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PREFACE

This thesis is submitted for the Masters of Science degree in Mechanical Engineering at
the Delft University of Technology. The aim of this research was to investigate various
cueing principles used for the motion cueing of driving simulators and propose an effi-
cient algorithm for high fidelity motion cueing.

The research was divided into two parts. The first part consisted of the literature
review. In this, the focus was to understand the motion cueing process and review vari-
ous motion cueing algorithms (MCA) present in the literature. In the study, it was found
out that the most commonly used cueing algorithms are classical washout filter, opti-
mal washout filter and adaptive washout filter. However, their inability to impose con-
straints on the simulator states results in producing low fidelity cues and sub-optimal
workspace utilization. The literature review pointed out that the paradigm has recently
shifted to advanced control techniques like Model Predictive Control (MPC). It was noted
that MPC offers an elegant solution to the problem as it allows to impose explicit con-
straints on the state and output variables. The research showed that the Linear MPC-
based MCA produced superior results compared to the conventional filter-based MCAs.
Further, it was noted that most MPC-based MCAs derived in the literature used linear
models ignoring the non-linearities of the motion platform, leading to conservative re-
sults. Therefore, it was concluded that in order to improve the workspace utilization and
increase the fidelity of the produced cues, a non-linear MPC-based MCA with actuator-
based constraints is required.

The second part of this research aimed at designing a nonlinear MPC-based motion
cueing algorithm incorporating the human vestibular system model and the non-linear
kinematic model of the motion platform. The proposed algorithm was then tested thor-
oughly and was compared with the classical washout filter and linear MPC-based MCA.
The results showed superior performance of the proposed algorithm in terms of refer-
ence tracking and workspace utilization.

The output of this research is presented in the form of a scientific article which can be
found in Chapter 1 of this report. The supplementary information about the fundamen-
tals of motion cueing, filter-based algorithms and Linear MPC-based MCA is presented
in Appendices A, B and C. Further, the details about the non-linear MPC solution tech-
niques used are presented in the Appendix D. Lastly, extensive results, in supplement to
the ones provided in the chapter 1 can be found in Appendix E.

Yash Raj Khusro
Delft, August 2020
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Article

MPC-based motion cueing algorithm for a 6 DOF
driving simulator with actuator constraints

Abstract: Driving simulators are widely used for understanding Human-Machine
Interaction, driver behavior and driver training. The effectiveness of such simulators
in this process depends largely on their ability to generate realistic motion cues.
Though the conventional filter-based motion cueing strategies have provided
reasonable results, these methods result in poor workspace management. To
address this issue, linear MPC-based strategies have been applied in the past.
However, since the kinematics of the motion platform itself is non-linear and the
required motion varies with the driving conditions, this approach tends to produce
sub-optimal results. In this paper, a nonlinear MPC-based algorithm is presented
which incorporates the non-linear kinematics of the Stewart platform within the
MPC algorithm to increase the effectiveness and utilize maximum workspace.
Further, adaptive weights-based tuning is used to smoothen the movement of
the platform near its physical limits. Full-track simulations were carried out and
performance indicators were defined to objectively compare the response of the
proposed algorithm with classical washout filter and linear MPC-based algorithms.
The results indicate a better reference tracking with lower root mean square error
and higher shape correlation for the proposed algorithm. Lastly, the effect of the
adaptive weights-based tuning was also observed in the form of smoother actuator
movements and better workspace utilization.

Keywords: driving simulator, motion cueing algorithm, model predictive control,
nonlinear, actuator constraints

1. Introduction

With the increasing demand for advanced driver assistance systems, driving
simulators hold the potential to transform the research and development of the
intelligent vehicles. They can reduce the cost and time incurred in the vehicle
development process and also help in designing robust and intelligent solutions.
Further, these simulators are increasingly being used for other purposes, such as
human machine interface studies, understanding driver behavior, and training of
drivers in a safe environment.
The effectiveness of such driving simulators is measured by their ability to generate
realistic motion cues i.e. the driver or the passenger, sitting inside the simulator should
perceived similar motion cues that s/he would perceived while sitting in a real vehicle
performing the same maneuver. However due to its limited workspace, the driving
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simulator cannot be directly subjected to the vehicle motion as then the platform
would quickly reach its physical limits and no motion cues could be provided to
the driver any further. To overcome this limitation, motion cueing algorithms have
been developed. A Motion Cueing Algorithm (MCA) is the strategy that governs
the process of producing motion cues while keeping the motion platform within its
physical limits. Thus, the main objectives of an MCA are the following:

• Providing realistic motion cues to the driver or passenger sitting inside the
simulator.

• Keeping the motion platform within its physical boundaries.

A detailed description about the working of an MCA and the fundamentals of motion
cueing is given in Appendix A. The classical approach of designing an MCA is
done by using the classical washout filters. The algorithm is a combination of linear
filters (as shown in Figure 1). The translational accelerations are high-pass filtered to
extract fast dynamics. The resulting signal is integrated to calculate the translational
displacement. The slow dynamics or sustained accelerations are extracted by filtering
the translational accelerations using a low pass filter. The resulting signals are
reproduced by tilting the platform in order to exploit the acceleration due to gravity
(Tilt Coordination). The angular velocities are also high pass filtered and then
integrated to calculate the angular displacement. The signals from the tilt channel
and rotational channel are added to calculate the total angular displacement of the
motion platform.

Figure 1. Scheme of classical washout filter-based MCA

As per Nahon et al. [1], the major advantage of using such algorithms is that its
design is simple and computationally cheap. However, these algorithms have the
following shortcomings as well:

• Because the parameters of the filters are fixed, they must be designed for the
worst-case maneuver. As a result, the algorithm doesn’t utilize the available
workspace for gentle maneuvers and produces minimum motion.
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• Tuning the filters is a complex task as the user has to change the filter coefficients
instead of changing weights on meaningful physical quantities.

• Since there is no provision for incorporating the physical limits of the motion
platform within the algorithm, the filters have to be tuned for each maneuver to
ensure that the motion platform remains within its physical limit.

To overcome these limitations, adaptive washout filter-based MCA was developed. It
tends to produce more realistic cues when the simulator is near the neutral position
and only reduces the fidelity when the simulator is near its physical limits. The
algorithm is based on minimizing a cost function comprising of penalties on the
tracking error and the platform states. Generally, the optimization is performed by
using the steepest descent method. The control scheme of a typical adaptive washout
filter is shown in Figure 2. Further, similar to the adaptive washout filter, another
scheme called the optimal washout filter is also often used for the motion cueing
application. The difference between this approach is that instead of using a gradient
descent to minimize a cost, it uses the solution of the algebraic riccati equation to
derive the optimal gain. A detailed description of the filter-based algorithms is
presented in Appendix B.
Although, the adaptive and the optimal washout-based filters provide a better
solution than the classical washout filters [1], the optimization problem is still solved
without imposing any constraints on the physical states of the simulator, resulting in
sub-optimal utilization of the workspace.

Figure 2. Scheme of adaptive washout filter-based MCA

To address this issue, Model Predictive Control (MPC) technique has been recently
applied to design an MCA. Its ability to handle constraints on system states and usage
of the prediction model to regulate the current state makes it a well-suited contender
for this application. It has been shown that besides producing realistic motion cues,
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undesired effects like the occurrence of motion sickness are also lowered when using
MPC-based MCA compared to the conventional filter-based approaches [2]. Recently,
various approaches to MPC-based MCA have been explored and the superiority of
this method compared to the conventional approach has been established for offline
simulation and passive driving [2,3]. The scheme of a typical MPC-based MCA is
shown in figure 3. A detailed derivation of the Linear MPC-based MCA is presented
in Appendix C.

Figure 3. Scheme of MPC-based MCA

To keep the problem linear, the algorithms designed in the past ([4–6]) apply
the constraints on the position and velocity of the driver’s eye-point. In order to
find the available workspace for the eye-point displacement, the forward kinematic
relations have to be used which is concerned with determining the displacement of
the platform given the position of all the actuators. However for a six DOF motion
platform, there are many solutions to the forward kinematic problem [7] and only one
of them corresponds to the actual pose of the platform. Generally, Newton-Raphson
method is used to iteratively solve the forward kinematics problem. To reduce the
computational effort, a conservatively chosen constant space is often used as the
workspace for driver’s eye-point. However, this tends to produce sub-optimal results.
An efficient way to manage the workspace is to use actuator-based constraints
instead of the eye-point displacements. Garret et al. [8] derived an MPC-based
MCA which uses actuator-based constraints. However, linear approximations were
applied to the constraints on the actuator lengths. This simplification also affected
constraint handling as the inverse kinematics of the motion platform is nonlinear
in nature. Degdelen et al. [9], implemented the MPC-based MCA in the Renault
ULTIMATE Simulator. The study was done for a single DOF cueing problem (surge
acceleration) and tilt coordination was demonstrated as an extension to the basic
algorithm. Taking it further, in [10], an explicit MPC-based concept for the Renault
ULTIMATE Simulator was presented. The control problem was decoupled into four
separate cases (pitch-surge, roll-sway, heave, and yaw) and a stability condition was
determined. The algorithm works in real-time. However, fast degradation in the
computational effort was seen as the problem was extended to higher dimensions.
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Katliar et al. [11,12] implemented an MPC-based MCA which included the motion
platform actuation for a Cable-Robot-based motion simulator. Their main finding was
that with proper software and numerical methods, it is possible to run an MPC-based
MCA with complex model in real-time.
In this paper, a new MPC-based MCA has been designed that incorporates the
non-linear kinematics of the Stewart platform. Inverse kinematics relations are
used to calculate the length and the velocity of the actuators, which are included as
states within the MPC framework. Moreover, the human vestibular system model
is included within the MPC formulation to increase the fidelity of the produced
motion cues. To manage the workspace efficiently, constraints are imposed on the
actuator displacements and state-dependent adaptive weights are used to tune the
MPC algorithm. The formulated non-linear optimization problem is solved using
the Real-Time Iteration (RTI) method [13] in order to increase the computational
efficiency of the algorithm. Thus, a distinctive feature of this approach is that it aims
at developing an efficient algorithm which produces high fidelity motion cueing
by using a non-linear MPC-based controller with actuator-based constraints and
state-dependent adaptive weights.
This paper is structured as follows. Section 2 describes the motion platform and
the frames of references associated with it. The system model used within the MPC
controller is derived in Section 3. Section 4 presents the details of the MPC formulation,
including the objective function, constraints, reference generation, tuning and the
optimization problem. In Section 5, several performance indicators are described. The
simulation results and discussion are presented in Section 6. Finally, the conclusions
and the recommendations for future work are presented in Section 7.

2. Motion Platform

The motion platform generally used in driving simulators is a Stewart platform,
which is a parallel manipulator that is controlled by six actuators. In this paper, the
following three frames of reference with respect to the motion platform are used (the
same is shown in Figure 4).

1. Inertial Frame (IF) - is fixed to the ground and does not move with the motion
platform. The origin coincides with the centroid of the fixed base of the platform
(Point O in figure 4). The positive x-axis points forward, in the direction of drive.
The positive y-axis points to the right, while the positive z-axis points vertically
downwards.

2. Platform Frame (PF) - is fixed to the motion platform and moves with it. The
origin coincides with the centroid of the moving plate (Point P0 in figure 4).
Similar to the IF, the positive x-axis points forward, the positive y-axis points to
the right, while the positive z-axis points in the downwards direction. Since the
HF is body-fixed, its axes are only aligned with that of the IF when the platform
has a zero roll, pitch and yaw angle.
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3. Driver Frame (DF) - is fixed to the driver’s head and moves with it. The origin
coincides with the eyepoint of the driver (Point D0 in figure 4). The positive x-axis
points forward, the positive y-axis points to the right, while the positive z-axis
points in the downwards direction. Since DF is fixed to the driver’s eyepoint, its
axes are only aligned with the IF when the platform has a zero roll, pitch and
yaw angle.

Figure 4. Motion Platform and reference frames used in the MCA

It should be noted that throughout this paper, all the physical quantities are mentioned
in IF unless specified by a superscript. Moreover, the translational acceleration
vector is represented by the symbol a and consists of components in all the three
canonical directions, i.e. [ax ay az]T. Similarly, the translational velocity vector is
represented by the symbol v and the translational displacement is represented by
the symbol r. Further, the angular acceleration vector is divided into rotational and
tilt components. This is done to impose constraints on the tilt component without
affecting the rotational component. The total angular acceleration is the sum of
both the components and is represented by the symbol α. The vector consists of
angular accelerations in three canonical directions, i.e. [αφ αθ αψ]T. Similarly, the
angular velocity vector is represented by the symbol ω and the angular displacement
is represented by the symbol β.
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3. System Model

Model Predictive Control is a model-based optimal control strategy that computes
the control input by solving an optimization problem. This is done to obtain the best
possible reference tracking performance by predicting future states using the system
model. The system model for the MPC algorithm is divided into two sub-parts.

1. Vestibular system model: Responsible for providing realistic motion cues.
2. Motion platform model: Responsible for managing the workspace.

In the following subsections, the vestibular model and motion platform model used
in this paper are derived.

3.1. Vestibular System Model

The vestibular system located inside the human ear is primarily responsible for
providing cues which we use to perceive motion in space. Within the vestibular
system, there are two parts - the semi-circular canals, responsible for sensing the
rotational accelerations and otolith organs, responsible for sensing the translations
accelerations [5].
Although extensive research had been conducted in the past for modeling the
vestibular system mathematically (in [14–18]), reliable linear models have been
derived only recently due to the fact that every person has slightly different perception
and in general it isn’t a linear process [19].

3.1.1. Semi-circular canals

In their research, Telban et al. [19] derived the linear transfer function of the
semi-circular canal as follows:

ω̂i(s)
ωi, rot(s)

= 5.73
80s2

(1 + 80s)(1 + 5.73s)
(1)

where ωi, rot is the angular velocity to which the passenger is subjected and ω̂i is
the perceived angular velocity in one of the three rotational degrees of freedom. In
this study, it has been assumed that the parameters of the model used here are the
same in all the three rotational degrees of freedom. This assumption is based on the
physiological results based on the afferent responses of the semi-circular canals as
mentioned by Telban et al. [19]. From here forward both are expressed at the driver’s
eyepoint (D0) in DF. Representing Equation 1 in its observable canonical state-space
form, we get:

ẋscc = Ascc · xscc + Bscc · uscc

yscc = Cscc · xscc + Dscc · uscc
(2)
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where yscc = ω̂i and uscc = ωi, rot in one of the three canonical directions. Since this
model has to be adopted for each rotational degree of freedom (roll φ, pitch θ and
yaw ψ) individually, the complete model for semi-circular canals is given as follows:

ẋs = As · xs + Bs · us

ys = Cs · xs + Ds · us
(3)

where

As =




Asccφ 02x2 02x2

02x2 Asccθ
02x2

02x2 02x2 Asccψ


 Bs =




Bsccφ 02x1 02x1

02x1 Bsccθ
02x1

02x1 02x1 Bsccψ




Cs =




Csccφ 01x2 01x2

01x2 Csccθ
01x2

01x2 01x2 Csccψ


 Ds =




Dsccφ 0 0
0 Dsccθ

0
0 0 Dsccψ




(4)

and the input and the output signals are shown in equation 5 and 6. It must be noted
that both of these quantities are expressed at the driver eyepoint (D0) in DF.

us = ωDF
D0, rot = [ωφ, rot ωθ, rot ωψ, rot]

T (5)

ys = ω̂DF
D0

= [ω̂φ ω̂θ ω̂ψ]
T (6)

3.1.2. Otolith Organ

As per the results of Telban et al. [19], the linear transfer function for the otolith
organ is given as follows:

âi(s)
ai(s)

= 0.4
(1 + 10s)

(1 + 5s)(1 + 0.016s)
(7)

where ai is the specific acceleration to which the passenger is subjected and âi is the
perceived specific acceleration in one of the three translational degrees of freedom.
Similar to the semi-circular canals, it has been assumed that the parameters of the
otolith model used here are also same in all the three translational degrees of freedom.
Moreover, both the input and output are to be specified at the driver’s eyepoint (D0)
in DF. Representing Equation 7 in its observable canonical state-space form, we get:

ẋoth = Aoth · xoth + Both · uoth
yoth = Coth · xoth + Doth · uoth

(8)
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where yoth = âi and uoth = ai, in one of the three canonical directions (surge x, sway y
or heave z). Therefore, the complete model for otolith organs is as follows:

ẋo = Ao · xo + Bo · uo

yo = Co · xo + Do · uo
(9)

where

Ao =




Aothx 02x2 02x2

02x2 Aothy 02x2

02x2 02x2 Aothz


 Bo =




Bothx 02x1 02x1

02x1 Bothy 02x1

02x1 02x1 Bothz




Co =




Cothx 01x2 01x2

01x2 Cothy 01x2

01x2 01x2 Cothz


 Do =




Dothx 0 0
0 Dothy 0
0 0 Dothz




(10)

and the input and the output signals are shown in equation 11 and 12. It must be
noted that both of these quantities are also expressed at the driver eyepoint (D0) in
DF.

uo = aDF
D0

= [ax ay az]
T (11)

yo = âDF
D0

= [âx ây âz]
T (12)

The complete model of otolith organ should also include the tilt coordination effects
into it. Please refer to Appendix A.4 for a detailed explanation. The otolith matrix is
augmented to the following:

Aō =

[
Ao B̄
0 0

]
Bō =

[
Bo 0
0 I3

]

Cō =
[

Co 0
]

Dō =
[

Do 0
]

(13)

where

B̄ = Bo ·




0 g 0
−g 0 0
0 0 0


 (14)

It must be noted that small-angle approximation has been made here and the
input and the output signals expressed at the eyepoint of the driver (D0) in DF
are mentioned in the following equations:

uō = [aDF
D0

; ωDF
D0, tilt] (15)

yō = âDF
D0

(16)



10 of 28

3.1.3. Complete Model

The complete vestibular system is further modeled by combining the state-space
models of the semi-circular canals and the otolith organ, resulting in the following
system:

ẋv = Avxv + Bvuv

yv = Cvxv + Dvuv
(17)

where

Av =

[
As 06x9

09x6 Aō

]
Bv =

[
06x6 Bs

Bō 09x3

]

Cv =

[
Cs 03x9

03x6 Cō

]
Dv =

[
03x6 Ds

Dō 03x6

] (18)

and the input and the output signals expressed at the eyepoint of the driver (D0) in
DF are mentioned in the following equations:

uv = [aDF
D0

; ωDF
D0, tilt ; ωDF

D0, rot] (19)

yv = [âDF
D0

; ω̂DF
D0

] (20)

Since the motion platform has to be controlled in the IF, the inputs of the vestibular
system must be converted from DF to IF. To transform the translational acceleration
from DF to IF, the following relation is used:

aDF
D0

= aP0 + (ωP0 × (ωP0 × (RIF
PF · rPF

d ))) + (αP0 × (RIF
PF · rPF

d )) (21)

where rPF
d is the vector from point P0 to the driver’s eyepoint (point D0) in PF. aP0 ,

ωP0 and αP0 are the translational acceleration, total angular velocity and total angular
acceleration respectively at point P0 in IF. Further, RIF

PF is the rotation matrix for
translational acceleration from PF to IF, which can be written in terms of the total
inclination angles (roll (φ), pitch (θ) and yaw (ψ)) of the motion platform as follows:

RIF
PF =




cosφ · cosψ− sinφ · cosθ · sinψ −cosφ · sinψ− sinφ · cosθ · cosψ sinφ · sinθ

sinφ · cosψ + cosφ · cosθ · sinψ −sinφ · sinψ + cosφ · cosθ · cosψ −cosφ · sinθ

sinθ · sinψ sinθ · cosψ cosθ




(22)
Moreover, to transform the rotational velocity from DF to IF, the following relation is
used:

ωDF
D0

= T IF
DF ·ωP0 (23)
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where T IF
PF is the rotation matrix for rotational velocity from DF to IF, which can be

written in terms of the total inclination angles (roll (φ), pitch (θ) and yaw (ψ)) of the
motion platform as follows:

T IF
DF =




0 cosφ sinφ · sinθ

0 sinφ −cosφ · sinθ

1 0 cosθ


 (24)

3.2. Motion Platform Model

The motion platform model is used by the MPC algorithm to manage
the workspace. The workspace of a 6-DOF motion platform is defined as a
six-dimensional complex-shaped body where the system is free to move without
violating its actuator limitations. The boundaries of the workspace are formed due to
the excursion limitations of one or more actuators. The motion-space of the platform
is defined as space where the system is free to move in the future as per the current
state of the system. Since Stewart platforms are synergistic systems, the movement
in a single DOF requires contribution from all the actuators. As a consequence, the
available motion-space in one DOF depends on the excursions in other DOFs as well.
The following approaches can be used to manage the workspace:

• Limiting motion workspace - Forward kinematics is used to calculate the
motion-space (as per the current actuator position) in terms of the translational
and angular displacement of the point P0. Further, the constraints are applied
based on the current motion-state and the same should be updated at each
time-step. The resulting motion-space is a 6-dimensional complex body.

• Limiting actuator workspace - Inverse kinematics is used to determine the
motion-space directly in terms of the actuator positions. Subsequently, fixed
constraints are added based on the permissible actuator length.

Limiting the actuator workspace results in simpler relations. This is because the
limit on each actuator is independent of that of the other actuators while the degrees
of freedom of the point P0 are coupled with each other. For example, the available
workspace for the surge motion of point P0 would depend on the current state of the
other degrees of freedom (sway, heave, roll, pitch and yaw). Therefore, the bound on
the surge motion will be state-dependent and has to be calculated at every time step.
Meanwhile, the bound on each actuator will be constant (its excursion or retraction
limit) and independent of the other actuators. Therefore in this paper, limiting the
actuator workspace is used as the strategy for workspace management.

3.2.1. Actuator Kinematics

The inverse kinematic relations of the Stewart platform can be used to implement
the constraints on the actuator length and velocity. The actuator kinematic relations
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are derived in [20]. As per Figure 4, the following relation for actuator length vector
can be derived using vector arithmetic:

~Li =~rp + RIF
PF ·~rPF

a −~rb (25)

The actuator length can be written as:

li =
√
~Li ·~Li (26)

Moreover, the unit vector along the length vector can be written as:

~ni = ~Li/li (27)

Further, the actuator velocity vector can be computed by differentiating Equation 26.

l̇i = Q−1
1 ·Q−1

2 ·
[

vp

αP0

]
(28)

where

Q−1
1 =



~nT

1 ((RIF
PF ·~rPF

a1
)×~n1)

T

...
...

~nT
6 ((RIF

PF ·~rPF
a6
)×~n6)

T


 Q−1

2 =

[
I3×3 O3×3

O3×3 T

]
(29)

3.3. Combined system model

The combined system model consisting of both, the vestibular system and the
motion platform model. Therefore, the combined system states can be written as
following:

ẋc(t) =





ω̇rot, P0 = αrot, P0

β̇rot, P0 = ωrot, P0

ω̇tilt, P0 = αtilt, P0

β̇tilt, P0 = ωtilt, P0

v̇p = aP0

ṙp = vp

ẋv = Avxv + Bv · [aDF
D0

; ωDF
D0

]

l̇i = Q−1
1 ·Q−1

2 · [vp ; αP0 ]

(30)
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where

aDF
D0

= aP0 + (ωP0 × (ωP0 × (RIF
PF · rPF

d ))) + (αP0 × (RIF
PF · rPF

d ))

ωDF
D0

= T ·ωP0

αP0 = αrot, P0 + αtilt, P0

ωP0 = ωrot, P0 + ωtilt, P0

βP0 = βrot, P0 + βtilt, P0

(31)

Therefore, the state vector xc can be written as follows:

xc = [ωrot, P0 βrot, P0 ωtilt, P0 βtilt, P0 vp rp xv li]T (32)

and, the input vector uc can be written as follows:

uc = [aP0 αtilt, P0 αrot, P0 ]
T (33)

This combined system can be represented as the following:

ẋc(t) = f
(
xc(t), uc(t)

)
(34)

To discretize the system, direct multiple shooting technique is used [21]. The time
horizon [t0, t0 + T] (where T = Np × Ts) is divided into Np sub-intervals [tk, tk+NP ]

and the state trajectory is computed on each sub-interval independently. Further,
matching constraints are added to ensure continuity of the optimal state trajectory on
the whole horizon [22]. After discretization, the obtained system can be represented
as follows:

xc(k + 1) = fd
(
xc(k), uc(k)

)
(35)

4. MPC Formulation

The MPC controller uses the system model and the current state of the system to
predicts the evolution of the future state over a finite prediction horizon (Np). Using
this, the optimal control action is derived over a control horizon (Nc). Then, only
the first control input is applied to the real system and the same process is repeated
for the next time-step. Therefore, the MPC input can be regarded as a nonlinear
state feedback control input, obtained online by repeatedly solving the optimization
problem - minimizing an objective function while adhering to the system dynamics
and fulfilling the given constraints at every time-step.

4.1. Objective Function

The standard objective function for MPC consists of quadratic functions of both
the tracking error and the control action along the prediction horizon. In this paper,
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the objective function is divided into two parts, namely the stage cost (`
(
xc(k), uc(k)

)
)

and the terminal cost (V
(
xc(Np)

)
). The total objective function is given as:

J(xc, uc) =
Np−1

∑
k=0

`
(
xc(k), uc(k)

)
+ V

(
xc(N)

)
(36)

The expression for stage cost is shown below:

`
(
xc(k), uc(k)

)
= ‖xre f (k)− xc(k)‖Q + ‖ure f (k)− uc(k)‖R (37)

where Q and R are the positive semi-definite weight matrices for a penalty on tracking
error and control input respectively. The stage cost function is defined such that it
satisfies the following conditions:

`(0, 0) = 0
`
(
xc(k), uc(k)

)
> 0, ∀x(k) ∈ X, x(k) 6= xre f (k)

(38)

The expression for the terminal cost is shown below:

V
(
xc(Np)

)
= ‖xre f (Np)− xc(Np)‖P (39)

where P is the positive semi-definite weight matrix for a penalty on the tracking error
at the terminal stage of the prediction horizon.
For finite prediction horizon problems, stability can be guaranteed by choosing a
suitable terminal cost (V) and terminal attractive region Ω [23–25]. Even though the
conditions for asymptotic stability are clearly defined, choosing V and Ω is still an
open problem [26]. It is shown in [27], that stability can be guaranteed by simply
tuning the matrices Q, R, and P. Further, a longer prediction horizon (Np) would help
the algorithm to achieve convergence at the cost of a more computational demanding
problem.

4.2. Constraints

For motion cueing, the following constraints are generally applied:

• Constraint on the tilt rate (ω).
• Constraints on the actuator positions (li).

The constraint on the tilt rate is to ensure that the tilt coordination effects are not
perceived by the observer. Therefore, the tilt-rate should be limited to the threshold
values for rotation. In the paper, the tilt rate constraints are imposed based on the
values derived in the research of Reid et. al [28] and the same is mentioned in Table 1.
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Table 1. Threshold values for rotational velocities

Degree of Freedom Threshold Value

Roll ωφ 3.0 deg/s
Pitch ωθ 3.6 deg/s
Yaw ωψ 2.6 deg/s

ωtilt, min ≤ ωtilt ≤ ωtilt, max (40)

Further, the constraints on the actuator positions are to ensure that the platform
remains within its physical limits. This is expressed as the maximum extension (lmax)
and retraction (lmin) of the actuator allowed.

lmin ≤ li ≤ lmax i = 1, . . . , 6 (41)

In this paper, the set of states x(k) which satisfies the aforementioned constraints is
denoted by X. Therefore, the combined constraint equations are represented as:

x(k) ∈ X (42)

4.3. Reference Generation

The reference vector contains the following variables:

xre f = [ωrot, re f βrot, re f ωtilt, re f βtilt, re f vp, re f rp, re f xv, re f li, re f ]
T (43)

To ensure that the platform returns to neutral position, the reference for ωrot, βrot,
ωtilt, βtilt, vp, rp, li are set to zero for the entire prediction horizon. Further, the
reference for xv contains the reference for âDF

D0
and ω̂DF

D0
. These are computed by

translating the translational acceleration and angular velocities obtained from the
vehicle model to the driver’s eyepoint in DF and then passing them through the
vestibular system model. Since the future reference is not available in advance, the
current value of xv is kept constant throughout the prediction horizon.

4.4. Adaptive weight-based tuning

The weight matrices used in the above formulation are as follows:

Q = diag([Wωrot Wβrot Wωtilt Wβtilt Wvp Wrp Wxv Wli ]) (44a)

R = diag([WaP0
Wαtilt Wαrot ]) (44b)

P = diag([wωrot wβrot wωtilt wβtilt wvp wrp wxv wli ]) (44c)

In the conventional MPC scheme, the weights of these tuning matrices are fixed
in advance. This approach works well if the individual states are not dependent
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on each other or if the properties of the system do not change during the course
of the simulation. However, since the motion cueing algorithm needs to adapt
to the changing workspace, an adaptive weight-based tuning approach has been
implemented in this paper. The fundamental idea of this approach is to increase the
weight on the position error (Wrp) and velocity error (Wvp) non-linearly as the motion
platform reaches near the actuator limit.
The adaptive weights-based tuning results in two main advantages. Firstly, for a
constrained MPC problem with a short prediction horizon, the resulting output
trajectories are often not smooth when the system states reach the limits of the
workspace. This is because the penalty on the system states is constant irrespective
of the available workspace. By varying the tuning weights-based on the available
workspace, a damping action is provided which results in smooth movement of the
platform near the physical limit.
Secondly, the motion cueing algorithms have a tendency to produce false or missing
cues as they constantly try to perform washout. By keeping the weights on vp

and rp low and only increasing it when the platform is near its limits, the adaptive
weights-based tuning would also help to reduce the production of false or missing
cues. The following weight function is used in this paper:

Wrp =

( 6

∑
i=1

1
(1.1 · lmax)2 − l2

i
− a
)

/b (45a)

Wvp =

( 6

∑
i=1

1
(1.1 · lmax)2 − l2

i
− c
)

/d (45b)

where a, b, c and d are fixed parameters. The effect of the aforementioned adaptive
weight function can be seen in figure 5. Parameters a and c determine the value of the
function at point m in Figure 5, while parameters b and d determine the value of the
function at point n1 and n2 in Figure 5.

Figure 5. The effect of actuator displacement on the tuning weight
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Table 2. Constant tuning parameters

Parameter Wωrot Wβrot Wωtilt Wβtilt Wyv,â Wxv,ω̂ Wli

Weight 0.1e−2 0.1e−2 0.1e−2 0.1e−2 2e−2 10e−2 0.1e−2

It should be noted that the other tuning weights (except Wrp and Wvp) in Equation
44 are kept constant and are shown in Table 2. Since the magnitude of the perceived
angular velocity is much smaller than that of the perceived translational acceleration,
a high weight for it is chosen (i.e. Wxv,â « Wxv,ω̂). This scaling of weights is important
so that the errors on both the quantities are given equal weightage and the MPC
algorithm seeks to track both the quantities equally. Moreover, since the actuator
displacements are already constrained and within the available workspace, free
movement of the actuators is desired, a small weight is selected for the actuator
displacement (Wli). Similarly, since the tilt rate is already constrained and free rotatory
movement of the hexapod is desired, a low weight on the hexapod inclination angle
(Wβrot and Wβtilt) and inclination velocity (Wωrot and Wωtilt) is chosen.

4.5. Optimization Problem

Model Predictive Control calculates the optimal control input by solving the
following optimization problem:

u(k) = argmin J
(
xc(k), uc(k)

)

s.t
xc(k + 1) = fd

(
xc(k), uc(k)

)

x ∈ X

(46)

To solve the aforementioned optimization problem, ACADO toolkit [29] is used
which uses a real-time iteration (RTI) method to solve the nonlinear MPC problem.
As mentioned before, multiple shooting technique is used to discretize the nonlinear
continuous-time system. The objective function, which is arranged in the least-squares
form is solved using the Sequential Quadratic Programming (SQP) technique. The RTI
scheme uses the warm-start technique with shifting procedure to linearize the system,
i.e the solution of the optimization problem at the previous time-step is shifted and
used as the new linearization point. To reduce the number of optimization variables
in the QP problem, a condensing procedure is used [21]. The resulting condensed QP
problem is then passed to the qpOASES solver [30] which uses the active set method
to evaluate the solution. In order to reduce the computational time and solve the
problem quickly, the RTI method divides the optimization problem into two parts, i.e:

• Preparation step- The objective function is evaluated in the form of unknown
state feedback x0. The original QP problem is formulated and condensed into a
smaller and denser QP.
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• Feedback step- The state feedback x0 is substituted and the QP is solved to obtain
the control input.

The preparation step is performed at the previous time-step. As soon as the state
feedback x0 is obtained, it is substituted in the QP and the solution is obtained. A
detailed description of the solution techniques used in this paper is given in Appendix
D. Further, more about the ACADO toolkit and the real-time iteration method can
also be found in [13,29]. In this paper, a sampling time of 0.01 seconds was used
with a prediction horizon NP = 50 and the control horizon NC equal to NP. The time
required by the solver to solve the OCP is shown in figure 8. Further, details about
the effects of the sampling time and prediction horizon on tracking performance and
computational load is given in Appendix E.

5. Performance Indicators

To compare different motion cueing algorithms, specific performance indicators
must be specified. Further, these indicators must be chosen to compare both, the
reference tracking performance and workspace utilization of the MCA.

5.1. Indicators for reference tracking performance

Root mean square error is a good indicator of the error in reference tracking.
Further, Bourke [31] defined dedicated indicator to measure the shape correlation
and the delay between two signals.

Root Mean Square Error (RMSE) calculated for each time step is added and the
result is normalized so that the indicator can compare short and long signals fairly.
RMSE is given in Equation 47. The range of RMSE indicator is [0,+∞]. A signal is
close to the reference should have RMSE close to zero.

RMSE =

√
1
n

n

∑
i=1

(
xre f , i − xi

)2 (47)

Correlation Coefficient (CC) is the shape correlation between the reference and
the actual signal. CC is given in Equation 48. The range of CC indicator is [0,+1].
If the two signals are similar in shape, then the CC should be close to one, while
it should be close to zero when there is low correlation [31]. This indicator can be
particularly useful to signify if there are many missing or false cues.

CC(xre f , x) =
∑n

i=1
(
xre f , i − x̄re f

)
· (xi − x̄)

√
∑n

i=1
(
xre f , i − x̄re f

)2 ·
√

∑n
i=1 (xi − x̄)2

(48)
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where

x̄re f =
1
n
·

n

∑
i=1

xre f , i

x̄ =
1
n
·

n

∑
i=1

xi

(49)

Estimated Delay (ED) calculates the magnitude of delay between the reference
and the actual signal. Since both the signals are not exactly equal, actual delay cannot
be calculated. Therefore it is estimated as the offset applied to the reference signal
which maximizes the correlation coefficient. The range of ED indicator is [0,+∞]. A
signal with no delay with respect to the reference should have ED = 0.

5.2. Indicators for workspace utilization

Interquartile range (IQR) of the actuator length can be used to analyze how an
MCA uses the available actuator workspace [32]. It is a measure of variability and is
defined as the difference between the 75th and 25th percentile of the given sample. A
high interquartile range denotes high usage of the actuator workspace.

6. Results and Discussion

6.1. Simulation Setup

The control scheme of the experiment is shown in figure 6.

Figure 6. The control scheme used for full-track simulations

A four-seater hatchback car with an electric motor and a continuously variable
transmission (CVT) was simulated on a digital version of the Hockenheim ring
(Germany) in the IPG Carmaker software. The vehicle was simulated for a single lap
on the circuit. A virtual sensor was placed on the eyepoint of the driver to record the
accelerations and angular velocities. The resulting signal was recorded, passed on to
the vestibular system model and the output was fed to the reference generator. Since
a 1:1 reproduction of these quantities is often not possible due to limited workspace
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of the motion platform, a scaling factor is needed. Moreover, in their research, Grácio
et al. [33] established that a 1:1 ratio of the inertial and visual cues are reported as
too strong by the subjects and thus, not preferred. They reported that the optimal
scaling factor, called as optimal gain depends on the amplitude and the frequency
of the stimuli. It was also reported that the preferred motion gain decreases with
the increase of the stimuli amplitude. Taking this and the capabilities of the motion
platform into consideration, a scaling factor of 0.5 applied to the reference quantities
and the resulting signals are passed to the controller as the reference signal. At every
time-step, the adaptive weights are calculated based on the actuator lengths. Further,
the controller receives the system states and the output error from the plant and
calculates the control input using the non-linear MPC scheme. The calculated control
input, i.e. the translational and rotational acceleration of the moving base centroid of
the platform is passed to the platform emulator which is configured to emulate the
performance of the Delft Advanced Vehicle Simulator (DAVSi) (shown in Figure 7).

Figure 7. The Delft Advanced Vehicle Simulator

The system performance of the platform is summarized in table 3.
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Table 3. System performance of the motion platform

Motion Excursion [m] Velocity [m/s] Acceleration [m/s2]

Surge x -0.51 ... 0.63 ± 0.81 ± 7.1
Sway y -0.51 ... 0.51 ± 0.81 ± 7.1
Heave z -0.42 ... 0.42 ± 0.61 ± 10.0
Roll φ ± 24.3 ± 35.0 ± 260.0
Pitch θ -25.4 ... 28.4 ± 38.0 ± 260.0
Yaw ψ ± 25.0 ± 41.0 ± 510.0

Actuator -1.297 ... 1.937 - -

The performance of the algorithm is analyzed based on the performance
indicators mentioned in Section 5. The results of the proposed nonlinear MPC-based
MCA (NLMPC) are compared with Linear MPC (LMPC) and the classical washout
filter (CWF) based MCAs. All the algorithms were tuned to maximize the reference
tracking performance while keeping the actuator positions within the physical limits.
The simulations were performed on a standard Intel Core i7 2.6 GHz system with
16 GB RAM and x64 bit Windows 10 operating system. Further, to test the real-time
capabilities of the algorithm, the execution time required by the ACADO solver to
solve the OCP was recorded and the same is shown in Figure 8.

Figure 8. The execution time required by ACADO to solve the OCP

It can be inferred from the figure that the time taken by the solver at each time-step
throughout the simulation is less than the sampling time (0.01 sec), making it feasible
to implement in real-time.

6.2. Simulation Results

The reference tracking performance for perceived acceleration are shown in
Figure 10,9,11 while the reference tracking performance for the angular velocities
is shown in Figure 12,13,14. Further to analyze the workspace utilization, actuator
lengths spanned during the course of this simulation are shown in Figure 15.
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Reference Tracking Performance: Translational Acceleration

Figure 9. Reference Tracking performance: Perceived Surge Acceleration

Figure 10. Reference Tracking performance: Perceived Sway Acceleration

Figure 11. Reference Tracking performance: Perceived Heave Acceleration
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From Figure 9, it can be inferred that the NLMPC algorithm results in a lower
RMSE value compared to the other algorithms. Moreover, the high CC value
indicates a high shape correlation. The RMSE and CC values for the CWF and
LMPC algorithms indicate a comparatively inferior performance. While the LMPC
algorithm produces better results than CWF, both the algorithms produce false
or missing cues. It can also be seen that both the MPC-based algorithms result in
higher ED value compared to the CWF algorithm. This behavior of the MPC-based
algorithms can be improved if the reference is known a priori.
Similar conclusions can be drawn from Figure 10. The NLMPC algorithm produces
produces a superior reference tracking performance, which is reflected in the low
RMSE and high CC values. Although the LMPC algorithm results in significant RMSE
value, its CC value is high. This is because it produces the right but scaled-down cues
resulting in high shape correlation but high error as well. Moreover, the performance
of CWF is again inferior compared to the other two algorithms.
From Figure 11, it can be inferred that since the value of the reference signal is
small, all the three algorithms result in comparatively lower RMSE values. The
NLMPC algorithms produces a high CC value compared to the other algorithms. As
mentioned before, the ED value is high for both the MPC-based algorithms in all the
above cases, which means that the produced cues are delayed. A reference prediction
strategy can be used to improve this behavior.

Reference Tracking Performance: Rotational Velocity
The reference tracking performance for the perceived angular velocity is shown in
figure 12, 13 and 14. Since most of the reference cues are below the perception
threshold, the quality of the produced cues in such cases does not matter as long as it
is below the threshold. Therefore, the MCA performance should be judged based on
the quality of the cues above the perception threshold.

Figure 12. Reference Tracking performance: Perceived Roll Velocity
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Figure 13. Reference Tracking performance: Perceived Pitch Velocity

Figure 14. Reference Tracking performance: Perceived Yaw Velocity

From the above figures, it can be inferred that the NLMPC algorithm outperforms
the LMPC and CWF algorithm in terms of both, the RMSE and the CC values.
Moreover, a high ED value is observed for both the MPC-based algorithms.
From Figure 13, it can be seen that the LMPC algorithm produces perceivable false
cues. For every peak that the algorithm tracks on the positive side, it produces an
opposite peak in the negative side, resulting in a false cue. This is because after
producing the cue form the high peak, the algorithm quickly tries to bring back
the platform to the neutral position (washout effect), resulting in the production
of the false cue. In NLMPC algorithm, this behavior is governed by the adaptive
weight-based tuning scheme. The weights on the position and velocity of the
hexapod is only increased when the platform is near its limits. Therefore, the washout
process becomes effective only when the platform is near the limits which reduces
the tendency of the algorithm to produce false cues.
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Workspace Utilization: Actuator displacement

Figure 15. Workspace Utilization: Actuator Displacement and Mean IQR

From Figure 15, it can be inferred that the CWF algorithm utilizes the available
workspace conservatively, as reflected by the lower IQR value. This can be attributed
to the fact that the algorithm was tuned as per the limiting excursion (excursion
of actuator 1 at 102 sec). Therefore, during the other parts of the simulation,
the algorithm utilizes the workspace conservatively. The LMPC scheme allows
overcoming this limitation as the algorithm has a better knowledge of the platform
limits and the same is taken into account while optimizing at each time step to
obtain the control action. This results in a higher IQR value for the LMPC algorithm.
Meanwhile, the adaptive tuning scheme further allows the NLMPC algorithm to
span more workspace as the washout effect becomes effective only when the platform
is near its physical limits resulting in a higher IQR value.

Additionally, extensive results in supplement to the aforementioned results are
presented in Appendix E.

7. Conclusion

This paper aimed at developing a new nonlinear MPC-based motion cueing
algorithm that incorporates the vestibular system model and the non-linear kinematic
model of the Stewart platform. The human vestibular system was modeled and the
tilt coordination scheme was incorporated within it. To incorporate constraints on
the rate of g-tilting without affecting the production of roll, pitch or yaw cues, the
rotational velocity states were decoupled into separate rotational states (for actual
rotational motion) and tilt states (for tilt coordination) and constraints were imposed
only on the latter. In the motion platform model, the actuator positions and velocities
were modeled by using the nonlinear inverse kinematics of the Stewart platform
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and these were included as states within the MPC framework. Further, the actuator
displacements were constrained. Lastly, to manage the actuator workspace efficiently
and attain smoother movement of the platform, an adaptive weight-based tuning
methodology was proposed which changes the tuning weights on the platform
displacement and velocities as per the available actuator motion-space.
To test the proposed algorithm, full-track simulations were performed and the
performance of the proposed algorithm was compared to the classical washout
filter and linear MPC-based MCA. Based on the literature, several performance
indicators were defined to objectively evaluate and compare the reference tracking
and workspace utilization performance of different MCAs.
The results showed superior performance of the proposed algorithm in terms of
reference tracking when compared with the Linear MPC and CWF-based algorithms.
It was further noted that the algorithm produced less false or missing cues compared
to the classical washout filter and linear MPC-based MCA which might reduce the
chances of motion sickness. Lastly, the proposed algorithm showed better workspace
utilization when compared to the Linear MPC and CWF-based algorithms.
The controller frequency achieved in this paper is 100 Hz with a prediction horizon
of 50. It is further shown that the optimization at each step requires less than 0.01
seconds which makes it feasible to implement it in real-time. As future work, the
algorithm can be tested on a real-time system to evaluate it further and validate the
findings of this paper. Other future work could include a subjective evaluation of the
MCA in active and passive driving conditions.
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This appendix gives an overview of the fundamentals of motion cueing. It is imper-
ative to understand these fundamentals in order to develop a profound understanding
of the motion cueing process. Section A.1 gives an overview of the general framework of
motion cueing. In section A.2, a description of the Stewart platform commonly used in
driving simulators is provided. In section A.3, the fundamentals of motion perception in
humans are described. Lastly, in section A.4, the tilt coordination technique is explained.
An extensive description of these topics can also be found in the literature review report
associated this thesis.

A.1. GENERAL FRAMEWORK OF MOTION CUEING
Motion cueing deals with the basic problem of providing the passenger sitting in the sim-
ulator with the same sensory stimuli which s/he feels in the real vehicle while keeping
the motion platform within its physical boundaries. Figure A.1 shows the flow of infor-
mation in a typical motion cueing scheme.

Figure A.1: Typical motion cueing scheme

The upper branch provides the reference signals for the Motion Cueing Algorithm
(MCA). The input command from the driver (steering input and throttle or brake input)
is passed to the real vehicle or vehicle model and the resultant accelerations and rota-
tional velocities (ua_V F ) are measured at the Centre of Gravity (CoG) of the vehicle in the
Vehicle frame of reference (VF). The signals are then translated to the driver’s eyepoint
(ua_DF ) in the Driver frame of reference (DF) and passed to the vestibular system model.
The output from the vestibular model (ya) is considered as the motion cues that the pas-
senger would perceive and the same is to be tracked by the MCA.

The lower branch in the figure refers to the motion cueing scheme. The same driver
input is applied to the vehicle model and the resulting signals (uv_V F ) are transformed
from VF to the Inertial frame of reference (IF) giving (uv_I F ). These signals are then
passed to the motion cueing algorithm which gives the motion commands in terms of
actuator movement to the simulator in IF. The resulting acceleration and angular veloc-
ities (us_I F ) are converted from IF to DF (us_DF ) and passed on to the vestibular system.
The output (ys ) represents the signals perceived by the observer sitting inside the sim-
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ulator and the resulting error (e) with respect to the reference (ya) is calculated and fed
back to the MCA.

In order to implement this scheme, a Motion Cueing Algorithm should achieve the
following objectives:

• Ensuring good simulator fidelity by reducing the error between the actual cues
that the passenger perceives while sitting inside the real vehicle and the provided
cues from the simulator.

• Keeping the motion platform within its physical boundaries and utilizing the avail-
able workspace efficiently.

• Returning the platform state to the neutral position once the desired cue is pro-
vided.

• Washing out cues below the driver’s perception threshold.

A.2. MOTION PLATFORM
The motion platform commonly used for driving simulator applications is a Gough-
Stewart platform, more commonly known as the Hexapod. This type of platform can
have a motion in all the 6 degrees of freedom (DOF), i.e. motion in three principle trans-
lational and three principle rotational directions. Recently, advanced motion platforms
with 9-DOF are also being used for the motion cueing application. Such systems gener-
ally have a hexapod mounted on the top of a tripod. The tripod is used for large trans-
lational displacements, while the hexapod is used for the rotational and smaller transla-
tional movements. The main advantage of such a system is that for a hexapod of similar
size, this system provides a larger workspace compared to a regular hexapod based 6-
DOF motion system [1]. Moreover, recently Cable-robot-based motion simulators are
also being increasingly used. However, it must be noted that the focus of this thesis is
limited to the hexapod or the Stewart platform.

A.2.1. STRUCTURE
The motion platform is a type of parallel structured robot manipulator that is controlled
by six actuators [2]. These actuators are attached in pairs at three positions to the tri-
angular shaped top plate called the moving base and at three positions to the fixed base
plate at the bottom, as shown in figure A.2. Both electric and hydraulic actuators are
used in motion simulator systems [3]. However, electrically actuated systems are gener-
ally preferred for this application as they offer better perception fidelity and larger band-
width compared to hydraulically actuated systems. Further, due to the nonlinear nature
of the hydraulic systems, precise control is also difficult [4]. All the six actuators can be
controlled individually. Torque is provided to the spindles by servo motors which results
in extension of the actuators. In the case of the driving simulator, the vehicle cockpit is
attached on top of the moving base. Since the motion platform can have a motion in
three translational directions (surge x, sway y and heave z) and three rotational direc-
tions (roll φ, pitch θ and yaw ψ), it can imitate the motion of a freely suspended body.
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The frames of reference generally defined for the motion platform are the same as de-
scribed in Chapter 1.

Figure A.2: A 6-DOF Motion Platform [5]

High-end motion systems are able to carry up to 14 tons of payload and reaching
accelerations of typically 8 to 10 m/s2 with actuator strokes of around 1.5 m. The band-
width of these motion systems is in the order of 5-15 H z, depending on the desired di-
rection of control and the mechanical design of the system. Although the motion control
of these systems is beyond the scope of this research, but its effects on the real-time per-
formance are to be noted. Therefore, it is important to remark that these controllers
are called at a sampling frequency in the range of 100-1000 H z in order to minimize
the latency of the cueing algorithm [6]. Further, it should also be noted that control fre-
quency of 100 H z or higher is recommended to synchronise the platform motions with
the graphics [1].

A.2.2. WORKSPACE
The workspace of a 6-DOF motion platform is defined as a six dimensional complex
shaped body where the system is free to move without violating its actuator limitations.
The boundaries of the workspace are formed due to excursion limitations of one or more
actuators. As mentioned in Chapter 1, the motion-space of the platform is defined as
space where the system is free to move in the future as per the current state of the sys-
tem. Since, Stewart platforms are synergistic systems, movement in a single DOF re-
quires contribution from all the actuators. As a consequence, the available workspace
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(motion-space) in one DOF depends on excursions in other degrees.

Since the driving simulator is supposed to reproduce cues while keeping the plat-
form within its physical limits, workspace management become essential for the effec-
tiveness of the motion cueing process. In order to compute and manage the workspace,
it is important to model the motion platform accurately. Detailed explanation about the
workspace management strategies considered and used in this report is given in Chap-
ter 1. The kinematics of the Stewart platform (with respect to figure A.3) used for the
workspace management are described below.

Figure A.3: Geometrical model of the Stewart platform

INVERSE KINEMATICS

The inverse kinematics of the platform is concerned with determining the lengths and
the velocities of the six links or actuators (li and l̇i , i = 1...6) of the platform given the
translational and rotational displacements and velocities of the moving base centroid of
the platform (point P0).
From figure A.3, the relations given in equation A.1 and A.2 can be written using the
vector algebra.

rt = rp +R I F
PF rPF

a (A.1)

rt = rl + rb (A.2)

Where, rPF
a is expressed in the platform frame (PF) while all the other quantities are ex-

pressed in the inertial frame (IF). Further, R I F
PF is the rotation matrix from PF to IF. Com-

bining equation A.1 and A.2, the expression for the actuator length vector (equation A.3)
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can be derived.

rl = rp +R I F
PF rPF

a − rb (A.3)

Similar relations can be derived for the other actuators as well.

li = rp +R I F
PF rPF

a − rb (A.4)

The magnitude of the actuator length (li ) and the unit vector along the direction of the
actuator (ni ) are given by:

li =
√

li · li (A.5)

ni = li

li
(A.6)

In order to find the velocity of the actuator length, equation A.3 is differentiated with
respect to time.

d

d t

(
rl

)= d

d t

(
rp +R I F

PF rPF
a − rb

)
(A.7)

⇒ ṙl = ṙp +ω× (R I F
PF rPF

a ) (A.8)

where ω is the angular velocity of the centroid of the moving base (point P0). Since we
are interested in the component of the velocity vector in the direction of the actuator,
equation A.8 is multiplied by the unit vector along the actuator length (ni ).

l̇i = ṙp ·ni +ω× (R I F
PF rPF

a ) ·ni (A.9)

Using the vector calculus identities, the product a ×b · c can be written as a ·b × c.

⇒ l̇i = ṙp ·ni +ω · (R I F
PF rPF

a )×ni (A.10)

The magnitude of the actuator velocity is given by:

l̇i =
√

l̇i · l̇i (A.11)

To summarize, the inverse kinematics relations for actuator lengths and velocities can
be written from equation A.4 and A.10 in the form of the following matrices:

 l1
...

l6

= rp +


R I F

PF rPF
b, 1 − rb, 1

...
R I F

PF rPF
b, 6 − rb, 6

 (A.12)

 l̇1
...

l̇6

=

 nT
1 ((R I F

PF rPF
a1

)×n1)T

...
...

nT
6 ((R I F

PF rPF
a6

×n6)T

[
ṙp

ω

]
(A.13)
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FORWARD KINEMATICS

The forward kinematics of the platform is concerned with determining the translational
and rotational displacements of the moving base centroid of the platform given the lengths
of all the links or actuators. Unlike the inverse kinematic problem, there are many so-
lutions to the forward kinematic problem [7]. As per Wampler [8], a maximum of 40
solutions are possible for the forward kinematic problem. However, Only one solution
out of them corresponds to the actual pose of the platform. Generally, Newton-Raphson
method is used to iteratively solve the forward kinematics problem [9]. The following
relation is used to solve the problem:

q(k +1) = q(k)− J−1 (lm − lc ) (A.14)

where, q(k + 1) and q(k) are the predicted and the current platform states. lm is the
measured actuator length while lc is the actuator length analytically computed using
equation A.4. The jacobian J describes the local linearization of the relationship between
actuator displacements and the platform displacement.

J−1 =
(δ (lm − lc )

δq

)−1
(A.15)

However, this method strongly relies on the initial guess which is to be specified by the
user. Since there are many possible solutions, to obtain the correct solution, the initial
guess should be a good estimate of the actual position of the platform . Such a guess can
be either obtained from the known desired state, or the state at the previous time step if
small sampling time is used.

A.3. MOTION PERCEPTION
Motion cueing aims at providing the driver with the best possible virtual environment
which is closest to the reality. Thus, it is important to understand the cues that the driver
is presented and how the driver perceives these cues. Presenting the right cues is the
primary task of a motion cueing algorithm. However in order to completely understand
the cueing process, one needs to take a closer look into the human motion perception
system. Human beings identify their current position and motion in space by using the
following perception systems:

• the visual system

• the auditory system

• the somatosensory system

• the vestibular system.

The information arriving from these sensory channels goes into the brain, where it is
processed. If the information stemming from two channels is contradictory, generally
the stronger signal is given priority over the weaker one. From the motion cueing per-
spective, this means that not all the cues have to be perfect, but the overall picture pre-
sented should be fitting, when compared to the real picture.
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However in certain conditions, when both the signals are sufficiently strong and con-
tradicting, we experience motion sickness [10]. Thus, it is important that the contradict-
ing information is handled carefully and does not lead to a state of motion sickness or
orientation issues. To tackle such an issue, one has to understand different perception
systems within the human body.

A.3.1. VISUAL PERCEPTION SYSTEM
This visual information refers to the information originating from the human eye. The
visual perception system is responsible for providing an accurate position estimate to
the brain. The position estimate stemming from this channel is strong and should not
contradict the information coming from other channels, especially the vestibular system
[11]. Continuous change in the position also creates an impression of movement in the
human mind, leading to the information about the velocity estimate. However, this in-
formation is weaker in nature compared to the position estimate. An example often used
in literature for demonstrating this is that of a moving train. While sitting in a station-
ary train and looking at an adjacent moving train, the observer cannot determine which
train is moving. Thus, a reference point is always needed by the visual system to identify
motion. This channel also generates information about the acceleration, however, the
information has a large time delay and is considered as weak [12]. Thus, this information
has to be supported by other sensory channels.

A.3.2. AUDITORY PERCEPTION SYSTEM
The acoustic information is sensed by the human ear. Acoustic cues such as engine
noise, road noise, etc. act as a support for assessing information about velocity. How-
ever, the signals coming from this channel are generally considered weak and thus, only
act as supporting signals inside the brain [13].

A.3.3. SOMATOSENSORY SYSTEM
The somatosensory organs include all the proprioceptive receptors (skin, muscles and
joints, etc.). These organs are responsible for providing haptic feedback to the brain. The
sensory organs located below the skin surface sense pressure changes and thus, contain
implicit information about the forces acting on the body [14]. The changes in the posi-
tion can also be inferred through these receptors. It must be noted that the information
coming from these sensors is moderate in nature and when assisted by the information
from the vestibular system, it helps in estimating the translational and angular accelera-
tions [14].

A.3.4. VESTIBULAR SYSTEM
The vestibular system is responsible for providing information about the motion by sens-
ing the translational accelerations and rotational velocities. It also contributes to com-
pensatory eye movements during motion, postural control of the human body and spa-
tial orientation in space [15, 16]. It also enables humans to have a perception of illusory
self-tilt and illusory self-motion, which confirms a strong visual-vestibular interaction
[17]. Further, this type of sensory organ is an essential instrument to train skill-based
control behavior in driving or flight simulation [18]. Since this channel provides the pri-



A.3. MOTION PERCEPTION

A

39

mary information about the movement in space, the vestibular channel is of utmost in-
terest from the motion cueing perspective.

The human vestibular system is located in the human inner ear and is composed
of many different components. However, for motion cueing application, there are two
most important parts: the semi-circular canals, responsible for sensing the rotational
velocities and otolith organs, responsible for sensing the translations accelerations [19].
The human vestibular system is shown in figure A.4.

Figure A.4: The Human Vestibular system [20]

SEMICIRCULAR CANALS

The semicircular canals are responsible for detecting the rotational movements. The
organ consist of three orthogonally arranged canals, filled with a fluid called endolymph.
When the head is rotating about one plain, the endolymph moves due to inertia in the
direction opposite to that of the head movement, pressing against the walls of the organ.
This displaces the sensory cells in the organ and the angular accelerations are sensed
[3, 21]. It must be noted that these organs exhibit strongly damped high-pass behavior
and cannot sense information at lower rotational velocities (lower than the rotational
threshold) [22].

OTOLITH ORGANS

The otolith organs are responsible for detecting the translational movements. The utri-
cle organs sense the accelerations in the horizontal plane and the saccule organs sense
the motion in the vertical plane [3]. The otolith organ senses the specific acceleration,
i.e. the acceleration sensed is the superposition of translational acceleration and accel-
eration due to gravity. Thus, by definition, the sensed accelerations should be zero in a
free fall, that is:

a f = a − g (A.16)

where a f is the sensed specific acceleration, a is the actual translational acceleration of
the body and g is the acceleration due to gravity acting upon the body. Since the gravita-
tional force is sensed in the same way as the translational force, the otolith organ cannot
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distinguish between the two. This weakness is exploited by motion cueing algorithms in
the form of tilt coordination (explained in section A.4).

MODELING THE VESTIBULAR SYSTEM

Although extensive research has been conducted in the past for modeling the vestibular
system [23–29], majority of them avoid to implement perception thresholds into these
models. The reason behind this choice is the appearance of non-linear relations due to
the thresholds. Perception thresholds are beneficial as the cueing algorithm can avoid
the cues which are below the threshold and will not be sensed by the driver. Reid et al.
[30] presented a non-linear dynamical model of the vestibular system which captures
these non-linearities as well. These non-linear dynamical models are shown in figure
A.5 and A.6. Here, ω is the angular velocity, ω̂ is the sensed angular velocity, a is the
specific acceleration and â is the sensed specific acceleration, all specified at the driver’s
eyepoint in the DF.

Figure A.5: Non-linear model of the Semi-circular canals

Figure A.6: Non-linear model of the Otolith organ

It should be noted that the non-linear dynamical models are a combination of linear
transfer functions and non-linear motion thresholds. As a consequence of incorporating
the these non-linear models, the computational time could increase and lead to a poor
real-time performance. To counteract this, reliable linear models have been derived in
recent times [3]. In their research, Telban et al. [3] derived the linear transfer function of
the semi-circular canal as follows:

Hscc(s) = ω̂i (s)

ω(s)
= TLTa s2

(TLs +1)(TSs +1)(Tas +1)
(A.17)

Further, the linear transfer function for the otolith organ is given as follows:

Hoto(s) = â(s)

a(s)
= koto (τas +1)

(τLs +1)(τSs +1)
(A.18)
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PARAMETER SELECTION

In the scheme of motion cueing, the vestibular model determines which cues are impor-
tant and should be presented. The parameters of the model directly affect the filtering
process of the onset cues and thus influence the motion perception.

Ormsby et al. [28], Reid et al. [30] and Telban et al. [3] have specified the model pa-
rameters related to the linear transfer functions for the semicircular canals. The same
is mentioned in the table A.1. The analysis done to select amongst the given models is
shown in figure A.7.

Table A.1: Model parameters for Semicircular canals

Parameter Ormsby [28] Reid [30] Telban [3]
Ta(s) 30 30 80
TL(s) 18 6.1, 5.3, 10.1 5.73
TS (s) 0.0 0.1 0.0

Figure A.7: Response of the Semicircular canal models with different parameters

To analyze the effect of different parameters on the onset cues, response to the step
input is generally considered. Along with the step input, it is also important to check the
response to a large variation in the input signal. Considering both, the response to the
signal shown in figure A.7 is considered. The input signal is a unit step from 5 sec to 20
sec after which, there is a sudden drop from magnitude 1 to -1.

It can be observed that unlike the other two models, the Ormsby model has a smaller
decay and thus doesn’t quickly converges to zero. It can also be observed that the other
two models show more high-pass behavior compared to the Ormsby model. Since the
vestibular system is characterized by its high-pass behavior, it can be inferred that the
other two models capture this behavior more effectively. It can also be observed that the
models given by Reid et al. and Telban et al. show a very similar response. In this report,
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the model given by Telban et al. [3] has been used for modeling the semicircular canals.

Ormsby et al. [28], Young et al. [29] and Telban et al. [3] have specified the model
parameters related to the linear transfer functions for the otolith organs. The same is
mentioned in the table A.2. An analysis similar to the one performed for the semicircu-
lar canals is done to analyze the effect of different parameters of the otolith organ model.
The response to the input signal is shown in figure A.8.

Table A.2: Model parameters for Otolith organ

Parameter Ormsby [28] Young [29] Telban [3]
koto 0.4 0.4 0.4
τa(s) 10.1 13.2 10.0
τL(s) 7.5 5.3 5.0
τS (s) 0.51 0.66 0.016

Figure A.8: Response of the Otolith organ models with different parameters

It can be observed that the Telban model shows higher bandwidth and has lower de-
lay compared to the other two models. This would help to avoid the formation of high
frequency false cues. Therefore in this report, the model given by Telban et al. [3] has
been used for modeling the otolith organs.

Further, Reid et al. [30] have mentioned the threshold parameters related to the
translational accelerations and the rotational velocities in their research. The same is
mentioned in table A.3. It should further be noted that this model is to be adopted for
each degree of freedom separately.
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Table A.3: Threshold values as per Reid [30]

Threshold dT H /δT H Value
Surge x (m/s2) 0.17
Sway y (m/s2) 0.17

Heave z (m/s2) 0.28
Roll φ (deg /s) 3.0

Pitch θ (deg /s) 3.6
Yaw ψ (deg /s) 2.6

DISCRETIZATION

The aforementioned continuous-time models are converted to a discrete-time model by
using the bilinear transform (also known as the Tustin’s method). This method has been
selected because of the following property - A stable continuous-time systems is always
mapped to a stable discrete-time system. A detailed explanation of the method can be
found in [31].

The selection of sampling time (or sampling frequency) is an engineering decision
that has to be made keeping in mind the minimum frequency required to preserve the
system dynamics and the maximum frequency that wouldn’t create excessive computa-
tional burden. If a very small sampling frequency is chosen, the fast dynamics of the sys-
tem will be missed and also, aliasing can occur. On the other hand, a very large sampling
frequency would require excessive computational effort. The following rule of thumb is
often used to determine the sampling frequency:

10ωb ≤ωs ≤ 30ωb (A.19)

whereωb is the highest frequency in the bandwidth of the system andωs is the sampling
frequency of the system. Further, as per Shannon’s sampling theorem, to prevent alias-
ing, ωs should be at-least higher than 2×ωb .

Looking at the transfer function of the semi-circular canals and otolith organs with
the parameters selected as per Telban et al. [3], it can be seen that the farthest pole is lo-
cated at 62.5 s−1. Therefore as per Shannon’s sampling theorem, the minimum sampling
period should be 125 H z while as per the rule of thumb (equation A.19), the minimum
sampling period should be 625 H z. However, it should be noted that in most of the MPC-
based motion cueing problems, the computational effort required to run the system is
the limiting factor with respect to the sampling frequency and therefore, the final selec-
tion of the sampling time is often done as per the available computational resources.

A.4. TILT COORDINATION
The acceleration that a vehicle is subjected to while negotiating any maneuver can be
divided into two categories: accelerations with fast dynamics (high-frequency acceler-
ations) and accelerations with slow dynamics (sustained accelerations). The sustained
accelerations tend to prolong the actuators continuously for a long period of time, thus
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pushing the platform to its physical limit. Once the limit is reached, these components
of the acceleration cannot be reproduced any further.

Figure A.9: Tilt coordination: exploiting gravity to represent sustained accelerations

A commonly used technique to reproduce the sustained acceleration is tilt coordi-
nation, which uses a component of the acceleration due to gravity (g ) to represent the
sustained acceleration in the lateral or longitudinal direction by tilting the platform (as
shown in figure A.9). The idea behind this technique is that since the otolith organs sense
the acceleration due to gravity in the same way as they sense translational accelerations,
the observer sitting inside the simulator would not be able to distinguish between the
two, given that the visual information is also rotated accordingly. Further, to avoid any
conflict in perception, the tilt rate has to be kept below the perception threshold (men-
tioned in table A.3).

Tilt coordination contributes to the longitudinal acceleration due to the pitch angle
(θ) and to the lateral acceleration due to the roll angle (φ). The gravity vector in the non-
inertial driver reference frame is given by the following vector:

g t i l t = Ry (φ) ·Rx (θ) ·
 0

0
g

=
 −g si nθ

g cosθ si nφ
g cosθ cosφ

≈
 −gθ

gφ
g

 (A.20)

It must be noted that the small-angle approximation has been applied here. Also, it must
be observed that the yaw angle (ψ) does not affect the tilt coordination. Due to the high-
pass filtering behavior of the otolith organs, the constant acceleration (g ) in the vertical
direction (third component) is not perceived. Thus, only the first two components have
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to be considered and added to the translational acceleration vector, as follows:

atot al = atr ansl ati on + g t i l t =
 ax − gθ

ay + gφ
az

 (A.21)
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This appendix presents a detailed overview of the conventional strategies used for
motion cueing applications. The conventional approach of designing an MCA is done
by using different types of filters. The following strategies are generally used:

• Classical Washout Filter (CWF)

• Optimal Washout Filter (OWF)

• Adaptive Washout Filter (AWF)

In the case of the classical washout filter, the design is simple and computationally cheap
but a major shortcoming of this technique is that the tuning procedure is complicated
as the user needs to change the filter coefficients. Further, re-tuning is required even if
the reference or the conditions are changed slightly [32]. To overcome these problems,
approaches like optimal washout filters and adaptive washout filters have been used
and found effective. In this appendix, the aforementioned filter-based MCAs have been
explained.

B.1. CLASSICAL WASHOUT FILTER
The classical washout filter scheme was initially developed for flight simulators and was
later applied to the vehicle simulators. Several versions of CWF-based MCAs were in-
troduced according to different platforms and requirements. Grant et al. [33] derived a
method for the 3-DOF platform, while Nahon et al. [32] derived the same for a 6-DOF
hexapod. Taking it further, Fischer et al. [34] and Chapron et al. [35] derived the MCA for
an 8-DOF platform. This section aims at introducing the traditional classical washout
algorithm for the hexapod platform based on the work of Nahon et al. [32].

The classical washout method is characterized by the combination of linear high-
pass and low-pass filters used together to extract the required dynamics. These signals
are further integrated to calculate the translational and angular displacement of the mo-
tion platform. Flowchart of typical classical washout filter is shown in figure B.1.

Figure B.1: Typical classical washout filter

It must be noted that typical inputs to the motion cueing algorithm are specific ac-
celerations (a) and angular velocities (ω) at the driver’s eyepoint in VF. However, they
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must be converted to IF before passing them to the MCA as shown in figure B.1.

The input signals often have a high amplitude and their generation in the simulator is
not possible. Thus, the input translational accelerations and angular velocities are scaled
to a reproducible magnitude. The entire scheme is divided into three channels, namely
translational channel, tilt channel and rotational channel. In the translational channel,
the accelerations are high-pass filtered to extract the fast dynamics (i.e. to reject the sus-
tained accelerations). The resultant filtered accelerations are integrated to calculate the
translational displacement of the simulator. The low-frequency components (sustained
accelerations) are perceived through the tilt channel by tilting the motion platform to a
calculated angle as explained in section A.4. Lastly, the angular velocities are high-pass
filtered to remove the components which are below the perception threshold. The result-
ing filtered angular velocities are then integrated to calculate the angular displacement.
The angular displacement from the tilt and the rotational channel is added and the total
angular displacement of the motion platform is obtained. A detailed description of all
the components shown in figure B.1 is given in the following sub-sections.

B.1.1. SCALING
As mentioned earlier, the input signals often have high amplitude and their generation
through the motion platform is often not possible. Lower the value of scaling, higher is
the possibility to reproduce the cue while keeping the motion platform within its physi-
cal limit. Meanwhile, a very low value might also result in lower simulator fidelity. Thus,
the scaling factor has to be optimized to meet both the requirements. The following
equation is used to determine the scaled inputs to the MCA:

uscaled = K ·uactual (B.1)

where K is the scaling factor. Comprehensive studies have been done to find out the
range of acceptable scaling factor. In their research, Grácio et al. [36] established that
a 1:1 ratio of the inertial and visual cues are reported as too strong by the subjects and
thus, not preferred. They reported that the optimal scaling factor, called as optimal gain
depends on the amplitude and the frequency of the stimuli. It was also reported that the
preferred motion gain decreases with the increase of the stimuli amplitude. Boer et al.
[37] compared the effects of different scaling factors on controllability and coherence of
perceived cues and found the scaling factor of 0.5 to be optimum. Other maneuver spe-
cific studies have also been done and concluded that a scaling value of 0.5 yields optimal
results for braking [38], cornering [39] and slalom maneuvers [40]. In a detailed study,
Grant et al. [41] compared the classical washout scheme for different parameters with
variable scaling. The results were similar to the previously mentioned work and sug-
gested a scaling factor between 0.4 to 0.5. However, it should be noted that there have
been studies like Kading et al. [42] which indicate that any scaling factor below 0.8 re-
sults in poor simulator fidelity.

It should also be noted that in all the above-mentioned studies, a uniform scaling
factor was applied to all three channels. Sammet [43] in his study compared different
scaling and uniform scaling for cornering maneuvers and the uniform scaling scheme
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was rated as the best. The reason stated for this was that while the performance of both
the schemes were similar, uniform scaling made the MCA easy to tune.

Lastly, one must not scale the gravitational component included within the total ac-
celeration. For example, if the total input acceleration is given as:

atot al = atr ansl ati on − g (B.2)

Then the scaled acceleration should be given by:

atot al ,scaled = (
K ·atr ansl ati on

)− g (B.3)

B.1.2. TRANSLATION CHANNEL
The specific accelerations in the translational channel are high-pass filtered to extract
the high-frequency components and reject the low-frequency components as they would
drive the simulator to its physical limits. Another role of the high-pass filter is to return
the motion platform to its neutral position once the desired cue is provided, i.e. the dis-
placement of the motion platform should tend to zero as time progresses. This factor
plays a vital role in deciding the order of the high-pass filter.

HIGH-PASS FILTER

The order can be decided by looking into the convergence of step response of filters of
different orders. The general expression for high-pass filters is as follows:

H(s) = sn N (s)

D(s)
(B.4)

where,

N (s) =
k∑

i=0
a j si

D(s) =
m∑

j=0
b j s j

m ≥ n +k

a0,b0 6= 0

Further, the platform displacement can be written in terms of the filtered accelera-
tion as follows:

x(t ) =
∫ ∫

a(t )d t = 1

s2 A(s) ·H(s) (B.5)

Since the actuator displacement should tend to zero as time progresses, using Final
Value Theorem (FVT):

lim
t→∞x(t ) = 0 ⇒ lim

t→∞

∫ ∫
a(t )d t = 0 ⇒ lim

s→0

1

s2 A(s) ·H(s) = 0 (B.6)
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where, a(t ) is the filtered acceleration in the time domain and its Laplace transform is
A(s) ·H(s). Substituting equation B.4 into equation B.6, we get:

lim
s→0

x̃(s) = lim
s→0

A(s) · sn−2N (s)

D(s)
= 0 (B.7)

From the above equation, it can be concluded that n ≥ 3, or H(s) should be a 3r d

order high-pass filter in order to implement washout. The same analysis is summarized
in table B.1.

Table B.1: Convergence of step response of filters of different orders

Filter Order H(s) a(t) v(t) d(t)

1 s
s+ω0

0 Constant ∞

2 s2

s2+2Dω0+ω2
0

0 0 Constant

3 s2

s2+2Dω0+ω2
0
· s

s+ωn
0 0 0

It should be noted that a 2nd order high-pass filter is used to extract the accelerations
with fast dynamics and a 1st order filter is used to implement washout, thus giving the
following 3r d order filter:

H(s) = s2

s2 +2Dhp ·ωhp · s +ω2
hp

· s

s +ωw
(B.8)

Moreover, ωhp is the break frequency which determines the cut-off frequency below
which the translational accelerations will be rejected. ωw is the washout frequency which
determines the rapidity of return of the motion platform, back to its neutral position.
Further, Dhp is the damping factor. The values for the natural frequencies and the damp-
ing coefficients are either tuned manually for each maneuver to get the desired results
or they are optimized using genetic algorithms as mentioned in section B.1.5.

B.1.3. TILT CHANNEL
As mentioned in section A.4, sustained accelerations tend to prolong the actuators. Thus
to reproduce these low-frequency components, the tilt coordination method is used. In
this scheme, the motion platform is tilted and the driver perceives a component of the
acceleration due to gravity as lateral or longitudinal acceleration. Therefore, one needs
to first extract the sustained accelerations (either longitudinal, lateral or both) using a
low-pass filter, then transform these into the Euler angles (either pitch, roll or both).
Lastly, the rate of tilting should be limited to a value below the driver’s perception thresh-
old.
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LOW-PASS FILTER

In the translational channel, a 2nd order high-pass filter is used to extract the fast dy-
namics. To extract all the rejected accelerations, Nahon et al. [32] recommend the use of
a 2nd order low-pass filter. The general expression for a 2nd order low-pass filter is given
as follows:

L(s) =
ω2

l p

s2 +2Dl p ·ωl p · s +ω2
l p

(B.9)

where, ωl p is the break frequency which determines the cut-off frequency above which
the translational accelerations will be rejected. Further, Dl p is the damping factor.

In order to extract all the signals rejected by the translational channel, Sammet [43]
recommends using the same break frequencies as for the rotational channel, i.e.:

ωl p =ωhp (B.10)

This provides the ideal overall transfer function:

H(s)+L(s) = 1 (B.11)

However, when using this scheme the response to the input near the break frequency is
often abrupt. Nahon et al. [32] recommend the following relationship as this provides a
good transition behavior:

ωl p = 2 ·ωhp (B.12)

TILT COORDINATION AND TILT RATE LIMITER

Once the low-pass filtered accelerations (al p ) are extracted, they are to be transformed
into the Euler angles. This is done by using the relations shown in equation B.13. By
solving the above equations, values for roll angle (φ) and pitch angle (θ) are determined. ax,l p

ay,l p

az,l p

= Ry (φ) ·Rx (θ) ·
 0

0
g

=
 −g si nθ

g cosθ si nφ
g cosθ cosφ

≈
 gθ

gφ
g

 (B.13)

Lastly, the tilt rate should be limited below the driver’s perception threshold so that the
driver does not feel the rotation. Tilt-rate limiting introduces non-linearities in the sys-
tem which help in coping with special situations [32]. Since tilt-coordination is a tech-
nique used to deceive the passenger, it is important that s/he does not perceive the an-
gular velocities associated with this. Thus, an effort is made to limit the tilt rate below
the driver’s threshold. The perception threshold is mentioned in table A.3. Rate lim-
iting is applied by differentiating the angular displacements and limiting the resultant
velocities. These signals are integrated to calculate the rate-limited angles. A combined
scheme for tilt coordination and rate limiting is shown in the figure B.2.

B.1.4. ROTATIONAL CHANNEL
A high-pass filter is used in the rotational channel to reject the unrepresentable rota-
tional frequencies and to perform washout once the rotational cues are provided.
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Figure B.2: Tilt coordination and tilt rate limiting

HIGH-PASS FILTER

To reject the unrepresentable frequencies, a 1st order filter could suffice. However, a filter
of higher order will provide a better roll-off rate and smaller transition band. Further, in
order to bring the angular displacement to zero once the angular velocity cues have been
provided, a filter of at least 2nd order would be necessary (analysis similar to that of the
high-pass filters could be performed for the rotational channel). Therefore, a 2nd order
high-pass filter is generally used. The general expression for a 2nd order high-pass filter
is given as follows:

R(s) = s2

s2 +2Dr ·ωr · s +ω2
r

(B.14)

where, ωr is the break frequency which determines the cut-off frequency below which
the rotational velocities will be rejected. Further, Dr is the damping factor.

B.1.5. PARAMETER TUNING

There are 6 parameters per canonical direction (ωhp ,Dhp ,ωw ,Dl p ,ωr ,Dr ) which are to
be tuned. ωl p is generally chosen based on the empirical relationships described in
equations B.10 and B.12.

There are two methods generally followed to tune the parameters. First, is by looking
at the step input response. The step response provides important information about the
response characteristics of the system. A detailed tuning methodology based on step in-
put and frequency response is described by Grant et al. [44].

Another tuning methodology is by using genetic algorithms to minimize the error
between the motion perception of the driver sitting in the real vehicle and the simulator
(shown in figure A.1). A detailed procedure of the same is given by Murgovski [45].

Nahon et al. [32] stated that the principal advantage of using the classical washout
algorithm is that the method is mathematically and computationally simple, and there-
fore computationally cheap. Additionally, the method is quite transparent from the de-
signer’s perspective. On the other hand, the main disadvantage of this method is that it
is essentially a feed-forward control technique and therefore it does not effectively ex-
ploit the simulator capabilities. The algorithm is difficult to tune and has to be re-tuned
if there is a considerable change in the inputs.
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B.2. OPTIMAL WASHOUT FILTER
In the case of classical washout filters, the fixed filter coefficients make it inflexible and
unsuitable for producing cues for different maneuvers that a vehicle is subjected to.
Further, CWF is essentially a feed-forward control scheme. To address this inflexibil-
ity and incorporate a feed-back scheme, the Optimal Washout Filter (OWF) scheme was
designed.

The OWF scheme was initially developed by Sivan et al. [46] with four main assump-
tions:

• In the human perception system, the vestibular system dominates the perception
of motion cues.

• The deviation between the motion cues in the real vehicle and the driving simula-
tor can be estimated by the mean-square value of the vestibular error.

• The actual vehicle motion can be modeled as a random process with a rational
spectrum.

• The vestibular system can be represented accurately by a linearized model.

The OWF algorithm calculates the error and minimizes a predefined cost by solving
the Algebraic Riccati equation (A.R.E). Further, the algorithm incorporates a vestibular
system model within the scheme to increase the fidelity. Sivan et al. [46] designed an
optimal control algorithm that solves the Riccati equation in real-time. Further to op-
timize the workspace utilization, Chen et al. [47] included motion platform states into
the controller. In all the implementations, the MCA problem is decoupled into four sub-
problems, i.e. pitch-surge, roll-sway, heave, and yaw. The algorithm solves these sub-
problem separately.

Figure B.3 shows the general scheme of the optimal washout filter, where the transfer
function W (s) describes the optimal filter gain, uA is the output from the real vehicle or
vehicle model, while uS is the input to the simulator.

Figure B.3: General scheme of optimal washout filter
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In the following sections, the linear optimal washout filter is derived based on the
work of Sivan et al. [46].

B.2.1. MODELLING VESTIBULAR SYSTEM
The linear vestibular system model used in OWF is derived in this section.

SEMI-CIRCULAR CANALS

Representing the transfer function of the semi-circular canal (equation A.17) in its ob-
servable canonical state-space form, we get:

ẋs = As xs +Bs us (B.15)

ys =Cs xs +Ds us (B.16)

where the input and the output signal is:

us =ω
ys = ω̂ (B.17)

OTOLITH ORGANS

Representing the otolith transfer function (equation A.18) in its observable canonical
state-space form, we get:

ẋo = Ao xo +Bouo (B.18)

yo =Co xo +Douo (B.19)

where the input and the output signal is:

uo = a
yo = â

(B.20)

In order to implement the tilt coordination, the otolith matrices are augmented as fol-
lows:

Aō =
[

Ao B̄
0 0

]
Bō =

[
Bo 0
0 1

]
Cō = [

Co 0
]

D ō = [
Do 0

] (B.21)

where
B̄ = Bo · g for surge acceleration (x-direction) (B.22)

and
B̄ = Bo ·−g for sway acceleration (y-direction) (B.23)

The input and the output signals are:

uō = [a;ω]
yō = â

(B.24)
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COMPLETE VESTIBULAR SYSTEM

The individual vestibular models can be modeled as the following complete vestibular
system:

ẋs = Av · xs +Bv ·us

ys =Cv · xs +Dv ·us
(B.25)

Av =
[

As 0
0 Aō

]
,Bv =

[
0 Bs

Bō 0

]
,Cv =

[
Cs 0
0 Cō

]
,Dv =

[
Ds

D ō

]
(B.26)

where, the input and output signals are:

us = [a ω]T

yō = â
(B.27)

B.2.2. ERROR DYNAMICS
Let the vestibular dynamics of the real vehicle be defined as follows:

ẋr = Av xr +Bv ur (B.28)

Then the error, xe can be defined as xe = xs −xr , where xr and xs are vestibular states for
real vehicle and the simulator respectively. The error dynamics can be written as follows:

ẋe = Av · xe +Bv ·us −Bv ua

e =Cv xe +Dv us −Dv ur
(B.29)

B.2.3. INTEGRATING SIMULATOR STATES
The platform displacement, velocity and rotation angle are also included in the state-
space model to integrate the simulator states.

ẋi = A · xi +B ·us , where: A =
 0 1 0

0 0 0
0 0 0

 ,B =
 0 0

0 1
1 0

 (B.30)

The state matrix xi is:
xi = [p v θ]T (B.31)

where, p, v and θ are the platform displacement, velocity and rotation angle expressed
at the Drivers eye-point in DF.

The vehicle input ua consists of filtered noise and can be represented as:

ẋn = An xn +Bn w
uA = xn

(B.32)

where xn is the filtered white noise state, w is the white noise. Further,

An =
[ −β1 0

0 −β2

]
,Bn =

[
β1

β2

]
(B.33)
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where β1 and β2 are the first order break frequencies for each degree-of-freedom as ex-
plained in [47].

Thus, combining equations B.29, B.30 and B.32, the total state-space system can be writ-
ten as follows:

Ẋ = AX +Bus +H w
Y =C X +Dus

(B.34)

where, Y = [e xi ] and X = [
xe xi xn

]T
, and:

A =
 Av 0 −Bv

0 Ai 0
0 0 An

 ,B =
 Bv

Bv

0

 , H =
 0

0
Bn



C =
[

Cv 0 −Dv

0 I 0

]
,D =

[
Dv

0

] (B.35)

B.2.4. DERIVING OPTIMAL GAIN
The quadratic cost function to be used for deriving the optimal gain is described as fol-
lowing:

J =
{∫ t1

t0

(
eT Qe +xT

i Rc xi +uT
s Rus

)
d t

}
(B.36)

Here, Q, Rc and R are positive semi-definite tuning matrices corresponding to the sensa-
tion error e, platform states xi and the control input us respectively. The above-mentioned
cost function is minimized by solving the Algebraic Riccati Equation (A.R.E) as men-
tioned by Bellon [48]. By solving the A.R.E, the optimal gain (K1,K2 and K3) is obtained.
Thus giving the following control law:

us =−[
K1 K2 K3

] xe

xi

xn

 (B.37)

Since, xn = ua , by substituting equation B.37 in equation B.34, we get:[
ẋe

ẋi

]
=

[
Av −Bv K1 −Bv K2

−Bi K1 Ai −Bi K2

][
xe

xi

]
+

[ −Bv (I +K3)
−Bi K3

]
uA (B.38)

From B.38 and B.29, we can write:

us (s) =W (s)uA(s) (B.39)

where,

W (s) =
[

K1

K2

]T [
sI − Av +Bv K1 Bv K2

Bi K1 sI − Ai +Bi K2

]−1 [
Bv (I +K3)

Bi K3

]
−K3 (B.40)

The obtained optimal gain (K1,K2 and K3) is substituted in equation B.40, to obtain the
matrix W (s). This matrix is then multiplied to the system input (uA) to obtain the control
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input (us ) as given in equation B.39.

Because of the fixed parameters, the optimal washout filters must be tuned for worst-
case maneuvers and thus, they often generate minimal motion for gentle maneuvers
[32]. In their work, Cardullo et al. [49] and Ish-Shalom [50] suggested using a nonlin-
ear optimal filter to overcome these difficulties. The approach combines the ideas of
the adaptive and optimal washout filters to maximize the simulator fidelity. Based on
this, Telban et al. [11] proposed a nonlinear optimal washout filter that updates the fil-
ter coefficients at each time step using a feedback loop. However, in order to achieve
this, a real-time Riccati Equation Solver needs to be implemented, which increases the
computational effort.

B.3. ADAPTIVE WASHOUT FILTERS
As mentioned before, the classical washout and optimal filters are generally tuned for
the worst-case scenario and thus, produce minimum motion for gentle maneuvers. To
overcome this limitation, the adaptive washout filters were designed. The AWF control
scheme tends to give more realistic cues when the simulator is near its neutral position
and only reduces the fidelity when the simulator is at limits.

AWF-based MCA was first introduced by Parrish et al. [51] and later developed by
Reid and Nahon [30] and Telban et al. [52]. Further, Naseri et al. [53] developed an
actuator state-based adaptive algorithm which included actuator states within the cost
function which is to be minimized. Later, using a similar approach Nehaoua et al. [54]
derived this algorithm for a vehicle simulator.

Similar to the optimal control MCA, the adaptive filter algorithm is also based on
minimizing a cost function comprising of penalties on sensation error and platform
states. Generally non-linear filters are used and thus, the optimization is performed by
using the steepest descent method. Similar to the optimal washout algorithm, the adap-
tive filter algorithm also uses decoupled degrees of freedom (Pitch-surge mode, Roll-
sway mode, Yaw mode and Heave mode) and solves for each case separately. In the
following section, the adaptive filter is derived for the pitch-surge mode based on the
work of Telban et al. [52].

B.3.1. FILTER EQUATIONS
The non-linear filter equation is given by the following equation:

ẍs =λẍv −d ẋs −exs

θ̇s = γẍv +δθ̇v
(B.41)

where, ẍv and θ̇v are vehicle translational accelerations and rotational velocities, ẍs , θ̈s ,
ẋs , θ̇s and xs are the platform translational acceleration, rotational acceleration, plat-
form translational velocity, rotational velocity and translational position respectively.
d ,e and γ are fixed parameters for pitch-surge mode. Further, λ and δ are the adaptive
parameters which are continuously adjusted to minimize the cost function given below.
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B.3.2. COST FUNCTION
The cost function generally used is a sum of quadratic functions of perception error and
simulator states. The adaptation law drives to minimize this cost function.

Jx = 1

2

[
(ẍv − ẍs )T Qa (ẍv − ẍs )+ (θ̇v − θ̇s )T Qr (θ̇v − θ̇s )+ ẋT

s Qv ẋs +xT
s Qd xs

]
(B.42)

where, Qa , Qr , Qv and Qd are weights of the penalties on translational acceleration error,
rotational velocity error, simulator velocity and simulator displacement respectively.

B.3.3. ADAPTIVE LAW
The adaptive parameters are determined by solving this optimization problem via steep-
est descent method, giving the following adaptive law:

λ̇=−Kλ
∂Jx
∂λ +Kiλ (λ0 −λ)

δ̇x =−Kδ
∂Jx
∂δ +Kiδ (δ0 −δ)

(B.43)

where, Kλ,Kiλ,Kδ and Kiδ are constants adaptation parameters. The first term of RHS
changes the adaptive parameters in order to minimize the cost function. Meanwhile,
the second term drives to restrain the deviation of λ and δ from their original values.
The adaptive filter scheme derived above is summarized in figure B.4.

Figure B.4: General scheme of adaptive filter based MCA

It must be noted that the convergence of the optimization via steepest descent method
strongly depends on the adaptation parameter, which also defines the convergence speed
of algorithm.

As stated by Nahon et al. [32], the adaptive filter tends to give more realistic cues
when the simulator is near its neutral position and only reduces the fidelity when sim-
ulator is at limits. However, the behavior of the simulator is extremely complicated and
difficult to predict. Lastly, the absence of explicit constraints makes it hard for the de-
signer to achieve a common tuning for varying maneuvers.
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B.4. CONCLUSION
This appendix presented an overview of the motion cueing algorithms used convention-
ally. While CWF offers a computationally simple solution to the motion cueing problem,
it has no control over the physical states of the simulator. Further, re-tuning is required if
the maneuver is change considerably. Although the OWF and AWF-based MCA address
this issue by allowing the user to put penalties on the simulator states, the optimiza-
tion problem is still solved without any explicit constraints on these states. This lack
of constraints in these approaches results in sub-optimal workspace utilization [32]. In
conclusion, the main disadvantage of using the conventional methods comes from the
inability to impose explicit constraints on the physical states of the motion platform.

Thus, in order to compute the optimal solution within the physical limitations of the
motion platform, an optimization-based algorithm that can incorporate explicit con-
straints within the algorithm is required.
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The limitations of the conventional motion cueing approach (mentioned in appendix
B), can be addressed by using Model Predictive Control (MPC). MPC is an optimal con-
trol strategy that uses a predefined system model and computes the control input by
solving an optimization problem over a prediction horizon. The key advantage of us-
ing this technique is its ability to handle explicit constraints on both inputs and outputs.
Further, the usage of the system model to predict and regulate future states helps to
efficiently utilize the workspace and produce good reference tracking performance. Re-
cent studies [19, 55–57] have shown that the MPC algorithm produces a better reference
tracking and workspace utilization performance when compared to the filter-based ap-
proaches. It has also been shown that undesired effects like the occurrence of motion
sickness are also lowered when using MPC [58].

In this appendix, the theoretical aspects pertaining to model predictive control are
explained in section C.1. In section C.2, the linear MPC-based MCA is derived. Section
C.3 presents a brief review of the existing research on MPC-based motion cueing and
highlights the need for a non-linear MPC-based MCA.

C.1. MODEL PREDICTIVE CONTROL: THEORY
MPC is an advanced control strategy that is used to control a system while satisfying a
set of constraints on the inputs and outputs. As mentioned earlier, the main advantage
of this scheme is that it computes the control input by optimizing the system states and
control effort over a finite time-horizon while satisfying the given constraints. Figure
C.1 depicts the framework of a typical MPC controller. At each sampling instant, the
reference (up to a finite prediction horizon) and the current system state (system output)
are fed to the controller. The controller uses the prediction model (system model) and
the current state to predict the evolution of the future state (in terms of the control input)
for the entire prediction horizon. Using these predicted states and the reference, the
error in terms of the control input is computed. The cost function is formulated using
the obtained error values and the optimization problem is solved which adhering to the
specified constraints. The first control input out of the obtained array of control inputs
is fed to the system and the same process is repeated at every time instant.

C.1.1. DISCRETIZATION
In the general MPC scheme, the continuous-time problem is discretized with a sampling
time (Ts ). The sampling frequency is given as 1/Ts . Choosing the correct sampling fre-
quency is extremely important for implementing any control scheme. While a discrete
system with a large sampling frequency results in a high computation load, a system with
a smaller sampling frequency tends to miss the dynamics of the plant which is to be con-
trolled. The following rule of thumb is often used to determine the sampling frequency:

10ωb ≤ωs ≤ 30ωb (C.1)

Further, as per Shannon’s sampling theorem, any frequency information above half of
the sampling frequency emerging from the plant is either lost or results in aliasing. While
these rules are to be kept in mind, the real-time performance and the computational
load are often the determining factors for the MPC-based controllers.
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Figure C.1: MPC controller in control loop

C.1.2. PREDICTION
MPC uses a model of the plant (system model) to predict the future evolution of the
system and compute the optimal control input. At each sampling interval, the prob-
lem is optimized over a window of samples known as the prediction horizon while being
subjected to the constraints. A set of optimal control inputs over the whole prediction
horizon is computed, but only the first control input is applied. After this, the whole
problem and the prediction horizon shifts to the next stage by one sample. This is called
the receding horizon policy.

The predicted window has Np samples where Np is called the prediction horizon
length or simply, the prediction horizon. The prediction time (Tp ), is defined in terms of
sampling time (Ts ) and prediction horizon (Np ) as follows:

Tp = Np ·Ts (C.2)

In each optimization step, an array of optimal control inputs is computed based on the
control horizon (Nc ). Lastly, the constraints are applied to the problem for a defined con-
straint horizon (Ncons ). While choosing the control and constraint horizon, the following
relations must be adhered:

Nc ≤ Np

Ncons ≤ Np
(C.3)

As seen in figure C.2, the control inputs are calculated for the entire control horizon, af-
ter which it is assumed to be constant over the remaining prediction horizon. To simplify
the computation, MPC computes the change in control input (∆uc ) instead of comput-
ing the control input (uc ) itself. If Nc < Np , ∆uc is assumed to be zero for samples be-
tween Nc and Np . As stated earlier, at each sampling time only the first control input
uc (k|k) is applied to the system.

The prediction horizon is closely related to the time and computational complexity
of the MPC problem and high values of Np increase the computational effort and time
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Figure C.2: Prediction and control horizon in MPC [59]

tremendously. Moreover, for systems with high modeling uncertainties, the solution may
diverge from the optimal value if a larger prediction horizon is used. However, using a
short prediction horizon often results in system instability and poor reference tracking
performance. Therefore, it is extremely important to choose a prediction horizon which
is long enough to make the system stable while keeping the effect of modeling uncer-
tainties and computational effort in mind.

The effects of the control horizon length are similar to that of the prediction horizon.
A very short control horizon (with respect to the prediction horizon) may result in sub-
optimal results or instability while a longer one results in increase of the computational
effort. Often, in order to simplify the problem, the control and constraint horizons are
kept equal to the prediction horizon.

C.1.3. COST FUNCTION
The standard cost function for MPC consists of quadratic functions of both the tracking
error and the control action along the prediction horizon. As stated earlier, the control
action at each time instant is the first element of the input sequence that minimizes the
cost function while satisfying the constraints. The system state is then updated using
the estimates and the procedure is repeated. The total cost function is often divided into
two parts, namely the stage cost and the terminal cost, as shown in equation C.4.

J (x(k),u(k)) =
Np−1∑
k=1

`
(
x(k),u(k)

)+V
(
x(Np )

)
(C.4)

The expression for stage cost is shown below:

`
(
x(k),u(k)

)= ‖xr e f (k)−x(k)‖Q +‖ur e f (k)−u(k)‖R (C.5)
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where Q and R are the positive semi-definite weight matrices for a penalty on tracking
error and control input respectively. The stage cost function is defined such that it satis-
fies the following conditions:

`(0,0) = 0
`
(
x(k),u(k)

)> 0, ∀x(k) ∈X, x(k) 6= xr e f (k)
(C.6)

where X represents the set of states x(k) which satisfies the system constraints. Further,
the expression for the terminal cost is shown below:

V
(
x(Np )

)= ‖xr e f (Np )−x(Np )‖P (C.7)

where P is the positive semi-definite weight matrix for a penalty on the tracking error at
the terminal stage of the prediction horizon.
For finite prediction horizon problems, stability can be guaranteed by choosing a suit-
able terminal cost (V ) and terminal attractive region Ω [60–62]. Even though the con-
ditions for asymptotic stability are clearly defined, choosing V and Ω is still an open
problem [63]. It is shown in [64], that stability can be guaranteed by simply tuning the
matrices Q, R, and P . Further, a longer prediction horizon (Np ) would help the algorithm
to achieve convergence [65].

C.1.4. SYSTEM CONSTRAINTS
MPC allows to apply explicit constraints on the system output and the control inputs.
Typically, these constraints are represented as follows:

xmin ≤ x(k) ≤ xmax, i = 1. . . Ncons

umin ≤ u(k) ≤ umax, i = 1. . . Ncons

∆umin ≤∆u(k) ≤∆umax, i = 1. . . Ncons

(C.8)

It must be noted that the system model is also included as a constraint within the MPC
formulation. Further, depending on the nature of the system, objective function and
constraints, the MPC problem is classified as linear or non-linear.

C.1.5. OPTIMIZATION PROBLEM
Finally, the problem is converted to a constrained optimization problem which mini-
mizes the sum of stage cost and terminal cost while satisfying the constraints and sys-
tem dynamics to compute the optimal input. Therefore the optimization problem can
be written as:

u(k) = argmin J (x(k),u(k))
s.t

x(k +1) = f
(
x(k),u(k)

)
umin ≤ u(k, i ) ≤ umax, i = 1. . . Ncons

∆umin ≤∆u(k, i ) ≤∆umax, i = 1. . . Ncons

xmin ≤ x(k, i ) ≤ xmax, i = 1. . . Ncons

(C.9)

C.1.6. EXPLICIT MPC
Real-time implementation of complex MPC problem is difficult as the optimization is
computationally expensive. To overcome this problem, Bemporad et al. [66] used the
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parametric programming technique to derive the explicit MPC scheme which computes
the solution to the QP problem offline as a function of initial states. This solution is in
the form of a piece-wise affine function (PWA) and is stored as the sum of coefficients of
the PWA for each control region of the state space, as well as coefficients of parametric
representations of all the regions. It is also stated that there are finite number of solutions
that need to be computed and stored. The offline solution is given as follows:

∆u∗(x) =C · x +d (C.10)

where C and d are the solutions for the corresponding control region.

Though in low dimensional problems, explicit MPC offers the advantage of low com-
putational time over the implicit scheme, it suffers high degradation as the problem is
extended to the higher dimensions [67].

C.1.7. INPUT BLOCKING STRATEGIES
As stated earlier, the computational burden of an MPC problem depends on the number
of free control inputs (u). In this method, the optimal problem is reduced from u to u′
inputs by clustering the inputs into groups and binding the inputs of each group with
each other.

Conventional input: u = [
u0,u1, . . . ,uNc−1

]>
Input blocking input : u′ =

[
u′

0,u′
1, . . . ,u′

N ′
c−1

]>
where, Nc is the control horizon, N ′

c is the input blocking horizon and Nc < Nc . The new
control input u′ is given by:

u′ =
(
T ⊗ I N ′

c

)
u (C.11)

where ⊗ is the Kronecker product and T ∈ RNc ÖNc is called input blocking matrix. At
each row of this the blocking matrix (T ), there exist only one element which is unity and
the rest of the elements are zero. An example of the matrix T , used by Bruschetta et al.
[68] is shown below:

T =


1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

 (C.12)

Usually, the matrix T is set to block the inputs near the end of the control horizon. This
is because it affects the control problem to a lesser extent when compared to blocking
the initial inputs.

C.2. LINEAR MPC-BASED MCA
Recently, linear MPC-based algorithms have been implemented in the domain of mo-
tion cueing. The general scheme of a typical lineal MPC-based MCA is shown in figure
C.3. The translational acceleration and angular velocity at the vehicle CoG in VF are
transformed to the driver’s eye-point in DF. The resulting signals are passed through the
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Figure C.3: Linear MPC-based motion cueing algorithm

vestibular system model and then passed to the MPC controller as the reference signal.
The MPC controller incorporates a linear system model to predict the evolution of fu-
ture states of the system. The system model used is the linear vestibular system model,
which is augmented to include the simulator states. Based on the current system state
and future estimates, the cost function is formulated. The control input, i.e the platform
acceleration and angular velocity is then derived based on the optimization of this cost
function subjected to the system and input constraints. The first control input is the
control action and the same is sent to the plant. The plant sends the perceived eye-point
acceleration and angular velocity as feedback to the controller.

In the following subsections, the linear MPC problem is derived and formulated.

C.2.1. SYSTEM MODEL

SEMI-CIRCULAR CANALS

Representing the transfer function of the semi-circular canal (equation A.17) in its ob-
servable canonical state-space form, we get:

ẋscc = Ascc xscc +Bscc us (C.13)

yscc =Cscc xscc +Dscc us (C.14)

where yscc = ω̂i and us = ωi in one of the three canonical directions. Therefore, the
complete model for semi-circular canals, in all three canocical directions combined is
given as follows:

As =
 Asccx 02x2 02x2

02x2 Asccy 02x2

02x2 02x2 Asccz

 Bs =
 Bsccx 02x1 02x1

02x1 Bsccy 02x1

02x1 02x1 Bsccz



Cs =
 Csccx 01x2 01x2

01x2 Csccy 01x2

01x2 01x2 Csccz

 Ds =
 Dsccx 0 0

0 Dsccy 0
0 0 Dsccz


(C.15)

and the input and the output signals are shown in equation C.16 and C.17. It must be
noted that both of these quantities are expressed at the driver eyepoint (D0) in DF.

us =ωDF
D0

= [ωφ ωθ ωψ]T (C.16)
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ys = ω̂DF
D0

= [ω̂φ ω̂θ ω̂ψ]T (C.17)

OTOLITH ORGANS

Representing the otolith transfer functions (equation A.18) in its observable canonical
state-space form, we get:

ẋoth = Aoth xoth +Bothuo (C.18)

yoth =Coth xoth +Dothuo (C.19)

where yoth = âi and uo = ai , in one of the three canonical directions. Therefore, the
complete model for otolith organs is given as follows:

Ao =
 Aothx 02x2 02x2

02x2 Aothy 02x2

02x2 02x2 Aothz

 Bo =
 Bothx 02x1 02x1

02x1 Bothy 02x1

02x1 02x1 Bothz



Co =
 Cothx 01x2 01x2

01x2 Cothy 01x2

01x2 01x2 Cothz

 Do =
 Dothx 0 0

0 Dothy 0
0 0 Dothz


(C.20)

and the input and the output signals are shown in equation C.21 and C.22. It must be
noted that both of these quantities are also expressed at the driver eyepoint (D0) in DF.

uo = aDF
D0

= [ax ay az ]T (C.21)

yo = âDF
D0

= [âx ây âz ]T (C.22)

INCORPORATING TILT COORDINATION

The complete model of transitional acceleration should include the tilt coordination ef-
fects into it. Thus, the otolith matrix is augmented to the following:

Aō =
[

Ao B̄
0 0

]
,Bō =

[
Bo 0
0 I3

]
, Cō = [

Co 0
]

and D ō = [
Do 0

]
(C.23)

where

B̄ = Bo ·
 0 g 0

−g 0 0
0 0 0

 (C.24)

and the input and the output signals are mentioned in equation C.25 and C.26.

uō = [aDF
D0

; ωDF
D0

] (C.25)

yō = âDF
D0

(C.26)
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INTEGRATING SIMULATOR STATES

The positions and velocities of the driver’s eyepoint in DF can also be included in the op-
timization problem in order to control these states and implement the washout action.
These states are obtained by using the following second-order integral system:

ẋl = Al xl +Bl u (C.27)

where

Al =
 Ai 0 0

0 Ai 0
0 0 Ai

 with Ai =
[

0 1
0 0

]

Bl =
 Bi 0 0

0 Bi 0
0 0 Bi

 with Bi =
[

0 0
1 0

] (C.28)

and
xl = [vDF

D0, x pDF
D0, x vDF

D0, y pDF
D0, y vDF

D0, z pDF
D0, z ]T (C.29)

u = [aDF
D0

; ωDF
D0

] (C.30)

THE COMPLETE SYSTEM MODEL

The complete system model is derived by combining the vestibular system model and
the simulator states as follows:

ẋv = Av xv +Bv uv

yv =Cv xv +Dv uv
(C.31)

where

Av =
 As 0 0

0 Aō 0
0 0 Al

 ,Bv =
 0 Bs

Bō

Bl

 , Cv =


Cs 0 0
0 Cō 0
0 0 I
0 0 0

 and Dv =


0 Ds

D ō

0
0 I


(C.32)

and the input and output signals are:

uv = [aDF
D0

; ωDF
D0

] (C.33)

yv = [âDF
D0

; ω̂DF
D0

; αDF
D0

; vDF
D0

; pDF
D0

; α̇DF
D0

] (C.34)

Here α and α̇ are the angular displacement and the angular velocity vector respectively.

Finally, the system is discretized by using bilinear transform (also known as Tustin’s
method), thus giving the following discrete time system:

xk+1 = Ad xk +Bd uk

yk =Cd xk +Dd uk
(C.35)
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C.2.2. CONSTRAINTS

In the framework of this linear MPC-based MCA, the following constraints are applied:

• Constraints on tilt rate (α̇DF
D0

) to ensure that the tilt coordination effects are not
perceived by the observer.

• Constraints on the displacement and velocity of the driver’s eyepoint (vDF
D0

and pDF
D0

)
to ensure that the motion platform does not exceed its physical limit.

C.2.3. REFERENCE

The reference vector contains the following variables:

yv = [âr e f ω̂r e f αr e f vr e f pr e f α̇r e f ]T (C.36)

To ensure that the platform returns to the neutral position, the references forαr e f vr e f pr e f

and α̇r e f are given as zero. Further, âr e f and ω̂r e f are computed by translating the trans-
lational and angular acceleration obtained from the vehicle model to the driver’s eye-
point in DF and then passing them through the vestibular system model.

C.2.4. OPTIMIZATION PROBLEM

Model Predictive Control calculates the control input by solving the following linear op-
timization problem:

u(k) = argmin J (x(k),u(k))

s.t

x(k +1) = Ad · x(k)+Bd ·u(k)
y(k) =Cd · x(k)+Dd ·u(k)

α̇min ≤ α̇≤ α̇max

vDF
D0, mi n ≤ vDF

D0
≤ vDF

D0, max

pDF
D0, mi n ≤ pDF

D0
≤ pDF

D0, max

(C.37)

The above formulated MPC problem has the following sets of variables:

• The control variables (aDF
D0

and ωDF
D0

), that are used to control the plant. These are
the linear accelerations and angular velocities respectively.

• The tracking variables (âDF
D0

, ω̂DF
D0

, αDF
D0

, vDF
D0

, pDF
D0

and α̇DF
D0

), that are the out-
put variable tracked by the MPC controller. These are the sensed specific forces,
sensed angular velocities, inclination angles, eye-point positions, eye-point veloc-
ities and inclination velocities respectively.

• The constrained variables (α̇DF
D0

, vDF
D0

and pDF
D0

), that are the variable on which the
constraints are imposed. These are the inclination velocities, eye-point positions
and eye-point velocities respectively.
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C.3. REVIEW OF THE PAST WORK
MPC-based motion cueing has been an active area of research lately. Various linear and
non-linear modeling approaches have been explored and the superiority of this method
compared to the conventional approach has been established. The most relevant re-
search related to MPC based motion cueing is presented below.

Augusto et al. [19] implemented MPC-based motion cueing on the Chalmers Uni-
versity simulator. A linear model of the human vestibular system was used and tilt co-
ordination was incorporated within the system. The error between the reference and
the model output was calculated and a linear MPC problem was formulated. For the
reference input, the following three hypotheses were considered and compared:

1. Assuming that the input to simulator from the vehicle is constant.

2. Assuming that the input to the vehicle is constant.

3. Assuming that the derivative of the input to the vehicle is constant.

From the results, it was concluded that the third assumption lead to the worst results
while the first assumption lead to the best results. Further, prediction, control and con-
straint horizons were chosen by trial and error. The controller frequency was chosen as
20 H z. As future work, the use of a more recent version of the vestibular system model
and performing stability analysis was highlighted. It should be noted that in this work,
the tilt rate limits were not imposed.

Baseggio et al. [69] used the recent vestibular model derived by Telban et al. [3] in the
MPC formulation. It was assumed that the reference signal is known 2 seconds prior and
the result showed improvement over the constant reference case. Assuming this avail-
ability of reference limited the research to the open-loop (no driver-in-loop) scenarios.

Bruschetta et al. [68] implemented motion cueing with linear MPC by using a more
recent version of the linearized vestibular model with tilt coordination. A quadratic cost
function was used and inequality constraints were applied on the eye-point displace-
ment and velocity. The constrained optimization was performed using the active set
method in the qpOASES toolbox. Further, the authors mentioned that if the future ref-
erence is available, the longest prediction and control horizon produces the best results.
However, because of the unavailability of such a future reference, the horizon length is
limited. The computation time also increases exponentially with the length of the con-
trol horizon. Hence, in their work, input-blocking strategies were applied to overcome
real-time computational limitations. The algorithm worked at the control frequency
of 100 H z. In order to reduce the computational effort, in [1], the authors decoupled
the problem into four groups (Pitch-surge mode, Roll-sway mode, Yaw mode and Heave
mode) and solved separately. The optimization was carried out for the decoupled groups
using parallel computing. The constraints imposed on the driver’s eyepoint in the driver
frame of reference ensure the problem remains linear in nature. A 200 H z control fre-
quency was achieved.
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Garrett et al. [55] implemented an MPC-based cueing algorithm which uses the ac-
tuator positions and velocities as the constraints. This was done to improve workspace
utilization while making sure that the platform never exceeds its physical limitations.
However, this makes the problem non-linear in nature. In order to make the problem lin-
ear, approximations were applied to the constraints on the actuator lengths. Although
this simplification affected constraint handling, it was mentioned that this was not an
issue for the range of maneuvers considered in the paper. The optimizer used is the pri-
mal barrier method [70]. The MCA performed better than conventional MCAs. A control
frequency of 40 H z was achieved. It must be noted that although linearized hexapod
kinematics were included in the model, the inputs were not transformed to the inertial
frame of reference. As an approximation of the same, the inputs in the driver frame of
reference were provided to the algorithm.

Grottoli et al. [71] designed a non-linear MPC-based MCA which used the dynamic
model of the motion platform while the vestibular system model was not used in this
study. Constraints were imposed on the actuator lengths using the linearized inverse
kinematics. The control frequency of 10 H z was chosen. The paper focused on the pre-
diction strategies used to compute the reference. Two prediction strategies were consid-
ered, namely Oracle, which is the ideal prediction strategy that knows the exact future
reference, and Constant, a prediction strategy that keeps the current linear accelerations
and angular velocities constant for the entire prediction horizon. Indicators such as cor-
relation, delay and Inter-quartile range for workspace utilization were used to compare
the two strategies. The study indicated that while the constant strategy provided rea-
sonable results, the results for oracle strategy show reduced delay, improved correlation
with the reference and better workspace utilization.

Degdelen et al. [72] implemented the MPC-based MCA in the Renault ULTIMATE
Simulator. The study was done for a single DOF cueing problem (surge acceleration)
and tilt coordination was demonstrated as an extension to the basic algorithm. The con-
trol frequency was chosen as 100 H z. Taking it further, in [67], an explicit MPC-based
concept for the Renault ULTIMATE Simulator was presented. This concept was based
on the Multi-Parametric Toolbox (MPT) Matlab toolbox. The control problem was de-
coupled into four separate cases (pitch-surge, roll-sway, heave, and yaw) and a stability
criterion was determined. The control frequency was 100 H z and the algorithm works in
real-time. However, fast degradation in the computational effort was seen as the prob-
lem was extended to higher dimensions. In [73], Fang et al. presented an implicit MPC-
based MCA approach. The new approach significantly improved efficiency. Compared
to their previous work with explicit MPC, the implicit algorithm showed similar results
but was superior since it used a more complex system model. The algorithm was imple-
mented in real-time using qpOASES solver. Taking their work a step further, in [74] the
authors developed a fast MPC-based MCA to improve the algorithm’s real-time perfor-
mance. The optimization problem was solved in two steps: first, finding the QP solution
by a computation without constraints, then checking the solution in an accessible limit.
The developed algorithm was tested for different scenarios on the Renault ULTIMATE
simulator. It was reported that the new algorithm was about 5−10 times faster than the



C.4. CONCLUSION

C

73

conventional algorithms. Further, the authors expected that the saved CPU resources
could be used for reference prediction leading to a real-time driver-in-loop (DIL) MCA.

Mohammadi [75] mentioned three main challenges in designing the MPC based mo-
tion cueing algorithm: first, no definitive methods for tuning the weight matrices. Sec-
ond, no definitive methods for horizon selection and third, unavailability of future ref-
erence. To address the first concern, the author used a multi-objective evolutionary so-
lution to solve the problem of MPC tuning. The proposed method was shown to provide
an effective technique to tune the MPC based optimization. Similar to this, to address
the second concern, a genetic algorithm was applied to minimize the human sensation
error and displacement. Lastly, to address the third concern, an artificial neural network
approach is proposed to improve the reference signals. The simulation results show sig-
nificant improvement when this technique is applied.

C.4. CONCLUSION
This appendix presented an overview of the use of MPC for motion cueing. The main
advantage of using an MPC-based algorithm for motion cueing applications is that the
physical states of the motion platform can be incorporated as explicit constraints within
the problem. Further, the model-based approach of MPC also allows incorporating the
human vestibular model within the problem to achieve high fidelity motion cueing. Lastly,
the ability of MPC to handle multivariate systems makes it a potential candidate for the
motion cueing problem. The superiority of this method compared to the conventional
approach has been already established in the literature [55, 58, 76].

Although the linear MPC-based approach provides better results than the conven-
tional filter-based motion cueing strategies, applying constraints on the displacement
and velocity of driver’s eyepoint results in sub-optimality. This is because the constraints
are imposed on the driver’s eye-point and there is no explicit permissible limit for the
driver’s eyepoint. Further, this point is expressed in the non-inertial driver frame of ref-
erence, which makes it very hard for the designer to determine the available workspace.
In order to find the available workspace, the forward kinematic relations have to be
used which increases the computational effort and makes the problem non-linear. To
keep the problem linear, a conservatively chosen constant space is often used as the
workspace for driver’s eye-point. However, this tends to produce sub-optimal results.

This problem can be solved by using the inverse kinematics of the motion platform
and transforming all the quantities in the inertial frame of reference. However, it must
be noted that this would make the problem non-linear. By using this approach, it would
be possible to incorporate explicit constraints on the lengths of the hexapod actuators,
limits for which are explicitly defined. Further, the control input can also be derived at
the centroid of the moving base of the platform in IF instead of the driver’s eye-point
in DF. Therefore, an efficient non-linear MPC approach that can incorporate the non-
linear inverse kinematics of the 6-DOF hexapod within the MPC controller is required to
increase the effectiveness of the produced cues and utilize maximum workspace.
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As mentioned in Appendix C, Linear Model Predictive Control (L-MPC) is a well-
suited strategy for motion cueing. Although its superiority over the conventional MCAs is
well established, the results produced are sub-optimal. The sub-optimality stems from
the linear approximations are made to model the non-linear motion platform system.
Therefore, in principle, a non-linear MPC algorithm that can incorporate the non-linear
inverse kinematics of the 6-DOF hexapod can achieve the desired optimal results.

Non-linear Model Predictive Control (NL-MPC) is an effective way of tackling the
problems with nonlinear system dynamics and constraints. However, a major limita-
tion of using a non-linear optimization-based algorithms is the high computational time
and cost which is required to obtain the solution. Recent developments in the digital
world along with the algorithmic developments have significantly sped up the compu-
tational capacity of the modern computers, allowing for the deployment of non-linear
MPC-based controllers at an outstanding speeds [77–79].

A typical NL-MPC problem is shown in equation D.1. The formulation of the problem
is similar to the L-MPC problem with the difference that the system equations and/or the
constraint relations are non-linear in nature. It should be noted that in this example, the
terminal cost is excluded merely for the sake of brevity.

u = argmin
∑Np−1

k=0 ‖xr e f (k)−x(k)‖Q +‖ur e f (k)−u(k)‖R

s.t
x(0) = x0

x(k +1) = f
(
x(k),u(k)

)
h(x(k),u(k)) ≤ 0

(D.1)

A fast implementation of the NL-MPC problem is done via Real-time iteration (RTI) pro-
posed by Diehl et al. [80, 81]. In their research, it is shown that since NL-MPC requires
to solve closely related Optimal Control Problem (OCP) successively, the solution of the
OCP at the current time-step is very similar to the solution obtained at the previous time
step. The RTI approach exploits this by achieving the convergence of the NL-MPC so-
lution in conjunction with the evolution of the dynamics of the system. The approach
relies on the fast contraction rate of Newton-type optimization techniques [81]. Further,
in their research, Diehl et al. have stated that RTI exploits the similarities in the L-MPC
and NL-MPC approach, by "bridging the gap" between both. It is said that because the
NL-MPC problem is solved approximately by solving only one QP per sampling instant,
it can be seen as a special case of linear time-varying MPC with two important features:

1. The linearization of the system dynamics should occur online and should be done
at the current state and control prediction rather than on the reference trajectory.

2. The system dynamics should be simulated using a numerical integration scheme.

A detailed explanation of this can be found in [81]. The RTI approach has been formally
studied and has been verified in many different deployments. One such deployment is
the ACADO toolkit [82] which generates a highly efficient formulation for the NL-MPC
implementation. The toolbox consists of algorithms for discretization and linearization
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of the nonlinear system, and an algorithm to evaluate the solution. The solution is com-
puted by using the sequential quadratic programming (SQP) scheme. The RTI scheme
performs a single SQP iteration per time step in order to quickly deliver an approximate
solution to the optimization problem. In this research, the ACADO toolkit is used in to
solve the NL-MPC problem. The solver settings used in ACADO are mentioned in table
D.1. Further, an explanation for choosing these particular settings has been given in the
following sections.

Table D.1: Solver settings used in ACADO toolkit

Parameter Solver setting
Hessian Approximation Guass Newton
Discretization Type Multiple Shootings
Sqarse QP solution Full Condensing
Integrator Type Explicit Range-Kutta integrator of order 2
Number of Integrator Steps 2N
QP Solver qpOASES
Levenberg Maquardt Regularization Parameter 1e−4

Hotstart QP Yes

In section D.1, the OCP for NL-MPC problem is formulated. Section D.2 presents the
steps involved in SQP formulation and gives an overview of the optimization technique.
Section D.3 highlights the QP solver used for solving the SQP problem. Lastly, in section
D.4, the methodology of the real-time iteration approach is presented.

D.1. OPTIMAL CONTROL PROBLEM FORMULATION
The MPC controller aims at solving the following continuous time non-linear optimiza-
tion problem:

u = argmin 1
2

t0+T∫
t0

(∥∥xr e f (t )−x(t )
∥∥2

Q +‖u(t )‖2
R

)
d t

s.t
x (t0) = x0

ẋ(t ) = f (x(t ),u(t ))
h(x(t ),u(t )) ≤ 0 for all t ∈ [t0, t0 +T ]

(D.2)

Here, x0 denotes the current state measurement. In order to convert this problem into a
standard SQP problem, it must be discretized and linearized. For problems with varying
reference, discretization is done before linearization as it results in a better approxima-
tion [81].

To discretize the non-linear dynamics of the system, boundary value problem-solving
techniques are generally used. Commonly used approaches are single shooting method
and direct multiple shootings method. The direct multiple shootings method divides
the given interval ([t0, t0 +T ]) into several smaller intervals ([k, k+1]) for (k = 0. . . Np −1)
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and solves an initial value problem in each of these smaller intervals. It further imposes
additional matching conditions to form a solution on the whole interval. The objective
function and path constraints are discretized at the same grid as the states and controls.
Unlike the multiple shootings method, the single shooting method solves the boundary
value problem on a single interval. Although the single shooting method is simple, it has
been shown that the direct multiple shooting method shows superior performance in
modeling the non-linearities and numerical stability over single shooting methods [83].
For this reason, the direct multiple shootings method is selected in this research.

The RTI scheme makes use of an integrator to linearize the non-linear system and
constraints at the current prediction. Therefore, the accuracy of the linearized discrete-
time model also depends on the type of integrator chosen. Therefore, it is important to
choose the right integrator which delivers predictions that are accurate enough to pre-
dict the evolution of the system over time. The ACADO toolbox offers a range of implicit
and explicit integrators. Since the nonlinear differential equations used in this research
are not stiff, explicit integrators can be chosen for this application. In their research,
Gros et al. [81] used an example OCP to demonstrate that, using 2 steps of Range-Kutta
integrator yields a closed-loop behaviour which is very close to that obtained by using
30 steps of explicit Euler integrator but its preparation phase takes only about 26% of
the time taken by the explicit Euler integrator. Therefore, explicit Range-Kutta integrator
was chosen for this research.

Other than this, the number of integration steps and the order of the integrator is
also an important parameter choice that has to be made. While larger number of steps
or higher order integrators offer higher accuracy, both increase the computational effort
required to prepare and solve the OCP. Based on successive trials, an explicit Range-Kutta
integrator of order 2 along with 2 integrator steps per instance (i.e. 2N steps for the entire
horizon) was chosen in this research.

Finally, the discrete-time OCP can be written as:

u = argmin
Np−1∑
k=0

[
xk −xref

k
uk −uref

k

]>
Wk

[
xk −xref

k
uk −uref

k

]
s.t
x(0) = x0

x(k +1) = f
(
x(k),u(k)

)
h(x(k),u(k)) ≤ 0 for k = 0. . . Np −1

(D.3)

This resulting OCP can be solved by using the SQP approach.

D.2. SEQUENTIAL QUADRATIC PROGRAMMING
Sequential Quadratic Programming (SQP) is a state of the art algorithm for solving con-
strained non-linear optimization problems. In the SQP approach, the optimization prob-
lem is sequentially approximated by quadratic sub-problems (QPs) which provide the
directions in which the Newton steps are to be taken to move towards the solution start-
ing from an available guess. The iteration is repeated by taking Newton steps until the
convergence criteria is met. Given an initial guess (xguess ,uguess ), the problem given in
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equation D.3 is approximated by the following QP:

QPNL-MPC
(
x0, xguess ,uguess , xref ,uref

)=
(∆x,∆u) = argmin

N−1∑
k=0

1
2

[
∆xk

∆uk

]
Hk

[
∆xk

∆uk

]
+ J T

k

[
∆xk

∆uk

]
s.t
∆x0 = x0 −xguess

0
∆xk+1 = Ak∆xk +Bk∆uk + rk

Ck∆xk +Dk∆uk +hk ≤ 0

(D.4)

where

Ak = ∂ f (x,u)

∂x

∣∣∣∣
x

guess
k ,u

guess
k

, Bk = ∂ f (x,u)

∂u

∣∣∣∣
x

guess
k ,u

guess
k

Ck = ∂h(x,u)

∂x

∣∣∣∣
x

guess
k ,u

guess
k

, Dk = ∂h(x,u)

∂u

∣∣∣∣
x

guess
k ,u

guess
k

rk = f
(
xguess

k ,uguess
k

)−xguess
k+1 , hk = h

(
xguess

k ,uguess
k

)
Jk =Wk

[
xguess

k −xref
k

uguess
k −uref

k

]
(D.5)

and Hk is an approximation for the Hessian. Further, the Gauss-Newton Hessian ap-
proximation given by Hk =Wk is used. Also, an ill-conditioned or indefinite Hessian can
be regularized by adding Levenberg-Marquardt regularization:

Hk = J T
k Jk +α · I (D.6)

where Jk is the Jacobian, and the Levenberg-Marquardt regularization parameter α> 0.
Essentially, the SQP algorithm replaces the non-linear objective function with a quadratic
approximation and the constraint relation with a linear approximation. The details of
the algorithm is presented in [80] and an overview of the same is given below:

Algorithm 1: SQP Algorithm for NL-MPC

Input: x0, xguess ,uguess , xref ,uref

while Not Converged do
1) Evaluate rk ,hk and Ak ,Bk ,Ck ,Dk , Hk , Jk using equation D.5
2) Construct and solve the QPNL-MPC (equation D.4) to get newton direction

(∆x,∆u)
3) Compute step-size α ∈ [0,1] to guarantee descent
4) Update (xguess ,uguess ) with Newton step:

(xguess ,uguess ) → (xguess ,uguess )−α · (∆x,∆u)

end
Return NL-MPC solution : (x,u) = (xguess ,uguess )

It must be noted that the SQP algorithm requires the initial guess (xguess ,uguess ) as
an input. Choosing an appropriate initial guess is essential to get a reliable and fast con-
vergence. A good initial guess not only reduces the possibility of an infeasible exit of SQP,
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but it also allows the algorithm to take full Newton steps (α = 1), hence resulting in fast
convergence. As per Diehl et al. [81], a very good initial guess for the current time instant
can stem from the solution obtained at the previous time instant. This strategy is called
shifting and the corresponding SQP is called hot-started/warm-started SQP. ACADO uses
the following shifting procedure:

xguess
i ,k = xi−1,k+1, k = 0, . . . , N −1

uguess
i ,k = ui−1,k+1, k = 0, . . . , N −1

xguess
i ,N = f

(
xguess

i ,N−1,uguess
i ,N−1

) (D.7)

The ACADO toolkit allows to employ condensing strategies to reduce the size of the for-
mulated QP by eliminating the intermediary states. A detailed explanation of the con-
densing procedure is given in [84].

D.3. QP SOLVER
The resulting condensed QP can then be solved via several online solvers that exist for
solving convex QP problems. The solvers can be categorized according to the constraint
handling approaches that they use. The following two approaches are commonly used:

• Interior Point (IP): There are two variants of the IP method - the primal-dual method
and the barrier method. The barrier method uses a weighted barrier function to
replace the inequality constraints. The function is added to the objective func-
tion to be minimized. The barrier function is constructed such that the weight
becomes very high if the constraints are violated. Once the total objective func-
tion is formulated, Newton’s method is used to calculate the optimal solution. The
primal-dual IP method is an extension of the barrier method where the inner and
the outer loops are combined and the weight on the barrier function is reduced in
each iteration of Newton’s method.

• Active Set (AS): This method proceeds by finding a working set of active constraints
based on the current state of the system and then solves the resulting QP problem
with equality constraints. The working set is then updated repeatedly until the
optimal solution is found.

While the AS method requires more iterations than the IP method, each iteration of AS
is computationally cheaper than that of IP [78, 85]. Ferreau et al. [78] have also reported
that the AS method when coupled with a hot-start strategy, can lead to substantial speed-
ups. Because of these advantages, the AS method is chosen as the constraint handling
strategy in this research. A commonly used QP solver that employs the active-set method
for constraint handling is qpOASES [78]. In their research, Adhau et al. [86] compared
various QP solvers based on their real-time performance for NL-MPC application and
found that the performance of the qpOASES solver was superior in terms of computa-
tional time. Owing to these advantages, qpOASES solver with an active-set strategy is
selected for this research.
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D.4. REAL-TIME ITERATION
The fundamental idea behind the RTI approach is to divide the whole solution into two
phases - namely the preparation phase and the feedback phase. To reduce the compu-
tational time, the preparation phase for time i is performed at time i −1 and as soon as
the measurement at time i is available, the feedback phase is performed.

In the preparation phase, the QP for time = i is pre-formulated at time = i − 1 and
written in terms of the measurement x̂i before it is available. The QP is also conditioned
(condensed and factorized) in this phase. As soon as the measurement x̂i is available,
the feedback phase starts. The measurement is plugged into the conditioned QP and
the next control action is determined. It should be noted that in contrast to a regular
SQP scheme, the RTI scheme performs a single full Newton step as the hot-start strategy
employed allows the RTI problem to converge. A detailed explanation of the RTI scheme
can be found in [81] and an overview of the same is shown in the following algorithm.

Algorithm 2: The RTI scheme at time i

Preparation phase - performed over time interval [ti−1, ti ]

Input: (xi−1,ui−1), (xr e f
i−1 ,ur e f

i−1)

1) Shift (xi−1,ui−1) to get (xg uess
i ,ug uess

i )
2) Evaluate rk ,hk and Ak ,Bk ,Ck ,Dk , Hk , Jk using equation D.5
3) Form QPNL-MPC (equation D.4) with condensing.
return QPNL-MPC
Feedback phase - performed at time ti upon availability of x̂i

Input: x̂i

4) Solve the QPNL-MPC (equation D.4) to get newton direction (∆x,∆u)
4) Apply the full Newton step - (xi ,ui ) → (xguess

i ,uguess
i )− (∆xi ,∆ui )

Return NL-MPC solution : (xi ,ui )

D.5. CONCLUSION
While NL-MPC algorithm is a good potential candidate for motion cueing applications,
the high computational time required by this approach is a drawback. To reduce the
computational time, the RTI scheme can be used. The scheme uses the SQP optimiza-
tion technique to solve the NL-MPC problem. Further, it relies on the fast convergence
of Newton-type optimization and hot-start strategy. The algorithm performs a single
full Newton step at every time instance. To reduce the computational effort, the total
solution is divided into two phases - namely, the preparation phase and the feedback
phase. This allows to minimize the delay between obtaining the measurement and ap-
plying the control action. The ACADO toolkit provides an easy to implement package
of this scheme and can be used effectively to implement non-linear MPC controllers in
real-time. The same has been used in this research to solve the non-linear OCP.
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In Chapter 1, a non-linear MPC-based MCA was designed which included the non-
linear inverse kinematics of the motion platform and human vestibular model. The al-
gorithm was tested with full-track simulations using the E2M emulator and the results
were compared based on several performance indicators.

In this Appendix, the results in supplement to those provided in Chapter 1 are pre-
sented. The Appendix is divided into two parts, namely - Case Studies and MCA Com-
parison. Section E.1 presents case studies related to the effects of sampling time, predic-
tion horizon, adaptive weights and prediction strategies. Further, section E.2 presents
the performance comparison of the proposed MCA with L-MPC and CWF algorithms
in step response and slalom tests. Further, it should be noted that the test setup and
the tuning of the MPC-based algorithms in the following tests was same as described in
Chapter 1. Meanwhile, the CWF algorithm was re-tuned for every maneuver to achieve
the best possible results.

E.1. CASE STUDIES
In this section, the case studies performed to analyze the effects of sampling time, pre-
diction horizon, etc. are presented.

To evaluate the performance of the proposed MCA, the slalom test was considered
for all the case studies presented in this section. Slalom is an important test from the
vehicle dynamics point of view. From the motion cueing perspective, it gives important
insights such as roll-sway coupling in tracking a sinusoidal reference. In the test consid-
ered here, a four-seater hatchback car with an electric motor and a continuously variable
transmission (CVT) was simulated in the IPG Carmaker software. A virtual sensor was
placed on the eyepoint of the driver to record the perceived acceleration and perceived
angular velocity. The resulting signal was recorded, passed through the vestibular sys-
tem and further sent as the reference to the controller. It should be noted that adaptive
weights-based tuning was applied in all the cases unless explicitly stated otherwise.

E.1.1. EFFECT OF SAMPLING TIME

In MPC-based control systems, a continuous-time plant is usually controlled by a discrete-
time controller which is called at a certain frequency. In sub-section C.1.1, the impor-
tance of choosing a correct sampling frequency (or sampling time) was highlighted. The
proposed controller caters to two systems - the human vestibular system and the motion
platform. In sub-section A.3.4 it was stated that as per the rule of thumb, the minimum
sampling frequency required to include all the dynamics of the vestibular system model
was 625 H z. In sub-section A.2.1, it was further highlighted that the controllers of mo-
tion platform are generally called at a sampling frequency of 100-1000 H z. Taking the
computational complexity of the problem into consideration, a very high sampling fre-
quency is not feasible if the controller has to be implemented in real-time. It should
further be noted that in the literature, a sampling frequency of 10-100 H z is used (in
[19, 55, 67, 68, 71, 72]), with an exception of [1], where 200 Hz frequency was used. How-
ever, it must be noted that the problem considered in this research was linear in nature.
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To test the effect of the controller frequency (or sampling time) on the computational ef-
fort, the execution Time taken by ACADO Solver for solving the optimal control problem
with a prediction horizon of 50 was plotted. The same is shown in figure E.1.

Figure E.1: Effect of sampling time: Execution Time taken by ACADO Solver

It can be seen that the computational time required to solve the OCP at 20 H z, 50
H z and 100 H z is lower than the respective sampling time. However, at 200 H z, the
computational time exceeds the sampling time. To analyze the effect of sampling time
on the reference tracking performance, the algorithm was tested for the same frequency
range. The results are shown in figure E.2 and E.3.

Figure E.2: Effect of sampling time: Acceleration tracking performance
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Figure E.3: Effect of sampling time: Roll velocity tracking performance

It can be seen that the performance of the controller at 200 and 100 H z is superior
to the other cases in terms of reference tracking and oscillations. While there is major
degradation in the performance of the controller at 20 H z, the performance at 50 H z is
comparable to that at higher frequencies. However on close inspection, it can be seen
that the system output is not smooth as certain oscillations are observed. Therefore, tak-
ing the computational cost and the reference tracking performance into consideration,
a controller frequency of 100 H z was chosen for this research.

E.1.2. EFFECT OF PREDICTION HORIZON

While a longer prediction horizon generally leads to better results [68], it increases the
computational burden of the MPC problem. Further, the length of the prediction hori-
zon also determines the look-ahead time, i.e. the time for which the future reference
should be known. Often, knowing the future reference for a long period of time is im-
practical. Therefore, the prediction horizon must be chosen while taking all these factors
into consideration.

To analyze the effect of the prediction horizon on the computational effort, the exe-
cution time required by the ACADO solver to solve the OCP at 100 H z was plotted. The
same is shown in figure E.4. It can be inferred that for Np = 20 and 50 the execution time
is well below the sampling time. Further, for Np = 200, the execution time exceeds the
sampling time making it infeasible to implement in real-time. Lastly, it should also be
noted that for Np = 100, the time required on majority of the instances is below the sam-
pling time but the same exceeds the sampling time on a few instances.

To evaluate the effect of the length of the prediction horizon on the controller per-
formance, the following three cases were considered - look ahead time of 0.2 sec (Np =
20), 0.5 sec (Np = 50), 1 sec (Np = 100) and 2 sec (Np = 200). The effect of the prediction
horizon on the performance is shown in figure E.5 and E.6.
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Figure E.4: Effect of prediction horizon: Execution Time taken by ACADO Solver

Figure E.5: Effect of prediction horizon: Acceleration tracking performance

In figure E.5, it can be seen that the reference tracking performance of the controller
for Np = 50, 100 and 200 is similar. While at Np = 20, there is major degradation in the ref-
erence tracking performance. Further, the perceived roll velocity tracking performance
(figure E.6) in all the cases was found to be similar. On close inspection, it can be seen
that the performance slightly improves for a longer horizon. Taking the tracking perfor-
mance and the execution time into consideration, the length of the prediction horizon
was chosen as 50.
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Figure E.6: Effect of prediction horizon: Roll Velocity tracking performance

E.1.3. EFFECT OF PREDICTION STRATEGY

In order to solve the optimization problem, MPC-based MCA requires the knowledge
of future reference up to the prediction horizon. In most cases, either of the following
two prediction strategies is used to estimate the future reference. First, the ideal pre-
diction strategy that knows the future reference completely up to the prediction horizon
(referred to as Known in this research). The second prediction strategy that takes the cur-
rent linear accelerations and angular velocities at every sampling instance and assumes
it to be constant for the entire prediction horizon (referred to as Constant in this re-
search). The first strategy is ideal and although it can be used for passive driving simula-
tions, such a predefined reference is not available for the active driving or driver-in-loop
(DIL) simulations. Meanwhile, the second strategy does not utilize the MPC controller
effectively due to the assumptions made about the future reference. In this section, both
the prediction strategies are compared based on the slalom test. The results are shown
in figure E.7 and E.8.

It can be inferred that the Constant strategy results in minor degradation when com-
pared to the Known case. It can also be seen that the assumption made in the Constant
case introduces a delay in the reference tracking performance. The small magnitude of
the difference in the performance can be attributed to the small prediction horizon used.
The effect of the prediction strategy and the prediction horizon on the reference tracking
performance is shown in figure E.9 and E.10.

It can be seen that in both the cases, if the prediction horizon is increased, the root
mean square error (RMSE) decreases. However, the decrease in the Known case is more
when compared to that in the constant case. Therefore, the difference in the outputs
would be more pronounced if a longer prediction horizon is used. For the prediction
horizon chosen in this research (Np = 50), the difference is relatively small. Throughout
this research, the constant strategy is used.
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Figure E.7: Effect of prediction strategy: Acceleration tracking performance

Figure E.8: Effect of prediction strategy: Roll Velocity tracking performance
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Figure E.9: Effect of prediction strategy: RMSE for acceleration tracking

Figure E.10: Effect of prediction strategy: RMSE for roll velocity tracking

E.1.4. EFFECT OF ADAPTIVE WEIGHTS
As mentioned in Chapter 1, state-dependent adaptive weights-based tuning scheme has
been employed in this research. This is done in order to provide a damping action and
to smoothen the movement of the platform near the physical limit. In this scheme, the
weight on the position and velocity of the moving base centroid is increased as the actu-
ators reach the limit.

To analyze the effect of adaptive weights, the slalom test is considered again but the
amplitude is increased by a factor of 2. This is done so that the platform reaches its max-
imum limit. In this case, actuator 2 reaches the physical limit at ∼13 sec. The perceived
surge acceleration and actuator length is shown in figure E.11 and E.12.

On close inspection, it can be seen that the controller with adaptive weights results
in a smoother output when the platform is near its physical limits. In figure E.12 it can be
seen that the actuator movement near the limits is also smooth. Further, it can also be
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inferred that when the platform is not near the limits, the adaptive weights allow more
free movement of the actuators when compared to the constant weights.

Figure E.11: Effect of adaptive weights: Acceleration tracking performance

Figure E.12: Effect of adaptive weights: Limiting actuator displacement
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E.2. MCA COMPARISON
In this section, a performance comparison of different motion cueing algorithms is pre-
sented. The comparison is based on the reference tracking and workspace utilization
performance of different algorithms in the step input tracking test and slalom test. While
the step input tracking test helps to analyze the tilt coordination performance of the al-
gorithm, the slalom test gives crucial insight into the coupled DOF. In this section, the
following algorithms are considered for the comparison:

• Classical Washout Filter (CWF)

• Linear MPC-based MCA (L-MPC)

• Non-linear MPC-based MCA (NL-MPC)

While actuator-based constraints were imposed in the NL-MPC algorithm, forward kine-
matics was used to determine a constant workspace for the L-MPC algorithm. Further,
the CWF algorithm was tuned to maximize the tracking performance within the allowed
workspace. Moreover, for both the MPC-based MCAs, the constant prediction strategy is
used for reference generation.

E.2.1. STEP RESPONSE
The step input tracking test gives useful insights into the sustained acceleration tracking
performance (the tilt coordination effects) of the MCA. Further, it can also help to ana-
lyze the ability of an MCA to generate sudden high acceleration cues. In this test, a step
acceleration input is provided as the acceleration reference for a fixed time, while a zero
reference is provided for the angular velocity. The MCAs are then compared based on
their reference tracking and workspace utilization performance. As this test utilizes only
two DOFs, the pitch-surge mode was considered for all the MCAs in this study. The algo-
rithms are expected to use the translation motion to track the initial rising acceleration,
while it is expected to use the tilt-coordination technique to sustain this acceleration.

TRANSLATIONAL ACCELERATION TRACKING

Figure E.13 shows the perceived surge acceleration tracking performance. All the algo-
rithms use the translational DOF of the platform to produce the initial rising acceleration
and then use the tilt coordination to produce the sustained acceleration. It should be
noted that the algorithms produce significant error between time 4-7 seconds because
of the constraints on the tilt rate which prohibits the algorithm to increase the tilt angle
to the required value with a perceivable tilt rate. The tilt rate of the hexapod is shown
in figure E.14. It can be seen that the tilt rate used by all the algorithms is lower than
the threshold value. While the constraints are embedded in the MPC-based algorithms,
the tilt rate is externally saturated in CWF. Further, it can be seen that the NL-MPC con-
troller results in the lowest RMSE and the highest CC values when compared to the other
two controllers. In the case of the L-MPC algorithm, an overshoot in the response is ob-
served. This is because the algorithm uses an approximated linear model of the motion
platform which results in difference in the outputs of the system model used by the con-
troller and that of the plant. Lastly, a large error is observed in the response of the CWF
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Figure E.13: Step Response Test: Surge Acceleration tracking performance

algorithm. The algorithm fails to reduce this error as it is merely a feed-forward con-
troller.

Figure E.14: Step Response Test: Hexapod Tilt rate

ROTATIONAL VELOCITY TRACKING

Figure E.15 shows the angular velocity tracking performance. It should be noted that,
for a large surge acceleration, there should be some pitch velocity associated with it.
However, a zero reference was given in this case to test the algorithm’s ability to produce
translational acceleration without producing perceivable rotational velocity. As men-
tioned in Chapter 1, the pitch rate threshold is ∼ 0.063 r ad/s. It can be seen that all
the algorithms produce pitch velocity lower than the threshold. Further, the NL-MPC
algorithm produces the lowest RMSE and highest CC value.



E

94 E. EXTENSIVE RESULTS

Figure E.15: Step Response Test: Roll Velocity tracking performance

WORKSPACE UTILIZATION

Figure E.16 shows the workspace utilization in terms of the pitch motion and the surge
motion of the platform. In step input tracking, ideally the platform should increase the
surge motion to produce the initial acceleration and then increase tilt inclination to pro-
duce the sustained acceleration. Once it reaches the desired tilt inclination, the platform
should washout the surge motion. In Figure E.16, the behavior of the NLMPC algorithm
is similar to the ideal behavior. Meanwhile, the L-MPC algorithm increases the inclina-
tion of the platform beyond the desired inclination and then reduces it. Lastly, it can be
seen that the CWF algorithm uses a conservatively chosen workspace.

Figure E.16: Step Response Test: Workspace Utilization
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E.2.2. SLALOM TEST
As mentioned before, the slalom test provides useful insights into the roll-sway coupling.
The test considered in this section is similar to that in section E.1. The MCAs are then
compared based on their reference tracking and workspace utilization performance.

TRANSLATIONAL ACCELERATION TRACKING

Figure E.17: Slalom Test: Surge Acceleration tracking performance

Figure E.17 shows the perceived surge acceleration tracking performance.

It can be inferred that the NL-MPC algorithm performs considerably better than CWF
and L-MPC algorithms. The same is also reflected in the very low RMSE and very high
CC values. Further, the superiority of the L-MPC algorithm when compared to the CWF
algorithm in terms of reference tracking is also established from this figure. However,
the CWF algorithm results in the lowest ED value while both the MPC-based algorithms
produce a delay in response. This behavior in MPC-based algorithms can be improved
by using the Known prediction strategy instead of Constant.

ROTATIONAL VELOCITY TRACKING

The rotational velocity tracking performance is shown in figure E.18. It should be noted
that in this case, the reference tracking of the angular velocity is important as the same
is above the threshold.

Similar conclusions can be drawn from figure E.18. The NL-MPC algorithm shows
superior performance than the L-MPC and CWF algorithm as it produces low RMSE and
high CC values. A delay in response of both the MPC-based algorithms is observed in
the perceived angular velocity tracking performance as well which is reflected in the ED
values. It should also be noted that unlike the other algorithms, the NL-MPC algorithm
does not produce any false or missing cue. Further, in the case of L-MPC and CWF, this
performance can be improved by adjusting the tuning, however, this will come at the
cost of the lateral acceleration tracking.
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Figure E.18: Slalom Test: Roll Velocity tracking performance

WORKSPACE UTILIZATION

In figure E.19, it can be seen that the MPC-based algorithms show a good coupling per-
formance as they use motion-space in both the directions (roll and sway) effectively.
Meanwhile, the CWF algorithm shows poor coupling performance as it uses most of the
available workspace in the roll direction while using limited space in the sway direction.
Further, it can be seen that the actuator based constraints allow the NL-MPC algorithm
to spans most of the available workspace while the L-MPC algorithm spans a smaller
workspace owing to the constraints based on a conservatively chosen workspace.

Figure E.19: Slalom Test: Workspace Utilization
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E.3. CONCLUSION
In section E.1, the effects of the sampling time, prediction horizon and prediction strat-
egy were presented. Further, the advantages of using an adaptive tuning scheme were
also presented in this section.
In section E.2, the NL-MPC algorithm was compared with the L-MPC and CWF algo-
rithms. From the results, it can be concluded that the performance of MPC-based meth-
ods is superior to that of the CWF algorithm in terms of both, the reference tracking
performance and the workspace utilization. It can also be inferred that the L-MPC al-
gorithm uses a conservatively chosen workspace and the system model used inside the
controller ignores the non-linearities of the plant which produces in sub-optimal results.
In this section it was validated that the NL-MPC algorithm offers an elegant solution to
the motion cueing problem and performs better than the L-MPC and CWF-based MCAs.
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GLOSSARY

LIST OF ACRONYMS
AWF Adaptive Washout Filter.
CoG Centre of Gravity.
CWF Classical Washout Filter.
DF Driver frame of reference.
DOF Degree of Freedom.
FVT Final Value Theorem.
IF Inertial frame of reference.
L-MPC Linear Model Predictive Control.
MCA Motion Cueing Algorithm.
MPC Model Predictive Control.
NL-MPC Non-linear Model Predictive Control.
OCP Optimal Control Problem.
OWF Optimal Washout Filter.
PWA Piece-wise affine.
RTI Real-time iteration.
SQP Sequential Quadratic Programming.
VF Vehicle frame of reference.
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