
Fictional Co-Play for Human-Agent Collaboration

Nathan Ordonez
Supervisor(s): Robert Loftin, Frans Oliehoek

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Research Paper Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1

Abstract

A longstanding problem in the area of reinforcement learning is human-agent col-
laboration. As past research indicates that RL agents undergo a distributional shift
when they start collaborating with human beings, the goal is to create agents that can
adapt. We build upon research using the two-player Overcooked environment to repro-
duce a simplified version of the Fictitious Co-Play algorithm in order to confirm past
found improvements at a smaller scale of training and using Self-Play and Population-
based trained algorithms as the baselines for comparison. We find that the agent on
average slightly outperforms both baseline algorithms when evaluated using a human
proxy. We also find high cross-seed variance in performance, indicating the potential
for further hyperparameter tuning.

1 Introduction
Generating artificial agents that can play videogames is a longstanding goal in the field of
artificial intelligence [1], and it’s an important way to explore novel techniques that might
be useful for solving important real-life tasks using AI agents. Similarly, having agents solve
tasks by collaborating with humans is also a longstanding problem [2], and the hope is
that useful agents will increasingly help human beings in achieving their own tasks. One
paper that combines agents that can play games, and those same agents collaboratively
solving tasks with a human being, is [3]. It presents a framework emulating the Overcooked
videogame [4], where multiple agents (and humans) collaborate in order to complete some
cooking tasks. The motivation for choosing this game as inspiration, according to the
authors [3], is that whereas many other games allow agents to perform quite well by simply
developing good individual gaming skills, this one instead yields the largest amount of
performance through teamwork.

This framework has been experimented on in many ways, using many different approaches
[5] [6] [7], and one particularly well-performing reinforcement learning method building on
the basic method known as "population-based training" is shown in [8]. The method,
which they coined "Fictitious Co-Play", is primarily motivated by the idea that in order
to train agents that can adapt to playing with human beings, they should be trained with
training partners that are diverse in their ways of playing. What is then special about
their approach is that they seem to achieve this without the need for any actual human
beings being involved in the training, or even any human data. Instead, the diverse set of
training partners is generated synthetically by using an older reinforcement learning training
technique known as self-play. In essence, the novel method takes advantage of the fact that
the old method creates specialized, non-generalized agents, in order to create a diverse set
of training partners.

While the stated results of the Fictitious Co-Play paper suggest that the new method
presents a significant improvement on previous methods (more than doubled performance,
see figure 5 [8]) , there are a few remaining questions relating to the conditions under which
their paper was written. Since the authors have not released the code used to produce the
paper as of this writing, and since they are using large amounts of computing power in
the training of their agents, two things are unclear. First, we do not know if the primary
insight of their method is actually enough to improve upon the techniques tested in the
original overcooked paper [3]. Second, we do not know if the positive results they got are
also significant in smaller-scale experiments.

Thus, this paper investigates the following question: can the FCP method generate

2

agents that adapt well to human beings? To do this, we focus on reproducing the
state-of-the-art technique "Fictitious Co-Play" and a subset of experiments from [3] in order
to find out whether a minimal implementation of their method, trained and evaluated using
more accessible levels of computation (consumer-grade, single-GPU training) is able to show
results that help confirm the hypothesis that the agents can indeed adapt to playing well
with human beings. This will be our main research question and contribution to the field.
As a secondary goal, by our attempt to answer the main question, we also address the gaps
in the RL literature following the original FCP paper concerning the performance of its
primary insight, and whether the previously shown performance gains persist in smaller-
scale experiments.

The agent is therefore implemented using the Overcooked code from [3] as a basis, and
evaluated using their human proxy agent, due to logistical reasons not allowing tests to be
performed on real human beings. Then, the evaluation is compared to two other algorithms
(Population-based training, Self-Play) used as a baseline by the Fictitious Co-Play paper.
The results show that our agent performs slightly better than the baseline methods, which
is very different from the results found by [8]. Further, we see that the variance of our agent
is the highest among the three, and that there is much room for improvement by doing
hyperparameter tuning.

This paper will use the following structure: First, in section 2 we will talk about related
work as it relates to the problem our method is trying to solve. Then, in section 3, back-
ground will be given on the FCP method, and a short introduction to the main, important
concepts will be included as well. The methodology will be described for how our exper-
iments were designed in chapter 4, and the design choices made will be motivated. Next,
the results of the experiments will be shown and discussed in section 5, followed by section
6 on performing responsible research. Finally, we will conclude the paper in section 7 with
a short summary of our main conclusions, and make some suggestions for future work that
could be based on this project.

2 Related Work
Diverse training partners An idea found in reinforcement learning is that diversity in
training partners can help an agent adapt better. We will mention two relevant papers on
this subject. One [9] shows that by using diversity as a reward function for an RL agent,
it can develop entire skills (such as walking) on its own. Second is [5], which builds on
this idea by developing another agent for the Overcooked environment. In their method,
a group of agents are trained using population-based training, and the agents are partly
rewarded by how different they are to the rest of the group. This results in a group of
agents that has developed more different behaviors (which can be seen as analogue to the
"skills" developed by the agents of this subsection’s first paper). They also compared their
agent to a method known as TrajeDi from [10], which introduces a generalised measure of
similarity between two distributions, based on the Jensen-Shannon Divergence [11] which is
then used as an objective for generating agent policies that work best for a maximal number
of possible partners. Both of their results showed good performance, even when compared
to the method used in this paper.

human-agent interaction The original overcooked paper [3] posits that when an agent
plays with a human after training without any humans, it undergoes a distributional shift.

3

This means that in order to play well with humans, the agent must have generalised its
playing ability with regards to its training partner. A recent paper [6] by some of the same
authors as the FCP paper [8] focused on this concept in, among others, the Overcooked
environment, and found that a heterogeneous set of training partners does indeed increase
the generalisation of an agent.

ad-hoc teamplay In some environments, two agents could discuss or share their strate-
gies before the actual task begins. Ad-hoc gameplay is when there is no such preliminary
coordination. In this paper, we tackle the latter type, which means our agents have to work
with an agent that they do not know anything about. One paper which directly focuses on
this challenge in the Overcooked environment (among other environments) is [7]. In their
work, they developed an agent with the ability to guess which task its teammate is per-
forming. Additionally, [12] also contributed to this issue by focusing on symmetry breaking.
In their method, coined "Other-Play", a self-play agent is paired with itself in the game of
Hanabi, but with randomly relabeled environment elements. The goal is for the agent to
learn to recognize and adapt to symmetries that they might face against any other agent.
A symmetry, for example, is when two agents are blocking each-other’s path, and they both
need to decide who gives up on their original trajectory. Their results showed yet another
improvement on the self-play method.

‘’

3 Background

3.1 Preliminaries
Decentralized Partially Observable Markov Decision Process A Dec-POMDP [13]
is the most accurate way of describing the problem faced by agents in the Overcooked envi-
ronment, due to the fact that each player may have different observations of the environment,
potentially containing different information. The following is a detailed explanation as it
pertains to its usage in this paper’s agent. In the case of a pair of agents, the process consists
of the following tuple:

M = ⟨I, S,
{
Aiϵ{1,2}

}
, P,R,

{
Ωiϵ{1,2}

}
, O, h⟩

I is the set of agents, S is the finite set of states with initial state s0; Ai is the set of
actions available to the i -th agent, with A = XiAi being the set of joint actions; P (s′|s, a)
are the state transition probabilities, from state s to s′ given agent action a. R: S → R
is the real-valued reward function; Ωi is the set of observations of the i -th agent, with
Ω = XiΩi being the set of joint observations. O are the O(o|s, a) probabilities that agents
see observation o, given state s and agent actions a. h is the horizon, and when it is infinite
a discount factor 0 ≤ γ < 1 is used.

The main objective is the following. The agents will determine the state transition
probability function P so as to maximize the expected sum reward

∑
t R(st, (a

1
t , a

2
t)) for

state s and actions a1, a2 for each agent, at time t. Because the objective in this case has
a technically infinite horizon (although this does not have to be the case), the sum would
normally be infinite. This is where we would use the discount factor γ.

4

Behavioral Cloning Behavioral cloning (as included in [14]) is a method for training an
agent’s policy based on recordings of human data. It applies a standard supervised learning
method to the discrete action space of our Overcooked environment. Our model, taken from
[3], turns an encoded state into a probability distribution over the possible actions, and was
trained using standard cross-entropy loss. It is meant to be a simple, yet effective way of
simulating an actual human partner for validation. For that reason, we use it in this paper
as a way to evaluate agents and compare them to each-other.

Proximal Policy Optimization Proximal Policy Optimization (PPO) [15] is a method
based on policy gradient reinforcement learning. It works by collecting data samples (by
playing in the environment) and then sampling mini-batches from the data samples in order
to optimize an objective function approximator (in the form of a neural network). Most
training methods mentioned in this paper (PBT, FCP, SP) use a PPO implementation as
the learning algorithm that is run on each individual agent.

Population-based training Population-based training (PBT) [16] is another technique
used to train agents in reinforcement-learning environments. It works by initializing a pop-
ulation of agents with different hyperparameters which will play with each-other in random
sub-groups (in our case, pairs). After a set amount of training, agents are evaluated, and
a genetic algorithm is used to remove the worst-performing agents, as well as to multiply
well-performing ones.

Figure 1: Cramped room, from the Overcooked environment, illustration taken from [3].
Shows the space agents can move in in black, and the counters, tomatoes, onions, etc.
Sparse reward is received when an onion soup is delivered, and dense reward is given for
things like picking up a plate, chopping onions, etc. An agent can either be placed on the
left or the right at the beginning of each game.

3.2 Overcooked environment
The Overcooked environment, taken from [3], is used as the basis for our tests. In this
environment, two players are tasked to prepare and serve as many onion soups as possible
within a time limit. This means there is a chain of events that must happen, and that can
sometimes be done in parallel to increase throughput of onion soups. Often, it is optimal
to work as a team with your partner, and in the specific layouts included with the base
environment, movement often has to be coordinated with the other agent so as to not
block each other’s paths. The environment is also classified game-theoretically by [3] as a

5

common-payoff game, as opposed to zero-sum games like Starcraft. It is also important to
note that the environment includes sparse and dense rewards, which are used for the reward
shaping technique [17] to bootstrap the training of an agent. In its default implementation,
the environment performs reward shaping by annealing between the two kinds of reward
depending on total step count. Finally, there are multiple layouts available for the players,
and they are designed to test for different skills in the player’s cooperative ability. For our
interests, the simplest room, called "cramped" is the one chosen (illustrated in figure 1).
In terms of visibility, both agents are able to see the whole map at any time, so a boolean
mask is not used for observations.

3.3 Fictional Co-Play
In order to answer our research question we have implemented a simplified, yet complete,
version of the FCP (Fictional Co-Play, [8]) method as described in the paper. To do this, a
list of requirements for the FCP method was written representing the essence of the method:

1 multiple self-play (SP) agents must be trained

2 during their training, those SP agents must save an arbitrary number of checkpoints

3 a final-agent (FA) must be initialized

4 the FA agent must be trained with agents picked randomly among the SP agents and
their checkpoints

5 the FA agent must be evaluated by measuring its average reward when playing with
a Behavioral Cloning (BC) agent.

Besides the FCP algorithm itself, it is worth mentioning the origins of the method. The
multiple self-play agents mean that this is a form of population-based training, and the
inclusion of previous checkpoints is also an established technique for reinforcement learning
[18].

4 Methodology

4.1 Development Process
In order to develop the FCP agent, a time-efficient approach was taken. Rather than im-
plementing the whole agent ourselves, we decided to use the publicly available code [19] of
the Overcooked paper as a boilerplate, and to take their PPO agent (which is the Baselines
[20] implementation) and modify it to implement the FCP method.

4.1.1 Limitations

In many ways, our implementation differs from the one presented in [8]. The different ways
in which we were limited are the following:

Computing power Because this paper was written by a single person, and all experiments
as well, and due to limited access to computing resources, a single Nvidia GTX 1060 graphics
card with 6GB of memory was used for training. This means we had to scale down the
training parameters compared to [8], instead aiming to achieve as many training steps as
[19].

6

Implementation time As the amount of time available to write this paper amounted
to two months, the implementation of the FCP method was limited as well. While all the
requirements in section 2.1 have been implemented, some corners have been cut. Namely,
SP agent checkpointing is not based on average reward, but on training step number, and
the final agent trains against a pre-defined number of training partners once the SP agents
are trained. Overall, we believe a good attempt was made to answer the research question.

4.2 Experimental setup
Agent setup As mentioned earlier, the FCP agent is based on the PPO self-play agent
implemented in [19]. In order to take advantage of the hyperparameter tuning performed
by the authors, and because they showed adequate performance during testing, most of the
hyperparameters of their default PPO agent (in the main ppo file) have been kept intact.
This includes settings such as reward shaping values, batch size and learning rate. Then,
to accommodate for the FCP agent training process, four more hyperparameters have been
added. They are explained in detail in the Appendix, section A.2. For the rest of the
parameters, we will detail them here. Finally, it is important to mention that the agent’s
neural networks do not include an LSTM or Transformer network, instead they are made of
dense neural networks (DNN) and convolutional neural network (CNN) layers.

parameter choice One important metric is the total number of steps of training for
the whole process. As we are trying to compare our results to the ones from [3], and
because training algorithms show further improvement when trained for longer [3] [8], we
have chosen a number of total steps similar to their implementation of a population-based
training agent (found to be 24 million), which was 25 million. Our results therefore test
both the adaptivity and training-step efficiency of the FCP method when compared to the
other methods. This number was used to design multiple test FCP runs that varied in
population size. To keep the same number of total steps, the number of steps per-final agent
and per-SP agent were adapted. Another important point is that final agents train for a
larger amount of total training steps than population agents, and this was chosen in order to
give the final agent more time to train with the large population, as well as to avoid having
the SP agents converge too much towards each other. Finally, the evaluation parameters
are also the same as the ones found in [19] at path human_aware_rl/NeurIPS Experiments
and Visualizations.ipynb, which means that the agent is evaluated for 40 rounds per seed
with the human proxy.

Data collection There are two kinds of data collected: pre-evaluation data, and evalu-
ation data. Before evaluation, the dense reward and sparse reward are used as a baseline
metric for training progress, for both the SP agents and the final agent. This is because
average reward shows that the agent is learning, and sparse reward is the actual score of
the game, depending only on the number of delivered dishes. What’s important in order to
answer the question of whether the agent can adapt to human beings then, is its average
sparse reward when paired with the human proxy (behavioral cloning agent). Finally, we
also collect evaluation data on the FCP agent playing against itself. This allows us to com-
pare that score as a "max performance" so as to see how much reward is lost to inefficiencies
in collaboration between the FCP agent and the proxy human.

7

5 Results
The first step to understanding the performance of our agent is to see it successfully learn
to play. In figure 2 we observe the training curves of the final FCP agent as an average of
three seeds, along with their 75% confidence interval. From this we can see that the agent
does indeed learn, and that its evolution becomes rather unstable after it has reached a
reward value near the top. Given that this happens across multiple seeds, we hypothesise
that the stability might be affected by the hyperparameters. For example, the learning rate
which works well for the initial high-growth phase might be too high for the kind of fine-
tuning that might be happening near the end, causing the agent to overcorrect itself. We
also notice that the two curves look very similar, which can be attributed to the fact that in
the particular environment layout our agents train in, the actions that yield dense reward
most often also lead to an agent delivering a dish. And near the end of the training, the
sparse rewards become higher than the dense rewards, possibly indicating that the agent
has evolved into a more efficient strategy beyond performing those actions that yield dense
rewards.

0.0e6 0.75e6 1.5e6 2.25e6 3.0e6 3.75e6
Environment Timesteps

0

25

50

75

100

125

150

175

re
wa

rd
 v

al
ue

Episode mean dense reward

0.0e6 0.75e6 1.5e6 2.25e6 3.0e6 3.75e6
Environment Timesteps

0

50

100

150

200

re
wa

rd
 v

al
ue

Episode mean sparse reward

Figure 2: Plots showing the recorded data during training of the final agent in the FCP
training process, averaged over three different seeds, along with their 75% confidence interval.
On the left is the mean dense reward per epoch. Mean total sparse reward on the right is
the reward received by the agent throughout the epoch, during the games. We can see that
the agent spends the first half of the time converging, and becomes unstable after that.

The second step is that the agent must demonstrate its ability to generalize. In figure 3
we see the performance of the SP, BC, PBT and PPObc agents from [3] compared to our
own, with standard error. All FCP results are an average of three seeds, and two configura-
tions (start on left and right side of the map). Compared to a minimum 2X improvement
in number of deliveries found in [8] (figure 5), which would correspond to double the reward
amount, we also see an improvement from our agent, however it is quite smaller than ex-
pected. Overall, the FCP agent had a greater average score when playing with Hproxy than
all other agents except for PPObc. We believe this to be the case because that agent was
able to train with a behavioral cloning agent that is very similar to the human proxy. Also
of note is that the FCP agent shows greater error across seeds than the other methods. This
reflects what was seen in the previous figure. To show how much an agent can vary, but
also the potential of this FCP training method, we also include FCPbest, the best score of
the FCP agent among all the evaluations.

8

SP
+SP

FC
P+

FC
P

FC
P be

st
+H Pr

ox
y

FC
P+

H Pr
ox

y

PP
O BC+

H Pr
ox

y

BC+H Pr
ox

y

SP
+H Pr

ox
y

PB
T+

H Pr
ox

y
0

50

100

150

200

250

Av
g.

 re
wa

rd
 p

er
 e

pi
so

de

Performance with Human proxy model

Figure 3: Agents compared by their average scores and standard error. All datas except the
ones involving FCP are taken from [3]. Two of the bars (FCP+FCP and SP+SP) are agents
playing against themselves (this is interesting because SP+SP usually gets the best score in
the game). The other plots are agents paired with the human proxy (behavioral cloning)
agent. For further explanation on the agent types, see section 3. FCP agent is averaged
over three different seeds and all agents averaged across two different setups (start on the
left, or start on the right). FCPbest is the only exception, it is the highest score across all
evaluation rounds of FCP +Hproxy.

In order to investigate the potential of our FCP implementation, we decided to investigate
population size as the most likely candidate hyperparameter for improvement. Figure 4
shows the average reward for three different runs. Each of those runs required around
25 million steps of training in total, per seed, which also implies that the 4-agent run
and 16-agent run have the final agent train against more, and less skilled self-play agents
respectively, compared to the 8-agent run. This shows potential for a trade-off between
better skilled population agents and a larger variety of agents. Further, we can hypothesise
with this graph that there might be a quadratic relationship between the population size
and the average reward. If this is true, we could also hypothesise a trade-off happening
between FCP+FCP and FCP+Hproxy performance. Further testing would be needed in
order to test this hypothesis. Finally, we can explain that the best-generalising agent is
from the 8-agent population because this configuration has the self-play agents train for 2.5
million steps. This is an interesting number because it’s close to the point between where
the agent finishes its initial high-growth learning phase, and the slower-growth phase (see
figure A.1 in the Appendix). This could indicate a detectable sweet-spot for the population
agents that could be used in other configurations.

Lastly, in order to see how the performance of the final FCP agent evolves throughout its
training, we have done a special run, where we decided to save checkpoints of this final agent
during its training, and to evaluate each checkpoint individually with both the human proxy
and itself. Figure 5 shows the results of this, averaged over three seeds. We can clearly see

9

4 8 16 4 8 16
FCP+FCP FCP+HProxy

Population size

0

50

100

150

200

Av
g.

 re
wa

rd
 p

er
 e

pi
so

de

Performance by population size

Figure 4: A comparison between different FCP runs, evaluated against the human proxy
and against itself. Each run is the average of three seeds, and two configurations (start on
left and start on right of the game environment). The varying number is the size of the
self-play agent population that the FCP agent trains against. For each run, the parameters
are adjusted so the total number of steps for the whole run is around 25 million.

that the FCP+FCP curve on the left follows the training curve from figure 2, and the more
interesting one is on the right, as it shows something that did not seem apparent from the
training curve alone; it seems like in all three seeds, the agent quickly finds a score of 80 at
around a million training steps, and after that the variance increases and stays consistent
all the way to the end of the training. This does not correspond with the high variance
found near the end of figure 2, and indeed all we see near the end of this plot is that the
average score slowly increases. This leads us to believe that there might be more potential
in training the final agent for even more steps in order to see how long it would take for the
final agent to exhaust all the performance it can gain from training with its population.

5.1 Discussion
The results we have found are surprising because of their stark contrast with the results
shown in the FCP paper [8]. Our agent shows a small fraction of the improvement found
by them. In figure 4 we hypothesised that there might be a trade-off between FCP+FCP
and FCP+Hproxy performance, and we think this could be thought of as a trade-off between
generalisation ability and specialisation. This generalisation ability would also seem to be
quite expensive, given that in figure 3 we see that the FCP agent is only slightly better than
the SP agent. The cost of this generalisation is then evident since the SP agent in this figure
only took 6 million steps to train, whereas the FCP agent took 25 million.

It is also interesting to think about why FCP shows similar evaluation scores as SP and
PBT agents. Indeed, one of the expectations from [3] was that the SP agent’s score would
suffer drastically when paired with the human due to it being trained to be optimized to
play with itself only, and this was confirmed in their results. Perhaps unsurprisingly, the
PBT agent suffered the same fate, going from an even better score than the SP agent when
playing with itself, to a slightly worse one when paired with the human proxy. So with the
FCP agent supposedly benefiting and learning from a diverse set of training partners, its
ability to generalise should have given it a distinct advantage when facing the human proxy.

10

0e6 1e6 2e6 3e6
Environment Steps

0

50

100

150

200

Av
g.

 re
wa

rd
FCP+FCP

0e6 1e6 2e6 3e6
Environment Steps

40

60

80

100

120
FCP+HProxy

Final agent performance through training

Figure 5: Plots showing evaluation results of the FCP final agent at twenty checkpoints
during its training. In other words, twenty checkpoints were made during the training of
the final agent, and this plot shows the evaluation results of each, averaged over three seeds,
along with their 75% confidence intervals, and evaluated over ten rounds of training both
with itself (right) and with the human proxy (left).

This could be because of a lack of diversity in the SP agents. To test this hypothesis would
be very interesting, especially to see how much of the cross-seed variation can be explained
by the diversity of its population. And of course, it is likely that there are oversights in our
implementation, however it seems unlikely that this would cause such a drastically different
score than expected, given that [5] (see figure 4) has achieved similar results in their own
experimentations using the FCP method.

In the end, it is also possible that the results from the original FCP paper [8] would
only show up when the agents are trained at orders of magnitude more training steps. One
possible indicator of this is figure 5. The FCP+Hproxy curve in particular could suggest
that the final agent still has room to grow its generalisation ability for many more steps.
This is also interesting because technically, increasing the number of steps in the final agent
does not cost a lot of total training steps when compared to increasing the number of steps
per population agent, so if further training yields higher generalisation, this would mean an
increase in performance at the same cost as a self-play agent (which is comparatively the
step-wise cheapest approach). This is yet another place where more investigation can be
done.

11

6 Responsible Research

6.1 Ethics
In following the principles of ethical research, we have made sure to include proper references
in the IEEE standard, to show links to the open source code we have used, and since we have
not run any tests on living beings, we can guarantee that no living being was at risk during
our tests. Finally, because this paper was written using relatively low-cost hardware, the
training did not spend much energy and therefore did not contribute to a sizeable impact
on the environment like other, larger models would.

6.2 Reproducibility
To ensure reproducibility of our results, we make our code available as a Docker image, and
we strongly encourage any interested reader to use it: https://hub.docker.com/r/nataxcan/fcp
(latest tag). Additionally, we have made sure that the following points are true of this paper:

• All code will be available on a publicly-hosted Github repository, and a public Docker
container already exists that allows one to reproduce all our results.

• The methodology section was written so that a developer is able to emulate the de-
velopment methodology of this paper almost completely.

• The publicly-available Github repository will contain a tutorial explaning how to run
the code to reproduce the results. Which files to run, in which order, and which
dependencies to install and how will be included.

• The hardware used to train the FCP agent was mentioned so that anyone could re-
produce the hardware configuration used for this paper.

• The parameters were chosen in order to be able to reproduce the results of this paper
within a maximum of 24 hours, given similar training hardware.

• Given current (as of 30th of May 2022) prices for online-available training hardware,
we estimate the training of this agent can be realized on third-party hardware for about
three euros. This means that no great expenses are required in order to replicate the
results of this paper.

All of this is motivated by our goal to conduct ethical, responsible research for the scientific
community, and we believe that it ensures this work is reproducible by a very large number
of people, with the only large limiting factor being programming literacy.

7 Conclusions and future work
Research questions This paper was started by the question: "Can FCP create agents
that adapt well to human beings?". In order to answer this question, we have implemented
the FCP method as best as we could, and run as much testing as was possible. However,
this was limited by the amount of time available to write this paper, and by the compute
available to run training of this agent. Nevertheless, our results showed that an FCP agent
on average shows a small improvement over the agents created in [3] with high cross-seed
variance, which is consistent with the results found by [5]. This showed that the FCP method

12

trains a PPO agent to be at least as adaptable as the rest, more so than the Self-Play and
the Population-based training methods, and that it has the potential of scoring very high
when playing with the human proxy. In the end, we think that this method shows promise
in terms of performance, and that we estimate it to be better able to adapt to playing with
human beings.

Future work For each shortcoming in this work, there is an opportunity for improvement.
With more computing power, it would be interesting to see how far this method extends to
more complicated domains. With more time, other aspects of FCP agents could be tested
further, such as whether the teamplay ability of the agent in Overcooked can be transfer-
learned to another game, thereby showing faster training speed. To extend this method
however, we propose the combination of the FCP method and the diversity-maximisation
approach in [5]. As a reminder, in their technique, each agent in a population is partly re-
warded for how diverse they are compared to the rest of the population, according to their
metric. And since the working principle of FCP is that the final agent learns to adapt to a
diverse set of training partners, we hypothesise that implementing the "diversity reward" in
the self-play population will only push that effect further, and thereby increase the perfor-
mance of the final agent, seemingly at no extra cost in training time.

We also propose an adaptive learning rate that adjusts based on how far the final agent
is in training, in order to deal with the instability that we see in the agent’s training curves.
Finally, we think the biggest potential improvement would be to add a time-sensitive com-
ponent to the neural networks of the agents, such as an LSTM, so that the final agent could
learn to adapt to another agent (as a skill), rather than trying to optimize a general strategy
on a per-state basis.

References
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” Tech. Rep.
arXiv:1312.5602, arXiv, Dec. 2013. arXiv:1312.5602 [cs] type: article.

[2] N. Schurr, J. Marecki, M. Tambe, and P. Scerri, “Towards flexible coordination of
human-agent teams,” Multiagent and Grid Systems, vol. 1, pp. 3–16, July 2005.

[3] M. Carroll, R. Shah, M. K. Ho, T. L. Griffiths, S. A. Seshia, P. Abbeel, and A. Dragan,
“On the Utility of Learning about Humans for Human-AI Coordination,” Jan. 2020.
Number: arXiv:1910.05789 arXiv:1910.05789 [cs, stat].

[4] G. T. Games, “Overcooked,” 2016.

[5] R. Zhao, J. Song, Y. Yuan, H. Haifeng, Y. Gao, Y. Wu, Z. Sun, and Y. Wei, “Maximum
Entropy Population-Based Training for Zero-Shot Human-AI Coordination,” May 2022.
Number: arXiv:2112.11701 arXiv:2112.11701 [cs].

[6] K. R. McKee, J. Z. Leibo, C. Beattie, and R. Everett, “Quantifying the effects of envi-
ronment and population diversity in multi-agent reinforcement learning,” Autonomous
Agents and Multi-Agent Systems, vol. 36, p. 21, Apr. 2022.

13

[7] J. G. Ribeiro, C. Martinho, A. Sardinha, and F. S. Melo, “Assisting Unknown Team-
mates in Unknown Tasks: Ad Hoc Teamwork under Partial Observability,” Jan. 2022.
Number: arXiv:2201.03538 arXiv:2201.03538 [cs].

[8] D. J. Strouse, K. R. McKee, M. Botvinick, E. Hughes, and R. Everett, “Collabo-
rating with Humans without Human Data,” Jan. 2022. Number: arXiv:2110.08176
arXiv:2110.08176 [cs].

[9] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is All You Need:
Learning Skills without a Reward Function,” Oct. 2018. Number: arXiv:1802.06070
arXiv:1802.06070 [cs].

[10] A. Lupu, B. Cui, H. Hu, and J. Foerster, “Trajectory Diversity for Zero-Shot Coor-
dination,” in Proceedings of the 38th International Conference on Machine Learning,
pp. 7204–7213, PMLR, July 2021. ISSN: 2640-3498.

[11] J. Lin, “Divergence measures based on the Shannon entropy,” IEEE Transactions on
Information Theory, vol. 37, pp. 145–151, Jan. 1991. Conference Name: IEEE Trans-
actions on Information Theory.

[12] H. Hu, A. Lerer, A. Peysakhovich, and J. Foerster, “"Other-Play" for Zero-Shot Coor-
dination,” May 2021. Number: arXiv:2003.02979 arXiv:2003.02979 [cs].

[13] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized POMDPs.
SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and
Cognitive Robotics, Cham: Springer International Publishing : Imprint: Springer, 1st
ed. 2016 ed., 2016.

[14] D. A. Pomerleau, “Efficient Training of Artificial Neural Networks for Autonomous
Navigation,” Neural Computation, vol. 3, pp. 88–97, Feb. 1991.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms,” Aug. 2017. Number: arXiv:1707.06347 arXiv:1707.06347
[cs].

[16] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi,
O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando, and K. Kavukcuoglu,
“Population Based Training of Neural Networks,” Nov. 2017. Number: arXiv:1711.09846
arXiv:1711.09846 [cs].

[17] M. D. Buhmann, P. Melville, V. Sindhwani, N. Quadrianto, W. L. Buntine, L. Torgo,
X. Zhang, P. Stone, J. Struyf, H. Blockeel, K. Driessens, R. Miikkulainen, E. Wiewiora,
J. Peters, R. Tedrake, N. Roy, J. Morimoto, P. A. Flach, and J. Fürnkranz, “Reward
Shaping,” in Encyclopedia of Machine Learning (C. Sammut and G. I. Webb, eds.),
pp. 863–865, Boston, MA: Springer US, 2011.

[18] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch, “Emergent Complexity
via Multi-Agent Competition,” Oct. 2017.

[19] M. Carroll, R. Shah, M. K. Ho, T. L. Griffiths, S. A. Seshia, P. Abbeel, and A. Dragan,
“Human-Aware Reinforcement Learning,” Nov. 2020.

[20] OpenAI, “Baselines,” June 2022. original-date: 2017-05-24T01:58:13Z.

14

A Appendix

A.1 SP training curve

Figure 6: Training curve for a PPO agent trained using self-play. This was the justification
for choosing the number of training steps for the FCP agent’s self-play agent population.
Found in [3] at path human_aware_rl/NeurIPS Experiments and Visualizations.ipynb.

A.2 FCP-specific parameters
An FCP run consists of:

type value

SP agent population size 8
n checkpoints per SP agent 2
n training steps, SP agent 2.5 million
n training steps, final agent 3.75 million
n training sessions, final agent 60

Table 1: Agent-specific parameters for an FCP run and the values chosen for testing in this
paper

Where the SP agent population size is the number of self-play agents the final agent will
train with. The n checkpoints per SP agent is the number of checkpoints that will be saved
during training of a self-play agent. For example, if an agent trains for 900 steps in total
with two checkpoints, they will be saved at 300 and 600 steps. The two n training steps
parameters are for each SP agent, and for the final agent respectively. Finally, the number
of training sessions is the number of times the final agent will pick an agent at random from
the population (of SP agents and their past checkpoints) during the course of its training.
The SP population size was chosen to be among the numbers tested by [8] (found on table
2 of the appendix), by running test runs for 4, 8 and 16 agents while keeping the same
number of total training steps. The number of checkpoints was chosen based on the FCP
paper [8], which used one checkpoint near the beginning of the run, and one once it reaches
the middle of its maximum dense reward during training. The training steps for the SP
agents were chosen so as to have a total number of steps equal to 25 million. As for the final

15

agent’s steps, it was set to 1.5 times that of the SP agents so that it has more time to spend
adapting to its population agents. The number of sessions is set to 60 because of a series of
test runs over a single seed that indicated this might be the optimal number. If this paper
had a longer timeframe, more runs would have been made.

16

	Introduction
	Related Work
	Background
	Preliminaries
	Overcooked environment
	Fictional Co-Play

	Methodology
	Development Process
	Limitations

	Experimental setup

	Results
	Discussion

	Responsible Research
	Ethics
	Reproducibility

	Conclusions and future work
	Appendix
	SP training curve
	FCP-specific parameters

