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Preface

This thesis focuses on the field of Job Recommendation. Particularly, we focus on using implicit prefer-
ences exhibited by the job seeker in interactions with a web platform to propose an improved ranking
algorithm for a job recommendation platform called Magnet.me. We also study evaluation of rele-
vance, and evaluation of recommendation sorting algorithms to determine the degree of improvement
achieved by the proposed algorithm. Using NDCG with different relevance evaluations, we test perfor-
mance of the proposed algorithm in an online experiment on the job recommendation platform.

We find that the evaluation of relevance strongly affects the distinguishability of NDCG. The evalu-
ation shows that our sorting algorthm outperforms the original algorithm when using classical binary
relevance, or relevance evaluations that consider items with negative feedback less relevant than items
with missing feedback. However, when using relevance evaluations for NDCG that punish missing
feedback more than negative feedback, NDCG loses its capability of distinguishing between algorithm
performance.

Based on baseline sorting algorithm evaluation MRR and the different evaluations using NDCG, we
conclude that the proposed recommendation sorting algorithm outperforms the original algorithm.

I would like to thank Cynthia Liem for her supervision; my colleagues at Magnet.me, particularly
Rogier and Kolpa, for their help; and finally Mara, for bearing with me.

A.T. Walterbos
Delft, May 2019
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1
Job Recommendations

In this thesis, we study the field of Job Recommendations. Recommending jobs to job seekers is the
challenge many e-recruitment platforms like LinkedIn, Xing, Glassdoor, Google for Jobs and others
try to solve. After their success in e-commerce, recommender systems made their entry into the e-
recruitment field; the vastly increased number of jobs available through the internet, and vice versa
the number of applicants for a vacancy creates the need for recommender system technology to help
handle this information efficiently [1]. Recommender systems aim to filter out those items that are
most interesting to the user within the context of the user’s need or aim. Different platforms will have
varying definitions of what specifically is ‘most interesting’ to a user, but the general principle applies
everywhere.

1.1. Approaches in Recommender Systems
Like in more general recommender systems, job recommender systems employ collaborative filtering,
content-based filtering, or a combination of both [1, 2]. More recently, filtering based on demographic
data has been used in recommender systems [3].

Recommender systems that use collaborative filtering apply known preferences of a set of users
to predict the preferences for another (new) user. They are based on the assumption that if two
users have rated items similarly or express similar behaviour, they will rate other items similarly as
well. Collaborative filtering is the most popular approach in general recommender systems, employed
successfully by many companies like Amazon, Facebook, Google and Netflix [4]. It excels in domains
where it is hard to describe items with an automated process, like sound or movies [1].

Content-based recommender systems use a model of the user’s preferences, and a detailed de-
scription or list of properties of items. These preference models, or profiles, and item descriptions are
then compared, and items that match the user’s preferences best are recommended. Content-based
filtering does not depend on an overlap between user preferences, like collaborative filtering does.
However, it does depend on how well features can be selected from the items to recommend [5].

One of the first job recommender systems was developed by Rafter et al. [6]. Their system em-
ployed a user-collaborative filtering approach, and only uses relatively simple user behaviour data such
as number of visits, and total time spent reading on pages to build profiles of users. Later, researchers
suggested that job recommendations required far more use of properties of the job seekers, such as
their level of education, work experience and location [7–9]. These systems also take into account the
reciprocal interest of the employer in the job seeker.

Job Recommendation is still a very active field of research: the subject of the RecSys Challenge 2016,
part of the ACM Recommender Systems Conference 2016, was Job Recommendations. Contestants
were asked to create an offline evaluation method for data from social business network Xing [10].
Xiao et al. [11] won this contest, applying a combination of modern techniques in job recommendation.

1.2. Implicit and Explicit Feedback
Compared to other domains, job recommendations are considered a high-risk recommendation con-
text [12]. High-risk means that providing a ‘wrong’ recommendation yields a big negative impact: job
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2 1. Job Recommendations

seekers will be left unsatisfied, and could abandon the platform. Traditional job recommender systems
are therefore more conservative, and rely more on explicit feedback [13] from the user: they only
recommend jobs based on what the job seeker explicitly likes.

Alternatively, there are job recommenders that consider implicit feedback [14], or even rely solely
on that [15]. Implicit feedback is feedback that a user gives through their natural behaviour, from
which preferences can be derived. Consciously entered preferences (explicit feedback) are generally
seen as more robust and more intuitively reliable.

1.3. Research Questions and Thesis Structure
In this thesis, we focus on collecting implicit user preferences by analysing user interaction data. We
will use those preferences to improve the job recommendation algorithm of job platform Magnet.me. To
determine if performance improves, we study methods of evaluating recommender system performance
in an online environment. We formulate our Research Questions based on this focus, as follows below.

The main question in this thesis will be: How can we improve Magnet.me’s Job Recommen-
dations algorithm using User Interaction Data? To answer this question, we define these three
research questions:

RQ1 How can we gain a better understanding of job seeker preferences, beyond their explicitly pro-
vided preferences?

(a) What job seeker interaction data can we monitor to derive implicit preferences from?

(b) How can we aggregate implicit job seeker preferences from job seeker interaction data?

RQ2 How can we use implicit job seeker preferences to improve the opportunity recommendation
ordering algorithm?

RQ3 How can we evaluate rank performance, and therewith distinguish between ranking algorithm
performance?

(a) How can we evaluate recommendation relevance based on job seeker feedback?

(b) How should we handle recommendations for which feedback is missing?

The structure of this thesis is as follows: First, we look into related work on deriving preferences
from user behaviour, evaluation of recommender systems, and online recommender system evaluation
in Chapter 2. In Chapter 3, we introduce Magnet.me, discuss what job recommendation techniques
Magnet.me has employed so far, and look at possible ways to improve upon them.

In Chapter 4 we propose monitoring job seeker behaviour at Magnet.me, and analyse if- and how
we can derive an improved understanding of job seekers from that behaviour in the form of implicit
preferences. Based on the derived implicit preferences, we propose a new sorting algorithm. We
study several aspects of rank evaluation and propose an evaluation method for sorting algorithms in
Chapter 5. In Chapter 6, we design and run an online experiment with the alternative recommendation
sorting algorithm based on implicit preferences, as well as a comparison of different parameters for
our rank evaluation method. We reach conclusions on several facets of rank evaluation, and discuss
the performance of the new sorting algorithm. Finally, we discuss the experiment and possible future
work in Chapter 7.



2
Related Work

We first look at work related to the focus of this thesis. That focus is bipartial: First, we focus on
the collection of implicit preferences from user interactions based on which we want to improve a
recommender system; therefore, we look into related work on deriving preferences from user behaviour.
Second, we want to be able to evaluate the recommender system to measure improvements from our
work. We look into related work in the field of rank evaluation, and specifically highlight some evaluation
measures. Finally, we discuss related work on online recommender system evaluation.

2.1. Deriving Preferences from User Behaviour
Part of the focus of this thesis is the aggregation of user preferences from behaviour exhibited on a web
platform. Contrary to consciously provided preferences, we seek to extract implicit preferences that can
be used to refine the model of a user’s preferences that have already been acquired. Being the opposite
of implicit preferences, consciously provided preferences are referred to as ‘explicit preferences’ [16].

Implicit preferences were considered less reliable than explicit preferences [17], but more recently
this opinion has changed [18]. When seen as extra data besides explicit preferences, they can greatly
improve the understanding of a user’s overall preferences.

Within the subject of web design, user interactions are the interactions that users make with web
pages in the form of navigation, clicking, scrolling and other ways to consume web page content.
In particular, patterns in web browsing can be studied to gain understanding of many facets of web
systems. Studying web browsing patterns is no new subject of research: as early as in the year 2000,
Strivastava et al. [19] describe scraping browsing history to derive usages of web sites, and using them
to improve systems, gain knowledge on how users use the system, and personalisation of content. It
has been an active topic of research since [20–22], and is widely applied in modern web platforms.

It is widely assumed that longer gaze times indicate a higher level of attention. Morita et al. [23]
report longer reading times for articles marked as interesting, while they find no correlation between
reading time and article length and article readability. Though, understandably, Dimpfel et al. [24]
postulate that longer reading times could be caused by more complicated content. Researchers have
also studied attention in web page usage using eye tracking, pupil size, and electroencephalography
(EEG) [25–27].

Peska et al. [28] built a recommender on users interacting with web pages, like clicking on links and
buttons to expand text, and thereby access more info. They conclude that this behaviour expresses
interest from the user in the displayed information.

In job recommendations, Reusens et al. [15] developed a recommender system for job recommen-
dations, based on implicit preferences. Though the use of implicit preferences in this field is unusual
due to the high-risk nature of job recommendations, they have shown that their recommender system
outperforms the knowledge-based system that preceded it.

2.2. Rank Evaluation
The aim of this work is to improve the performance of a recommender system. To conclude that im-
provement is achieved, one must first have means of monitoring recommender system performance.

3



4 2. Related Work

We discuss the field of recommender systems, and evaluation techniques used to monitor these sys-
tems.

Recommender systems are strongly related to the field of Information Retrieval. The challenge in
both fields is finding the right items or documents from vast numbers of them, most of which are not
relevant to the query at hand. Determining what information should be retrieved depends on the fit
between the information need of the user, and the available documents.

The problem is often modelled as optimising the order of the documents or items in the data set
on relevancy to the user query, and presenting the user with the items with the highest predicted
relevancy. In practice, this results in optimising some rank evaluation of the ordering algorithm output.

2.2.1. Relevance
Performance of a recommender system is therefore determined by how relevant its recommendations
are to the user. Relevance is defined as how well the generated recommendation fits the user’s (infor-
mation) need, and a recommendation is marked relevant or non-relevant based on user feedback [29].
To determine this fit, one would ideally have explicit feedback from the user for every item the recom-
mender suggests. Such feedback could, for example, be a (non-)binary rating of the item. Often, such
explicit feedback is not available; for example, web search engines only have little feedback, mostly
in the form of item clicks. The first implementation of relevance originates from an experiment con-
ducted in 1953, described by Swanson et al. [30]: two teams assessed relevance of several thousand
documents to a hundred questions, but could not agree on the relevance of more than half of the
documents.

2.2.2. Accuracy Evaluations
Traditionally, evaluation of ranking algorithms are based on the accuracy of the algorithm; how well
the algorithm predicts the relevance of an item to a user’s information need. Precision and recall are
metrics that evaluate this; ‘Precision’ is the fraction of retrieved documents that are relevant, and ‘recall’
is the fraction of relevant documents that are retrieved [29]. By definition, recall is hard to accurately
determine for data sets with sparse feedback: if one does not know which documents are relevant to a
query, one cannot determine what the ratio of retrieved relevant documents to all relevant documents
is. Precision and recall are evaluations of unranked sets of recommendations. They are used in broader-
scale evaluations of recommender systems by combining and/or aggregating the precision and recall
over many generated recommendation sets, such as the F-measure, introduced by Van Rijsbergen [31].

Examples of evaluations that aggregate precision and recall are Precision@𝑘, Mean Average Preci-
sion (MAP), and the ROC-curve [29, 32]. These evaluation measures are all only capable of handling
binary relevance feedback: an item is either relevant or non-relevant, but there are no multiple grades
of relevance possible. Except for Precision@𝑘, these measures factor in precision at all recall levels.
This is not applicable at many information problems on web platforms [29]. Precision@𝑘 only looks at
the top 𝑘 documents, which does not require any information on the number of relevant documents.

The same applies to the very simple Mean Reciprocal Rank (MRR). The Reciprocal Rank (RR) is
calculated as ኻ

፫ᑢ
where 𝑟፪ is the rank of the first relevant item in queue 𝑞. The MRR is then the mean

of the RR for all generated result sets 𝑄:

MRR = ∑
፪∈ፐ

1
𝑟፪

(2.1)

This simple metric was introduced by Voorhees et al. [33], and is considered useful because it is closely
related to the Mean Average Precision.

NDCG
The Normalised Discounted Cumulative Gain (NDCG) also does not depend on recall, or an estimate of
it. NDCG is a measure that is widely used in information retrieval, and machine learning [34]. Because
of its popularity, it has also been researched extensively, though mainly in the field of Information
Retrieval [35–37] NDCG uses a numeric relevance score for an item as a ‘gain’, and discounts this
relevance for higher ranks. By doing so, the NDCG of a ranked list of recommendations is higher if
the more relevant recommendations are on top of the list. It is the normalised form of the Discounted
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Cumulative Gain (DCG) of the result set by the DCG of the ideally sorted version of the same result
set, based on relevance [38]. Because it uses numeric relevance, it can consider multiple grades of
relevance for the recommendations. It can still handle binary feedback, by simply using gain score 0
for non-relevant items and 1 for relevant items [38]

Wang et al. [38] define the DCG of a ranked result set 𝑆 as:

DCG(𝑆) =
|ፒ|

∑
፫዆ኻ

𝑦(𝑟)𝐷(𝑟) (2.2)

where 𝐷(𝑟) is the discount for some rank 𝑟 in 𝑆, and 𝑦(𝑟) is the relevance of the item at rank 𝑟 in 𝑆.
They then define NDCG as:

NDCG(𝑆) = DCG(𝑆)
IDCG(𝑆) (2.3)

Where IDCG(𝑆) = max (∑|ፒ|፫዆ኻ 𝑦(𝑟)𝐷(𝑟)), i.e. the highest possible DCG score for the result set 𝑆. The
latter is achieved by sorting 𝑆 on the relevance of all items 𝑦(𝑟) for all 𝑟 ∈ 𝑆.

There are many implementations of NDCG, using different manipulations of the relevance score and
the discount function. For example, while Wang et al. [38] simply use the relevance scores 𝑦(𝑟) from
the result set 𝑆, Manning et al. [29] uses 2፲(፫) − 1. This adaptation boosts higher relevance stronger
and punishes low relevance.

The discount functions vary per implementation as well. Its function is to discount the relevance
gain for higher ranks. Wang et al. [38] consider NDCG ‘standard’ if the discount function used is the
inverse logarithmic decay 𝐷(𝑟) = ኻ

፥፨፠(ኻዄ፫) . Another example of a discount function is 𝐷(𝑟) = 𝑟
ዅኻ, as

used by Kanoulas et al. [36].
Wang et al. [38] have shown that NDCG is capable of ‘continuous distinguishability’, which means

to say that NDCG is capable of distinguishing between performance of two recommendation ranking
algorithms, and declare which algorithm outperforms the other. For NDCG to be capable to distinguish
between performance of two ranking algorithms, one must choose an appropriate discount function
that decays fast enough: the standard discount function 𝐷(𝑟) = ኻ

ደዳያ(ኻዄ፫) is such a function.
A metric similar to DCG is the half-life utility metric from Breese et al. [39]; it similarly awards

a gain score for relevant item feedback, but compared to DCG it uses a faster decaying exponential
discount function. Like NDCG, the half-life metric is often used normalised by the maximal possible
score, which is the half-life score for the ideally sorted list. Ekstrand et al. [40] state that this metric is
hard to apply because its parameters 𝛼, which influences the discount function’s decay, and 𝑑, which
influences relevance scoring, have to be chosen appropriately.

Restricted Result Sets
Many implementations restrict the number of results from the result set that they consider when evalu-
ating [4, 38–40]. This is done to reduce the influence of items that the user has not seen, due to them
naturally not regarding all results. Ties on the document set considered in measures of information
retrieval were first introduces by Cooper [41] and later applied to precision and recall by Raghavan et
al. [42]. McSherry et al. [43] propose versions of recall, precision, F1, average precision, reciprocal
rank and NDCG that consider document cut-offs, but they do not suggest approaches for choosing the
cut-off.

Raghavan et al. [42] suggest that the cutoff point can be based on several different statistics; the
number of documents retrieved, the number of relevant documents retrieved, etcetera. In lieu with
their first suggestion, Kluver et al.’s Half Life metric [4] suggest to set the parameter 𝛼 so that the item
at rank 𝛼 has a 50% chance of being seen by the user: they set the value based on the number of
documents retrieved by the user.

2.2.3. Beyond-accuracy Evaluations
Accuracy is not everything, as has been shown by McNee et al. [44] and Fazeli et al. [45]. The
performance of a recommender algorithm can strongly differ whether one measures the user experience
or the accuracy [45]. They show that user-centric evaluation results do not confirm results of traditional
evaluation. Al-Maskari et al.’s [35] study shows that NDCG correlates poorly with user satisfaction
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scores; however, they show that Cumulative Gain does correlate with user satisfaction. While accuracy
is likely to remain an important aspect of recommender performance, recent studies have looked at
other metrics to consider in evaluation of recommender systems:

Kaminsas et al.[46] describe diversity, serendipity, novelty, and coverage as objectives to optimise
for besides accuracy, and propose metrics to achieve this objective. They motivate that instead of
simply seeing recommenders as systems that should accurately predict user’s ratings for unseen items,
the recommended items should also be diverse, and (some) suggestions should be novel to the user.

2.3. Online Recommender System Evaluation
To evaluate work proposed in this thesis, we will run both offline and online experiments. Particularly the
online experiment will evaluate a recommender system. Online experiments to evaluate recommender
systems are wildly popular [47].

The online experiment is often preceded by offline experiments [4, 48] to see if the experiment
is likely to yield good results. When the test succeeds, an online experiment is started. Online rec-
ommender systems evaluations are often structured as A/B-tests. Such experiments redirect a small
portion of users to an alternative version of the recommender system [4, 32].

As Gunawardana and Shandi [32] state, there are several important considerations to be made to
make the outcome of online evaluations valid: First of all, the sampling of users must be made randomly
to avoid bias in user groups, affecting the experiment. Second, it is important to test one change at a
time: when a new ranking algorithm is tested, the interface should be kept the same; otherwise one
might actually be seeing results caused by the new interface, rather than the new ranking algorithm.

Considering this related work, we now move our attention to the job recommendation platform
Magnet.me. We will discuss their situation, and relate it to the work discussed in this chapter.



3
Job Recommendations at Magnet.me

In this chapter, we introduce Magnet.me; we shortly outline what the philosophy behind their company
is and what they stand for. After that, we focus on their job recommendations; first, we introduce the
user interface in which job seekers are offered job recommendations, called the Matches page. Then,
we discuss how job recommendations are generated, and how the recommendations are structured.
Following that, we discuss how Magnet.me evaluates rank performance. Finally, we propose possible
improvements for Magnet.me’s job recommendations.

3.1. Introducing Magnet.me
Magnet.me is a job recommendation platform founded by Vincent Karremans, Freek Schouten and
Laurens van Nues in Rotterdam, The Netherlands. The idea for Magnet.me came from the founder’s
frustrations about the job market: the only companies present on the market were the big corporates
with big recruitment budgets, while smaller companies were hard to find and hard to reach. Magnet.me
is online since 2012 and their mission is still to revolutionise how talent starts- and builds their careers,
and to make the process of finding a job easy and personal.

The platform targets students, graduates and young professionals with up to seven years of expe-
rience. They offer them opportunities in the form of internships, traineeships and jobs for which they
are qualified, and which suit their preferences. Magnet.me is active in The Netherlands and The United
Kingdom, with over 2,500 employers and over 200,000 job seekers on the platform. More information
about Magnet.me can be found on their press page [49].

In short, the global process a job seeker on Magnet.me goes through is as follows: A job seeker
creates a profile that consists of a résumé, and preferences regarding employment. Visa versa, an
employer creates a profile with minimal requirements for a position, or for potential employees for
their company as a whole. Magnet.me’s job recommender system then calculates matches between
the job seeker profiles and these requirements. A job seeker is suggested these matches, they engage
with the matches that interest them, and eventually apply.

In the rest of this chapter, we specify what the job seeker preferences comprise, followed by gen-
erating recommendations based on those preferences. Then we discuss how the job seeker is shown
the recommendations, and how they interact with them. Finally, we look at how Magnet.me evaluates
performance of the recommendation interface and discuss ways to improve that interface.

3.2. Job Seeker Preferences
Any recommender system needs a basic understanding of user preferences to make recommendations.
Magnet.me uses a content-based filtering approach for their recommendations, and besides considering
job seeker preferences, they also consider the requirements for an opportunity and the qualifications
of the job seeker.

The user model on which recommendations are based consists of a résumé and explicitly pro-
vided preferences regarding employment. The résumé consists of followed- or current education, work
experiences, extracurricular activities, language proficiency and acquired miscellaneous skills. The
employment preferences consist of a number of categories:

7
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• Location: where the job seeker wants to work. It can be a country (United Kingdom or The
Netherlands); an area around a city; or ‘everywhere’ which translates to no restriction based on
location.

• Work experience: years of work experience, denoted by ranges: 0 to 1 year, 1 to 3 years, 3
to 5 years and 5 to 10 years.

• Job types: (Graduate) internship, graduate scheme, traineeship, and job.

• Job functions: The role of the employment within the company. Examples are ‘accounting’ and
‘management’. There are 33 job functions.

• Industries: The industry in which the employer is active. Examples are ‘education’ and ‘gov-
ernment’. There are 42 industries.

• Company sizes: Number of employees, denoted by ranges: 1 to 10 employees, 11 to 50
employees, 51 to 200 employees, 201 to 500 employees, 501 to 1000 employees, or more than
1000 employees.

• Availability: The job seeker can indicate that they are not available, available per a future date,
and available immediately.

For all categorical preferences (work experience, job types, job functions, industries, and company
sizes), the user must select at least one option they are interested in.

This preference modal does not allow the user to indicate stronger preference for one property than
the other; all chosen options are considered equal. This means that the categorical preferences are
binary: for each value, the job seeker indicates whether they are interested in them or not. The reason
for that is that Magnet.me’s recommendation generation algorithm works with such binary input. In this
thesis, we will study ways to improve this ‘flat’ model by getting a more detailed understanding of the job
seeker’s preferences. We will try to derive these fine-grained preferences from aggregated behaviour
they exhibit on Magnet.me by looking for behaviour patterns that suggest implicit preferences.

3.3. Recommendation Generation by the Talent Matcher
At the core of Magnet.me’s service that connects job seekers with their potential employers is the
Talent Matcher. The Talent Matcher compares the qualifications and preferences of all job seekers to
the requirements and properties of all opportunities and employers on Magnet.me; a content-based
job recommender system. It generates a ‘match’ between a job seeker and an opportunity when the
job seeker’s qualifications meet the opportunity’s requirements, and the opportunity’s properties meet
the job seeker’s preferences.

The Talent Matcher also calculates a so called ‘match score’ for all matches,. This match score is
a remainder from the first implementations of the Talent Matcher, where it was an indication of match
quality. It is no longer considered a proper indication of match quality; reasons for that are described
in Appendix A.1. However, the match score is still used in the Matches Page content where no better
alternative is available.

These matches are suggested to the job seeker as recommendations on the Matches Page. There,
the opportunities and employers are compiled to a list of suggestions called the Matches Queue.

3.4. Ranks at Magnet.me: The Matches Queue
In this section, we first explain how job seekers view the Matches Queue, and how they interact with
it. Then, we discuss different versions of the Matches Queue, and when they are shown. We explain
the setup and dynamics of the Curated Queue, and how performance of the queues is defined and
monitored.

3.4.1. Job Seeker Interactions with the Matches Queue
The Matches Page is the landing page for authenticated job seekers. To give the reader an idea of what
the job seeker sees, a screenshot of the page is shown in Figure 3.1; it shows a match with the job
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‘Software Engineer’ at Magnet.me. In Figure 3.2 shows the same screenshot, overlaid with indications
to explain what is what.

On the left, the Matches Page shows the first match in the Matches Queue as a card (area A,
B and C). On the right, a summary of the job seeker’s preferences is shown (area D). The Match
card shows information about the employer (A); the company logo (A1), the company name (A2),
the company industry (A3) and the number of employees (A4). Below that, area B shows information
about the opportunity; the opportunity title (B1), the job type and location of employment (B2), several
properties of the job like the job function and the level of education, and if available a salary (B3), and
finally B4 shows the truncated opportunity description.

The job seeker interacts with the Match by clicking the link or buttons in area C. As shown in
Figure 3.2, the job seeker is presented with options to ‘like’ (C2) or ‘ignore’ (C3) an opportunity, and
via the ‘read more or apply’ (C1) button they can directly apply to the opportunity. A match with a
company offers the options ‘connect’, which is equivalent to ‘like’ for opportunities, and companies
can be ignored as well. We will refer to these interactions as apply, like, connect, and ignore to
distinguish the interactions from the English words.

Figure 3.1: A partial screenshot of the Matches Page, showing the user interface elements relevant to Magnet.me’s job recom-
mender system. A match with the job ‘Software Engineer’ at Magnet.me is shown.

The queue-structured interface guides users through the recommendations generated by the Talent
Matcher, asking them to ignore, like, connect or apply to each match before moving on to the next.
This user experience has a number of properties that will prove relevant to our work: since the user
cannot skip matches, we have feedback for all matches. However, the interface introduces fatigue:
after a number of interactions, job seekers typically drop off by navigating elsewhere on Magnet.me,
or ending their session.

3.4.2. Matches Queue Evaluation
Performance of the Matches Queue is currently monitored with two metrics: the like to ignore-ratio
(LIR), and number of connections made (NOC).

LIR is a metric that compares the number of likes, nOL, to the number of ignores, nOI, and
defined as LIR = nOL

nOI
for nOI > 0. If nOI = 0, LIR = 1. It is used to check whether matches served on
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Figure 3.2: The screenshot from Figure 3.1, but overlaid with indicators of what information is where: Area A shows employer
information. Information about the opportunity is shown in Area B, and the job seeker can interact with the match via the link
and buttons in Area C. Area D shows a summary of the job seekers preferences and a button to edit them.

the Matches Page are relevant.
The number of connections made refers to the connections made when a job seeker engages an

opportunity with a like or apply. The metric is therefore an indication of the absolute number of
positive interactions a job seeker has made on Magnet.me, and since most of these connections are
created on the Matches Page it can be used as a metric for Matches Queue evaluation.

Although these metrics have sufficed for Magnet.me, they are somewhat rudimentary. To distinguish
any improvements made in our research, we require more reliable recommendation evaluation metrics.
However, defining rank evaluation in a way that is meaningful for Magnet.me is not trivial. Related to
RQ3, we will study ways to evaluate recommender system performance that can be implemented at
Magnet.me, aimed at establishing a baseline of performance of the Matches Queue and comparing
improvements we will propose.

3.4.3. Queue Generation
There are no pre-generated queues for a job seeker when they land on the Matches Page. Maintaining
pre-generated queues for all events that change queues would require far more computational power
than Magnet.me currently has available. Instead, queue generation is triggered when the job seeker
lands on the page.

The generated queue, called the Curated Queue, consists of the job recommendations provided by
the Talent Matcher. Generation of this queue, however, takes too long to make the job seeker wait for
its content when loading the Matches Page. To provide the job seeker with content immediately, they
are served an intermediate list of recommendations from the Talent Matcher, which is referred to as
the Non-curated Queue. This Non-curated Queue is ordered on the Talent Matcher’s match score we
described in Section 3.3; while deprecated, it is used in the context of the quickly served Non-curated
Queue for lack of a better sorting property.

While the job seeker interacts with the Non-curated Queue, a Curated Queue is generated in the
background. The first batch of six matches served comprise the Non-curated queue, and by the time
the second batch of matches is served, the Curated Queue is available. The second, and following
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batches will be retrieved from this Curated Queue.

It is necessary to recalculate the Curated Queue from time to time to include new content posted
while the generated queue was stored. Therefore, the Curated Queue is stored for an hour, after which
it is removed to allow a recalculation of the queue to be triggered. The curated queue can also be
replaced by an updated version during its existence; triggers for such recalculations are discussed later.
Figure 3.3 shows the flow of which queue is served to the job seeker.

Figure 3.3: State diagram indicating which queue is served to the job seeker

3.4.4. Curated Queue Setup

The Matches Queue is built up from two underlying queues of matches: one consisting of opportunity
matches, and one of company matches. We will refer to them as the Opportunity Queue and the
Company Queue for easy reference. The Opportunity Queue consists of promoted‡ opportunities and
non-promoted opportunities. Per the business model, the promoted opportunities must be sorted
before the non-promoted opportunities in the queue. The company queue consists only of promoted
companies; non-promoted companies will not appear in the Matches Queue.

The Matches Queue is constructed by injecting companies from the Company Queue into the Op-
portunity Queue at set intervals. This is shown Figure 3.4. It shows the Opportunity Queue at the
top, which itself consists of promoted opportunities and non-promoted opportunities; sorted in that
order. The Company Queue is shown at the bottom of the figure. The Matches Queue is created by
injecting companies at index two, and then every sixth rank in the queue. This means the company-to-
opportunity-ratio is at most 1 on 5, but in practice we see that the ratio of available opportunities and
companies is different; often there are not enough promoted company matches available to maintain
this periodicity. In that case, the ranks where companies would have appeared are simply occupied by
opportunities.

‡‘Promoting’ an opportunity or company is a paid service of Magnet.me that boosts the match in the Matches Queue.
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Figure 3.4: Curated queue setup. The Opportunity Queue (top, red) consists of both promoted and non-promoted opportunities
that match with the job seeker. The Company Queue (bottom, blue) consists only of promoted, matching companies. The
Matches Queue (middle) is acquired by injecting companies into the Opportunity Queue at set intervals.

Queue Order
The order of matches in the Matches Queue is dictated by the order of the matches in the respective
underlying queues. When combining the queues to form the Matches Queue, the relative order from
the Opportunity Queue and Company Queue is maintained.

As explained before, the business model dictates that promoted opportunities are shown before non-
promoted opportunities, and only promoted companies are shown. The Company Queue is ordered by
the match score of the Talent Matcher, since the impact of the match score is deemed insignificant on
the sparse companies in the Matches Queue. The Opportunity Queue is ordered differently, because
the match score provided by the Talent Matcher is not suitable for ordering opportunities in the queue.
Instead the opportunities are shuffled. The problem, and the remedying shuffle, are described in
Appendix B.

3.4.5. Overlap between Curated Queues
The curated queue can be recalculated during its one-hour lifespan, and it can be subject to small
mutations. Several events, based on user interactions with the queue as well as events from elsewhere
on Magnet.me, will trigger mutations or a recalculation of the queue. For an overview of events that
affect the queue, see Appendix C.

Typical mutations or recalculations effectively remove one, or a small number of matches from the
queue. For example, when a job seeker ignores a company in the queue, the opportunities posted by
that company will not be suggested to the user anymore, assuming that the user would ignore these
opportunities too.

Generally speaking however, queues remain very similar over these mutations or recalculations:
Between the recalculations of the queues within its lifetime of one hour, the matches provided by the
Talent Matcher do not change significantly. Furthermore, the deterministic shuffle mentioned above
was written to minimise this perceived change in the queue.

This means that two queues generated consecutively, and within a short time span from one another,
overlap: They show roughly the same content, in the same order. Effectively, this means that a job
seeker that happens to trigger the recalculation of the queue they are watching over time is still
interacting with the same content. This is important in evaluation of match relevance later on, because
it allows us to obtain information on match relevance for a queue by looking at interactions with other



3.5. Constraints on Matches Queue Improvements 13

queues: If a match wasn’t interacted with in one queue, it may very well have been interacted with in
another.

3.5. Constraints on Matches Queue Improvements
The improvements we suggest related to the recommendations (RQ2), are subject to constraints im-
posed by Magnet.me, aimed at keeping the core product of Magnet.me unchanged during the experi-
ment and protecting the user from possibly detrimental changes. Furthermore, the part of Magnet.me
in which this experiment will be implemented is tied to very complex and old parts of Magnet.me, which
restrict the extent to which the experiment can be implemented. These restrictions impact the validity
of the experiment and the interpretations of the results. Those consequences will be discussed later
on in the thesis, but the constraints will be described here to increase the comprehensibility of the rest
of the thesis.

• Promoted opportunities must be sorted before the non-promoted opportunities in the Matches
Queue.

• The content of the Matches Queue may not change: a job seeker must be offered the same
opportunities and companies, which are provided by the Talent Matcher.

• The structure of the Curated Queue, meaning the periodicity of opportunities and companies,
must remain as described in Section 3.4.4.

• The User Interface (i.e. the structure of the visual elements on the page) may not be changed.

• The User Experience, specifically regarding the loading time of the page, may not be changed.

These restrictions still allow us to improve on the order of matches in the Matches Queue, while
respecting the periodicity of the queue from 3.4.4. This is possible by ordering the matches in the
respective Opportunity- and Company Queues before combining both queues into the Matches Queue.

The constraints on user interface and user experience are not an issue when we propose and
evaluate improvements to the sorting algorithm; as suggested in Section 2.3, we should keep all
aspects of the web platform identical except what we are trying to test; otherwise our results may be
affected.

3.6. Focus on Opportunity Queue
As explained in Section 3.4.4, the Curated Queue is built up by combining the Opportunity Queue and
Company Queue. In this thesis, we focus on improving (the ordering of) the Opportunity Queue.

The first reason to look at the Opportunity Queue only is the goal to use job seeker interactions with
the platform to improve the ranking of the queue. Job seekers look significantly more at opportunities
than they look at companies; there were almost six times as many views of opportunity pages compared
to company page views, and the average duration of an opportunity page view is three times as long as
a company page view. The sum of durations of opportunity page views is 16.5 times longer than that
of the company page views. See Table 3.1 for the absolute statistics of company page views versus
opportunity page views.

Viewed match type Number of views Total duration Average duration

Company 47283 views 823 hours 1 minute
Opportunity 281005 views 13660 hours 3 minutes

Table 3.1: A comparison of view statistics of company page views and opportunity page views.

The second reason to only focus on the Opportunity Queue is the structure of the Matches Queue:
There are five times more opportunities than companies in the Matches Queue due to the interlacing
of the Opportunity- and Company Queue.

This means that the feedback that can be gathered on the Company Queue as a part of the Matches
Queue is small: Job seekers, on average, interact with between 5 and 15 matches before navigating
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to another page on Magnet.me, or dropping off entirely. That means that the average job seeker sees
at most three companies in the Matches Queue, yielding very little feedback compared to the up to ten
opportunities they view.

Finally, the amount of content for respectively the opportunity- and company queue means that
improving the Opportunity Queue ordering has more potential impact than ordering the Company
Queue. Due to the user dropping off the Matches Page, they miss a lot of opportunities in the queue.
The goal of the Matches Queue is to provide the job seeker with matches that are interesting for them;
an improved sorting algorithm could increase the relevance of the content in the front of the queue.

In conclusion, we have introduced the job recommendation platform Magnet.me. We have shown
how a job seeker experiences the job recommendations, and interacts with them. In the job seeker’s
job recommendation experience, we have highlighted areas that can be improved, while abiding to the
constraints imposed by Magnet.me

In the next chapter, we will further investigate how the job seeker interacts with Magnet.me, and
how we can use these interactions to gain a better understanding of the job seeker’s preferences,
eventually to improve the job recommender system.



4
Deriving Preferences from User

Behaviour

In Chapter 3, we discuss the job seeker’s explicit preferences. These consciously provided preferences
are used to filter employers and opportunities in the Talent Matcher algorithm described in Section 3.3.
While the explicit job seeker preferences suffice to filter content on Magnet.me on, they fail to indicate
relative preferences: For example, a job seeker may indicate a preference in industries ‘government’
and ‘education’, but which do they like better?

During their sessions on Magnet.me, job seekers explore employers and opportunities. They go
through the matches on the Matches Page, they visit pages dedicated to the employers, or to their
opportunities, and eventually correspond with recruiters and apply to opportunities. Through their
interactions with Magnet.me, job seekers express behaviour that may provide a better understanding
of their preferences; more fine-grained than the explicit preferences indicated in their profile.

In this chapter, we focus on RQ1: How can we gain a better understanding of job seeker preferences,
beyond their explicitly provided preferences? To do so, we discuss monitoring user behaviour, and
analyse job seeker’s interactions with opportunity pages on Magnet.me. We then look for existence of
patterns that support the intuitive notion of preferences expressed in their behaviour. Then, we propose
an aggregation of behaviour aimed towards a better understanding of their preferences, specifically to
predict a stronger affection to one property value than another.

We also focus on RQ2: How can we use implicit job seeker preferences to improve the opportunity
recommendation ordering algorithm? We do so by using the aggregation of implicit preferences to
propose an algorithm to sort the Opportunity Queue for the Matches Page.

4.1. Monitoring User Behaviour
RQ1a asks what job seeker interaction data we can monitor to derive implicit preferences from. Mag-
net.me historically tracked user behaviour on an abstract event basis: ignores, likes and applications,
for example. While raw navigational logs are available, they were not retained for long due to their
sheer volume: gigabytes of such data are generated every day. More importantly, combining this data
into an understanding on how users interacted is very challenging; getting a complete image of what
a user did from arriving on a page until they left is near unfeasible. Even if it were feasible, it was not
possible to look far back because navigational data is not available for the more distant history.

To be able to study behaviour for implicit preferences, we need to gain a better understanding of
how job seekers interact with pages on Magnet.me. We therefore implemented a more behaviour-
oriented monitoring system that tracks page interactions from the moment the page is loaded to the
moment the user leaves. The user ’leaving’ is defined as one of: the user navigates to another page on
Magnet.me, the page is not visible anymore (based on the Page Visibility API [50]), or the user closes
the browser (tab). For each page view, we store the following information:

• Time-related details, such as the start- and end time of the page visit and the duration.

• Information on the entity on the page, if applicable.

15
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For example: on the page of a specific opportunity, we can include detailed information on the
opportunity, but on the search page for all opportunities such information is not available.

• Information on the relation between the job seeker and the entity on the page, if applicable.

Like explained above, this is only useful on pages showing an entity the job seeker can relate
with, i.e. opportunities and companies.

• Actions and interactions performed by the job seeker during the page visit.

While on the page, the job seeker interacts with the page in two ways: interactions with the page
itself, such as clicking buttons and scrolling the page, and interactions with the entity shown on
the page, such as (un)liking and applying to the shown opportunity. These actions are stored
with time stamps of their own, as well as information specific to the type of action: e.g. for a
scroll event, we store how far the user has scrolled.

These page views and -interactions are tracked for job seekers on all pages on Magnet.me, and are
referred to as ‘page interactions’. Since we only focus on improving the opportunity queue as explained
in section 3.6, we will also focus our study of user behaviour on the opportunity pages in this thesis.
Therefore, from here on, when we refer to page interactions we refer to interactions with opportunity
pages.

4.2. Implicit Preferences Shown In User Behaviour
Now that job seeker behaviour on Magnet.me is tracked, in the form of page interactions, we can
study this data for behavioural patterns that could indicate implicit preferences. To find out whether
job seekers show preferences in their behaviour, we will use one of the actions that the job seeker
exercises during opportunity page interactions: indicating their interest in the opportunity. In the
page interactions, a change in the job seeker’s interest in the opportunity is denoted by the property
newInterestedStatus. This is a clear indicator of affection towards the opportunity, and we will use
this as the ground truth for our page interactions analysis.

Using this ground truth, we will analyse if properties of the page interactions are good predictors
for a change in their interest status for the viewed opportunity. For example, based on the related
work one could expect that when a job seeker shows a longer attention span for an opportunity page,
it could indicate a positive affection for the opportunity. We will look for these patterns using a logistic
regression. In this section, we discuss how we pre-processed page interactions and derived a feature
set.

4.2.1. Pre-processing the Page Interaction Data
We must first pre-process the data to analyse the data for patterns. The interactions already contain
the property newInterestedStatus, indicating the affection of the user to the opportunity. From the
start- and end time stamp, we derive the duration of the session. From the events (i.e. the job seeker’s
actions), we derive three numerical variables: the number of events, the duration between the start
of the of the interaction and the last event, and the duration between the first and the last event.

Below is the full list of variables of the hypothetical feature set for the logistic regression analysis.

• newInterestedStatus: Logical. The new status of interest the job seeker expressed during the
page interaction. The value is true or false.

• duration: Numerical. The duration of the page interaction in milliseconds.

• eventCount: Numerical. The number of page interaction events (click or scroll).

• startToLast: Numerical. The time between the start of the page interaction and the last event
in milliseconds.

• firstToLast: Numerical. The time between the first event and the last event in milliseconds.
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Figure 4.1: Boxplot showing the long-tailed nature of the duration of sessions on dedicated opportunity pages. The median is
at 20,643ms, the first quartile is at 9,205ms and the third quartile at 41,859ms. The whisker at 1.5IQR above the median is at
90,726ms.

4.2.2. Selected Page Interaction Data
We take page interactions gathered between , and filter out
page interactions during which the job seeker indicated a new status of interest on a dedicated oppor-
tunity page. This resulted in a total of 9,978 page interactions. The duration data is quite long-tailed,
as is shown in the boxplot in Figure 4.1. We see that the right whisker in the boxplot at 1.5IQR above
the median lies around 100,000 milliseconds, and duration values above that are considered outliers.
From these page interactions, we removed the outliers: interactions that have a duration higher than
100,000 milliseconds, or about 1.67 minutes. This is equal to 5.6% of the dedicated opportunity
page interactions. The data we use for our analysis consists of the remaining 94.4% or 9,422 page
interactions.

4.2.3. Data Exploration
After pre-processing the data and removing outliers, we have a dataset from which we want to derive
a feature set for the logistic analysis. We can quickly see what patterns are emergent by studying the
correlation matrix shown in Table 4.1, and corresponding scatterplot matrix shown in Figure 4.2.

Both the correlation matrix and the scatterplot matrix clearly show that all duration-based variables;
duration, startToLast and firstToLast, strongly correlate. duration is nearly perfectly correlated
with startToLast, the time from the start of the page interaction to the last event in the interaction; of
course, this is not entirely surprising. For example: if a user typically ends the page interaction shortly
after the last interaction event (e.g. a click), that would explain this correlation.

The same applies to firstToLast, but we see something peculiar in the scatterplots between
firstToLast and two other variables; duration and startToLast. Both show a strong grouping in
the form of a line for very low values of firstToLast. These are caused by page interactions for which
there were very few events, which were prevalent in the data set: 3,115 of 9,422 page interactions
had only a single click or scroll occurring.

The correlation matrix shows a correlation between the newInterestedStatus and duration of
0.1904546; there is a (weak) positive correlation between the duration of a page interaction and
the positive affection of the job seeker towards the opportunity. This is not distinguishable in the
scatterplots, because the data points for newInterestedStatus overlap very strongly in the plot.

In the correlation matrix, we see a similar correlation between newInterestStatus and eventCount.
The correlation has value 0.1666328. Though even weaker, it is comparable to the correlation of
newInterestStatus and duration.

From the correlations in Table 4.1, we can conclude that the duration of page interactions could be
a predictor of the affection of a job seeker towards an opportunity. The eventCount shows a similar
but weaker correlation.
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Figure 4.2: Scatterplot matrix showing scatterplots for all variables in the page interactions data. The logical
newInterestedStatus variable has been converted to a numerical value: ‘false’ is represented by value ኻ.ኺ and ‘true’ by ኼ.ኺ.
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newInterestedStatus duration eventCount startToLast firstToLast

newInterestedStatus 1.0000000 0.1904546 0.1666328 0.1892302 0.1616041
duration 0.1904546 1.0000000 0.4378709 0.9932156 0.6622901
eventCount 0.1666328 0.4378709 1.0000000 0.4340881 0.7335792
startToLast 0.1892302 0.9932156 0.4340881 1.0000000 0.6569243
firstToLast 0.1616041 0.6622901 0.7335792 0.6569243 1.0000000

Table 4.1: Correlation matrix for the pre-processed page interactions data.

Feature Selection
Due to the high correlation between duration, startToLast and firstToLast, we remove the last
two variables from the feature set. The variables used for the logistic regression analysis are therefore:

• newInterestedStatus as the dependent, logical variable.

• duration: Numerical. The duration of the page interaction in milliseconds.

• eventCount: Numerical. The number of page interaction events (click or scroll).

Logistic Regression
To determine whether duration and eventCount are significant predictors for the newInterestedStatus,
we use a logistic regression analysis. We construct a model with newInterestedStatus as the dichoto-
mous response variable and duration and eventCount as the predictor variables, and fit it on the data.
The regression analysis can be found in Listing 4.1.

1

2 Ca l l :
3 glm ( formula = newInterestedStatus ~ dura t ion + eventCount , f am i l y = binomia l ,
4 data = pageIntFact )
5

6 Deviance Res idua l s :
7 Min 1Q Median 3Q Max
8 ዅ2.3199 ዅ1.0543 ዅ0.9537 1.2169 1.4337
9

10 Coe f f i c i e n t s :
11 Est imate Std . E r ro r z va lue Pr (>| z | )
12 ( In te r cep t ) ዅ6.004eዅ01 3.318eዅ02 ዅ18.10 <2eዅ16 ***
13 dura t ion 1.354eዅ05 1.078eዅ06 12.57 <2eዅ16 ***
14 eventCount 4.548eዅ03 4.954eዅ04 9.18 <2eዅ16 ***
15 ዅዅዅ
16 S i g n i f . codes : 0 ‘’*** 0.001 ‘’** 0.01 ‘’* 0.05 ‘’ . 0.1 ‘ ’ 1
17

18 ( D i spe rs ion parameter f o r b inomia l f am i l y taken to be 1)
19

20 Nu l l deviance : 13037 on 9421 degrees of freedom
21 Res idua l deviance : 12599 on 9419 degrees of freedom
22 AIC : 12605
23

24 Number of F i she r Scor ing i t e r a t i o n s : 4

Listing 4.1: Summary of the model fitted on the page interactions data.

The fitted model shows that duration and eventCount are both significant predictors of the depen-
dent variable newInterestedStatus. However, the model leaves much to be desired. See the analysis
of variance in Listing 4.2: the combined predictor variables only explain ኻኽኺኽ዁ዅኻኼዀኺኺ

ኻኽኺኽ዁ ∗ 100% = 3.3%
of the deviance in the page interactions data. We can conclude that the model does not fit the data
very well. This urges caution in using duration and/or eventCount of opportunity page interactions
as predictors for affection of the job seeker towards the opportunity.
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1 Ana l y s i s of Deviance Table
2

3 Model : b inomia l , l i n k : l o g i t
4

5 Response : newInterestedStatus
6

7 Terms added sequen t i a l l y ( f i r s t to l a s t )
8

9

10 Df Deviance Resid . Df Resid . Dev Pr(>Chi )
11 NULL 9421 13037
12 dura t ion 1 347.12 9420 12690 < 2.2eዅ16 ***
13 eventCount 1 90.01 9419 12600 < 2.2eዅ16 ***
14 ዅዅዅ
15 S i g n i f . codes : 0 ‘’*** 0.001 ‘’** 0.01 ‘’* 0.05 ‘’ . 0.1 ‘ ’ 1

Listing 4.2: Analysis of Variance test for the logistic regression model newInterestedStatus duration + eventCount.

Despite the weak correlation and the poorly fitted model, we have shown a connection between
duration and eventCount of opportunity page interactions by job seekers with the job seekers af-
fection towards the opportunity. This is relevant for RQ1a. We will cautiously use these connections
to aggregate behaviour into an improved and more detailed understanding of job seeker preferences
towards opportunities.

4.3. Aggregating User Behaviour to Derive Implicit Preferences
Using the conclusions about the connection between page interaction properties and job seeker affec-
tion towards opportunities, we look more closely at deriving implicit preferences from the job seeker
behaviour. To do so, we will now look away from the page interactions to what is actually displayed on
the page: an opportunity. By doing so, we shift our focus to RQ1b: ‘How can we aggregate implicit
job seeker preferences from job seeker interaction data?’.

To reiterate: an opportunity is for example an internship or a job, and every opportunity is de-
fined by a number of properties. These properties consist of the job type, job function, employment
type, minimal education level, salary, location of employment, and several properties of the employer:
company size and industry.

In this section, we propose a model of implicit preferences that employs a proposition about the
affection of job seekers towards an opportunity: We observe that, if a job seeker is interested in an
opportunity, they are interested in the properties of that opportunity as well. To refrain from leaning too
heavily on the logistic regression model above, and the proposition we just made, we will be cautious
in our data selection.

4.3.1. Conservative Data Selection
If we we gather all opportunity page interactions for a job seeker, we have an overview of what the
job seeker has sought out to view, as well as meta-information about the page interactions. We can
append the opportunity properties to the page interactions, and analyse this augmented information
to derive implicit preferences from job seekers. We will formally propose an algorithm to do so later
in this section. However, we want to tread carefully with applying the weak conclusions from last
section: even though we’ve shown page interaction properties can suggest positive affection towards
the opportunity, the logistic regression model did not fit well.

Therefore, before we apply the algorithm to distil a usable model of implicit job seeker preferences,
we apply a filter on the page interactions from which we derive them. Instead of using all opportunity
page interactions for a job seeker, we only use page interactions with opportunity pages for which we
know the job seeker is interested in the opportunity. By applying this filter, we build our model of the
job seeker’s preferences more conservatively, focusing on more explicit feedback from the job seeker.

Because of this conservative approach, we significantly constrain the amount of data available to
derive implicit preferences from. If we look at all dedicated opportunity page interactions from the
period described in Section 4.2.2, the data is divided as shown in Table 4.2. By selecting only page
interactions with interest=true, we remove all but 44.1% of available data.

To use the rest of the data in implicit preference derivation, we consider more research is required
to be confident about the applicability of the data.
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Interest Status Number of page interactions Percentage of total

Interested 182.829 44.14%
Not interested 23.779 5.74%
Unknown 207.557 50.11%

Total 414.165 100.0%

Table 4.2: Page interactions on dedicated opportunity pages, grouped by interest status.

4.3.2. Deriving Implicit Preferences
Using a job seeker’s opportunity page interactions, and augmenting them with the properties for the
displayed opportunities, we can use the positive affection that is suggested by higher page interaction
duration. We have decided not to use the eventCount due to the complexity it would add to the implicit
preference model we propose here; this variable could be considered in future work. To employ the
correlation between duration and opportunity affection, we apply a conceptual observation on the
page interaction data: if a job seeker has read an opportunity page with a duration 𝑑, then it has
also studied the opportunity’s properties with duration 𝑑. We then apply the positive affection that is
suggested by longer durations, and make the following proposition: The longer a job seeker has looked
at an opportunity, the more interested they are in that opportunity’s properties. These are the implicit
preferences of the job seeker for properties of viewed opportunities.

Using that proposition, we can aggregate the job seeker’s implicit preferences by summing the
duration of each view, per property of the opportunity. The result from this is a collection of all
possible values of opportunity properties, and total duration per value. For example, if the job seeker
is interested in engineering jobs, and lesser so in jobs in education, we expect to see a higher total
duration for the job function ‘engineering’ than for the industry ‘education’. To be able to compare the
scores of all different properties, we normalise each property score by dividing the duration for the
property by the total duration of the job seeker’s opportunity page interactions.

Formally defined, the set of opportunities viewed by the job seeker is 𝑂, and the set of all possible
opportunity properties is 𝑃. 𝑃፨ ⊂ 𝑃 is then the set of properties of opportunity 𝑜 ∈ 𝑂. We define 𝑡፨ as
the time spent watching opportunity 𝑜 ∈ 𝑂. Then we define 𝑇 as:

𝑇 =⋃
፩∈ፏ

𝑡፩ (4.1)

where 𝑡፩, normalised for the total view time, is:

𝑡፩ =
⟨፨∈ፎ|፩∈ፏᑠ⟩

∑ 𝑡፨
𝑡፭፨፭ፚ፥

(4.2)

where 𝑡total is:

𝑡፭፨፭ፚ፥ =
፨∈ፎ

∑𝑡፨ (4.3)

The proposed model 𝑇 will be used in our online experiment to help us answer RQ1. Using this model
of implicit preferences, we now propose an alternative way to sort opportunities in the Opportunity
Queue.

4.4. Sorting Opportunities based on Implicit Preferences
RQ2 asks how we can improve the sorting of the Opportunity Queue with our newly acquired aggre-
gation of implicit preferences, 𝑇. The algorithm we propose here will link 𝑇 to opportunities in the
Opportunity Queue, and allow us to sort them. Our high-level approach to sorting the Opportunity
Queue according on the job seeker’s implicit preferences is the following:

1 Award a numeric score to each property of each opportunity in the queue based on the set of
implicit preferences 𝑇 of the job seeker.
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2 Reduce the set of scores for an opportunity to a single score.

3 Sort the opportunities based on their numeric score, descending.

Formally defined, the Opportunity Queue for a job seeker consists of a set of opportunities 𝑂፪
obtained from the Talent Matcher. All opportunities 𝑜፪ ∈ 𝑂፪ have properties 𝑝፨ ∈ 𝑃, where 𝑃 is the
collection of all possible opportunity properties. Using the job seeker’s normalised implicit preference
scores 𝑇, consisting of preferences 𝑡፩ per property 𝑝 ∈ 𝑃, we award a score 𝑠፩ to all properties 𝑝፨ of
all 𝑜፪ with 𝑡፩:

𝑠፩ = 𝑡፩ (4.4)

Therewith we have awarded a numeric score to each property of the opportunities.
Step two of our algorithm is to reduce the set of scores per opportunity to a single score. We have

chosen to perform this reduction by taking the maximal score 𝑠፩ of all properties 𝑝፨ ∈ 𝑃፨. For an
opportunity 𝑜፪ ∈ 𝑂፪ and the set of properties 𝑃፨ for opportunity 𝑜፪, the opportunity score 𝑠፨ is then
defined as:

𝑠፨ = max፩∈ፏᑠ
(𝑠፩) (4.5)

In other words, the score awarded to an opportunity 𝑜 is the highest normalised view time of all
properties of opportunity 𝑜.

We apply this scoring algorithm to all opportunities in the Matches Queue for the job seeker, and
sort the queue descending on this score. In effect, this means that the opportunities that have the
property that the job seeker viewed the longest is shown to them first. This will help us answer RQ2. To
see how much our algorithm improves Opportunity Queue performance, we go into sorting algorithm
evaluation in the next chapter.



5
Relevance Evaluation

In this thesis, our aim is to improve the ranking algorithms of Magnet.me’s Matches Queue. To do so,
we must find a way to measure the performance of the ranking algorithms. RQ3 focuses on this: How
can we evaluate rank performance, and therewith distinguish between ranking algorithm performance?
We look at RQ3a, which is aimed at how we derive relevance from queue interactions, and at RQ3b
which asks how we should handle missing feedback.

In this chapter, we first motivate our choice for the rank evaluation metric NDCG. We then introduce
‘relevance evaluations’, which is how we apply relevance scores to queue interactions. We propose sev-
eral properties of relevance evaluations that will further help us answer RQ3 with our online experiment.
Finally, we combine the relevance evaluation properties to compile a number of relevance evaluations
which we will compare in an online rank evaluation experiment.

5.1. Rank Evaluation Metrics
As discussed in Section 2.2, there are many rank evaluation metrics we can use to compare performance
of ranking algorithms. For our experiment, we evaluate our rankings using the Normalised Discounted
Cumulative Gain (NDCG) introduced in Section 2.2.2; NDCG handles multiple levels of relevance, which
means we can consider different queue interactions to have different relevance.

In the rest of this chapter, we will propose varying relevance evaluations that will yield different
NDCG scores. To draw conclusions on the different NDCG scores, we also use the Mean Reciprocal
Rank (MRR) as a crude baseline.

5.2. Applying Relevance Scores to Job Seeker Match Interactions
NDCG’s capability of handling non-binary relevance scores means that we must find a way to derive
relevance for job seeker interactions with the queue. We will refer to a such mapping as a ‘relevance
evaluation’: the mapping evaluates the relevance indicated by an interaction and applies a score to it.

The relevance feedback from a job seeker for an opportunity is one of three explicit actions: like,
ignore and apply. When no feedback is available for an opportunity, we call this interaction unknown.
A relevance evaluation is then a set of relevance scores 𝑠። for all interactions 𝑖, where 𝑖 is one of
unknown, ignore, like and apply. Formally defined, this means a relevance evaluation 𝑅 is defined
as, with 𝐼 = {unknown, ignore, like, apply} and 𝑠 being a numerical relevance score

𝑅 =⋃
።∈ፈ
𝑠። (5.1)

We use this model in our online experiment to answer RQ3a; the experiment will show what rele-
vance evaluations are usable. How we handle missing feedback, the subject of RQ3b, is studied with
how unknown interactions are handled in the relevance evaluations. There are many possible relevance
evaluations, which we will introduce in the next section.

23
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5.3. Relevance Evaluation Properties
We now propose several properties of relevance evaluations, i.e. how we score the relevance of types
of match interactions of job seekers. We will use these properties to denote categories of relevance
evaluations which we will compare in our experiments.

We first introduce different restrictions on the score ranges of the relevance evaluations; we moti-
vate using non-zero lower bounds for DCG, and with these different score ranges, we will test whether
we can calculate NDCG with non-zero lower bounds.

Then, we will introduce fairness, which indicates the order of relevance of interactions. We propose
different orders of interactions (RQ3a), in which we also handle missing feedback (RQ3b).

Finally, we introduce different numbers of relevance levels. This property is introduced to discern
between how many different scores the relevance evaluation uses. We use different numbers of levels
to research the influence of adding more levels on NDCG’s capability to distinguish between algorithm
performance.

5.3.1. Score Ranges
As described in section 5.3.1, we normalise DCG scores allowing for non-zero lower bounds of DCG. The
definition of NDCG as given in Section 2.2.2 assumes that the lower bound of DCG equals zero. Here,
we motivate using different lower bounds of the DCG in evaluating ranking algorithm performance.
To calculate NDCG with these non-zero lower bounds, we must change the way NDCG is calculated
slightly. After we have proposed this changed calculation, we propose three different lower bounds,
which will be denoted as a relevance evaluation property ‘score range’.

Consider the relevance feedback that is received for the Matches Queue, to which we apply a score.
Traditionally, NDCG implementations use value 0 for the lowest relevance level. Effectively, this means
that the interactions with that level of relevance are considered not to have any gain; they did not satisfy
the job seeker’s desired interests. However, when we consider the difference between a job seeker
actively choosing to ignore an opportunity, and a job seeker that does not respond to an opportunity,
one can imagine that the ignored opportunity might be even less relevant than the opportunity for
which no feedback was provided. Further even, we could say that ignore should have a negative gain,
and unknown a more ‘neutral’ gain.

DCG with a non-zero lower bound
The definition of NDCG from Section 2.2 does not handle non-zero lower bounds of DCG: the normalisa-
tion would fail. If we want to use relevance evaluations with a lowest relevance score that is not equal
to zero, we must calculate NDGC differently; we must drop the assumption that the lowest relevance
equals zero. The assumption of DCG having the lower bound zero is shown in the normalisation step
of the NDCG. This normalisation of the performance of a rank is calculated as DCG

IDCG
, where IDCG is

the DCG score for the optimally sorted rank: sort descending on the gain per item (Ideal Discounted
Cumulative Gain). This calculation is a simplification of min-max re-scaling: a form of normalisation
calculated for a generic variable 𝑥 as ፱ዅዱይዲ(፱)

ዱዥዼ(፱)ዅዱይዲ(፱) . In the case of the standard NDCG normalisation,

min(𝑥) is assumed to equal zero, which yields the calculation ፱
ዱዥዼ(፱) . The normalisation then does not

map the score to range [0, 1], but to [min(DCR፫), 1]‡.
The solution to this problem is to calculate the normalisation with the non-simplified ፱ዅዱይዲ(፱)

ዱዥዼ(፱)ዅዱይዲ(፱) .
When applied to NDCG, this becomes

NDCG = DCG−WDCG
IDCG−WDCG (5.2)

where we introduce WDCG: The Worst Discounted Cumulative Gain. It is calculated by sorting the
items ascending on relevance gain, and calculating the DCG for that; the opposite of the IDCG.

We can check whether the implementation of Formula 5.2 behaves like the simpler definition in
Section 2.2, by implementing relevance evaluations that have the same order of interactions, but differ
in the value of the scores applied to the interactions.

Therefore, we propose the following score ranges

‡ዱይዲ(DCRᑣ) is the lower bound of the DCR calculated using rank evaluation ፫
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• non-restricted relevance evaluations, for which all relevance scores 𝑠 ∈ ℤ‡

• non-negative relevance evaluations, for which all relevance scores 𝑠 ≥ 0

• strictly positive relevance evaluations, for which all relevance scores 𝑠 > 0

It should be noted that the simple definition of NDCG thus requires that the relevance evaluations
have a non-negative relevance evaluation. The relevance evaluations we will propose will have different
score ranges, which will allow us to test if we could indeed use relevance evaluations with a non-zero
lower bound. We expect to see that the NDCG scores for relevance evaluations different score ranges,
but other identical fairness and number of relevance levels, yield identical results; after all, nothing has
changed in the order of relevance of the interactions.

5.3.2. Fairness
The order of relevance of the different types of interactions defined in Section 5.2 strongly influences
the NDCG score; it is therefore important to choose this order with great care. RQ3a and RQ3b research
this: how do we derive relevance from feedback, and how should we handle missing feedback?

For explicitly given feedback, the natural order of relevance is fairly clear; an opportunity that the
job seeker likes is more relevant than an opportunity that is ignored. A direct application to an
opportunity definitely shows it is relevant, and one could argue that the gain score for an apply should
be even higher than for a like.

The score for the unknown interaction, however, is more difficult to assign a value. One could
argue that this interaction should not be attributed a positive gain score, because the match cannot be
considered relevant. Another argument could be made that, while not relevant, such a match should
have a higher gain score than an explicitly ignored match, because this interaction specifies a low
relevance whereas we may not be able to conclude the same of the unknown feedback. Regardless of
motivation, the decision is very important; it dictates the ideal sorting of the queue, and that strongly
influences the NDCG score.

To discern between the different interaction orders, we introduce the property ‘fairness’. Using
the definition for a relevance evaluation from Equation 5.1, we consider a relevance evaluation to
be ‘fair’ when 𝑠ignore < 𝑠unknown < 𝑠positive. A relevance evaluation is considered to be ‘unfair’ when
𝑠unknown < 𝑠ignore < 𝑠positive. With this property, we can express which we find more relevant: the
unknown interaction or the ignore. Table 5.1 shows examples of fair and unfair relevance evaluations.

Interaction Fair Unfair

like, apply 2 2
unknown 1 0
ignore 0 1

Table 5.1: An example of a fair- and an unfair relevance evaluation.

We chose the term ‘fairness’ based on the intuitive appeal to giving a higher gain to an unknown
interaction than to an explicit ignore. Of course, the unknown interaction does not have a hierarchical
relation to the ignore- and positive interactions, so the term serves mostly as a way to discern between
the proposed categories, and not as an indicator of actual fairness. Because fair- and unfair evaluations
use both possible ways to handle missing feedback, we can use them to answer RQ3b.

5.3.3. Number of Relevance levels
NDCG can handle multiple levels of relevance. To discern between the number of different levels
of relevance, i.e. different numbers of unique scores in a relevance evaluation, we propose ‘binary’,
‘ternary’ and ‘quarternary’ relevance. We will discuss their implications on the NDCG score, and motivate
what their advantages and disadvantages are.

‡One could even use ℝ, but we will stick to integers in this thesis.
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Binary Relevance
As the name suggests, binary relevance only has two different score values; it is used to simply discern
between relevant and non-relevant matches. Wang et al.’s Standard NDCG relevance scores are an
example of a binary relevance score.

We propose binary relevance evaluations to compare them to the relevance evaluations with more
differentiation in relevance. The low number of relevance levels means that there are less possible
permutations for the sorting of a queue; therefore binary relevance evaluations provide more crude
insights in the performance of queues. Since the evaluation does not discern between the ignore
interaction and the unknown interaction, we do not label it as fair or unfair.

Ternary Relevance
With three levels of relevance, ternary relevance evaluations allow us to split up the positive- and non-
positive interactions from the binary relevance evaluations. We expect splitting up the non-positive
interactions, unknown and ignore, to have significantly more effect on the NDCG score than splitting
up the positive interactions like and apply. Therefore we will only test ternary relevance evaluations
that have different values for 𝑠unknown and 𝑠ignore; all ternary relevance evaluation will therefore apply
the same score to like and apply.

Because different scores can be applied to the ignore- and unknown interactions, we can create
relevance evaluations that are fair or unfair. We also use different score ranges, as discussed in Sec-
tion 5.3.1. Combining these options, we will propose several ternary relevance evaluations that will
combine different score ranges, and fairness.

Quarternary Relevance
Quarternary relevance gives us a fourth layer to discern between even more layers of relevance. We use
the fourth layer to not only distinguish negative, unknown and positive relevance; we also distinguish
between the positive interactions like and apply. Specifically, we consider apply to suggest higher
relevance than like, so we assign a higher value to 𝑠apply than 𝑠like.

With this, we specify that the ideal queue would have all opportunities to which the job seeker
directly applied at the start of the queue; then the liked opportunities, and the non-positive inter-
actions in the tail. While this ‘ideal’ queue naively sorts higher relevance at the top, the real queue
interactions will rarely show that job seekers apply to the first opportunity they see on the Matches
Page. Furthermore, when the job seeker applies to a job, they are navigated away from the Matches
Page: to actually apply, the job seeker must send a message to the employer. This means that multiple
applications in one queue are very rare; the job seeker would have to navigate back to the queue man-
ually and find another opportunity they want to apply to. Because of this, the quarternary relevance
revaluations suggest a somewhat unrealistic ideal queue which will never be fully achievable in the real
world.

However, we consider applications to be a far stronger indication of positive relevance than a like.
It would be unwise to ignore this distinction altogether by considering them equal, like for the other
numbers of relevance levels. Furthermore, differentiating between like relevance and application rele-
vance will reward sorting algorithms that put the applied-to opportunity in the beginning of the queue
over those who fail to do so.

Compared to the less complex binary- and ternary relevance evaluations, the many different levels
of relevance in these evaluations may hurt the distinguishing capability of NDCG In other words, we
expect that quarternary relevance evaluations may not decidedly point at a winning sorting algorithm.

In conclusion, we expect that added levels of relevance will create more room for error. This may
cause a drop in scores for relevance evaluations as more relevance layers are added. Furthermore, the
added layers may hurt the distinguishing property of NDCG.

5.3.4. Cutoff points
Described in Section 2.2.2, related work suggests that we should only consider the first 𝑘 documents
in the result set. This cutoff point is used to mitigate the influence of large ‘tails’ of ranks that have not
been evaluated by the job seeker; i.e. there is no relevance feedback available. This score can skew
the score unfairly because a relevance gain will be awarded to matches which the job seeker has not
considered.
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For the Matches Queue, we know job seekers are required to go through the queue from beginning
to end, without skipping a match. However, when gathering relevance feedback to calculate NDCG for
a queue 𝑞፞፯ፚ፥ we also consider feedback given in other queues, because queues generated for a job
seeker overlap significantly; this was explained in Section 3.4.5. This means that a queue is typically
structured like this: the job seeker explicitly gave feedback on the first opportunities in 𝑞eval, and gave
feedback on opportunities further in 𝑞eval, but in another queue. What we see in a typical queue is that
the first opportunities have been judged by the job seeker. What follows is a long tail of opportunities
for which no feedback is available, i.e. an unknown interaction. In this tail, there may be some sparse
opportunities for which feedback is available; this feedback was given by the job seeker in another
queue that also contained that specific opportunity.

When evaluating the queue’s rank, the long tail can skew the NDCG score: If the ideally sorted
queue would have all unknown interactions at the back of the queue, then this overlaps strongly with
the typical queue interactions. This would skew the score of the queue rank based on the unknown
interactions, while we want to evaluate the sorting of the opportunities that were judged by the job
seeker.

Therefore, in line with the related work, we will choose a cutoff point 𝑘 based on the number of
matches that a job seeker actually sees.

5.4. Chosen Relevance Evaluations
The relevance evaluations chosen to evaluate rank performance are based on the properties described
in Section 5.3: fairness, number of relevance levels, and score range. In this section, we introduce
a set of relevance evaluations with these properties. Per relevance evaluation, we discuss what their
properties are and how they influence the expected NDCG scores.

5.4.1. Binary Evaluations
First off, we have chosen three binary relevance evaluations: they are shown in Table 5.2. The first
evaluation consists of the non-negative ‘Standard NDCG scores’: 0 for non-relevant and 1 for relevant
interactions. For the non-restricted score range that includes negative numbers, we lower the standard
scores by one, giving us the scores -1 and 0; in effect, this score acts as a punishment for non-relevant
interactions rather than a gain for relevant interactions. For the positive interactions we increment the
standard scores by one, giving us 1 and 2 respectively; both interaction levels are awarded a gain, but
the amplitude of the gain is different.

For all binary evaluations, 𝑠ignore = 𝑠unknown and 𝑠like = 𝑠apply, and finally 𝑠non-relevant < 𝑠relevant. This
means that fairness does not apply to them. Another consequence is that the ideally sorted queue will
be bi-parted; the queue starts with all positive interactions (like and apply) in no particular order, and
behind that a similar group of the non-positive scores (unknown and ignore); again in no particular
order. For rank evaluation of queues, this means that queues will score high when job seekers interact
more positively with matches in the first part of the queue than with matches in the tail. These naive
evaluations will give a very rough understanding of the sorting algorithm performance; they do not
provide insight into detailed interactions, but are therefore also not affected by intricate differences in
relevance levels.

Interaction Relevance Evaluation
Binary Binary Non-negative Binary Positive

ignore -1 0 1
unknown -1 0 1
like 0 1 2
apply 0 1 2

Table 5.2: Binary relevance evaluations

5.4.2. Fair Evaluations
The other relevance evaluations are ternary or quarternary. Permitted by the extra relevance levels,
we introduce fairness in these evaluations: we can discern between the relevance of the unknown
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interaction and the ignore. We begin with the four fair relevance evaluations.
Of the four fair relevance evaluations, three are ternary: one for each score range. Table 5.3

shows the fair evaluations. These evaluations are fair because for all 𝑠ignore < 𝑠unknown applies; this
means that these evaluations reward sorting algorithms that manage to put explicitly non-relevant
opportunities in the tail of the queue. This goes against the nature of the typical queue, which has a
tail of unknown interactions which the job seeker never reaches. The use of cutoff points remedies the
effect of the unknown interaction tail, but nevertheless this effect will be visible in the NDCG scores for
these evaluations: they will be lower because of it.

The singular quarternary fair evaluation is equal to the unrestricted fair evaluation, except that it also
differentiates between likes and applys: 𝑠apply > 𝑠like. This evaluation will judge generated queues
like the ternary fair evaluations, except it also expects applications to be put in the very beginning
of the queue. Like explained in 5.3.3, this is not a realistic scenario, and we therefore expect few
queues to score high in this regard. Despite the lower scores, we do consider the added differentiation
between likes and ignores to provide more detailed insight in the sorting algorithm performance: it
emphasises even more on ordering the more relevant jobs in the beginning of the queue. Considering
this, and the evaluation’s fairness that rewards ignores in the tail instead of unknowns, and it is trivial
that the quarternary fair evaluation will yield low performance scores.

Interaction type Relevance evaluation
Fair Fair non-negative Fair positive Fair quarternary

ignore -1 0 1 -1
unknown 0 1 2 0
like 1 2 3 1
apply 1 2 3 2

Table 5.3: Chosen ternary and quarternary fair relevance evaluations with different score ranges.

5.4.3. Unfair Evaluations
Lastly, we have chosen four unfair relevance evaluations, shown in Table 5.4. Opposite to the fair
relevance evaluations, these unfair evaluations reward the typical queue’s natural tendency to have
unknowns in the tail. We therefore expect the scores for these evaluations to be higher than those of
the fair evaluations.

The quarternary unfair relevance evaluation is equal to unrestricted unfair relevance evaluation, but
again with the exception of differentiating between likes and applys. Expectations similar to that of
the fair quarternary evaluation apply: the effect of differentiating between likes and applys will likely
cause lower performance scores, but gives a more detailed insight of actual performance, because the
most relevant jobs are expected at the start of the queue.

Interaction type Relevance evaluation
Unfair Unfair Non-negative Unfair Positive Unfair Quarternary

ignore 0 1 2 0
unknown -1 0 1 -1
like 1 2 3 1
apply 1 2 3 2

Table 5.4: Chosen ternary and quarternary unfair relevance evaluations with different score ranges.

5.5. Chosen Cutoff points
As explained in Section 5.3.4, we should the cutoff point 𝑘 based on how much opportunities the job
seeker judges in their ‘attention span’ on the Matches Page. We will look at how, and how much
job seekers interacted with queues, and derive cutoff points from that. For this analysis, we exclude
generated queues for which there are no interactions: these queues were likely generated for a job
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seeker visit which was not aimed at the Matches Page, but rather had another intent such as answering
messages.

Figure 5.1 shows the number of direct interactions per queue, for 56,778 queues with less than 20
interactions (93.4% of all 64,498 queues) between and . The median of the
number of interactions is 5; furthermore we see that the graph has noteworthy plateaus at five, six
and ten interactions; these are possible job seeker drop-off points.

Note that the data shown in Figure 5.1 concerns interactions made directly with a queue. When
gathering interactions to calculate the NDCG score for a queue, we consider feedback given on the
queue’s opportunities that may be given by the job seeker while interacting with other queues.

Therefore, we choose two cutoff points 𝑘 = 6 and 𝑘 = 10. We motivate 𝑘 = 6 by its closeness to
the median of the number of direct interactions; if we cannot rely on interactions with other queues to
provide more relevance feedback, we will not see the distortion of the unknown interactions in NDCG@6
scores. 𝑘 = 10 does allow for inclusion of these interactions from other queues, but it has the downside
that it could be affected by unknown interactions if that feedback cannot be retrieved.

Figure 5.1: Interaction counts per queue, ordered from low to high, for all queues with less than 20 interactions (equivalent to
93.4% of all queues). The graph shows large numbers of queues for five and six interactions, and a noticeable irregularity at
ten interactions.

In conclusion, we have introduced relevance evaluations as a set of numeric relevance scores that
are awarded to interactions. When calculating NDCG scores for sorting algorithm evaluation, we will
use relevance evaluations to translate interactions with the queue to a set of relevance feedback.

We introduced relevance evaluation properties score range, fairness and number of relevance levels,
and discussed the expected influence of these properties on NDCG scores. We also motivated our choice
of cutoff points for NDCG, based on queue interaction data.

We will use MRR as a baseline evaluation to evaluate the difference in performance between the
two algorithms.

In the following chapter, we will perform an online experiment to compare the Opportunity Queue
sorting algorithm from Section 4.4. In this experiment, we will compare the chosen relevance evalua-
tions and cutoff points.





6
Online Experiment

To test the performance of the opportunity queue sorting algorithm proposed in Section 4.4, we design
an experiment that will run in the production environment of Magnet.me. With this experiment, we an-
swer our research questions: It will show how our sorting algorithm performs compared to the original
algorithm, which provides an answer to RQ2. If our algorithm outperforms the original algorithm, we
will consider our model of implicit preferences from Section 4.3 to provide a better understanding of
job seeker preferences, which is what RQ1 asks. Finally, the experiment will employ different relevance
evaluations to calculate NDCG with, which will help us answer RQ3.

The online experiment will run as an A/B-test: job seekers will be split up between a control group
and a test group. The control group will be served the original, shuffled Curated Queue, and the test
group will be served the Sorted Queue. In Section 6.1, we discuss the experimental setup. Finally the
results from the experiment are presented and discussed in Section 6.2.

6.1. Experimental Setup
6.1.1. Participant Selection
The A/B-test experiment requires two separate groups; one control group that gets served the original
queue, and one test group that gets served the alternatively sorted queue. Job seekers are divided
between groups based on their independently awarded user id to avoid a selection bias in the experi-
ment, per suggestion of related work in Section 2.3. A job seeker is part of the test group when userId
mod 10 < 𝑡 for some threshold 0 ≤ 𝑡 < 10: the selected percentage of job seekers for threshold 𝑡 is
then 𝑡 ∗ 10%. This experiment ran with 𝑡 = 5, which means that 50% of job seekers was eligible for
the test group, and the remaining job seekers form the control group.

6.1.2. Fallback Sorting Algorithm
The sorting algorithm proposed in Section 4.4 depends on the availability of view stats for the job
seeker that requests a queue. If there are no view stats available for the user, the queue generator
falls back on the shuffle sort for the curated queue.

Unfortunately, a large group of users on Magnet.me creates their account, looks around on the
platform once, and then drops off. The first time they open Magnet.me, they land on the Matches
Page and see a Curated Queue; there are no view stats to generate a Sorted Queue from. They do not
interact with many matches, and do not return to the Matches Page once they have left. As a result,
these users will never be served a Sorted Queue, even if they are part of the test group based on their
user id.

This causes the division of users between the test- and control group to skew towards the control
group. The effect is hard to mitigate because the described behaviour cannot be foreseen, and cor-
recting for it could introduce a bias in the experiment. As a result, the actual division of job seekers
between the test group and the control group will not equal the intended 50/50 split.
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6.1.3. Experimental Progression

The experiment was launched by setting the threshold 𝑡 to 1, so 10% of job seekers were eligible for
the test group. When the first queue generations with our sorting algorithm and the interactions with
it showed no issues, the threshold was incremented to include 50% of users. On ,
data recording for the experiment began, and the experiment was closed days later on

.

Table 6.1 shows the information on the progression of the experiment: control- and test group size,
absolute numbers of queues generated and queue interactions, and duration. In the table, we see
the large discrepancy between the number of job seekers eligible for the test group, by id, and the
actual number of job seekers that was served a Sorted Queue. This is caused by forced fallbacks to the
shuffle algorithm due to a lack of page interaction data for new users; these users received a Curated
Queue despite belonging in the test group.

The effect of this shift in groups is shown in the number of queues generated with respectively
the shuffle sort and our proposed sort, and the accompanying number of interactions with each queue
type. While a threat to the validity, the absolute numbers of sorted queues and interactions with those
queues should suffice to draw conclusions on the performance of the sorting algorithm. We will further
discuss the threat of validity after the interpretation of the results of this experiment.

Duration of experiment
Start of experiment
End of experiment

Number of job seekers in test group 9,437
Number of job seekers that were served a sorted queue 3,956
Number of job seekers in control group 8,812
Total number of job seekers 18,249

Number of curated queues generated 75,070
Number of sorted queues generated 36,804
Total number of queues generated (curated + sorted) 111,874

Number of curated queue interactions 266,101
Number of sorted queue interactions 112,228
Total number of queue interactions (curated + sorted) 378,329

Table 6.1: Information on the experiment size and duration

6.2. Results

We will analyse the scores from different perspectives: First, we will use the experiment to compare
different relevance levels, fairness categories and the different cutoffs, and discuss their use in evaluat-
ing ranking algorithms for Magnet.me’s Matches Queue. Then, we will look at the differences between
the original Curated Queue, and the proposed Sorted Queue.

To accommodate the reader, Table 6.2 shows all chosen relevance evaluations from Section 5.4.
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Interaction Type
Evaluation Ignore Unknown Like Apply

Binary
Binary -1 -1 0 0
Non-negative 0 0 1 1
Positive 1 1 2 2

Fair

Ternary -1 0 1 1
Quarternary -1 0 1 2
Non-negative 0 1 2 2
Positive 1 2 3 3

Unfair

Ternary 0 -1 1 1
Quarternary 0 -1 1 2
Non-negative 1 0 2 2
Positive 2 1 3 3

Table 6.2: All chosen relevance evaluation scores.

6.2.1. Comparing Different Relevance Evaluations
In Section 5.3, we proposed different properties of relevance evaluations: Score Range, Fairness, and
Number of Relevance Levels. In this section, we will look at the results of the experiment from the
perspective of each property and look what influence the value of the property seems to have on the
average scores of the rank evaluation.

The NDCG scores for the online experiment are given in Table 6.3; grouped by evaluation type, and
then ordered by score range. The table shows the results for both cutoffs: NDCG@6 and NDCG@10.
Finally, the relative increase in performance between the Curated Queue and the Sorted Queue is
shown.

NDCG@6 NDCG@10
Evaluation Curated Sorted Diff Curated Sorted Diff

Binary
Binary 0.4722 0.4939 +4.58% 0.4409 0.4657 +5.62%
Non-negative 0.4722 0.4939 +4.58% 0.4409 0.4657 +5.62%
Positive 0.4722 0.4939 +4.58% 0.4409 0.4657 +5.62%

Fair

Ternary 0.4073 0.4452 +9.30% 0.3786 0.4200 +10.96%
Non-negative 0.4073 0.4452 +9.30% 0.3786 0.4200 +10.96%
Positive 0.4073 0.4452 +9.30% 0.3786 0.4200 +10.96%
Quarternary 0.4057 0.4422 +9.00% 0.3766 0.4174 +10.84%

Unfair

Ternary 0.5785 0.5747 -0.65% 0.5831 0.5721 -1.87%
Non-negative 0.5785 0.5747 -0.65% 0.5831 0.5721 -1.87%
Positive 0.5785 0.5747 -0.65% 0.5831 0.5721 -1.87%
Quarternary 0.5746 0.5698 -0.84% 0.5777 0.5671 -1.82%

Table 6.3: NDCG scores for all chosen relevance evaluations, per queue type, and the increased performance of the Sorted
Queue compared to the Curated Queue, for cutoffs 6 and 10. Per relevance evaluation and cutoff, the highest score is printed
in bold font.

Score Ranges
In Section 5.3.1, we described different score ranges: unrestricted, non-negative and positive. We
tested these different ranges to see if, by modifying the way NDCG is calculated as described in Sec-
tion 5.3.1, we can use relevance evaluations with a non-zero lower bound to calculate the NDCG score.

Table 6.3 clearly shows that different score ranges do not change the NDCG score, given an un-
changed fairness and number of relevance levels: All binary relevance evaluations have identical scores
for either cutoff; the same applies to the fair ternary- and unfair ternary levels. Since we only have
quarternary relevance evaluations, we cannot show that they have identical scores as well, but we
deem it assumable that score ranges do not cause differences in NDCG score here.
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In conclusion, we can use arbitrary score ranges for relevance evaluations used in calculating NDCG
scores. Punishing non-relevant items with negative feedback, using zero values and using only positive
values does not change the output of the relevance evaluation metric, given that the relative relevance
between interactions does not change.

Because Score Ranges do not influence the NDCG score, we condense Table 6.3 by leaving out the
restricted score ranges; Table 6.4 shows only the unrestricted relevance evaluations for easy readability.

NDCG@6 NDCG@10
Evaluation Curated Sorted Diff Curated Sorted Diff

Binary 0.4722 0.4939 +4.58% 0.4409 0.4657 +5.62%

Fair Ternary 0.4073 0.4452 +9.30% 0.3786 0.4200 +10.96%
Quarternary 0.4057 0.4422 +9.00% 0.3766 0.4174 +10.84%

Unfair Ternary 0.5785 0.5747 -0.65% 0.5831 0.5721 -1.87%
Quarternary 0.5746 0.5698 -0.84% 0.5777 0.5671 -1.82%

Table 6.4: NDCG scores for all unrestricted relevance evaluations, per queue type, and the increased performance of the Sorted
Queue compared to the Curated Queue, for cutoffs 6 and 10. Per relevance evaluation and cutoff, the highest score is printed
in bold font.

Fairness
In Section 5.3.2 we describe the relevance evaluation property fairness. Fairness indicates whether the
relevance score for an unknown interaction is higher or lower than the relevance score for the explicit
ignore. A score is fair if ignore is considered less relevant than unknown, and vice versa. When the
two scores are equal, the evaluation is neither considered fair nor unfair.

Table 6.4 shows the results of the experiment, grouped by fairness. If we compare the fair and
unfair relevance evaluations, we see that the unfair evaluations produce far higher scores than the fair
evaluations. This is expected: as described in Section 5.3.2 the unfair relevance evaluations suggest
an ideal sorting that has the unknown interaction tail, which the typical queue also has. As a result,
most queues will be more similar to the ideal sorting according to the unfair relevance evaluations,
which yields higher NDCG scores.

Interestingly, we see that all fair evaluations, regardless of the score range and cutoff, suggest that
the Sorted Queue outperforms the Curated Queue, and the improvements in performance are relatively
similar over all score ranges. The relative increase in performance averaging around 10% shows that
the NDCG clearly distinguishes between the two queue types, when using fair evaluations. The unfair
evaluations, however, portray a very different result: NDCG@10 reports a performance decrease of
less than 2% and NDCG@6 scores even report a decrease of less than 1%. The small decrease of
performance does not strongly distinguish the two sorting algorithms.

We conclude that if we find that the ignore interaction less relevant than the unknown interaction,
we should use a fair relevance evaluation; based on NDCG scores, we can then conclude which sorting
algorithm works better. In other words; NDCG is capable of distinguishing between the sorting algo-
rithms in terms of performance, when using fair relevance evaluations. Applied in our experiment, we
see that the sorting algorithm we proposed outperforms the shuffle algorithm. Alternatively, if we find
the unknown relation less relevant than the ignore relation, then using an unfair relevance evaluation
for NDCG does not clearly decide on a winning algorithm.

Number of Relevance Levels
Again using Table 6.4, we will discuss the differences between the different relevance evaluations,
this time from the perspective of number of relevance levels. In Section 5.3.3, we describe binary,
ternary and quarternary relevance evaluations. They have two, three and four distinct relevance values
respectively, which permit more or less differentiation between relevance levels.

Starting with the binary relevance evaluation, we see that the binary evaluation clearly chooses
the new sorting algorithm as the winner. Binary evaluations are crude, and somewhat naive relevance
evaluations: they only distinguish between ‘relevant’ and ‘non-relevant’. From the results, we conclude
that if we do not differentiate between different relevant interactions, or between different non-relevant
interactions, then the Sorted Queue outperforms the Curated queue.
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Ternary relevance evaluations are more complex than the binary evaluations: they introduce an
extra level of relevance. In the chosen relevance evaluations, we use the extra relevance levels to
differentiate between unknown and ignore interactions. This extra layer of complexity causes more
room for errors in the ordering, which we see in the fair ternary evaluation: scores for these evaluations
are lower than the binary evaluation scores. When we include the quarternary evaluations, with yet
another added layer of relevance, we see a continuation of the expected decreasing scores: Fair
quarternary evaluations yield lower scores than the fair ternary evaluations, and the same applies to
the unfair evaluations respectively.

However, the unfair ternary evaluation yields far higher scores than the binary evaluation. This
sudden increase in scores can be attributed to the introduction of fairness, which the binary evaluation
does not have: Since binary evaluations are not fair nor unfair, they do not specifically reward the tail of
unknown interactions in queues, while the unfair evaluation does. This explains the increase in scores
when going from the binary evaluation to the unfair ternary evaluation.

Section 5.3.3 added complexity of the fourth level of relevance could hurt the distinguishing prop-
erty of NDCG. While both fair and unfair evaluations show decreased scores when comparing ternary
to quarternary, the scores decrease proportionally. We concluded that NDCG is not capable of dis-
tinguishing between the algorithms when using unfair scores, so we cannot conclude if the unfair
quarternary evaluation hurt that even further, compared to the ternary equivalent. Contrarily, we can
see that NDCG with the fair quarternary evaluation is capable of distinguishing between the two sorting
algorithms as well as with the fair ternary evaluation.

In conclusion, added relevance levels do show a slight decrease in yielded NDCG scores, but do not
hurt the distinguishing property of NDCG. This means that we do not have to sacrifice specificity of the
relevance evaluation to use NDCG to distinguish between sorting algorithms.

6.2.2. Comparing the Curated and the Sorted Queue Sorting Algorithms
After studying the experiment results from all relevance evaluation property perspectives, we now focus
on whether our sorting algorithm outperforms the original shuffle algorithm.

First, we look at our naive baseline metric, the Mean Reciprocal Rank: The scores for the respec-
tive sorting algorithms are shown in Table 6.5. It shows that our newly proposed sorting algorithm
outperforms the shuffle algorithm: in queues generated with our sorting algorithms, job seekers find
the first relevant opportunity earlier in the queue.

Evaluation Curated Sorted Difference

MRR 0.4920 0.5093 +3.52%

Table 6.5: Mean Reciprocal Rank score for the Curated Queue and the Sorted Queue, and the relative difference.

The classical binary relevance evaluations for NDCG, with scores 0 and 1 for non-relevant and rele-
vant matches respectively, show that the sorting algorithm based on implicit preferences outperforms
the original algorithm.

When considering the relevance evaluations with fairness, the NDCG metric using unfair relevance
evaluations cannot distinguish between the two algorithms. However, Table 6.3 shows that NDCG
using fair evaluations decides on our Sorted Queue sorting algorithm, for all score ranges and cutoff
points, and therein agrees with MRR and the binary NDCG evaluation. It considers the relative ordering
of missing feedback and negative feedback, which binary NDCG and MRR do not do, and under that
consideration fair NDCG reports an even stronger increase in performance than these evaluations.

From these evaluations, we conclude that our sorting algorithm based on implicit job seeker prefer-
ences derived from page interactions outperforms the original ordering algorithm. We will draw further
conclusions in the next chapter.
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Discussion and Future Work

7.1. Conclusion
We implemented a new way of monitoring user behaviour on Magnet.me, focused on page interac-
tions. Furthermore, we have shown patterns in opportunity page interaction data that correlates longer
duration of interactions with positive affection towards opportunities. From this offline experiment we
derive that the data we track is suitable to derive implicit preferences from, answering RQ1a.

Based on the correlation between page interaction duration and affection towards opportunities,
we implemented a system that aggregates implicit job seeker preferences regarding opportunities from
the page interactions for RQ1b. In turn, these implicit preferences are used in a newly proposed sorting
algorithm for Magnet.me’s Matches Queue.

With the success of this model of implicit preferences, and the sorting algorithm proposed based
on them in our online experiment, we have answered RQ1 and RQ2: We have gained a better under-
standing of job seeker preferences, beyond their explicitly provided preferences, and we have used the
model of implicit preferences to propose a sorting algorithm for the Opportunity Queue.

To evaluate performance of this sorting algorithm, we studied several aspects of ranking evalua-
tion using Normalised Discounted Cumulative Gain: Score Ranges, Fairness, and Number of Relevance
Levels. Using these properties, we proposed several relevance evaluations to apply when calculating
NDCG scores to evaluate queue performance. We determined that Score Ranges, as expected, do
not influence outcomes of evaluations with our modified calculation of NDCG. Looking at Fairness, we
see that using fair evaluations with NDCG shows that the proposed sorting algorithm outperforms the
original algorithm. However, for unfair relevance evaluations, NDCG does not strongly differentiate per-
formance of the original algorithm and the newly proposed algorithm. Finally, the Number of Relevance
Levels does not hurt the distinguishing capability of NDCG. With the online experiment, using the dif-
ferent relevance evaluations, we can answer RQ3a, which asks how we can evaluate recommendation
relevance based on job seeker feedback.

To answer RQ3b, which is concerned with how we should handle missing feedback, we compare
fair and unfair relevance evaluations. The fair and unfair evaluations differ in how they handle miss-
ing feedback through the relative position of the unknown interaction to other interactions; therefore,
comparing the experimental results of the fair and unfair evaluations suggest how we should handle
missing feedback. If we think negative feedback indicates lower relevance than missing feedback, we
can determine the better algorithm using NDCG with fair relevance evaluation. If we think negative
feedback indicates higher relevance, then NDCG cannot point out a winning algorithm.

We finally conclude that MRR, binary NDCG and fair NDCG evaluation show that the proposed
sorting algorithm based on implicit preferences outperforms Magnet.me’s original sorting algorithm.
Combining our analysis of relevance evaluations, handling missing feedback, and the conclusion that
our sorting algorithm outperforms the original algorithm, we answered RQ3: we have shown how we
can evaluate rank performance, and we can distinguish between algorithm performance: We have
used NDCG with binary and fair relevance evaluations in an online experiment to show that our pro-
posed sorting algorithm, outperforms Magnet.me’s current algorithm, which agrees with the baseline
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algorithm. Thus, we have shown how we can improve Magnet.me’s Job Recommendations algorithm
using User Interaction Data, which was the main question of this thesis.

7.2. Threats to Validity
We have shown that our Opportunity Queue sorting algorithm outperforms Magnet.me’s original sorting
algorithm. However, there are several aspects to our research that could affect the validity of our
experiment. In this chapter, we discuss these effects and how much they (may) have affected the
experiment, and we suggest ways to mitigate them. We also propose continuations of the work done
in this thesis, some of which are already planned for implementation on Magnet.me’s roadmap.

7.2.1. Queue Changes
As described in Section 3.4.4 there are several events that can be triggered during a job seeker’s
interactions with the Matches Queue that change the content of the queue. Specifically, the perceived
rank of matches changes when intermediate matches are removed, which affects the validity of the
rank evaluation in two way:

Firstly, matches that are removed are still evaluated in the rank evaluation as unknown interactions.
The removal of the matches should be handled in the rank evaluation by removing them from the
evaluated queue too; however, that causes the second effect on the rank evaluation validity:

The matches after a removed match shift in rank in the UX: they are moved one place to the front
of the queue. As described in Section 3.4.1, job seekers interact with their matches as a Queue. When
a match is removed from the queue, all matches behind it move one rank forward. When evaluating
queues with removed matches, these subsequent matches should be discounted less than they are
now: because the rank of the subsequent matches is not updated, the rank is too high which makes
the discount too strong. In the current situation, the effect of not applying these rank changes impacts
the rank evaluation score by lowering it.

7.2.2. Application Interactions
When a job seeker clicks ‘apply’ on the opportunity modal on the Matches Page, they are sent to
Magnet.me’s messaging system to send an application message to the employer, or they are redirected
to the employer’s external application website. There are two considerations to be made because of
this UX:

First of all, the redirect to the messaging system does not guarantee that the job seeker actually
applies for the job; the completion of the application is not monitored for rank evaluation. While we can
assume that the apply click strongly suggests the job seeker’s intent to apply, the assumption remains
that; an assumption. The completion or abortion of the application process could be monitored and
fed back to the rank evaluation system; if the process was aborted, this should be handled accordingly
when evaluating the queue.

Secondly, the redirect to the messaging system for internal applications makes the job seeker leave
the Matches Page. This shortcuts the job seekers interactions with the queue on the page, and affects
the total number of interactions they make with that queue. For the queue they were interacting with,
this likely means that the typical tail of unknown interactions starts earlier than when the job seeker
would not have applied. This could mean that the queue receives a lower absolute score because
there are more unknown interactions which may have been positive interactions; it’s even more wry
to consider that this lower score would be caused by a job seeker’s feedback that the match in the
queue was highly relevant. We can conclude from this hypothetical situation that a higher number of
interactions per queue might not be an ideal metric to measure queue performance with.

Handling the redirect to the messaging system, and aborted application processes is not trivial; we
do not have a ready-to-implement solution. However, the implications on queue evaluation should be
taken in consideration.

7.2.3. Talent Matcher Changes
During the process of the online experiment, Magnet.me entered a new market with a different target
group: Young professionals. These Young Professionals differ from the typical job seekers because they
are more interested in jobs that require some work experience, rather than just a certain education
level or field of study.
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To facilitate this new target group, the Talent Matcher was updated to match job seekers and
employers on the extra opportunity property for required work experience. For our experiment, this
means that the opportunities that needed to be sorted by our algorithm changed. The impact of
the changes reaches no further than stricter filtering, which may mean that the opportunity queue
was smaller on average. It also meant that the categorical opportunity property ‘work experience’
monitored in the job seeker view stats aggregation got more important.

While the experiment was running, no changes were observed in the intermediate rank evaluation
scores, nor in the number of job seekers with- or without view stats. Furthermore, since these changes
apply to both the Curated Queue and the Sorted Queue, we consider the effect negligible.

7.2.4. Skewed Selection of Participants
In Section 6.1 we indicate that many job seekers that were selected for the online experiment test
group, based on their user id, were actually part of the control group. This was caused by a lack of
page interaction data for these job seekers; they simply had not viewed any content yet. Often, these
are job seekers that create an account on Magnet.me, look around once (and therefore generate a
single curated queue), and then leave, never to be seen again. Such job seekers are prevalent on
Magnet.me.

We already discuss that the absolute numbers are still sufficient to make the experiment reliable;
after all, the goal of having 50% of job seekers in our test group was to provide us with sufficient job
seekers in both the test and control group. However, it suggests that when running experiments like
these, the influence of the dependency on page interaction data should be considered with more care.
In this case, the percentage of job seekers eligible for the experiment could have been raised to above
50% to correct for the users without page interaction data; by tweaking the threshold one could make
sure the groups are of equal size.

Alternatively, one could suggest that for the control group, only job seekers are considered that
interact with page interaction data; that way, whether job seekers have interacted with content is
invariant between both groups.

7.3. Future Work
While our online experiment has shown promising results, there are plenty of ways the work in this
thesis could be improved with. In this section we will first go through a number of items that are directly
related to the experiments conducted for this thesis, and the sorting algorithm proposed in it, after
which we will propose a number of new aspects that could be employed to improve the performance
of the Matches Queue.

In our experiment, we decided not to use the eventCount property of page interactions to derive
implicit preferences from. However, the offline experiment in Section 4.2.3 suggests that eventCount
is a significant predictor of positive affection towards opportunities, like the duration is. Including the
eventCount might further improve the aggregated implicit preferences for job seekers, which could
boost performance of the proposed sorting algorithm.

Furthermore, our data selection for the aggregation of job seeker preferences is very conservative,
only taking page interactions in consideration where the job seeker already stated their interest in the
opportunity on the page. With this conservative selection, we discard more than half of the available
opportunity page interactions data. The offline experiment suggests that patterns in these page inter-
actions are suitable for the aggregation of implicit preferences as well. Future work could study the
performance of the sorting algorithm when implicit preferences are derived from the page interactions
excluded for this experiment; this may very well resolve the lack of job seeker view stats that caused
the experiment to fall back on the shuffle algorithm described in Section 6.1.3.

Magnet.me currently tracks user behaviour on an event basis, rather than on a user-centered basis.
By that, we mean that it is currently difficult to follow the job seeker through the application and
correlate behaviour between different parts of the web platform. To get a proper understanding of
how the platform performs, a proper, complete understanding of the job seeker’s behaviour is crucial.
For example, it would be very interesting to show if the average number of applications for job seekers
that were served the Sorted Queue differs from the other job seekers; it would suggest that in a very



40 7. Discussion and Future Work

early part of their experience on Magnet.me, the Matches Page, the foundations are laid for a more
successful path for the job seeker. Magnet.me would greatly profit from such metrics.

In the past, Magnet.me has struggled with feedback on the Matches Queue that remarked the low
diversity in jobs. Especially when matched with big corporate employers, job seekers would receive
their opportunities back to back in the Matches Page. To mitigate this, the shuffle algorithm was
devised.

The underlying need that job seekers expressed in their feedback was diversity, which is a recog-
nised property of recommendations that recommenders aim to suffice in. Instead of the shuffle algo-
rithm, Magnet.me could develop a recommender system that focuses strongly on diversity and possibly
serendipity to prevent user fatigue because of monotone content.

One of the constraints for this experiment was that the User Interface and User Experience were not
to be changed, except for the order of the matches in the Matches Queue. There are, however, several
interesting developments in the field of recommender systems that could contribute to Magnet.me’s
Matches Page. One of these developments is recommendation explanation: a recommendation is
accompanied by an explanation about the selection of this recommendation for the job seeker. Mag-
net.me has struggled with job seeker’s understanding of receiving recommendations in the past, to
which they responded by making the explicit preference inputs directly accessible from the Matches
Page. To facilitate an even better understanding of job seekers of the recommendations they receive,
a short explanation could be very effective.



A
The Talent Matcher

Magnet.me matches job seekers and potential employers based respectively on their qualifications and
interests, and requirements and properties. The logic responsible for this matching process is referred
to as the Talent Matcher.

The Talent Matcher is a service that recalculates matches on an event basis. These events come
from users posting or updating content on Magnet.me: a job seeker that updates their résumé, for
example, or a recruiter that posts a new opportunity. A calculation consists of comparing a student
profile to all companies and opportunities, or comparing an opportunity to all student profiles.

The Talent Matcher concludes there is a match between a job seeker and an opportunity when the
job seeker’s résumé meets the requirements of the opportunity. These requirements can consist of:

• an education of a minimal level, and/or in a certain field

• work experience of a minimal duration, and/or in a certain field

• minimal proficiency in one or more languages

• extracurricular activities

Visa versa, the opportunity and the providing company must meet the job seeker‘s interests:

• job type, e.g. (graduate) internship, job

• job function, e.g. administrative, research, engineering

• employment type, full-time or part-time

• company size, expressed as ranges of number of employees

• location of employment

The service outputs the matches as potential connections between a job seeker and an opportunity,
or a company. It is up to the job seeker to actually create the connection. Depending on job seeker
profile settings, only then can the recruiter at the other end of the connection get insights in their
potential employee.

A.1. Match Score
Given that there is a match between a job seeker and an opportunity, the Talent Matcher also outputs
a so called ‘match score’. This score was originally intended to indicate the strength of the match: a
higher score would indicate a stronger match.

However, the calculation of this match score is severely unbalanced, which caused issues in the user
experience on the Matches Page: Consider a job seeker that completed several higher educations, and
an opportunity that requires a general higher education without specifying a study field for this higher
education. In this case, the Talent Matcher would award a disproportionally high match score to the
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match. This problem is exacerbated by a tendency of recruiters to apply such generic requirements
to all opportunities of the company. This results in a set of opportunity matches for the job seeker
that all have a disproportionally high match score, outweighing the matches of other opportunities with
more specific requirements. Furthermore, matches with more specific requirements tend to be better
matches for job seekers, as opposed to so called ‘catch-all’ requirements that are as generic as the one
proposed. This mismatch creates an unbalanced user experience for the job seeker.



B
Deterministic Shuffling of the

Curated Queue

When a job seeker is served a Curated queue on the Matches Page, it is shuffled deterministically.
This shuffling is applied to alleviate a problem in the user experience of the page: long streaks of
opportunities from the same companies.

The cause of this problem is bi-partial, and to describe it we must first explain some constraints on
the Matches Queue. The queue is retrieved from the server in batches; the ‘next’ batch is retrieved
when there are three matches left in the browser for the job seeker to consider. Between the retrieval
of one batch and the next one, the queue may have been recalculated, meaning that the second batch
of matches comes from a different queue than the old one. To make sure that the matches in the new
batch do not overlap with the left-over three matches, the ordering of the queue must be stable over
successive calculations of the queue.

Originally, this was alleviated by using the ‘default’ legacy ordering, which meant sorting the matches
on their Talent Matcher ‘match score’. The match score, however, is not suitable as a property to sort
on; this is explained in Appendix A.1. It caused the job seeker to see long streaks of opportunities from
the same companies, and caused fatigue which caused the user to navigate away from the Matches
Page.

To remedy this problem, Magnet.me introduced a ‘deterministic shuffle’. The aim of this solution
was to introduce randomness in the order of matches, but in a way that is stable over successive
calculations of the curated queue. This was achieved by exploiting a pattern in opportunities posted
by a single companies: because they would be posted immediately after one another, they would have
consecutive ids. One can ‘shuffle’ numerical values seemingly random by taking a (large) prime number
𝑝 and use 𝑝 mod 𝑖𝑑 to sort the matches on. Since the mod operator is deterministic, this shuffle is
stable. For a large enough prime, it can also be assumed that consecutive ids are separated in the
shuffled list.

This solution solved the user experience issue, and has remained in effect ever since. Users expe-
rience the curated queue as sufficiently mixed, while not being presented with double matches or, in
contrary, missing out on opportunities because they ‘slipped through the cracks’ of the batched retrieval
of the queue.
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C
Queue Changes

The Curated Queue for a job seeker is subject to change based on events both caused by the interaction
of the user with the queue, as from elsewhere. We describe the events that trigger such changes, and
describe what the changes are. We also describe how the changes affect the rankings and the rank
evaluation process.

• ignore a company. In this case, the assumption is made that the job seeker is also not inter-
ested in the opportunities for this company. These companies are then removed from the queue,
so the job seeker does not have to process them. For our experiment, we consider the interaction
to be unknown; despite the underlying assumption that the job seeker dislikes the opportunities,
we do not want to consider the assumption we make to be an explicit action.

• Match calculation completion. When a job seeker alters their résumé or preferences, the
Talent Matcher (see Section 3.3) recalculates the matches between the job seeker and all com-
panies. If new matches are generated, any existing curated queue for the job seeker is discarded,
and a new queue is generated in its place.

• Opportunity/company deletion fromMagnet.me. When a company, or one of a company’s
opportunities, is removed from Magnet.me, expires past a preset date, or is unpublished by the
employer, all relevant opportunities present in a job seeker’s curated queue are removed. The
job seeker therefore will not see the relevant matches in their queue, which means that the
interaction the user would have made with the matches remains unknown. When calculating the
rank evaluation for such a queue, the score for the unknown interaction is applied to all affected
items.

• Interaction with a match outside the Matches Queue. A job seeker is, of course, not
guaranteed to be on the Matches Page. Given the situation that a curated queue is generated
for a job seeker, it must be kept up to date with any changes in relation between the job seeker
and any company or opportunity. When a user navigates away from the queue and interacts with
opportunities or companies by connecting to companies or liking/applying to opportunities,
the following cases apply: if a company is ignored, the case of ignoring a company as describe
above, applies. If the job seeker likes, or applies to an opportunity, then that opportunity is
removed from the queue. The same applies to a company that the job seeker connects with.

All these interactions are performed outside of the Matches Queue, and because of that, are not
tracked in the queue interactions where they can be used as relevance feedback interactions.

The events described above have varying effects on the queue, all of which complicate the analysis
of job seeker interactions with the Matches Queue. We can discern between a complete recalculation
of the queue and mutations of a queue.
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C.1. Queue Recalculation
In the case of a recalculation, an old queue is discarded and a new queue is immediately generated
to replace the old one. The events that lead to these recalculations can be rigorous; when a user sig-
nificantly changes their preferences, they might include or exclude a lot of companies or opportunities
in their filter scope. Similarly, when they add an education, they could qualify for more opportunities
than before.
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