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Loop-to-Loop Pulsed Electromagnetic Signal
Transfer Across a Thin Metal Screen With

Drude-Type Dispersive Behavior
Martin Štumpf , Member, IEEE, and Adrianus T. de Hoop, Life Member, IEEE

Abstract—A full analytic time-domain analysis is presented for
a canonical problem of electromagnetic interference related to the
operation of integrated-circuit devices at optical frequencies, where
metal screens and substrates can no longer be characterized as
perfect electrical conductors, but the plasmonic behavior of con-
duction electrons in the metal has to be taken into account.

Index Terms—Electromagnetic interference (EMI), modified
Cagniard technique, pulsed electromagnetic (EM) field transfer,
shielding, time-domain (TD) analysis.

I. INTRODUCTION

W ITH the recent development of high-functionality semi-
conducting materials, such as indiumphosfide (InP) with

promising physical behavior at optical frequencies as com-
ponents to be implemented in integrated-circuit photonic de-
vices [1], an important electromagnetic interference (EMI) issue
presents itself. As a standard practice, in the design of micro-
electronic devices and systems, the metal screens and substrates
in a device are modeled as perfectly conducting constituents. At
optical frequencies, however, this is no longer adequate and the
plasmonic behavior of the conduction electrons in the metal has
to be accounted for in the performance analysis of the system or
device and related interconnects. A standard way of developing
appropriate design criteria is to study the behavior of canonical
(sub)configurations. With this in mind, we investigate the pulsed
electromagnetic (EM) signal transfer across a thin, planar, metal
sheet, whose electric conduction properties are modeled via the
Lorentz theory of electrons, taking into account the collisions
of the conduction electrons.

The study can be considered as a contribution to the de-
velopment of time-domain (TD) definitions of screening ef-
fectiveness, as put forward in [2]. To focus on the application
of the analysis to microelectronic devices and systems, where
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the planar topological layout is based on design software with
the Kirchhoff circuit loop as the basic constituent, we evaluate
the loop-to-loop signal transfer across a planar metal screen. The
loops have been modeled via their magnetic dipole equivalents
and the dispersion properties of the screen have been accounted
for by the Drude model applied to the conduction electrons. The
excitation pulse has been taken the (unipolar) power-exponential
pulse whose parameters are the pulse amplitude, the pulse rise
time, and the pulse time width, all of which comply with the
requirements put forward in [2].

The cross-boundary conditions at the metal sheet are modeled
via the high-contrast, thin-plate approximation, relating the tan-
gential electric field at the plate to the local value of the volume
current density and applying to the tangential magnetic field
the condition that it jumps by the amount of the cross-sectional
electric current [3].

As is standard practice, the screening effectiveness is defined
as the response in the presence of the screen as compared with
the one in the absence of the screen. In the case under con-
sideration, the screening effectiveness applies to the magnetic
field. The on-axis response is believed to be indicative for the
overall properties. The off-axis behavior as well as the electric
field transfer (which might be the predominant quantity in cir-
cuit boards’ interconnects) can be evaluated along similar lines.
Illustrative numerical examples are presented for an excitation
pulse with parameters that are tailored to address the peculiari-
ties of the physical characteristics of the plasmonic conductivity
function and how they influence the pertaining shielding effec-
tiveness.

II. PROBLEM DESCRIPTION

The configuration (see Fig. 1) is excited by a planar pulsed
electric current IT(t) in a transmitting loop LT located on one
side of, and parallel to, the sheet and the open-circuit induced
electric voltage V R(t) in a receiving loop LR located on the
other side of the sheet and parallel to it is calculated. Closed-
form analytic expressions are obtained for the on-axis response,
which leads to an algebraic TD expression for the pertaining
transfer impedance

V R(t) = Z(t)
(t)∗ IT(t). (1)

The position in the problem configuration is specified
by the coordinates {x, y, z} with respect to the orthogonal
Cartesian coordinate system with its origin O and its basis vec-
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Fig. 1. Plasmonic screen with a transmitting loop LT and a receiving
loop LR.

tors {ix , iy , iz}, respectively. The time coordinate is t and the

time-convolution operator is denoted by
(t)∗ .

III. TD CROSS-SHEET BOUNDARY CONDITIONS

The EM properties of a metal screen are described via a
Drude-type conduction relaxation function [4, Sec. 19.5]

κc(t) = ε0ω
2
pe exp(−νct)H(t) (2)

where ωpe = (nee2/ε0me)1/2 is the electron plasma angular
frequency, νc denotes the collision frequency and

1) ne = number density of conduction electrons;
2) −e = electron charge;
3) me = electron mass;
and H(t) is the Heaviside unit step function.
The screen is placed in a homogeneous, isotropic, lossless

embedding whose EM behavior is described by its electric per-
mittivity ε0 and magnetic permeability μ0 . The corresponding
EM wave speed is c0 = (ε0μ0)−1/2 > 0. The thickness of the
dispersive layer δ > 0 is assumed to be small with respect to the
spatial support of the excitation pulse. The thin screen shows a
high contrast with respect to its embedding such that the con-
cept of thin-layer, high-contrast boundary conditions applies
[3]. The conditions follow upon applying the volume integrated
Maxwell equations to a “pillbox” of vanishing height under the
assumption that the layer’s TD conductance, viz

GL(t) = δκc(t) (3)

is of order O(1) as δ ↓ 0 for all t > 0. Owing to the rotational
symmetry of the problem configuration about the z-axis, the
cross-boundary conditions are expressed here in the cylindrical
coordinates

lim
z↓0

Eφ(r, z, t) − lim
z↑0

Eφ(r, z, t) = O(δ) as δ ↓ 0 (4)

lim
z↓0

Hr (r, z, t) − lim
z↑0

Hr (r, z, t) = GL(t)
(t)∗ Eφ(r, 0, t)

+ O(δ) as δ ↓ 0 (5)

for all r = (x2 + y2)1/2 ≥ 0 and t > 0, where the subscripts φ
and r denote the azimuthal and radial components of the EM
fields and O denotes the Landau Order symbol [4, p. 1019].
Accounting for the presence of the metal sheet through (2)–(5),

the induced voltage is calculated from [5, eq. (33)]

V R(t) � −μ0AR∂tHz (0,−hR , t) (6)

where AR is the receiving loop’s area and Hz = Hz (r, z, t) is
the z-component of the radiated magnetic field a closed-form
TD expression of which is given in the following sections. The
presented methodology is also applicable to expressing the off-
axis magnetic field and the electric field.

IV. TRANSFORM-DOMAIN PROBLEM SOLUTION

The problem is solved with the aid of a modification of
Cagniard’s method [6]–[8]. This method combines a one-sided
Laplace transformation

Ĥz (r, z, s) =
∫ ∞

t=0
exp(−st)Hz (r, z, t)dt (7)

with s as the real-valued and positive transformation parameter
with the wave-slowness field representation

Ĥz (r, z, s) = (s/2π)2
∫ ∞

α=−∞
dα

×
∫ ∞

β=−∞
exp[−is(αx+ βy)]H̃z (α, β, z, s)dβ.

(8)

The transform-domain magnetic field can be expressed as
[4, cf. (26.10–15)]

H̃z = −sε0 φ̃K + (sμ0)−1∂2
z φ̃

K (9)

φ̃K = sμ0 Î
T(s)ATG̃ (10)

where AT denotes the transmitting loop’s area and G̃ =
G̃(α, β, z, s) is the (bounded) solution of

∂2
z G̃− s2γ2

0 (α, β)G̃ = 0 (11)

where γ2
0 (α, β) = c−2

0 + α2 + β2 , subject to the excitation con-
dition

lim
z↓hT

∂z G̃− lim
z↑hT

∂z G̃ = −1 (12)

and the cross-boundary conditions [cf., (4)–(5)]

lim
z↓0

G̃− lim
z↑0

G̃ = 0 (13)

lim
z↓0

∂z G̃− lim
z↑0

∂z G̃ = sμ0Ĝ
L(s)G̃|z=0 . (14)

The corresponding general solution has the form

G̃ = Ã exp[−sγ0 |z − hT |] + ÃR̃ exp[−sγ0(z + hT)] (15)

G̃ = ÃT̃ exp[sγ0(z − hT)] (16)

for z ≥ 0 and z < 0, respectively, where

γ0(α, β) = (c−2
0 + α2 + β2)1/2 > 0. (17)

Substituting (15)–(16) in (12)–(14), we find

Ã = 1/2sγ0 (18)

T̃ = R̃+ 1 = 2c0γ0/[ĜL(s)/η0 + 2c0γ0 ] (19)
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where η0 = (ε0/μ0)1/2 is the free-space admittance. Equations
(15)–(19) with (9)–(10) constitute the sought transform-domain
solution.

V. TD PROBLEM SOLUTION

Making use of (8)–(10) with (16) and (18)–(19), the on-axis
magnetic field can be represented as

Ĥz (0,−hR , s) =
s3c0 Î

T(s)AT

4π2

∫ ∞

α=−∞
dα

×
∫ ∞

β=−∞

α2 + β2

ĜL(s)/η0 + 2c0γ0
exp[−sγ0(hT + hR)]dβ.

(20)

Upon introducing

{α, β} = {σ cos (ψ), σ sin (ψ)} (21)

with σ ≥ 0 and {0 ≤ ψ < 2π}, (20) is rewritten as

Ĥz (0,−hR , s) = [s3c0 Î
T(s)AT/2π]

×
∫ ∞

σ=−∞

σ3

ĜL(s)/η0 + 2c0 γ̄0
exp[−sγ̄0(hT + hR)]dσ

(22)

where γ̄0 = γ̄0(σ) is given by

γ̄0 = (c−2
0 + σ2)1/2 > 0. (23)

The TD counterpart is found through the substitution

γ̄0(σ)(hT + hR) = τ (24)

for {τ ∈ R; τ > 0} that allows us to cast (22) into the following
form:

Ĥz (0,−hR , s) =
[
s3c0 Î

T(s)AT/2π(hT + hR)4]

×
∫ ∞

τ=T
exp(−sτ) τ(τ 2 − T 2)

ĜL(s)/η0 + 2τ/T
dτ

(25)

where T = (hT + hR)/c0 denotes the travel time of the pulse.
By the application of some elementary rules of the one-sided
time Laplace transformation (see [9, (29.2.5), (29.2.15), and
(29.3.8)]), combined with Lerch’s theorem on the uniqueness
of the transformation at real, positive, transform parameter we
finally obtain

V R(t) = − ATAR

(hT + hR)4

∂4
t I

T(t)
2πη0

(t)∗
{
T (t2 − T 2)

2
H(t− T )

− Ω0

∫ t

τ=T

τ(τ 2 − T 2)
4τ 2/T 2 exp[−(T/2τ)Ω0(t− τ)]

× exp[−νc(t− τ)]dτ

}
(26)

with Ω0 = δω2
pe/c0 , which is the main result of this letter. The

first contribution in (26), say V R
0 , represents the induced voltage

in absence of the shielding metal screen and can be rewritten as

V R
0 (t) = −μ0ATAR{

∂tI
T(t− T )/

[
2π(hT + hR)3]

+ ∂2
t I

T(t− T )/
[
2πc0(hT + hR)2]} (27)

which is fully compatible with the results given in [5, Sec. IX].
It is interesting to note in this respect that the voltage response in
(27) is composed of the near- and intermediate-field constituents
only [4, Sec. 26.4]. Sufficiently behind the wavefront where
the effect of the plasmonic conductivity becomes effective, the
decomposition of the field response into its near-, intermediate-,
and far-field constituents is no longer straightforward.

VI. TD SOLUTION FOR AN INSTANTANEOUSLY-REACTING

METAL SCREEN

The static conductivity σc leads to the conduction relaxation
function

κc(t) = σcδ(t) (28)

the induced voltage follows from (6) and the corresponding TD
counterpart of (25) relying on Lerch’s uniqueness theorem of
the one-sided Laplace transformation [10, pp. 63–65]. This way
leads to

V R(t)=− ATAR

(hT + hR)4

∂4
t I

T(t)
2πη0

(t)∗ t(t2 − T 2)
GL/η0 + 2t/T

H(t− T )

(29)

where GL = δσc . The instantaneously reacting conductive
screen has been previously analyzed in [11] using a Fourier
integral based modification of Cagniard’s method [12, Sec. 4.2].

VII. ILLUSTRATIVE NUMERICAL RESULTS

The exciting electric-current pulse is taken to be the (unipolar)
power-exponential pulse [13]

IT(t) = IT
m(t/tr)n exp[−n(t/tr − 1)]H(t) (30)

that is characterized by its
1) IT

m = pulse amplitude;
2) tr = pulse rise time;
3) tw = pulse time width; and
4) n = pulse rising power.
The time Laplace transformation of the excitation pulse reads

ÎT(s) = IT
m t−nr (s+ n/tr)−n−1Γ(n+ 1) exp(n) (31)

where Γ(x) denotes the Euler Gamma function. The pulse time
width is related to tr and n via tw = tr n

−n−1Γ(n+ 1) exp(n).
For validation purposes, we shall next evaluate the on-axis

shielding effectiveness that is defined as [4, p. 975]

SdB = 20 log10 |Ẑ0(iω)/Ẑ(iω)| (32)

whereω is the real-valued and positive angular frequency and Ẑ0
denotes the transfer impedance for the configuration without the
screen. This impedance follows from the real-FD counterpart of
(27) as

Ẑ0(iω) =
ωμ0ATAR

2π(hT + hR)3 (ωT − i) exp(−iωT ). (33)
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Fig. 2. Excitation electric-current pulse with its (a) pulse shape and (b) ampli-
tude spectral diagram; (c) (normalized) induced voltage pulse behind the metal
screen; and (d) resulting shielding effectiveness as calculated via the FFT of the
voltage signals and using the approximate formula (34).

In view of (1) and (6), the thus defined shielding effectiveness
can also be written as the ratio of the magnetic-field strength
at the position of the receiving loop before and after placement
of the screen. Accordingly, we can validate the results with the
help of the approximate formula [14, (10.15b)]

SdB � 20 log10 [|κ̂c(iω)|δ/2η0 ] (34)

where we have substituted the FD counterpart of the conduction
relaxation function (see the appendix).

In the example that follows, we take �ωpe = 8.55 eV, �νc =
0.0184 eV describing the properties of gold [15]. The radius

of the both transmitting and receiving loops is 0.001 mm and
hT = hR = 0.10 mm. The thickness of the screen is taken as
δ = 0.001 mm (see Fig. 1). The excitation pulse is described
with IT

m = 1.0 (A), n = 6, and ωpetr = 200π. For the chosen
parameters, δ/c0tw � 0.067 and the absolute value of the layer’s
admittance at the “pulse corner frequency” [see eq. (31)] are
|Ŷ L(in/tr)| � 11.75 S, thus meeting the necessary conditions
for the cross-boundary conditions to apply (see the appendix).
Figures 2(a) and 2(b) show the excitation pulse shape with the
corresponding amplitude spectral (Bode) diagram, respectively.
The pulse shape of the voltage induced behind the metallic
screen in given in Fig. 2(c) and the corresponding (frequency-
dependent) shielding effectiveness as calculated with the aid of
both the FFT of (26) and (27) and the approximate formula (34)
is shown in Fig. 2(d). Good agreement throughout the chosen
frequency range validates the results.

The shielding effectiveness has been further calculated via
the FFT of (27) and (29) concerning the relaxation-free con-
duction model according to Section VI with the conductivity of
gold σc = 41 · 106 S/m taken from [14, Tab. 10.2]. This implies
the layer’s (frequency-independent) conductance GL = 41.0 S.
The resulting shielding effectiveness is then about 78 dB over
the frequency range of interest [see Fig. 2(d)], which is in agree-
ment with the approximate formula since 20 log10(σcδ/2η0) �
77.8 dB. The latter is in accordance with the assumption from
Section VI valid at low frequencies. At high frequencies, the
classic plane-wave shielding model predicts that SdB increases
with δω1/2 due to the absorption as the wave traverses the layer
[16, Sec. 10.1]. As long as the thin-sheet, high-contrast boundary
conditions apply, multiple reflections in the layer are not distin-
guishable and the shielding efficiency drop as seen in Fig. 2(d)
can be largely attributed to the conduction relaxation effects.

VIII. CONCLUSION

The configuration that has been investigated can serve as a
canonical model in the course of developing a general pulsed-
field TD characterization of the screening effectiveness of a thin
metal screen, as put forward in [2]. In this respect, it is men-
tioned that the modified Cagniard technique can also provide TD
expressions for the stored energies in the electric and magnetic
field (as proposed in [2]).

APPENDIX

LAYER’S CONDUCTANCE/ADMITTANCE

RELAXATION FUNCTION

In the description of the conduction properties of a metal,
the Lorentz model is used as a standard, where the inertia and
collision properties of the conduction electrons are taken into
account. The Drude-model only accounts for the effect of colli-
sions and neglects the inertia of the conduction electrons. In the
frequency-domain (FD) description, this means that the signal
frequency of operation is to be a certain amount below the elec-
tron plasma frequency. Using the time Laplace transformation
of (3) with (2), we get

ĜL(s) = δε0ω
2
pe/(s+ νc). (35)

The corresponding FD admittance of the layer is

Ŷ L(iω) =
δε0ω

2
pe/νc

1 + ω2/ν2
c
− i

δε0ω
2
peω/ν

2
c

1 + ω2/ν2
c

(36)



ŠTUMPF AND DE HOOP: LOOP-TO-LOOP PULSED ELECTROMAGNETIC SIGNAL TRANSFER 889

where ω being the real-valued and positive angular frequency.
In case the collision effects can be neglected, the FD layer’s
admittance is purely inductive

Ŷ L(iω)|νc ↓0 = − iδε0ω2
pe/ω. (37)

Obviously, the cross-boundary conditions apply if the electron
plasma frequency is large enough with respect to the frequency
of operation. For typical plasmonic materials, such as gold
and silver whose plasmonic angular frequency is of order of
1016 rad/s, the maximum operating signal frequency for the sheet
of thickness δ = 10−6 m is in the range of tens of terahertz.
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Martin Štumpf (M’14) was born in Ćàslav, The
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