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Ambiguity Resolution for Permanent
Scatterer Interferometry

Bert M. Kampes and Ramon F. Hanssen, Member, IEEE

Abstract—In the permanent scatterer technique of synthetic
aperture radar interferometry, there is a need for an efficient and
reliable nonlinear parameter inversion algorithm that includes
estimation of the phase cycle ambiguities. Present techniques
make use of a direct search of the solution space, treating the
observations as deterministic and equally weighted, and which do
not yield an exact solution. Moreover, they do not describe the
quality of the estimated parameters. Here, we use the integer least
squares estimator, which has the highest probability of correct
integer estimation for problems with a multivariate normal distri-
bution. With this estimator, the propagated variance-covariance
matrix of the estimated parameters can be obtained. We have
adapted the LAMBDA method, part of an integer least squares
estimator developed for the ambiguity resolution of carrier phase
observations in global positioning systems, to the problem of
permanent scatterers. Key elements of the proposed method are
the introduction of pseudo-observations to regularize the system
of equations, decorrelation of the ambiguities for an efficient
estimation, and the combination of a bootstrap estimator with an
integer least squares search to obtain the final integer estimates.
The performance of the proposed algorithm is demonstrated using
simulated and real data.

Index Terms—Nonlinear parameter inversion, permanent scat-
terers, synthetic aperture radar (SAR) interferometry.

I. INTRODUCTION

I N PERMANENT scatterer (PS) interferometry, time-co-
herent targets are analyzed in a stack of differential

interferograms [i.e., interferograms that have been corrected
for the known topographic component using an external digital
elevation model (DEM)]. All interferograms are formed relative
to a single master image. An initial set of points, assumed to be
potentially time-coherent, is generally obtained by a statistical
analysis of the amplitude time series of the points, using the
fact that points with a stable large amplitude are expected to
possess a stable phase behavior too. An introduction to the PS
technique is given in [1].

The phase time series of a PS point is a function of its uncom-
pensated topographic component, its displacement, and the at-
mospheric delays during the acquisitions. Using the unwrapped
phase differences between two nearby points and a model for
the displacement, the number of parameters that needs to be es-
timated can be limited to , i.e., a height with respect to the
reference DEM (“DEM error”), the mean atmospheric delay of
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all interferograms, and parameters describing the displace-
ment as a function of time. Since the atmospheric signal exhibits
a power law behavior, it can be reduced considerably by taking
the difference between nearby points [2]. The (line of sight) dis-
placement for each point can be modeled in a generic way
using base functions as

(1)

where is a time vector and are arbitrary base functions
with corresponding amplitudes . For base functions, we
can use polynomials, sinusoids, etc., or even dedicated functions
describing the signal of interest. In this paper, we use

(2)

(3)

(4)

where is the period of the seasonal displacement; normally
year. With this choice of base functions, displacements

can be estimated that are linear in time, and contain a super-
imposed seasonal displacement with certain offset , since

, with
and . This model is

relatively common, e.g., see [3] and [4].
The displacement signal that is sensed at position in

interferogram , is the displacement that occurred
during the time between master and slave acquisition

(5)

(6)

(7)

(we thus refer to the master acquisition by ). Using this
model for the displacement, the observed double difference
wrapped phase denotes the difference in phase value
between points and differenced between and . This can
be related to the unknown parameters as

(8)
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Since we consider the phase difference between two nearby
points and (here denoted by ), the unknowns are
also the differences in DEM error, displacement parameters, and
bias (of atmospheric origin) between these points. The observed
wrapped phase difference is unwrapped as

(9)

with integer ambiguity for interferogram . The height-to-
phase conversion factor

(10)

relates the DEM error to the unwrapped phase, where is
the wavelength, the perpendicular baseline, the range
to the master sensor, and the local look angle. This factor is
different for each point, but mainly varies as function of the range
coordinate. The atmospheric term represents the mean
double difference atmospheric delay between points and and
between the master and all slave images. Although it could be
assumed that the expectation values and therefore

, in fact this expectation should be regarded as
an unknown, since a large atmospheric variation in the master
image could lead to a bias, and therefore to a biased estimation
of the other parameters. Therefore, we write for the atmospheric
delay difference in interferogram ,
where and we estimate
assuming that . Finally, is the noise
(difference) term, with expectation 0 and variance . The
noise is caused by incoherent changes of the background
clutter, thermal noise, misregistration, and atmospheric delay
differences during the acquisitions. Here, we focus on the
optimal estimation of the integer ambiguities in (9).

The basic task is to estimate the unknown
parameters ( real-valued parameters and integer
ambiguities) from the observed wrapped phase values. Note
that since it is a relative estimation, the first ambiguity does
not have to be estimated, leaving unknown ambiguities.
The solution to this problem can only be obtained by using
the fact that the ambiguities are integers. For this problem, no
direct inversion exists [5]. Up to now, this problem has been
solved in practice by direct search methods of the parameter
solution space. This means that for each unknown parameter a
search grid is defined—with a certain step size and bound—and
that by evaluation of the forward model a norm is computed.
At the end, the solution with the minimum (or maximum)
norm is used as estimate. In [1], the absolute value of the
ensemble coherence is taken as norm

(11)

with the imaginary unit and
the difference between observed and modeled phase. Here,
a linear displacement model is assumed, with velocity .

Searching the solution space implies that a multitude of
solutions for and are evaluated, yielding values that

are used for selecting the optimal combination. This approach
is effective and quick, but with an increasing number of
displacement parameters it will take more time, see [4]. More
important, the method is not optimal, since: 1) it depends
strongly on the discretization of the solution space; 2) it does
not take into account that there are alternative solutions based
on a different distribution of the ambiguities; 3) it treats the
unknown ambiguities as deterministic in stead of stochastic;
and 4) it cannot efficiently work with observations with varying
variances and covariances. As a result, formal error propagation
from the observations to the unknown parameters is suboptimal.

In GPS there exists a somewhat similar problem, where
the carrier phase is used to obtain a highly accurate distance
measurement. The integer number of cycles, however, is also
unknown for GPS. An efficient and optimal solution to estimate
these ambiguities is given by the LAMBDA method, see [5],
which is now routinely applied in GPS ambiguity resolution.
Key element of the LAMBDA method is that it uses a search
in the (multidimensional) ambiguity solution space, not in
the space of the parameters of interest. Applying this integer
least squares estimator for PS ambiguity resolution has the
advantage that it yields an optimal solution, capable of using
any variance-covariance matrix of the observations. Besides,
readily available software can be used, and computation time
is practically independent of the number of displacement
parameters (but only on the number of acquisitions). However,
there are some distinct differences between the case of GPS and
(PS) InSAR which prevent a straightforward application. The
main difference is that for PS the problem is under-determined,
i.e., there are more unknowns (ambiguities plus parameters
of interest) than observations (the number of interferograms),
while this is not the case for GPS. Moreover, the number of
ambiguities basically equals the number of satellites (images),
which for GPS generally is much smaller, implying that the
search takes less time. The existence of this method was
already pointed out in [6], [7], and in [8], where a first
simplified evaluation of a PS integer least squares estimator
was performed.

II. LAMBDA METHOD FOR GPS

The least squares ambiguity decorrelation adjustment
(LAMBDA) is a method for fast GPS double difference integer
ambiguity estimation. The a priori knowledge of the integer
nature of the ambiguities is used to strengthen the solution.
Besides being a fast method it is also the best method in the
sense that it gives the highest probability of correct integer
estimation (ambiguity success rate) for problems with a multi-
variate normal distribution [5]. The LAMBDA method makes
use of a sequential conditional least squares search, based on
transformed ambiguities. The LAMBDA method was intro-
duced in [9] and discussed in detail in [10]. An elementary
presentation of the basic principles of the method is given in
[5], as well as online at http://www.geo.tudelft.nl/mgp/.

The following is a brief review of the steps involved in integer
ambiguity estimation to make this paper self-contained. As a
starting point, we take the (linearized) system of observation
equations

(12)
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where
vector of observed minus computed measurements
(double difference carrier-phase and code measure-
ments in the case of GPS);
vector of integer-valued unknown ambiguities;
vector of real-valued unknowns for the parameters of
interest, here the three baseline components (because
the system of equations is linearized for GPS, these
actually are increments with respect to a priori values
of the previous iteration);
design matrices for ambiguity terms and baseline com-
ponents, respectively;
vector of measurement noise and unmodeled errors.

Since our estimation criterion will be based on the principle
of least squares, estimates for the unknown parameters of (12)
follow from solving the minimization problem

(13)

where and is the variance-covari-
ance matrix of the observables (the asterisk denotes the trans-
pose). This minimization problem was referred to as integer
least squares problem in [9]. It is a constrained least squares
problem due to the integer constraint . The solution of the
integer least squares problem will be denoted as and . The so-
lution of the corresponding unconstrained least squares problem
will be denoted as and . The estimates and are referred
to as the “float solution” and the estimates and as the “fixed
solution.”

The approach taken with the LAMBDA method is to
reparametrize the integer least squares problem such that an
equivalent problem is obtained, but one that is much easier to
solve. It consists of two steps. First, an ambiguity transforma-
tion is constructed that tries to decorrelate the ambiguities.
In the construction of , use is made of integer approximations
to conditional least squares transformations. The ambiguity
transformation allows one to transform the original ambigu-
ities, their least squares estimates and their corresponding
variance-covariance matrix as

(14)

The computation of the integer minimizers is performed in the
second step of the LAMBDA method. It follows from solving

(15)

Since matrix consists of integers only and is volume pre-
serving, the obtained solution also minimizes [11]. That is,
the ambiguities we are interested in can be obtained by solving
(15). The solution is obtained by means of a search using a set of
bounds for the transformed ambiguities [12]. If the ambiguities
would be totally decorrelated, the integer ambiguities would be
given by means of a simple rounding of the float ambiguities,
since that would minimize (15). This simple rounding scheme,
however, does not produce the required integer least squares es-
timates when matrix is nondiagonal. It can be shown [9]

that minimizing the objective function (15) is identical to mini-
mizing

(16)

which makes use of a sequential conditional least squares ad-
justment. The estimate is the least squares estimate of ,
conditioned on . In order to solve (16), a
search is performed for the integer least squares ambiguities,
based on the set of bounds

(17)

where

with

(18)

In order to perform the search, first a value for needs to be
determined, such that it is guaranteed that the search space con-
tains at least one solution. Since the search takes place over the
ambiguities, it will take longer when there are more ambigui-
ties.

Once the integer least squares vector has been found, the
corresponding integer least squares vector of the original ambi-
guities can be found by invoking . These integer es-
timates are then used to compute the “fixed” baseline solution .
This can be done by inserting the estimated ambiguities in (12)
and moving it to the left hand side, leaving an ordinary uncon-
strained least squares problem. i.e., the observed phase values
are unwrapped by , leaving

(19)

for which the final (unbiased) least squares estimator for the
float parameters is given by

(20)

Note that matrix is the (full) variance-
covariance matrix that describes the precision of the estimated
float parameters, for example, of displacement rate and DEM
error.

III. LAMBDA APPLIED TO PS INSAR

In the case of InSAR, the functional model is given by (8). In
matrix notation, this system of observation equations is written
as

... . . .

...

...

... (21)
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denotes expectation, and has been defined in (7).
Note that we have dropped the index , but this system
of equations still refers to the phase differences between two
points. The first ambiguity is explicitly fixed to zero, since all
ambiguities can be considered relative to this one. As in the case
of GPS, we thus have to estimate integer ambiguities and float
parameters. Unlike GPS, however, it is not possible to obtain
any solution without the a priori knowledge of the integer na-
ture of the ambiguities, due to the lack of redundancy. To solve
this system of equations, additional constraints have to be intro-
duced. As in [7] and [8], we use pseudo-observations for the
DEM error and each displacement parameter that is estimated
that regularize the system of equations

(22)

Matrices , and are defined in (21). is a zero
matrix , and is . The value of
the pseudo-observations is normally chosen as . Operator

denotes the dispersion of the observations. Unlike in
GPS, the precision of the phase observations is not well known
a priori, since it is not guaranteed that the selected points
(based on their amplitude dispersion) are actually coherent in
time, and follow the displacement model that is used. In this
paper, we assume equal variance for all observations, though
in practice a variance factor can be estimated for each inter-
ferogram. The dispersion of the pseudo-observations follows
from an appropriate (pessimistically chosen) a priori standard
deviation of the unknown parameters. Reasonable values are
for example m for the DEM error, mm/year for
the linear displacement rate, and mm for the seasonal
displacement terms. This augmented system of equations can
again be written symbolically similar to (12) as

(23)

After regularization, this system now contains the same number
of unknowns as observations. This yields an exact nonredun-
dant solution, and thus, the float solution for the parameters of
interest will almost equal the value of the added pseudo-obser-
vations. Thus, the float solution for all parameters is extremely
biased due to the introduction of the pseudo-observations. The
fixed solution, however, is not biased, as long as the correct am-
biguities were found during the search. The float solution for the
ambiguities is obtained using [13]

(24)

(25)

with . This solution is then
transformed using (14), yielding and . Then, a search can
be performed based on the bounds of (17), yielding the integer
least squares estimate for the ambiguities.

However, for the problem at hand, it turns out that this search
can take a long time, depending on the quality and, to a lesser
extent, the number of the phase observations. Therefore, we pro-
pose to also use the integer bootstrapped estimator. This esti-
mator takes some of the correlation between the ambiguities

into account, but does not search the full hyperellipsoid up to
all bounds. It results from a sequential conditioned least squares
adjustment and it is computed as follows [12]. If ambiguities
are available, one starts with the first ambiguity , and rounds
it to its nearest integer. Having obtained the integer value of the
first ambiguity, the real-valued estimates of all remaining ambi-
guities are then corrected on the basis of their correlation with
the first ambiguity. Subsequently, the second, now corrected,
real-valued ambiguity is rounded to its nearest integer. Having
obtained the value of the second ambiguity, the real-valued es-
timates of all remaining ambiguities are again corrected,
but now on the basis of their correlation with the second ambi-
guity. This process of rounding and correcting is continued until
all ambiguities are taken care of. The success rate (probability
that the correct integers are estimated) for the bootstrap method
can be computed as [7]

(26)

with

(27)

The success rate can, thus, be computed beforehand, based on
the configuration of the acquired images in time and perpen-
dicular baseline, and assuming a certain level of noise on the
data. It is difficult to compute this probability for the LAMBDA
method, but it can be shown that it outperforms the bootstrapped
method, which thus can be regarded as a lower bound for it [14].

A. Computational Aspects

The number of points that need to be analyzed may be a
couple of hundreds per square kilometer, particularly for city
areas. And a common computation strategy is to form a large
number of pairs between nearby points, for which a relative es-
timation has to be performed [15]. For an area of 20 20 km, the
number of points thus may be about 100 000, and the number of
required estimations may be 500 000. If, for example, each esti-
mation took 1 s, then the total computation time would come to
almost six days. Note that a set of correct estimations con-
necting all points would be enough to compute the correct pa-
rameters at all points. The other estimations are performed only
to be able to identify an incorrect estimation between points.
Therefore, it is not necessary to strive for the highest possible
success rate for each individual estimation between PS points.
For an individual estimation, we can, thus, decide to not per-
form the integer least squares estimation (which has the highest
success rate), but instead use the bootstrap estimator, or even to
skip that computation completely. Note also that the position of
the analyzed points follow from chance and cannot be chosen,
as, for example, in the case of GPS. This is one more reason
why skipping a point does not have a big impact.

In order to increase the success rate for the bootstrap method,
we run it for extra times, instead of once. Each
time the bootstrapped fixed ambiguity is replaced with an in-
teger either one higher or one lower, based on the difference be-
tween the original float value and the corrected float value. The
remaining ambiguities are then computed as with the normal



2450 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 11, NOVEMBER 2004

bootstrap method. This is similar to the search of the ambiguity
solution space that is performed with the LAMBDA method, but
more limited, and therefore faster. The final estimate from this
extended bootstrap method is the one that has the smallest norm

according to (15). The success rate of the extended bootstrap
of course is at least equal to that of (26), since the normal boot-
strap is included, but it cannot be analytically quantified further.

After an estimate has been obtained using the (extended)
bootstrap method, the search of the LAMBDA method is
performed with the bound from the bootstrap method. Since
this search can take an extremely long time when the data
contain more noise than described by the a priori variance
matrix , we discontinue it when a maximum number of
ambiguities has been searched (we chose 25 000 here for the
maximum loop count). If the search is stopped and no candidate
has been found, the estimated ambiguities that resulted from
the bootstrap method are used. If a solution is obtained using
the LAMBDA search, and it differs from that of the bootstrap
method, the estimate is taken that has the smallest norm ac-
cording to (15).

Note that if a well-fitting solution cannot be found using the
bootstrapped estimation, also the search for the integer least
squares estimate takes very long. Since the time required by the
(extended) bootstrap estimator does not depend on the quality
of the input data, alternatively, one could try to regularize the
system with several sets of randomized pseudo-observations,
each time using the bootstrap estimator. Then, the search to
obtain the integer least squares estimate can optionally be per-
formed for the solution with the smallest .

Furthermore, a trivial way to speed up the computations is to
use a faster computer, or to parallelize the problem on a high
level, giving each processor an equal number of estimations,
since each estimation can be computed independently from the
others.

More importantly, a large amount of computation time can
be saved by observing that the height conversion factor scales
the same for all interferograms with range coordinate. This im-
plies that we can substitute in (8), with
the mean height conversion factor for the whole interferogram.
After the estimation of , the correct DEM error is obtained
by rescaling it with this factor. By this substitution, we achieve
that matrices and of (12) are the same for all estimations
between points. This means that the transformation matrix
only needs to be computed once, as well as the decorrelation
of [see (24)], according to (14). Also, the projection matrix

to obtain the final float solution for the
parameters of interest can be computed in advance [see (20)].
Finally, a faster way of unwrapping the data (then by using the
matrix multiplication noted above (19)) is to use the relation

directly.

IV. VALIDATION

In order to validate the developed combined bootstrapped/in-
teger search estimator and to quantify the processing time re-
quired for this algorithm, a large number of simulations are per-
formed. The algorithm is also applied to real data, acquired by
the Euoprean Remote Sensing 1 and 2 satellites, in order to

demonstrate its capability. A total of 62 images have been pro-
cessed for the Berlin area (frame 2547, track 165). The acqui-
sition times are between May 1992 and November 2000, and
the largest possible baseline between the images is 2100 m. For
the simulation, the acquisition times and perpendicular base-
lines are randomly selected from this configuration.

Note that both the simulated and real data results are intended
to demonstrate the LAMBDA method. As stated, given a cer-
tain displacement model, several processing methods might
lead to identical results. However, of all possible methods, the
LAMBDA method is the one with the highest likelihood of
correctly estimating the ambiguities.

A. Simulation

For the simulated data, the number of available interfero-
grams was set to . These acquisition
times and perpendicular baselines are randomly selected from
the configuration of the real dataset. For each , the random
selection of the baselines has been repeated ten times, each
time applying the retrieval algorithm 100 times. This has been
done to reduce the dependency of the success rate on the ac-
tual baseline configuration, which particularly is of importance
for small . The second variable in the simulations was the
amount of normally distributed noise that was added to the sim-
ulated input. The standard deviation of the noise was set to

. A noise level of 30 corresponds ap-
proximately to a point density of 100 points per square kilometer
(for urban areas, assuming a linear displacement model) and a
noise level of 40 to 450 points (see [16]). After the addition
of the noise, the simulated phase was wrapped to the interval

. Thus, in total, 204 different simulation scenarios were
performed, for varying and , where for each scenario 100
input sets were simulated. The unwrapped model phase is com-
puted using the forward model , where the param-
eters are randomly simulated with standard deviations

m, mm/year, mm, mm,
and . The standard deviation of the pseudo-observa-
tions used to retrieve the input was set to m,

mm/year, mm, mm, and the a
priori standard deviation assumed for all interferometric phase
differences was set to 50 in all scenarios. The base func-
tions for the displacement model are given in (2)–(4).

Fig. 1 shows the individual CPU times required for the ex-
tended bootstrap method and for the integer least squares search
for all simulations. IDL 5.1 has been used as programming
language, running on a SUN workstation utilizing a single
750-MHz UltraSPARC-III CPU. Using C or Fortran would
likely increase the speed by a factor of (maximally) ten. The
CPU times reported originate from the IDL profiler. The time
for the (extended) bootstrap method is , since always

bootstraps are performed over the ambiguities. The
time required for the integer least squares search depends on
both the quality and amount of data. For low noise levels, the
correct ambiguities are found extremely fast. This is caused
in also by the small search bound that is returned from the
bootstrap estimator. The computation time increases with an
increasing noise level. The reason is that the we search for a
solution that is in correspondence with the a priori precision,
and in order to find such a solution, the bounds for the search of
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Fig. 1. CPU time required by the extended bootstrap and integer least squares
estimator as function ofN and for different noise levels. The bootstrap method
is represented by the bold solid lines for all noise levels. The computation time
only depends on N . For the least squares estimator, the required computation
time increases with increasing noise level. The lines with symbols correspond
from bottom to top with a noise level of 10 (plus), 20 (asterisk), 30
(diamond), 40 (triangle), and 50 (square), respectively.

Fig. 2. Success rate of the combined bootstrap/integer least squares method
as function of N for different noise levels (from top to bottom: 10 , 20 , 30 ,
40 , 50 ).

the hyperellipsoid get larger. If we would not have introduced
the maximum loop count, the computation time for the least
squares search would get extremely large for noisy data, and
the method would become impractical.

Fig. 2 gives an overview of the success rate for all the sim-
ulations. The individual success rate for the bootstrap and in-
teger least squares method is not shown, since they have to be
computed both in all cases, and the combined success rate is al-
ways the highest. Only when the integer least squares search is
discontinued (using the maximum loop counter, which particu-
larly occurs for higher noise levels), the success rate of the boot-
strap method is sometimes larger than that of the integer least
squares estimator. An estimation is considered to be successful
if the estimated ambiguities differ less than one cycle from the
simulated ones (i.e., we allow the phase in one interferogram
to be incorrectly unwrapped by ). The theoretic success rate
has been computed with (26), but is not plotted in Fig. 2. Since
the a priori standard deviation of the noise on the observations
is set to 50 in all simulations, while the actual standard devi-
ation used to simulate the noise was lower in most cases, the
theoretical success rate does not correspond very well with the
one obtained in practice. Also, (26) is valid for the unmodified
bootstrap method, and we perform a series of slightly altered
bootstraps, thus increasing the probability that the correct am-
biguities are found.

It can be observed that the success rate is very high for small
noise levels (up to 30 ) and more than 20 images. If there are
only ten images available, the success rate is low. This can be

explained by considering that five float parameters and nine
integer parameters (between, say, 15 and 15) are estimated.
Therefore, there are simply too many possibilities that give a
good fit in this case. Furthermore, it can be observed that the
overall success rate increases with increasing number of images
and decreasing noise level. The individual success rate of the
(extended) bootstrap method was observed to be close to that
of the integer least squares search, and sometimes it was even
higher (while the search theoretically has at least the same suc-
cess rate). This is caused by the maximum loop count that was
introduced in the least squares search for speed considerations,
causing the search to be discontinued at a certain point. This
particularly occurred for larger noise levels. This also explains
why the integer least squares success rate decreases (margin-
ally) with increasing images for equal noise level. The max-
imum loop count was kept constant, and thus, for a smaller
number of images the hyperellipsoid is searched through
more completely before being discontinued. However, the least
squares search is more robust (since more possible solutions are
searched for) and not affected by an individual noisy value.

B. Real Data

While simulations are useful to evaluate the characteristics of
a retrieval algorithm under controlled circumstances, they do not
necessarily incorporate all possible effects and sources of noise
that are present in real data. It can happen, for example, that a
certain interferogram possesses more noise than expected due to
coregistration problems. In this case, the bootstrap method may
not work as well as in the simulations, particularly if the am-
biguities are not decorrelated very well by the applied trans-
formation. Therefore, we applied the developed algorithm also
on a real dataset. One thousand two hundred eighty-four points
have been selected over a city area (Berlin, Germany) of approx-
imately 20 20 km. The selected points have the lowest ex-
pected phase noise, based on their amplitude dispersion. Then,
a Delaunay triangulation defined between which points the es-
timation was performed. The maximum distance has been lim-
ited to 2 km to reduce atmospheric influence. The total number
of arcs (estimations) was 3791, and the mean distance was ap-
proximately 500 m. The total CPU time for the estimation was
727 s, i.e., 0.19 s per estimation (using the same 750-MHz pro-
cessor).Fig. 3 shows the area, the selected points, and the De-
launay network. Between the points, a DEM error, a bias, and
three displacement parameters [see (2)–(4)] were estimated. The
a priori interferometric phase noise for each arc was first set to
50 for all interferograms to allow for fast convergence. After an
initial estimation, a variance factor per interferogram has been
estimated (see [15]), which was used as weight in the final esti-
mation. The variance-covariance matrix of the estimated float
parameters for this configuration of 62 acquisitions and esti-
mated a priori precision, according to (20), was given by

(28)
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Fig. 3. Processed area. The background image shows the mean amplitude of
62 images for the Berlin area. Superimposed are the selected points and the
Delaunay triangulation showing all arcs for which the parameters have been
estimated. A plot of the time series is given in Fig. 6 for the arc in the upper left
corner near Tegel airport, indicated by the open circle.

The order of the parameters is DEM error, linear displacement
rate, amplitude of the sinusoid term, the cosine term, and the
bias of atmospheric origin, indicated in the following overview:

DEM error m
linear displacement mm/year
sinusoid term mm
cosine term mm
atmospheric bias rad

The estimations for the seasonal displacement have been
transformed to a model using

and . An
a posteriori variance factor has been estimated for each arc as

(with the vector of least squares residuals
per arc for all interferograms, and the redundancy).
Estimates for which the a posteriori variance factor have
been excluded from further analysis, in this case 175 estimates.
Fig. 4 shows the histogram of the estimated amplitudes for the
remaining 3616 estimates. Fig. 5 shows the estimated offset
for reliable estimates for which (1571 estimates). Two
peaks can be clearly identified in the histogram, around
and months. Since in our implementation refers
to the first acquisition, which was acquired at May 13, 1992,
this means that the maximum of the seasonal displacement term
for most estimates is around January 13 or June 13. If there is
a correlation with temperature for the seasonal displacement,
then the maximum at June 13 is more likely to be the correct
one. Note that the offset has a very consistent value although it
has been estimated independently for all arcs. The occurrence
of two peaks can be easily explained by considering that we
perform a relative estimation between two points, i.e., the
difference - has an opposite sign as - .

Fig. 6 shows the time series of the interferometric phase for
the arc indicated in Fig. 3. The phase differences are corrected
for the estimated DEM error and linear displacement rate and is

Fig. 4. Histogram of the estimated amplitude A of differential seasonal
displacement for all accepted arcs.

Fig. 5. Histogram of the estimated offset parameter t of seasonal
displacement for accepted arcs with amplitude A > 1.

Fig. 6. Time series of the seasonal displacement phase between two nearby
points. See also Fig. 3. Plotted are the spatial interferometric phase differences,
converted to millimeters displacement in the line of sight, and the estimated
model parameters (amplitude 2.14 mm, offset 0.94 years, i.e., maxima around
June 10). A scaled version of the monthly averaged temperature is shown on
the bottom for comparision (data obtained from the German Weather Services).
The minimum and maximum temperatures are �3:9 C and 23:7 C.

expressed in millimeters by multiplication with . The
maximum relative displacement lies in summer for this arc.

The seasonal deviations from a linear displacement model
are very small for the Berlin area. An alternative to retrieve the
seasonal component in this case, therefore, could be to use the
conventional ensemble coherence maximization method using
a linear model [see (11)] and then to estimate the seasonal com-
ponent from the residual phase with respect to the linear model.

Note also that in order to obtain the displacement parameters
at the points, the estimated difference parameters need to be in-
tegrated. We applied a least squares adjustment and alternative
hypothesis testing algorithm to achieve this, described in [15].
For the Berlin area, no spatial pattern for the seasonal displace-
ment was found.

V. CONCLUSION

The combined bootstrap and integer least squares search
method, introduced in this paper, can be applied to ambiguity
resolution of interferometric data. Both an extended simulation
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and application on real data have demonstrated that this combi-
nation yields a good trade-off between speed and success rate.
The integer least squares method uses the a priori variance-co-
variance matrix of the observed phase (differences), and yields
estimates with the highest probability of correct integer estima-
tion. The developed method is efficient also when the input data
are noisy due to the introduction of a maximum loop count in
the integer least squares search. Further advantages over direct
search methods are that this method yields an exact solution,
and the propagated variance-covariance matrix, describing the
precision of the estimates.
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