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ABSTRACT

Turbulent flows past rough surfaces can create substan-
tial energy losses in engineering equipment. During the last
decades, developing accurate correlations to predict the ther-
mal and hydrodynamic behavior of rough surfaces has proven
to be a difficult challenge. In this work, we develop a convolu-
tional neural network architecture to perform a direct image-
to-image translation between the height map of a rough surface
and its detailed local drag resistance and heat transfer rates.
Various techniques are discussed to improve the computational
efficiency of the machine learning architecture proposed, and
even to reduce its time and space complexity. The main study
is based on a new DNS database formed by 24 flow cases at a
friction Reynolds number of Re; = 180 obtained by applying a
random shift to the Fourier spectrum of the grit-blasted surface
scanned by Busse er al. (2015,). The results show that machine
learning can accurately predict the global values of the drag
resistance and heat fluxes across a rough surface. The local
predictions for both momentum and heat transfer also show a
considerable improvement upon increasing the dataset size. A
detailed analysis of the global skin friction values and Stan-
ton numbers predicted by deep learning further reveals that
the results surpass the accuracy of traditional correlations by a
substantial margin in the dataset analyzed.

INTRODUCTION

Turbulent flows past rough surfaces can be found in a
large variety of engineering applications. Irregular surfaces
are often caused by external degradation processes, such as
bio-fouling, abrasion, machining, or corrosion. The presence

of rough surfaces can substantially increase the drag resistance
of transportation systems, and lower the efficiency of thermo-
dynamic cycles. One of the main challenges while working
with rough surfaces is to predict the impact of a given surface
topography on the drag resistance and heat transfer rates of
a system. Most traditional correlations are based on standard
surface metrics, such as the root-mean-squared height varia-
tions, skewness, kurtosis, effective slope, forward-facing an-
gle, or different auto-correlation functions.

In this work, we develop a machine learning system based
on convolutional neural networks to predict the local behaviour
of turbulent flows past irregular surfaces. These systems are
able to describe the complex physical effects observed when
turbulent flows interact with rough walls. The complex non-
linear functions required to approximate the behavior of tur-
bulence are automatically reconstructed using a database con-
taining rough surfaces with unique groups of topological fea-
tures producing different flow effects.

DNS DATABASE

The study is based on a new DNS database formed by
24 flow cases at Re; = 180. Numerical simulations are used
instead of experimental measurements, since the local drag
forces and heat fluxes correspond to quantities of interest. The
flow cases are generated by applying a random phase shift
to the Fourier spectrum obtained from the grit-blasted surface
scanned by Busse ef al. (2015,). The random shift is given by
the variable ¢; in the following equation for the height function
H(x,z):
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Figure 1. Examples of height maps generated by applying a random shift to the Fourier spectrum of the grit-blasted surface scanned
by Busse et al. (2015,). All percentages are with respect to the half-channel height 6 = L, /2.

H(x,z) :;Ri cos (27r (Mi ;—X-H\Ji Liz) _¢i) )

The terms R;, M;, N; correspond to constants extracted
from the original Fourier spectrum for the grit-blasted sur-
face. Figure 1 presents a collection of 8 examples with rough
surfaces generated according to this technique. Despite the
simplicity of the methodology used, every DNS case contains
unique groups of topological features, which in turn create
flow fields with different characteristics. Therefore, predict-
ing the local drag forces and heat fluxes present in each DNS
case corresponds to a challenging machine learning task.

The dimensionless Navier-Stokes equations and the en-
ergy equation solved for each DNS case are the following:

V-u=0, )
du-+u-Vu=-Vp+Re; 'Vu+tsy, A3)
T +u-VT = Pe;' VT +5,. 4

In eqgs. (2-4), the variables u, p, T correspond to the di-
mensionless velocity components, pressure and temperature
respectively. The variable Pe; = Re;Pr is the friction Peclet
number, which is defined using the molecular Prandtl number
Pr. The source terms Sy and S, for the momentum and en-
ergy equations are equal to unity in all DNS simulations, as
well as the Prandtl number Pr = 1. The velocity and temper-
ature fields are scaled using the friction velocity ur = /7, /p
and the friction temperature 7; = ¢y, /(pcpur). Since the ref-
erence density p and specific heat capacity ¢, are equal to
one, it can be further proven that u; = T = ¢, = 1 for all
the DNS cases considered. The numerical simulations are car-
ried out using the in-house DNS code described by Peeters
& Sandham (2019,). Identical discretization schemes are em-
ployed as in the original study. The friction Reynolds num-
ber (Re¢) is set to 180. The domain size and the grid resolu-
tion have dimensions (Ly X Ly X L;) = (5.63 x 2 x 2.815) and
(Nx X Ny x N;) = (280 x 280 x 140) in the streamwise, wall-
normal and spanwise directions respectively. The scaling ratio
for the height of the rough surfaces (k/J) is kept at a constant
value of 1/6, according to the definition of the original study.
In all the DNS cases generated, the bulk Reynolds num-
bers Rep, = UpLy/v and the dimensionless bulk temperatures
(Tth) presented nearly constant values of Rej, =4002 and

Tb+ = 11.21 respectively. The maximum differences observed
with respect to these quantities are 3.84% for Re;, and 2.82%
for be Therefore, all DNS cases employed similar mass
fluxes and other bulk flow parameters. The velocity shifts ob-
served in the log-layer (AU ™) for all DNS cases ranged from
4.09 to 5.07. The latter is equivalent to variations in the di-
mensionless Nikuradse sand-grain roughness height (k;") from
24 to 33 according to the equations provided in the work of
Thakkar et al. (2018,). Therefore, all DNS simulations con-
tained similar levels of turbulence activity.

WALL FORCE INTERPOLATION

The local drag forces (F) and heat transfer rates (Q) act-
ing over irregular surfaces are obtained by using a finite el-
ement integration scheme with face elements located at the
rough walls. The equations integrated are the following:

_ 1 T
F—//f\(anJrR—eT(VquVu )n) dA, (5

1
Q:PTT//AVT-ndA. (6)

In egs. (5-6), the variable A refers to the area of the rough
surfaces in contact with the fluid. The vector n corresponds to
the normal of the rough surfaces:

—1
OH? OH? OH oHT
n— l+g +TZ l:—g,l,—yz} . (7)

The orientation of eq. (7) is intended to work with rough
surfaces located at the bottom side of channel flows, where
the wall-normal direction corresponds to the y-axis. For rough
surfaces present at the top side of channel flows, the orientation
of the vector n must be adjusted according to the transforma-
tions considered for the respective height function H(x,z). The
differential area dA for the rough surface elements is given by:

OH?> OH*
dA=\|1+— +—— dxdz. (8)
dx dz
After combining eqs. (5-8), it can be shown that the ex-

pression \/ 1+ 0H/dx* +0H /9dz* cancels out. Therefore, if
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Figure 2. Schematic representation of the depthwise separable convolution (DSC) modules employed in the machine learning study.
The abbreviation BN refers to the 2-D batch normalization operations applied before each PReLU activation function.

polynomial shape functions are used to represent the variables
(u,P,T,H), then the final integrals given by eqs. (5-6) contain
polynomial terms exclusively. Thus, a Gauss-Legendre inte-
gration scheme with a sufficient number of intermediate points
can be used to find the analytical solution of the resulting inte-
grals for the drag forces and heat fluxes.

In order to perform finite element integration, the vari-
ables (u,P,T,H) were reconstructed using shape functions
based on a symmetric stencil of data points surrounding each
finite element. The degree of the polynomial terms chosen
in each direction can be found in Table 1. Here, it can be
noted that all interpolation schemes considered linear terms in
the wall-normal direction (y), whereas mixed-order linear or
quadratic terms were considered in the horizontal directions
(x — z). The latter was necessary because the DNS solver em-
ployed a staggered discretization scheme to handle the veloc-
ity components u = (uy, uy, ;). Therefore, the number of data
points required to form a symmetric stencil was different in
each direction. The usage of linear interpolation schemes in
the wall-normal direction was validated empirically, since it
was noted that quadratic terms yielded slightly higher errors
with respect to both the global force and heat transfer balances.
All FEM integration areas considered for egs. (5-6) were cen-
tered around the original x — z coordinates for the pressure and
temperature fields (P, 7). The pressure field was extrapolated
in the wall-normal direction (y) by considering the first two
data points available above the rough surfaces. However, the
velocity and temperature fields (u,7’) considered that the first
layer of data points was located exactly over the rough surfaces
at the corresponding H (x, z) locations, with a value equal to the
homogeneous boundary conditions (u =7 = 0).

The final numerical implementation was written in Py-
Torch, since it can be proven that the entire numerical pro-
cedure can be expressed as a sequence of parallelizable array
operations. The process of gathering data points located in
neighboring x — z locations can be expressed using standard
array shift operations due to the presence of periodic boundary
conditions for the rough surfaces. The linear systems of equa-
tions required to fit separate shape functions for the flow vari-
ables (uy,uy,u;, P,T) surrounding each FEM integration area
can be solved using 4-D tensors containing batches with small
systems of equations.

MACHINE LEARNING

In order to predict the local drag forces (fy) and heat
fluxes (¢) acting over irregular surfaces, it is necessary to build
advanced non-linear models based on techniques such as ma-
chine learning. A preliminary assessment revealed that linear
regression models presented a low degree of correlation be-
tween the input height map H(x,z) for a DNS case and the
observed ground-truth data for fy(x,z) or ¢(x,z). The average
L1-errors with respect to the total drag forces and heat transfer
rates reached magnitudes up to 114% and 42.2% using linear
models respectively. Therefore, it was decided to build predic-
tive systems based on convolutional neural networks to scan

Table 1. Order of the polynomial terms considered by the
shape functions in every direction.

. Streamwise Vertical Spanwise
Variable P

) ) (2)
2 1 2
T 2 1 2
Uy 1 1 2
uy 2 1 2
U, 2 1 1
H 2 - 2

the input height maps H (x,z) of the rough surfaces.

The final machine learning study is based on a deep learn-
ing architecture formed by depthwise separable convolution
modules (Chollet, 2017). The overall shape of the ML archi-
tecture is presented in Table 2, whereas the details of each
convolution module are described in Figure 2. Every mod-
ule has an internal dimension of 20 channels, 3x3 depthwise
convolutions, and three PReLU activation functions (He et al.,
2015) preceded by batch normalization. The usage of ReLU
operators is avoided during the machine learning study, since
PReLU neurons increase the expressivity of neural networks
with a minimal computational cost, and they can facilitate the
convergence of the training procedure. Max-pooling operators
are also avoided because they lose the exact spatial location of
the features being processed. Every machine learning model
created has a total of 5,780 trainable parameters.

The training procedure for each machine learning config-
uration is driven by L1 loss functions instead of traditional L2
metrics. This choice helps the optimizer to train models that
focus on predicting the global values for the drag forces and
heat transfer rates with greater precision than L2 loss func-
tions, which tend to over-penalize small regions with outlier
points. Physics-informed data augmentation is performed by
mirroring all DNS cases with respect to the spanwise axis. The
final study is based on the leave-one-out cross-validation tech-
nique, which is beneficial for small datasets (Wong, 2015).

The overall time and space complexity of the machine
learning system can be substantially improved by creating a
direct image-to-image translation system between the input
height map H (x,z) for a DNS case and the output predictions
for the local drag forces fy(x,z) or heat transfer rates ¢(x,z).
A schematic representation of this approach can be found in
Figure 3. Here, it can be noted that the standard convolutional
neural network shown in Figure (3.a) systematically reduces
an input image until a single output prediction is obtained for
fx(x,2) or g(x, z), discarding all intermediate information. This
approach is highly inefficient while generating predictions for
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Figure 3. Comparison in 1-D between a standard convolutional neural network and the efficient computer vision system developed.

neighboring (x,z) spatial locations sharing a large number of
input pixels in their local height maps, since the same con-
volutional operations must be repeated again. In contrast, the
advanced computer vision system shown in Figure (3.b) avoids
redundant operations, since the results of intermediate convo-
lutional layers are computed only once, and the upcoming lay-
ers share information by utilizing a modified dilation system
that produces the same effect as applying reduction strides in
a traditional convolutional neural network. As a result, an ar-
ray with all output predictions for f(x,z) or ¢(x,z) for a DNS
case is computed after only one pass through the neural net-
work. The empty rectangles shown in Figure (3.b) correspond
to information that is not connected to the output prediction
highlighted at the top, but is used to process other neighboring
data points. In terms of computational efficiency, the approach
shown in Figure (3.b) is able to reduce the baseline time com-
plexity required to process an input height map H(x,z) dis-
cretized as an image with N pixels from quadratic time &'(N?)
to linear time &(N). Therefore, the running times using the
approach described in Figure (3.b) are orders of magnitude
lower than traditional computer vision architectures, which
process one image for every data point predicted. Moreover,
the methodology described in Figure (3.b) can also reduce the
space complexity and RAM memory requirements of the ma-
chine learning system during both the training and evaluation
stages, since only one image is processed per DNS case. Fi-
nally, circular padding is applied to the convolutional archi-
tecture presented in Figure (3.b) to account for the periodic
boundary conditions considered for the rough surfaces.

RESULTS

The results of the machine learning study can be found in
Figures 4 and 5. In Figure 4, a comparison is presented be-
tween the local drag forces and the heat fluxes obtained by the
deep learning system with respect to the original DNS data.
As it can be seen in Figure 4, the machine learning predic-
tions show physically realistic trends, with the majority of the
errors located in areas where large spatial variations in the lo-
cal drag forces or heat transfer rates are expected. A detailed
analysis of the global errors obtained for the force and heat
transfer balances revealed that most of the errors were lower
than 5% during the cross-validation study, whereas the max-
imum errors recorded were 13.21% for the drag forces and
5.99% for the heat fluxes. Both of these results can be re-
garded as satisfactory. Figure 5 presents histograms compar-
ing the distributions of the local errors obtained using datasets
with 7, 12 and 24 DNS samples. These results reveal that the
errors obtained for the momentum and heat transfer predic-
tions present a substantial improvement upon increasing the
dataset size from 7 to 24 DNS samples. The predictions using

Table 2. Layers present in the deep learning architecture.
The columns Cj,, Cous, D and AF&B refer to the number
of input channels, output channels, dilation and the presence
of activation functions with bias respectively. The column
Input Image refers to the equivalent input image size consid-
ered by each convolutional layer, with respect to a total image
size of 280x140 for the entire DNS domain. The final layer
Conv. 2D corresponds to a simple convolutional filter with a
kernel size of 3x3. The architecture of the DSC modules is
presented in Figure 2.

Input

Layer Cin  Cout D AF&B
Image

DSC 1 20 1 Yes 119x61
DSC 20 20  2x1 Yes 59%x59
DSC 20 20 4x2 Yes 29x%29
DSC 20 20  4x2 Yes 27x27
DSC 20 20 8x4 Yes 13x13
DSC 20 20 8x4 Yes 11x11
DSC 20 20 16x8 Yes 5%5
Conv. 2D 20 1 16x8 - 3x3

12 DNS cases show mixed trends, since the errors for the local
drag forces are similar to the study using 24 DNS cases, yet the
errors for the local heat fluxes only present moderate improve-
ments. The relatively large errors obtained for the momentum
predictions, compared to the heat fluxes, are partially caused
by the fact that the local drag forces reach magnitudes up to 23
times larger than the average values for the DNS data, whereas
the largest heat fluxes only reach values up to 8.1 times higher.
Therefore, minor differences in areas where strong drag forces
are expected will create much greater errors than similar per-
centual differences in regions where large heat fluxes occur.
In Figure 4, the streamwise patterns observed in the er-
rors for the heat fluxes are likely caused by the reduced scope
of the input images considered to perform predictions. While
it is ideal from a physical perspective to build a predictive sys-
tems considering the largest input images available, the usage
of images with more pixels can lead to neural networks with
an increased number of parameters, and the associated risk of
over-fitting. Therefore, a trade-off must be considered between
the size of the input images, and the increased number of pa-
rameters that the neural network will require to process more
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Figure 4. Comparison between the local drag forces and heat transfer predictions obtained by the deep learning system with respect

to the DNS data. The cases presented were selected based on the highest and the lowest values for the L1-norm of the local errors. The

values of each colormap indicate the ratio between the local quantities and the average drag forces or heat fluxes present in the DNS

data.

input pixels. The influence of the input images becomes more
evident for the heat transfer predictions than for momentum,
since the higher accuracy of the deep learning system implies
that the assumptions established during the modelling process
start to become noticeable. Another important insight is that
the results obtained during the worst-case scenario for the mo-
mentum predictions originated from a rough surface which had
yielded favorable results while using 12 DNS samples instead
of 24 cases. Therefore, it can be concluded that the momen-
tum predictions present signs of over-fitting, and that further
research is required to determine if the errors can be reduced
by incorporating more training data, or if the architecture of
the deep learning model can be further optimized.

After obtaining the deep learning predictions, a study was
conducted to analyze the trends observed for the skin friction
factors (C r) and the Stanton numbers (Sf). Among the tradi-
tional correlations proposed in the literature to predict the skin
frictions factors (Cy) or the equivalent Nikuradse sand-grain
roughness (ks,¢q), it was determined that the correlation devel-
oped by Flack & Schultz (2010,) yielded accurate predictions:

Ks.eq =443 Sy (14 Sg)'7. )

In eq. (9), the variables S, and Sy correspond to the root-
mean squared height variations and the surface skewness re-
spectively. A detailed review of the numerical procedure to
calculate these variables can be found in the work of Thakkar
et al. (2017,). The system of equations to calculate the skin
friction factor (Cy) is completed using the formulas described
by Peeters & Sandham (2019,), and the non-linear function
A(UT) = f(ks™) provided by Thakkar et al. (2018,). The val-
ues for the Stanton number (St) are obtained by applying the
correlation proposed by Dipprey & Sabersky (1963,). These
equations establish a methodology to predict the Stanton num-
ber (St) of a rough surface based on a skin friction factor (Cy)
previously calculated. In Figure 6, the histograms present
the errors obtained for Cy and St based on the deep learning
predictions and the traditional formulas previously described,
which are based on the work of Flack & Schultz (2010,) and

Dipprey & Sabersky (1963,). As it can be seen in the sub-
figures, the deep learning system is substantially more accurate
than traditional correlations while predicting both momentum
(Cy) and heat transfer (St) parameters. The maximum errors
for the skin friction coefficients Cy in the deep learning system
reached values of 13.21%, whereas the system with traditional
correlations reached values up to 15.61%. Therefore, it can be
concluded that deep learning constitutes a valid alternative to
generate improved predictions for flow parameters, such as Cr
or St, if enough training data is collected.

CONCLUSION

This study presented a deep learning architecture capa-
ble of predicting detailed maps for the local drag forces and
heat fluxes acting over irregular surfaces. The results show
that machine learning is able to achieve reliable results while
predicting the global force and heat transfer balances. A sen-
sitivity study with respect to the dataset size also revealed a
significant reduction in the errors for the momentum and heat
transfer predictions once the dataset size is increased from 7
to 24 DNS cases. The comparisons performed with respect to
traditional correlations proved that deep learning is a valid al-
ternative to generate improved predictions for important flow
parameters, such as the skin friction factors (Cy) or the Stanton
number (St). Therefore, it is recommended to perform further
research regarding the creation deep learning models to predict
the behavior of turbulent flows past rough surfaces.



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

20%

» 15%
=
g
2 10%
2
= 5% 5%

0% 0%

0% 25% 50% 75% 0% 7.5% 15% 22.5% 30%
Absolute Errors, Local Forces Absolute Errors, Local Heat Transfer
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learning model and the traditional correlations of Flack & Schultz (2010,) and Dipprey & Sabersky (1963,).
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