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Abstract—The silicon carbide (SiC) epitaxial growth process 

is crucial in chip manufacturing. The distribution of the flow 

and temperature fields in the reactor chamber influences the 

epitaxial layer uniformity. Therefore, this study optimizes the 

distribution of the flow and temperature fields inside the reactor 

to enhance the quality of the epitaxial layer. COMSOL 

Multiphysics is used to model the horizontal chemical vapor 

deposition (CVD) reactor chamber, and the flow and 

temperature fields inside the reactor chamber are analyzed. 

Factors influencing the uniformity of flow field distribution 

include the reactant gas distribution and the gas-inlet tunnel’s 

diameter and position. The flow field uniformity is represented 

by the relative standard deviation of the velocity. Parameters 

impacting the temperature field uniformity include the position 

and pitch of the heating coil and the graphite column width. The 

heating efficiency of the substrate and temperature uniformity 

are expressed by the average temperature and standard 

deviation of the temperature, respectively. Support vector 

machine (SVM) is used to establish the relationship between 

design variables and the objective function, and the multi-

objective particle swarm optimization (MOPSO) algorithm is 

used to optimize the reactor. The proposed approach improves 

the uniformity of the flow and temperature fields and the 

heating efficiency of the substrate.  

Keywords—Silicon carbide, Epitaxial growth, Multi-objective 

optimization, SVM, MOPSO 

I. INTRODUCTION 

Silicon carbide (SiC), a third-generation semiconductor 
material, exhibits numerous advantages compared to first and 
second-generation semiconductor materials and possesses a 
wide gap band, high critical breakdown electric field, high 
thermal conductivity, and high electron saturation drift rate [1-
3]. Therefore, SiC devices hold immense potential for various 
applications in power electronics, aerospace, wireless 
communication, and other fields. The SiC epitaxial layer with 
fewer defects and more uniform thickness can produce a better 
performance of SiC devices. Therefore, optimizing SiC 
epitaxial growth process is a significant area of research. 

The flow field and substrate temperature distribution 
significantly affect the thickness uniformity and growth of the 
SiC epitaxial layer, respectively. An uneven flow field 
deteriorates the uniformity of the SiC epitaxial layer [4, 5]. 
Substantial temperature variations on the substrate can cause 
uneven doping, thickness, and interfacial state [6, 7]. 
Therefore, improving the uniformity of flow and temperature 
fields is crucial. Flow and temperature fields are vital control 
factors for crystal preparation in the SiC epitaxy process, 
impacting crystal growth uniformity. Consideration of their 
influence and implementation of corresponding control 
measures are essential for optimizing the SiC epitaxy process, 
ensuring crystal growth uniformity and quality. 

Simulating the flow and temperature fields helps 
determine suitable thermodynamic experiments and process 
parameters, reducing the complexity, time, and cost of the 
experiment and improving the experiment’s feasibility [8]. 
Optimizing simulation results can identify potential code 
optimizations and aid in making informed market decisions. 
Tang et al. [9] enhanced substrate temperature uniformity by 
incorporating a graphite column beneath the reactor base. 
However, the relationship between the graphite column and 
the temperature field uniformity in depth was not explored. 
Chen Tao et al. improved the flow field uniformity in the 
reaction chamber by altering gas flow velocity distributions 
[4]. However, the study was limited to a few specific velocity 
distributions. Although they optimized the flow field 
uniformity to a certain extent, their approach lacked precision. 

This study optimizes the temperature field of the SiC 
epitaxy reactor and the flow field in the reaction chamber. The 
substrate flow field uniformity, heating efficiency, and 
temperature uniformity are assessed using the relative 
standard deviation of the velocity, average temperature, and 
standard deviation of the temperature, respectively. The 
geometric model of the SiC epitaxial reactor is established 
using COMSOL Multiphysics. Subsequently, the flow and 
temperature fields are simulated, and the results are fitted 
using support vector regression (SVR) and optimized using 
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multi-objective particle swarm optimization (MOPSO) to 
determine the optimal solution for the objective function. 

II. COMPUTATIONAL MODELING 

This study constructs a horizontal chemical vapor 
deposition (CVD) reactor model (Fig. 1(a)), with the reactor's 
upper and lower bases made of dense graphite material and 11 
turns of rectangular coils wound around them. After the 
alternating current is passed through the coil, eddy currents are 
induced within the graphite base due to electromagnetic 
induction, generating substantial heat and elevating the 
internal temperature. Introducing a graphite pillar beneath the 
graphite pedestal surges heat conduction in the reactor, 
resulting in higher substrate temperature and improved 
temperature uniformity (Fig. 1(b)). The grid division of the 
reactor (Fig. 3) illustrates the importance of refining meshes 
of graphite and substrate areas for studying temperature 
distribution. 

The reaction chamber is at the center of the reactor (Fig. 
3), comprising 26 gas-inlet tunnels are set for the reactor 
divided into three groups: 16 in the middle and five on the left 
and right sides (Fig. 4). The three groups of the gas-inlet 
tunnel are color-coded to facilitate observation. The grid 
division of the reaction chamber (Fig. 3) is re-divided during 
the flow field simulation. The free meshing technique is 
employed due to the relatively simple structure of this section. 

  

Fig. 1. (a) Section view of reactor structure. (b) Schematic diagram of 

graphite column. 

 

Fig. 2. FEM mesh of 3D model reactor. 

  

Fig. 3. Reaction chamber structure diagram and meshing. 

 

Fig. 4. Gas-inlet tunnel diagram. 

III. PROCESS OPTIMIZATION OF THE FLOW AND 

TEMPERATURE FIELDS 

A. Support Vector Machine Regression 

Support vector machine (SVM) is a supervised learning 
model for classification and regression analysis. The 
fundamental principle involves identifying the “optimal 
interval hyperplane” to separate samples of different 
categories. The term “optimal interval hyperplane” refers to 
the hyperplane that maximizes the sum of distances from the 
sample closest points of each category to the hyperplane. An 
SVM is a binary classifier that can be extended to multi-
classification problems by training it iteratively. SVM 
classifiers have been widely used in supervised learning 
applications, including text classification, image classification, 
bioinformatics, and speech recognition. 

When SVM is used to solve regression problems, its 
objective function form can be derived from the following 
steps [10, 11]. 

For a given dataset  

{( , ), ( , ) , ( , )},
1 1 2 2

D x y x y x y ym m i         (1) 

a hyperplane can be determined as follows 

 ( )
T

f x w x b                              (2) 

to minimize the discrepancy between the model’s predicted 

value ( )f xi  for sample xi and its corresponding label yi . 

SVR can tolerate ϵ deviation between ( )f xi and yi . When the 

deviation is less than ϵ, the loss is 0; when the deviation 
exceeds ϵ, the loss is non-zero. An ϵ-insensitive loss function 
(3) is introduced to represent the loss of each sample in the 
SVR problem. 

| ( ) |0
( ( ) )

| ( ) | , | ( ) |

f x yi i
l f x yi i f x y f x yi i i i


  

 
 

   





  (3) 

The samples whose deviation exceeds ϵ are called support 

vectors, and their error is  | ( ) |f x yi i    . 

Slack variables are introduced in SVR 

( ( ) )l f x yi i i i                            (4) 

at this stage, the objective function can be rewritten as 

1
min ( )1, , , 2

. . ( )

( )

0,

0

T m
w w C iiw b i

s t f x yi i i

y f xi i i

i

i

 
 

 

 





  

  

  





              (5) 

The Lagrange formula for SVR problem is as follows 
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ˆ ˆˆ( , , , , )

1
ˆ ˆ ˆ( )

1 1 12

ˆˆ( ( ) ) ( ( ) )
1 1

L w b i i

m m mT
w w C i i i i i i

i i i

m m
f x y y f xi i i i i i i i

i i

     

     

     

   

      
  

       
 

 

(6) 

The gradients to ˆ, , ,w b i i   are 0, and we obtain 

ˆ( )
1

m
w xi i i

i
  


                          (7) 

Then the solution of SVR is 

ˆ( ) ( )1
Tm

f x x x bi i ii                          (8) 

Consider the following feature map form： 

ˆ( ) ( )1
m

w xi ii                                 (9) 

Then the final form of SVR is 

ˆ( ) ( ) ( )1
Tm

f x x x bi i ii                        (10) 

where  ( ) ( ) ( )
T T

x x x xi i j     is the kernel function. 

B. Multi-objective Particle Swarm Optimization 

 Particle swarm optimization (PSO) is an optimization 
algorithm based on swarm intelligence, simulating the 
foraging behavior of birds to determine the optimal solution 
foraging. This algorithm suits global optimization across 
various solution spaces [12, 13]. 

In the PSO algorithm, solutions are presented as positions 
of particles within the solution space. Each particle has its 
own velocity and position, which vary randomly over time 
when the particle compares the distance between the current 
position and the best position. In addition, the particle also 
compares the best position in the group. 

During each position update, the fitness value is 
calculated, and the individual and group extrema Pbest and 
Gbest, respectively, are updated by comparing the fitness 
values of the new particle with the individual and group 
extrema. 

During each iteration, the particle updates its velocity and 
position through the individual and group extrema using (11):  

1
( )

1 1 2

1 1

k k k k
V V c r P X c

id id id id

k k k
X X V

id id id




   

 
 

         (11) 

The PSO offers the advantage of determining optimal 
solutions in a vast search space while mitigating the risk of 
getting trapped in local optima. This algorithm has 
applications in diverse fields, such as machine learning, 
artificial intelligence, economics, biology, and physics. 

This study uses the SVR to construct a functional 
relationship between the objective function and the 
optimization variables. Moreover, the PSO algorithm or 
MOPSO algorithm is used to find the optimal solution of the 

objective function. The optimization flow chart is shown in 
Fig. 5. 

 

Fig. 5. Multi-objective Particle Swarm Optimization Flowchart. 

C. Orthogonal Experimental Design 

Orthogonal experimental design is an approach to 
investigate multi-factor and multi-level studies, which selects 
representative points from the comprehensive test according 
to the orthogonality. These representative points possess 
characteristics of uniform dispersion, order, and comparability. 
Orthogonal experimental design is predominantly employed 
in a fractional factorial design and serves as an efficient, rapid, 
and economical experimental design method. The orthogonal 
experimental design technique utilizes existing tables to 
arrange experiments and conduct data analysis. 

In the flow field simulation, the spacing and diameter of 
the inlet holes exhibit a dependent relationship, rendering the 
use of orthogonal experiments impractical. However, the three 
parameters in the temperature field simulation are 
independent of each other, allowing for the adoption of an 
orthogonal experiment. 

D. Flow Field Simulation and Optimization 

Due to the fact that only a small portion of the reactive 
gas enters the reaction chamber, and most of it is hydrogen 
gas as the carrier gas, only hydrogen gas is considered in the 
flow field simulation, without considering other reactive 
gases. Therefore, the proportion of each part of the gas does 
not need to be considered during simulation optimization. 

The air inlets of the epitaxial furnace reaction chamber are 
arranged in three groups, with a distribution ratio in each 
group is 6:16:6. These air inlets are symmetrically positioned 
on the left and right sides, resulting in a symmetrical 
distribution of airflow within the reaction chamber. When the 
total gas flow is constant, the gas flow ratio among the inlet 
groups significantly impacts the flow field distribution in the 
reaction chamber, making it an important parameter. In 
addition, the position of each air inlet affects the flow field 
distribution at the inlet, influencing the overall flow field 
distribution of the reaction chamber. Moreover, the diameter 
of the gas inlet can alter the gas velocity at the inlet, affecting 
the flow field in the reaction chamber. Therefore, the 
optimization problem has three parameters: gas distribution 
ratio, gas inlet position, and gas inlet diameter, and their 
range settings are illustrated in Table 1. 
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The uniformity of the flow field can be represented by the 
relative standard deviation of the velocity (12) [14]: 

100%Cv
v


                           (12) 

where 

 
21

11

n
v vi

in
  


                    (13) 

and v  is the average speed. 

TABLE I.  FLOW FIELD OPTIMIZATION PARAMETERS 

Design variables Ranges 

Gas flow in the middle inlet (vl) 70-110 (l/min) 

Diameter of the gas-inlet tunnel (r) 1-3.5 (mm) 

Inlet spacing (d) 2.51-7.51 (mm) 

E. Temperature Field Simulation Optimization 

The addition of a graphite column alters part of the heat 
transfer mode from radiation to conduction, improving the 
heat transfer efficiency. Modifying the width of the graphite 
column influences the heating efficiency and temperature 
uniformity of the substrate. Therefore, replacing a single 
graphite column with a graphite grid composed of multiple 
graphite columns might further enhance the substrate’s 
heating efficiency and temperature uniformity. The epitaxial 
furnace employs electromagnetic induction to heat the 
reaction chamber, and the magnetic field distribution of the 
epitaxial furnace affects its heating efficiency and 
temperature uniformity. Modifying the overall position of the 
coil or adjusting the pitch of each turn coil changes the 
distribution of the magnetic field. Therefore, optimizing the 
epitaxial furnace structure requires consideration of changing 
the coil turns and pitch. The optimization problem 
encompasses three variables: coil position (dl), coil pitch (dz), 
and graphite column width (wid). The range settings of these 
parameters are shown in Table 2. The pitch parameter refers 
to uniformly changing the pitch of each coil turn based on the 
original. 

TABLE II.  TEMPERATURE FIELD OPTIMIZATION PARAMETERS 

Design variables Ranges 

Coil position (dl) -10-28 (mm) 

Pitch parameter (dz) -2-3 (mm) 

Graphite column width (wid) 20-45 (mm) 

IV. RESULT AND DISCUSSION 

A. Flow Fields 

The flow field results (Figs. 8 and 9) indicate a strong 
agreement between the fitted data and actual values with 
minimal errors. Data normalization is performed to ensure the 
prediction accuracy of the SVR model to fit the data and 
prevent significant value gaps of each independent variable 
from affecting the results. The normalization function is as 
follows: 

( )( )max min min
min

max min

y y x x
y y

x x

 
 


            (14) 

 

Fig. 6. The training set fitting results of the flow field. 

 

Fig. 7. The testing set fitting results of the flow field. 

 The objective function comprises three independent 
variables. Therefore, one of the parameters needs to be fixed, 
allowing an image of the objective function to be created with 
the other two parameters, as shown in Fig. 10, which 
illustrates the approximate location of the optimal point of the 
objective function. 

The PSO algorithm is used to determine the minimum 
value of the objective function, obtaining the following 
parameters of the most stable flow field in the reaction 
chamber:  

𝑣𝑙=91.23 𝑙/𝑚𝑖𝑛 

𝑑=7.20 𝑚𝑚                                   (15) 

𝑟=3.55 𝑚𝑚 

The convergence process is shown in Fig. 11, illustrating 
the iterative progress toward convergence. The flow field is 
simulated again at the optimum point, and the obtained flow 
field results are shown in Fig. 12. 

 

 

Authorized licensed use limited to: TU Delft Library. Downloaded on February 04,2025 at 14:18:13 UTC from IEEE Xplore.  Restrictions apply. 



2023 24th International Conference on Electronic Packaging Technology (ICEPT) 

 

Fig. 8. Functional graph of objective function and parameters 
(normalized). This simulation has fixed (a) gas flow in the middle inlet, (b) 

diameter of the gas-inlet tunnel, and (c) inlet spacing. 

 

Fig. 9. Convergence process diagram. 

 

Fig. 10. Optimized flow field. 

B. Temperature Field 

The optimization problem of the temperature field 
involves two objective functions: the average temperature and 
temperature standard deviation. Separate SVR models are 
utilized to fit the two objective functions to address each 
objective function (Figs. 12 and 13). The small fitting error 
indicates a close approximation between the fitted and true 
functions. 

The function images of two objective functions and 
independent variables of the temperature field are generated 
using the same methodology in Fig. 8. 

 

Fig. 11. Average temperature fitting results of (a) the training set and (b) 
the testing set. 

 

Fig. 12. Temperature standard deviation fitting results of (a) the training set 
and (b) the testing set. 

 

Fig. 13. Functional graph of objective function and normalized parameters 
with fixed (a) wid (b) dz and (c) dl. 

 

Fig. 14. Functional graph of objective function and normalized parameters 
with fixed (a) wid (b) dz (c) dl. 

The Pareto front of the two objective functions (average 
temperature and temperature standard deviation) represents 
the optimal advantage (Fig. 15). An optimal point in the Pareto 
front is a point where no objective function can be improved 
without worsening at least another objective function. In other 
words, by moving over the points shown in Fig. 15, the 
condition of one objective function gets better, while the 
condition of the other objective function becomes worse [15]. 
Among them, the four points indicated in the figure are the 
four best points selected in this study. The substrate 
temperature distribution at the four optimum points and the 
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independent variables are shown in Fig. 16 and Table 3, 
respectively. 

 

Fig. 15. Pareto front of the two objectives: average temperature and 
temperature standard deviation. 

 

 

Fig. 16. Temperature distribution of substrate at optimum points (a) ,(b), (c) 
and (d). 

TABLE III.  THE ARGUMENT AT THE OPTIMAL SOLUTION 

 dl dz wid 

a -2.00 mm 3.3 mm 45.00 mm 

b -2.00 mm 3.3 mm 37.23 mm 

c -0.03 mm 3.3 mm 34.67 mm 

d 3.00 mm 3.3 mm 32.15 mm 

 

The objective function values of the optimal points a to d 
obtained by SVM and optimization method are further 
analyzed using the COMSOL simulation environment. The 
results (Table 4) indicate a close agreement between the 
calculation results of the two methods, with a maximum 
calculation error of 4.80%. 

TABLE IV.  RE-EVALUATION OF THE OBTAINED OPTIMAL PARETO 

FRONT USING COMSOL. 

Points Average temperature (℃) 
Temperature standard 

deviation 

 SVR COMSOL 
Error 

(%) 
SVR COMSOL 

Error 

(%) 

a 1726.2 1770.2 2.49 6.7496 6.9430 2.79 

b 1691.4 1714.1 1.32 5.6717 5.4760 3.45 

c 1612.2 1623.9 0.72 4.4623 4.3125 3.36 

d 1513.0 1525.7 0.83 3.5728 3.4013 4.80 

V. CONCLUSIONS 

SiC epitaxy is a crucial process in semiconductor device 
manufacturing. However, optimizing the process flow and 
temperature fields is challenging. This study addressed this 
issue by employing the MOPSO algorithm to optimize the 
flow and temperature fields of SiC epitaxial. SVR was used 
to establish the functional relationship between the objective 
function and the optimization variables, enabling 
optimization of the flow and temperature fields. The 
experimental results demonstrated that the MOPSO 
algorithm improved the performance of SiC epitaxial flow 
and temperature fields. The proposed approach offered a 
more optimized and feasible solution for the SiC epitaxial 
growth process by considering multiple objective functions. 
Therefore, the manufacturing quality and reliability of 
semiconductor devices could be significantly improved. 
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