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ABSTRACT

The uncertainty of model parameters obtained by full-waveform inversion can be determined from the Hessian of the least-squares

error functional. A description of uncertainty characterisation is presented that takes the null space of the Hessian into account
and does not rely on the Bayesian formulation. Because the Hessian is generally too costly to compute and too large to be stored, a
segmented representation of perturbations of the reconstructed subsurface model in the form of geological units is proposed. This
enables the computation of the Hessian and the related covariance matrix on a larger length scale. Synthetic two-dimensional
isotropic elastic examples illustrate how conditional and marginal uncertainties can be estimated for the properties per geological

unit by themselves and in relation to other units.

1 | Introduction

Subsurface model reconstruction from seismic data with full-
waveform inversion (FWI) has become a routine approach. To
characterise the uncertainty of the model parameters, the classic
approach involves a series expansion around the, hopefully,
global minimum of the least-squares data misfit functional or
one of its many variants (Backus and Gilbert 1970; Tarantola
2005). The locally quadratic cost function around the minimum
is described by the Hessian, assuming the cost or loss function
is sufficiently smooth. The uncertainty can be quantified as
the region in model parameter space where this function stays
below a certain threshold value. The latter is determined by the
inversion accuracy and noise level of the data. The region is
bounded by the ellipsoid where the paraboloid of the quadratic
approximation cuts the threshold value. The principal axes of the
ellipsoid are the eigenvectors of the Hessian, and the reciprocals

of the lengths of the semi-axes are the square roots of the Hessian’s
eigenvalues.

A typical three-dimensional model for finite-difference mod-
elling requires Gigabytes of storage and the associated Hessian
Exabytes. Its direct computation is out of reach, except for
smaller problems (Pratt et al. 1998) or small subsets of points
(Hak and Mulder 2010; Mulder and Kuvshinov 2025; Plessix and
Mulder 2004, for instance). There are many methods that find
some approximation to the Hessian, for instance, by using the
Lanczos algorithm (Minkoff 1996; Vasco et al. 2003), low-rank
approximations (Bui-Thanh et al. 2012; Eckart and Young 1936;
Liu and Peter 2019a; 2019b; Riffaud et al. 2024; H. Zhu et al.
2016) and Kalman filtering (Eikrem et al. 2019; Hoffmann et al.
2024; Huang et al. 2020; Thurin et al. 2019). Crude estimates
can be obtained from methods that estimate ‘true-amplitude’
weights (Chen and Xie 2015; Rickett 2003; Riyanti et al. 2008,
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for instance) or checkerboard tests (Inoue et al. 1990; Lévéque
et al. 1993). Examples of approaches that estimate the uncertainty
without using the Hessian are null-space shuttles (Deal and Nolet
1996; Fichtner and Zunino 2019; Keating and Innanen 2021) and
their generalisations (Meju 2009; Vasco 2007), the Markov-chain
Monte Carlo method (Barbosa et al. 2020; Ely et al. 2018; Fichtner
and van Leeuwen 2015; Guo et al. 2020; Martin et al. 2012;
Piana Agostinetti et al. 2015; Ray et al. 2017, among others), the
Hamiltonian Monte Carlo method (Betancourt 2018; Duane et al.
1987; Fichtner and Zunino 2019; Revelo Obando 2018; Sen and
Biswas 2017; Zhao and Sen 2021), variational inference (Biswas
et al. 2023; Izzatullah et al. 2023; Liu and Wang 2016; Wang et al.
2023; Zhang and Curtis 2020), and machine learning (Qu et al.
2024; Rizzuti et al. 2020; Siahkoohi et al. 2023; Sun et al. 2021), to
mention just a few. Reviews on the subject can be found in the
paper by Rawlinson et al. (2014), geared towards tomography and
in the references mentioned above.

The grid size in FWI modelling is always smaller than the
characteristic wavelength, typically 4-5 grid cells per wavelength.
If a finite-difference scheme on a uniform grid is used, this
value is attained in parts of the model where the (shear) velocity
is smallest and much larger values are reached elsewhere. As
a result, FWI is inherently uncertain at the grid-spacing scale
and small-scale perturbations of model parameters typically fall
within the null space of the full Hessian, having a negligibly small
influence on the cost function. For this reason, the use of the full
Hessian for perturbations of each model parameter in each point
of a finite-difference grid is impractical, even if such a Hessian
can be calculated.

To quantify uncertainty, we must assess it at larger scales.
If we do not eliminate small scales, the uncertainty becomes
formally infinite. However, filtering out small-scale variations
makes the analysis subjective, because the final result depends
on which scales we choose to eliminate. Thus, the question
‘what is FWI uncertainty?’ can only be meaningfully answered
in a relative sense and specifically as FWI uncertainty with
respect to a chosen class of perturbations. This issue is evi-
dent in the description of FWI uncertainty in terms of the
associated Hessian matrix. The Hessian is singular or nearly
singular, with eigenvalues spanning many orders of magnitude.
The uncertainty is governed by the smallest eigenvalues, which
correspond to poorly resolved features. When moving to larger
scales, we effectively eliminate small eigenvalues, reducing the
uncertainty. However, the final result depends on where we set
the threshold. This reinforces the fundamental point: FWI uncer-
tainty is not a single well-defined quantity but must always be
considered relative to the scale and nature of perturbations under
investigation.

One approach to specify larger subsurface blocks is to segment
the model, resulting from FWI, into geological units that define
parts of the subsurface of a similar rock type. The model subspace
consists of model parameters that are defined as perturbations
of the original model and are, in the simplest case, piecewise
constant within each unit. This restriction to a lower-dimensional
space results in a compression of the Hessian with a smaller
size than the original one. The size of a unit influences the
uncertainty estimates, and we examine its effect by a number of
examples.

From a mathematical point of view, Poincaré’s separation the-
orem (Gradshteyn and Ryzhik 2000, for instance) describes the
relation between the eigenvalues of the Hessian before and after
projection. Here, the projection is similar to the compression but
mapped back to the original space. In this way, the projection
operator still acts on the same subspace but is defined as a map
from the original space to itself. In the numerical examples,
the projection replaces perturbations by their average inside
a unit and acts as a spatial high-cut filter removing shorter
wavelengths from the model. Our approach is similar to a
common operation in the multigrid method, originally designed
as an optimal numerical algorithm for solving elliptic partial
differential equations by using a sequence of discretisations on
grids with different scales (Hackbusch 1985; Mulder 2021). It also
bears some similarity to spectral coarse graining of graphs (Gfeller
and Rios 2007). Our method involves dimensionality reduction
and, in that sense, is similar to other approximation methods,
referenced earlier, that do not construct the full Hessian.

Section 2 reviews the basics of the Hessian computation and
uncertainty estimation. We treat the minimisation problem as
a projection of the observed data on the hypersurface formed
by the model range in data space. With a proper choice of the
weight in the cost functional, the covariance matrix character-
ising uncertainties induced by noisy data is proportional to the
pseudo-inverse of Hessian. The covariance matrix characteris-
ing uncertainties that appear due to imperfect minimisation is
proportional to the square of the pseudo-inverse of Hessian.
Both types of uncertainties can be analysed in the same way,
and without loss of generality, we consider uncertainties of the
former type only. The Hessian is calculated in the Gauss—Newton
approximation. Appendix A explains how to find the Hessian
using the adjoint-state method. Appendix B explains how to
combine Hessian in the case where one has several independent
datasets.

Our approach is different from the standard one, described by, for
instance, Tarantola (2005), in two respects. First, we do not rely
on the Bayesian formalism nor do we specify a particular shape
of the data noise distribution, such as Gaussian. All calculations
are made in terms of covariance matrices. This approach is
motivated by the fact that, in practice, we want to know the
region of uncertainty inside which the model parameters lie
within a specified level of confidence, instead of the exact prob-
ability for model parameters to have certain prescribed values
— which cannot be reliably evaluated anyway. The geometry of
the confidence ellipsoid, which represents the uncertainty range,
is primarily influenced by the covariance matrix derived from
the noise distribution rather than the noise distribution itself.
Secondly, our derivations are more general, compared to what
can be found in the geophysical literature. The matrices we are
dealing with are intrinsically singular, and we therefore use the
Moore-Penrose pseudo-inverse rather than the inverse.

The intersection of the confidence ellipsoid with a hyperplane
in the model-parameter space provides a lower-dimensional
ellipsoid. This smaller ellipsoid is described by the compressed
Hessian, which acts only on those components of model vectors
that lie in the hyperplane. The compressed Hessian can be
constructed by partitioning the original Hessian into two parts,
as described in Appendix C. The construction of the compressed
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Hessian in the general case requires an operator that maps the
solution from a fine to a coarse grid. As already mentioned,
such an operator is called restriction, and the reverse operator
is called prolongation. Section 3 explains how to choose the
restriction operator, depending on the desired grouping of the
model parameters. In particular, restriction operators can per-
form averaging over a set of model parameters, corresponding to
high-cut filtering in the wavenumber domain.

In Section 4, we consider a series of two-dimensional models,
starting with a 2D homogeneous acoustic model for which
the Hessian can be found analytically, a 2D isotropic elastic
model with a horizontally layered model with a numerically
computed Hessian, and another 2D isotropic elastic model. In the
examples, we consider a constant relative perturbation of each
model parameter prescribed per geological unit. However, the
background model obtained by FWI does not have to be constant
inside the unit. Also, in the case of finite-difference modelling,
grid points belonging to the same unit might be disconnected,
even when the unit itself is a connected set. Its interior grid
points may still exhibit gaps near, for instance, dipped sharp
pinch-outs. We examine the effect of the projection on the null-
space components and overall uncertainty estimates, both for the
conditional and marginal cases.

2 | Framework to Quantify Full-Waveform
Inversion Uncertainties

We will analyse the full-waveform inversion (FWI) uncertainty
based on the reconstructed model, assuming that FWI has
converged to the global minimum, although in the numerical
examples, we will instead use synthetic models created for the
occasion. The uncertainty of a model parameter is evaluated
from the condition that the norm of the perturbations in the
modelled data due to model perturbations is the same as the
norm of the expected noise in the observed data. This norm of
the perturbed modelled data, which by themselves are supposed
to be free of noise apart from unavoidable numerical noise,
has a quadratic dependence on the model perturbations, and
it is characterised by the Hessian. We review the role of the
Hessian in uncertainty analysis and explain its relation with the
covariance matrix. We then introduce the confidence ellipsoid
and explain the geometrical meaning of the conditional and
marginal uncertainties. Conditional uncertainties follow from
subsets of the Hessian and marginal uncertainties from subsets
of its pseudo-inverse, the covariance matrix.

2.1 | Sources of Full-Waveform Inversion
Inaccuracies

FWI reconstructs a subsurface model parameterised by a vector
m by minimising a cost functional

2(m) = = [[u(m) - dy [l W

measuring the difference between modelled data u(m) and
observed data d,. Here, S, is an operator that samples the
wavefield u at the receiver locations for each shot. The modelled

Figure 1 | Ellipses show points in the data space that are equidistant
from noiseless data d, with respect to some metric W. The cost functional
(1) with noiseless observed data d, is minimised by projecting d, on the
range of the forward operator u, which gives the least-squares solution u,
of the inversion problem for model parameters m,. The ellipse passing
through u, is tangent to the model hyperplane u. If the observed data
d,,s contain noise, the solution of the minimisation problem shifts to the
pointu,,s. That point can be estimated by projecting d,,s on the linearised
model range, which is shown by the red dashed line and is given by u =
u; + F(m — m,), with F = V,u(m,) the Fréchet derivative of the data
modelling operator.

data u are found by solving a partial differential equation
Lv,m)=1f 2

for v(m), for a given model m and source f, and comparing
u=S,v with d,,, at the times and positions where the data
were acquired, using the sampling operator S,. The L,-norm in
Equation (1) is defined by the inner product, |[u(m) — d0b5||%v =
[u(m) — d g, ]"W[u(m) — d,,], where W is a weight matrix,
accounting for weighting in time, frequency, offset, depth, etc.,
and the superscript ()" denotes the transpose. The weight matrix
W is positive definite and plays the role of a metric tensor in the
data space.

Let m, be the parameters that represent the, hopefully, global
minimum of the cost functional X in the absence of noise. The
corresponding noiseless observed data are denoted by d,. Levels
of constant % lldps — doll%, form a family of nested ellipsoids in the
data space. The model range, that is, all possible values of u(m) =
S.v(m) with v satisfying Equation (2), forms a hyperplane in
the full data space. This hyperplane is tangent to one of the
ellipsoids at the point u, = u(m,) that is obtained by projecting
d, on the model range u(m). The remainder X(m,) = i |la(m,) —

dyll3, involves data that the modelling operator u(m) cannot
explain. The inverted model parameters might be different from
m, due to reconstruction errors. Another reason is that actual
observed data d,,, contain ambient and instrumental noise, and
its projection u,,, on the model range is not the same as u, as
Figure 1 illustrates.
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2.2 | Hessian and Covariance

In what follows, we consider the inversion problem in the
vicinity of u,, where the model can be linearised as u =u, +
F(m — m,). Here, F = V_,u(m,) is the Fréchet derivative of the
modelling operator, which can be computed by perturbing model
parameters individually and recording the corresponding data
perturbations for all shots and receivers. The cost functional and
its derivative expand in the Taylor series around m, as

X=X+ %(m —my)"H(m — m,), 3)

VX = Hm — my), 4

where H is the Hessian, describing the second derivatives of
the cost functional with respect to the model parameters. In
the Gauss-Newton approximation, the Hessian follows from
weighted dot products of the full datasets for each perturbation,
summing over all receivers for all sources, and it is equal to H =
F'"WF.

Appendix A describes the adjoint state method for calculating the
Hessian in the more general case. For a given value of VX, the
minimum-norm solution of Equation (4)is §m = H'V_, X, where
dm = m — m, and the superscript T denotes the Moore-Penrose
pseudo-inverse. If the misfit function only depends on the data,
possibly by ignoring penalty terms, the Fréchet derivative of the
misfit function with respect to the model can be factored into
VX and the F= V_ u used here. The first will be required
as input for the reverse-time part of an adjoint-state gradient
computation in FWI, and should therefore be available. With
these building blocks, the implementation of our method should
be straight-forward for more general cost functions that involve
time adaptivity (Bharadwaj et al. 2016; Bozdag et al. 2011; Jiao
et al. 2015; van Leeuwen and Mulder 2008; Warner and Guasch
2016) or optimal transport (Engquist and Yang 2022; Métivier et al.
2018).

If random vectors Y and X are related linearly as Y = LX, their
covariance matrices Cy and Cy satisfy the equation Cy = LCyL".
If the gradient of the cost functional does not vanish exactly for
the inverted model parameters but has a random distribution
with covariance matrix Cy, the deviation dm of the inverted
model parameters from m, has a random distribution with the
covariance matrix

Cox = (H) CuH = c2(H) = o2 (H2)". ©)

Here, we have taken into account that the Hessian is symmetric
and assumed that Cy is a diagonal matrix with all elements equal
to o3,. We represent the weight matrix W in the form W = V'V
and use the normalisations @t = Vu, d = Vd. The normalised
data space has the Euclidean metric, where the L, norm is
defined as |Ju — d||*> = (& — d)"(&a — d). The normalised difference
between the inverted modelled data with and without noise
Sy, = Vd,ps, where dd,,s = u,ps — U, is equal to the normal
projection of &d,,, = V8d,,, on the range of matrix F = VF.
Taking into account that the normal projection operator on the
range of F is equal to F E', we obtain i, = FFidd,,, or Fém =

FF'8d,,.. The minimum norm solution of this equation is §m =
FFEFSd,, = F1od,,, = (VF)'V&d,,,. Similarly to Equation (5),
we conclude that in the case where dd,,, is distributed with
the covariance matrix C4, the value dm is distributed with a
covariance matrix

Coa = (VE) VC,V' (VF) . 6)

If the reconstruction inaccuracies due to variations of VX and
noise of the observed data d, do not correlate with each other,
the value dm is distributed with a covariance matrix equal to the
sum of covariances C,, y and C,,, 4.

According to Aitken’s (1935) generalised least-squares method,
a best unbiased estimator is obtained when the weight matrix
W in the cost function is chosen in such a way that VC;V' =
o1, where I is the identity matrix, and o is the proportionality
coefficient. This condition is satisfied if Cy is invertible and V =
o dCQI/ ?. With this choice, we obtain C,, 4 = o2 (VF)' [(VE)] =
o2 [(VE)(VF)]' = 2(FF'WF)' = o?H'.

In what follows, we assume that the main contribution to FWI
uncertainties comes from the noise in the observed data so that
the covariance matrix is proportional to H'. The case where
the uncertainties are mostly due to inaccurate inversion can be
analysed in the same way, using H? instead of H.

2.3 | Confidence Ellipsoid

Let H=USU" be the singular value decomposition of the
Hessian, with singular values defined by the vector s and S =
diag(s), so that Sm is distributed with the covariance matrix C,, =
O’iUS+UT. If H has M non-zero singular values, the vectors s and

oth = 07'S1/2USm @)

have M non-zero components (or components with amplitude
exceeding the numerical accuracy), which are distributed with a
unit covariance matrix. Consider the scalar { = S§m"H ém/o? =
St'émh = §m’ + .-+ + 8m;,. By construction, ¢ is the sum of
squares of M independent random variables with zero average

values and unit standard deviations 012. = Var(§m;) = <5rflf> —

<5rf1 ; >2 = 1, where the angular brackets denote averaging. Indi-
vidual squares are distributed with the variances Var(5rf1]2.) =

2
<5 mj> - <6rﬁ}2> = x0’. The proportionality coefficient x in the
above equation depends on the actual distribution of the dm;.
Given the large number of model parameters, the central limit
theorem implies that ¢ is distributed normally with mean value
M and standard deviation (xM)'/2. The probability that ¢ does not
exceed the value ¢, equals

P <4 = 2[1+erfla{(C/M) ~ 1D, a=VM/@0), (8

where erf(-) is the error function. For a normal distribution,
where <5rf¢;‘> = 30}‘ and x = 2, Equation (8) follows from the
chi-squared test in the limit M > 1.
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Figure 2 | Solid lines show how the confidence interval p(¢ < ¢.)
depends on ¢./M for o =5,10,50. For normal distributions, p(¢{ <
)= Jy xS, where x3,(§) = (M2 /[2MPT(M/2)] i the
chi-squared distribution. The cumulative distribution function for )(1%/1
with M = 100 is shown by open circles, and it is well approximated by
Equation (8) with a = 5.

Figure 2 illustrates the behaviour of p(¢ < ¢.) and shows that
Equation (8) provides a good approximation for exact dis-
tributions if a > 5. The function p({ <{.) exhibits a jump
when crossing the point {. = M, which becomes sharper with
increasing M. For typical subsurface modelling, the solution of
equation p(¢ < ¢,.) = p, can be approximated by ¢, ~ M for any
D, that is not too close to 0 or 1. This happens because of the high
dimensionality of the problem. If points are randomly distributed
inside an M-dimensional ellipsoid with M > 1, most of them are
located near the ellipsoid boundary.

Let D be the number of data samples used for FWI. The energy
of the noise present in the data is éédT5d = %ajD. Using this

relation, we write the condition {, < M as
iSmTH Sm<¢, & =cM/D)E, )

where £ = d"d/2 is the energy of the measured signal and ¢ =
dd'6d/d"d is the ratio of the noise energy to the signal energy.
Inequality (9) can be interpreted as follows. If the noise is
distributed uniformly over the data space, its energy per degree
of freedom is equal to €£/D. Since the modelled data form a
subspace of dimension M in the data space, the energy of noise
that is projected on the range of the linearised modelling operator
(dashed line in Figure 1) isequal to g, = e(M /D)E. This part of the
noise introduces uncertainty in reconstructed model parameters,
which is described by condition (9). The remaining noise lies in
the space complementary to the model range, and it changes the
minimal residual of the cost function X — X,), but not values of
the model parameters where the residual is minimised.

Inequality (9) defines a confidence ellipsoid in the model param-
eter space, which contains viable solutions to the minimisation
problem. The confidence ellipsoid provides a complete charac-
terisation of uncertainty in the linear approximation. However,
even if the Hessian is known, analysis of the corresponding

6m2

Conditional

Marginal

Figure 3 | The conditional uncertainty range of the parameter m,;
is the interval between points A and B, where the dm;-axis crosses the
confidence ellipsoid. The marginal uncertainty range of parameter m; is
the interval between points C and D, which is the projection on the dm; -
axis of the confidence ellipsoid. The conditional and marginal uncertainty

ranges of §m, are proportional to 1/1/h;; and to 4/ hI 1» respectively.

ellipsoid is difficult because of the high dimensionality of the
model space. This dimensionality can be reduced by projecting
the ellipsoid on specific hyperplanes in the parameter space and
by considering its intersections with these hyperplanes. Figure 3
illustrates the procedure. We introduce axes dm,, dm,, ... in the
parameter space. The components of a vector along these axes
are equal to perturbations of the corresponding model parameter.
The set of axes dm,, Sm,, ... that does not include the axis dm, is
denoted by dm,. Points lying on axis dm, satisfy the condition
dm, = 0. The range between points A and B, where the axis dm,
intersects the ellipsoid, represents the conditional uncertainty of
the parameter dm;, that is, the uncertainty range of dm, under
the condition that all the other model parameters are fixed.

The conditional uncertainty of §m, is described by the inequality
dmyH,;6m, /2 < g,. It provides the smallest uncertainty bound
for this parameter: |dm, | < (Zso/HH)l/.

The largest uncertainty bound - the marginal uncertainty —
describes the case where changes in the cost function associated
with a given model parameter are maximally compensated
by varying other model parameters. The marginal uncertainty
is obtained by projecting the ellipsoid on the parameter axis
considered. In the example illustrated by Figure 3, the marginal
uncertainty of parameter m, is the range between points C and D,
where the lines (actually, hyperplanes) §m, = const. are tangent
to the ellipse. At point E, m, reaches its largest value.

In general, we can consider the problem of finding u; = max(ém;)
subject to P = iémTH dm =¢,. The Lagrangian L(dm,A) =
om; — A(¥ —¢,) has a derivate 0£/d6m; = §;; — A(HOm); that
should vanish. Defining v = Hdm, this leads to v; = §;;/4 and
dm; = (Cv); = ¢; /2, for the pseudo-inverse C = H'. Then, 3 =
éémTv = éémi//l = éc,-i//l2 =¢,. The positive solution for A

yields y; = (Zsoc,-,-)l/ for the maximum of §m;, and the minus sign
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produces the minimum. The resulting the marginal uncertainty
range is [6m;| < [ZEO(H"')”]I/.

Instead of extracting a single model parameter m,, one can split
the vector m into two complementary parts m = (m;, m,)". The
Hessian is partitioned accordingly as

H, H
H= 11 12> (10)
<H21 H22

and acts on (6m,,dm,)". As is explained in Appendix C, the
action of the Hessian on the vectors can then be represented by
a sum of two terms, given by Equation (C.6). The Hessian block
H,; describes the conditional uncertainties of the parameters m,,
assuming the parameters m, are fixed. The combination of Hes-
sian blocks H,, — H,,H| H,, describes the marginal uncertainty
of the parameters m,, where one sets dm, = —H| H ,dm, to
compensate for changes in the cost function due to variations of
parameters m,.

3 | Restriction and Compression
3.1 | General Formalism

Instead of a model with n parameters, we can consider its
restriction to a subspace with dimension r < n. An arbitrary
restriction operator can be represented by an r X n matrix Q,
whose rows q; with j = 1,2, ..., r are linearly independent vectors
in the n-dimensional parameters space. The action of the Hessian
on those components of m that do not lie in the space spanned
by vectors q;, that is, the range R(Q") of Q', is ignored. This is
equivalent to the condition that the model parameter vectors m
lying in the null space N'(Q) of Q are fixed.

Theorem 1. The projected Hessian H, = PHP and the com-
pressed Hessian H, = QHQ' have the same eigenvalues. The
corresponding eigenvectors can be mapped to each other by Q' and
Q, respectively, apart from null-space components.

The n xn orthogonal projection operator P, defined on the
subspace with dimension r < n spanned by the row-vectors of Q,
isequal to P = Q'Q.

The n x n projected Hessian H,, is defined by the condition that
its action on parameter vectors m is the same as the action
of the original Hessian H on projected parameter vectors Pm,
that is, m"H,m = (Pm)"HPm. This requirement implies H, =

Q'QHQ'Q = PHP.

We also introduce the rxr compressed Hessian H_. such
that m{H.m, = m"H,m = m{QHQ'm,, where m_ is an r-
dimensional vector defined by the equation m, = Qm. The
minimum-norm solution of the above equation is m = Q'm,,
which shows that Q is the prolongation operator.

The compressed Hessian H, is expressed via H and H,, as H; =
QHQ' = QH,Q", where we have used the following properties of

pseudo-inverses: QQ'Q = Q and Q'QQ" = Q.

PROOF. An eigenvector v’ with eigenvalue A’ of the compressed
H_ obeys QHQ'v' = 1'v’. Since PQ" = Q', we have Q' QHQ v’ =
H,(Q'v) =2 (Q'v"). The other way around, consider HPV =Av
and note that v lies in the range of P and, therefore, of Q". Then,

QH,v = (QHQ")(Qv) = H.(QV) = 4(QV). O

3.2 | Compression With Semi-Orthogonal
Matrices

As mentioned above, the operator P projects vectors on the space
spanned by rows of the restriction matrix Q, which is the same
as the range R(Q") of the transposed matrix. The matrix Q
can be constructed such that its rows q; form an orthonormal
basis in R(Q"). Then, Q" = Q" and QQ" =1,, where I, isar xr
unit matrix. The corresponding n x n operator P = Q'Q projects
vectors on the same subspace of the model space as the original
operator P.

Theorem 2. Given a real symmetric matrix A of size n X n with
eigenvalues 1;, i = 1,2, ..., n, sorted in descending order. The semi-
orthogonal r X n matrix Q, with r < n, defines its restriction to an
r-dimensional linear subspace and obeys Q Q" =1,,, where I, is
the r X r identity matrix. Then, the eigenvalues ;, i = 1,2, ...,r, in
descending order, of B = QAQ" obey

i=1,2,..,r. 1)

The compression m. = Qm with semi-orthogonal matrix Q can
be viewed as a map to a lower-dimensional space. The projected
Hessian H,, and the corresponding covariance matrix C, = H; are
transformed as H, = QH,Q" and C, = QC,Q". By the definition

of the Moore-Penrose pseudo-inverse, C,H,C, = C,, H,C,H, =

T T
H,, (H,C,) =H,C,, (C,H,) =C,H,. Also, C,H, = P. It can
be verified that the compressed matrices H, and C, also satisfy the
above four properties. Hence, if Q is semi-orthogonal, the pseudo-
inverse of the compressed Hessian is the same as the compression
of the projected covariance matrix: H = QC,Q".

Semi-orthogonal matrices allow for the application of Poincaré’s
separation theorem (Gradshteyn and Ryzhik 2000, for instance),
which relates the eigenvalues of a given real symmetric matrix
of size nxn to those of its compression to a subspace with
dimension m < n.

The theorem implies that the eigenvalues of H, and H, are not
larger than the eigenvalues of the original Hessian H.

Poincaré’s separation theorem is not applicable to the covariance
matrix C, in relation to H because the pseudo-inverse of the
projected Hessian H,, is not the same as the projection of the
pseudo-inverse of the Hessian H, that is, C, = H:, # PH'P. This
can also be understood from a heuristic point of view because
restricting the types of possible perturbations also limits the
opportunity to find a combination where such perturbations
maximally compensate each other.

An alternative way to determine the marginal uncertainty
of a parameter m, that represents a geological unit is the
following. Choose a dm; = Am; and minimise the cost func-
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tional on the original model over all parameters while keep-
ing dm; = Am, fixed. The minimum is reached at dm, ;, =
(6My min> M3 in, --.)", and the value of the cost function at the
minimum is X, = X(Am;, dm, ;). If &, = 0 in Equation (3),
the quadratic behaviour of X(dm) = %5mTH dm =¢, in dm,
can be used to rescale X, to X(dm), resulting in a marginal
uncertainty |dm;| < (ao/z\’mm)l/ |Am;|. In Figure 3, the ellipse
described by X, = X(Am;,dm,,,;,) would be an enlarged or
shrunk version of the original ellipse given by X(dm) = ¢, and
the rescaling would make them the same.

3.3 | Construction of Semi-Orthogonal Restriction
Matrices

The simplest way to construct a semi-orthogonal restriction
matrix Q is to specify its rows as q; = (1,0,...,0),q, = (0,1, ...,0),
so that j-th vector q; has a single non-zero j-th component
equal to 1. The corresponding compressed Hessian H_ is the r X r
upper-left block of the original Hessian H, which characterises
conditional uncertainties of first r model parameters. One can
also choose q; with r arbitrary indices j, with 1 < j < n. In that
case, the compressed Hessian consists of the elements of the orig-
inal Hessian formed at the intersections of rows and columns for
the selected indices. More generally, a semi-orthogonal restriction
matrix Q can be constructed from arbitrarily chosen rows from an
orthogonal matrix.

Orthogonal matrices with unit determinants act as rotations. A
rotation in n dimensions can be described by the pivot axis &,
and a unit (n — 1)-dimensional ‘pull’ vector 5 = (1,72, - n_1)"
in the plane perpendicular to & (Hanson 1995, Equation 7). The
coordinate axes are transformed in such a way that the pivot axis
¢ rotates towards 7 by an angle 6 in the plane formed by & and
7. In the case where the pivot axis is the last coordinate axis, the
matrix R" that performs the above rotation has the form (Hanson
1995)

1-r; —r —Fin-1 =S8N
—ry;  1-=ry, —Tn-1 —57)>
R = . (12)
—Fpn “Tnoip e 1=Tp,0 =Sy
S 512 SUN-1 ¢

Here, r;; = (1 —c)nm;, ¢ = cos® and s = sin0. Rows of R' are
coordinates of the new coordinate axes in the original coordinate
systems. The transpose of matrix (12) is commonly called the
rotation matrix R (fixed coordinate system rotation), and it relates
point coordinates m’ in the rotated coordinate system to the
original coordinates m by m’ = Rm.

As an example, consider a 2D coordinate system where the pivot

axis ¢ = e, rotates outwards the ‘pull’ vector = e, over an angle
/4. Setting © = —7r /4 in Equation (12), we have

R = é (_1 1) . (13)

If the matrix Q is chosen as the first row of R", the compressed
Hessian H, acts along the first axis of the rotated coordinate

system where dm, = dm,. Figure 4a provides an illustration of
the cost function near the minimum if two parameters m, and
m, are involved. If the noise level is set to X, = 1, the cross
section X = X, through the paraboloid defines an ellipse.
Figure 4a displays the values X < X ;.. If one parameter is fixed,
in this case, the value of m, at the minimum of the cost function,
the conditional probability distribution measures the width of m,
inside the ellipse, whereas the marginal distribution describes the
outer bounds of m, on the ellipse, as shown in Figure 4c. The
line segment between the two small open circles in Figure 4c,
which falls inside the original confidence ellipse, represents the
compressed confidence range. This segment has a length between
the shortest and longest axis, illustrating Poincaré’s theorem.

Another approach to construct Q, used in Section 4 is the
following. The computational domain is partitioned into several
disjoint subsets of model parameters. The number of model
parameters in the j-th set is denoted as M;, and the set of their
indices is denoted as S;. The j-throw of Q is defined as q;, =
1/4/M;ifk € S;and g, = 0ifk & S;. For example, the selection
of two sets of model parameters {m,, m,, m;} and {m,, ms} out of
a larger set results in the restriction matrix

1 1 1
Q=Z§Z§Z§ M Z 14)
75 75 oes

In this case, the compressed Hessian represents perturbations for
which the model parameters within the same set are changed by
the same value.

We can also construct a compressed Hessian that describes
perturbations with certain spectral properties. In particular,
filtering out small-scale perturbations bears some similarity to
the homogenisation method (Cao et al. 2024; Capdeville and
Métivier 2018; Cupillard and Capdeville 2018; Gibson et al. 2014;
Owhadi and Zhang 2008). Another approach is to compose
Q from rows of discrete cosine or sine Fourier transforms
(Fichtner and Trampert 2011b). If n is a power of 2, the Walsh-
Hadamard matrices with entries equal to +1/ \/ﬁ can be used
to define Q (Fino and Algazi 1976; Thompson 2017). Hessian
compression with Hadamard matrices is conceptually the same
as filtering in the wavelet-domain representation. If we denote
the v-thcolumn of the 29-dimensional Walsh-Hadamard matrix
by vf,q), the column vectors vf,q) can be constructed as fol-
lows (Ben-Artzi et al. 2007). Starting from a one-dimensional
vector vgl) whose single component is equal to 1, 2D Walsh—
Hadamard vectors are obtained by joining the components of
vil) with plus and minus signs: VEZ) =(1,1)" and vf) =(1,-1)".
(0]

From the 2/-dimensional vector v,’, two 2/*'-dimensional

oo

U7 _ o ON 1y Oy
vectors are constructed by Vyr = [(v)") ,(=1)" (v;") ], and

. T R .
vg#”) = [(v,(] (=1 (v,(] ))T]. We then can introduce the Walsh-

(@)

Hadamard restriction matrices Q,, with dimensions 2P~¢ x 2°

D,V
as
§
vi9 0 .0
1 0 (@7

Gh=gxl. T : as)

§

0 0 v
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Figure 4 | (a) The cost functional X(m,, m,) for two parameters has the shape of a paraboloid near the minimum at (mg 1, my5). Its map view
(b) shows the conditional and marginal uncertainty for given m, = my, for a threshold value € = 1. (c) The eigenvalues of the Hessian describing the
paraboloid correspond to the axes of the ellipsoid. The dotted lines indicate the coordinate axes after a 45° rotation. The projection on the subspace

defined by m; — mg; = m, — my , is the line segment between the two white dots, where the line intersects the ellipse. It has a length in between that

of the shortest and longest axis.

where vf,Q) is the Walsh-Hadamard vectors constructed above.
Restricting the 27 x 27 matrix H with Qgﬂ), is the same as (spatial)
frequency filtering. The Fourier domain of H is split into 2P~4
blocks of equal length, and the action of H is restricted by vectors

lying in the v-th Fourier block.

4 | Examples
4.1 | Computation of Perturbation Data

The Gauss-Newton approximation of the Hessian provides the
same result as the Hessian for a modelling operator based on its
Born approximation. The computation of Born scattering data
for each model perturbation with, for instance, a finite-difference
code, involves the simultaneous solution of two (systems of)
equations. The partial differential equation (2) can be split into
L(mgy,uy) =f for the background wavefield u, = u(m,) and
L(my, du) ~ —[0L(my,u,)/0m]ém for the scattered field du,
thereby doubling the compute cost. The Born approximation is
usually applied to models that are split into a smooth background
model that does not provide scattering in the frequency band
of interest, and rough components that define the reflectors
(Tarantola 1984; @stmo et al. 2002). In our case, the background
model is assumed to be the full-waveform inversion (FWTI) result
and the perturbation data may contain free-surface and interbed
multiples.

For the two-dimensional isotropic elastic examples shown later,
we use a Taylor series approach, which requires the computa-
tion of £L(m,,u;) =f with m;, = m; + ¢ dm and provides du ~
(u; —uy) /e. In that case, the receiver data for the background
wavefield S,u,, with sampling operator S,, only have to be
computed once for all model perturbations. While this avoids the
doubling of the cost, the choice of ¢ is critical. If too small, the
data will be severely affected by numerical noise and round-off
errors. If too large, non-linear effects will appear. Nevertheless,
we have used this method for the 2D isotropic elastic examples
that are shown later. The elements of the Hessian follow from dot
products between data for different perturbations (Mulder and
Kuvshinov 2025).

According to Equation (13) of Huang (2023), the Born
approximation in the scalar constant-density acoustic case
produces scattering data of the form G;(x,x')-GO(x,x') =
fQj dx” GOx,x")V,;(x")GO(x",x'). In our setting, the full

domain Q = U;"Zl €Q; is partitioned into m disjoint subsets Q;
and the perturbation V;(x) has a unit amplitude inside Q;
and is zero elsewhere. The Taylor series approach yields an
approximation somewhere in between the Born approximation
GOG® and the GG of Equation (19) in Huang (2023), known
as the Dyson equation in quantum mechanics or as the primary-
secondary formulation in controlled-source electromagnetics.
The differences between these three should be small for small
perturbations, in the order of percent, implying the implicit
assumption that the uncertainties are also small, of the same
order of magnitude.

In practice, it is more convenient to work with relative perturba-
tions of the form

(6m);

0,i

m; = my; <1 + > = my, (1 + 8logm), (16)

for all model parameters enumerated by i. This will rescale
the Hessian by diag(m,)H diag(m,), with diag(m,) the diagonal
matrix with values m,;. Here and in what follows, we simplify
the notation and will use m; to denote the relative perturbation
6 log m;. The Hessian is assumed to be scaled accordingly.

4.2 | Two-Dimensional Homogeneous Acoustic
Problem

We start with a Hessian for the 2D constant-density acoustic wave
equation, computed analytically in the frequency domain with
the exact Green functions. The model has a density of p = 2 g/cm
* and a P-wave velocity of v, = 1.5 km/s. We choose a 15-Hz
Ricker wavelet and only consider frequencies from 4 to 30 Hz at
a 0.5-Hz interval. The Hessian is computed on a regular grid in
a subdomain defined by x € [-250,250] m and z € [750, 1250]
m with a 5-m spacing. Sources and receivers are located at
zero depth with lateral positions x, € [—887.5,887.5] m for the
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Figure 5 | Action of the Hessian on a scatterer at (x, z) = (0, 1000) m, for a perturbation m; = & log[1 /(pvﬁ,)], shown in (a) and (b), or a perturbation

m, = & log(1/p), shown in (c) and (d).

shots and x, € [-900,900] m for the receivers, both with a 25-m
spacing.

Figure 5 displays two ‘lines’ of the Hessian, the response
of a scatterer at the centre of the domain, at x =0 m and
z =1000 m, for either a perturbation m, = §log[1 /(pvﬁ)], in
Figure 5a, b, or m, = §log(1/p), in Figure 5c,d. The imprint of
the Ricker wavelet is visible in the vertical direction, whereas
longer wavelengths appear in the horizontal direction. As is
clear from these images, the finer scales at the level of the 5-
m grid spacing are not resolved, and we expect a large null
space.

Figure 6a displays the eigenvalues of a subset of the Hessian
as a black line, for 100 x 100 points instead of 101 x 101,
dropping the results for positions at the highest value of x
and of z. The reason for taking a subset is that is easier to
build its projections by combining 2 X2 or [ ] points inside
small squares of the grid. The resulting eigenvalues are shown
as red and blue lines, respectively. All curves are scaled by
the maximum eigenvalue for the original grid. On the latter,
less than 3500 of the 20,000 eigenvalues are not zero, taking
107'¢ as a rather small threshold. When projected to groups
of 2Xx2 points, about 3000 of the 5000 are not zero. For
groups of 4 x4, about 1200 of the 1250 eigenvalues are not
Zero.

This shows that the projection helps to remove the null-space
components, in particular, sub-resolution model features that
cannot be reconstructed from the data and have an infinite
uncertainty. We also observe that the projections do not increase
the eigenvalues, in agreement with Poincaré’s theorem. Alter-
natively, by stretching the horizontal axis for the compressed
case, we obtain results that are closer to the original black curve,
in particular for the 2 X 2 compression represented by the red
curve in Figure 6b. This behaviour is expected as long as the
group of grid points lies in a Fresnel zone and their responses
add coherently.

4.3 | Two-Dimensional Ocean Bottom Node Data,
One-Dimensional Isotropic Elastic Model

Figure 7a displays a deep-water 1D isotropic elastic model, in
terms of density p, P-wave velocity v, and S-wave velocity v,. For
the computation of the Hessian, the water layer, down to a depth
0f 1400 m, is described by a constant density and water velocity. In
reality, they will vary with temperature and salinity and column
pressure and abrupt depth changes such as a thermocline layer
may even produce reflections in the seismic bandwidth. For the
deepest layer, beyond 4700 m, the three elastic parameters are
also assumed to be constant with depth. The grid spacing for
2D finite-difference modelling was set at 10 m. The parameters
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for the water layer and the deepest were assumed to be known,
leaving 3 X 330 = 990 model parameters on the 10-m modelling
grid. A total of 161 shots were fired at a depth of 10 m and
horizontal offsets from 0 to 8000 m at a 50-m interval, using an
8-Hz Ricker wavelet. For the receiver at the sea bottom, only the P-
data were used with a recording time of 10 s and a 4-ms sampling.
Reciprocity was applied for modelling. A free-surface boundary
condition was imposed.

Figure 7b shows the eigenvalues of the Hessian as a black line.
As already mentioned, the water and deepest layer were ignored.
The result was not scaled by the number of points in the x-
coordinate. When the 330 points were coarsened by combining
adjacent depth pairs, the compressed Hessian has 3 x 330/2 =
495 eigenvalues, drawn in red. When 4 points in depth are
combined, the last layer has only 2 points combined, and there
are 249 eigenvalues, drawn in blue. In the last case, the null-space
components have effectively been removed. Because the uniform
finite-difference grid is much finer than the resolvable scales at a
larger depth, the null space is expected to have a substantial size.
Figure 7c shows a subset of the same eigenvalues but with the
horizontal axis stretched.

Figure 8 displays three types of uncertainty estimates. The first in
Figure 8a is the conditional one, obtained by fixing all parameters
and selecting one value on the main diagonal of the projected
Hessian H,, and finding o, from %ak hy 10y = € X, withe' =107
and X, the data energy in the reference or background model.

We have plotted the results for the projected Hessian H,, rather
than the compressed H,, because the former is defined on the
original model space. Appendix D offers a pictorial description of
three ways to map uncertainties obtained from the compressed
Hessian to the modelling grid, using Q, simple copies, or
estimates from H,,. The latter is more suitable when the geological
units are small, and null-space components dominate, causing
ellipsoids to be elongated in the direction perpendicular to that
of the compression, as illustrated in Figure Alc.

With the chosen restriction operator, the projection with H,
replaces the original model perturbations by their average in each
segment. This can be easily seen by an example. Consider the
compression operator from Equation (14) and a diagonal Hessian
H with diag(H) = (a, a, a, b, b)T and zeros elsewhere. Then, H_ is
diagonal with diag(H,) = (a, b)" and
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a/3 a/3 a/3 0 0
a/3 a/3 a/3 0 0
H,=|a/3 a/3 a/3 O 0
0 0 0 b/2 b)2
0 0 0 b/2 b2

The Hessians H, H, and H,, share the same eigenvalues a and b,
but for H they are repeated 3 and 2 times, respectively, whereas
H,, has three zeros because of the repeated entries in the matrix.

The second type of uncertainty estimate in Figure 8b is partially
conditional, fixing parameters everywhere except at one depth,
and plotting the diagonal of the local covariance matrix. This
amounts to selecting one 3 x 3 block of the Hessian for each point
and extracting the diagonal of its inverse. Figure 8c shows the
marginal uncertainty, based on the diagonal of the covariance
matrix for the full problem.

The uncertainty increases with depth, as expected, and also after
projection to the lower-dimensional subspaces. The marginal
uncertainty is very large but decreases after projection when null-
space and near null-space components, in particular those related
to unresolved features, are removed. We also observe a decrease
towards the bottom boundary in Figure 8c, which is presently not
understood.

A potential disadvantage of using H, instead of H, is its
size. However, that storage can be saved by working with the
compressed Hessian H, instead of H,, since the latter contains
duplicate entries, as explained in Appendix E.

4.4 | Two-Dimensional Marine Example

Figure 9 shows a 2D marine model, used earlier (Mulder and
Kuvshinov 2023; 2025). Figure 10a displays the index map, where
each index value denotes a geological unit. The four negative
values refer to four reservoirs. In the model, we have assumed
that elastic properties are constant inside each fine-grid unit,
although that is not required for the method, as only the relative
perturbations are assumed to be constant. Figure 10b depicts a
coarser version, obtained by combining pairs of adjacent layers,
excluding the seawater, down to a depth of 800 m and the four

reservoirs. Both index maps define projections, a finer and a
coarser one, relative to the modelling grid that has a 10-m grid
spacing.

For the acquisition, 199 shot positions range from x; = —2900 to
7000 m at a 50-m interval and a depth of 10 m. The source wavelet
is a 15-Hz Ricker integrated twice in time, that is, a Gaussian
with a standard deviation o, = (7 \/5 fpea) ™ and f e = 15, Hz.
Receivers at an 8-m depth have offsets at a 25-m interval from 100
to 6000 m or less when the rightmost boundary of the domain
is reached, and 7 s of data were recorded and sampled at 4 ms.
A free-surface boundary condition is imposed, suppressing low
frequencies in the data.

The finest grid has points in the set V¥, When compressed with
a projection operator QS);, the larger scale geological units are
elements of the set VU, A further compression produces a set

&
V@, Then, Qg = Eg; (Qgg) . The resulting operator involves

the following steps: undo the 1//n; ; scaling for the finer H,
where n; ; is the number of points inside each geological unit j,
add contributions from finer to coarser, apply the 1/ \/m scaling
after summation, where n_ is the number of points inside each
larger geological unit after projection, assuming each coarser unit
is obtained by combining one or more finer ones. This describes
the relation between the Hessian used for Figures 11 and 12 and
the one used for Figures 13 and 14. These figures are based on
the compressed Hessians H, and their pseudo-inverses, for the
finer and coarser segmentation, and the uncertainty estimates are
just copied to the modelling grid for display purposes (option 2 in
Appendix D).

Figure 15a shows a subset of the covariance matrix, restricted
to the reservoir with index —1 and describing the marginal
distribution. The result for the coarser projection is shown in
Figure 15b and has somewhat smaller values. Figure 15c displays
the result for the conditional case, assuming all parameters
outside the reservoir are known. Since this part of the model is
the same in the coarser projection, the corresponding matrix is
also the same.

Figure 16 displays the conditional distribution with all parameters
fixed with the exception of the P-impedances for the two units
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Figure 9 | Isotropic elastic model with (a) density, (b) P- and (c) S-wave velocity.
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Figure 10 | Theindex map (a)defines the piecewise constant values per layer for the model parameters in Figure 9. The negative indices correspond

to 4 reservoirs. A coarser version (b) is obtained by pairwise combinations of layers, excluding seawater, top layer, and reservoirs.
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Figure 11 | Standard deviations on a logarithmic scale for the marginal distributions for components (a) §log1I,, (b) & logvp, and (c) 8 log(vy/vp).

Values may be clipped at the extrema of the colour scale.

with index 41 and 44, deeper below it, corresponding to the
central part of the model in between the two faults and the
reservoirs with index —1 and —2. The image depicts (X, nc/Xnoise '/
as a function of the two model parameters, ignoring other
model parameters. The white ellipse is the boundary of the
uncertainty region for a noise energy X,... taken as 10=% of
the data energy &j. It follows from the singular value decom-
position H = USU", with singular values s = diag(S) in the
diagonal matrix S, and setting X, = %y{{yH withy; = SYU"6m

and dm = U(S"}/yy, similar to Equation (7). The ellipsoid is
parameterised by yy on a high-dimensional sphere with a radius
(zxnoise)l/'

Similarly, the covariance matrix C = US'U", with ST the pseudo-
inverse of S, determines ellipses defined by constant values of
m'Cm = yly,, with yc = (S"/U"m on a hypersphere and m =
US"y.. The magenta ellipse in Figure 16 corresponds to a 2 X 2
subset of C and represents the marginal distribution of the two

12 0f 20

Geophysical Prospecting, 2025

85UB017 SUOWIWOD BRI 3(dedl|dde 8Ly Aq peusenob ae Sappiie YO ‘8sN JO Sa|nJ Joj A%iqiT8UlIUO AB]IM UO (SUORIPUOD-PLR-SWLBYW0D A8 | 1M Ale.d1|Bul [UO//:Sdny) SUOIPUOD Pue SLWLB | 8L 88S *[520z/20/8T] Uo Ariqiaulluo A8im ‘ead AseAlN Loy L AQ #700.'8.v2-G9ET/TTTT OT/I0pALI0O A8 1M Alelq Ul juo//SANY Wou) papeojumoa '9 ‘SZ0Z ‘8/72S9ET



logio for §log I,

logyoo for §log(v,,

1
05 £ 05
0
05 - 05
- -1
-15 EE
- 2
25 25
4
3 3

z (km)  (km) km

(2) (b) (C)

logioo for §log v,

z (km)

Figure 12 | AsFigure 11, but for the conditional distributions of (a) § log I p» (b) 6logup, and (c) 8 log(vs/vp).
logyo for §log I, logyo for §log v,

0 1
05 5 05 05
1
15 15
-0.5 -0.5
w25 L2
3 .
35 3
25 25
4

logior for 8log(v./v,)

1
S 05
0
B 0.5
15
2
25
3

2 (km)

&

km km
(b) (C)
Figure 13 | As the marginal distributions of Figure 11, but for coarser units.
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Figure 14 | As the conditional distributions of Figure 12, but for coarser units.
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Figure 15 | Marginal covariance matrices for the reservoir with index —1 in the fine (a) and coarse (b) case. For the conditional case (c), fine and
coarse results are the same, by definition.
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Figure 16 | Uncertainty for a pair of parameters in two adjacent layers, for (a) 8 log I p» (b) 6logv, and (c) §log(vs/vy), scaled by Xpgise = €' X,.

The white ellipses correspond to the value of o for the conditional uncertainty and the magenta ellipses to the marginal one. The projection to single

parameters is shown as a line segment.

parameters. The latter has a slightly different orientation of the
axes.

In the example of Figure 16, units 41 and 44 below it can be taken
together, leaving a single value for each of the three elastic model
components. The projection operator in this case is a subset of Qg;
that combines units 41 (upper) and 44 (lower). It can be expressed

as the first row of the transposed rotation matrix

R = 0.7037 0.7105
~ \-0.7105 0.7037)’

related to an angle of 45.28°. The white line segments in
Figures 16a—c describe the range of uncertainty for the conditional
distribution. The line segment and ellipse provide another illus-
tration of Poincaré’s separation theorem. The line segment is a
1D subset of the area inside the ellipse, with a length between
the short and long axis of the ellipse. In the conditional case,
the endpoints coincide with points on the ellipse. The projection
for the marginal distribution does not necessarily coincide with
the ellipse, as the inverse of the projection is not the same as
the projection of the inverse, although the endpoints of the line
segment are nevertheless very close to points on the magenta
ellipse in Figures 16b and 16¢ but not in Figure 16a.

5 | Discussion and Conclusions

We have considered full-waveform inversion (FWI) uncertainty
as the range of model parameters within which the sensitivity of
the modelled data to parameter variations does not exceed the
noise present in the observed data. This sensitivity is estimated
with noise-free forward modelling and is characterised by the
Hessian of a cost or loss function. Full characterisation of noise
in the observed data requires specifying its covariance matrix. We
show that for our purpose the overall noise energy level, which is
assumed to be known and which does not influence the sensitivity
estimation, is a sufficient proxy. Computation of the full Hessian
is usually not feasible in practice. Moreover, due to a key feature
of FWI - the use of grid spacings significantly smaller than the
wavelengths of the modelled waves - the Hessian is inevitably
singular. This leads to formally infinite uncertainty in directions

corresponding to parameter perturbations that lie in the null
space, that is, combinations that do not affect the modelled
data. The null-space may occupy 80% or more of the full model
space. To obtain meaningful and finite uncertainty estimates,
it is necessary to project the Hessian onto a lower-dimensional
subspace. As a consequence, FWI uncertainty estimates are not
absolute but relative, depending on the choice of dimensionality
reduction or projection approach.

We developed a formalism to find lower-dimensional projections
of the Hessian, taking into account that its pseudo-inverse is gen-
erally required. A number of examples show that the projection
removes a part or all of the null-space components. When a finite-
difference method with a fixed grid spacing is used for modelling
and inversion, the grid is typically too dense in the deeper
parts of a model where the velocities are higher. Suppression of
the null-space components related to sub-resolution structures
is therefore necessary. If the scale length after projection is
relatively small, the eigenvalues of the compressed Hessian are
distributed following the same pattern as the eigenvalues of the
original Hessian. However, if the length scale after projection
becomes too large, the spectrum of the Hessian and the related
uncertainty estimates will be distorted. Apparently, this happens
at scales larger than the size of the Fresnel zone where the
variations of parameters at the grid points that belong to the same
geological unit influence the perturbation of the measured signal
incoherently.

The examples show that the proposed approach provides rea-
sonable estimates of the conditional uncertainty. When confined
to a subset of the domain, partially conditional estimates can
be useful to quantify relative uncertainties for multi-parameter
inversion. The estimates of the marginal uncertainty, which are
affected by the global effect of the model parameters, are less
reliable because the inverse of the projected Hessian differs from
the projection of the inverse Hessian, required for computing the
marginal uncertainty.

We have only considered the simplest projection operator based
on averaging and representing the relative model perturbations as
piecewise constant per geological unit. The relation to the Walsh—
Hadamard transform and its generalisations would facilitate the
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selection of additional components, other than long wavelength
structures. Also, smoother representations replacing the current
blocky choice could be useful (Loris et al. 2007; Simons et al. 2011,
for instance).

We envisage a workflow that starts, possibly, with an initial
velocity model. FWI on successively finer length scales and
higher frequencies provides a subsurface model (Bunks et al.
1995). Seismic interpretation leads to a segmentation in geological
units. Automatic horizon tracking can provide a space-filling
partitioning into subsurface volumes and pattern recognition can
assist in combining those into units of similar rock type. Never-
theless, segmentation of highly heterogeneous three-dimensional
models obtained by FWI can be a challenge. Once accomplished,
the Hessian follows from constant relative perturbations of each
model parameter per unit, even if the parameters vary per unit,
at the cost of a forward simulation of the seismic dataset. Since
inversion requires O(100) iterations for O(1) model parameters
per point or per set of points, this should be feasible for O(100)
geological units, either of rather large size for the full model, or
much smaller in target-oriented applications, or a combination of
both.

An alternative, elegant approach combines segmentation and
inversion (Bodin et al. 2009; Burdick and Leki¢ 2017; Guo et al.
2020; Hawkins and Sambridge 2015; Malinverno and Leaney
2005; D. Zhu and Gibson 2018). An application for FWI (Ray et al.
2017) uses a quad tree to represent the 2D subsurface model by the
Haar wavelet basis and a reversible-jump Markov-chain Monte
Carlo method to sample the posterior model. Its disadvantages
are compute cost and a blocky model representation. Other ways
to reduce compute cost are operator upscaling (Stuart et al. 2019)
and homogenisation (Cao et al. 2024; Capdeville and Métivier
2018; Cupillard and Capdeville 2018; Gibson et al. 2014; Owhadi
and Zhang 2008).

The analysis based on the Hessian is limited to small perturba-
tions around the global minimum. Uncertainty quantification for
cases where the reference model selected for the analysis is not
close to the global minimum requires other tools, several of which
are mentioned in the Introduction.
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APPENDIX A: Calculation of the Hessian

We derive an expression for the Hessian in Hilbert space. To emphasise
that we consider a general case that describes continuum or discretised
scalar or vector fields and operators or matrices, we do not use boldface
symbols as elsewhere in the paper.

A functional X(u,m), where u € U and m € M, is minimised under
the constraint s = 0, where s € S is defined by the map F(u, m) from
UXM — S, and U, M and S are inner product (Hilbert) spaces. We
assume that for each set of parameters m there exists a unique u(m) that
satisfies the above constraint. Then, the problem considered reduces to
minimisation of the functional X(m) = X(u(m), m).

Following the Lagrangian formalism, or the adjoint state method, we
introduce the augmented functional

Xayg = X + (v,8)g, (A1)

which coincides with X if u = u(m). Here, v € S is the so-called adjoint
field that plays the role of the Lagrangian multiplier. Unconstrained
perturbations ém and Su cause perturbations §& = 0, Xéu + 9,,Xdm
and ds = 0, F du + 3,,Fdm, where 0,, and J,,, denote Fréchet derivatives
with respect to u and m, respectively. The Riesz representation theorem
states that for each linear functional £ on a Hilbert space X there exists a
unique element x;, € X such that £x = (x;,x), for each x € X. Here,
the angular brackets (-,-) denote the inner product and the subscript
‘X’ indicates that this inner product is taken in X-space. Taking into
account that the Fréchet derivative is a linear functional, applying the
Riesz theorem and involving the adjoint relation, we obtain

0&Xaug =<i—ii + (6uP)*v,5u> +
U

<5—X + (8, F)*v, 5m>

dm

(A2)

M

Here, X /éu and X /Sm are Riesz representations of 3, X and J,,X and
‘%’ denotes the adjoint operator. With the choice

oX
(au F)*U = _E, (A3)

Equation (A.2) reduces to §X,ug = (8X/6m,dm),,, where

5x . sx
% —(5mT’) v+ sm’

(A4)
Since §X,,g = 6X for perturbations constrained by the condition ¥ =0,
the value X /8m given by Equation (A.4) is the Riesz representation of
0,,X. Equations (A.3) and (A.4) constitute the first-order adjoint-state
method. Specifying parameters m and solving the equation 7 (u, m) =0
for u, one finds the derivatives of X and ¥ on the right-hand sides of
Equations (A.3) and (A.4). Equation (A.3) can be solved for v and then
Equation (A.4) to find §X /dm.

Further perturbations of m by §m’, which are independent of §m, cause
second-order changes of & equal to

852X = 0,y X(m',m) = <6m<5—x>5m’, 5m> . (A.5)
om Iy

The second Fréchet derivative d,,,,, X is a bilinear operator, which is called
the Hessian. The first term in the angular brackets in Equation (A.5)
describes the action of the Hessian on ém'’ in the Riesz representation,
and it is the same as HSm’ in the notation used elsewhere in the paper.
Differentiation of Equation (A.4) provides

5_X ’_ Y] E_X ’
am<5m>5m = (8, F)*dv +au<5m>5u

+0p (%)m’ + (OFouw)v (A0
+ (OpmF 5m’)*v.

Here, §v*’ =4,,0* 6m’ and Su’ =0,,u Sm’ are changes in v* and
u associated with ém/, 8,,,,X = 8,,(6X/6m) and 8,,,X = 48,,(6X/5u).
Differentiating Equation (A.3), one finds the governing equation for the
secondary adjoint field Sv*/,

* 4 6X
(0, F) Sv* :—du(a>6u’—6m<5>5m/

(A7)
— (BumF 5m’)*v* - (8,F 5u’)*v*.

Equations (A.6) and (A.7) constitute the second-order adjoint-state
method. Such equations have been previously derived by Fichtner and
Trampert (2011a) and Métivier et al. (2013) assuming that X does not
depend on m and using the linear approximation for the operator 7. Equa-
tion (50) of Fichtner and Trampert (2011a) for the correspondent ‘Hessian
kernel’ is recovered by substituting Equation (A.6) into Equation (A.5),
involving the adjoint relation and specifying the inner product in the S-
space as the integral over space and time. Petra and Sachs (2021) present
a more general derivation, applicable to Banach spaces. In Hilbert spaces,
their results reduce to Equations (A.5)-(A.7). The values 6 X /du and v are
small near the extrema of X. Neglecting such terms in Equations (A.6) and
(A.7) produces the Gauss-Newton approximation for the Hessian action.

APPENDIX B: Minimisation of Combined Cost Functions

Consider a cost function consisting of two terms

X(m) =% (m - mpr)THpr(m —my, )+
(B.1)
%(Fm - d)'W(Fm - d).

Here, my, is the prior value of the model parameter m, Hy,, is the prior
precision matrix and the second term describes the misfit between the
linearly modelled data Fm and the measured data d. The matrices Hy,
and W are symmetric positive semi-definite, and hence they can be
represented as Hy, = U, U, and W = U, Uy,. The gradient of the cost
function (B.1) has the form

Vm&X(m) = Hy(m - m,,) + FW(Fm,, —d), (B.2)

where Hy = Hy,; + H; and H; = F'WF. The least-squares solution of the
equation V, X(my) = 0is

my = m,, — K(Fm,, —d), (B.3)
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where
—H Fw=u ur
K =H, FF'W = H, UU, (B4)

is the Kalman gain and U; = U F is the square root of matrix H;. In
fact, Vip & vanishes exactly at m = my. Since Hy,, and H; are symmetric
positive semi-definite, the null space of Hy lies inside the null space
of Hi: N (Hy) C N (Hj). Hence, the range of Hy lies inside the range
of Hy: R (H;) C R (Hy). The ranges of matrices have the properties
R (AB) C R (A) and R (ATA) = R (A"). From these relations, it follows
that R (F'W) c R (F'Uy,) = R (H;) C R (Hy). Since the range of F'W
lies inside the range of Hy, this matrix does not change after applying
the projection operator Py = HZH; onto R(Hy,). Substitution of F'W =
PsF"W in Equation (B.2) shows that V, X(my) = 0. We take into account
that H; = UITUI and assume that UI lies in the column space of Hy,, that
is, R(H;) C R(H,,) and Her;rU} = U]. In that case, the formula of the
pseudo-inverse of a sum of symmetric matrices (Pringle and Rayner 1971),
which is a generalisation of the Sherman-Morrison-Woodbury matrix
identity, is applicable, and we have

-1
- foH T T ¥
H] = (Hy, +UJU) = H}, - HLU] (1+ U HLUT) UH, (B9

. L -1
with identity matrix I. Then H; U] = H, U] (I + UIHI;rUIT) and K =

-1
H;rU{ (I + UIH;TUI) U,,. Equation (B.5) can be written in terms of
the Kalman gain and the covariance matrices as

Cs = (I- KF)Cp, (B.6)

where Cy = H; and C,, = H;r, Assuming that W = U], U,, is non-
singular, the Kalman gain can be cast into the standard form

-1
K =C,F (Wl +FC,F") . (B.7)
APPENDIX C: Partitioning of Symmetric, Positive Semi-definite

Matrices

Any symmetric, positive semi-definite matrix H allows for the representa-
tion H = U'U, where U is a positive semi-definite matrix, which is called
the square root of H. Using the partitioning U = (U, U,, ) we cast H in
the block form,

Hy; H12> <UTU1 UTU2>
H= =(.1 1 . C1
<H21 1)~ (vlu, Uy, €D

Taking into account the properties of pseudo-inverse
(A'A) = AT(AT)!, ATAAT =AT, AATA=A, (C2)

. + + t i il
one finds Hy, H}, = UTU,(BUY)' = (U0, U} ) (U])" = U7 (U]) " and
(see Theorem 9.1.6 of Albert 1972)

H,H H), = [U{(U{) U{]U2 =UU, = Hy,. (C.3)

Equation (C.3) implies R(H;,) € R(H;;). Using Equation (C.3) one
checks that the matrix H is block-diagonalised by the transformation

— H 0
H=S"HS = ( n 5 ) . (c4
0  Hyp-Hy;H Hp

where S is a non-singular matrix,

f F
I -H H I H H
— 117412 -1 _ 11412 . i
S (0 I > S (0 I ) €3

From Equation (C.4), it follows that m"Hm = ﬁTﬁE, where m =
S~!m. Partitioning the vector m as m = (m;, m,)" we get

m'Hm = m, H,;m, + m;ﬁzzmz. (C.6)

= ¥ = t )
Here, m; =m; +H H m, and H, =H,,-H, H Hy; is the
pseudo-Schur complement of H with respect to Hy; .

APPENDIX D: Back to the Modelling Grid

In general, there is no obvious relation between the conditional and
marginal uncertainties obtained from the compressed Hessian and
those from the Hessian for the modelling grid. Nevertheless, we may
consider three options to map the compressed results back to the original
modelling grid: based on QT, just copy, or using the projected H,. A
pictorial description for the two-parameter case is provided to illustrate
the difference between the resulting uncertainties.

Figure Al shows the ellipses described by X = é(m —my)"H(m — m,) =

gg for two parameters, m = (m,, mZ)T, with ¢y = 1, and with Hessians
given by, respectively,

0.63 0.36 1.05 —0.60 80 55
H= (0.36 0,90>’ H= <—0.60 1.50 > H= <5.5 4.3)’
8.0 —3.0 04 02 08 0
H= (-3.0 1.5 > H= <o.2 4.0)’ H‘( 0 o.s) ’

The conditional uncertainties defined by X <¢g, are [m; —mg ;| <

((ORY)

[2ey/ diag(H)]l/ , j=1,2, and are drawn as blue line segments, ending
at the blue dots. The marginal uncertainties are given by |m; — my ;| <

[2£Odiag(H‘\)]1/. The corresponding line segments are the horizontal and
vertical lines through the minimum at the centre of the ellipse, bounded
by the dashed black bounding box of the ellipse. The intersection points
of the bounding box with the ellipse are marked by black dots.

The compression matrix for 2 points is Q = (1,1) / \/E Its application
to the model parameters, relative to the minimum, yields a line at 45°.
The compressed Hessian is H, = QHQ'. Since it is a 1 x 1 matrix in
this example, the related conditional and marginal uncertainty are the

Y
same: |m, —mgg| < [Zso/diag(HC)]l/ = [2¢pdiag(H})] . In the figures,
they are indicated by the drawn red line segments. The endpoints always
lie inside the bounding box defined by the marginal uncertainties.

How can these results be mapped back to the original coordinates m; and
m,? The red endpoints of the line segments can originate from any ellipse
passing through them with its origin at the midpoint of the segment and,
therefore, this question cannot be answered. However, three options can
be considered and are sketched as examples in Figure Al.

(1) Take the coordinates of the compressed result, marked by the red
dots: m —m, = Q"(m, — m,). This is sketched by the dashed red lines
ending at the red open circles. If the original ellipse happens to be
identical to the line segment, with a short axis at —45° of zero length,
these coordinates determine the marginal uncertainty and the conditional
uncertainty vanishes.
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Figure Al | Ellipsesdefining the uncertainty regions in the 2-parameter case. Conditional uncertainties are indicated by blue line segments, ending
atblue dots. The marginal uncertainty in each model parameter determines the bounding boxes, drawn as dashed black rectangles. The red line segments
indicate the uncertainty after compression. The endpoints, marked by red dots, are the intersections between the ellipse and a line at 45°. To map the
result back to the original parameters, three options can be considered: coordinates of the intersection point following the red dashed line segments,
intersection points of a red dotted circle centred at the minimum with the horizontal and vertical lines through the minimum, or their intersections with
a red dash-dotted line perpendicular to the one at 45° through the compression result. The first always ends up inside the bounding box of the original
ellipse, and the other two may lie inside or outside. In terms of my, the three estimates may all lie outside (d) or inside (e) the original ellipse, or some

inside and some outside, and similarly for m,.

(2) Assume the ellipse to be a circle. This is sketched by the dotted circle,
intersecting the horizontal and vertical lines through the minimum at the
small red open circles. Not all intersections are drawn.

(3) The conditional uncertainty can be based on Hj, = Q"H.Q = PHP
with P = Q'Q. This is represented by the dash-dotted red lines ending at
the red open circles.

The three maps result in endpoints of the conditional uncertainty ranges
that are progressively larger. Those for the first option lie always inside
the bounding box of the original ellipse. For the other two, they can be
inside or outside. Figure Al depicts several cases, the last one a circle.
The points may all end up outside (d) or inside the ellipse (e). With only
two parameters, the three estimates differ by a factor of \/5 With ng
parameters, the factor is \/n_f and becomes quite large for ny > 1.

APPENDIX E: Low-Storage Use of the Projected Hessian

At first sight, the projected Hessian Hy, requires as much storage as the
Hessian on the modelling grid. Here, we explain how this can be avoided

by just using the compressed Hessian H.. The description is for the
single-parameter case, but the generalisation to the multi-parameter is
straightforward.

The set of n grid points is partitioned into m segments or geological
units. The indicator matrix X has x;; = 1 if point i lies in segment j, for
i=1,..,nand j=1,..,m. Otherwise, xj; =0. The vector ny contains
the number of grid points n; = Z?:l X;,; contained in each segment
and Z;"Zl ng j = m. The simplest prolongation operator is a piecewise
constant interpolation, which implies just copying and is represented
by X'. The related restriction operator is R = N;lx, where Ng is a
diagonal matrix with diag(N¢) = n¢ and zero otherwise, representing the
arithmetic mean. Its orthonormal version is denoted by Q = Nf_l/ ’X.
For an n X n non-negative symmetric matrix H, the compressed version
is defined as H. = QHQ' and the projected version as Hy, = Q"H.Q =
PH_P with projection matrix P = Q"Q. With the current restriction and
prolongation operators, the operator P applied to model parameters
m in the single-parameter case replaces the ng; values in unit j by
their average ”f_]l ij;
contained in segment j. In this way, the projection P acts as a spatial high-
cut filter, removing shorter wavelengths. If we define H, = RHR" =

m;, where i(j) enumerates the n; ; grid points
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N;'XHX'N;' = N;/’H,N;"/? with H, = N;/’XHX'N; "%, then

H, = X"H, X, showing that H,, consists of blocks each with n; ; copies
of H,. To find the conditional uncertainty for a single parameter, we fix
all parameters, select one value on the main diagonal of the Hessian
and solve o; from laihi,icr,- = ¢’ X, where X, is the data energy in the
reference or background model. Let the diagonal element h;; of the
original Hessian H be replaced by that of the projected version H,,. The
diagonal of Hy, has groups of n; identical values, equal to (H,); . We
can, therefore, determine the above conditional o-values for H; instead
of Hp and interpolate them to the original grid with X', that is, o; =

. 1
[2¢' 2 /(X diag(H,)), ]/
this operation are low.

. As diag(H,) is a vector, storage requirements for
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