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Abstract—The problem of aliasing in precipitation Doppler
spectrum with uniform pulse repetition time is addressed. This
work focuses on de-aliasing such Doppler spectra using non-
uniform sampling techniques, namely, Log-periodic and Periodic
non-uniform sampling. These techniques reduce the ambiguous
main lobes caused by aliasing (by going beyond the observable
frequency limit) into ambiguous sidelobes that are distinguishable
from the original spectra. The SNR is further enhanced by
using an Iterative Adaptive Approach (IAA) algorithm. The
performance of Doppler moment estimation is presented after
applying the IAA algorithm on simulated precipitation-like radar
echoes. However, the ambiguous sidelobe suppression is highly
dependent on the spectral width of the Doppler spectra.

Index Terms—Doppler dealiasing, Non-uniform sampling, Log-
periodic sampling, Periodic non-uniform sampling, Iterative
Adaptive Approach (IAA), Precipitation, Weather Doppler spec-
tra.

I. INTRODUCTION

WEATHER radars use Doppler information from precipi-
tation to detect the motion of hydrometeors. This helps

identify the type of weather phenomenon (rain, snow, or hail)
in the atmosphere. The three main Doppler parameters used to
characterize weather are the total power in the reflected echo
(zeroth Doppler moment), the mean Doppler frequency (1st

Doppler moment), and the Doppler spectral width (square root
of the 2nd Doppler moment around the mean frequency; i.e.,
the second central moment). These three parameters contribute
to detecting the presence of hydrometeors, measuring the mean
radial velocity and the velocity dispersion of the raindrops
respectively. The Doppler spectrum of a typical precipitation-
like weather target is continuous and wide. The Doppler
spectral width characterizes the broadening of the spectrum
which can be caused by many statistical effects, such as
the turbulence in the precipitation, antenna beam shape, and
the range weighting function (caused by the radar transmit
waveform). In this paper, the broadening is assumed to be
caused only by the turbulence.

Additionally, weather radars can only measure radial ve-
locities up to a particular maximum unambiguous velocity in
the directions towards and away from the radar, forming an
observable velocity window. The original spectrum is folded

back in the observation window for atmospheric phenomena
having larger velocities than the unambiguous limit (due to
storms, tornados, or turbulence). This folding (aliasing) affects
the retrieval of the Doppler moments.

Aliasing can manifest in both range and Doppler velocity
measurements. It depends on the radar’s Pulse Repetition Fre-
quency (PRF) or Sweep Repetition Frequency (SRF). Similar
to the Nyquist limit in signal processing, the uniform sam-
pling frequency (PRF or SRF) governs the observable limit.
Furthermore, the unambiguous limit is a trade-off between the
range and Doppler velocity domains.

The de-aliasing of the Doppler spectrum for precipitation-
like targets is not a new problem and has been addressed in the
literature. The techniques in literature can be categorized into
pre-processing and post-processing techniques. Of these meth-
ods, four main techniques have been listed here - UNRAVEL
algorithm, staggered PRF, wideband signals, and non-uniform
sampling. Their approach and limitations are explained in the
following sub-sections.

A. Post-processing algorithms

The post-processing algorithms use the retrieved Doppler
moments as a function of space and time [1]–[4]. Typically, a
detection algorithm is implemented by identifying the regions
where aliasing takes place using multiple measurements of the
Doppler moments in space [5]–[13]. While other methods use
the evolution of the reflectivity fields in time (with multiple
scans) as additional information to improve the performance
[14]–[16]. The post-processing algorithms have the benefit of
not compromising on the unambiguous range limit but suffer
from the effects of corrupted or missing data.

The UNfold RAdar VELocity (UNRAVEL) algorithm is
an open-source, modular algorithm [17] designed for Doppler
velocity dealiasing within weather radar systems. It integrates
supplementary results from reference points characterized by
the least spectral power to iteratively enhance parameters [13].
Furthermore, the algorithm incorporates 3D continuity checks
into its methodology. It consistently exhibited enhanced per-
formance when compared to established dealiasing algorithms,
including the 4DD algorithm [8], the unwrap algorithm [18],

978-83-956020-9-2 ©2024 Warsaw University of Technology
IRS-2024, Wrocław, Poland 216

Authorized licensed use limited to: TU Delft Library. Downloaded on September 24,2024 at 07:30:44 UTC from IEEE Xplore.  Restrictions apply. 



the region-based algorithm implemented in Py-ART [19], and
the multipass algorithm [6].

As the post-processing algorithms are applied on top of
the Doppler spectrum with unambiguous limits, they are
not studied in this paper. Additionally, the post-processing
methods suffer in performance from the discontinuities in the
received data.

B. Pre-processing techniques

1) Staggered PRF: The Staggered Pulse Repetition Fre-
quency (PRF) approach involves utilizing multiple bursts of
signal echoes, each alternating between high and low PRF
[20]–[22]. The high PRF burst governs maximum unambigu-
ous velocity limits, whereas low PRF burst determines the
maximum unambiguous range, albeit with additional complex-
ity in the signal processing stage. Unfortunately, in hardware-
limited systems, attaining higher PRF is not achievable [23].
Moreover, the staggered PRF approach introduces numerous
artifacts that adversely affect the spectral estimation [24].

2) Wideband signals: The narrowband ambiguity function
displays recurring ambiguous lobes at regular intervals in
both the range and velocity domains. On the contrary, the
wideband ambiguity function showcases a prominent central
lobe located at the actual Doppler velocity [25]. This main
lobe is accompanied by various responses around ambiguous
velocities, referred to as ambiguous sidelobes (these sidelobes
do not possess the same power level as the main lobe). Since
wideband systems require higher processing power and more
complex systems, this method is not explored in this study.

3) Non-uniform sampling: In the context of uniform sam-
pling, the sampling time (or frequency) remains constant,
thereby establishing a fixed Nyquist limit. However, for non-
uniform sampling, the Nyquist limit is found to be different.
A particular form of non-uniform sampling, known as log-
periodic sampling, has been addressed for the purpose of point
spectral dealiasing [26]. This method was found to be the
most promising with no constraint in hardware complexities
(increase in PRF), thus there is no trade-off with the unam-
biguous interval in range.

The objective of this paper is to mitigate the aliasing
phenomenon in the Doppler domain through the application of
non-uniform sampling techniques within the signal processing
framework. This enables enhanced detection and Doppler
moment estimation. Furthermore, this does not compromise
the maximum unambiguous range thereby proving to be an
improvement over the state-of-the-art methods.

The main body of the paper is structured as follows. Section
II explains the signal model of radar echoes in time from a
precipitation-like extended target. Section III explains the the-
oretical considerations for non-uniform sampling. Section IV
explains different types of non-uniform sampling considered
in this paper and the radar echo simulation. Some results on
simulated data are discussed in section V. The conclusions are
presented in section VI.

II. SIGNAL MODEL

The signal with extended Doppler velocity spectra is mod-
elled based on [27]. The resultant signal takes the form of a
complex exponential signal, incorporating the mean Doppler
velocity and the Doppler spectral width as input parameters.
The initial phase of this signal is uniformly distributed within
the range of [-π,π]. The resulting signal model is given by,

s(t) =

M∑
m=1

am exp [j (2πfmt+ βm)] (1)

where
am = a ∀m

Here, am = a = 1 (i.e., the same amplitude for all scatterers
is assumed). The input parameters are normalized to the
maximum unambiguous velocity interval (2 × Va). In the
case of non-uniform sampling (explained in the later sections
of the paper), they are normalized with the unambiguous
velocity corresponding to the minimum sampling interval. The
normalized Doppler frequencies fm of all the scatterers are
assumed to be i.i.d Gaussian distributed random variables with
the normalized mean Doppler frequency µfn and variance (the
square of the normalized Doppler frequency width) σ2

fn. The
distributions for both the Doppler frequency and phase are
given by,

{fm}Mm=1
i.i.d.∼ N

(
µfn, σ

2
fn

)
, (2)

{βm}Mm=1
i.i.d.∼ U [−π, π],

µfn = µv/(2Va),

σfn = σv/(2Va),

Va = λ/(4∆Tmin),

where ∆Tmin is the minimum sampling time interval (mini-
mum PRT), λ is the radar central wavelength, µv is the mean
Doppler velocity, and σv is the Doppler velocity spectrum
width.

A. Measurement Model

The measurement model in time consists of the signal model
and an additive white complex Gaussian noise with variance
σ2
n. The overall measurement vector is given by,

z = s+ n, {nt}Tt=0
i.i.d.∼ CN (0, σ2

n), (3)

where t denotes the time instance where we have the samples,
T is the total Coherent Processing Interval (CPI), and n is the
vector containing all the values of nt. For simulation purposes,
the noise variance(σ2

n) is computed with a user-defined SNR
value given as input [28].

III. NON-UNIFORM SAMPLING

Unlike the familiar uniform sampling spectral attributes, the
non-uniform sampling spectrum possesses distinct character-
istics [26]. Moreover, computing the spectrum of signals ob-
tained through non-uniform sampling necessitates adjustments
to conventional methods.
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A. Non-uniform Nyquist limit

The aliasing in power spectrum for the uniform sampling
case is denoted by the Nyquist sampling rate formula:

fmax = fs/2, (4)

where fmax is the maximum observable frequency without
aliasing and fs is the sampling frequency. For the non-uniform
sampling, there exists a Nyquist limit as mentioned in [29]
which is governed by the time difference between the samples.
This is given by the equation shown below,

ti = t0 + nip. (5)

where t0 is the first sample time, ti is the ith sample time and
p is the greatest common factor such that each time difference
∆ti is an exact integer multiple (ni) of p. Thus to determine
the Nyquist limit for non-uniform sampling, one must identify
the greatest factor p that satisfies,

fNyq =
1

2p
(6)

where fNyq is the maximum observable frequency with-
out aliasing using non-uniform sampling. The non-uniform
Nyquist limit is thus given by (6). This definition of the max-
imum observable frequency also holds for uniform sampling
case as in (4), where p is equal to the uniform sample spacing
(which is equivalent to the inverse of fs).

B. Special case- Irrational sample spacing

There exists a special case when the spacing between
the samples is irrational. In such a scenario, there is no
common factor p between the sample spacing; thus, there is
no theoretical Nyquist limit. Unfortunately, this holds only for
an ideal case where the time samples can be measured with
infinite precision. For a real-life system that only records the
time stamp of samples accurately to D decimal places, a more
realistic Nyquist limit exists given by,

fNyq ≤ 1

2
10D. (7)

Intuitively, if the radar is only capable of measuring received
echo with one micro-second precision, then the largest com-
mon factor between irrational sampling times would be one
micro-second. Thus, for the practical irrational sampling space
case, (6) and (7) are essentially the same.

IV. SIMULATION WITH NON-UNIFORM SAMPLING

A. Log-periodic sampling

In log-periodic sampling, which is a type of non-uniform
sampling, the sample time increments exponentially change
with each sample (radar echo), i.e., the logarithm of the sample
spacing is periodic [26]. Here, the individual sample times are
given by

g(z) = (T/N)(b/a) [eaz − 1] , (8)

where b is the minimum sample spacing factor that is chosen
to fit ∆Tmin, a is the exponential growth rate of the sample
time differences, and N is the total number of samples (pulses

or sweeps). The parameters b, a, and N should be chosen such
that the overall time occupied by the radar echo samples must
satisfy the maximum Coherent Processing Interval (CPI) that
is allowed within the burst, this is denoted by T .

B. Periodic Non-uniform sampling

Periodic Non-Uniform (PNU) sampling refers to the prac-
tice of sampling a signal at intervals that are unevenly spaced
but still recurrent within a specific period [30], [31]. PNU
sampling bears a resemblance to the multi-burst processing
technique in radar systems, wherein each burst consists of
a collection of non-uniform samples. Within each burst, the
sampling arrangement can be selected from a variety of non-
uniform sampling schemes. Notably, log-periodic sampling
has demonstrated superior performance compared to various
other non-uniform sampling methods [32] so log-periodic sam-
pling is used. The effectiveness of PNU log-periodic sampling
is assessed using the optimized values of b, a, and N , with
each burst duration serving as the maximum CPI denoted by
the time period (T ).

In scenarios involving fast-scanning weather radars, the time
on target is constrained, resulting in a small T . In these
circumstances, although we have less time on target for a
single scan, it becomes feasible to aggregate reflected echoes
from multiple scans using PNU sampling. This can be done
by having an inter-burst spacing equal to the scan-to-scan time
of the radar. It should be noted that inter-burst spacing might
introduce periodicity effects similar to a convolution of the
signal with a rectangular pulse signal. The resulting spectral
performance of the coherent bursts surpasses that of a single
burst scenario.

To enhance the SNR of the signal, an Iterative Adaptive
Approach (IAA) Algorithm is used. This is a non-parametric
and hyperparameter-free, weighted least-squares-based itera-
tive algorithm to suppress the noise in the signal [33] [34].
Each burst within the multi-burst PNU log-periodic sampling
setup can be transformed into a single signal snapshot for the
Iterative Adaptive Approach (IAA) algorithm. This algorithm,
initially intended for source localization, has been adapted for
spectral estimation. There is an inherent resemblance between
these two domains, and the signal-processing methodologies
are analogous. Given that IAA operates through an iterative
process, the duration for achieving convergence tends to
increase, as it relies on the number of iterations needed.
The time consumed for each iteration predominantly arises
from the computation of the inverse matrix R−1, a square
matrix with dimensions N ×N , where N represents the total
count of samples (pulses/sweeps) within a burst. Additionally,
the computation time is dependent on the quantity of signal
snapshots used for estimating the covariance matrix.

V. RESULTS AND DISCUSSION

A comparative simulation is done between uniform and non-
uniform sampled signals. The CPI of the radar is taken to be
0.8 seconds. For the uniform sampling case, this amounts to
a total number of 800 samples with 1 millisecond spacing.
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Fig. 1. Extended Doppler spectrum µfn = 0.6, and σfn = 0.1. Log-
periodic sampling with N = 638, b = 0.85813899, a = 0.000472337 with T
= 0.8 seconds.

Fig. 2. Extended Doppler spectrum with µfn = 0.6, and σfn = 0.1. PNU
’3T inter-burst spacing’ with N = 638, b = 0.85813899, a = 0.000472337
with T = 0.8 seconds for six burst case (18T in total).

Fig. 3. Extended Doppler spectrum of PNU ’3T inter-burst spacing’ with
µfn = 0.6, and σfn = 0.1 after 10 IAA iterations.

Since the non-uniform samples are considered to be with
micro-second precision, the use of a milli-second time axis
becomes inapplicable. An example of the non-uniform time
vector (for the Log-periodic sampling) of the useful samples
can be represented as:

t = [1.008, 2.050, 3.132, · · · , 799.231] ms (9)

Thus the use of a micro-second time axis makes more sense
with D = 6 from (7). Since the 1 ms minimum sample
spacing is also respected in this case, the total number of useful
samples is less than 800.

The power spectrum of log-periodic sampling for 1000
scatterers with normalized Doppler spectrum width of σfn =
0.01 is shown in Fig.1. The input parameters are normalized
with the unambiguous Doppler velocity corresponding to the
uniform one-millisecond sampling case. Here, the ambiguous
sidelobe levels are quite high for extended Doppler spectral
widths with multiple scatterers despite no noise being added
to the signal. The actual Doppler spectrum is thus found to be
ambiguous.

A spectral comparison between the log-periodic sampling
and PNU ’3T inter-burst’ spacing sampling can be made with
Fig. 1 and Fig. 2, respectively. It can be seen that a 6-burst
PNU with 3T inter-burst spacing performs better than the log-
periodic case (equivalent to 1-burst PNU) by having reduced
sidelobe levels and a distinguishable main lobe. Additionally,
when ten iterations of the IAA algorithm are done, the spectral
noise is more suppressed, showing a clear spectral structure
as seen in Fig. 3.

The performance of the PNU waveform structure, coupled
with the IAA algorithm, is assessed through theoretical simula-
tion. A Monte Carlo simulation encompassing input SNR val-
ues, burst counts, IAA iterations, and Doppler widths is done.
The Doppler moments, crucial for target characterization, can
be determined utilizing the equations established in [35]. These
equations for moments estimation are inherently formulated
for uniform sampling, ensuring calculations encompass the
complete 2Va window devoid of ambiguities.

For the case of uniform sampling, the moments are esti-
mated over the complete unambiguous observable frequency
window (2Va). To extend these equations for non-uniform
sampling, the frequency window used for moments estimation
is still maintained as 2Va, though the unambiguous observable
frequency range is extended by 1000 times (by the use
of micro-second precision over milli-second spacing). The
estimation window is fixed by identifying the spectrum’s peak
over the entire range and utilizing that point as the center
point for a window ranging 2Va. Subsequently, the Doppler
moments are estimated within this window as shown by the
red vertical lines in Fig. 3.

A. Mean Doppler spectral estimation

Based on observations involving multiple Doppler spectral
widths, it can be inferred that the occurrence of false peaks
becomes more noticeable with broader spectral widths (σfn >
0.1). This phenomenon is due to ambiguous sidelobes with
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Fig. 4. Graph showing the number of accurate Doppler mean estimations
(out of 100) after 10 IAA iterations for different input SNR values and two
different Doppler spectral width values for a six-burst PNU case.

higher spectral power where suppression of such artifacts is
difficult. These false peaks impact the positioning of the one-
millisecond Nyquist window and consequently influence the
mean estimation.

Hence, for low Signal-to-Noise Ratio (SNR) signals with
extended Doppler spectral widths, a constraint is introduced
where the estimated normalized mean Doppler velocity is
ensured to be within a specific spectral interval around the
true normalized mean Doppler velocity (the interval is a
function of the true normalized spectral width). For σfn ≤1,
when the estimated mean falls within the intervals of (-
0.5σfn,0.5σfn) from the actual mean, it is considered to be
an accurate estimation. And for higher values of σfn if the
mean estimation is within (-0.75σfn,0.75σfn) from the actual
mean, this is considered as an accurate estimation.

The distribution of accurate estimates for various spectral
widths and input Signal-to-Noise Ratio (SNR) values are
shown in Fig. 4. As anticipated, Fig. 4 shows better estimation
for scenarios with reduced noise levels and signals with
narrower Doppler spectral widths. Moreover, the improvement
in performance due to an increase in the number of bursts
(number of snapshots for the IAA algorithm) is also confirmed
by multiple trials.

B. Doppler spectral width estimation

The comparison between estimated and true spectral widths
for various input SNR values is illustrated in Fig. 5.

As depicted in Fig. 5, it becomes apparent that narrower
Doppler spectral width (σfn ≤1) are estimated with greater
accuracy in cases involving 3 bursts and 6 bursts, as opposed
to the 1-burst scenario. Given that the Doppler spectral width
for typical meteorological phenomenon falls within the range
of 1

20 th to 1
30 th of the 1ms Nyquist window size [36],

employing multiple bursts is advantageous for such scenarios.
Furthermore, to illustrate the impact of multiple bursts, Fig. 5

Fig. 5. Estimated vs True normalized spectral width for different bursts for
30 dB input SNR for PNU sampling after 10 IAA iterations.

showcases the estimated versus true spectral width for varying
numbers of bursts in the context of a 30 dB input SNR.

From the simulations, for the case of lower Doppler widths,
as the number of bursts in PNU processing is higher, the
Doppler spectral width estimation becomes more accurate.
The estimation performance is better when the noise is lower.
Additionally, the estimation performance for PNU after 10
IAA iterations is comparable to the estimation performance
of uniform sampling.

VI. CONCLUSION

The Nyquist limit in the context of non-uniform sampling
has been validated. The process of modeling the signal to meet
a specific unambiguous Doppler velocity requirement (beyond
the uniform sampling limit) has been outlined. It is shown
that by using non-uniform sampling techniques it is possi-
ble to extend the unambiguous Doppler window by several
orders depending on the measurement time accuracy of the
received signals. In log-periodic sampling, the sample times
and the resultant power spectrum are dependent upon four
parameters: the number of samples (N), the exponential growth
factor (a), the minimum sample spacing factor (b), and the
maximum Coherent Processing Interval (T). Through testing
optimized values for different Doppler spectral widths, it has
been determined that the optimization performance remains
consistent and unaffected by the Doppler spectral width. By
using the IAA Algorithm, it is proven that dealiasing with
narrow Doppler spectral width is possible with exceptional
performance.

In the case of a fast-scanning radar, boosting the spectral
estimation performance by extending the Coherent Processing
Interval (CPI) is impractical. Instead, a solution has been
found by utilizing multi-scan data and implementing a non-
uniform sampling strategy known as ’Periodic Non-Uniform
(PNU)’ sampling. This approach has effectively eliminated
the necessity for a higher CPI. Multi-snapshot IAA algorithm
has been used for this case where each burst is treated as
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a snapshot, and the noise covariance matrix is collectively
estimated. This technique substantially enhances performance,
surpassing the results achieved with a single burst of optimized
log-periodic sampling.

Monte Carlo simulations have been conducted encompass-
ing a range of Doppler spectral widths, distinct input SNR
levels for random noise, and varying numbers of bursts.
The outcomes of these simulations align consistently with
the theoretical expectations and conclusions drawn from the
study. It is found that the accuracy of Doppler spectral width
estimation in PNU sampling improves with a higher number of
bursts, particularly for lower Doppler widths. This estimation
performance is further enhanced when noise levels are lower.
Furthermore, the estimation performance achieved in PNU
sampling is comparable to that observed in the case of uniform
sampling with the added benefit of Doppler dealiasing.
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