasingly used for aerial photography (Luque-Vega et al., 2014), (Markwalter, 2015).
Furthermore, multicopters are widely regarded as interesting and relatively cost-effective plat-
forms for research in the fields of mechatronics, robotics and especially control, since they

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

2 Introduction

are underactuated and characterized by nonlinear dynamics. In this work quadrotors are
considered. Quadrotors have four rotors and typically weigh less than three kilograms.

A typical control architecture for a quadrotor has several layers and begins with a trajec-
tory generator, which provides a reference trajectory to a tracking controller. A reference
trajectory consists of the quadrotor’s state as a continuous function of time for a prede-
fined number of discrete time steps. The lower-level trajectory tracking controller receives
the reference trajectory as an input and generates the corresponding control outputs to the
motors.

The aim of this thesis is to develop a method for generation of trajectories for a quadrotor.
It should be possible to implement this method in the future on a embedded quadcopter
system. As a rough approximation, let’s assume the feedback control runs at 500Hz. It can
be assumed that the trajectory generation should run not more than one order of magnitude
slower, which leads to a maximum computation time of 0.02 s. This is only an approximation,
but as computation time will be critical for a successful future hardware integration, the solver
should be implemented in a machine-oriented language, such as C++. The method should
show an improvement to the methods currently available, which will be achieved through
feed-forward consideration of aerodynamic effects, including them in the model. This model
should incorporate propeller aerodynamics, since the quadrotor aerodynamics are dominated
by them. Furthermore, it should exploit knowledge of the local wind velocity, such that in
the future a wind estimation method can be integrated, such as presented by Tomic et al. in
(Tomic & Haddadin, 2015).

The problem is nonlinear and includes constraints. We will express it as an optimal control
problem, and then require a solver which can handle nonlinear problems. The open source
Geometric Control Optimization and Planning Library (GCOP) framework, containing a
Differential Dynamic Programming (DDP) implementation in C++ (Kobilarov, 2016), will
be used for this.

1-2 Research Question

The following main research question is posed:

Is it possible, and if so how, to exploit the aerodynamics model in a feed-forward

manner to improve the flight performance of a quadrotor under wind influence ?

A number of technical and scientific sub-questions can be formulated, which help to answer
the main question.

These subquestions are listed below:

Trajectory Generation

1. Which method should be used to generate the trajectories?

2. Is it necessary to initialize the trajectories in order for the solver to find the solution?
If yes, which method should be used to initialize the trajectories ?

3. How should the objective function be defined?

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

1-3 Thesis outline 3

4. How sensible is the solver to solver parameters?

5. What is the solver performance with and without drag model?

Trajectory Tracking

6. Can the flight performance be improved by exploiting the aerodynamics model in a
feed-forward manner ? Which control structure is suitable for this purpose?

1-3 Thesis outline

Figure 1-1: Thesis structure in flowchart.

This thesis contains 7 chapters, starting with this chapter, and 2 appendices. Chapter 2
elaborates on related work found in literature. In chapter 3, the 6 DOF model and the
simplified, planar model are presented. In chapter 4, the problem is formulated as an optimal
control problem and the solvers are introduced. In chapter 5, the problem is defined in
discrete time, the solver is validated and it’s sensibility to solver parameters is studied. In
chapter 6, first the simulation model and the method for the experimental identification of the
aerodynamic parameters is presented. Then the simulation results are presented, for different
types of controllers. In chapter 7 the simulation results are linked to the research questions
and recommendations are given.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

4 Introduction

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Chapter 2

Related Work

In this chapter, the literature review is presented. Firstly, the aerodynamic model of a
quadrotor will be presented, followed by the different optimization methods available.

2-1 Aerodynamic Model

In the first efforts to model small scale rotorcrafts, dynamic models excluded drag and pro-
peller aerodynamics (T. Hamel, Mahony, Lozano, & Ostrowski, 2002), (Omari, Hua, Ducard,
& Hamel, 2013). A large amount of control studies have been done ignoring these effects, as
controllers are designed about hover conditions where aerodynamic effects can be neglected.
The reason is that feedback control usually has sufficient bandwidth to compensate the un-
modeled aerodynamic effects, which are furthermore typically of dissipative form.

More recently, aerodynamic models have been exploited for control purposes in (Omari et
al., 2013), (Pierre-Jean, Callou, Vissiere, & Petit, 2011), (Mahony, Kumar, & Corke, 2012),
(Martin & Salaun, 2010), (Pounds, Mahony, & Corke, 2010).

Omari et al. (Omari et al., 2013) implemented the aerodynamic model with blade flapping and
induced drag terms into an online feedback controller. This was done under the motivation
that the quadrotor model ceases to be differentially flat when incorporating aerodynamic
forces. By using the aerodynamic model they introduced a term to compensate the expected
aerodynamic force. This was done in a feedforward manner due to computational complexity.

The results in (Omari et al., 2013) illustrate that when a trajectory controller with no aero-
dynamic model is used, the effects from blade flapping and induced drag cause disturbances,
affecting the flight performance. They furthermore show that for a high reference velocity, a
controller with only first order effects in the model shows poor trajectory tracking.

As these disturbances are typically of a high frequency, they require a high level of integral
control action from the controller, which leads to poor control performance. Omari et al.
compare the response of the system given a ramp input in position, between a controller

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

6 Related Work

with no aerodynamic model and one with a first-order aerodynamic model. With no aerody-
namic model, the flight trajectory shows a significant offset and the integral control action is
high. The first-order aerodynamics augmented controller achieved the tracking objective and
showed a much lower integral action for a low velocity reference vref = 1ms−1.

Nevertheless, second order aerodynamics effects are often neglected, since they are propor-
tional to the square of the quadrotor linear velocity and therefore are small near hovering,
(Martin & Salaun, 2010), (Benallegue, Mokhtari, & Fridman, 2006). They are generally seen
as unmodeled disturbances, which should be compensated for by the controller.

P. Martin et al. show in (Martin & Salaun, 2010) that aerodynamic effects proportional to
the sum of the propeller angular velocities

∑

ωi times the quadrotor linear velocity ṙ and
the angular velocity ω appear and should be considered as a necessary addition to the simple
propeller model acting exclusively in the direction of the propeller axis. This aerodynamic
force FH is called H-force in helicopter literature (Watkinson, 2004), (A. R. S. Bramwell,
2001), and is defined for the i -th rotor as FH,i = −ωiλh,iṙ, with λh,i a propeller specific
constant (Martin & Salaun, 2010).

Finally, in a wide range of recent publications, i. e. (Guillaume Allibert, Abeywardena,
Bangura, & Mahony, 2014), (Omari et al., 2013), (Leishman, Macdonald, Beard, & McLain,
2014), (Waslander & Wang, 2009), (Tomic & Haddadin, 2015), only aerodynamic forces
proportional to the square of the propeller angular velocity times the linear velocity or even
only proportional to the linear velocity are considered.

These choices are a matter of model fidelity and are a trade off between model complexity
and model error.

2-2 Trajectory Optimization

Trajectory optimization is the process of developing trajectories that minimize a performance
measure.

It can be done in the state space or the control space, solving either an inverse or forward
dynamics problem. In an inverse dynamics problem the state is represented explicitly and
an optimization problem is solved (Mueller, Hehn, & D’Andrea, 2015). In a forward dynam-
ics problem the control inputs are parametrized and the states are computed using forward
integration (Tassa, Mansard, & Todorov, 2014). The forward dynamics problem has the
advantage that state-control trajectories are dynamically feasible. Therefore dynamic con-
straints on the inputs are not needed.

When trajectories are generated by superposing a speed profile on a previously generated path,
trajectory tracking involves a trade off between the complexity of the planned path and the
input update rate. G.M. Hoffmann et al. present in (Hoffmann, Waslander, & Tomlin, 2008)
a trajectory tracking controller for quadrotors, which decouples these two components. The
path-planning is not required to be dynamically feasible, as the presented algorithm modifies
the speed profile of the input path to be dynamically feasible. It does this in two steps. Firstly,
the cross track acceleration constraint is satisfied by computing at every waypoint a maximum
allowable speed. Then it computes the optimal speed profile that satisfy track acceleration
constraints, minimum desired speed and the previously computed maximum allowable speed.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

2-2 Trajectory Optimization 7

J. H. Gillula et al. model in (Gillula, Huang, Vitus, & Tomlin, 2010) the quadrotor system
as a collection of hybrid modes, one for each operating regime. Aerobatic maneuvers are then
decomposed into series of discrete maneuvers. Guaranteed safe transitions between modes
are obtained from the Hamilton-Jacobi differential game formulation, resulting in provably
safe switching conditions on altitude, altitude rate, attitude and attitude rate. This method
was implemented for a backflip maneuver, a maneuver split up into three main modes. This
method is especially suitable for complex maneuvers on nonlinear systems

Mellinger et al. state in (Mellinger & Kumar, 2011) that LQR-tree based searches, as pre-
sented in (Tedrake, 2009) are impractical for a system with six degrees of freedom. They
present a flatness-based minimum snap trajectory generation method, which has the abil-
ity to run through a series of specified waypoints and to take into account constraints on
positions, velocities, accelerations and inputs.

A method which has been tested successfully on a quadrotor system is the two-step method
proposed by M. W. Mueller et al. in (Mueller et al., 2015). The authors first use a flatness-
based state-to-state planner to generate the trajectory in closed form, while ignoring feasi-
bility constraints. The position trajectories are fifth-order time-dependent polynomials. By
formulating an optimal control problem, the constants of the polynomials are solved for. The
objective function minimizes the upper bound of the product of the quadrotor inputs. In the
second step the feasibility is checked recursively. Advantage is taken from the property that
specific polynomials can be rapidly verified for constraints on the system inputs, position,
velocity and/or acceleration. This algorithm can be applied when a search over a large space
of trajectories is required for a nonconvex problem.

Nonlinear optimal control problems generally cannot be solved analytically and therefore
numerical methods have to be used to solve these optimal control problems. The numeri-
cal methods generally raise problems related to the computation cost, stability, robustness
and the understanding of the nature of the obtained solution, (Geoffroy, Mansard, Raison,
Achiche, & Todorov, 2014). Differential dynamic programming is an algorithm in the area
of numerical optimal control, which is nearly equivalent to the Newton descent algorithm
(DE O. PANTOJA, 1988). It’s strength is that it is easy to implement in an efficient way.
For example, it has been implemented for effective real-time control of a 25 DOF Robot by
(Tassa et al., 2014). The algorithm starts with an initial trajectory for the states and con-
trols. The candidate solution is iteratively modified in two-steps. Firstly, a quadratic model
of the variation of the candidate trajectory is computed in a backward loop, together with
the corresponding linear-quadratic regulator. Then the candidate trajectory is modified in a
forward loop.

In this thesis, trajectory optimization using Differential Dynamic Programming will be stud-
ied, with and without a linear aerodynamic model. Furthermore a controller will be developed,
which is able to exploit the aerodynamic model.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

8 Related Work

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Chapter 3

Quadcopter System Model

The Equations of Motion (EOM) of a quadrotor will be presented in this chapter, both for a
full six degrees of freedom model and a planar model. These models will be used throughout
the work.

3-1 Six degrees of freedom equations of motions

3-1-1 Reference Frames

The inertial frame is I = {OI ; îI , ĵI , k̂I} and the body frame is B = {OB; îB, ĵB, k̂B}, with
the unit vectors î, ĵ, k̂. Following aerospace convention, the i -axis points forward, the j -axis
to the right and the k -axis points downwards. Considering the inertial frame with origin OI ,
îI points to the front and is parallel to the ground, ĵI points to the right side and is parallel
to the ground. The unit vector k̂I is orientated downwards, perpendicular to the ground.

The displacement of the origin of the body frame OB with respect to the inertial frame origin
OI is defined by r ∈ R

3. The body frame B is rotated with respect to the inertial frame I
by the euler angles for roll φ, pitch θ and yaw ψ, through the rotation matrix Rbi ∈ R

3×3.
Furthermore, di denotes the location of the i -th rotor with respect to the center of the body
frame. For simplicity, the horizontal plane of the rotors and the quadcopter will be assumed
to be aligned.

3-1-2 Rigid body equations of motion

The full 6 Degrees of Freedom (DOF) equations of motion are the well-known equations of
motion of a rigid body plus all external forces,

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

10 Quadcopter System Model

iB

kB

jB

iI

kI

jI

I

T2T3

T1 T4

Q2Q3

Q1 Q4

B

r,
R

b
i

Figure 3-1: Sketch of quadrotor system (Martin & Salaun, 2010). The rotational speed of the
i-th propeller is ωi.

mr̈ = mgk̂+ fp + fd + fc + fm , (3-1)

Iω̇ = [ω]xIω + Γp + Γd + Γc + Γm , (3-2)

ṘT
bi = RT

bi[ω]× , (3-3)

with the moment of inertia matrix I ∈ R
3×3 and the quadcopter mass m. The force f ∈ R

3

is defined in the inertial frame and the torque Γ ∈ R
3 in the body frame. The propulsion,

aerodynamic, contact and modeling error forces/torques are denoted as fp/Γp, fd/Γd, fc/Γc,
fm/Γm, respectively. [ω]× denotes the skew symmetric matrix of ω.

Now we condense these relations into the generalized formulation,

Mv̇ +C(v)v + g = τ p + τ d + τ c + τm , (3-4)

with the generalized velocity defined as v = [ṙT; ω
T]T ∈ R

6 and the wrench defined as
τ = [fT; ΓT]T ∈ R

6.

The generalized inertia matrix M is defined as

M =

[

mI3×3 03×3

03×3 I

]

∈ R
6×6 , (3-5)

whereby the identity and null matrix are defined as Im×n ∈ R
m×n and 0m×n ∈ R

m×n,
respectively.

The other matrices used in equation (3-4) are the coriolis and centripetal terms

C(v) =

[

03×3 03×3

03×3 −[Iω]×

]

∈ R
6×6, (3-6)

and the weight vector
g = −[mgk̂T 01×3]

T ∈ R
6×1 , (3-7)

with g being the gravitational acceleration.

We assume the vehicle is flying in an environment free of obstacles and no external wrenches
due to collision, τ c = 0.

In the following sections, the drag and propulsion model will be defined.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

3-1 Six degrees of freedom equations of motions 11

3-1-3 Propulsion Model

The propeller axes are introduced as îP , ĵP , k̂P . Assuming that the propellers are aligned
with the body frame, the body axes can be used instead.

The propulsion wrench τ p is the sum of the propulsion wrenches τ p,i of all the rotors. The
propulsion of the i -th propeller is defined as

τ p,i =

[

RT
biTi(−k̂)

λiQik̂+ di ×
(

Ti(−k̂)
)

]

, (3-8)

with the thrust force from the i -th rotor Ti ∈ R pointing upwards in the direction of −k̂B.
The drag torque from the i -th rotor is represented by λiQi, where λi ∈ {−1, 1} encodes the
rotation direction (positive around +k̂B) and Qi the magnitude of the torque.

The true airspeed vr is the difference between the ground speed ṙ and the windspeed vw ,

vr = ṙ− vw . (3-9)

The freestream velocity v∞, is then computed from the true airspeed vr and the body angular
velocity ω

v∞ = (Rbivr + ω × d) . (3-10)

For notational simplicity, we will now derive the thrust T , torque Q and power P for a single
propeller in isolation. Based on momentum theory (Leisham, 2006), the thrust force of a
propeller depends on the slipstream velocity U and induced velocity vi. The thrust T is
defined as

T = 2ρAviU , (3-11)

where ρ is the air density and A is the rotor disk surface area.

The propeller slipstream velocity U is the sum of the freestream velocity v∞ and the induced
velocity vi pointing downwards in the propeller frame along kB, defined as

U = ||vikB + v∞|| . (3-12)

The rotor induced velocity vi can be obtained from the implicit formulation

vi =
vh

√

v2xy + (vi + vz)2
, (3-13)

which can be solved by several Newton-Raphson iterations (Tomic & Haddadin, 2015). The
freestream velocity in the rotor plane vxy is

vxy = ||vxy|| = ||v∞ − (v∞ · k̂B)k̂B|| , (3-14)

while the freestream perpendicular to the rotor plane is defined as

vz = ||(v∞ · k̂B)k̂B|| . (3-15)

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

12 Quadcopter System Model

The induced velocity in hover vh is obtained by substituting the hover thrust Th

vh =

√

Th
2ρA

. (3-16)

Additionally, the thrust Ti can be modeled with

T = ρD4CTω
2 , (3-17)

where CT is the thrust coefficient.

The torque Qi generated by the rotation of the i -th propeller is modeled as

Q = ρD5CQω
2 , (3-18)

with the propeller diameter D, the air density ρ, torque coefficient CQ and propeller rotational

speed ω in rad s−1. Through substitution of CQ =
Cp

2πω
we get

Q = ρD5Cp

2π
ω , (3-19)

with the power coefficient Cp.

The power P is modeled with

P = ρD5Cpω
3 . (3-20)

where CP is the power coefficient.

3-1-4 Blade flapping and induced drag

Now the drag model is introduced, based upon blade flapping and induced drag. When a
quadrotor is in forward flight, the advancing rotor blade has a higher tip velocity and therefore
generates more lift than the retreating blade, which causes them to deflect up and down, as
they are not completely stiff. This movement is called blade flapping, causing the thrust
vector to deflect back, causing an induced drag component, as depicted in Figure 3-2.

Figure 3-2: Sketch for blade-flapping (Omari et al., 2013)

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

3-2 Planar Model 13

From (Omari et al., 2013), the aerodynamic effects can be described by a lumped expression
with a term proportional to the thrust force Ti and the linear velocity ṙ transformed to the
body frame B. The drag wrench τ d,i ∈ R

6 from the i -th propeller is defined proportional to
the thrust Ti and to the freestream velocity v∞,i ∈ R

3 as:

τ d,i = −RT
biDiRbi

[

v∞,i

03×1

]

. (3-21)

Finally, Di is defined as

Di =





TiAd,i 03×3
(

dn × TiAd,i

)

03×3



 , (3-22)

where the matrix Ad,i contains the lumped drag parameters as

Ad,i =





cf,lon + ci,1 −cf,lat 0
cf,lat cf,lon + ci,2 0
0 0 0



 , (3-23)

where cf,lon, cf,lat are the longitudinal and lateral flapping drag coefficients and ci,1, ci,2 are
induced drag coefficients (Tomic & Haddadin, 2015).

Higher-order terms in linear and angular velocities, which can be derived from classical blade
theory, are neglected, as we assume a small advance ratio µ (Martin & Salaun, 2010). The
advance ratio µ is a non-dimensional measure for rotor velocity, characterizing the angle of
attack on the blade sections, regardless of the actual true airspeed. It is defined as the ratio
of the freestream speed in the propeller plane to the rotor tip speed,

µ =
vxy
ωR

, (3-24)

with vxy the freestream velocity in the propeller plane, ω the propeller rotational speed and
R the rotor radius (Leisham, 2006).

3-2 Planar Model

In order to simplify the analysis of the system a planar model of a quadrotor with motion only
in the (x, z) plane is derived (i.e. φ = ψ = 0), as is done in (Sreenath, Michael, & Kumar,
2013), (Cabecinhas, Naldi, Marconi, Silvestre, & Cunha, 2012), (Sharifi, Zhang, & Gordon,
2011).

The thrust force T is pointing upwards in the body frame, as shown in Figure 3-3. The
gravitational acceleration points in the positive z direction. The specific model is defined as

ẍ =−
T

m
sin θ = −u1 sin θ , (3-25)

z̈ =g −
T

m
cos θ = g − u1 cos θ , (3-26)

θ̈ =
τ

Iy
= u2 . (3-27)

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

14 Quadcopter System Model

x

z

T

θ

Γ

Figure 3-3: Planar model of the quadrotor (Tomic et al., 2014) .

The first control input u1 is the thrust normalized by the mass and the second control input
u2 is the torque normalized by the moment of inertia .

The planar equations of motion are augmented by only the linear terms of the aerodynamics
model. The drag forces in the body frame are modeled with the linear drag constants CB

x

and CB
z as

[

ẍ
z̈

]

= −u1

[

sin θ
cos θ

]

+

[

0
g

]

−RT
bi

[

CB
x 0
0 CB

z

]

Rbi

[

vr,x
vr,z

]

, (3-28)

θ̈ = u2 . (3-29)

where vr,x and vr,z are the true windspeeds in the inertial frame. The rotation matrix Rbi ∈
R
2×2 is defined as

Rbi =

[

cos θ − sin θ
sin θ cos θ

]

. (3-30)

3-3 Differential Flatness

In this section, a general definition of flatness will be presented (Josua Braun, 2015) and
applied to obtain the input-output linearization of the planar model.

Definition 1
(Differential Flatness)
The nonlinear system

ẋ = f

(

x(t),u(t)

)

, x(0) = x0 , (3-31)

x ∈ R
n, f ∈ R

n, u ∈ R
p, (3-32)

is differentially flat, if one can define p outputs yi which are dependent on the state vector

x(t), input vector u(t) and a finite number of derivatives of the inputs u̇(t), . . . ,
(s)
u (t)







y1
...
yp






= y =











c1

(

x,u, u̇, . . . ,
(α)
u
)

...

cp

(

x,u, u̇, . . . ,
(α)
u
)











= c

(

x,u, u̇, . . . ,
(α)
u

)

, (3-33)

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

3-3 Differential Flatness 15

such that the input and state variables can be represented by functions which are dependent
on the flat output vector y ∈ R

p and its derivatives

x = a

(

y, ẏ, . . . ,
(β)
y

)

,

u = b

(

y, ẏ, . . . ,
(β+1)
y

)

.

(3-34)

The planar model without aerodynamics is differentially flat (Mellinger & Kumar, 2011).
Therefore all states (θ, θ̇, θ̈, x, ẋ, ẍ, z ż, z̈) and inputs (u1, u2) can be computed from the
desired position trajectories (and derivatives thereof). The pitch angle θ and its derivatives
(θ̇, θ̈) can be obtained from equations (3-25), (3-26), (3-27) through algebraic manipulation.
Solving equation (3-25) for u1 we get

u1 = −
ẍ

sin θ
. (3-35)

Now we can substitute equation (3-35) into equation (3-26) and obtain

tan(θ) =
ẍ

z̈ − g
. (3-36)

Solving for θ,

θ = atan2 (−ẍ, g − z̈) . (3-37)

The first and the second derivatives of the angle θ are obtained through differentiation of eq.
(3-37),

θ̇ =

...
x (z̈ − g)−

...
z ẍ

(g − z̈)2 + ẍ2
, (3-38)

θ̈ =
1

((g − z̈)2 + ẍ2)2
[((g − z̈)2 + ẍ2)(

....
x (z̈ − g)−

....
z ẍ) (3-39)

−(
...
x (z̈ − g)−

...
z ẍ)(2

...
z (z̈ − g) + 2

...
x ẍ)] .

Substituting equation (3-36) into (3-35), input u1 is computed,

u1 =
√

(g − z̈)2 + ẍ . (3-40)

The torque input u2 is obtained through the system model in equation (3-27) and equation
(3-39),

u2 = θ̈ . (3-41)

This derivation also shows that the planar system (3-25)-(3-27) is differentially flat.

As equation (3-28) shows, the model with drag is made up of a first-order as well as a
second-order derivative of position x. Therefore, the relation between u and ẋ is implicit.
The conclusion is that we can’t prove the system to be differentially flat or input-output
linearizable (Omari et al., 2013).

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

16 Quadcopter System Model

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Chapter 4

Optimal Control Problem Definition

In optimal control, the general aim is to find ”the control signals that will cause a process to
satisfy the physical constraints and at the same time minimize (or maximize) some perfor-
mance criterion” (Kirk, 2006). Defining the problem as an optimal control problem (OCP)
allows inclusion of the full nonlinear system dynamics as the mathematical model of the
system to be optimized.

4-1 Optimal Control Problem

An OCP is defined by a set of differential equations f describing the dynamics of the system,
a performance measure J as the function of state variables x(t) and of control variables u(t),
constraints and boundary conditions. Based on (P. Gill, Murray, & Saunders, 2005) and
(Maier, 2013), the general optimal control problem is defined as :

Definition 2
(Optimal Control Problem)
Find a control u∗ which causes the system

ẋ = f(x(t),u(t)), x ∈ R
N , u ∈ R

M , f : RN × R
M → R

N , t ∈ [t0, f] , (4-1)

subject to the inequality constraints

xmin ≤ x(t) ≤ xmax, umin ≤ u(t) ≤ umax, (4-2)

and the boundary conditions

x(t0) = x0, x(tf) = xf , (4-3)

to follow a trajectory x∗ that minimizes the optimality criterion

J(x(t),u(t), t) . (4-4)

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

18 Optimal Control Problem Definition

4-2 Performance Measures

One can consider various performance measures, depending on the constraints and the na-
ture of the problem. This section will present three commonly used physically motivated
performance measures, which will be used in my thesis work.

Definition 3
(Minimum-Time Problem)
If the goal is to minimize the time to transfer the system from the initial state x(t0) = x0

to the final state x(tf) = xf , we are dealing with a minimum-time problem.
The performance measure to be minimized is

J = tf − t0 =

∫ tf

t0

dt , (4-5)

with tf the first instant of time when x(t) and xf intersect.
In General Purpose Optimal Control Software (GPOPS), the solver can be defined as a
minimum-time problem, using GCOP that is not possible.

Definition 4
(Terminal Control Problem)
If the final state is not constrained and the goal is minimizing the deviation of the final state
from its’ desired value r(tf), a terminal control problem is defined.

The performance measure is

J =

n
∑

i=1

[xi(tf)− ri(tf)]
2 , (4-6)

where n is the number of states. Since positive and negative deviations are equally undesir-
able, the error is squared. Absolute values could also be used, but the quadratic form in Eq.
(4-6) is easier to handle mathematically. Using matrix notation, we have

J = [x(tf)− r(tf)]
T[x(tf)− r(tf)] , (4-7)

or this can be written as

J = ||x(tf)− r(tf)||
2 . (4-8)

Definition 5
(Minimum Control-Effort Problem)
The goal in a minimum control effort problem is to transfer a system from an arbitrary initial
state x(t0) = x0 to a final state, with a minimum expenditure of control effort.

The meaning of the term ”minimum control effort” depends upon the particular physical
application; therefore, the performance measure may assume various forms. The general
performance measure for multiple inputs is

J =

∫ tf

t0

uT (t)Ru(t)dt , (4-9)

where only the diagonal entries of R are non-zero. These entries weigh the control-effort for
each input variable.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

4-3 Problem Definition 19

4-3 Problem Definition

4-3-1 Objective Function

The objective function must improve the flight performance and ensure that the final state is
reached.

Therefore, our objective function J is a combination of the terminal control problem and the
minimum control effort problem.

J = [x(tf)− r(tf)]
TQf [x(tf)− r(tf)] +

∫ tf

t0

[uT (t)Ru(t)]dt . (4-10)

This objective function has diagonal cost matrices on the input R ∈ R
6×6 and on the final

state Qf ∈ R
6×6

4-3-2 Planar Unit-Model

In the first implementation, which was used for the validation in chapter 5, the GCOP solver
is configured to use the total torque τ and thrust T acting on the COM of the rigid body as
the control variables u1, u2. Furthermore, the mass m and the moment of inertia Iy are unit
and therefore do not appear in the equations.

Without Drag

For the planar system without aerodynamic drag, the flat model is defined as

ẋ =

















ẋ
ż

θ̇
ẍ
z̈

θ̈

















= f(x,u) =

















ẋ
ż

θ̇
−u1sθ
g − u1cθ

u2

















, x(0) = x0, x(tf) = xf , (4-11)

where the constraints on the controls u = [u1 u2]
T are defined by

Tmin

mg
≤ u1 ≤

Tmax

mg
, |u2| ≤ θ̈max. (4-12)

Tmin is the minimum and Tmax the maximum available thrust, θ̈max is the absolute limit on
the rotational acceleration.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

20 Optimal Control Problem Definition

With Drag

For the planar system with aerodynamic drag, true airspeeds vr,x, vr,z and drag constants in
the body frame CB

x , CB
z , we have the following model:

ẋ =

















ẋ
ż

θ̇
ẍ
z̈

θ̈

















= f(x,u) =

















ẋ
ż

θ̇
−u1sθ
g − u1cθ

u2

















+

















0
0
0

RT
bi

(

CB
x 0
0 CB

z

)

Rbi

(

vr,x
vr,z

)

0

















, (4-13)

with the boundary conditions

x(0) = x0, x(tf) = xf . (4-14)

As in the case without drag, the constraints on the controls u = [u1 u2]
T are defined by

Tmin

mg
≤ u1 ≤

Tmax

mg
, |u2| ≤ θ̈max. (4-15)

4-3-3 Full Planar Model

In this section, the model definition used in chapter 6 is presented. The GCOP solver uses
the rotational speeds ω1, ω2, ω3 as input variables u1, u2, u3. As we are looking at planar
flight, zero out-of plane torque is assumed, and therefore the rotors which are not in the plane
must have the same rotational speed, i.e. ω3 = ω4.

Without Drag

For the planar system without aerodynamic drag, the model is defined as

ẋ =

















ẋ
ż

θ̇
ẍ
z̈

θ̈

















= f(x,u) =

















ẋ
ż

θ̇

− sθ
m
Ct(u

2
1 + u22 + 2u23)

− cθ
m
Ct(u

2
1 + u22 + 2u23) + g

CtL
J

(−u21 + u22)

















, x(0) = x0, x(tf) = xf , (4-16)

where the constraints on the controls u = [u1 u2 u3]
T are defined by

umin = 0 rad s−1 ≤ u ≤ umax = 2513 rad s−1 . (4-17)

The minimum and the maximum rotational speeds are umin, umax.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

4-3 Problem Definition 21

With Drag

For the planar system with aerodynamic drag, the model is defined as

ẋ =

















ẋ
ż

θ̇
ẍ
z̈

θ̈

















=

















ẋ
ż

θ̇

− sθ
m
Ct(u

2
1 + u22 + 2u23)

− cθ
m
Ct(u

2
1 + u22 + 2u23) + g

CtL
J

(−u21 + u22)

















+

















0
0
0

− 1
m
RT

bi

(

CB
x 0
0 CB

z

)

Rbi

(

vr,x
vr,z

)

0

















, (4-18)

with the boundary conditions

x(0) = x0, x(tf) = xf , (4-19)

where the constraints on the controls u = [u1 u2 u3]
T are defined by

umin = 0 rad s−1 ≤ u ≤ umax = 2513 rad s−1 . (4-20)

The minimum and the maximum rotational speeds are umin, umax.

4-3-4 Modelling of Control Constraints

Electric motors, such as the DC motors used in the crazyflie quadcopter, are limited by a
maximum rotational speed, after which they enter a saturated state. This behaviour is ideally
modeled by static constraints on the rotor speed of each rotor.

In the first implementation, which was used for the validation in chapter 5, the GCOP solver
used the total torque τ and thrust T acting on the COM of the rigid body as the control
variables u1, u2. Therefore the constraints are dynamic,

[

T
τ

]

=

[

Ct Ct Ct Ct

CtL −CtL 0 0

]









ω2
1

ω2
2

ω2
3

ω2
4









, where









ω2
1,min

ω2
2,min

ω2
3,min

ω2
4,min









<









ω2
1

ω2
2

ω2
3

ω2
4









<









ω2
1,max

ω2
2,max

ω2
3,max

ω2
4,max









, (4-21)

and cannot be modeled using the GCOP-solver. The reason is, that the GCOP-solver only
allows for static constraints on the model control variables. Therefore, in chapter 5, no
constraints are used.

To correctly model the dynamic constraints for chapter 6, we define the control variables u1,
u2, u3, u4 as the individual rotational speeds ω1, ω2, ω3 and ω4. These control inputs are
then limited to the electrical limit of the brushless motor, ωmin = 0 rad s−1 ≤ ωi ≤ ωmax =
2513 rad s−1, which was obtained from experimental data.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

22 Optimal Control Problem Definition

4-3-5 Normalization

In the current implementation, heuristic tuning is required for every change in the desired
final state xf or the final time tf , in order to ensure that the desired final state is reached. The
reason is that the DDP algorithm (with the cost function defined in 4-3-1) makes a tradeoff
between minimizing the control effort and the final state error. I. e., if the weight on a specific
final state is not sufficiently high, the solver will find a trajectory which improves the control
effort but deteriorates the final state error.

To avoid having to repeat this heuristic tuning of the weights, the state and control vectors are
normalized. The weights are tuned once initially, and for each state variable and control input
the maximum absolute value in the initial solution is used as the normalization constant. For
states remaining close to zero (e.g. x in vertical flight), this would lead to a division by zero.
Therefore, these states are not normalized.

For the integration of the model states the non-normalized states and inputs are required.
Therefore the normalized data is firstly denormalized, the integration is performed and then
the data is normalized again. In this way, the DDP algorithm works only with normalized
data and all weights only have to be tuned once, see 4-1.

Figure 4-1: Normalization scheme for state integration, with normalization methods in dashed
boxes.

In Figure 4-2 the convergence of the solver with normalized states and controls was compared
to the convergence of the solver with non-normalized states and controls, for two different
numbers of discrete steps N = 20 and N = 50. The solver with normalized states and controls
consistently performs better with a much lower cost and faster convergence. The drawback
of normalization is an increased computation time for the same number of iterations k and
discretization size N , of approximately 9%. As the cost converges much faster and reaches a
lower cost, this drawback can be accepted.

4-4 Solvers

The main solver is chosen with the intention of future deployment on robotic hardware.
Therefore the solver library is required to be computationally efficient, ideally be written

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

4-4 Solvers 23

0 5000 10000 15000 20000

Number of iterations k

10
0

0.950

0.960

0.970

0.980

0.990

N
o
rm

a
liz

e
d

C
o
s
t
J
/J

0

Normalized Cost

N = 20, normalized

N = 20, not normalized

N = 50, normalized

N = 50, not normalized

10
−2

10
−1

10
0

10
1

10
2

10
3

C
o
m

p
u
ta

ti
o
n

ti
m

e
[s
]

Computation Time

N=20, normalized

N=20, not normalized

N=50, normalized

N=50, not normalized

0 5000 10000 15000 20000

Number of iterations k

0.948

0.949

0.950

N
o
rm

a
liz

e
d

C
o
s
t
J
/J

0

10
−2

10
−1

10
0

10
1

10
2

10
3

C
o
m

p
u
ta

ti
o
n

ti
m

e
[s
]

Figure 4-2: Normalized Cost J/J0 plotted against iterations k and computation cost, with
and without normalization of states and controls. The upper plot shows the entire cost-range,
the bottom plot zooms into the curves for the normalized cases. When comparing the same
discretization N , the costs in the normalized case are lower and converge after fewer iterations k.

in C++ and to be open-source. Furthermore, it has to be possible to define constraints on
the control inputs, as control saturation should be modeled, as described in Section 4-3-4.
As compiled in Table 4-1, the GCOP solver fulfills these requirements. In Section 4-4-1, an
introduction to DDP and the GCOP package is given.

For validation of the main solver, a second solver is required. It should make use of a different
optimization method for a meaningful validation. Ideally it is written in a language with high
level of abstraction, allowing a time-efficient implementation. As this is merely the validation
solver, the computation time required is irrelevant. For this purpose the GPOPS library was
used. In Section 4-4-2, an introduction to Gauss Pseudospectral Method (GPM) and the
GPOPS package is given. The validation is presented in

4-4-1 Differential Dynamic Programming

The Dynamic Programming (DP) method is an indirect method, i.e. the trajectory is not
represented explicitly by the states, but is instead represented implicitly by the controls
u(x, i).

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

24 Optimal Control Problem Definition

Table 4-1: Characterization of GCOP and GPOPS Optimization Methods

Solver Name GCOP GPOPS

Optimization Method Differential Dynamic Programming Gauss Pseudospectral Method

Programming Language C++ Matlab

License Open Source Proprietary

Constraints on states Not Possible Possible

Constraints on input Possible Possible

Documentation Not Available Available

DP is based upon the principle of optimality. Introduced by Bellman, who transformed
DP into a systematic tool (Bertsekas, 2001), the principle of optimality states the following
intuitive fact.

Definition 6
(Principle of Optimality, (Bertsekas, 2001))

”Let π∗ = {u∗0, u
∗

1, . . . , u
∗

N−1} be an optimal policy for the basic problem, and assume that
when using π∗, a given state xi occurs at time i with positive probability. Consider the
subproblem whereby we are at xi at time i and wish to minimize the ”cost-to-go”from time
i to time N :

E{gN (xn) +

N−1
∑

k=i

gk(xk, uk(xk), wk)} . (4-22)

Then the truncated policy {u∗i , u
∗

i+1, . . . , u
∗

N−1} is optimal for this subproblem.”

In other words, we can solve a large problem given the solutions to its smaller subproblems.
This principle allows expressing the minimization over a sequence of controls as a sequence
of minimizations over a single control (Tassa et al., 2014).

The DDP algorithm consists of two steps. Firstly, an optimization step backwards in time,
receding from tf to t0 in discrete timesteps. Secondly, an integration step forwards in time. If
the running cost for a certain time index and the cost on the following timestep is expressed
as l(x,u) and V ′(f(x,u))), the cost-to-go V (x) can be expressed as

V (x) = min
u

[l(x,u) + V ′(f(x,u)))] . (4-23)

DDP in the Newton-Raphson form is a method which recursively computes the (locally)
optimal input(s) u(x, i) resulting in the (locally) optimal cost-to-go function V (x, i), where x
represents the state at discrete time ti. If the change in cost V (x) due to small perturbations
δu, δx is expressed as

Q(δx, δu) = l(x+ δx,u+ δu) + V ′(x+ δx,u+ δu) , (4-24)

the algorithm computes the optimal control modification δu∗(δx) for some state perturbation
δx with the linear feedback policy

δu∗(δx) = min
δu

Q(δx, δu) = k+Kδx , k = −Q−1
uu
Qu and K = −Q−1

uu
Qux , (4-25)

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

4-4 Solvers 25

using a second-order Taylor series expansion of the change in cost Q (Tassa, Mansard, &
Todorov, 2003).

The backward pass is followed by the forward pass, where the control policy is evaluated,
with α the backtracking searching parameter

x̂0 = x0 , (4-26)

ûi = ui + αki +Ki(x̂i − xi) , (4-27)

x̂i+1 = f(x̂i, ûi) . (4-28)

The backward and forward passes are iterated until convergence to the locally optimal tra-
jectory.

The indirect representation employed in DDP has a large advantage in terms of computa-
tion time/complexity when compared to direct representations, as it solves N times the m-
dimensional problem, instead of solving a single mN -dimensional problem, with complexities
of O(Nm3) and O(N3m3), respectively. Furthermore, this method converges quadratically
(Murray & Yakowitz, 1984).

GCOP Software Package

GCOP (Kobilarov, 2016), is an open-source C++ framework for DDP, developed at the ASCO
lab at John Hopkins University. It is used for optimal control, estimation and planning of
dynamic systems and includes well-known optimization methods, amongst others DDP. Its
implementation makes use of templates and is therefore flexible, while at the same time the
structure is modular. This enables flexibility and freedom in the definition of new systems and
optimization algorithms (Garimella, 2016). Its implementation in C++ makes it attractive
for realtime implementations. It has been used successfully for many applications, such as
ground vehicle trajectories, quadrotor trajectories, and for complex multibody dynamics, e.g.
aerial manipulation (Garimella, 2016).

For the implementation of my quadrotor model, firstly a software interface to the framework
had to be implemented in C++. A templated optimization loop was then written, containing
amongst others a flatness-based method to compute an initial solution, a system model used
for the state-integration and the normalization methods. Python was then used to create an
interface to run the compiled C++ code and visualize and analyze the results.

The step-function computes from an initial state xa, input vector ua and timestep h, the final
state xb and the final pitch angle θb.

The flatness-based method to create the full initial trajectory utilizes the relations for differen-
tial flatness (equations (3-35)-(3-41)) to compute all states and controls based on a polynomial
trajectory. The generation of this initial polynomial trajectory is explained in appendix 8-1.

4-4-2 Pseudospectral Methods

Pseudospectral methods are a class of direct collocation and employ a direct transcription of
a continuous-time optimal control problem to a Nonlinear Program (NLP) (Garg & Patter-
son, 2009). This NLP can then be solved using common software packages, such as Auto-
matic Control and Dynamic Optimization Toolkit (ACADO) or Sparse Optimization Suite

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

26 Optimal Control Problem Definition

(SOS) (Rao et al., 2010). They make use of global polynomials for the parametrization
of the state and inputs, which are collocated with nodes from a Gaussian quadratures, i.e.
the differential-algebraic equations are orthogonally or pseudospectrally collocated, providing
spectral convergence (Rao et al., 2010).

GPOPS Software Package

Many pseudospectral methods have been described mathematically, but their algorithms are
not available in the open literature in a form which can be readily implemented. There-
fore most scientific users take advantage of open-source software or commercial off-the shelf
(COTS) software, which are typically time-intensive to learn. Additionally, this approach has
in many cases a low educational value, as one interacts with the software as a black box with
no insight about the underlying methodology.

Out of this motivation GPOPS was developed (Rao et al., 2010). GPOPS is a software for
solving multiple-phase optimal control problems, implemented in MATLAB. It is based on
the Gauss pseudospectral method and has been developed at the Draper Laboratory, MIT.
This method outputs an approximated optimal control solution. Firstly, the solver discretizes
the differential equations and the objective function for each phase, then independent phases
are connected using linkage conditions on state and time, as depicted in Figure 4-3.

Figure 4-3: Linkages in multiple-phase pseudospectral control problem as employed in the GPOPS
solver (Rao et al., 2010). In this schematic, the end of phases 1, 2 and 3 are linked to the start
of the phases 2,3 and 4.

The user can choose whether the discretization is done either using finite differences or ana-
lytical derivatives. This results in a large nonlinear programming problem (NLP), which is
solved using Automatic Control and Dynamic Optimization Toolkit (SNOPT) (P. Gill et al.,
2005),(P. E. Gill, Murray, & Saunders, 2008). For our problem involving a point-to-point
flight without external events, no linkage is needed and only one phase is solved for.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Chapter 5

Solver Validation

In chapter 4, the continous-time optimal control problem with its objective function, con-
straints and planar system model was defined. Also, both solvers were presented, GPOPS as
the validation and GCOP as the main solver to be studied.

The next step is to test and validate the implementation of DDP in the GCOP library. In this
chapter, we determine whether the trajectories generated with and without drag model are
optimal and reliable. Furthermore, the performance of the solver is studied, focusing on the
influence of the solver parameters on computation time needed to reach convergence. In the
first section, the discrete formulation of the objective function is presented. In section 5-2,
the solver is validated with the reference solver GPOPS and analytical methods. In section
5-3, the sensitivity of the required computation time to the choice of solver parameters is
studied for a vertical, horizontal and diagonal test case. Results are compared for two types
of discretization, equidistant and cosine discretization.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

28 Solver Validation

5-1 Discrete Objective Function

The objective of this work is to improve the flight performance of a quadcopter using a model-
based optimal control solver. That is, the solver should compute a minimum-effort trajectory,
minimizing the overall energy usage. For this purpose, the GCOP framework allows assigning
a running cost on the square of the input variables. The final state should ideally be fixed.
Nevertheless, in GCOP it is not possible to put a constraint on the final state x(N), see Table
4-1. To ensure that the solver reaches the desired final state, a cost term is implemented,
which represents the deviation of the final state from the desired final state. This means that
the total cost is defined, based upon the continuous-time definition in Section 4-3-1, as the
sum of the final state error and the running cost on the square of the inputs. Therefore, this
sum is minimized.

The objective function in discrete time is defined as

J(x(i),ui..N−1, i) = [x(N)− xf]Qf [x(N)− xf] +
N−1
∑

k=i

u(k)TRu(k) , (5-1)

where x(i) ∈ R
6 is the state at t = i and ui..N−1 ∈ R

2 is the control policy from t = i to
t = N − 1. The desired final state is defined as xf ∈ R

6 with the corresponding weighting
matrix Qf ∈ R

6×6 and the control weighting matrix R ∈ R
2×2.

It should be noted that the cost weights Qf and R are tuned heuristically in an iterative
process, with the goal of minimizing the error on the final state and minimizing the control
effort. This tuning is necessary, as if e.g. the cost weights on the squared inputs are too large
with respect to the cost weights on the desired final state, the computed final position might
have an offset to the desired final state. Based upon the tuning used in this chapter, the
solver is later-on normalized for Chapter 6, as explained in Section 4-3-5.

The dynamic model defined in Section 4-3-2 requires definition of the drag constants CB
x and

CB
z . At this point of time the experimental data for the identification of the drag constants

was not yet available. Therefore, for the purpose of the validation it is sufficient to assume
that they are different in x and z direction as

CB
x = 1.0, CB

z = 2.0 . (5-2)

5-2 Benchmark Problems

To verify that the heuristically tuned solver is computing the minimum-effort solution, and
that the model is correctly implemented, the GCOP solver is validated in this chapter with
the reference solver GPOPS. This is done for the three benchmark problems of horizontal,
diagonal and vertical flight for the model with and without drag. The validation is successful,
if the three different solution methods (GCOP, GPOPS, analytical optimal solution) are able
to reach the same global optimum.

The three test-cases are horizontal flight (xf = 10m, zf = 0m), vertical flight (xf = 0m,
zf = 10m) and diagonal flight (xf = 0m, zf = 0m). The initial position is the origin (x0 = 0m,
z0 = 0m) for all cases. All other boundary conditions are set to zero, such that e.g. the initial

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

5-2 Benchmark Problems 29

and final rotational speeds θ̇0, θ̇f and rotation angles θ0, θf are zero. Each test-case is assured
to be feasible by ensuring the final time tf is greater than or equal to the final time from the
minimum-time solution obtained from GPOPS. For vertical flight, the solver is additionally
validated with the solution from optimal control theory, which is derived analytically.

5-2-1 Optimality of Solution

In order to validate the results from the GCOP and GPOPS solver, firstly a benchmark
problem for vertical flight in the z direction is analyzed on the unit-model. This problem is
especially useful, as the quadcopter dynamics can be simplified to a simple linear model, for
which the optimal solution can be derived analytically.

GCOP and GPOPS Solutions

First, the initial and final state in both the GCOP and GPOPS solver are set to

x0 =































x0
z0
θ0
ẋ0
ż0
θ̇0
ẍ0
z̈0
θ̈0































=





























0
0
0
0
0
0
0
0
0





























, xf =































xf
zf
θf
ẋf
żf
θ̇f
ẍf
z̈f
θ̈f































=





























0
−10
0
0
0
0
0
0
0





























. (5-3)

The weighting matrix Qf on the deviation from the desired final state and the weighting
matrix R on the control inputs are defined, whereas GPOPS only requires the latter,

Qf =

















Qf,x

Qf,ẋ

Qf,z

Qf,ż

Qf,θ

Q
f,θ̇

















= I, R =

[

Ru1

Ru2

]

= I . (5-4)

The problem for a final time of tf = 4 s is discretized in GCOP with N = 50 equidistant steps
and solved using k = 50 iterations. GPOPS does not require a time discretization. The GCOP
and GPOPS trajectories for a simulation time of tf = 4.0 s are shown in Figure 5-1. The
solution obtained with GCOP does not converge to the desired final position z = −10 m s−1

and velocity ż = 0 ms−1, whereas the GPOPS trajectory reaches the final state. The reason
for this is that the objective function in GCOP is not formulated as a pure minimum control-
effort problem, but is instead formulated as the sum of the control effort and the final state
error. Therefore, for a meaningful validation, this final state error in GCOP must be corrected
by retuning the final state weights.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

30 Solver Validation

Analytical Solution

The optimal solution for the vertical case is obtained analytically, since the planar model,
presented in Section 3-2, can be considered to be linear, if purely vertical motion is assumed,
i.e. θ, x and their derivatives are zero. Therefore, if only vertical motions are considered, the
planar system dynamics defined in Equation 4-16 simplifies to the linear system

z̈ = g − u , (5-5)

where u is the input, z the vertical position and g the standard gravity. The model is subject
to the boundary conditions

∫ tf

0

ż(t)dt = zf − z0 , ż0 = żf = z0 = 0 , zf = 10 m s−1 , (5-6)

where tf is the simulation end time. Given the performance index
∫ tf
0
u2(t)dt, the optimal

trajectory is a cubic polynomial for the position z(t), a quadratic polynomial for the velocity
ż(t) and a linear polynomial for the acceleration a = z̈(t) (Bruno Siciliano, 2010).

The analytical solution shown in Figure 5-1 coincides with the GPOPS solution, but shows
differences to the poorly tuned GCOP solution. The flatness-based polynomial initialization
trajectory is also shown in Figure 5-1. For details on the trajectory initialization method, see
Appendix 8-1.

−10

−8

−6

−4

−2

0

z
[m

]

Initialization

GPOPS

GCOP

Analytical Solution

−6

−5

−4

−3

−2

−1

0

1

2

3

ż
[m

]

0 1 2 3 4

t[s]

4

6

8

10

12

14

16

u
1

[m
s
−
2
]

Figure 5-1: Solution for vertical flight with unit weights on Qf and R. The analytical solution
and the GCOP initialization are compared to the solutions from GCOP and GPOPS solver. The
solution from GCOP doesn’t converge to desired final state.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

5-2 Benchmark Problems 31

Retuning of GCOP and GPOPS parameters

In order to help GCOP to reach the desired final state for the vertical flight problem, the
weights Qf and R are retuned, increasing Qf,z and Qf,ż . This results in the weights matrices
Qf and R,

Qf =

















Qf,x

Qf,ẋ

Qf,z

Qf,ż

Qf,θ

Q
f,θ̇

















=

















0.02
0.02
0.2
1

0.02
0.02

















, R =

[

Ru1

Ru2

]

= 0.02× I . (5-7)

After retuning the cost weights, the trajectories computed with GCOP, GPOPS and the
analytical solution coincide, and the three solutions reach the desired final states, see Fig.
5-2. This validates the GCOP solver and proofs its ability to reach the minimum control
effort solution.

−10

−8

−6

−4

−2

0

z
[m

]

Initialization

GPOPS

GCOP

Analytical Solution

−6

−5

−4

−3

−2

−1

0

1

ż
[m

]

0 1 2 3 4

t[s]

4

6

8

10

12

14

16

u
1

[m
s
−
2
]

Figure 5-2: Solution for vertical flight. The analytical solution and the GCOP initialization
are compared to solutions from GCOP and GPOPS solver. The weights on Qf and R were
determined heuristically by trial-and-error, such that the GCOP solution reaches the desired final
state. This validates the solvers.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

32 Solver Validation

5-2-2 Validation of Full Model

The GCOP and GPOPS trajectories are generated for the full planar model (as defined in
Section 4-3-3) with and without drag. The cost weights defined in equation 5-7 are used. The
differences in the solutions from both methods are analyzed qualitatively and quantitatively.

Vertical Flight

In Figure 5-3, the resulting trajectories are shown for the vertical flight with and without
drag. As expected, the horizontal position x, velocity ẋ, pitch θ and rotational speed θ̇ are
all close to zero, both with and without drag model.

Figure 5-3: Validation trajectories for the vertical flight problem without (ND) and with (D)
drag model for both solvers.

The vertical velocity ż reaches for the GPOPS-solver with and without drag and the GCOP
solver with drag a maximum value of |ż| = 2.5 m s−1. The GCOP solution without drag
contains a large oscillation with a maximum vertical speed of |ż| = 4.0 m s−1. It can be
concluded that including the drag model damps and stabilizes the trajectory. For the vertical
position z, the solution from GPOPS with and without drag and the curve from GCOP with
drag model are very similar. The result from GCOP without drag model shows an oscillation
in z.

In contrast to Section 5-2-1, it becomes apparent that the GCOP and GPOPS trajectories
differ. As the model changed, the weights matrices Qf and R would require to be retuned
in order to obtain the same trajectories. It can be concluded that if in GCOP the final-state
error weights Qf are too large with respect to the running input costs weights R the solutions
might differ from the global optimum minimum control effort solution.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

5-2 Benchmark Problems 33

State and Control Error

In order to analyze the state and control errors between both solvers quantitatively, an error
metric needs to be introduced. The Root Mean Square (RMS)

RMS =
√

∑

(κ̂− κ)2/N (5-8)

and the Normalized Root Mean Square (NRMS)

NRMS =
RMS

|κ̂max − κ̂min|
(5-9)

are introduced as a measure for the quality of fit, where κ̂ and κ represent the estimated
value and the reference value, respectively. They represent a discrete time series for one
trajectory-variable, of length N . κ̂ represents the GCOP , and κ the GPOPS time series.

The normalization is done with respect to the range, which is the absolute difference between
the maximum κ̂max and minimum κ̂min from the GCOP time series. This normalization is
done to make the results comparable, but it has the drawback that for values with small
range (e.g. values close to zero) the division turns into a division by zero and the NRMS
value explodes to a very large number. The results of the analysis are presented in table 5-1
for the three cases.

Table 5-1: NRMS in percentage for GCOP and GPOPS model, for the horizontal, vertical and
diagonal flight problem

Flight Problem Drag Model x z θ ẋ ż θ̇ u1 u2

Horizontal No 0.8 16 1.6 1.1 7.8 6.2 5.0 7.0
Yes 1.0 21 1.5 1.4 7.2 5.2 2.6 6

Vertical No - 2.3 - - 10 - 18 -
Yes - 2.1 - - 9.1 - 16 -

Diagonal No 21 37 3.0 4.3 16 6.5 16 12
Yes 1.1 1.2 2.2 3.4 12 5.5 16 5.9

For the horizontal flight, the NRMS values of the errors for the states are small in the range
between 0.8% and 21%. The largest values are found for the vertical position z, as this variable
has a small range and a relatively high RMS. For the vertical flight, the NRMS values of the
errors lie between 2.1% and 18%. As the fit is very good, the horizontal position x, velocity ẋ,
the pitch angle θ, the rotational velocity θ̇ and the torque u2 yield an ”inf” value, designated
in Table 5-1 as ”-”. The NRMS values of the errors for the diagonal flight case lie between
1.1% and 37%, where the highest value can be observed for z.

Cost Error

The difference in the total cost of the GCOP and the GPOPS solution can be used as a
measure for the similarity of the obtained solutions. The values for the three test cases are
collected in table 5-2, showing that the cost errors are very low for the cases with the drag
model. For the case without drag model, they are slightly higher, with the highest error of
approx. seven percent for the diagonal flight without the drag model.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

34 Solver Validation

Table 5-2: Error in Cost between GCOP and GPOPS for the horizontal, vertical and diagonal
flight problem, expressed as percentage.

Flight Problem Without drag model With drag model

Horizontal 6.7 % 0.6 %

Vertical 0.3 % 0.5 %

Diagonal 7.2 % 3.0 %

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

5-3 Parameter Analysis 35

5-3 Parameter Analysis

In a future implementation of the algorithm on the quadrotor hardware, the discretization
size N and the number of iterations k will need to be specified. To make a reasonable choice of
these solver parameters, it is fundamental to study the sensitivity of the required computation
time to the choice of solver parameters. Furthermore, it is important to understand the
behavior of the solver, e.g. which choice of parameters might prevent the solver reaching the
global optimum.

Initially, the idea is to fix the discretization N and stop the solver iterations k, once a certain
cost gradient is obtained. One disadvantage of this method is that the computation time is
difficult to predict, as the gradient and therefore the threshold gradient are sensitive to the
cost weights. The second disadvantage is that normalized cost contains steps and therefore its
gradient is not continuous, as highlighted in Fig. 5-4. These disadvantages make a practical
implementation of this method difficult and therefore this idea is discarded.

Figure 5-4: Example cost function showing step phenomena in normalized cost.

Instead it is decided to define the discretization size N and the number of iterations k upfront
and keep them constant. Nevertheless a fixed discretization size and number of iterations will
only yield optimal results for a specific problem formulation. These parameters might need
to be redefined, if the problem definition changes, e.g. simulation end time or the quadcopter
model. To fix these parameters, it is needed to know how they influence the computation
time and the trajectory cost; if any configuration leads to a local minimum it should be
avoided. Nevertheless, the choice is typically a tradeoff between quality of the solution and
computation time.

The solver performance was analyzed for the three test cases and for two discretization meth-
ods. The solver is run for discretizations from N = 5, ... , 400 and k = 1, ..., 700 iterations.
For the sake of brevity, in this section only the analysis of the solver performance for the ver-
tical case is presented, as its results are representative for the three test cases. The algorithm
is executed on a Unix-machine with an Intel-Xeon W3530, 2.8 GHz central processing unit
(CPU) and 5GB RAM memory.

In section 5-3-1, an initial guess of the optimal parameter is made based upon the normalized
cost and computation times for different N and k. The trajectory corresponding to the initial

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

36 Solver Validation

guess is then verified. In section 5-3-2, the sensitivity to k is studied, whereas in section 5-3-3
the sensitivity to discretization N is studied. Finally, in section 5-3-4 the performance of an
alternative discretization method is studied.

5-3-1 Normalized Cost Function

In Fig. 5-5-(a) the normalized costs and computation times are presented for all discretizations
N and number of iterations k which were tested. Fig. 5-5-(b) shows the normalized costs for
a smaller range of iterations k = 1, ..., 120. The discretizations N = 10 and N = 5 result in a
larger cost J/J0 than N = 20. This is caused by discrete timesteps ∆t which are too large for
an accurate integration of the states by the solver, making the trajectories inaccurate. For
N = 20, the minimum cost is obtained at k = 50, which corresponds to a computation time
of T = 0.41 s. For a larger discretization, the required computation time T becomes larger,
e.g. at N = 50, the cost converges at k = 100 to the minimum cost, which corresponds to
a computation time of T = 1.12 s, which is 2.7 times the computation time required for the
discretization N = 20.

0 100 200 300 400 500 600 700

Number of iterations k

10
0

0.950

0.960

0.970

0.980

0.990

N
o
rm

a
liz

e
d

C
o
s
t
J
/J

0

Normalized Cost

N = 5

N = 10

N = 20

N = 50

N = 100

N = 200

N = 400

10
−2

10
−1

10
0

10
1

10
2

C
o
m

p
u
ta

ti
o
n

ti
m

e
[s
]

Computation Time

N=5

N=10

N=20

N=50

N=100

N=200

N=400

0 50 100 150

Number of iterations k

10
0

0.950

0.960

0.970

0.980

0.990

N
o
rm

a
liz

e
d

C
o
s
t
J
/J

0

10
−2

10
−1

10
0

10
1

C
o
m

p
u
ta

ti
o
n

ti
m

e
[s
]

Figure 5-5: Normalized Cost J/J0 and computation time vs number of iterations k for vertical
Case with non-equal weightsQf andR and uniform dicretizations N , (a) up to k = 700 iterations,
(b) up to k = 170 iterations. The discretization N = 5 reaches a local minimum. The selected
configuration, discretization N = 20 using k = 50 iterations has a normalized cost of J/J0 =
0.9487.

In order to verify the solution, the trajectory for the chosen parameters N = 20 and k = 50
is plotted in Fig. 5-6, together with other combinations of N and k which result in the

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

5-3 Parameter Analysis 37

same computation time. The chosen parameters result in the lowest cost. If N is increased
(and k decreased), the solver has not yet reached the optimum solution and shows therefore
oscillations. If N is decreased (and k increased) the solution is still optimal, but has a
timestep ∆t < 0.2 s, which is to large to accurately integrate the dynamics, resulting in
inaccurate trajectories.

−10

−8

−6

−4

−2

0

z
[m

]

T = 0.41± 0.01 s

N = 5, k = 165, J/J0 = 0.9504

N = 20, k = 50, J/J0 = 0.9487

N = 100, k = 10, J/J0 = 0.9859

N = 500, k = 2, J/J0 = 0.9985

−6

−5

−4

−3

−2

−1

0

1

ż
[m

]

0 1 2 3 4

t[s]

4

6

8

10

12

14

16

u
1

[m
s
−
2
]

Figure 5-6: Solutions to vertical case with non-equal weights for a computation time T =
0.41 ± 0.01 s. Discretization N = 5 to N = 500, iterations k and normalized cost J/J0.
The discretization N = 20 has the lowest cost, and is therefore the best configuration for a
configuration of T = 0.41± 0.01 s.

The chosen parameters, a discretization of N = 20 and k = 50 number of iterations result in
the lowest cost J/J0 and yield a trajectory, which is close to the analytical solution.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

38 Solver Validation

5-3-2 Iterations

In Fig. 5-7, the sensitivity to k is studied.N = 20 is fixed and the number of iterations is
decreased in steps of 15 from k = 65 to k = 20.

−10

−8

−6

−4

−2

0

z
[m

]

N = 20

k = 65, J/J0 = 0.9487, T = 0.5181

k = 50, J/J0 = 0.9487, T = 0.4301

k = 35, J/J0 = 0.9491, T = 0.2821

k = 20, J/J0 = 0.9522, T = 0.1614

−5

−4

−3

−2

−1

0

1

ż
[m

]

0 1 2 3 4

t[s]

6

7

8

9

10

11

12

13

14

u
1

[m
s
−
2
]

Figure 5-7: Solutions for vertical case, for a discretization of N = 20 and numbers of iterations
k = 20 to k = 65. In terms of normalized cost J/J0, k = 50 and k = 65 are the best
configurations, whereby k = 50 has a lower computation time.

For iterations k < 50, the quality of the solution decreases, i.e. the solution is less optimal
and oscillations occur. The computation time T is proportional to k. If we increase the
iterations to k = 65, the quality and cost stays the same, while the computation time increases.
Therefore, k = 50 iterations are confirmed as the best solution for the discretization N = 20.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

5-3 Parameter Analysis 39

5-3-3 Discretization Size

The sensitivity to the discretization N is studied in Fig.5-8. The iterations is fixed as k = 50
and the discretization N is varied.

−10

−8

−6

−4

−2

0

z
[m

]

k = 50

N = 5, T = 0.11 s, J/J0 = 0.9504

N = 20, T = 0.41 s, J/J0 = 0.9487

N = 100, T = 2.18 s, J/J0 = 0.9592

N = 400, T = 8.13 s, J/J0 = 0.9821

−6

−5

−4

−3

−2

−1

0

1

ż
[m

]

0 1 2 3 4

t[s]

6

8

10

12

14

u
1

[m
s
−
2
]

Figure 5-8: Solutions to vertical case with non-equal weights on Qf and R for k = 50 itera-
tions. Discretization N = 5 to N = 400, computation time T and normalized cost J/J0. The
discretization N = 20 has the lowest cost.

For discretizations N > 20, e.g. N = 100, the states oscillate with respect to the analytical
solution shown in 5-2. These curves would require more iterations k to reach the analytical
solution. As previously mentioned, for discretization N < 20 with corresponding timestep
∆t > 0.2 s the normalized cost decreases slightly due to inaccurate state integration by the
solver. Therefore, solutions with N < 20 should be discarded.

5-3-4 Discretization Type

For minimum-control effort problems, fast dynamics are typically required close to t = t0 and
t = tf . In an effort to improve the performance of GCOP, the density of discretization points
is increased at the edges of the timeframe, while mantaining the same discretization size N ,
using the simple relation

t(i) =
1

2
tf
(

cos(π −
i

N
π) + 1

)

, i = [1, ..., N] . (5-10)

In Fig. 5-9, the normalized cost J/J0 and computation time T is shown for the cosine-
discretization, in analog to the results presented in Figure 5-5 for the equidistant discretiza-

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

40 Solver Validation

tion. Fig. 5-9-(a) shows the results for all combinations of solver parameters, whereas Fig.
5-9-(b) zooms into the range up to k = 170 iterations.

0 100 200 300 400 500 600 700

Number of iterations k

10
0

0.950

0.960

0.970

0.980

0.990

N
o
rm

a
liz

e
d

C
o
s
t
J
/J

0

Normalized Cost

N = 5

N = 10

N = 20

N = 50

N = 100

N = 200

N = 400

10
−2

10
−1

10
0

10
1

10
2

C
o
m

p
u
ta

ti
o
n

ti
m

e
[s
]

Computation Time

N=5

N=10

N=20

N=50

N=100

N=200

N=400

0 50 100 150

Number of iterations k

10
0

0.950

0.960

0.970

0.980

0.990

N
o
rm

a
liz

e
d

C
o
s
t
J
/J

0

10
−2

10
−1

10
0

10
1

C
o
m

p
u
ta

ti
o
n

ti
m

e
[s
]

Figure 5-9: Normalized Cost J/J0 and computation time T vs number of iterations k for vertical
case with cosine discretization and non-equal weights on Qf and R. The iterations are shown up
to (a) k = 700 and (b) k = 170. The discretization N = 5 reaches a local minimum.

Using this alternative discretization scheme, the normalized cost is larger for the discretization
N < 20 then for N = 20, similar than with the equidistant discretization. In order to verify
the solution, the trajectory for the chosen parameters N = 20 and k = 50 is plotted in Fig.
5-10, together with the solutions for other k.

Using the cosine-discretization leads to a solution, where the input u1 doesn’t coincide with
the analytical solution, it has a ”step” at the beginning and at the end, Fig. 5-10. The
reason for the change in slope at the edges is that the algorithm has difficulties finding the
optimal solution which is not only locally optimal. If we decrease the number of discretization
points at the same number of iterations k we have less points at the edges, which fixes this
problem, it approaches the analytical solution and the ”step”-phenomenon disappears. For
a higher number of discretization points N , the solution deteriorates. It can be generally
concluded that increasing the density of the discretization points locally does not improve
solver performance, as the number of iterations k required to reach the optimal solution always
depends on the smallest timestep in the complete time-vector. Furthermore, a minimal cost
is not necessarily an indicator for reaching the optimal solution.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

5-3 Parameter Analysis 41

−10

−8

−6

−4

−2

0

z
[m

]

k = 50

N = 5, T = 0.11 s, J/J0 = 0.9515

N = 20, T = 0.40 s, J/J0 = 0.9494

N = 100, T = 1.98 s, J/J0 = 0.9601

N = 400, T = 8.04 s, J/J0 = 0.9818

−6

−5

−4

−3

−2

−1

0

1

ż
[m

]

0 1 2 3 4

t[s]

5

6

7

8

9

10

11

12

13

14

u
1

[m
s
−
2
]

Figure 5-10: Solutions to vertical case with cosine discretization and non-equal weights on Qf

and R using k = 50 iterations. Discretization N = 5 to N = 400, computation time T and
normalized cost J/J0. The discretization N = 20 is here the best discretization in terms of
normalized cost, nevertheless it hasn’t converged to the optimal solution.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

42 Solver Validation

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Chapter 6

Results

In chapter 5 it was shown that the implementation of DDP in the GCOP library provides
reliable, optimal trajectories for a planar quadcopter model with and without aerodynamic
drag model. The next step is to study in simulation how the flight performance of a quadrotor
can be improved in a feedforward manner by exploiting a DDP trajectory generated with
an aerodynamics model. For this purpose, 4 different controller schemes are proposed and
studied.

In this chapter, firstly the GCOP solver setup is defined. Then the simulation experiment is
presented in section 6-1-2. In section 6-1-3, the experimentally obtained thrust and drag mod-
els are introduced. In Section 6-2 a controller is developed, which exploits the aerodynamic
model and wind information while being robust to modelling errors.

The simulation experiments were performed for a horizontal, vertical and diagonal test case.
In order to account for real world model error and noise, a Monte Carlo analysis was done,
introducing random perturbations on the quadcopter mass and moment of inertia constant.

6-1 Setup

For the following analysis, the crazyflie nano quadcopter platform is taken as the quadrotor
model, see Figure 6-1. It is a miniature quadrotor with a total mass of 29.6g (incl. batteries,
which account for 7.3g), and a motor-to-motor distance of 9cm. This quadcopter is powered
by 4 brushless engines. Three test cases are analyzed, the horizontal (xf = 4m, zf = 0m),
vertical (xf = 0m, zf = −4m) and diagonal test case (xf = 4m, zf = −4m).

Section 6-1-1 explains the GCOP solver setup, section 6-1-2 the Simulink model and the
Monte-Carlo Simulation procedure. This is followed by the parameter identification of the
aerodynamic thrust coefficient and drag constants in section 6-1-3. In section 6-1-4, the
equations to estimate the trajectory energy and power are introduced.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

44 Results

Figure 6-1: Crazyflie nano quadcopter used in this work. The gray reflective pellets are used for
infrared tracking with the Vicon-system.

6-1-1 Solver Setup

The trajectories generated in GCOP are the reference trajectories for the controller. They are
generated using the cost-function presented in section 5-1. The normalization of the states and
control inputs has been implemented in the GCOP solver (as explained in section 4-3-5), mak-
ing it possible to define only once the cost weights for a specific problem and not having to re-
define the cost weights when the problem changes. Therefore, after the normalization is imple-
mented, heuristic corrections are not necessary anymore in order to obtain convergence to the
desired final state, whenever the problem is redefined. The three different test cases use there-
fore the same heuristically found control cost weight matrix R = diag(50.0) and cost weight
matrix on the final state deviation Qf = diag(Qf,x Qf,ẋ Qf,ẍ Qf,z Qf,ż Qf,z̈ Qf,θ Qf,θ̇

Q
f,θ̈
), see

Table 6-1.

Table 6-1: GCOP cost weights used for the results in chapter 6

Qf,x Qf,ẋ Qf,ẍ Qf,z Qf,ż Qf,z̈ Qf,θ Q
f,θ̇

Q
f,θ̈

1200 500 10 1800 900 10 0 0.6 0.1

Analysis of the GCOP results showed, that if the flight time is not significantly larger then the
minimum time which is feasible for reaching the desired final state (minimum time obtained
by solving minimum-time problem with GPOPS), then setting the cost weights on the second
derivatives Qf,ẍ, Qf,z̈, Qf,θ̈

to zero will result in non-stationary final states. The corresponding
trajectory is shown in Fig. 6-2-(a). In other words, if a stationary final state cannot be
achieved in the defined tf and Qf,ẍ, Qf,z̈, Qf,θ̈

are zero, the solver will end up in a non-
stationary final state with a nonzero pitch angle θ.

This problem is solved by setting a nonzero cost weight on the second-order derivatives. On
Figure 6-2-(b) it can be seen that the solution then improves. Both the pitch angle θ and

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

6-1 Setup 45

acceleration in x, variables related through ẍ = T
m
sin(−θ) + fd,x, are then at the final state

close to zero.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

46 Results

(a) GCOP trajectories for zero cost weights on the final state error of the second derivatives.

(b) GCOP trajectories for nonzero cost weights on the final state error of the second derivatives.

Figure 6-2: Stationary final state is obtained by setting weights on final state deviation error for
second derivatives to nonzero.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

6-1 Setup 47

6-1-2 Simulink Model

The structure of the continuous-time Simulink Model is shown in Figure 6-3.

Figure 6-3: Schematic of Simulation Experiment

The GCOP reference trajectory xdes with all its states is read by the controller, as well as
the state feedback x. Based on this information, the controller computes the control thrust
T and torque Γy. Torques Γx and Γz are collocated to zero as they don’t act out-of-plane. As
quadrotors have a redundant set of actuators and are underactuated, the control inputs (i.e.
rotational speeds ω2

i for four rotors) are then allocated by solving the following expression
through inversion:









T
Γx

Γy

Γz









=









Ct Ct Ct Ct

0 CtL 0 −CtL
−CtL 0 CtL 0
−Cq Cq −Cq Cq

















ω2
1

ω2
2

ω2
3

ω2
4









(6-1)

The thrust coefficient Ct is identified in section 6-1-3, L = 0.045m is the moment arm of
the rotors with respect to the center of gravity, and Γx, Γy, Γz are the torques around the
x, y and z-axis, respectively. There is no necessity to know the torque coefficient Cq, as we
are allocating zero torque around the z axis, and it is sufficient to define it as any nonzero
constant.

The planar quadcopter dynamics model from section 3-2 is implemented. The aerodynamic
parameters were obtained experimentally in section 6-1-3. Also, the motor rotational speed
limit is modelled as a saturation, which occurs at a rotational speed of ω̄ = 2513 rad s−1. The
gains used in the controller are shown in Table 6-2.

Table 6-2: Gains used in controller

Kd,x Kp,x Kd,z Kp,z Kd,Γ Kp,Γ

4 4 6 9 20 100

To make the results more realistic, errors in the model are considered through a Monte-Carlo
analysis by randomly perturbing the vehicle mass m and inertia Iy in the simulation of the

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

48 Results

quadcopter dynamics in a range of ± 10%. The resulting trajectories give an indication of
the robustness of the controller to a modeling error. They also illustrate qualitatively the
sensibility to external disturbances.

6-1-3 Parameter Identification

In this analysis, the dynamic model will contain aerodynamics, i.e. a model for the rotor
thrust force and for the drag forces is required. The thrust model acts in the body frame, in
the upwards vertical direction , i.e. −zB, and is assumed to be proportional to the squared
rotational speed of each rotor. The drag model acts as well in the body frame in all three
axis. Both models are created from experimental data. The thrust model is fitted to static
thrust data, obtained from the manufacturer. The drag model is estimated from flight data
recorded in the flight lab at DLR.

Thrust Model

In an experiment done by the developers of the crazyflie, the thrust force was measured over
the entire range of rpm’s (Bitcraze, 2016), see Figure 6-4. The experiment shows saturation
of the brushed engines at a rotational speed of ω = 400 s−1 = 2513 rad s−1.

0 20000 40000 60000 80000 100000 120000 140000 160000

Rotation speed squared ω̄2 [s−2]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
ro

p
e
lle

r
T

h
ru

s
t
[N
]

Experimental Data

Model, Ct = 17.73 10−2

Figure 6-4: Estimation of Thrust coefficient Ct, using least squares minimization on a linear
model. Mean square error of MSE = 3.4e− 6,thrust coefficient Ct = 17.73 10−2.

The thrust T of a rotor is assumed to be proportional to square of the rotational speed ω2

T ∝ ω2 , (6-2)

based upon theory, see Equation 3-17. By least-square fitting the data T (ω2) to a linear
model we define the value of Ct to be Ct = 17.73 10−2, with a model mean square error of
MSE = 3.4e− 6.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

6-1 Setup 49

Drag Model

The aerodynamic drag forces in the body frame fd,x, fd,y, fd,z are assumed to be proportional
to the true airspeeds, vB,x, vB,y, vB,z, respectively. This can be modeled as

fd =





fd,x
fd,y
fd,z



 = −





CB
x vB,x

CB
y vB,y

CB
z vB,z



 , (6-3)

where CB
x , CB

y and CB
z are the drag constants, which need to be estimated through a flight

experiment in the flight laboratory at DLR.

The flight laboratory is equipped with a Vicon tracking system, from which the position and
orientation of the crazyflie are logged. The data measured onboard, such as accelerations,
orientation and the PWM (Pulse Width Modulated Signal) duty cycle were logged as well.
From this data, the aerodynamic force in the body frame fd was then computed and used to
identify the drag constants.

Figure 6-5: Drag forces fd,x, fd,y, fd,z measured experimentally for crazyflie quadrotor at
different velocities vx, vy, vz, respectively (blue dots). A linear model is fitted using iterative
least squares (red) and the drag constants CB

x , CB
y and CB

z are identified.

The resulting drag constants are CB
x = CB

y = 0.0195Nms−1 and CB
z = −0.0135Nms−1. The

resulting model is shown in Figure 6-5 together with the measurement points. As expected, the
constants CB

x and CB
y are equal due to symmetry. The vertical drag constant CB

z is negative,
which is an interesting result. To validate this result, the same analysis was repeated with

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

50 Results

Figure 6-6: Accelerations measured experimentally at different velocities vx, vy, vz, respectively
(blue dots) for bebop quadrotor. A linear model is fitted using iterative least squares (green) and
the drag constants CB

x , CB
y and CB

z are identified.

experimental data obtained for the Bebop quadcopter at TU Delft, see Fig. 6-6. Analysis of
the Bebop data shows that the vertical drag constant for this quadrotor is also negative, as
the slope of the linear model in z direction is +0.16 s−1. Therefore it can be concluded that
in the z-dir of the bodyframe, the aerodynamic drag force on the frame is less dominant than
the efficiency increase due to the inflow, which was described in section 3-1-3.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

6-1 Setup 51

6-1-4 Performance Metrics

For comparison of the performance between different trajectories, corresponding metrics need
to be introduced. The cost metric introduced in section 5-1 was used as the cost function for
DDP, but this cost is not useful in order to make a quantitative conclusion about the energy
efficiency of each trajectory, as its units are non-physical and it contains a term on the final
state error.

As our solver is optimizing trajectories with respect to the control effort, we need to quantify
the energy consumption for different runs. Therefore two physical performance metrics are
introduced, the total energy and the average power.

Summing the power equation from equation 3-20 over the 4 rotors and integrating it with
respect to time gives the energy

E =

∫ t=tf

t=0

4
∑

i=1

ρD5Cpω
3
i dt , (6-4)

where ρ = 1.205 kgm−3 is the air density, D = 0.045 m the rotor diameter and Cp = 2πCq

is the power coefficient. The torque coefficient Cq of the rotors is not available, but it can be
roughly estimated by Cq = 0.1 Ct.

The average power is then the total energy divided by the simulation time tf

P =
1

tf
E =

1

tf

∫ t=tf

t=0

4
∑

i=1

ρD5Cpω
3
i dt . (6-5)

These measures are only an ideal estimation of the consumed energy and average power. They
do not take into account any loss due to mechanical and electrical efficiency factors.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

52 Results

6-2 Simulation Results

The solver has been validated in the previous chapter. The next step is to investigate how
the reference trajectories for the horizontal, vertical and diagonal test cases, generated using
the DDP solver, perform when used in a Simulation experiment in Simulink. The goal is to
develop a controller, which can exploit in a feedforward manner the aerodynamic model of
the quadrotor and information about the windspeed.

Initially it was not known, which controller would perform best in term of tracking perfor-
mance, energy consumption and robustness with respect to modelling error. Therefore I came
up with 4 different controllers in an iterative process, going from simple to more complex con-
troller structure. Each flight case was tested with each controller, reference DDP trajectories
with and without drag model and a Monte Carlo statistical analysis was performed for all
cases by varying the mass and inertia values using a pseudo random number generator, as
described in section 6-1-2. The controller tested are

• Openloop Controller,

• Attitude Controller,

• Trajectory Tracking Controller and

• Trajectory Tracking Controller with drag force feedforward.

The Trajectory Tracking Controller with drag force feedforward is then selected as the best-
performing controller. In section 6-2-7 it is tested for 5 different simulation times, for the
three flight cases and the 2 reference DDP trajectories and a Monte Carlos statistical analysis
is performed for all these cases. The tested simulation times are tf = [1.5 s, 2 s, 3 s, 4 s, 5 s].
In section 6-2-8, further simulations are run for backwind condition.

6-2-1 Open Loop Controller

As a first experiment, the reference trajectories are tested with an openloop controller, where
the rotational speeds of the engines are directly fed-through as inputs to the dynamics model
in the simulation.

Using the reference trajectory with drag model, the simulation trajectories (solid red, Figure
6-7) match the reference trajectories (solid black) for the three test cases in the nominal case,
i.e. when no model error in m or Iy is introduced. This result is a consistency check of the
implementation of the model in GCOP and in the simulation. More importantly it shows,
that GCOP correctly feedforwards the drag model and could be used as a Model Predictive
Controller (MPC). The trajectories do not match for the reference trajectory without drag
model, as there is a model mismatch and no feedback terms are in place to correct for the
drag forces.

Figure 6-13 shows the energy consumed by simulation trajectories, for all test cases and
controllers, for a horizontal headwind of vx = −3m s−1.

When the Monte-Carlo Simulation is run for any reference trajectory, the error in m and
Iy introduced by the Monte Carlo simulation causes errors in the states, but it should be

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

6-2 Simulation Results 53

Figure 6-7: Reference trajectories (black) with and without drag, together with resulting Monte-
Carlo simulation trajectories (shaded) for the horizontal, diagonal and vertical test case and
horizontal wind-speed of vx = −3m s−1. The open-loop controller feeds-through the rotational
speeds to the dynamic model of the simulation. For the reference trajectories with drag the
nominal simulation trajectories with no model error in m and Iy (red) match the reference
trajectories.

noted that the consumed energy is not influenced by these errors, as there is no feedback loop
and the rotational speeds are feedforwarded in a openloop manner. Therefore the consumed
energies for the openloop controller, shown in Figure 6-13 are constant, i.e. have zero standard
deviation.

The consumed energy is lower for the reference trajectories with drag model, which shows that
GCOP is able to generate a more energy-efficient trajectory by including the drag model. This
average decrease in control energy is significant with 9%, see Figure 6-13, where the energy
costs are shown for all 4 controllers and the three test cases. It can be expected, that using
DDP as a MPC with drag model would cause a similar decrease in control energy. The energy
costs for the nominal trajectory with drag are

Ediag = 10.13 J, Ever = 10.12 J, Ehor = 10.56 J . (6-6)

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

54 Results

6-2-2 Attitude Controller

Feedback terms are necessary to stabilize the quadrotor, correcting disturbances and mod-
elling errors. In these simulation experiments, an attitude controller was implemented, which
feedforwards the linear and angular accelerations ẍdes, z̈des, θ̈des from the reference trajectory
and controls in close-loop the angular position θdes and velocity θ̇des.

From the linear accelerations ẍdes, z̈des, the horizontal and vertical control force fx and fz are
computed,

fx = mẍdes , fz = m(z̈des − 9.81) , (6-7)

which are then used to compute the thrust force T

T =

√

fx
2 + fz

2 . (6-8)

The torque is computed from the angular accelerations feedforward and the angular velocity
and angular position feedback

Γ = Iy(θ̈des +Kd,Γ(θ̇des − θ̇) +Kp,Γ(θdes − θ)) . (6-9)

The position trajectories in the simulation have a large position error, because the control
forces fx and fz do not take into account the drag forces. In the nominal simulation (Figure
6-8, red), the pitch angle from GCOP is well tracked, as the torque does not depend on
accelerations ẍ and z̈. The nominal solution from the reference trajectory without drag is
very similar for the openloop and attitude controller (see Figure 6-7), as both feedforward
the same trajectory.

Now the energy consumption in Figure 6-13 (and the GCOP cost in Figure ??) for the
attitude controller is compared with energy consumption for the openloop controller. It is
always lower for the openloop solution when considering the reference trajectory with drag,
as the control forces of the attitude controller do not take advantage of the drag model with
the negative vertical drag constant CB

y < 0 and therefore overshoot the desired final states.
For the reference trajectory without drag, the openloop and attitude controller solutions are
very similar, as neither of them take into account the drag forces. The only difference is
that there is a nonzero standard deviation in the energy and GCOP cost for the attitude
controller. This happens because in order to track θdes and θ̇des with an random simulation
error in Iy, the feedback term become active and control torques are generated, which differ
from the DDP solution.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

6-2 Simulation Results 55

Figure 6-8: Reference trajectories (black) with and without drag, together with resulting Monte-
Carlo simulation trajectories (shaded) for the horizontal, diagonal and vertical test case and
horizontal windspeed of vx = −3m s−1. The attitude controller feedforwards the linear and
angular accelerations. The simulation trajectories have an offset in position due to the drag force
generated by the horizontal headwind.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

56 Results

6-2-3 Trajectory Tracking Controller

In this experiment, the quadcopter is controlled by a trajectory tracking controller, where
the positions xdes, zdes, the velocities ẋdes, żdes, the pitch angle θff from the computed thrust
forces and the pitch rate θ̇des from the GCOP trajectory are tracked in close-loop. The linear
accelerations ẍdes, z̈des and the angular acceleration θ̈des are feedforward terms and are there
to improve the tracking. The control forces fx and fz are then computed with

fx = m(ẍdes +Kd,x(ẋdes − ẋ) +Kp,x(xdes − x)) , (6-10)

fz = m(z̈des − 9.81 +Kd,z(żdes − ż) +Kp,z(zdes − z)) , (6-11)

where the thrust force is their euclidian norm

T =

√

fx
2 + fz

2 . (6-12)

The desired pitch angle is computed from the control forces

θff = −atan2(fx,−fz) , (6-13)

and is tracked in the attitude controller

Γ = Iy(θ̈des +Kd,Γ(θ̇des − θ̇) +Kp,Γ(θff − θ)) . (6-14)

As the positions and velocities from the reference trajectory are now tracked in close-loop, the
position tracking is better than with the attitude controller and the errors in final positions
are now smaller, see Figure 6-9. The reason that there is still an error in the final positions
for all nominal cases (Figure 6-9, red), is that the torque is tracking θff , which is computed
from the control forces fx, fz. These control forces do not take into account the drag force.
At the same time, the spread of the energies in Figure 6-13 is larger compared to the attitude
controller. This is expected, as this controller tracks positions and velocities in closed-loop,
while different model errors in m and Iy are present.

The energies consumed with the open-loop controller are for the horizontal, diagonal and
vertical case with drag inside the IQR of the trajectory tracking controller, which is an
indication that the tracking is good, see Fig. 6-13. The median energy consumption with the
trajectory tracking controller with drag is lower by an average of 9.3% then for the attitude
controller. This is due to better tracking of positions and velocities. The final state error is
considerably lower for the trajectory tracker, when compared to the attitude controller, see
Figure 6-14.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

6-2 Simulation Results 57

Figure 6-9: Reference trajectories (black) with and without drag, together with Monte-Carlo
simulation trajectories (shaded) for the horizontal, diagonal and vertical test case and horizontal
windspeed of vx = −3m s−1. The trajectory tracking controller tracks the GCOP trajectories.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

58 Results

6-2-4 Trajectory Tracking with Aerodynamic Force Feed-forward

In order to improve the tracking performance of the trajectory tracking controller, it is ex-
tended by a feedforward term for the drag forces fd,x and fd,z. They are computed from the
state feedback, using the drag model and constants presented in section 6-1-3. The control
forces are defined as

fx = m(ẍdes +Kd,x(ẋdes − ẋ) +Kp,x(xdes − x))− fd,x , (6-15)

fz = m(z̈des − 9.81 +Kd,z(żdes − ż) +Kp,z(zdes − z))− fd,z . (6-16)

From the control forces fx and fz, the control pitch angle θff and the thrust T are computed

θff = −atan2(fx,−fz) , (6-17)

T =

√

fx
2 + fz

2 . (6-18)

As with the trajectory tracking controller, the torque is computed with the rotational accel-
eration θ̈des as a feedforward term and the pitch rate θ̇des and angle θff as feedback terms

Γ = Iy(θ̈des +Kd,Γ(θ̇des − θ̇) +Kp,Γ(θff − θ)) . (6-19)

The complete controller schematic is shown in Figure 6-11.

The corresponding simulation trajectories in Figure 6-10 show the best position tracking
performance so far, when compared to the attitude controller and the trajectory tracking
controller without drag force feedforward. For the nominal case with no model error, the
simulation trajectory with drag matches the reference trajectory. Also, in the Monte Carlo
simulations (shaded) good position tracking is achieved. In figure 6-13, the energy consump-
tion for the openloop controller with drag lies within the IQR of the energy consumption for
this controller with drag. The median simulation energies for the reference trajectories with
drag are

Ediag = 10.23J, Ever = 9.74J, Ehor = 10.61J . (6-20)

Comparing the energy consumption of this controller for a reference trajectory both with and
without drag model to the open loop consumption with drag model (equation 6-6) there is only
a small difference of < 3.8% for the diagonal, vertical and horizontal simulation experiments.
This proves that using this controller an energy optimal trajectory can be achieved. But the
energy consumption does not improve consistently or significantly by using a drag model in the
trajectory generation. In fact, in Fig. 6-12 it can be appreciated that for the diagonal flight
case, the resulting simulation trajectory (blue shaded) is very similar when the trajectory was
generated with or without a drag model.

It can be concluded, that when the drag force is included as a feedforward term in the con-
troller, generating the reference trajectory with a drag model does not result in an advantage
in terms of energy consumption or final state error. Neither he final state error nor the en-
ergy consumption does improve. Furthermore, it has to be considered that including the drag
model in the trajectory optimization results in an approximately 20% longer computation
time.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

6-2 Simulation Results 59

Figure 6-10: Reference trajectories (black) with and without drag, together with Monte-Carlo
simulation trajectories (shaded) for the horizontal, diagonal and vertical test case and horizontal
windspeed of vx = −3m s−1. The trajectory tracking controller with aerodynamic feedforward
achieves the best tracking from the controllers tested.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

60 Results

Figure 6-11: Schematic of Trajectory Tracking Controller with Drag Force Feedforward

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

6-2 Simulation Results 61

Figure 6-12: Reference trajectories (black) with and without drag, together with Monte-Carlo
simulation trajectories (shaded) for the diagonal test case and horizontal windspeed of vx =
−3m s−1.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

62 Results

6-2-5 Energy Consumption

The energy consumptions for the three flight cases and the different controllers is computed
with equation 6-4 and shown in Figure 6-13.

Figure 6-13: Energy consumed by simulation trajectories, for all test cases and horizontal wind-
speed of vx = −3m s−1. Openloop, Attitude, Trajectory Tracking, Trajectory Tracking with
aerodynamic force feedforward, for reference trajectories with and without drag.

Figure 6-13 shows the openloop trajectories with drag model, which are the ideal solution in
terms of energy consumption. The reason why their standard deviation or IQR is zero is that
for the openloop controller the model error only influences the resulting simulation trajectory,
but not the feedforwarded control input u = [ω1

2, ω2
2, ω3

2, ω4
2]T .

The attitude controller achieves a similar median energy for the reference trajectories without
drag, as both controller feedforward the same trajectory without drag model. For the reference
trajectories with drag their median energy is higher. This is due to the fact that the attitude
controller doesn’t take advantage of the drag model, which has a negative drag constant
CB
z < 0. The IQR for this controller is zero, as the attitude θ is not influenced by the drag

forces.

The median energies of the trajectory tracking controller with drag force feedforward are
centered around the ideal openloop solution. The reference trajectories without drag model
are tracked similarly well.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

6-2 Simulation Results 63

6-2-6 Final State Error

In order to quantitatively judge the final state error, a new measure is introduced,

Jf = (xdes−x(tf))
2+(ẋdes−ẋ(tf))

2+(ẍdes−ẍ(tf))
2+(zdes−z(tf))

2+(żdes−ż(tf))
2+(z̈des−z̈(tf))

2

(6-21)
which equally weights the error in the final state for the positions, velocities and accelerations,
the result is plotted in 6-14.

From Figure 6-14 we can conclude that the trajectory tracking controller with drag force
feedforward achieves the best trajectory tracking, when compared to the other controllers.
The median cost on the final state error is lower than for the trajectory tracker without drag
force feedforward, by an average of 98%.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

64 Results

(a)

(b)

Figure 6-14: Unit Cost on the final state for the 4 tested controller, as a measure of tracking
quality. It is computed for all test cases and horizontal windspeed of vx = −3m s−1. Openloop,
Attitude, Trajectory Tracking, Trajectory Tracking with aerodynamic force feedforward, for refer-
ence trajectories with and without drag. (a) shows entire range, (b) zooms into the cost for the
results from the trajectory trackers.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

6-2 Simulation Results 65

6-2-7 Variations in simulation time

To study the saturation’s effect on the optimality and on the energy cost of the simulated
trajectories, the simulations for the same diagonal, horizontal and vertical flight problem
were run using the trajectory tracking controller with drag force feedforward for different
simulation end times tf = [2 s, 3 s, 4 s, 5 s]. The average power is defined as the total energy
consumption normalized over the simulation time tf .

Figure 6-15: Average Power consumption for all test cases for trajectory tracking controller with
aerodynamic force feedforward. Horizontal windspeed of vx = −3 m s−1.

For a simulation time of 2 s the average power increases slightly, due to engine saturation. No
consistent or significant improvement of the average power is visible when the drag model is
used for the trajectory generation in the DDP-solver.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

66 Results

6-2-8 Backwind Results

Until now, using the trajectory tracking controller with force feedforward, the reference tra-
jectories with and without drag model do not show a clear difference in terms of energy
consumption for trajectories with a headwind of vx = −3m s−1. In order to be complete, the
analysis is continued for a backwind of vx = +3ms−1 and a simulation time of tf = 3 s, using
the DDP reference trajectories with and without drag.

Figure 6-16: Energy required for simulation trajectories with a backwind of vx = −3 m s−1

using trajectory tracking controller with aerodynamic force feedforward. The yellow bars are the
energy required for the nominal case without model error. The boxplots illustrate the results for
the Monte Carlo Simulations with a simulation time of tf = 3 s

Figure 6-16 shows in the diagonal case a lower median energy for the reference trajectory
with drag, for both the vertical and diagonal cases the median energies are similar with and
without drag. The nominal case (yellow bar) is the simulation result, when no modelling
error is introduced in the simulation model, i.e. the dynamic models used in DDP and in the
simulation are the same. Similar as for the nominal simulation results with headwind, using
the trajectory with or without drag doesn’t make a difference.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Chapter 7

Conclusion and Recommendations

7-1 Conclusion

In the context of trajectory generation for quadrotors, state of the art schemes assume a
simple dynamic model, which neglect aerodynamic effects. The work presented in this thesis
firstly shows that it is feasible to generate trajectories with a DDP optimal control solver
which uses an aerodynamic model. Secondly, it shows that when a tracking controller is used
which feedforwards the aerodynamic forces, a ∼ 10% improvement in the energy consumption
can be achieved. No performance improvement is achieved by using a reference trajectory
which was generated using an aerodynamic model.

Focusing on the trajectory optimization, it can be concluded

• By enhancing the simple dynamic model with a linear drag force model which depends
on the true airspeed, the energy consumption for a specific trajectory can be reduced
significantly. For the crazyflie model it is about 9% improvement for a 3m/s headwind
situation. This benefit is directly correlated to the negative drag constant in vertical
direction and emphasizes the importance of using a high-quality aerodynamic model,
which closely resembles the real system.

• Differential Dynamic Programming yields optimal trajectories for minimum-control ef-
fort, terminal control problems and reliably takes into account motor saturation. It is
successfully validated with a reference solver. Nevertheless the result is sensitive to the
cost weights on the controls and on the final state errors. Therefore initially the cost
weights have to be tuned heuristically.

• Through normalization of the states and control inputs, the heuristic tuning of the
cost weights can be avoided, which is a significant time-saving factor. Nevertheless,
normalization also increases the computation time, as the transformation from phys-
ical states/control to normalized states/control and back must be repeated for every
discretization step in the backward pass of the DDP algorithm.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

68 Conclusion and Recommendations

• It is sufficient to initialize the DDP solver with a simple polynomial trajectory, which
is derived from the differentially flat quadrotor model. This method is reliable and is
able to take into account boundary conditions.

• Including an aerodynamic model in the DDP-solver results in an considerable increase
in computation time of approximately ∼ 15%.

Focusing on the controller, it is concluded

• By feedforwarding wind information and trajectory accelerations, and controlling posi-
tions and velocities in close loop, the aerodynamic model can be successfully exploited.

• A robust controller performance was achieved for the proposed trajectory tracker with
drag force feedforward. In a Monte-Carlo Simulation with model errors in mass and
moment of inertia up to +-10%, a good tracking of the final state with a position error
of ±10cm was achieved.

• The Monte-Carlo Simulation shows that the energy consumption and final state error is
independent of whether the trajectory was generated with or without an aerodynamic
model. In other words, when the proposed trajectory tracking controller with drag force
feedforward is used, no performance improvement is achieved by tracking a reference
trajectory which was generated using an aerodynamic model.

7-2 Recommendations

• If a linear drag model is used, it is recommended to include the aerodynamic model in
the controller and not in the DDP-solver, for optimal performance in terms of energy
consumption and computational efficiency.

• For future work, it is recommended to perform the experiment on real hardware in a con-
stant airfield (e.g. OJF windtunnel), in combination with a high-quality aerodynamic
model, in order to validate the proposed controller structure experimentally.

• DDP enables the implementation of an aerodynamic model which depends of position
(and time). Therefore it would be interesting to study the performance when flying
in an environment with varying windspeed, e.g. perpendicularly through the airstream
generated by a fan. It could be that for this experiment, generating the reference
trajectory with drag model leads to better results than without.

• The benefit of feedforwarding the aerodynamic forces in the controller in a real ex-
periment is dependent on the use of a high-quality aerodynamic model. Currently,
promising work is done at TU Delft in the development of a Bebop quadrotor model,
which is based upon polynomial terms. Computing the minimum-energy trajectory us-
ing such a model with better fit will give interesting insights into whether the model
structure used in this thesis is sufficient to exploit aerodynamics effects or whether it is
too simple.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

7-2 Recommendations 69

• Running the trajectory optimization algorithm online in combination with a method
to locally estimate (see (Tomic & Haddadin, 2015)), predict or even map windspeeds,
might lead to interesting insights.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

70 Conclusion and Recommendations

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Chapter 8

APPENDIX

8-1 Trajectory Initialization

In order to generate an initial solution we want to take advantage of the fact that the planar
model without drag model is differentially flat (Sira-Ramirez & Agrawal, 2004).

Based on the planar model, a trajectory requires eight boundary conditions along each axis:
the initial and final jerks (

...
x0,

...
x f), the accelerations (ẍ0, ẍf) and velocities (ẋ0, ẋf), the initial

and final positions (x0, xf).

In general, to comply with two boundary conditions on the 3th derivative of a polynomial,
the degree of this polynomial has to be higher or equal to 5. Nevertheless in our case 4 of the
8 boundary conditions might cancel a constant out, as they are equal to zero. This means we
need in total 8 constants to solve the polynomial, therefore we need a 7th order polynomial.
The general solution, for an arbitrary axis, has the form

x(t) =
C1

5040
t7 +

C2

720
t6 +

C3

120
t5 +

C4

24
t4 +

C5

6
t3 +

C6

2
t2 + C7t+ C8 , (8-1)

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

72 APPENDIX

with the constants

C1 = 840

(...
xf −

...
x0

t4f
−

12(ẍf − ẍ0)

t5f
+

60(ẋ0 + ẋf)

t6f
+−

120(xf − x0)

t7f

)

, (8-2)

C2 = 360

(

(22− 70
3
)
...
x0

t3f
−

...
xf
t3f

−
15ẍ0
t4f

+
13ẍf
t4f

−
72ẋ0
t5f

−
68ẋf
t5f

+
140(xf − x0)

t6f
, (8-3)

C3 = −60

(

−

...
xf
t2f

−
20ẍ0
t3f

+
14ẍf
t3f

−
2
...
x0
t2f

−
90ẋ0
t4f

−
78ẋf
t4f

+
168(xf − x0)

t5f

)

, (8-4)

C4 = 4

(

− 4

...
x0
tf

−

...
xf
tf

+
−30ẍ0
t2f

+
15

...
xf
t2f

−
35

...
x0
tf

−
120ẋ0
t3f

−
90ẋf
t3f

+
210(ẋf − ẋ0)

t4f

)

, (8-5)

C5 =
...
x0 , (8-6)

C6 = ẍ0 , (8-7)

C7 = ẋ0 , (8-8)

C8 = x0 . (8-9)

8-2 Validation Trajectories

Horizontal Flight

The results for the horizontal flight (see Fig. 8-1) show that in the acceleration phase, the
pitch angle θ is higher with the drag model, as there is a drag force to overcome and both
drag constants are positive. In the deceleration phase the pitch angle θ is lower for the drag
model, as the drag is already applying a force in negative x -direction.

With and without drag the same max rotational rate θ̇max = 40 ◦ s−1 is reached. It is apparent
that with drag, the maximum rotational speed is reached later, as the drag creates a longer
acceleration phase.

Furthermore it is apparent that the thrust curve with drag is not symmetrical, as the quadro-
tor with drag requires in the acceleration phase a higher thrust and in the deceleration phase
less thrust due to the aerodynamic drag force.

The torque shows a strong deflection at t = t0 and t = tf . The curve coincides for the case
with and without drag, as the slope of the rotational speeds θ̇ are comparable and u2 = θ̈.

The vertical position z and velocity ż show slight deviations from zero, which are less than
one centimetre and two centimetres per second, and therefore negligible.Their magnitudes
coincides for both solvers.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

8-2 Validation Trajectories 73

Figure 8-1: Validation trajectories for the horizontal flight problem without (ND) and with (D)
drag model for both solvers.

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

74 APPENDIX

Diagonal Flight

The results for the diagonal flight problem (see Fig. 8-2) show a combination of the phenomena
seen in the horizontal and vertical problem.

As already seen in the horizontal case, the pitch angle θ is higher in the acceleration phase
than in the deceleration phase, for both GCOP and GPOPS solutions with drag. For the
case with no drag, it is similar in both phases.

The vertical accelerations show large oscillations for the models without drag, when compared
to the model with drag, which shows a more ”damped” behaviour.

The solution for the vertical position from GPOPS with and without drag and the curve from
GCOP with drag are very similar. The result from GCOP without drag model shows a slight
oscillation in z.

The curves with drag reach the maximum rotational speed θ̇ later.

In a similar manner, the max. velocity ẋmax is reached earlier in the case with drag.

Like in the vertical flight problem, the thrust input u1 shows a large value at the start of the
simulation and a very low values at the simulation end.

Figure 8-2: Validation trajectories for diagonal flight problem without (ND) and with (D) drag
model for both solvers.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Bibliography

A. R. S. Bramwell, D. B., G. Done. (2001). Bramwell’s helicopter dynamics. Oxford:
Butterworth-Heinemann. (Second edition)

Benallegue, A., Mokhtari, A., & Fridman, L. (2006). Feedback linearization and high or-
der sliding mode observer for a quadrotor UAV. International Workshop on Variable
Structure Systems, 2006. VSS’06., 365–372.

Bertsekas, D. P. (2001). Dynamic programming and optimal control, second edition. Nashua:
Athenas Scientific.

Bitcraze. (2016). This is the analyses of finding a pwm to thrust transfer function.
https://wiki.bitcraze.io/misc:investigations:thrust.

Bruno Siciliano, e. a. (2010). Robotics - modelling, planning and control. Berlin: Springer.

Cabecinhas, D., Naldi, R., Marconi, L., Silvestre, C., & Cunha, R. (2012). Robust take-off
for a quadrotor vehicle. IEEE Transactions on Robotics, 28 , 734–742.

DE O. PANTOJA, J. (1988). Differential dynamic programming and newton’s method.
International Journal of Control , 47 (5), 1539–1553.

Garg, D., & Patterson, M. (2009). An overview of three pseudospectral methods for the
numerical solution of optimal control problems. Advances in the Astronautical Sciences,
135 .

Garimella, G. (2016). Research gowtham garimella.
http://flyingmanipulators.lcsr.jhu.edu/about/research/.

Geoffroy, P., Mansard, N., Raison, M., Achiche, S., & Todorov, E. (2014). From inverse
kinematics to optimal control. Advances in Robot Kinematics, 409–418.

Gill, P., Murray, W., & Saunders, M. (2005). SNOPT: An SQP Algorithm for Large-Scale
Constrained Optimization. SIAM Review , 47 (1), 99–131.

Gill, P. E., Murray, W., & Saunders, M. A. (2008). Users guide for snopt version 7: Software
for large-scale nonlinear programming.

Gillula, J. H., Huang, H., Vitus, M. P., & Tomlin, C. J. (2010). Design of guaranteed
safe maneuvers using reachable sets: Autonomous quadrotor aerobatics in theory and
practice. 2010 IEEE International Conference on Robotics and Automation (ICRA),
1649–1654.

Guillaume Allibert, Abeywardena, D., Bangura, M., & Mahony, R. (2014). Estimating Body-

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

76 Bibliography

Fixed Frame Velocity and Attitude from Inertial Measurements for a Quadrotor Vehicle.
IEEE .

Hoffmann, G. M., Waslander, S. L., & Tomlin, C. J. (2008). Quadrotor helicopter trajectory
tracking control. AIAA, 1–14.

IPATE, G., VOICU, G., & DINU, I. (2015). Research on the use of drones in precision agri-
culture. University Politehnica of Bucharest Scientific Bulletin, 77 (ISSN 1454-2358),
263–274.

Josua Braun, T. S. (2015). Moderne methoden der regelungstechnik 2, tum.
Kirk, D. E. (2006). Optimal control theory - an introduction. Mineola, New York: Dover

Publications.
Kobilarov, M. (2016). Jhu gcop. https://github.com/jhu-asco/gcop.
Leisham, J. G. (2006). Principles of helicopter aerodynamics. Cambridge: Cambridge

Aerospace Series. (2nd Edition)
Leishman, R. C., Macdonald, J. C., Beard, R. W., & McLain, T. W. (2014). Quadrotors and

Accelerometers: State Estimation with an Improved Dynamic Model. IEEE Control
Systems, 34 , 28–41.

Luque-Vega, L. F., Castillo-Toledo, B., Loukianov, A., & Gonzalez-Jimenez, L. E. (2014).
Power line inspection via an unmanned aerial system based on the quadrotor helicopter.
MELECON , 393–397.

Mahony, R., Kumar, V., & Corke, P. (2012). Multirotor Aerial Vehicles: Modeling, Estima-
tion, and Control of Quadrotor. IEEE Robotics Automation Magazine, 20–32.

Maier, M. (2013). Learning quadrotor maneuver from optimal control. Unpublished diploma
Thesis, TU Muenchen.

Markwalter, B. (2015). Flights of fancy: Products in the unmanned systems marketplace.
IEEE Consumer Electronics Magazine, 4 , 46–48.

Martin, P., & Salaun, E. (2010, May). The true role of accelerometer feedback in quadrotor
control. IEEE International Conference on Robotics and Automation (ICRA), 1623–
1629.

Mathew, N., Smith, S. L., & Waslander, S. L. (2015). Planning paths for package delivery
in heterogeneous multirobot teams. IEEE Transactions on Automation Science and
Engineering(IEEE 2015-4), 1298–1308.

Mellinger, D., & Kumar, V. (2011). Minimum snap trajectory generation and control for
quadrotors. 2011 IEEE International Conference on Robotics and Automation (ICRA),
2520–2525.

Mueller, M. W., Hehn, M., & D’Andrea, R. (2015). A computationally efficient motion
primitive for quadrocopter trajectory generation. IEEE Trans. Robot., 1294–1310.

Murray, D., & Yakowitz, S. (1984). Differential dynamic programming and newton’s method
for discrete optimal control problems. Journal of Optimization Theory and Applications,
43 , 395-414.

Omari, S., Hua, M. D., Ducard, G., & Hamel, T. (2013). Nonlinear control of VTOL UAVs
incorporating flapping dynamics. International Conference on Intelligent Robots and
Systems (IROS), 24192425.

Pierre-Jean, B., Callou, F., Vissiere, D., & Petit, N. (2011). The navigation and control
technology inside the ar.drone micro uav. 18th IFAC World Congress.

Pounds, P., Mahony, R., & Corke, P. (2010). Modelling and control of a large quadrotor
robot. Control Engineering Practice, Special Issue on Aerial Robotics, 691–699.

Rao, A. V., Benson, D. A., Darby, C., Patterson, M. A., Francolin, C., Sanders, I., et al.

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

Bibliography 77

(2010). Algorithm 902: Gpops, a matlab software for solving multiple-phase optimal
control problems using the gauss pseudospectral method. ACM Trans. Math. Softw.,
37 (2), 22:1–22:39.

Sharifi, F., Zhang, Y., & Gordon, B. W. (2011). Voronoi-based coverage control for multi-
quadrotor uavs. ASME International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, 991–996.

Sira-Ramirez, H., & Agrawal, S. K. (2004). Differentially flat systems. New York: CRC
Press.

Sreenath, K., Michael, N., & Kumar, V. (2013). Trajectory generation and control of a
quadrotor with a cable-suspended load - A differentially-flat hybrid system. IEEE
International Conference on Robotics and Automation (ICRA), 4888–4895.

T. Hamel, Mahony, R., Lozano, R., & Ostrowski, J. (2002). Dynamic modelling and config-
uration stabilization for an x4 flyer. IFAC .

Tassa, Y., Mansard, N., & Todorov, E. (2003). Fast model predictive control for reactive
robotic swimming. International Conference on Intelligent Robots and Systems.

Tassa, Y., Mansard, N., & Todorov, E. (2014). Control-limited differential dynamic program-
ming. Robotics and Automation (ICRA), IEEE , 1168–1175.

Tedrake, R. (2009). LQR-Trees: Feedback motion planning on sparse randomized trees.
Robotics: Science and Systems V .

Tomic, T., & Haddadin, S. (2015). Simultaneous estimation of aerodynamic and contact
forces in flying robots: Applications to metric wind estimation and collision detection.
IEEE International Conference on Robotics and Automation (ICRA), 5290–5296.

Tomic, T., Maier, M., & Haddadin, S. (2014). Learning quadrotor maneuvers from optimal
control and generalizing in real-time. 2014 IEEE International Conference on Robotics
and Automation (ICRA), 1747–1754.

Waslander, S. L., & Wang, C. (2009). Wind disturbance estimation and rejection for quadro-
tor position control. AIAA Infotech Aerospace Conference and AIAA Unmanned...
Unlimited Conference.

Watkinson, J. (2004). The art of the helicopter. Oxford: Butterworth-Heinemann.
Zairi, S., Hazry, D., et al. (2010). Stability mechanism of an quadrotor for easy sprayer aerial

vehicle (Report). Malaysia: Universiti Malaysia Perlis (UniMAP).

Differential Dynamic Programming for Aerial Robots N.O. Abuter Grebe

78 Bibliography

N.O. Abuter Grebe Differential Dynamic Programming for Aerial Robots

