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Abstract

We will study the Clebsch-Gordan coefficients of the modular double of the quantum group Uq(sl(2,R)).
This will be done by studying and taking a good look at how B. Ponsot and J. Teschner showed how
to compute the Clebsch-Gordan coefficients [1]. Moreover, we will also take an introductory look
at the concept of quantum groups by looking at some general theory on Hopf ∗-algebras and their
representations.
The Clebsch-Gordan coefficients can roughly be described as a relation between a basis of a tensor
product U⊗V of two simple Uq(sl(2,R))-modules and a basis of the decomposition of U⊗V into simple
modules. We will show that this relation can be explicitly described by an integral transformation.
Since this describes a relation between modules of a quantum group, the first part of this thesis will
give the necessary information to introduce the reader to the concept of quantum groups and their
modules. This will be done by introducing Hopf algebras and their modules and then look at their
quantum deformations. This first part will also introduce several examples of algebras, Hopf algebras
and quantum groups to make the reader get used to the concept of Hopf algebras and quantum groups.
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Introduction

One goal of this thesis was to take a look at, and explain in detail, how B. Ponsot and J. Teschner
computed the Clebsch-Gordan coefficients [1] of a certain natural module of the modular double of
Uq(sl(2,R)) introduced by Faddeev [2]. Another goal was to give an introduction to the concept of
quantum groups, as this theory is needed to understand the modular double and its representation.
The introduction to quantum groups has been approached in such a way that other master students
with similar knowledge should be able to understand and be able to work with Hopf ∗-algebras and
Hopf ∗-algebra representations. This is done by introducing the reader to the concept of quantum
groups, but not only information on the Hopf ∗-algebra Uq(sl(2,R)). In the hope that the reader gets
a good understanding of general concepts on Hopf ∗-algebras, a more general approach to the theory
on quantum groups has been taken. However, there is still a big focus on Uq(sl(2,R)). Thus most of
the examples on algebras and representations are chosen in a way that they have some similarities to
Uq(sl(2,R)) or its module.
Besides giving information that is needed to understand the structure of Uq(sl(2,R)) and how to work
with Hopf ∗-algebra modules, I have also added some extra details to the proofs and structures given
by B. Ponsot and J. Teschner. All of this is added together in one thesis in the hope that all details
on the Hopf ∗-algebra Uq(sl(2,R)) and the natural module of its modular double are easy to follow for
other master students.

So, in this thesis we will be taking a look at [1], with a focus on the Clebsch-Gordan coefficients
of the modular double Uq(sl(2,R)) ⊗ Uq̃(sl(2,R)) introduced by Faddeev [2]. This will be done in an
introductory way, in the sense that the paper starts with background information that is needed to
understand the subject of Quantum groups and their modules. After this background information, we
will be following along [1] to construct the Uq(sl(2,R))-module Pα and calculate the Clebsch-Gordan
coefficients. Thus most of the information around this specific module is given in this paper can also
directly be found in [1].
However, in this paper we will immediately consider the module Pα as a module of the modular
double, instead of getting this fact as a consequence. This will not change any of the facts, but will
more directly show why certain restrictions are chosen for the module Pα. Besides this, we will be
giving a bit more details in some proofs and also add some more details of the module that are found
in other papers.
Now, the Racah-Wigner coefficients of Uq(sl(2,R)), coefficients that depend on the Clebsch-Gordan
coefficients, play an important role in Liouville theory. For example, the Racah-Wigner coefficients can
be used to describe normalized fusion blocks of the fusion kernel. Surprisingly, another application of
the Racah-Wigner coefficients is that they can be used to calculate the hyperbolic volume of a non-ideal
tetrahedron. This was shown by J. Teschner and G.S. Vartanov in [3], where they also allude that
there may be a three dimensional gauge theory that has the Racah-Wigner coefficients as its partition
functions. So we see that the Racah-Wigner coefficients have several use cases in certain aspects of
quantum field theory.
The paper will have the following structure: The first five sections will contain information on certain
subjects that are necessary to understand what a Uq(sl(2,R))-module is in general. All of these sections
will take a more general approach to the theory to give the reader a good idea of how to work with the
subjects. Now, in the first section we will be looking at algebras, coalgebras and Hopf algebras. In the
second section we will be looking at the concept of modules of algebras and coalgebras. In the thirds
section we will be looking at the concept of universal enveloping algebras of a Lie algebra. Now, since
it is natural to introduce Lie algebras via Lie groups, Lie groups will also shortly be a subject of this
paper, even though they will not play any role in the later parts. The fourth section will introduce
quantum deformations of the real plane and of certain algebras and will also discuss what a Hopf
∗-algebra is.
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The sixth section will be about a different Uq(sl(2,R))-module: the Verma module. Most of the things
that are discussed in this section can directly be translated to the infinite-dimensional module Pα.
However, the action of Uq(sl(2,R)) on this module are a bit simpler, as they roughly send a basis
element to another basis element. Therefore, this is a decent module to look at first to get used to the
notation and how to work with Uq(sl(2,R))-modules.
The final three sections will be about the main subject: the infinite-dimensional Uq(sl(2,R))-module
and its Clebsch-Gordan coefficients. Section seven will introduce the module and go over certain
properties that it satisfies. The eighth section will be about the decomposition of the tensor product
Pα2 ⊗ Pα1 into irreducible modules. This will in turn lead to the definition of the Clebsch-Gordan
coefficients. The ninth section will end the thesis with a few small remarks on the Racah-Wigner
coefficients. This part can be seen as a generalisation of section eight to the tensor product of more
than just two modules.
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1 Algebras, coalgebras and bialgebras

Our main goal is to study some properties of a certain module of the Hopf ∗-algebra Uq(sl(2)). But
before we will look at this Hopf ∗-algebra, we will first look at some general theory on Hopf algebras
and their modules. After that, we will introduce the algebra U(sl(2)) and finally look at its quantum
deformation Uq(sl(2)).
This first section will contain general information on algebra, coalgebras and bialgebras, together with
some examples. Most of the information in this part is from [4], but certain information on algebras
and algebra morphisms can be found in [5]. Do note that we will see some of the more concrete
examples in later parts of this thesis. Since they will also be used as examples in later sections.
The later sections that will be about our main subject Uq(sl(2,R)) will not use all of the information
given here. The most important parts are the definition of a bialgebra, properties of morphisms and
the coproduct and information on the structure of quotient algebras and the tensor algebra. The reason
why the definition of a Hopf algebra is less important, is due to the fact that the antipode S, which
defines this structure, is not used in the later sections. However, even though not all of the given
information is used in later sections, it is still given to give the reader a good idea of how to work with
bialgebras and Hopf algebras in general.

1.1 Algebras

Let’s start with defining what an algebra is.

Definition 1.1. An algebra A over a ring R is a ring A with a ring map ηA : R → A, such that the
image of ηA commutes with all of A.

Now, a ring R is an additive group R, with a multiplication µR : R⊗R → R that is associative,
distributive and R contains a unit 1R such that µR(1R, x) = x for all x ∈ R. Thus we assume that
any ring contains a unit. So, the ring map ηA allows us to define scalar multiplication on A via the
map R⊗A → A; r · a := µA(ηA(r), a) for any r ∈ R and a ∈ A. Furthermore, since any algebra A is
defined in combination with some ring R, it is often referred to as an R-algebra. In the case of this
thesis, every algebra will be a k-algebra where k is some field. Note, that if A is a ring and k is a field,
the map ηA of the above definition, induces a vector space structure on A over k via k ·a, k ∈ k, a ∈ A,
as defined above. This then turns the multiplication map µA : A⊗A → A into a bilinear map.
Now, an algebra A is said to be abelian, or commutative, if µA(a, b) = µA(b, a) ∀a, b ∈ A. In other
words, if the center of A, Z(A), is all of A, where Z(A) = {a ∈ A : µA(a, b) = µA(b, a) ∀b ∈ A}.

One can also define an algebra with the use of commuting diagrams. This is especially useful later
on to quickly see that coalgebras are dual to algebras. However, it gives a less intuitive definition of
what an algebra is, which is why the first definition is also given.

Definition 1.2. An algebra A over a field k is a triple (A, µ, η) where A is a vector space and
µ : A⊗A → A, η : k → A are linear maps such that the following two graphs commute:

Associativity:

A⊗A⊗A A⊗A

A⊗A A

µ⊗ id

id⊗ µ µ

µ

and unitality:

k⊗A A⊗A A⊗ k

A

η ⊗ id id⊗ η

µ
∼=

∼=
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1.1 Algebras

If, in addition, the following diagram commutes, then A is said to be an abelian algebra:
A

A⊗A A⊗A

µ µ

τA,A

In the above definition τA,B : A ⊗ B → B ⊗ A is the flip function. So, if a ⊗ b ∈ A ⊗ B, then
τA,B(a⊗ b) = b⊗ a.
Note, if A is an algebra, not every a ∈ A needs to have a multiplicative inverse, i.e. there need not
be a b ∈ A such that µA(a, b) = 1 ∀a ∈ A. So, to make it easier to refer to invertible elements of an
algebra, let A× = {a ∈ A : ∃b ∈ A (µA(a, b) = µA(b, a) = 1)}, be the set of all invertible elements of A.

Some useful concepts regarding algebras are algebra morphisms, ideals and modules. These con-
cepts will also be return quite often, as we will also introduce them with respect to, for example,
bialgebras or Lie algebras.

Definition 1.3. Let A, B be algebras, then an algebra morphism f : A → B is a ring map such that
f ◦ ηA = ηB.
In other words, f is a linear map and for a, b ∈ A, f(a+ b) = f(a)+f(b), f(µA(a, b)) = µB(f(a), f(b)).

Definition 1.4. Let A be an algebra, then I ⊂ A is a left-ideal (respectively a right ideal) if

µA(a, i) ∈ I (respectively µA(i, a) ∈ I ) ∀a ∈ A, i ∈ I

I is called a two-sided ideal, or an ideal, if I is both a left- and right-ideal.

Now, ideals of an algebra let us define what a quotient algebra is.

Theorem 1.5. Let A be an algebra over a field k and let I ⊂ A be an ideal. Then the bilinear map

µA/I : A/I ⊗ A/I → A/I; µA/I((a+ I), (b+ I)) = µA(a, b) + I = ab+ I,

defines an algebra structure on A/I together with ηA/I = ηA.
In particular, the natural map π : A → A/I; a 7→ a + I becomes an algebra morphism with kernel I
when A/I is given this algebra structure.

Note that a quotient algebra A/I contains classes a + I as its elements. This means that two
differently written elements can be the same, as

a+ I = b+ I ⇐⇒ a− b ∈ I.

To show that A/I is indeed an algebra with the above multiplication, it is sufficient to show that
the above property holds for µA/I . In other words, the only thing that needs to be shown is that if
a + I = a′ + I, b + I = b′ + I, then ab + I = a′b′ + I. Thus it suffices to show that ab − a′b′ ∈ I.
Which follows from the fact that I is an ideal.

Now, let’s give some relevant examples of algebras.
We will first give some general examples. Let A be some algebra. Then one can define an opposite
algebra Aop as the same algebra A, but with µAop = µA ◦ τA,A. Notice that if A is an abelian algebra,
then A = Aop.

Another general example is the polynomial algebra A[x], where A is an algebra. This is the algebra
of all polynomials of the form

∑n
i=0 aix

i, ai ∈ A. Note, A[x1, . . . , xn] would then be the polynomial
algebra with n variables.
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1.2 Tensor products of vector spaces and algebras

A third and final general example is the free algebra. Let X be a set and let k be a field. Then,
k{X} is the vector space with basis consisting of all elements xi ∈ X and the empty set .
Then, multiplication on k{X} can be defined by:

x1 · x2 = x1x2, and (x1 · · ·xn) · (xn+1 · · ·xn+m) = x1x2 · · ·xn+m for x1, . . . , xn+m ∈ X.

This multiplication turns k{X} into an algebra, called the free algebra on X.
Now, if we take X = {x1, . . . , xn} and let I ⊆ k{X} be the ideal generated by elements of the form
xixj − xjxi with i, j ∈ {1, . . . , n}. Then we see that k{X}/I is an abelian algebra. Moreover, we get
k{X}/I ∼= k[x1, . . . , xn].

We will end this part with two more explicit examples, which will return in later parts. Let A be
an algebra. Then Mn(A) is the algebra of all n×n-matrices with entries in A, where the multiplication
is the standard matrix multiplication. This gives rise to two specific examples, GL2(A) and SL2(A).
Let A be an abelian algebra, then

GL2(A) =

{
m =

(
a b
c d

)
∈M2(A) : ad− bc = det(m) ∈ A×

}
,

SL2(A) = {a ∈ GL2(A) : det(a) = 1},

are the matrix algebra of invertible matrices and matrices with determinant equal to 1 respectively.
We can also define two polynomial algebras that are related to the above two algebras in a certain
sense:

GL(2) =M(2)[t]/((ad− bc)t− 1),

SL(2) = GL(2)/(t− 1) =M(2)/(ab− bc− 1),

with M(2) the polynomial algebra k[a, b, c, d]. Notice that both GL(2) and SL(2) are also abelian
algebras.
The names for these algebras make sense, as HomAlg(M(2),A) ∼= M2(A) for any abelian algebra A,
with HomAlg(A,B) the algebra of algebra morphisms from A to B. The same is true when M(2) is
replaced with either GL(2) or SL(2), which follows from the fact that HomAlg(k[x1, . . . , xn],A) ∼= An

andM2(A) ∼= A4 =
⊕4

i=1A. So the algebrasM(2), GL(2) and SL(2) are related to the matrix algebras
M2(A), GL2(A) and SL2(A) for A abelian via an isomorphism between morphisms and matrices.
For example, the isomorphism HomAlg(M(2),A) ∼= M2(A), A an abelian algebra, f : M(2) → A an
algebra morphism, is given by:

f 7→
(
f(a) f(b)
f(c) f(d)

)
.

The same function is used for GL(2) and SL(2). Note, we will use Hom(A,B) for the set of linear maps
from A → B. Also, we will be using Homtext(A,B) in general for the set of morphisms of a certain
structure. For example, HomAlg(A,B) is the set of algebra morphisms and HomLie(A,B) the set of
Lie algebra morphism, with Lie algebras a structure that will be introduced later on in section 3.2.
Eventually it will be shown that the vector spaces GL(2) and SL(2) can also be turned into coalgebras
and even Hopf-algebras. Later on we will mostly be concerned with SL(2), but M(2) and GL(2) also
have nice properties and are two other explicit examples that are closely related to SL(2).

1.2 Tensor products of vector spaces and algebras

This next part will be on tensor algebras, since Uq(sl(2)) will be defined as a quotient algebra of a
tensor algebra. Roughly speaking, a tensor algebra is just the tensor product of two algebras. However,
unlike the tensor product of vector spaces, we do need to make sure that the unit and multiplication
maps are well-defined.
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1.2 Tensor products of vector spaces and algebras

We will end this part with looking at the tensor algebra. This is a tensor product of vector spaces that
will be turned into an algebra. Do note that Appendix A: Tensor Products contains information on
the tensor product between vector space that will be assumed to be known.

Theorem 1.6. Let A,B be algebras over k, then the bilinear map

µA⊗B : (A⊗ B)⊗ (A⊗ B) → A⊗B; µA⊗B(a⊗ b, a′ ⊗ b′) = µA(a, a
′)⊗ µB(b, b

′) = aa′ ⊗ bb′

defines an algebra structure on A⊗ B, where A⊗ B is called the tensor product of A and B.

Note that 1 ⊗ 1 ∈ A⊗ B is the unit of this tensor algebra. Also, by defining iA : A → A⊗ B,
iA(a) = a⊗ 1 (similar for B), we get two algebra morphisms such that,

a⊗ b = iA(a)iB(b) = iB(b)iA(a); ∀a ∈ A, b ∈ B.

We also have the following universal property of the tensor product of algebras:

Proposition 1.7. Let A,B, C be three algebras over k and f : A → C and g : B → C two algebra
morphisms such that

∀(a, b) ∈ A× B ( f(a)g(b) = g(b)f(a) ) .

Then, ∃!f ⊗ g : A⊗ B → C, algebra morphism, such that (f ⊗ g) ◦ iA = f and (f ⊗ g) ◦ iB = g.
In particular, if C is abelian, we get HomAlg(A⊗ B, C) ∼= HomAlg(A, C)× HomAlg(B, C).

In other words, we see that all algebra morphisms of A ⊗ B to an algebra C can be constructed
precisely by the pairs (f, g) of algebra morphisms f : A → C and g : B → C such that Im(f) and Im(g)
commute in C.
This proposition can than be used to show the following:

Proposition 1.8. LetX be a set and let I ⊂ k{X} be an ideal of the free algebra. Let A = k{X}/I be
the quotient algebra and let X ′, X ′′ be copies of X with I ′, I ′′ ideals of k{X ′} and k{X ′′} respectively
such that they resemble the ideal I ⊂ X.
Then, A⊗A ∼= A⊗2 = k{X ′⊔X ′′}/ (I ′, I ′′, X ′X ′′ −X ′′X ′), where X ′⊔X ′′ is the disjoint union of X ′

and X ′′ and X ′X ′′−X ′′X ′ is the two-sided ideal of k{X ′⊔X ′′} generated by the elements x′x′′−x′′x′,
x′ ∈ X ′, x′′ ∈ X ′′.

Proof. For any x ∈ X, let x′ ∈ X ′ and x′′ ∈ X ′′ be the corresponding copy of x. Let φ′ : A → A⊗2

and φ′′ : A → A⊗2 be given by φ′(x) = x′, φ′′(x) = x′′.
As φ′ and φ′′ are algebra morphisms and x′y′′ = y′′x′, x′ ∈ X ′, y′′ ∈ Y ′′, in A⊗2. It follows from
proposition 1.7, that we have a unique algebra morphism φ : A⊗A → A⊗2; x⊗ y 7→ x′y′′.
Conversely, let ψ : A⊗2 → A⊗A, ψ(x′) = x ⊗ 1, ψ(x′′) = 1 ⊗ x for x′ ∈ X ′, x′′ ∈ X ′′. ψ is also an
algebra morphism and also the inverse of φ, hence A⊗A ∼= A⊗2.

Later on we’ll use this proposition to show more facts about M(2), GL(2) and SL(2). But for now
we’ll move on to shortly look at the tensor algebra.

Definition 1.9. Let V be a vector space and let T 0(V ) = k, T 1(V ) = V, T 2(V ) = V ⊗ V = V ⊗2 and
Tn(V ) = V ⊗n. As we have Tn(V ) ⊗ Tm(V ) ∼= Tn+m(V ), we can define an associative multiplication
on T (V ) =

⊕
n∈N T

n(V ) given by,

(x1 ⊗ · · · ⊗ xn)(xn+1 ⊗ · · · ⊗ xn+m) = x1 ⊗ · · · ⊗ xn+m, x1, . . . , xn+m ∈ V.

The vector space T (V ), together with the above multiplication, is called the tensor algebra of V

– 7 –



1.3 Coalgebras

We can also define iV : V → T (V ) to embed the elements of V into T (V ), just like we did above
for embedding A into A⊗ B. This embedding, together with the multiplication of T (V ), gives us the
following simplification:

x1 ⊗ · · · ⊗ xn = iV (x1) · · · iV (xn).

So we can set x1 · · ·xn = x1 ⊗ · · · ⊗ xn ∈ T (V ) for x1, . . . , xn ∈ V . This mostly helps with keeping
things short and clean when dealing with products of elements of V in T (V ), which is something that
will come up a lot. Especially when we will look at U(sl(2)), which we will later show to be a tensor
algebra generated by elements of the "vector space" sl(2).

A nice thing about the tensor algebra is that algebra morphisms from T (V ) to some algebra A are
closely related to linear maps from V to A. The tensor algebra is itself closely related to a certain free
algebra. So, even though the tensor algebra looks really complicated, some properties regarding this
algebra are closely related to simpler forms.

Proposition 1.10. Let A be any algebra and V some vector space.

(i) If f : V → A is some linear map, then

∃!f̄ : T (V ) → A
(
f̄ ◦ iV = f

)
, algebra morphism.

In particular, the map f̄ 7→ f̄ ◦ iV is a bijection, so HomAlg(T (V ),A) ∼= Hom(V,A).

(ii) Let I be an indexing set for a basis of the vector space V . Then T (V ) ∼= k{I}.

In general the tensor algebra T (V ) is not abelian. However, we can construct an abelian algebra
by simply "dividing out" the non-commuting terms.

Definition 1.11. Let V be a vector space and let I(V ) be the ideal of T (V ) that’s generated by all
elements of the form xy − yx for x, y ∈ V . Then S(V ) = T (V )/I(V ) is an abelian algebra called the
symmetric algebra.

The symmetric algebra S(V ) has some properties that are almost identical to the properties of the
tensor algebra T (V ) of proposition 1.10.

Proposition 1.12. Let A be any algebra, V some vector space.

(i) If f : V → A is a linear map such that f(x)f(y) = f(y)f(x) for any x, y ∈ V . Then

∃!f̄ : S(V ) → A
(
f̄ ◦ iV = f

)
, algebra morphism.

In particular, if A is abelian, we again get that HomAlg(S(V ),A) ∼= Hom(V,A).

(ii) If I is an indexing set for a basis of V , then S(V ) ∼= k[I], the polynomial algebra on the set I.

(iii) Let V ′ be another vector space. Then S(V ⊕ V ′) ∼= S(V )⊗ S(V ′).

1.3 Coalgebras

Now that we have seen some examples of algebras, we will take a short look at coalgebras. After some
short introduction, we will show that the algebras M(2), GL(2) and SL(2) we saw earlier, can also be
turned into coalgebras.

Coalgebras are, like algebras, vectors spaces with two operations defined on them. The definition
of a coalgebra is also dual to that of an algebra.
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1.3 Coalgebras

Definition 1.13. A coalgebra is a triple (C,∆, ε) where C is a vector space and the coproduct ∆: C →
C ⊗ C and counit ε : C → k are linear maps such that the following two graphs commute:
Coassociativity;

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ id⊗∆

∆⊗ id

and counitality:

k⊗ C C ⊗ C C ⊗ k

C

ε⊗ id id⊗ ε

∆∼=
∼=

If in addition the following diagram, cocummunity, also commutes, then C is said to be a cocommutative
coalgebra:

C

C ⊗ C C ⊗ C

∆ ∆

τC,C

Notice that these graphs are exactly the same graphs as in the definition of an algebra 1.2, but the
arrows are all going in the opposite direction. Hence, it is said that coalgebras are dual to algebras.
Just like with algebras, we also have a coalgebra morphisms:

Definition 1.14. Let (C,∆, ε) and C′,∆′, ε′) be two coalgebras. Then a linear map f : C → C′ is a
coalgebra morphism if

(f ⊗ f) ◦∆ = ∆′ ◦ f and ε = ε′ ◦ f.

Since ∆(x) ∈ C ⊗ C, we can in general only write it out as ∆(x) =
∑

i x
′
i ⊗ x′′i for x′i, x

′′
i ∈ C. But,

sometimes the coproduct acts rather nicely on certain elements of the coalgebra.

Definition 1.15. Let C be a coalgebra and let x ∈ C\{0}. Then x is called a grouplike element of C
if ∆(x) = x⊗ x.

Later on we will see some useful cases for both coalgebra morphisms and grouplike elements. But
we will first take a quick look at some generic examples of coalgebras, with three concrete examples
given in 1.4. First, note that a field k can be turned into a coalgebra when taking ∆(1) = 1 ⊗ 1 and
ε(1) = 1. So, any field is in particular also a coalgebra.

Similar to the opposite algebra, we can also define an opposite coalgebra. If (C,∆, ε) is a coalgebra,
let ∆op = τC,C ◦∆, then (C,∆op, ε) is also a coalgebra.

Also, the tensor product of two coalgebras C, C′ can also be given a coalgebra structure. For the
counit one can take ε⊗ε′, but, unlike with algebras, we cannot just use ∆⊗∆′ as the coproduct, since
∆⊗∆′ will then not be coassociative. No, for C ⊗ C′ to be turned into a coalgebra, its coproduct needs
to be defined as

(
id⊗ τC,C′ ⊗ id

)
◦(∆⊗∆′). So we see that

(
C ⊗ C′,

(
id⊗ τC,C′ ⊗ id

)
◦ (∆⊗∆′) , ε⊗ ε′

)
is a coalgebra.

The tensor algebra T (V ) of a vector space V , can also be constructed as a coalgebra instead
of an algebra, then called the tensor coalgebra T ′(V ) of V . Note that the construction of T (V )
was done via the isomorphism V ⊗n ⊗ V ⊗m ∼= V ⊗(n+m). This isomorphism was used to construct a
multiplication on the vector space T (V ). Similarly, we can use the isomorphism V ⊗(n+m) ∼= V ⊗n⊗V ⊗m

to construct a coproduct on T ′(V ) = (⊕n∈NT
n(V ),∆, ε) by ∆(x1 ⊗ · · · ⊗ xn ⊗ xn+1 ⊗ · · · ⊗ xn+m) =

(x1⊗· · ·⊗xn)⊗ (xn+1⊗· · ·⊗xn+m). Together with ε(v) = 1, for v ∈ V , T ′(V ) turns into a coalgebra.
Do note that this coproduct just splits up the tensor product of vectors into two tensor products. So
the n in the above explanation need not be fixed. This also means that we can just split the tensor
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1.3 Coalgebras

product x⊗ · · ·xn ⊗ xn+1 ⊗ xn+m at any spot. So ∆(x⊗ · · ·xn ⊗ xn+1 ⊗ xn+m) is not really a "fixed"
element, as we can place the brackets at any spot, but it is exactly one element of T ′(V ).

A last example we will look at is similar to the free algebra. But before we will look at that, let us
note a nice property of the dual spaces of a coalgebra and algebra.

Proposition 1.16. Let C be a coalgebra, let A be a finite dimensional algebra and let λ be as in A.5,
then

1. the dual space C∗ of C is an algebra with µC∗ = ∆∗ ◦ λ and ηC∗ = ε∗, and

2. the dual space A∗ of A is a coalgebra with ∆A∗ = λ
−1 ◦ µ∗ and ε = η∗, where the superscript ∗

indicates the transpose of a linear map.

The above proposition can be proven by using the diagrams of definitions 1.2 and 1.13 and checking
that they are true for the given ∆A∗, εA∗, µC∗ and ηC∗. Do note that the above propositions has no
condition for the coalgebra C, but it does have one for the algebra A. So, we see that only the dual A∗

of an algebra need not be a coalgebra in general, but the dual C∗ of a coalgebra can always be induced
with an algebra structure.

Now, an example of a coalgebra that is similar to the free algebra is the coalgebra of a set. Let X
be some set and set C = k[X], the polynomial vector space with variables in X. Then C becomes a
coalgebra with ∆(x) = x⊗ x and ε(x) = 1 ∀x ∈ X. Obviously, we can also construct a coalgebra of a
set for a product set X × Y , with X, Y sets. This gives rise to the coalgebra k[X × Y ]. Now, the nice
thing is that

k[X × Y ] ≃ k[X]⊗ k[Y ],

as one would expect. The isomorphism between these coalgebras is given by ψ(x ⊗ y) = (x, y), for
all x ∈ X, y ∈ Y . So we can construct several examples of tensor products of coalgebras using the
coalgebra of a set.
Besides helping us with constructing examples of tensor products of coalgebras, the coalgebra of a set
can also be used to construct examples of algebras. If we use the above proposition with C = k[X],
for X a set, we get the function algebra C∗ consisting of linear functionals f : X → k. This algebra
has a unit given by η = ε and multiplication defined as (fg)(x) = µ(f, g)(x) = f(x)g(x) for x ∈ X,
f, g ∈ C∗.

We finish this part by constructing the quotient coalgebra. This definition will look fairly similar
to that of the quotient algebra, theorem 1.5.

Definition 1.17. Let C be a coalgebra, then I ⊂ C is a coideal if ∆(I) ⊂ I ⊗ C + C ⊗ I and ε(I) = 0.

Now, let C be a coalgebra and I ⊂ C a coideal of C. Then ∆: C → C ⊗ C factors to

∆: C/I → C ⊗ C/(I ⊗ C + C ⊗ I) = C/I ⊗ C/I

and ε : C → k factors to
ε : C/I → k,

making (C/I,∆, ε) a coalgebra, called the quotient-coalgebra. Later on we will see some examples of
quotient-coalgebras. But for now, we will first look at Sweedler’s notation for the coproduct. This
notation will help us to write the coproduct in a nice and short fashion.
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1.4 M(2), GL(2) and SL(2) as coalgebras

1.3.1 Sweedler’s notation

Let C be a coalgebra. Up till now, we have not really looked at how ∆(x), x ∈ C, looks in general.
For some of the given examples its easy to write out ∆(x), e.g. for the coalgebra of a set we just get
∆(x) = x⊗ x. But, in general we can only say that ∆(x) =

∑
i x

′
i ⊗ x′′i for x′i, x

′′
i ∈ C.

Due to the coassociativity of the coproduct, we get that id⊗∆◦∆(x) = ∆⊗ id◦∆(x), which becomes∑
i

x′i ⊗∆(x′′i ) =
∑
i

∑
j

x′i ⊗ (x′′i )
′
j ⊗ (x′′i )

′′
j =

∑
i

∑
j

(x′i)
′
j ⊗ (x′i)

′′
j ⊗ x′′i =

∑
i

∆(x′i)⊗ x′′i .

This quickly becomes a mess of subscripts and upperscript, thus the coproduct will be written as

∆(x) =
∑
(x)

x′ ⊗ x′′,

and the coassoaciative property will be written as

∑
(x)

x′ ⊗ x′′ ⊗ x′′′ =
∑
(x)

x(1) ⊗ x(2) ⊗ x(3) =
∑
(x)

∑
(x)

(x′)′ ⊗ (x′)′′

⊗ x′′ =
∑
(x)

x′ ⊗
∑
(x′′)

(x′′)′ ⊗ (x′′)′′.

This makes using the coproduct several times a lot more convenient, as we will just write∑
(x) x

(1) ⊗ · · · ⊗ x(n) for when the coproduct is applied n times to an element x ∈ C.
With this, the condition for counitality can be rewritten as

∑
(x) ε(x

′)x′′ = x =
∑

(x) x
′ε(x′′). Here we

use that k ⊗ C ∼= C to just get x. This then lead to the following:∑
(x)

x(1) ⊗ ε(x(2))⊗ x(3) ⊗ x(4) ⊗ x(5) =
∑
(x)

x(1) ⊗ x(2) ⊗ x(3) ⊗ x(4),

via the same isomorphism k⊗ C ∼= C.

With this new notation, the condition for C to be cocommutative becomes∑
(x)

x′ ⊗ x′′ =
∑
(x)

x′′ ⊗ x′, ∀x ∈ C.

The left relation in definition 1.14 can in turn also be rewritten as,

f(∆(x)) =
∑
(x)

f(x′)⊗ f(x′′) =
∑
(f(x))

f(x)′ ⊗ f(x)′′,

which closely resembles the condition for a linear map to be an algebra morphism.
Lastly, the coproduct of a tensor product of coalgebras C ⊗ C′ can be written as,

∆(x⊗ y) =
∑
(x⊗y)

(x⊗ y)′ ⊗ (x⊗ y)′′ =
∑
(x)(y)

(x′ ⊗ y′)⊗ (x′′ ⊗ y′′),

which is a lot clearer than the original given coproduct of the tensor product of two coalgebras.

1.4 M(2), GL(2) and SL(2) as coalgebras

We have seen some examples of coalgebras that looked like some of the earlier given examples of
algebras. To end this section about coalgebras, we will look at the algebra examples M(2), GL(2),
SL(2) and show that they can also be turned into coalgebras. Coincidentally, this will also be a good
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introduction for the next section, which will be about bialgebras. As bialgebras will be shown to be
vector spaces that are both algebras and coalgebras.

Recall that,

M(2) = k[a, b, c, d], GL(2) =M(2)[t]/ ((ad− bc) t− 1) , SL(2) = GL(2)/(t−1) =M(2)/(ad−bc−1).

Then we get,

M(2)⊗2 = k[a′, a′′, b′, b′′, c′, c′′, d′, d′′],

GL(2)⊗2 =M(2)⊗2[t, t′]/((a′d′ − b′c′)t′ − 1, (a′′d′′ − b′′c′′)t′′ − 1),

SL(2)⊗2 = GL(2)⊗2/(t′ − 1, t′′ − 1) =M(2)⊗2/(a′d′ − b′c′ − 1, a′′d′′ − b′′c′′ − 1)).

Now, matrix multiplication is given by(
a′ b′

c′ d′

)(
a′′ b′′

c′′ d′′

)
=

(
a′a′′ + b′c′′ a′b′′ + b′d′′

c′a′′ + d′c′′ c′b′′ + d′d′′

)
and this gives rise to the following algebra morphisms: ∆1 : M(2) →M(2)⊗2, ∆2 : GL(2) → GL(2)⊗2

and ∆3 : SL(2) → SL(2)⊗2, with

∆i(a) = a′a′′ + b′c′′, ∆i(b) = a′b′′ + b′d′′,

∆i(c) = c′a′′ + d′c′′, ∆i(d) = c′b′′ + d′d′′,

for i ∈ {1, 2, 3, } provided we set ∆2(t) = t′ · t′′.
Let A be an abelian algebra, then

HomAlg(M(2),A) ∼=M2(A), HomAlg(GL(2),A) ∼= GL2(A) and HomAlg(SL(2),A) ∼= SL2(A).

These isomorphisms let us identify ∆i with the matrix multiplication in M2(A), GL2(A) and SL2(A).
Thus its easier to rewrite these morphisms as:

∆i

(
a b
c d

)
=

(
∆i(a) ∆i(b)
∆i(c) ∆i(d)

)
=

(
a′ b′

c′ d′

)(
a′′ b′′

c′′ d′′

)
We can also apply proposition 1.8 to note that M(2)⊗2 ∼= M(2) ⊗M(2), GL(2)⊗2 ∼= GL(2) ⊗ GL(2)
and SL(2)⊗2 ∼= SL(2) ⊗ SL(2). Recall that this isomorphism maps a′ 7→ a ⊗ 1 and a′′ 7→ 1 ⊗ a.
So, if we also apply this isomorphism, we can further rewrite ∆i to, ∆1 : M(2) → M(2) ⊗ M(2),
∆2 : GL(2) → GL(2)⊗GL(2) and ∆3 : SL(2) → SL(2)⊗ SL(2), which can be written in matrix form
as:

∆i

(
a b
c d

)
=

(
a b
c d

)
⊗
(
a b
c d

)
, and ∆2(t) = t⊗ t.

Now, since ∆i are compositions of two algebra morphisms, they are also algebra morphisms from
M(2), GL(2) and SL(2) to M(2)⊗M(2), GL(2)⊗GL(2) and SL(2)⊗ SL(2) respectively.
For now we’ve only constructed an algebra morphism, but the ∆i are at least possible candidates for a
coproduct. But we also need a counit if we want to show that M(2), GL(2) and SL(2) are coalgebras.
So, let

ε1 : M(2) → k, ε2 : GL(2) → k and ε3 : SL(2) → k

be algebra morphism defined by εi(a) = εi(d) = 1, εi(b) = ε(c) = 0 and ε2(t) = 1. The claim is that
∆i and εi turn the above vector spaces into coalgebras. To show this, it’s sufficient to show that ∆i is
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coassociative and εi is counital for the generators a, b, c, d and also t in the case of GL(2).
First, note that t ∈ GL(2) is grouplike, so ∆2 is coassociative for t and((

a b
c d

)
⊗
(
a b
c d

))
⊗
(
a b
c d

)
=

(
a b
c d

)
⊗
((

a b
c d

)
⊗
(
a b
c d

))
due to how ∆i is constructed. Hence ∆i is coassociative for i ∈ {1, 2, 3}.
Secondly, ε2(t) = 1 and note that(

a b
c d

)
⊗ εi

(
a b
c d

)
=

(
a b
c d

)
⊗
(
1 0
0 1

)
and εi

(
a b
c d

)
⊗
(
a b
c d

)
=

(
1 0
0 1

)
⊗
(
a b
c d

)
,

so the counitality graph of definition 1.13 commutes for the generators a, b, c, d and t. Hence εi,
i ∈ {1, 2, 3}, is indeed a counit and (M(2),∆1, ε1), (GL(2),∆2, ε2) and (SL(2),∆3, ε3) are coalgebras.

1.5 Bialgebras and Hopf algebras

We have seen that M(2), GL(2) and SL(2) are both algebras and coalgebras. Moreover, the way we
constructed a coalgebra structure on these spaces even turned their respective coproducts and counits
into algebra morphisms. Thus, all three vector space have an algebra structure and a coalgebra
structure, which in particular is defined via algebra morphisms. This is precisely the definition of a
bialgebra.

Definition 1.18. A bialgebra is a quintuple (H, µ, η,∆, ε) such that (H, µ, η) is an algebra, (H,∆, ε)
is a coalgebra and µ, η are coalgebra morphisms or ∆, ε are algebra morphism.

In this definition, the vector space H⊗H implicitly gets the structure of both a tensor product of
algebras and a tensor product of coalgebras. Also, it is sufficient to know if either µ, η are coalgebra
morphisms or that ∆, ε are algebra morphisms to know if (H, µ, η,∆, ε) is a bialgebra, since both
conditions are equivalent:

Theorem 1.19. Let (H, µ, η,∆, ε) be a quintuple such that (H, µ, η) is an algebra and (H,∆, ε) is a
coalgebra. Then the following are equivalent:

1. The maps µ and η are coalgebra morphisms.

2. The maps ∆ and ε are algebra morphisms.

The proof of this theorem comes down to just checking that the graphs that express that ∆ and ε
are algebra morphisms are the same as the graphs that express that µ and η are coalgebra morphisms.
Using Sweedler’s notation, the conditions that ∆ and ε are algebra morphisms becomes:

∆(xy) =
∑
(xy)

(xy)′ ⊗ (xy)′′ =
∑
(x)(y)

x′y′ ⊗ x′′y′′ = ∆(x)∆(y), ∆(1) = 1⊗ 1,

ε(xy) = ε(x)ε(y), ε(1) = 1 ∀x, y ∈ H.

Definition 1.20. Let H,H′ be bialgebras and f : H → H′ a linear map. Then f is called a bialgebra
morphism if f is both an algebra and coalgebra morphism.

We have already seen some examples of bialgebras, for example M(2), GL(2) and SL(2). We have
also seen some indirect examples, for example proposition 1.16 shows that if H is a finite dimensional
bialgebra, then the dual H∗ is also a bialgebra. But, before we continue with some facts on bialgebras,
we will give some more examples of bialgebras. These examples will look similar to earlier given
examples of algebras and coalgebras.
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Let H be a bialgebra, then we can construct three different bialgebras that looks similar to the opposite
algebra or opposite coalgebra. These three bialgebras are given by:

Hop = (H, µop, η,∆, ε), Hcop(H, µ, η,∆op, ε) and Hop cop = (H, µop, η,∆op, ε).

The exampleM(2) can also be generalised to construct a bialgebra structure onM(n) = k[x11, x12, . . . , xnn],
the polynomial algebra in n2 variables. Set

∆(xij) =
n∑

k=1

xik ⊗ xkj and ε(xij) = δij ,

then ∆ and ε are algebra morphisms, with ∆ still resembling matrix multiplication. Together with the
algebra structure of the polynomial algebra, (M(n), µ, η,∆, ε) turns into a bialgebra. Note that n = 2
does indeed give us the same bialgebra as M(2) defined in the previous section.

A final example of a bialgebra is once again a vector space which we know has both an algebra and
coalgebra structure. Namely, the tensor algebra T (V ). However, to define a bialgebra structure, we
do need to construct a different coproduct on T (V ).

Theorem 1.21. Let V be a vector space, then ∃! bialgebra structure on T (V ) such that

∆(v) = 1⊗ v + v ⊗ 1 and ε(v) = 0 ∀v ∈ V.

This is a cocommutative bialgebra and for any v1, v2, . . . , vn ∈ V we have

ε(v1 · · · vn) = 0,

∆(v1 · · · vn) = 1⊗ v1 · · · vn +
n−1∑
p=1

∑
σ

vσ(1) · · · vσ(p) ⊗ vσ(p+1) · · · vσ(n) + v1 · · · vn ⊗ 1,

where σ runs over all permutations of Sn such that

σ(1) < σ(2) < · · · < σ(p) and σ(p+ 1) < σ(p+ 2) < · · · < σ(n),

the so called (p, n− p)−shuffles.

Notice that v1 · · · vn is again the same short hand notation as in definition 1.9. For the full proof
of this theorem, see [4]. This proof mostly comes down to using induction on n to show that ε and
∆are algebra morphisms, then checking that (T (V ),∆, ε) is indeed a cocommutative coalgebra with
the given coproduct and counit.

Now that we have a general idea of what bialgebras are, we can finally talk about Hopf algebras.
Roughly speaking, a Hopf algebra H is just a bialgebra, but with an extra endomorphism S : H → H
added to the structure. Since the endomorphism S is what makes a Hopf algebra different from a
bialgebra, we will first construct S. Later on we will also see that the endomorphism S is unique if it
exists. So we need not be able to define a Hopf algebra structure on a bialgebra, but if we can, the
Hopf algebra structure is unique.

Definition 1.22. Let (A, µ, η) be an algebra and (C,∆, ε) a coalgebra. Let ⋆ : Hom(C,A)⊗Hom(C,A) →
Hom(C,A) be a bilinear map given by,

(f ⋆ g)(x) = µ ◦ f ⊗ g ◦∆(x), x ∈ C.

Then ⋆ is called the convolution on Hom(C,A).
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Recall that Hom(C,A) is the set of linear maps from C to A. The convolution on Hom(C,A) can
be rewritten as (f ⋆ g)(x) =

∑
(x) f(x

′)g(x′′) for any x ∈ C using Sweedler’s notation.
The convolution can be used as a multiplication on Hom(C,A). Together with a unit, η ◦ ε, it even
becomes an algebra.

Proposition 1.23.

1. The triple (Hom(C,A), ⋆, η ◦ ε) is an algebra.

2. The map λC,A : A⊗ C∗ → Hom(C,A), with λC,A as in corollary A.6, is an algebra morphism.

Proof. 1. Note, for x ∈ C, f, g, h ∈ Hom(C,A),

((f ⋆ g) ⋆ h) (x) =
∑
(x)

f(x′)g(x′′)h(x′′′) = (f ⋆ (g ⋆ h)) (x)

and

((η ◦ε)⋆f)(x) =
∑
(x)

(
η(ε(x′))

)
f(x′′) =

∑
(x)

ε(x′)f(x′′) =
∑
(x)

f(ε(x′)x′′) = f(
∑
(x)

ε(x′)x′′) = f(x).

Showing f ⋆ (η ◦ ε) = f goes similar. These show that ⋆ is associative and η ◦ ε is a unit, thus
Hom(C,A) has an algebra structure.

2. Let a, b ∈ A, α, β ∈ C∗. Then ∀x ∈ C,

(λC,A(a⊗ α) ⋆ λC,A(b⊗ β)) (x) =
∑
(x)

α(x′)β(x′′)ab = (αβ)(x)ab = (λC,A(ab⊗ αβ)) (x),

so λC,A preserves the product and (λC,A(1⊗ ε)) (x) = ε(x)1 = (η ◦ ε)(x). Hence, λC,A is indeed
an algebra morphism.

Now, if H is a bialgebra, one can look at Hom(H,H) = End(H) and we get the following definition:

Definition 1.24. Let H be a bialgebra. Then S ∈ End(H) is called an antipode of H if S ⋆ idH =
idH ⋆ S = η ◦ ε.
Also, if a bialgebra H has an antipode S, then H is called a Hopf algebra, which we will denote as
(H, µ, η,∆, ε, S).

In other words, an endomorphism S of H is an antipode if it is the inverse of the endomorphism
idH in the algebra (End(H), ⋆, η ◦ ε). Using Sweedler’s notation, we see that the antipode satisfies:∑

(x)

x′S(x′′) = ε(x)1 =
∑
(x)

S(x′)x′′.

Now, if a bialgebra H has an antipode S, then it is unique. Since, if S and S′ are both antipodes of
H, then

S = S ⋆ (idH ⋆ S′) = (S ⋆ idH) ⋆ S
′ = S′.

So we see that a bialgebra has at most one Hopf algebra structure, thus having a Hopf algebra structure
is a property of the bialgebra itself. Recall that we will be working with a Hopf algebra in the final
few sections. Since the existence of the antipode is determined by the bialgebra structure, it is natural
to look at the concepts of Hopf algebras. Even though we will not use the antipode S of our Hopf
algebra explicitly in the later sections. However, we will later see that we can derive another structure
on a Hopf algebra from its antipode S, a ∗-structure. Since we will use this ∗-structure, we do use the
antipode implicitly in the later sections.

Similar to algebras, coalgebras and bialgebras, we also have the concept of Hopf algebra morphisms.

– 15 –



1.5 Bialgebras and Hopf algebras

Definition 1.25. Let H and H′ be two Hopf algebras with antipodes S and S′ respectively. Let
f : H → H′ be a linear map. Then f is a Hopf algebra morphism if it is a bialgebra morphisms and
f ◦ S = S′ ◦ f .

Remark: the definition of a Hopf algebra morphism f is a bit redundant, as any bialgebra mor-
phism f : H → H′ between two Hopf algebras H, H′ is automatically a Hopf algebra morphism, in the
sense that f will always satisfy f ◦ S = S′ ◦ f . However, showing that it is sufficient for f : H → H′ to
just be bialgebra morphism for it to be a Hopf algebra morphism, is not trivial and it also makes it less
obvious that Hopf algebra morphisms commute with the two antipodes. So, the property f ◦S = S′ ◦f
is stated in the above definition to highlight this property of Hopf algebra morphisms.
Nonetheless, we will still prove that any bialgebra morphism f : H → H′ between two Hopf algebras
H, H′ is automatically a Hopf algebra morphism in the sense of the above definition.

Proof. Let H, H′ be two Hopf algebras with antipodes S and S′ respectively. Let f : H → H′ be a
bialgebra morphism. We want to show that f ◦S = S′ ◦ f . To do that, we will first need the following:
Let A and A′ be algebras and C and C′ coalgebras. Let g : A → A′ be an algebra morphism and
h : C′ → C a coalgebra morphism.
Claim: the map ψg,h : Hom(C,A) → Hom(C′,A′); p 7→ g ◦ p ◦ h is an algebra morphism.
First, recall from proposition 1.23 that Hom(C,A) is an algebra with the convolution ⋆ as its product.
Now, to prove this claim, let p, q ∈ Hom(C,A) be arbitrary. Then,

ψg,h(p ⋆ q) = ψg,h(µA ◦ p⊗ q ◦∆C) = g ◦ (µA ◦ p⊗ q ◦∆C) ◦ h = (g ◦ µA) ◦ p⊗ q ◦ (∆C ◦ h)
h coalg morph

= (g ◦ µA) ◦ p⊗ q ◦ (h⊗ h ◦∆C′)
g alg morph

= (µA′ ◦ g ⊗ g) ◦ p⊗ q ◦ (h⊗ h ◦∆C′)

= µA′ ◦ (g ⊗ g ◦ p⊗ q ◦ h⊗ h) ◦∆C′ = µA′ ◦ (g ◦ p ◦ h⊗ g ◦ q ◦ h) ◦∆C

= µA′ ◦ ψg,h(p)⊗ ψg,h(q) ◦∆C = ψg,h(p) ⋆ ψg,h(q)

Thus we have proven our claim.
Now, we will finally show that f ◦S = S′ ◦ f . This will be shown by proving that f ◦S is a left-inverse
and S′ ◦ f is a right-inverse of f in Hom(H,H′). This implies that f ◦ S = S′ ◦ f and also that they
are both the unique inverse of f in Hom(H,H′).

f ◦ S ⋆ f = f ◦ S ◦ idH ⋆ f ◦ idH ◦ idH = ψf,idH(S) ⋆ ψf,idH(idH)
by claim

= ψf,idH(S ⋆ idH) = ηH′ ◦ εH
f ⋆ S′ ◦ f = ψ′

idH′ ,f (idH′) ⋆ ψ′
idH′ ,f (S

′) = ψ′
idH′ ,f (idH′ ⋆ S′) = ηH′ ◦ εH

The last step of both equations use the fact that both ψf,idH and ψidH′ ,f are algebra morphisms, thus
they send the unit of Hom(H,H) and Hom(H′,H′) respectively, to the unit of Hom(H′,H′) (as that
is the codomain of both morphisms), which is ηH′ ◦ εH. Hence, f has both a right- and left-inverse
in Hom(H,H′) and it follows that f−1 = f ◦ S = S′ ◦ f . Concluding that any bialgebra morphism
between two Hopf algebras is indeed a Hopf algebra morphism.

We will now give some examples of Hopf algebras. This will be done by showing that some of the
bialgebra examples that we saw before, have in particular a Hopf algebra structure.
We will start with the dual space of a Hopf algebra. Let H be a finite-dimensional Hopf algebra with
antipode S. Recall that this implies that the dual H∗ is a bialgebra. Moreover, H∗ is a Hopf algebra
with antipode S∗, where S∗ is the transpose of S, so S∗(α)(x) = α(S(x)) for α ∈ H∗, x ∈ H.

Let G be a group, then the bialgebra k[G] has an antipode S given by S(x) = x−1 as ∆(x) = x⊗x.
Indeed,

S ⋆ idG(x) = xS(x) = S(x)x = ε(x)1 = 1 =⇒ S(x) = x−1.

– 16 –



1.5 Bialgebras and Hopf algebras

We have seen that GL(2) and SL(2) are bialgebras, but they are also Hopf algebras. Define S by:

S(a) = (ad− bc)−1d, S(b) = −(ad− bc)−1b,

S(c) = −(ad− bc)−1c, S(d) = (ad− bc)−1a, S(t) = t−1,

in matrtix form this becomes S
(
a b
c d

)
= (ad − bc)−1

(
d −b
−c a

)
. Then S is an antipode for either

GL(2) or SL(2). Showing that they are indeed Hopf algebras.
Notice that we assumed that it is sufficient to define the S for how it acts on the generators of the
bialgebra and that this a;sp shows that it is an antipode. The following theorem shows that this is
indeed the case.

Theorem 1.26. Let (H, µ, η,∆, ε, S) be a Hopf algebra.

i) S : H → Hop cop is a bialgebra morphism,

ii) The following statements are equivalent:

a) S2 = idH,

b) ∀x ∈ H
∑

(x) S(x
′′)x′ = ε(x)1,

c) ∀x ∈ H
∑

(x) x
′′S(x′) = ε(x)1

iii) If H is abelian or cocommutative, then S2 = idH

Proof. To show i), we need to show that S(xy) = S(y)S(x) ∀x, y ∈ H and (S⊗S)∆ = ∆opS, ε◦S = ε.
This can be rewritten into ∑

(S(x))

S(x)′ ⊗ S(x)′′ =
∑
(x)

S(x′′)⊗ S(x′).

We start with by showing that S(xy) = S(y)S(x). We will do this by showing that
ρ : H ⊗ H → H; (x ⊗ y) 7→ S(xy) and ν : H ⊗ H; (x ⊗ y) 7→ S(y)S(x) are the left and right inverse
respectively for µ : H⊗H → H in the algebra Hom(H⊗H,H).
Recall that Hom(H⊗H,H) is an algebra with ⋆ as its multiplication and η ◦ ε as its unit by proposi-
tion 1.23. So we want to show that ρ ⋆ µ = η ◦ ε = µ ⋆ ν. Then it follows that ρ = ν, as it implies that
they are the inverse of µ, which is unique.
Now, let x, y ∈ H be arbitrary, then

(ρ ⋆ µ)(x⊗ y) =
∑
(x⊗y)

ρ((x⊗ y)′)µ((x⊗ y)′′) =
∑
(x)(y)

ρ(x′ ⊗ y′)x′′y′′ =
∑
(xy)

S((xy)′)(xy)′′ = η ◦ ε(xy)

and

(µ ⋆ ν)(x⊗ y) =
∑
(x⊗y)

µ((x⊗ y)′)ν((x⊗ y)′′) =
∑
(x)(y)

x′y′ν(x′′ ⊗ y′′) =
∑
(x)(y)

x′y′S(y′′)S(x′′)

=
∑
(x)

x′

∑
(y)

y′S(y′′)

S(x′′) =
∑
(x)

x′(ηε(y))S(x′′) = ηε(x)ηε(y) = ηε(xy),

thus it follows that ρ = η. And id ⋆ S(x) = ηε(x) =⇒ id ⋆ S(1) = S(1) = 1.
Similarly, set ρ = ∆ ◦ S and ν = (S ⊗ S) ◦∆op, then ρ, ν ∈ Hom(H,H⊗H), so ρ = ν will follow from
showing that ρ ⋆∆ = ∆ ⋆ ν = (η ⊗ η) ◦ ε, i.e. showing that ρ and ν are a left- and right inverse of ∆
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1.5 Bialgebras and Hopf algebras

in Hom(H,H⊗H) respectively.
Let x ∈ H be arbitrary, then

(ρ ⋆∆)(x) =
∑
(x)

∆(S(x′))∆(x′′) = ∆(
∑
(x)

S(x′)x′′) = ∆(ηε(x)) = ((η ⊗ η)ε)(x)

and

(∆ ⋆ ν)(x) =
∑
(x)

∆(x′)((S ⊗ S)(∆op(x′′))) =
∑
(x)

(x′ ⊗ x′′)(S(x(4))⊗ S(3)) =
∑
(x)

x′S(x(4))⊗ x′′S(x(3))

=
∑
(x)

x′S(x(3))⊗ ηε(x′′) =
∑
(x)

x′ε(x′′)S(x(3))⊗ 1 =
∑
(x)

x′S(x′′)⊗ 1 = ε(x)1⊗ 1.

Thus it follows that ρ = ν.
Lastly,

ε(S(x)) = ε(S(
∑
(x)

ε(x′)x′′)) = ε(
∑
(x)

ε(x′)S(x′′)) = ε(ηε(x)) = ε(x).

Together with the previous calculations, it follows that S : H → Hop cop is indeed a bialgebra morphism.
For ii), we will show that a) is equivalent to b) and leave out the proof that a) is equivalent to c) as this
can be shown in a similar fashion. Again, since S, S2 ∈ Hom(H,Hop cop) and idH⋆S = idHom(H,Hop cop),
it is enough to show that S ⋆ S2 = idHom(H,Hop cop), since inverses are unique.
So, let x ∈ H and assume b). Then,

(S ⋆ S2)(x) =
∑
(x)

S(x′)S2(x′′) = S(
∑
(x)

S(x′′)x′) = S(ε(x)1) = ε(x)S(1) = ε(x)1,

so S2 = idH. And, if S2 = idH,∑
(x)

S(x′′)x′ = S2(
∑
(x)

S(x′′)x′) = S(
∑
(x)

S(x′)S2(x′′)) = S(
∑
(x)

S(x′)x′′) = ε(x)1,

thus it follows that S(x′′)x′ = ε(x)1, showing that a) ⇐⇒ b).
For iii), note that if H is abelian, we have

∑
(x) S(x

′′)x′ = ηε(x) =⇒ S2 = idH by ii). And if H is
cocommutative, we get again that

∑
(x) S(x

′′)x′ = ηε(x). Showing that S2 = idH ⇐⇒ H is abelian
or cocommutative.

Corollary 1.27. Let (H, µ, η,∆, ε, S) be a Hopf algebra, then Hop cop together with S is another Hopf
algebra. Also, S : H → Hop cop is a Hopf algebra morphism.
Moreover, if S is an isomorphism with inverse S−1, then Hop = (H, µop, η,∆, ε, S−1) and Hcop =
(H, µ, η,∆op, ε, S−1) are isomorphic Hopf algebras.

The following lemma will finally show that it is indeed enough to check that S is an antipode on
the generators for it to be an antipode on the whole bialgebra.

Lemma 1.28. Let H be a bialgebra and S : H → Hop an algebra morphism. If H is generated as
an algebra by a subset X ⊂ H such that

∑
(x) x

′S(x′′) = ε(x)1 =
∑

(x) S(x
′)x′′, ∀x ∈ X, then S is an

antipode for H.

Proof. It is sufficient to show that if
∑

(x) S(x
′)x′′ = ε(x)1 =

∑
(x) x

′S(x′′) for X, y ∈ X, then this also
holds for the product xy. Using theorem 1.26, we see that,

∑
(xy)

(xy)′S((xy)′′) =
∑
(x)(y)

x′y′S(x′′y′′) =
∑
(x)

x′

∑
(y)

y′S(y′′)

S(x′′)

=
∑
(x)

x′S(x′′)ε(y) = ε(x)ε(y) = ε(xy)

The proof that
∑

(xy) S((xy)
′)(xy)′′ = ε(xy) goes similar.
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1.5 Bialgebras and Hopf algebras

Using this lemma, we can even show that the tensor algebra T (V ) and symmetric algebra S(V )
are also Hopf algebras. One can check that the tensor algebra T (V ), for a vector space V , turns into
a Hopf algebra with antipode S : T (V ) → T (V ) given by S(1) = 1, S(v1v2 · · · vn) = (−1)nvn · · · v2v1.
For S(V ) = T (V )/I, with I the ideal generated by the elements of the form xy − yx, to be a Hopf
algebra, we first need to show that it’s a bialgebra. To do this, it suffices to show that I is also a
coideal of T (V ). Since T (V ) is already a bialgebra, I being an ideal and coideal of T (V ) allows us to
induce a quotient-bialgebra structure on S(V ).
We will show that I ⊆ T (V ) is also a coideal. Take x, y ∈ T (V ), v, w ∈ V , then any element of I is a
sum of elements of the form x(vw − wv)y. Then

∆(x(vw − wv)y) =
∑
(x)(y)

(
x′(vw − wv)y′ ⊗ x′′y′′ + x′y′ ⊗ x′′(vw − wv)y′′

)
∈ I ⊗ T (V ) + T (V )⊗ I

and ε(x(vw − wv)y) = ε(x)(ε(vw − wv)ε(y) = 0, thus I is indeed a coideal. So S(V ) can be turned
into a Hopf algebra by inducing it with the quotient-bialgebra structure and taking the same antipode
S as T (V ), but projected to S(V ).
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2 Modules and comodules

In this section the concept of modules and comodules will be introduced. In short, modules are vector
spaces for which the vectors can be multiplied with elements of an algebra. Since this multiplication
will depend on the algebra, the module structure of a vector space will also depend on the algebra
that acts on it. Later on we will even see that we sometimes know all the possible modules of certain
algebras.
Now, in this section we will first look at some basic properties of algebra modules. After that we will
look at coalgebra modules. A few examples of both type of modules will be given, however we will
wait with giving explicit examples of modules until a later section.
Do note that the concept of modules will play a major part in this thesis. Since the Clebsch-Gordan
coefficients can be seen as a relation between two different modules. So we will be talking a lot about
modules in the later sections.

2.1 Algebra modules

Definition 2.1. Let A be an algebra. Then, an A-module V is a vector space with a bilinear map
(a, v) 7→ av from A× V → V such that a′(av) = (a′a)v and 1v = v for a′, a ∈ A and v ∈ V .

Note that an A-module is only multiplied from the left by the algebra A. Such a module can also
be referred to as a left-module. We will often refer to the bilinear map as A acting on V .
We can define a right-module in a similar, but with the bilinear map given by (v, a) 7→ va from
V × A → V and again (va)a′ = v(aa′), v1 = v for a, a′ ∈ A. But, notice that right-modules are just
left-modules of Aop, so its easier to just refer to them as A−modules and only consider multiplication
from the left.

Recall that algebras are themselves vector spaces. So, if we have an algebra (A, µ, η), we can induce
an A-module structure on the vector space A with the use of the multiplication µ : A⊗A → A.
This just gives us that A acts on A by aa′ = µ(a, a′), a, a′ ∈ A. So, this is not the most interesting
example of an algebra module. But it is still a fun little fact.

Just like vector spaces have subspaces, modules also have subspaces called submodules. And similar
to algebra morphisms preserving the multiplication of both algebras, modules also have functions that
preserve the multiplication between the vector space and the algebra.

Definition 2.2. Let V, V ′ be A-modules and let f : V → V ′ be a linear map. Then, f is called
A-linear or an A-module morphism if f(av) = af(v) for a ∈ A, v ∈ V .

Definition 2.3. Let V be an A-module, then a subspace W ⊂ V is called an A-submodule if the
inclusion map from W into V is A-linear.

Another small fact is, that if A is an algebra and V is an A-module, then the action of A on V
induces an algebra morphism ρ : A → End(V ). This algebra morphism is defined as

ρ(a)(v) = av, a ∈ A , v ∈ V,

where av is the usual left action of A on V . The algebra morphism ρ is called a representation of A
on V . This immediately shows that any algebra module V induces a representation of A on V . But,
any algebra morphism from A to End(V ) also induces an A-module structure on the vector space V .
In other words, the language of representations and modules is equivalent and one could interchange
the use of the words modules and representations. It also is not unheard of to only use the word
representation, when technically working with both the representation and induced module structure.
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But, to make it a bit easier to follow, we will try to make the distinction between representations and
modules when talking about the morphism and vector space respectively.

We will continue with some facts regarding A-modules. Let V1, . . . , Vn be A-modules. Then
V1 ⊕ · · · ⊕ Vn is also an A-module with a(v1, . . . , vn) = (av1, . . . , avn) for a ∈ A, v1 ∈ V1, . . . , vn ∈ Vn.
The concept of direct sums helps to categorize modules. Since, if V ′ ⊂ V is a submodule, then one
could look at the module V = V ′ ⊕ V \V ′, given that V \V ′ is also an A-module. This can then be
used to study the module V by looking at all the “smaller” parts that make up V .

Definition 2.4. Let A be an algebra and V an A-module. Then V is called simple if the only
submodules of V are {0} and V itself.
V is called semisimple if V is isomorphic to a direct sum of simple A-modules.
V is called indecomposable if it is not isomorphic to a direct sum of two non-zero A-modules.

This gives rise to the following proposition:

Proposition 2.5. Let A be an algebra and let V be any finite-dimensional A-module with V ′ ⊂ V
any A-submodule. The following statements are equivalent:

i) ∃V ′′, A-module, such that V ∼= V ′ ⊕ V ′′.

ii) If V ′ is simple, ∃V ′′, A-module, such that V ∼= V ′ ⊕ V ′′.

iii) ∃p : V → V ′, A-linear map, such that p2 = p.

iv) If V ′ is simple, ∃p : V → V ′, A-linear, such that p2 = p.

v) Any finite-dimensional A-module is semisimple.

We will now look at one example of an A-module of an algebra A. First, recall that an algebra A
has multiplication µ : A × A → A; (a′, a) 7→ a′a. So, let W = A ⊗ V be the vector space that is the
tensor product of A with some vector space V . Then W is an A-module as A acts on W by

a′w = a′(a⊗ v) = µ(a′, a)⊗ v, a′, a ∈ A, v ∈ V, w ∈W.

Such an A-module is called a free module over an algebra A.
Since an A-module V is a vector space, it also has a basis. A basis M ⊂ V is a subset {vi}i∈I such
that (ai)i∈I 7→

∑
i∈I aivi from ⊕i∈IA to V is an isomorphism. Moreover, by proposition A.3 and the

remarks above that proposition, we get that ⊕i∈IA ∼= ⊕i∈I(A ⊗ k) ∼= A ⊗W , W = ⊕i∈Ik. Thus it
follows that an A-module has a basis if and only if it is a free module.

Now, let A be an algebra and let U, V be A-modules. Then U ⊗ V is a A⊗A-module with
(a⊗ a′)(u⊗ v) = au⊗ a′v, a, a′ ∈ A, u ∈ U and v ∈ V . Say A is also a bialgebra, then the coproduct
∆ allows us to equip the A⊗A-module U ⊗ V with an A-module structure via

a(u⊗ v) = ∆(a)(u⊗ v) =
∑
(a)

a′u⊗ a′′v, a ∈ A, u ∈ U and v ∈ V,

as ∆ is an algebra morphism.
When A is a bialgebra, we can also equip any vector space V with a trivial A-module structure with
the use of the counit ε. Since, av = ε(a)v defines a bilinear map from A× V → V .

Proposition 2.6. Let A be a bialgebra. Let U, V and W be A-modules and give k the trivial A-
module structure obtained via the counit. Then (U ⊗V )⊗W ∼= U ⊗ (V ⊗W ) and k⊗V ∼= V ∼= V ⊗k
are isomorphic as A-modules.
Furthermore, if A is cocommutative, then τV,W : V ⊗W

∼→W ⊗ V is an A-module isomorphism.
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Now, if A is also a Hopf algebra, we can even define an A-module structure on the vector space
Hom(V,W ). Let V, W be two A-modules and let ((a⊗ a′)f) (v) = af(a′v), a, a′ ∈ A, f ∈ Hom(V,W ),
v ∈ V . This induces an A⊗Aop- module on Hom(V,W ), since(
(a⊗ a′)(b⊗ b)f

)
(v) =

(
(ab⊗ b′a′)f

)
(v) = abf(b′a′v) = a

(
(b⊗ b′)f

)
(a′v) =

(
(a⊗ a′)((b⊗ b′)f)

)
(v),

with a, a′, b, b′ ∈ A, f ∈ Hom(V,W ) and v ∈ V .
Now, since A is a Hopf algebra, (id ⊗ S) ◦ ∆: A → A ⊗ Aop is an algebra morphism. We can then
induce a A-module structure on Hom(V,W ) by having A act on Hom(V,W ) via af = (id⊗S)◦∆(a)f
for a ∈ A, f ∈ Hom(V,W ). This action is explicitly given by:

(af)(v) =
∑
(a)

a′f(S(a′′)v).

The above also allows us to construct an A-module structure on the dual space V ∗ of a vector
space V . Take W = k and give it the trivial A-module structure. Then for f ∈ V ∗, v ∈ V and a ∈ A
we get (af)(v) = f(S(a)v).

Proposition 2.7. Let A be a Hopf algebra and U, U ′, V and V ′ be A-modules such that either U or
U ′ and V or V ′ are finite-dimensional vector spaces. Then, if τU∗,V ′ is A-linear, the linear map

λ : Hom(U,U ′)⊗Hom(V, V ′) → Hom(V ⊗ U,U ′ ⊗ V ′)

of corollary A.5 is A-linear.
In particular, the maps λ : U∗ ⊗ V ∗ → (V ⊗ U)∗ and λU,V : V ⊗ U∗ → Hom(U, V ) are A-linear.

The proof of the first part of this proposition is another good exercise for rewriting equations using
Sweedler’s notation. We have already seen a few proofs that do the same, so this proof will be left to
the reader. Do note that τU∗,V ′ being A-linear is not too useful for proving the first part, but the fact
that it implies that A is cocommutative is helpful.

2.2 Comodules

Comodules will not be looked at in this thesis much beyond this section, but it is nice to at least
introduce them. Especially since they are dual to modules, similarly as coalgebras are dual to algebras.
We have seen that algebra modules are vector spaces on which algebras or bialgebras can act with
multiplication. Now, coalgebras have a comultiplication. Thus we will see that comodules will be
vector spaces on which a coalgebra coacts with comultiplication.
Since this definition will be dual to the definition of an algebra module, we will use diagrams to define
what a coalgebra is. Similar to definition 1.13, it will then immediately be clear why the concept of
comodules is dual to that of modules.

Definition 2.8. Let (A, µA, ηA) be an algebra. Then an A-module is a pair (M,µM ), with M a vector
space and µM : A×M →M a linear map such that the following graphs commute:
Associativty:

A⊗A⊗M A⊗M

A⊗M M

µA ⊗ id

id⊗ µM µM

µM

and Unitality:

k ⊗M A⊗M

M

ηA ⊗ id

∼= µM

Then a comodule is defined by reversing the arrows of the above diagrams:
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Definition 2.9. Let (C,∆C , εC) be a coalgebra. Then a C-comodule is a pair (N,∆N ), with N a vector
space and ∆N : N → C ⊗N a linear map such that the following graphs commute:
Associativity:

C ⊗ C ⊗N C ⊗N

C ⊗N N

∆N

∆N

∆C ⊗ id

id⊗∆N

and Unitality:

k ⊗N C ⊗N

N

εC ⊗ id

∼= ∆N

We also have similar definitions for comodule morphisms and subcomodules:

Definition 2.10. Let C be a coalgebra and N , N ′ be C-comodules. A linear map f : N → N ′ is a
C-comodule morphism if (id⊗ f) ◦∆N = ∆N ′ ◦ f .
If in addition N ′ ⊂ N is a subspace, then N ′ is a subcomodule of N if ∆N (N ′) ⊂ C ⊗N ′.

Similar to modules, the above definitions technically defines left-comodules. But again, since right-
comodules of a comodule C are just left-comodules of Cop, we will just refer to left-comodules as
modules.

We will end this short section with some examples that are fairly similar to the examples given of
modules and also one final property of tensors of comodules. This last property will look fairly similar
to proposition 2.6.
Let C be a comodule. Then, similar to the fact that algebras are also modules, (C,∆) is a C-comodule.
The coaction of C on C is simply given by ∆(c), c ∈ C.
Let C∗ be the dual vector space of C and let (N,∆N ) be a C-comodule. Then we know that C∗ is an
algebra by proposition 1.16 and the dual N∗ of N is a right-C∗-module. The right action of C∗ on N∗

is given by, for f ∈ N∗, g ∈ C∗,

fg = ∆∗
N ◦ λ(f, g), with λ : N∗ ⊗ C∗ → (C ⊗N)∗ of theorem A.5.

One could place a coalgebra structure on the dual M∗ of an algebra A-module M in a similar fashion.
However, it needs to be assumed that A is a finite-dimensional algebra, else A∗ need not be a coalgebra.
Now, let H be a bialgebra and N, M H-comodules. Then we can also define a H-comodule structure
on the tensor product N ⊗M , just like we did before with modules. In this case, we do still need H
to be a bialgebra, else it will at most just be a H⊗H-comodule. If we define

∆N⊗M = (µ⊗ idN⊗M )(idH ⊗ τN,H ⊗ idM )(∆N ⊗∆M ),

then (N ⊗M,∆N⊗M ) turns into a H-comodule.
Lastly, we can also define a trivial comodule, but this time using the unit η of a bialgebra H instead of
the counit ε. So, let V be a vector space. Then V ∼= k⊗V

η⊗idV−→ H⊗V induces V with a H-comodule
structure, called the trivial comodule. Thus ∆V (v) = (η(1)⊗ v).

To end this section, lets note a proposition that is similar to proposition 2.6:

Proposition 2.11. Let H be a bialgebra. Let M, N and P be H-comodules and give k the trivial
H-comodule structure. Then (M ⊗N)⊗P ∼=M ⊗ (N ⊗P ) and k⊗M ∼=M ∼=M ⊗ k are isomorphic
as H-comodules.
Furthermore, if H is abelian, then τM,N : M ⊗N ∼= N ⊗M is an H-comodule isomorphism.
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3 Lie algebras and the enveloping algebra

Since the Hopf algebra Uq(sl(2)) is the quantum deformation of U(sl(2)), as in, if one takes q = 1,
then U1(sl(2)) = U(sl(2)). It is natural to first look at the classical object before we will discuss the
quantum deformed one. However, since U(sl(2)) is the so called universal enveloping algebra of the Lie
algebra sl(2). The first step is to understand the properties of the Lie algebra sl(2), as U(sl(2)) will
be generated by the basis elements of sl(2).
In this section we will study the concept of Lie algebras. We will do this by first looking at Lie groups,
even though we will not use them further on. The reason for this, is that Lie algebras are tangent
spaces of Lie groups and it feels natural to me to introduce Lie algebras in this way. However, since
we do not necessarily need to know anything on Lie groups, we will also define Lie algebras without
the use of Lie groups.
After we have introduced Lie algebras and the enveloping algebra. We will end this section by studying
U(sl(2)) and certain specific modules of this algebra.

3.1 Lie groups and the exponential map

Now, even though Lie algebras can be introduced fully algebraically as is done in [6], they are still
closely connected to Lie groups. And as I find it natural to first speak of Lie groups and then about
Lie algebras, the concept of Lie groups will be shortly introduced in this first section. We mostly use
information from [7] for the part on Lie groups.
Do note that these concepts will not be of use for our subject, so this section is fully optional. Lie
algebras will in turn also be reintroduced algebraically in a later part in definition 3.22. Due to this,
we will also not give any proofs on any of the facts on Lie groups. However, the proofs can all be fined
in [7].

Definition 3.1. A Lie group G is a smooth manifold G equipped with smooth maps:

µ : G×G→ G; (x, y) 7→ xy,

i : G→ G; x 7→ x−1,

turning G into a group.
The unit of G will be denoted by e ∈ G, thus we get that µ(x, i(x)) = e, x ∈ G

Similar to algebras and coalgebras, we also have Lie group homomorphisms.

Definition 3.2. Let G and H be Lie groups and let ϕ : G → H be a smooth map. Then, if ϕ is a
group homomorphism from G to H, ϕ is called a Lie group homomorphism.
If, in addition, ϕ is a bijection and its inverse ϕ−1 is also a group homomorphism, then ϕ is called a
Lie group isomorphism. In this case, if G = H, ϕ is called an automorphism.

We will give some short and simple examples of Lie groups.
First, let G be a finite group. Then G itself is a Lie group of dimension 0.
Now, let G be a vector space over the field R. Then define µ(x, y) = x + y and i(x) = −x. Then, G
turns into a Lie group with the functions µ and i. This is also an example of an abelian Lie group, i.e.
a Lie group G such that µ(x, y) = µ(y, x) ∀x, y ∈ G.
For a third example, take G = R×, the multiplicative group of real numbers. This is itself immediately
a Lie group. Moreover, G = R>0 ∪ R<0 and the subgroup of positive real elements R>0 ⊂ G is also a
Lie group, hence called a Lie subgroup similar to subalgebras.

Definition 3.3. Let G be Lie group and let H ⊆ G be a subgroup. Then, if H is equipped with a Lie
group structure, it is a Lie subgroup of G if the inclusion map ι : H → G is a Lie group homomorphism.

– 24 –
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We will give two more examples, but this time in the form of propositions. These will be a product
of two Lie groups and a submanifold of a Lie group.

Proposition 3.4. Let G1 and G2 be two Lie groups with multiplication µ1 and µ2 and inverses
i1 and i2 respectively. Define µ12 : (G1 × G2) × (G1 × G2) → G1 × G2 by µ12((x1, x2), (y1, y2)) =
(µ1(x1, y1), µ2(x2, y2)) and i12 : G1 × G2 → G1 × G2 by i12(x1, x2) = (i1(x1), i2(x2)) for x1, y1 ∈ G1,
x2, y2 ∈ G2.
Then G1 ×G2, together with µ12 and i12, is a Lie group.

Proposition 3.5. Let G be a Lie group and let H ⊂ G be an embedded submanifold of G and also
a subgroup of G. Then H is a Lie group with multiplication µ|H×H and inverse i|H .

Theorem 3.6. Let G be a Lie group and let H ⊂ G be a subgroup. Then the following are equivalent:

1. H is closed as a subset of G,

2. H is an embedded submanifold in G.

Thus, the assumptions of the previous proposition 3.5 can also be reworded to H ⊂ G being a
subgroup of G and closed as a subset in G. Such a Lie subgroup is also referred to as a closed Lie
subgroup. Do note that not all Lie subgroups are closed, so this theorem does not show how one could
find all Lie subgroups.

Lastly we will see some examples that will look familiar, the Lie groups GL(n,k) and SL(n,k) for
n ∈ N>0. First, let Mat(n,k) be the set of n× n-matrices with values in k. Then Mat(n,k), together
with addition and scalar multiplication, is a linear space.
ForM ∈Mat(n,k), letMij be the entry ofM in the i-th row and j-th column and let ζij : Mat(n,k) →
k; ζij(M) =Mij . Then, one can define the determinant function det : Mat(n,k) → k by:

det(M) =
∑
σ∈Sn

sign(σ)ζ1σ(1)(M) · · · ζnσ(n)(M),

which shows that det is a smooth function. More specifically, det is a Lie group homomorphism.
Let GL(n,k) = {M ∈ Mat(n,k) : det(M) ̸= 0} be the set of invertible matrices equipped with
matrix multiplication. Then GL(n,k) is the pre-image of k{0} under det and as det is smooth,
GL(n,k) ⊂Mat(n,k) is open and thus a smooth manifold.
Now, using the maps ζij , matrix multiplication µ : GL(n,k) × GL(n,k) → GL(n,k) for matrices
M,N ∈ GL(n,k) is coordinate wise given by ζij(µ(M,N)) =

∑n
k=1 ζik(M)ζkj(M). Thus, matrix

multiplication µ is also a smooth map.
Lastly, to show that GL(n,k) is a Lie group, we need to show that taking the inverse of a matrix is also
a smooth map. This follows from the fact that i(M) = det(M)−1 ·M co, where M co is the co-matrix
of M . Now, the co-matrix of M is defined coordinate wise as ζij(M co) = (−1)i+j ·Miij(M

T )), with
Miij(M) the (i, j)− th minor of M , the determinant of the matrix obtained from deleting the i-th row
and j-th column of M .
So we see that GL(n,k) is indeed a Lie group, which is closely related to GLn(A) and even the same for
A = k. Furthermore, we claim that SL(n,k) is also a Lie group. To show this, we will use theorem 3.6.
First, note that SL(n,k) = {M ∈ Mat(n,k) : det(M) = 1} ⊂ GL(n,k) is a subgroup of GL(n,k).
SL(n,k) is also a closed subset of GL(n,k), since its the kernel of det. Thus, from theorem 3.6 it
follows that SL(n,k) is indeed a Lie group. And we also have that SL(n,k) = SLn(A) if A = k.
We will give one final remark about these last two examples, as the Lie groups noted in the remark
below will also be used later on. Let V be a n-dimensional vector space over k, then one could show
that the set of linear endomorphisms from V to V , End(V ), is isomorphic to Mat(n,k). This can
be shown by fixing a basis (e1, . . . , en) of V , then constructing matrices that act the same way as
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3.1 Lie groups and the exponential map

endomorphisms on this basis of V .
Since the composition of functions in End(V ) corresponds to matrix multiplication in Mat(n,k). And
the determinant function on functions f ∈ End(V ) is independent of any chosen basis of V . It follows
that GL(V ) is group and that GL(V ) ≃ GL(n,k), where GL(V ) is the set of invertible endomorphisms.
Then, since the map sending an endomorphism f on V to its matrix form is a diffeomorphism. And
GL(V ) ≃ GL(n,k) as groups, it follows that GL(V ) is even a Lie group, which is isomorphic to
GL(n,k)
One could then define SL(V ) = {M ∈ GL(V ) : det(M) = 1} in a similar manner, where det is again
the function defined on endomorphisms of V via the isomorphism End(V ) ≃Mat(n,k).
The Lie groups GL(V ) and SL(V ) are, in a sense, the generalised versions of GL(n,k) and SL(n,k),
n = dim(V ). As it is defined for any vector space V and not just for kn.

To go from Lie groups to Lie algebras, we still need a few more tools. One of them is the exponential
map, but we need to do some work to define it for Lie groups. First, let M be a smooth manifold and
let V(M) be the linear space of smooth vector fields on M . Now, a vector field v ∈ V(G) is called left
invariant if ∀x, y ∈ G Ty(lx)v(y) = v(xy), where G is a Lie group, lx(y) = µ(x, y) and Ty(lx) is the
tangent map of lx at y.
From this equation, it follows that the subspace of left invariant vector fields, VL(G), is completely
determined by its value at the identity e. As in, if v ∈ VL(G) and x ∈ G, then v(x) = Te(lx)(v(e)).
Moreover, there even exists an isomorphism between VL(G) and Te(G), the tangent space of G at e;

Lemma 3.7. Let G be a Lie group, let X ∈ TeG and define vX(x) = Te(lx)(X). Then vX(x) ∈ VL(G)
for x ∈ G and the map sending X 7→ vX defines a linear isomorphism from Te(G) → VL(G). The
inverse of this map is the map that sends v ∈ VL(G) to v(e) ∈ Te(G).

Definition 3.8. Let G be a Lie group and let X ∈ TeG. Then αX is the maximal integral curve of
vX with initial point e. In other words, αX(0) = e, αX is a smooth map and d

dtαX(t) = vX(αX(t))

Definition 3.9. Let G be a Lie group and let R+ be the group of real numbers under addition. Then,
a smooth group homomorphism ϕ : R+ → G is called a 1-parameter subgroup of G.

Lemma 3.10. The maximal integral curve αX has all of R as its domain and it is a 1-parameter
subgroup of G. Moreover, R× Te(G) → G; (t,X) 7→ αX(t) is a smooth map.

Using the above definition, we see that αX being a 1-parameter subgroup means that αX(s+ t) =
αX(s)αX(t) ∀s, t ∈ R. With this, we can finally define the exponential map.

Definition 3.11. Let G be a Lie group. The exponential map exp : TeG → G is given by exp(X) =
αX(1).

Note that if we look at the Lie group GL(V ) for some finite dimensional vector space V , the
exponential map exp : TeGL(V ) = End(V ) → GL(V ) is given by exp(M) = eM . Here eM is the
exponent of an endomorphism which can be defined by eM =

∑∞
n=0

1
n!M

n. Which shows that the
exponential map does not need to be different to the usual known exponential function.
This fact can be deduced by showing that the maximal integral curve αX satisfies d

dtα(t) = α(t)X. Since
the map t 7→ etX is a solution to this equation, it follows that the exponential map exp : End(V ) →
GL(V ) is given by the usual exponent of endomorphisms.

Lemma 3.12. ∀s, t ∈ R, X ∈ TeG, we have that

1. exp(sX) = αX(s),

2. exp((s+ t)X) = exp(sX)exp(tX),

3. exp : TeG→ G is smooth and T0exp = idTeG,
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Moreover, ∃U ⊂ TeG open, 0 ∈ U , and ∃V ⊂ G open, e ∈ V , such that exp|U : U
≃−→ V is a

diffeomorphism.

Lemma 3.13. Let G be a Lie group and letX ∈ TeG. Then ϕ : R+ → G; t 7→ exp(tX) is a 1-parameter
subgroup. Moreover, any 1-parameter subgroup of G is of this form for some unique X ∈ TeG.

This then leads to a really nice application of the exponential map:

Lemma 3.14. Let G and H be a Lie groups and let ϕ : G→ H be a Lie group homomorphism. Then

the following diagram commutes:

G

TeG

H

TeH

expG

ϕ

Teϕ

expH

Before, we saw the left translation map lx : G→ G for a Lie group G, x ∈ G, but we can also define
a right translation map rx : G → G; rx(y) = µ(y, x) for x, y ∈ G. With both maps, we can define the
conjugation map Cx = lx ◦ r−1

x : G → G; Cx(y) = xyx−1 for x, y ∈ G. Note that Cx(e) = e, thus
Te(Cx) ∈ GL(TeG).

Definition 3.15. Let G be a Lie group and let x ∈ X. Then define Ad(x) = TeCx, so Ad : G →
GL(TeG) and its called the adjoint representation of G in TeG.

The following lemma shows why calling Ad a representation is logical:

Lemma 3.16. Let x ∈ G with G a Lie group, then ∀X ∈ TeG
Cx(exp(X)) = x exp(X)x−1 = exp(Ad(x)X).
Furthermore, Ad : G→ GL(TeG) is a Lie group homomorphism.

This shows that Ad(x) acts on TeG from the left and is also a Lie group morphism from G to
End(TeG). Thus, it is a representation in the same sense as a representation that describes an algebra
module. Only, this time it is a Lie group morphism instead of an algebra morphism. But, one could
regard to TeG as a G-module, where the left action of G on TeG is constructed via the action of Ad.

3.2 Lie algebras

Note, we will first continue with defining what a Lie algebra is with the use of the concepts introduced
in the sections about Lie groups. This will be done by constructing a bilinear form [ · , · ] with the use
of the adjoint-representation Ad. Then showing that the tangent space TeG has some nice algebraic
structure with respect to this bilinear form.
Now, since the first part of this section uses information on Lie groups, it is also optional and can
be skipped. The definition of a Lie algebra will be given fully algebraic and this short dive into the
concept of Lie groups will end at definition 3.22, where we will go back to the main topic of this thesis.

To start, we will first give the relation between Lie groups and Lie algebras.

Lemma 3.17. Let G be a Lie group. Then TeG together with the bilinear map [·, ·] : TeG×TeG→ TeG
given by [X,Y ] = TeAd(X)Y , X,Y ∈ TeG, is a Lie algebra.

Due to this lemma, its natural to denote the Lie algebra TeG associated with the Lie group G with
the lower case Gothic letter g. Due to this, we will in general use lower case Gothic letters for Lie
algebras. Also, if ϕ : G → H is a Lie group morphism, one often denotes the associated tangent map
Teϕ by ϕ∗.
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Lemma 3.18. Let G,H be Lie groups and let ϕ : G → H be a Lie group morphism. Then the
associated tangent map ϕ∗ : g → h is a Lie algebra morphism. Moreover, the following diagram

commutes:

G

g

H

h

expG

ϕ

ϕ∗

expH

We will quickly sketch how to prove the above lemma. First, let G be a Lie group, then note that
Ad(e) = idTeG and TidTeGGL(TeG) = End(TeG). So we see that the tangent map at e of the adjoint
representation Ad is linear.

Definition 3.19. Let the linear map ad : TeG→ End(TeG) be given by ad = TeAd.

Note that ∀X ∈ TeG, ad(X) = d
dt |t=0Ad(exp(tX)) and we even have that Ad(exp(X)) = eadX .

Now we finally arrived at the definition of the Lie bracket:

Definition 3.20. Let G be a Lie group and let X,Y ∈ TeG. Then, the Lie bracket is given by
[X,Y ] = ad(X)(Y ).

Proposition 3.21. Let G be a Lie group and let X,Y, Z ∈ TeG be arbitrary. Then, the Lie bracket
[·, ·] of G satisfies the following properties:

1. it is bilinear: [X + Z, Y ] = [X,Y ] + [Z, Y ] and [X,Z + Y ] = [X,Z] + [X,Y ],

2. it is antisymmetric: [X,Y ] = −[Y,X],

3. it satisfies the Jacobi-identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The last identity follows from the fact that if ϕ : G→ H is a Lie group morphism, then Teϕ[X,Y ]G =
[TeϕX, TeϕY ]H . In other words, ϕ∗ = Teϕ is a Lie algebra morphism if ϕ is a Lie group morphism.
Using this identity with the Lie group morphism Ad : G→ GL(TeG), together with the fact that

ad(X)(Y ) =
d

dt
|t=0Ad(exp(tX))(Y ) =

d

dt
|t=0(e

tXY e−tX) = XY − Y X

for X,Y ∈ GL(V ) for some finite dimensional vector space V , will lead to the Jacobi identity, when
one applies ad[X,Y ] to Z for X,Y, Z ∈ G.

Now, we finally have all the information that is needed to define what a Lie algebra is if we did not
want to skip on the theory on Lie groups. As that theory is not needed for this thesis, and this was
mostly a fun little detour, the definition of a Lie algebra will now also be given fully algebraic.

Definition 3.22. Let k be a field. A Lie algebra l over k is a vector space equipped with an anti-
symmetric bilinear form [·, ·] : l× l → l satisfying the Jacobi-identity, i.e. ∀X,Y, Z ∈ l

[X[Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

l is called abelian if [X,Y ] = 0 ∀X,Y ∈ l.

Since Lie algebras are almost always denoted by lower Gothic letters. We will also use them to
denote Lie algebras. For example, we will often denote Lie algebras by g or l.

Now, similar to previous structures, we again can define subalgebras, ideals, morphisms, the direct
sum of two Lie algebras and also quotient algebras. These definitions are again fairly similar to the
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versions of the previous discussed structures, so we will quickly go over these definitions.
First, if l is a Lie algebra, l′ ⊂ l a subspace of l such that ∀X,Y ∈ l ([X,Y ] ∈ l′), then l′ is called a Lie
subalgebra.
An ideal of a Lie algebra l is a subspace i ⊂ l such that ∀X ∈ l, Y ∈ i we have [X,Y ] ∈ i. Note, due
to the anti-symmetric property of the Lie bracket, we do not have left- and right-ideals this time. We
can only have ideals, since [l, i] = [i, l].
Let ϕ : l → k be a linear map between two Lie algebras l, k. Then ϕ is called a Lie algebra morphism if
ϕ([X,Y ]l) = [ϕ(X), ϕ(Y )]k ∀X,Y ∈ l.
Now, let l, k be two Lie algebras. Then we can turn l⊕ k into a Lie algebra by equipping it with a
bracket [(X,A), (Y,B)] = ([X,Y ], [A,B]) for X,Y ∈ l and A,B ∈ k. Note that the injections from l
and from k into l⊕ k are both Lie algebra morphisms.
Lastly, let i ⊂ l be an ideal. Then we can define a Lie algebra structure on the quotient space l/i. Let
X + i, Y + i ∈ l/i. Then we can define a Lie bracket by taking [X + i, Y + i] = [X,Y ] + i. This is
indeed a well-defined Lie bracket, due to the fact that i is an ideal of l. The vector space l/i together
with this Lie bracket is called the quotient Lie algebra.

We will give two short examples of a Lie algebras. Let A be an algebra and define [·, ·] : A×A → A
by [X,Y ] = XY −Y X for X,Y ∈ A. Then [ · , · ] is an antisymmetric bilinear form and for X,Y, Z ∈ A,
we see that

[X , [Y , Z ] ] + [Y , [Z , X ] ] + [Z , [X , Y ] ]

= X(Y Z − ZY )− (Y Z − ZY )X + Y (ZX −XZ)− (ZX −XZ)Y + Z(XY − Y X)− (XY − Y X)Z = 0.

Thus this bracket also satisfies the Jacobi-identity and induces a Lie algebra structure on the algebra
A. The Lie algebra induced by the algebra A will be denoted by L(A).
This specific bracket is also referred to as the commutator of X and Y . Since, if it is just defined on
any algebra A, then the relation XY − Y X = 0 for X,Y ∈ A is true if and only if X and Y commute
with each other.
Another example is the opposite Lie algebra. Let l be a Lie algebra with Lie bracket [ · , · ]. Then we
can construct a new Lie algebra structure on l by defining another bracket as

[X , Y ]op = −[X , Y ] = [Y , X ],

for X,Y ∈ l. Then, the Lie algebra l with Lie bracket [ · , · ]op is denoted by lop and is called the
opposite Lie algebra.

Another similar concept is that of representations. Recall that a representation of an algebra A on
a vector space V was an algebra morphism ρ : A→ End(V ).

Definition 3.23. Let l be a Lie algebra and let V be a vector space over k. Then, a representation of
l in V is a Lie algebra morphism π : l → End(V ).

This definition looks similar to that of a representation of an algebra. But this is not weird, since
we even have the same concept of equivalence with modules.

Definition 3.24. Let l be a Lie algebra and V a vector space over k. Let V be endowed with a bilinear
operation (X, v) 7→ Xv.
Then, V is an l-module if

[X , Y ]v = X(Y v)− Y (Xv),

for X,Y ∈ l, v ∈ V .

– 29 –



3.2 Lie algebras

Now, the same concept of equivalence between modules and representations arises again due to the
fact that the existence of a representation π : l → End(V ) implies the existence of a l-module structure
on V and vice versa. In other words, π : l → End(V ) is a representation if and only if V is a l-module
with the bilinear operation Xv = π(X)(v) for X ∈ l, v ∈ V .
So the concept of modules of Lie algebras is similar to that of algebras. We will later see that there
is another connection to algebra modules. That connection will even show that Lie algebra modules
are basically algebra modules in a certain sense. But for now we will look at one more useful remark
regarding modules and then at some more examples of Lie algebras.
Recall definition 2.4 on simple, semisimple and indecomposable algebra modules. These definitions are
the same for Lie algebra modules. However, in the case of representations, the first two definitions
are often called irreducible and completely reducible. One could just swap either term, but to make it
easy to see if we are talking about a representation or a module, we will stick to this notion.

The next two examples will be related to the previously constructed bialgebras GL(2) and SL(2),
but we will first start with the general cases. Let V be a vector space with dim(V ) = n. Then, we see
that L(End(V )) is a Lie algebra. More precisely, its the Lie algebra End(V ) = Te(GL(V )) = gl(V ) of
the Lie group GL(V ), containing all endomorphisms of V .
Now, this was already stated in the part about Lie groups, but if V is a vector space over k with
dim(V ) = n, then End(V ) ≃ Matn(k) as Lie groups. Thus, it follows that the Lie algebra gl(V ) ≃
gl(n) = L(Matn(k)). This isomorphism of Lie algebras can also be shown algebraically.
Note, both gl(V ) and gl(n) have their commutator as their bracket. By fixing a basis of V , one can
define a map that sends f ∈ End(V ) to a matrix in Matn(k). This can then be shown to be an algebra
isomorphism from End(V ) onto Matn(k), since taking compositions of functions will correspond to
matrix multiplication under this map. Furthermore, since this map is linear, it will send the commu-
tator of End(V ) to the commutator of Matn(k). Hence gl(V ) ≃ gl(n).
Now, note that ifX,Y ∈ gl(n) have trace 0, then [X , Y ] also has trace 0. To be precise, trace([X , Y ]) =
0 ∀X,Y ∈ gl(n). It follows that the subalgebra sl(n) = {X ∈ gl(n) : trace(X) = 0} is also a Lie algebra,
as trace is a linear map and the bracket preserves the traceless property of matrices. It even follows
that sl(n) ⊆ gl(n) as an ideal, since the trace is a Lie algebra morphism gl(n) → k and sl(n) is the
kernel of this map.
To quickly look back at Lie groups for the last time. Note that SL(n,k) = {x ∈ GL(n,k) : det(x) = 1}.
In other words, x ∈ SL(n,k) if it is in the kernel of det : GL(n,k) → k. Then, it follows that
sl(n) = TeSL(n,k) = {X ∈ TeGL(n,k) : Te(det)(X) = 0} = {X ∈ gl(n) : trace(X) = 0}. So, by using
the theory on Lie groups that we have seen, we do indeed get the same Lie algebra.

Now that we have seen the general cases, we will take a more detailed look at gl(2) and sl(2). To
be precise, since gl(2) is just the matrix Lie algebra of 2× 2-matrices in the most general sense. It is
more interesting to just focus on the Lie algebra sl(2)

3.2.1 The Lie algebra of SL(2)

First, for this part and the rest of this section, we will only work with the field k = C. In other words,
we will only look at complex Lie algebras and the Lie algebra sl(2,C) of the Lie group SL(2,C). From
the general example, it follows that the definition of sl(2) is given as

sl(2) = {X ∈ gl(2) : trace(X) = 0}.

We can construct a basis for this Lie algebra consisting of 3 elements, namely

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.
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Since any element of sl(2) is a linear combination of X,Y and H and [ · , · ] is a bilinear operator, the
value of [A , B ], for any A,B ∈ sl(2), can be deduced by knowing [X , Y ], [H , X ] and [H , Y ].
Luckily, the values of [X , Y ], [H , X ] and [H , Y ] are rather nice. As we have that

[X , Y ] = H, [H , X ] = 2X, [H , Y ] = −2Y.

Now, note that sl(2) ⊂ gl(2) and, as noted before, it is even an ideal. Furthermore, note that

CI =

{(
α 0
0 α

)
: α ∈ C

}
is also a Lie subalgebra of gl(2). So, it follows that gl(2) ≃ sl(2)⊕CI, which

also holds if we used k = R. This also shows that study of the Lie algebra gl(2) can be reduced to that
of sl(2). Giving another reason why it is more interesting to just look at sl(2).
To add to this, sl(2) has no non-trivial ideals. This is an easy check, since if an ideal of sl(2) contains
H, then it is sl(2). And when it contains either X or Y , it contains H. Since kernels of Lie algebra
morphisms are ideals, it follows that any Lie algebra morphism f : sl(2) → g, with g a Lie algebra, is
either injective or 0. Further showing that we can study properties of gl(2) by just looking at sl(2).

As a final remark on Lie algebras, a non-abelian non-zero Lie algebra with no non-trivial ideals
is also called a simple Lie algebra. A Lie algebra that can be written as a direct sum of simple Lie
algebras is called semisimple. These types of Lie algebras have been studied in detail and all types
of semisimple Lie algebras are even classified [6]. So sl(2) is a well-known and thoroughly studied Lie
algebra, the same is true for its enveloping algebra, which we will look at next.

3.3 The enveloping algebra and the Verma modules

We will start this part with defining what the universal enveloping algebra is in an intuitive sense.
Then show how to concretely define it. This will be done with the help of [6].
After that, we will look at the Verma module of the universal enveloping algebra of sl(2). Do note
that we will not look at what the Verma module will be in general, as that is a whole other topic on
its own. The Verma module of U(sl(2)) will mainly be used as a great example for something similar
to the Clebsch-Gordan coefficients of Uq(sl(2,R)), namely the Clebsch-Gordan coefficients of U(sl(2)).
Which is why we will look at this specific Verma module.

Let l be a Lie algebra. Intuitively, the universal enveloping algebra of l, U(l), is an associative
algebra such that:

1. [X , Y ] = XY − Y X for X,Y ∈ l,

2. U(l) is generated by the elements of l,

3. the algebra U(l) is the maximal algebra that satisfies the previous properties.

Note, the multiplication in the first property is the multiplication of the algebra U(l). Before giving
the formal definition, we will look at two short examples.

Example 1: Let l be a Lie algebra with basis given by a single element X ̸= 0. Then, U(l) needs to
be generated by X and since [X , X ] = 0, it follows that any algebra generated by X satisfies
our first two properties.
To satisfy the last property, the algebra needs to not satisfy any other relation between the Xn,
n ∈ N, so the Xn have to be linearly independent. In other words, U(l) = C[X].

Example 2: Let l be an abelian Lie algebra, so [X , Y ] = 0 for all X,Y ∈ l. Then, the first two
properties are satisfied if U(l) is any abelian algebra generated by l.
Now, as S(l) is an abelian algebra generated by l and has no other relations regarding its elements.
It can be shown that S(l) also satisfies the third property. In other words, the symmetric algebra
S(l) is a universal enveloping algebra of an abelian Lie algebra l.
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Now, the formal definition of the universal enveloping algebra is a bit similar to that of the tensor
product of vector spaces. So, it is formally defined with the use of a theorem.

Theorem 3.25. Let l be any Lie algebra. Then, ∃U(l), an algebra, together with a linear map
ι : l → U(l) such that:

i) ∀X,Y ∈ l, ι([X , Y ]) = ι(X)ι(Y )− ι(Y )ι(X),

ii) the algebra U(l) is generated by the elements ι(X), X ∈ l,

iii) if A is an algebra such that ∃j : l → A, linear, with j([X , Y ]) = j(X)j(Y )−j(Y )j(X) ∀X,Y ∈ l,
then ∃!φ : U(l) → A, algebra morphism, such that φ(1) = 1 and φ(ι(X)) = j(X) ∀X ∈ l.

A pair (U(l), ι) satisfying the above theorem is called a universal enveloping algebra for l. The
proof of this theorem shows that we can define the universal enveloping algebra in a more intuitive
manner with the use of the tensor algebra.

Definition 3.26. Let l be a Lie algebra and let U(l) be an algebra. Let ιl : l → L(U(l)) be a Lie algebra
morphism that is also an embedding, thus ιl(X) = X and ιl([X , Y ]) = XY − Y X for X,Y ∈ l.
Let Il ⊂ T (l) be the ideal of the tensor algebra generated by the elements X ⊗ Y − Y ⊗X − [X , Y ].
Then, the universal enveloping algebra of l is defined as U(l) = T (l)/Il.

Note, the Lie algebra morphism ιl can be defined as ιl = πT (l) ◦ ιT (l), where ιT (l) is the canonical
embedding of l into the tensor algebra T (l) and πT (l) the canonical surjection of T (l) onto T (l)/Il = U(l).
Now, the reason why its called the universal enveloping algebra, instead of just the enveloping algebra,
is the fact that any two enveloping algebras of the same Lie algebra l will be isomorphic. In other
words, the universal enveloping algebra is unique up to isomorphisms for any fixed Lie algebra l.

Before we move on, we will look back at two examples that we gave earlier. We can now check that
they are indeed universal enveloping algebras. But, this new definition will also make it a lot easier to
see that the given algebras are indeed the enveloping algebras.

Example 1: Again, let l be an algebra with basis given by a single element X ̸= 0. Then, Il = {0},
thus U(l) = T (l) ≃ C[X], as the direct sum of T (l) implies that it only contains finite linear
combinations of Xn, n ∈ N.

Example 2: Let l be an abelian Lie algebra. Then Il is the ideal generated by the elements of the
form XY − Y X, in other words, U(l) = S(l) = T (l)/Il.

WE will now look at some properties of the enveloping algebra.

Theorem 3.27. Let l be a Lie algebra and let A be any algebra and f : l → L(A) any Lie algebra
morphism.
Then, ∃!φ : U(l) → A, algebra morphism, such that φ ◦ ιl = f .

This theorem can be rewritten into the following expression:

HomLie(l, L(A)) ≃ HomAlg(U(l),A),

where HomLie(l, l
′) denotes the set of Lie algebra morphisms from l into l′. It easily follows from the

fact that one can extend f : l → L(A) to a function f̄ : T (l) → A.
There are two useful corollaries of this theorem. Which will help us show that the universal enveloping
algebra is also a Hopf algebra.

Corollary 3.28. Let f : l → l′ be any Lie algebra morphism. Then, ∃!U(f) : U(l) → U(l′), algebra
morphism, such that U(f) : ιl = ιl′ ◦ f .
Also, if f ′ : l → l′′ is another Lie algebra morphism, then U(f ′ ◦ f) = U(f ′) ◦ U(f).

– 32 –



3.3 The enveloping algebra and the Verma modules

The first part directly follows from theorem 3.27 and the second part follows from a direct calcu-
lation of U(f ′ ◦ f) ◦ ιl = U(f ′) ◦ U(f) ◦ ιl.

Corollary 3.29. Let l, l′ be two Lie algebras and let l⊕ l′ be their direct sum. Then U(l⊕ l′) ≃
U(l)⊗ U(l′).

Proof. Let f : l ⊕ l′ → L(U(l) ⊗ U(l′)) given by f(X,X ′) = ιl(X) ⊗ 1 + 1 ⊗ ιl′(X
′). Then f is a

linear map and even a Lie algebra morphism. Then, by theorem 3.27, we have an algebra morphism
φ : U(l⊕ l′) → U(l)⊗ U(l′).
The converse goes by constructing an algebra morphism ψ : U(l)⊗ U(l′) → U(l⊕ l′). This can also be
done with the use of theorem 3.27. As it implies the existence of two algebra morphisms ψ1 : U(l) →
U(l⊕ l′) and ψ2 : U(l′) → U(l⊕ l′) with ψ1(X) = ιl⊕l′(X, 0) and ψ2(X

′) = ιl⊕l′(0, X
′). Then, by

proposition 1.8, ψ(X ⊗X ′) = ψ1(X)ψ2(X
′) is an algebra morphism as ψ1(X)ψ2(X

′) = ψ2(X
′)ψ1(X)

for X ∈ l, X ′ ∈ l′.
Then, since ψ and φ are inverses of each other. It follows that U(l⊕ l′) ≃ U(l)⊗ U(l′).

Now, as was noted before, these two corollaries help us to endow a Hopf algebra structure on
the enveloping algebra. One can define a coproduct ∆: U(l) → U(l) ⊗ U(l) by ∆ = φ ◦ U(δ), with
φ : U(l⊕ l) → U(l)⊗ U(l) as in the proof above and δ(X) = (X,X) for X ∈ l.
The counit of U(l) can be given by ε = U(0). With 0: l → {0} the Lie algebra morphism that sends
all elements of l to 0. And the antipode can be defined as S = U(op), with the Lie algebra morphism
op : l → lop, op(X) = −X and lop the opposite Lie algebra.

Proposition 3.30. The enveloping algebra U(l) of a Lie algebra l is a cocommutative Hopf algebra
with ∆ = φ ◦ U(δ), ε = U(0) and S = U(op).
Then, for X1, . . . , Xn ∈ l, we have ∆(X) = 1⊗X +X ⊗X and

∆(X1 · · ·Xn) = 1⊗X1 · · ·Xn +

n−1∑
p=1

∑
σ

Xσ(1) · · ·Xσ(p) ⊗Xσ(p+1) · · ·Xσ(n) +X1 · · ·Xn ⊗ 1,

with σ running over all (p, q)-shuffels of Sn. And S(X1 · · ·Xn) = (−1)nXn · · ·X1.

The proof for this boils down to just checking that the diagrams used in the Hopf algebra definition
commute. In other words, it is sufficient to show that ∆ is a well-defined algebra morphism and a
coproduct. From this, it follows that if we have two U(l)-modules V,W . Then V ⊗W turns into a
U(l)-module via the action

X(v ⊗ w) = ∆(X)(v ⊗ w) = Xv ⊗ w + v ⊗Xw,

which is the same fact we saw earlier for any Hopf algebra H.

One of the most important theorems about the universal enveloping algebra is the Poincaré-
Birkhoff-Witt theorem, in short the PBW theorem. The reason for this, is that this theorem shows a
lot of the structure of any enveloping algebra, which makes it a lot easier to work with, compared to
only seeing it as a quotient algebra of the tensor algebra.

Theorem 3.31 (Poincaré-Birkhoff-Witt). Let l be a finite-dimensional Lie algebra with basis
X1, . . . , Xn, then the elements of the form

Xk1
1 Xk2

2 · · ·Xkn
n ,

for ki ∈ N, span all of U(l) and are linearly independent.
Furthermore, the elements X1, . . . , Xn are linearly independent.
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The last remark in this theorem is why we can just write X, instead of ιl(X) as it shows that it
is indeed injective. Even though the theorem does not look too difficult to prove, showing that all
Xk1

1 Xk2
2 · · ·Xkn

n are linearly independent is not easy. Due to this, the length of the proof is several
pages long. So, the PBW-theorem will be taken as a fact in this paper and anyone that is interested
in the details can read the full proof in [8]. Do note that we used the same finite-dimensional version
of this theorem, but the theorem is still true for infinite dimensional Lie algebras.
As a consequence of the PBW-theorem, we have the following nice corollary about the enveloping
algebra of a Lie subalgebra.

Corollary 3.32. Let l′ ⊂ l be a Lie subalgebra. Then there exists a natural injection ι : U(l′) → U(l)
given by ι(X1 · · ·Xn) = X1 · · ·Xn for X1, . . . , Xn ∈ l′.

Now, before we go to the Verma module of U(sl(2)), we will return to the remark about Lie algebra
representations and how they are related to algebra modules.

Proposition 3.33. let π : l → gl(V ) be a Lie algebra representation. Then, ∃!π̄ : U(l) → End(V ) such
that π̄(1) = I and π̄(X) = π(X) ∀X ∈ l.

This follows immediately from applying theorem 3.25 with A = End(V ) and j(X) = π(X). Since
the converse is also true, we have a equivalence relation between U(l)-modules and l-modules. As a
U(l)-module is the same as an algebra representation π̄ : U(l) → End(V ). Which is equivalent to a Lie
algebra representation π : l → gl(V ), which in turn is the same as an l-module. So, we can relate any
Lie algebra module to an algebra module.

3.3.1 The enveloping algebra U(sl(2) and its Verma modules

As was noted before, we do not want to fully delve into the theory on Verma modules, since it is
mostly used as a good example for what we want to do later. It will also show how nice the finite
dimensional modules of U(sl(2)) are. But before we can look at these Verma modules, we first need
to define U(sl(2)). Luckily, this is an enveloping algebra that we can easily describe with the help of
three generators.

Definition 3.34. The enveloping algebra U(sl(2)) is isomorphic to the algebra generated by X,Y,H ∈
sl(2) such that

XY − Y X = H, HX −XH = 2X, HY − Y H = −2Y.

For convenience, we will use the [ · , · ] to denote the commutator, as we will only work with this
bracket from this point onwards. Then the above relations can be rewritten into

[X , Y ] = H, [H , X ] = 2X, [H , Y ] = −2Y.

Also, by the PBW-theorem, it follows that U(sl(2)) has a basis given by {XiY jHk}i,j,k∈N. Due to this,
it is useful to look at certain relations between elements of U(sl(2)). These relations are useful if one
wants to calculate products of basis elements of U(sl(2)) and, in our case, they are also useful in the
construction of the Verma modules.

Lemma 3.35. For any p, q ∈ N, X,Y,H ∈ U(sl(2)), we have

XpHq = (H − 2p)qXp, Y pHq = (H + 2p)qY p,

[X , Y p ] = pY p−1(H − p+ 1) = p(H + p− 1)Y p−1,

[Xp , Y ] = pXp−1(H + p− 1) = p(H − p+ 1)Xp−1

Another nice thing about the enveloping algebra U(sl(2)) is that its center is generated by a single
element.
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Lemma 3.36. Let C = XY +Y X+ H2

2 ∈ U(sl(2)), called the Casimir element, then C ∈ Z(U(sl(2))).
Furthermore, Z(U(sl(2))) is generated by C.

We would love to show that the center is indeed generated by the Casimir element, but that is a
lot easier with the help of certain modules. So, we will first at look some special modules of U(sl(2)).
To be precise, we want to look at the finite-dimensional simple modules.
Recall that a simple module is just a module with only trivial submodules. In other words, we want
to look at finite-dimensional modules that we cannot make "smaller". We will prove that every finite-
dimensional simple module of U(sl(2)) is of the same type. All of these modules will be generated by
a single vector with a special property.

Definition 3.37. Let V be a U(sl(2))-module and let λ ∈ C. If v ∈ V \{0} such that Hv = λv, then
v is said to be of weight λ.
Furthermore, if Xv = 0, then v is called a highest weight vector of weight λ.

Proposition 3.38. Any non-zero finite-dimensional U(sl(2))-module has a highest weight vector.

Proof. dim(V ) < ∞ and C is algebraically closed, so ∃λ (Hv = λv, v ̸= 0). Assume that Xv ̸= 0, else
v would be of highest weight. Then,

H(Xnv) = (λ+ 2n)(Xnv),

by lemma 3.36 and (Xnv)n≥0 is a sequence of eigenvectors of H with distinct eigenvalues.
Hence ∃n ∈ N

(
Xnv ̸= 0 ∧Xn+1v = 0

)
, as H can only have dim(V ) distinct eigenvalues. Thus Xnv is

of highest weight.

Lemma 3.39. Let v be a highest weight vector of weight λ. Let n ∈ N and define vn = 1
n!Y

nv, then

Hvn = (λ− 2n)vn, Xvn = (λ− n+ 1)vn−1, Y vn = (n+ 1)vn+1

So we see that if v is of highest weight λ and we order the vn by their subscript, then vn is an
eigenvector of H, X sends vn to the previous eigenvector vn−1 of H and Y sends vn to the next
eigenvector vn+1 of H. Thus, we can cycle through all the eigenvectors of H with the actions of X and
Y on v.
Furthermore, we have seen that any non-zero finite-dimensional module has at least one highest weight
vector v. Since we can define actions of U(sl(2)) on v in such a way that we get new vectors vk, we
can construct a vector space that is, in a sense, generated by this vector v. The following theorem will
show that every non-zero finite-dimensional simple U(sl(2))-module is generated by a highest weight
vector v in the sense of lemma 3.39.

Theorem 3.40. Let V be a finite-dimensional U(sl(2))-module generated by a highest weight vector v
of weight λ. Then

i) λ = dim(V )− 1,

ii) if vn = 1
n!Y

nv, then vn = 0 if n > λ and {v0, . . . , vλ} is a basis for V ,

iii) the operator H acting on V is diagonalizable with eigenvalues {λ, λ− 2, . . . , λ− 2λ = −λ},

iv) any w ∈ V that is a highest weight vector is of weight λ and w = αv, α ∈ C,

v) V is simple.

Furthermore, any simple U(sl(2))-module is generated by a highest weight vector. And, if W,W ′ are
two U(sl(2))-modules generated by highest weight vectors of weight λ, then W ≃W ′.
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Proof. Note, i), ii), iii) and iv) are direct consequences of the formulas given in lemma 3.39 in combi-
nation with V being finite-dimensional. Since, again, from the fact that all vn are eigenvectors of H
with distinct eigenvalues, it follows that vn ̸= 0 and vn+1 = 0 for some n = dim(V )− 1 ∈ N.
Lemma 3.39 shows then that vm = 0 for all m > n and vm ̸= 0 if m < n. It follows that n = λ due
to the fact that 0 = X0 = Xvn+1 = (λ − n)vn. From the formulas of this lemma, it also follows that
{v0, v1, . . . , vλ} is a basis for V and that H acts diagonal on this basis.
For iv), note that any highest weight vector is an eigenvector of H. Thus it is a linear combination of
the vi, but lemma 3.39 implies that Xvi = 0 ⇐⇒ i = 0. Hence, any highest weight vector v has to
be of the form v = αv0.
For v), let 0 ̸= W ⊂ V be a U(sl(2))-submodule. Then it has a highest weight vector w ∈ W by
proposition 3.38, hence w = αv for some α ∈ C by iv). Thus v ∈ W =⇒ V ⊂ W =⇒ W = V .
Showing that V is indeed simple.
For the last remarks, note that v) shows that if V is any simple finite-dimensional module, it will be
generated by a highest weight vector v. Since the subspace generated by v would else be a submodule.
Lastly, if V,W are U(sl(2))-modules generated by vectors v, w of highest weight λ, then ϕ : v 7→ w is a
U(sl(2))-module isomorphism.

These finite dimensional U(sl(2))-modules are often denoted as V (n), where n ∈ N is the weight of
the vector that generates V (n). So, V (n) is of dimension n + 1. This is a useful classification, since
these modules are unique up to isomorphism by the last remark of the above theorem. These modules,
or even any highest weight U(sl(2))-module, are a quotient of the Verma module given in lemma 3.41.
To show this, we first need to look at infinite-dimensional U(sl(2))-modules.

Notice that we restricted our modules to be finite-dimensional. But, we can easily construct an
infinite dimensional U(sl(2))-module of highest weight λ with the formulas we saw before. Since the
actions of X,Y and H defined in lemma 3.39 will induce a U(sl(2))-module structure, even if they act
on a non-finite-dimensional vector space.

Lemma 3.41. Let V (λ) be a vector space with basis {vi}i∈N, vi = 1
i!Y

iv0, such that X,Y,H ∈ U(sl(2))
act on the vi as in lemma 3.39. Then, V (λ) is a U(sl(2))-module and it’s generated by the highest
weight vector v0 of weight λ.

Proof. Note that the formulas in lemma 3.39 directly imply that V (λ) is a U(sl(2))-module, since, for
n ≥ 0,

[X , Y ]vn = (n+ 1)(λ− n)vn − (λ− n+ 1)nvn = (λ− 2n)vn,

[H , X ]vn = ((λ− n+ 1)(λ− 2(n− 1))− (λ− 2n)(λ− n+ 1))vn−1 = 2Xvn

Similar calculation shows that [H , Y ]vn = −2Y vn.
Now, Hv0 = λv0 and Xv0 = 0, so v0 is indeed a highest weight vector. Lastly, Y vn = (n + 1)vn+1

shows that vn+1 =
1
n!Y

nvn, so V (λ) is indeed generated by v0.

This lemma shows that we also have infinite dimensional U(sl(2))-modules. This infinite dimen-
sional U(sl(2))-module of highest weight λ is called the Verma module. To avoid confusion, we will
denote the Verma modules by V (λ), or other Greek letters, and the finite-dimensional simple modules
by V (n), or other Roman letters.
Do note that the Verma modules V (λ) do not need to be simple modules. Since, if we take λ ∈ N,
then Xvλ+1 = (λ−λ)vλ = 0. So, the infinite dimensional module generated by a highest weight vector
v0 of weight λ, has a submodule generated by vλ+1. Hence it is not simple.
A nice thing about the modules V (n) is that the Casimir element and any element of the center acts
on them as a scalar.
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Lemma 3.42. Let A ∈ Z(U(sl(2))), then Zv = αv for any v ∈ V (n), α ∈ C, n ∈ N.
In particular, if v ∈ V (n), then Cv = n(n+2)

2 v.

Proof. Let A ∈ Z(U(sl(2))), then the action of A on V (n) induces an endomorphism π : U(sl(2)) →
U(sl(2)); v 7→ Av. Since A is central, π is V (n)-linear and it has an eigenvalue α ∈ C due to
dim(V (n)) = n+ 1 <∞.
Then, φ = π−αidV (n) is once again a U(sl(2))-linear endomorphism and ker(φ) ⊂ V (n) is a U(sl(2))-
submodule. Since V (n) is simple, it follows that ker(φ) = V (n) =⇒ π(v) = αv ∀v ∈ V (n). The proof
that Cv = n(n+2)

2 v follows from a simple calculation on v = v0.

Note, since HAvi = AHvi = (n− 2i)Avi, for any A ∈ Z(U(sl(2))), it follows that the eigenvectors
of A are the same as those of H, the vectors vi = 1

i!Y
iv0.

Furthermore, we have the following universal property for all highest weight modules.

Proposition 3.43. Any highest weight U(sl(2))-module V of highest weight λ is a quotient of the
Verma module V (λ).

Proof. Let v be a highest weight vector that generates V . Then f : V (λ) → V ; vi 7→ 1
i!Y

iv is a linear
map and lemma 3.39 implies that f is U(sl(2))-linear. Since f(v0) generates V , it follows that f is a
surjective map, hence f : V (λ)

∼−→ V/ker(f) is a U(sl(2))-module isomorphism.

Note that this proposition shows again that the Verma modules V (λ) need not be simple. Since
the simple modules V (n) are in particular the quotient of V (λ) with λ = n. Hence, V (λ) cannot be
simple when λ ∈ N, as V (n) will always be a non-zero submodule that is not V (λ) itself.

Lemma 3.44. V (λ) is simple ⇐⇒ λ /∈ N.

Proof. Note that the above remark already shows that V (λ) is not simple if λ ∈ N, thus λ /∈ N =⇒
V (λ) is simple.
To show the converse, assume that V (λ) is not simple. So there is a non-trivial submodule V ⊂ V (λ).
We can assume without loss of generality that V is simple, else we could take a submodule of V that
is simple.
Now, dim(V ) is either finite or infinite. If dim(V ) <∞, then theorem 3.40 implies that λ ∈ N.
So, let V be an infinite dimensional submodule of V (λ). Then, v ∈ V is a linear combination of the
vi, since v ∈ V (λ). But, then Y nv = 0 for some n ∈ N. Hence 0 ̸= Y n−1v ∈ V =⇒ αv0 ∈ V for
some 0 ̸= α ∈ C. Thus V = V (λ) if dim(V ) = ∞, so V (λ) cannot have non-trivial infinite dimensional
submodules.
Hence, V (λ) is simple ⇐⇒ λ /∈ N.

We can use this, together with the theory on the Verma modules V (n), to finally prove that C
generates Z(U(sl(2))). So let’s prove lemma 3.36.

Proof. Let UH ⊂ U(sl(2)) be given by UH = {A ∈ U(sl(2))|AH = HA}. We want to construct an
algebra morphism π : UH → k[H] and use it to make an isomorphism from Z(U(sl(2))) into k[H2].
First, note that A ∈ UH ⇐⇒ A =

∑
n∈N Y nPnX

n, with Pn ∈ k[H]. Since,

(Y iHjXk)H = Y iHj(H − 2k)Xk = Y i(H − 2k)HjXk = ((H + 2i)− 2k)Y iHjXk,

so by the PBW-theorem, it follows that A ∈ UH ⇐⇒ A =
∑

n∈N Y nPnX
n.

Next, we claim that I = Y U(sl(2))∩UH = U(sl(2))X∩UH is an ideal. Note Y U(sl(2))∩UH is obviously
a left ideal and U(sl(2))X ∩ UH is obviously a right ideal. So if they are equal, it immediately follows
that I is an ideal. Now, A ∈ Y U(sl(2)) ∩ UH ⇐⇒ P0 = 0 ⇐⇒ A ∈ U(sl(2))X ∩ UH , so I is indeed
an ideal.
Since I is an ideal, it follows that we have an algebra morphism π : UH → UH/I; A 7→ A + I. Note
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that π(A) = π(
∑

n∈N Y nPnX
n) = P0 + I and k[H] ∩ I = {0}. So it follows that UH = k[H]⊕ I and

we can rewrite π to be the algebra morphism π : UH → k[H];
∑

n∈N Y
nPnX

n 7→ P0.
Then π is called the Harish-Chandra morphism. By lemma 3.42 we know that if Z ∈ Z(U(sl(2))), then
Z acts as a scalar on any v ∈ V (n). Moreover, we even have that Zv = π(Z)(λ)v for any v ∈ V with
V a highest weight module of weight λ. As, if v0 generates the highest weight module V of weight λ,
then

Zv0 =
∑
n∈N

Y nPnX
nv0 = P0v0 = P0(λ)v0

and since v0 generates V , it follows that Zv = π(Z)(λ)v.
Furthermore, π|Z(U(sl(2))) is injective. Since, if 0 ̸= Z ∈ Z(U(sl(2))) and π(Z) = 0, then Z =∑∞

n=k Y
nPnX

n for some non-zero polynomial Pk ∈ k[K]. And we get

π(Z)(λ)vk = Zvk = Y kPkX
kvk = 0 ⇐⇒ k = 0 for vk ∈ V (λ), λ /∈ N.

Thus it follows that Pk = 0, but we can repeat this for any k ∈ N, thus Z = 0. So we see that the map
π is injective.
Now, let δ : k[H] → k[H]; f(H) 7→ f(H − 1). Then φ = δ ◦ π : U(sl(2))H → k[H] is the normalized
Harish-Chandra morphism and we see that φ(Z)(λ) = φ(Z)(λ−1) if Z ∈ Z(U(sl(2))).
Since, if vn ∈ V (n− 1) and Z ∈ Z(U(sl(2))), then Xvn = (n− 1− n+ 1)vn−1 = 0, so vn is of weight
−n− 1. Thus Zvn = π(Z)(−n− 1)vn, but vn ∈ V (n− 1), thus Zvn = π(Z)(n− 1)vn. So we see that

φ(Z)(n)vn = π(Z)(n− 1)vn = π(Z)(−n− 1)vn = φ(Z)(−n)vn.

Since both δ and π are injective, we again have that φ is injective. By the above, we have that
φ(Z(Uq(sl(2)))) ⊂ k[H2]. Also,

φ(C) = φ(XY + Y X +
H2

2
) = φ(2Y X +H +

H2

2
) = δ(H +

H2

2
) =

H2

2
− 1

2
.

It follows that φ(Z(U(sl(2)))) = k[H2], since it contains the polynomial H2. Hence, π is injective and
surjective when restricted to Z(U(sl(2))), thus Z(U(sl(2))) ≃ k[H2] via φ|Z(U(sl(2))).
Now, since φ(C) generates k[H2], it follows that C generates Z(U(sl(2))).

As a remark on this proof, it is the specific case of theorem 7.4.5 of [9]. Since one can show that
the Weyl group acts by H 7→ −H on k[H]. So, the Harish-Chandra morphism indeed becomes an
isomorphism from Z(U(sl(2))) to k[H2], as those are the polynomials that are invariant for the change
H 7→ −H. For more details regarding this specific case, see [10]. This uses more theory on Lie algebras
than we introduced, but rigorously goes over the case for U(sl(2)) unlike [9], which only gives the
general theorem. [10] also introduces all of the extra details that are necessary to understand the
Harish Chandra morphism in full detail. So, all theory on Lie algebras given in this section is enough
to understand what is done in this paper.

We started this part by saying that the finite-dimensional simple U(sl(2))-modules V (n) are a good
example of what we’ll be looking at later on. The reason for this, is the existence of the Clebsch-
Gordan coefficients. Which, kinda like the 6j-symbols, show the relation between V (n) ⊗ V (m) and
their decomposition into a direct sum of simple modules. These coefficients exist for any direct product
of two finite-dimensional modules due to the following fact.

Theorem 3.45. Any finite-dimensional U(sl(2))-module is semisimple.

Proof. It suffices to show that if V, V ′ are arbitrary finite-dimensional U(sl(2))-modules, V ′ ⊂ V , then
∃V ′′, U(sl(2))-module, such that V = V ′ ⊕ V ′′.
This will be proven in two steps. We will first show that such a V ′′ exists in the case that V ′ ⊂ V is
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of codimension 1. Then we will proof that it holds in the case that V ′ ⊂ V is of any codimension.
So, let V, V ′ be two U(sl(2))-modules such that V ′ ⊂ V is of codimension 1. We will show V = V ′⊕V ′′

via induction on dim(V ′).
Let dim(V ′) = 0, then V = V ′ ⊕ V . If dim(V ′) = 1, V ′ and V/V ′ are of dimension 1 and there is a
basis {v1 ∈ V ′, v2 /∈ V ′} such that sl(2)v1 = 0 and sl(2)v2 ⊂ V ′. Then [ sl(2) , sl(2) ]vi = 0 for i = 1, 2
and it follows that sl(2) acts trivially on V . So we can take any subspace V ′′ ⊂ V with V ′′ ∩ V ′ = {0}
and get V = V ′ ⊕ V ′′.
Assume dim(V ′) = n > 1 and that ∃V ′′, U(sl(2))-module, such that V = V ′ ⊕ V ′′ when dim(V ′) < n.
Then, V ′ is either simple or it isn’t.
Say V ′ is not simple. Then, ∃V1 ⊂ V ′, submodule, such that 0 < dim(V1) < n. Let π : V → V/V1 be
the canonical projection, then π(V ′) ⊂ π(V ) is a submodule of codimension 1 and by the induction
hypothesis ∃W ⊂ π(V ), submodule, such that π(V ) = π(V ′)⊕W . Which gives us V = V ′ + π−1(W ).
dim(W ) = 1, thus V1 ⊂ π−1(W ) is a submodule of codimension 1 and the induction hypothesis again
implies ∃V ′′ ⊂ π−1(W ) such that π−1(W ) = V1⊕V ′′. Now, by construction, V = V ′+V1+V

′′ = V ′+V ′′

and since dim(V ) = dim(V ′) + dim(V ′′), we get V = V ′ ⊕ V ′′.
Now, if V ′ is simple, then C acts on V ′ as a non-zero scalar α. Thus, C

α acts as the identity operator
on V ′. Since dim(V/V ′) = 1, V/V ′ is a trivial U(sl(2))-module, thus C/α is a projection of V onto V ′.
Furthermore, it follows that C

α is an U(sl(2))-module morphism and V = V ′ ⊕ ker(Cα ).
Finally, let V ′ ⊂ V be U(sl(2))-modules and define W ′ ⊂ W , vector spaces, with W = {f : V →
V ′ | f(v′) = αv′, v′ ∈ V ′, α ∈ k} and f ∈W ′ if f(V ′) = {0}.
Then W,W ′ ⊂ Hom(V, V ′), so for f ∈W , f(v′) = αv′ ∀v′ ∈ V ′, we have

(Xf)(v′) = Xf(v′)− f(Xv′) = X(αv′)− α(Xv′) = 0.

Similarly, if f ∈W ′

(Xf)(v′) = Xf(v′)− f(Xv′) = 0− 0 = 0,

so both W and W ′ are U(sl(2))-modules with the module structure induced by Hom(V, V ′).
Since W ′ ⊂W is of codimension 1, by the previous part, we have W =W ′⊕W ′′, with W ′′ a U(sl(2))-
submodule of dimension 1. Then, W ′′ is generated by some f : V → V ′ such that f(v′) = αv′ ̸= 0 for
v′ ∈ V , hence f

α is a projection from V onto V ′.
Lastly, since dim(W ′′) = 1, it is a trivial U(sl(2))-modules, thus Xf = 0 for X ∈ sl(2) and f ∈ W ′′.
Hence, Xf(v) − f(Xv) = 0 ∀v ∈ V and it follows that f

α is a U(sl(2))-module morphism. Thus
V = V ′ ⊕ ker( fα).
So, it follows that there always exists a U(sl(2))-module V ′′, such that V = V ′ ⊕ V ′′ when V ′ ⊂ V are
U(sl(2))-modules. Hence, all finite-dimensional U(sl(2))-modules are semisimple.

From this theorem, it follows that V (n) ⊗ V (m) is semisimple, since it is a U(sl(2))-module as
U(sl(2)) is a Hopf-algebra. So it can be decomposed into a direct sum of simple modules.

Proposition 3.46. Let n ≥ m ∈ N\{0}, then

V (n)⊗ V (m) ≃
m⊕
k=0

V (n+m− 2k)

Proof. One can construct an embedding π : V (n+m−2k) → V (n)⊗V (m), that is also U(sl(2))-linear,
by showing that V (n) ⊗ V (m) has a highest weight vector of weight n +m − 2k for 0 ≤ k ≤ m. π
will be an embedding due to the fact that V (n + m − 2k) is simple and ker(π) is a submodule of
V (n+m− 2k). The next lemma shows how to construct highest weight vectors of weight n+m− 2k,
so we will assume that we can embed any V (n+m− 2k) into V (n)⊗ V (m).
Now, since all V (n +m − 2k) are simple and of distinct weight, their sum in V (n) ⊗ V (m) is direct.
And, since dim(

∑m
k=0 V (n+m−2k) =

∑m
k=0 n+m−2k+1 = (n+1)(m+1) = dim(V (n))dim(V (m)),

it follows that V (n)⊗ V (m) ≃
⊕m

k=0 V (n+m− 2k).
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Lemma 3.47. Let n ≥ m ∈ N\{0} and let v(n) ∈ V (n), v(m) ∈ V (m) be highest weight vectors. Set
v
(n)
k = 1

k!Y
kv(n) and v(m)

k = 1
k!Y

kw(m) for k ≥ 0. Then

v(n+m−2k) =
k∑

i=0

(−1)i
(m− k + i)!(n− i)!

(m− k)!n!
v
(n)
i ⊗ v

(m)
k−i

is a highest weight vector of V (n)⊗ V (m) of weight n+m− 2k.

So we get two different bases for V (n)⊗V (m), namely {v(n)i ⊗w(m)
j }0≤i≤n, 0≤j≤m and a basis given

by all vectors v(n+m−2k)
j = 1

j!Y
jv(n+m−2k), for 0 ≤ k ≤ m and 0 ≤ j ≤ n +m − 2k. This last basis is

easier to work with as a U(sl(2))-module, as we can just use the known actions of X,Y and H on the
Verma module V (n+m− 2k).
We can compare both of these basis and even go from one to the other. In other words, a relationship
between a v(n+m−2k)

j and all v(n)i ⊗ w
(m)
j can be constructed. The coefficients describing this relation

are called the Clebsch-Gordan coefficients. They are given by

v(n+m−2k)
p =

∑
0≤i≤n, 0≤j≤m

Cn,m,n+m−2k
i,j,p v

(n)
i ⊗ v

(m)
j .

Now, one can show that the terms v(n+m−2k)
p are linear combinations of the vectors v(n)i ⊗ v

(m)
k−i+p by

induction on p. Since,

v
(n+m−2k)
1 = Fv

(n+m−2k)
0 = F

(∑
i

αiv
(n)
i ⊗ vk−i

)
=
∑
i

αi((i+ 1)vi+1 ⊗ vk−i + vi ⊗ (k − i+ 1)vk−i+1)

=
∑
i

αi(i · vi ⊗ vk−i+1 + (k − i+ 1)vi ⊗ vk−i+1).

And

v
(n+m−2k)
p+1 = Fv(n+m−2k)

p = F

(∑
i

αiv
(n)
i ⊗ vk−i+p

)
=
∑
i

αi((i+ 1)vi+1 ⊗ vk−i+p + vi ⊗ (k − i+ p+ 1)vk−i+p+1)

=
∑
i

αi(k + p+ 1)vi ⊗ vk−i+p+1

From this, one can deduce that Cn,m,n+m−2k
i,j,p = 0 if i + j ̸= p + k. Furthermore, recall that A ∈

Z(U(sl(2))) acts as a scalar on simple non-zero finite-dimensional modules. So, Avn+m−2k
p = λv

(n+m2k)
p .

And since C generates the center of U(sl(2)), we have, in particular, Cvn+m−2k
p = λCv

(n+m2k)
p . This,

together with the fact that v(n+m−2k)
p =

∑
i αiv

(n)
i ⊗v(m)

k−i+p, shows that
∑

i αiv
(n)
i ⊗v(m)

k−i+p has to be an
eigenfunction of C for any 0 ≤ p ≤ n+m−2k and 0 ≤ k ≤ m, given that n ≥ m. These eigenfunctions
can be described by the so called Hahn polynomials [11].
The fact that these are eigenfunctions for the Clebsch-Gordan coefficients is something that we will
also see in the next case, the quantum case, and also in the part about the modular double. Here we
just ended with these eigenfunctions as a last fun fact. But, we will use the eigenfunctions in a later
part to fully compute the Clebsch-Gordan coefficients.

Since this is all fairly similar to that of the quantum case, we will stop here with looking at
these coefficients. In the quantum case we will dive a bit deeper into some of the properties of these
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coefficients, but most of that could be done similarly for this case. The biggest reason to focus more
on the quantum case is the fact that our main goal is to look at certain modules of Uq(sl(2)), which
itself is a quantum deformation of U(sl(2)).
This will also be where we stop looking at the classical case, and we will finally move on the the
quantum analogues of most of the things that we have discussed up till now.
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Now that we know what the universal enveloping Lie algebra U(sl(2)) is, we can build towards ex-
plaining what the quantum enveloping algebra Uq(sl(2)) is. We will do this by first introducing the
quantum plane, which is a quantum deformation of the affine plane. In short, the quantum plane is
nothing more than the affine plane, k[x, y], with a small deformation. This deformation will change
the commutation property to be yx = qxy instead.
After we studied the quantum plane, just like how we first looked at SL(2) before we studied U(sl(2)),
we will first introduce SLq(2), the quantum analogue of SL(2). This is, similar to the quantum plane,
a one-parameter deformation of SL(2). SLq(2) will be one of our first examples of quantum groups,
which is why it’s referred to as the quantum analogue of SL(2).
We will end this chapter with a new type of Hopf algebra structure, the Hopf *-algebra. A Hopf
∗-algebra will be shown to be nothing more than a Hopf algebra with an extra involution ∗ added to
the structure. Which is similar to the difference between bialgebras and Hopf algebras.
In the end we will show that the quantum algebras SLq(2) and GLq(2) are Hopf ∗-algebras and even
show that the Hopf algebra U(sl(2)) can also be turned into a Hopf ∗-algebra. Now, the ∗-structure of
the Hopf ∗-algebra will not be used directly in later parts. But, it will still play an important part for
when we construct a module for the Hopf ∗-algebra Uq(sl(2)).

4.1 The quantum plane and the q-binomial formula

Let x, y be two non-zero elements, then the regular affine plane is the abelian algebra generated by x, y
such that yx = xy. In other words, the affine plane is the algebra k[x, y]. Now, the quantum plane is
obtained by modifying the commutator relation yx = xy to yx = qxy.

Definition 4.1. Let q ∈ k be an invertible element. Let Iq ⊂ k{x, y} be the ideal generated by the
elements yx− qxy. Then the quantum plane is the quotient-algebra kq[x, y] = k{x, y}/Iq.

So, one can just look at the quantum plane as the algebra generated by two non-zero elements
x, y such that yx = qxy. Now, the quantum plane kq[x, y] is abelian if and only if q = 1. Recall
that if I ⊆ k{x, y} is the ideal generated by elements of the form xy − yx, then k{x, y}/I ∼= k[x, y].
Thus, it follows that k1[x, y] = k[x, y], which is what one would expect. As it shows that the quantum
deformation is just the classical case when the commutation relation is not deformed.

Proposition 4.2. Fix q ∈ k to be invertible and let i, j > 0. Then, yjxi = qijxiyj for x, y ∈ kq[x, y].

Eventually we want to be able to calculate powers of x+y in the quantum plane, or similar, powers
of linear combinations of elements of Uq(sl(2)). To make this easier, we will introduce the Gauss
polynomials.
For this part, fix q ∈ k to be an invertible element. Now, as a first remark, all of the below formulas
will be equal to their classical formulas if q = 1.
First, set (n)q = 1+q+ · · ·+qn−1 = qn−1

q−1 , for any n ∈ N>0. Then we can define the quantum analogue
of the factorial, the q-factorial, by: (0)!q = 1,

(n)!q = (1)q(2)q · · · (n)q =
(q − 1)(q2 − 1) · · · (qn − 1)

(q − 1)n
, n ∈ N>0.

This is a polynomial in q with integral coefficients. Now, we can define the Gauss polynomials, the
quantum analogue of the binomial coefficients, by(

n

k

)
q

=
(n)!q

(k!)q(n− k)!q
, n, k ∈ N, k ≤ n.

Similar to the q-factorial, this is also a polynomial in q with integral coefficients.
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Proposition 4.3. Let n, k ∈ N>0 such that k ≤ n. Then,

i)
(
n
k

)
q
=
(

n
n−k

)
q
,

ii) (q-Pascal identity)(
n

k

)
q

=

(
n− 1

k − 1

)
q

+ qk
(
n− 1

k

)
q

=

(
n− 1

k

)
q

+ qn−k

(
n− 1

k − 1

)
q

The proof of this proposition is similar to that of the classical case. Now, this then leads to the
following formula for (x+ y)n.

Proposition 4.4. Let x, y be variables such that yx = qxy, then for all n ∈ N>0 we have

(x+ y)n =
∑

0≤k≤n

(
n

k

)
q

xkyn−k.

Another property of the binomial coefficients is the Chu-Vandermonde formula, which has the
following quantum analogue.

Proposition 4.5. For n,m, p ∈ N, m ≥ p ≤ n,(
m+ n

p

)
q

=
∑

0≤k≤p

q(m−k)(p−k)

(
m

k

)
q

(
n

p− k

)
q

.

4.2 The algebras Mq(2), GLq(2) and SLq(2)

In this part we will be looking at the quantum deformation of the Hopf algebras M(2), SL(2) and
GL(2). We will then show that, similar to the classical case, that they are all bialgebras and that
SLq(2) and GLq(2) are Hopf algebras in particular.
Just like in the classical case, we will be introducing the algebra SL2(q) as a quotient algebra of Mq(2).
For this part, fix a q ∈ k to be non-zero and such that q2 ̸= −1.

Theorem 4.6. Let x, y be variables such that yx = qxy and let a, b, c, d be four variables that commute
with x and y. Let x′, y′, x′′, y′′ be four variables such that(

x′

y′

)
=

(
a b
c d

)(
x
y

)
,

(
x′′

y′′

)
=

(
a c
b d

)(
x
y

)
.

Then we have an equivalence relation between

i) y′x′ = qx′y′ and y′′x′′ = qx′′y′′,

ii) ba = qab, db = qbd, ca = qac, dc = qcd, bc = cd, ad− da = (q−1 − q)bc

This theorem follows from a simple computation, but it does show us how to define the quantum
analogue of M(2).

Definition 4.7. The algebra Mq(2) = k{a, b, c, d}/Iq, with Iq the ideal generated by the six relations
given in theorem 4.6 ii).

Just like other q-analogue things, Mq(2) is also isomorphic, as Hopf algebras, to its classical form
M(2) when q = 1. For now we only know that Mq(2) is an algebra, but we will soon see that it is
indeed a Hopf algebra.
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Since we associated the classical case with matrix algebras and also used the determinant to define
GL(2) and SL(2), it is useful to introduce a quantum analogue of the determinant.

Proposition 4.8. The element detq = ad − q−1bc = da − qbc ∈ Mq(2) is the quantum determinant
and detq ∈ Z(Mq(2)).

It is an easy check to see that detq commutes with a, b, c and d.
We will see that the basis of Mq(2) is exactly the same as that of M(2) = k[a, b, c, d]. But since the
proof uses Ore extensions, and we do not want to introduce those, the following theorem will be stated
as a fact. The proof can be read in full details in [4].

Theorem 4.9. The algebra Mq(2) has no non-trivial zero-divisors and has a basis given by {aibjckdl}i,j,k,l≥0.

Thus we see that Mq(2) has some of the same properties as M(2).
Another similarity between Mq(2) and M(2) is that they are both bialgebras.

Theorem 4.10. Let ∆: Mq(2) →Mq(2)⊗Mq(2) be the algebra morphism defined by:

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d, ∆(c) = c⊗ a+ d⊗ c, ∆(d) = c⊗ b+ d⊗ d,

and ε : Mq(2) → k the algebra morphism defined by:

ε(a) = ε(d) = 1, ε(b) = ε(c) = 0.

The above algebra morphisms induce a bialgebra structure on Mq(2). Furthermore, ∆(detq) = detq ⊗
detq and ε(detq) = 1.

Similar to the classical case, we can rewrite ∆ and ε into matrix forms:

∆

(
a b
c d

)
=

(
a b
c d

)
⊗
(
a b
c d

)
, ε

(
a b
c d

)
=

(
1 0
0 1

)
which are actually the same matrix forms as that of the classical case.
Showing that ∆ and ε are indeed algebra morphisms is another simple computation. As it suffices to
show that they are well-defined algebra morphisms for the generators a, b, c and d. Similarly, showing
that ∆ and ε are coassociative and counital respectively, is also done via an easy computation. Then,
remember that Mq(2) being both an algebra and coalgebra and ∆, ε being algebra morphisms, implies
that it is indeed a bialgebra.

Now that we know what Mq(2) is, we can follow the same steps as the classical case to introduce
GLq(2) and SLq(2). They will be defined in the exact same way, but this time we will use the quantum
determinant detq. So, define GLq(2) = Mq(2)[t]/(t · detq − 1) and SLq(2) = Mq(2)/(detq − 1) =
GLq(2)/(t− 1).
Also, identical to the classical case, we can turn GLq(2) and SLq(2) into Hopf algebras by using the
same coproduct and counit as Mq(2) and, again, set ∆(t) = t ⊗ t and ε(t) = 1 for t ∈ GLq(2). This
then leads to the following theorem.

Theorem 4.11. The coproduct ∆ and counit ε of Mq(2) are well-defined on GLq(2) and SLq(2) with
the extension ∆(t) = t⊗ t and ε(t) = 1 for t ∈ GLq(2). Furthermore, they induce a bialgebra structure
on GLq(2) and SLq(2).
In addition, if S(a) = d

detq
, S(b) = −qb

detq
, S(c) = −c

qdetq
, S(d) = a

detq
and S(t) = t. Then S is an antipode

for GLq(2) and SLq(2) and induces a Hopf algebra structure on GLq(2) and SLq(2).
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Since this is also a proof that boils down to simple computations, as one just needs to check the
denoted conditions, we will once again skip writing it down. Do note that S can be rewritten in matrix
form to

S

(
a b
c d

)
= det−1

q

(
d −qb

−q−1c a

)
,

which can be helpful to show that it is indeed an antipode.

As a final remark on these quantum groups, we will look at some details of the antipode S of
GLq(2) and SLq(2). First, note that we get the classical algebras GL(2) and SL(2) if we take q = 1.
But, contrary to the classical case, the antipode S defined above, need not be an involution.

Recall that the antipode S′ of the classical case is defined as S′
(
a b
c d

)
= det−1

(
d −b
−c a

)
, in other

words, S′(A) = A−1 for A ∈ GL(2) or SL(2). So, S′2 = id.
Now, in the quantum case we get

S2n

(
a b
c d

)
=

(
a q2nb

q−2nc d

)
=

(
qn 0
0 q−n

)(
a b
c d

)(
q−n 0
0 qn

)
.

So, if q ∈ C is a root of unity of order n, i.e. qn = 1, then we see that S2n = id, but S2 ̸= id. In other
words, S2 is of order n instead of order 1. We will see another example soon where q being a root of
unity will give different results. So we see that one needs to be careful of the allowed choices for q ∈ C,
as the choice does impact some properties of the Hopf algebras SLq(2), GLq(2) and later on we will
see that the choice of q also impacts properties of Uq(sl(2)).

4.3 Hopf ∗-algebras

As was stated before, we can add another structure on GLq(2) and SLq(2). This will be the similar to
the difference of a bialgebra and a Hopf algebra, where only one function. the antipode S, was added
to the structure. In this case, to go from a Hopf algebra to a Hopf ∗-algebra, an antilinear involution
∗ is added to the structure.

Definition 4.12. Let (H, µ, η,∆, ε, S) be a Hopf algebra over C. Then, H is a Hopf ∗-algebra if
∃∗ : H → H such that ∗ is a antilinear involution and

i) ∗ : H → Hop is a real algebra morphism, i.e. ∗ is an antimorphism of real algebras,

ii) ∗ : H → H is a real coalgebra morphism,

iii) ∀x ∈ H ( S(S(x)∗)∗ = x).

Two Hopf ∗-algebra structures ∗1, ∗2 are equivalent on H if ∃ϕ : H → H, Hopf algebra automorphism,
such that ϕ(x∗1) = ϕ(x)∗2 ∀x ∈ H.

The following lemma will help with finding ∗-structures on Hopf algebras. Since it changes the
requirement to finding an algebra morphism γ that is also an antimorphism of coalgebras. And for our
cases, it is a lot easier to find algebra automorphisms instead of coalgebra automorphisms.

Lemma 4.13. Let (H, µ, η,∆, ε, S) be a Hopf algebra over C. H has a Hopf ∗-structure if and only if
∃γ : H → H, antilinear automorphism, such that

i) γ : H → H is a real algebra morphism,

ii) γ : H → Hcop is a real coalgebra morphism, i.e. γ is an antimorphism of real coalgebras,

iii) ∀x ∈ H we have γ2(x) = (Sγ)2(x) = x.
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Proof. Let ∗ : H → H be an involution as in definition 4.12 and set γ = S−1 ◦∗. Then γ is an antilinear
algebra automorphism, as both ∗ and S−1 are antimorphisms. It is a coalgebra antimorphism, since
∗ is a coalgebra morphism and S−1 is a coalgebra antimorphism. As Sγ = ∗, it follows that Sγ is an
involution and

γ2 = (S−1 ◦ ∗)2 = (∗ ◦ S)2)−1 = id−1
H = idH,

where the second equality follows from ∗2 = idH. Thus if H is a Hopf ∗-algebra, we indeed have a
γ = S−1 ◦ ∗ that satisfies the desired properties.
Now, let γ : H → H satisfy the above properties and define ∗ = S ◦ γ. Then we claim that ∗ satisfies
the properties given in definition 4.12.
It follows directly that ∗2 = idH, ∗ is an algebra antimorphism and a coalgebra morphism by similar
reasons as noted before, and

(∗ ◦ S)2 = (S ◦ γ ◦ S)2 = (S ◦ γ)2 ◦ γ−1 ◦ (S ◦ γ)2 ◦ γ−1 = γ−2 = idH.

Thus ∗ = S ◦ γ does indeed induce a Hopf ∗-algebra structure on H.

We will end this section by showing that three Hopf algebras that we saw before, can be turned
into Hopf ∗-algebras.

Theorem 4.14. ∃! Hopf ∗-structure on the Hopf algebras GLq(2) and SLq(2) such that

a∗ = td, b∗ = −qtc, c∗ = −q−1tb, d∗ = ta, t∗ = t−1.

Proof. Let γ : SLq(2) → SLq(2) be antilinear and defined by γ = T , where T denotes the transpose
map. So, T (a) = a, T (b) = c, T (d) = d and T 2 = id. Then, γ is an involution and an algebra
morphism. Also, note that it is a coalgebra antimorphism, since the transposition of matrices reverses
the product.
Now, γ can be extended to GLq(2) by taking γ(t) = t. Since detqt = 1 in GLq(2) and γ(detqt− 1) =
detqt− 1, it is indeed also an algebra morphism on GLq(2).

Lastly, note that (Sγ)

(
a b
c d

)
= t

(
d −qc

−q−1b a

)
, so

(Sγ)2
(
a b
c d

)
= Sγ

(
d −qc

−q−1b a

)
Sγ(t) = t

(
a b
c d

)
t−1 =

(
a b
c d

)
and (Sγ)(t) = t, so Sγ is indeed an involution. Thus, ∗ = Sγ does induce a ∗-structure on both GLq(2)
and SLq(2).

The third and final Hopf algebra that we will discuss here is U(sl(2)). Recall that we know that
U(sl(2)) is a cocommutative Hopf algebra by proposition 3.30. Thus, by lemma 4.13, it follows that
we can define a ∗-structure on U(sl(2)) if we can construct an antilinear automorphism on sl(2), as the
generators of sl(2) also generate U(sl(2)).
Note that we can ignore that γ needs to be an antimorphism of coalgebras. Since U(sl(2)) is cocom-
mutative, any coalgebra antimorphism is just a coalgebra morphism.

Proposition 4.15. The complex Hopf algebra U(sl(2)) has 3 unique ∗-structures up to equivalence.
These ∗-structures are given by:

1: X∗ = −X, Y ∗ = −Y , H∗ = −H,

2: X∗ = X, Y ∗ = Y , H∗ = −H,

3: X∗ = −Y , Y ∗ = −X, H∗ = H.

Note, the above fact can easily be shown with the use of the fact that any Lie algebra automorphism
of sl(2) is of the form f(A) = uAu−1, with A ∈ sl(2), u ∈ SL(2,C). Since this fact relies on some
more knowledge on Lie algebras, we will simply assume this as a fact.
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Now, let f : sl(2) → sl(2) be an automorphism such that f2 = id. It then follows that f(A) is of
one of the following forms for A ∈ sl(2):

1: f(A) =
(
±1 0
0 ±1

)
A

(
±1 0
0 ±1

)
,

2: f(A) =
(
±1 0
0 ∓1

)
A

(
±1 0
0 ∓1

)
,

3: f(A) =
(

a b
1−a2

b −a

)
A

(
a b

1−a2

b −a

)
, with b ̸= 0, a ∈ R.

Now, we can construct the γ of lemma 4.13 by calculating f(X), f(Y ) and f(H) and letting γ(U) =
f(U) for U ∈ {X,Y,H}, then extend γ to be an antilinear automorphism. We then get the above

∗-structures by using
(
1 0
0 1

)
,
(
1 0
0 −1

)
and

(
0 1
1 0

)
for the matrix u that defines f(A) = uAu−1.

Lastly, one can use the fact that two ∗-structures will only be equivalent in this case when ∃u′ ∈
SL(2,C) such that u′u = wu′, which holds if and only if u′uu′−1 = w, where u,w ∈ SL(2,R) are the
two matrices that generate the two different ∗-structures. From this it will follow that the above three
forms of f(A) will indeed generate three non-equivalent ∗-structures.
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We will finally introduce the algebra that will be the main subject of this thesis, the algebra Uq(sl(2)).
Similar to the quantum analogues of M(2), GL(2) and SL(2), Uq(sl(2)) is the quantum analogue of
the Hopf ∗-algebra U(sl(2)). In this chapter we will be introducing Uq(sl(2)) and looking at some
properties of it.
We will start with defining Uq(sl(2)) for when q ̸= 1. This will give a simpler definition, but we will
obviously lose the property of Uq(sl(2)) being isomorphic to the classical case U(sl(2)) when q = 1.
Because we still want Uq(sl(2)) to be isomorphic to U(sl(2)) when q = 1, a second definition will be
given, for which q = 1 is a possible value.
After we know what Uq(sl(2)) is, we will see that certain properties of Uq(sl(2)) will be similar to that
of U(sl(2)), given that q is not a root of unity. To further illustrate the fact that one needs to keep in
mind which values for q we allow, we will take a detailed look at modules of Uq(sl(2)) for when qn = 1
for some n ∈ N>0.
We end this section by showing that Uq(sl(2)) is also a Hopf ∗-algebra. This will be done by showing
all possible ∗-structures up to isomorphisms.

5.1 Uq(sl(2)) as a Hopf algebra

Before we introduce the Hopf algebra Uq(sl(2)), we will first look at some notation. This will be related
to the q-binomial coefficients that we have seen in section 4.1.
First, fix q ∈ C such that q /∈ {−1, 0, 1}, then we know that 1

q−q−1 is well-defined and q2 ̸= 1. Let

n ∈ N and define [n]q = qn−q−n

q−q−1 = qn−1 + qn−3 + · · · + q−n+1. Unlike (n)q = qn−1
q−1 , [n]q is symmetric,

as [−n]q = −[n]q and [m+ n]q = qn[m]q + q−m[n]q.
Note, if qd = 1, then we see that [d]q = 0. This is not the only case that [n]q = 0. Let d ∈ N>2 such
that qd = 1 and let

e =

{
d if d is odd,
d/2 if d is even.

Note that the restriction of d is due to our choice of q. Now, set e = ∞ if q is not a root of unity.
Then,

[n]q = 0 ⇐⇒ n ≡ 0mod e.

We can also take factorials of [n] and use it to define another type of binomial coefficient. Let k ∈ N
such that k ≤ n and set [0]q! = 1, then [k]q! = [1]q[2]q · · · [k]q and, if k > 0,

[
n
k

]
q
=

[n]q !
[k]q ![n−k]q !

. Now,
the remark on (n)q was not fully out of place. Since we have

[n]q = q−(n−1)(n)q2 , [n]q! = q−(n−1)/2(n)!q2 ,

[
n
k

]
q

= q−k(n−k)

(
n

k

)
q2
,

so [n]q is fully related the the q-analogues of the factorial and binomial function. This also gives us a
new formula for (x+ y)n, given that x, y are variables such that yx = q2xy:

(x+ y)n =
n∑

k=0

qk(n−k)

[
n
k

]
q

xkyn−k.

We will not be using this formula ourselves, but it is rather useful for calculating elements in Uq(sl(2)).
As we will see that there are elements in Uq(sl(2)) that do satisfy the relation yx = q2xy, hence the q2

instead of just q like in section 4.1.
Now that we have seen some useful formulas to do calculations in Uq(sl(2)), we will finally define the
Hopf algebra Uq(sl(2)) for q ∈ C\{−1, 0, 1}.
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Definition 5.1. Uq(sl(2)) is the complex algebra generated by the four elements E,F,K,K−1 such
that

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK, [E , F ] =
K −K−1

q − q−1
.

Note that the bracket [ · , · ] is the commutator bracket. Also, since U1(sl(2)) is undefined, we do
not have the property that the quantum analogue case with q = 1 is equal or isomorphic to the classical
case U(sl(2)). In a bit we will see another definition of Uq(sl(2)) that will allow every q ̸= 0.
Obviously, we could have just used that as our definition immediately. But, to study the Clebsch-
Gordan coefficients, we will only look at the case that |q| = 1 and q is not a root of unity. The
definition of Uq(sl(2)) that allows q = 1 is also a bit more complicated. So, since we are not that
interested in the case q = 1, it is easier to use definition 5.1. However, we will still give the broader
definition and look at the case when qd = 1 for some d ∈ N for completeness sake.

We will now give some properties of Uq(sl(2)).

Lemma 5.2. Let ω : Uq(sl(2)) → Uq(sl(2)) be given by

ω(E) = F, ω(F ) = E, ω(K) = K−1.

Then ω extends uniquely to an algebra automorphism on Uq(sl(2)).
Also, ω is often referred to as the Cartan automorphism.

Proof. To show that ω is indeed an algebra automorphism, we only need to check that it satisfies the
4 relations in definition 5.1. Now,

ω(KE) = ω(K)ω(E) = K−1F = q2FK−1 = q2ω(EK),

ω([E , F ]) = FE − EF = −[E , F ] =
K−1 −K

q − q−1
= ω

K −K−1

q − q−1
.

The other relations go similar. Thus ω is indeed an algebra automorphism, as the image contains all
4 generators.
The uniqueness of ω follows due to how it is constructed.

Lemma 5.3. Let m ∈ N and n ∈ Z, then

EmKn = q−2mnKnEm, FmKn = q2mnKnFm,

[E , Fm ] = [m]Fm−1 q
−(m−1)K − qm−1K−1

q − q−1
= [m]

qm−1K − q−(m−1)K−1

q − q−1
Fm−1,

[Em , F ] = [m]
q−(m−1)K − qm−1K−1

q − q−1
Em−1 = [m]Em−1 q

m−1K − q−(m−1)K−1

q − q−1
.

Proof. The first two equations follow directly from EK = q−2KE and FK = q2KF .
The third equation is proven by induction on m together with

[E , Fm ] = [E , Fm−1 ]F + Fm−1[E , F ] = [E , Fm−1 ]F + Fm−1K −K−1

q − q−1
.

Since it is true trivially for m = 1, assume it holds for all n < m. Then,

[E , Fm ] = [E , Fm−1 ]F + Fm−1K −K−1

q − q−1
= [m− 1]

qm−2K − q−(m−2)K−1

q − q−1
Fm + Fm−1K −K−1

q − q−1
.

One concludes this equation by pulling Fm−1 to the right using the second equation. Lastly, the final
equation follows directly from applying the Cartan automorphism ω on the term [E , Fm ].
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The next proposition will show that the basis of Uq(sl(2)) is also nice, just like that of U(sl(2)).
But, since the proof once again uses Ore extensions, we will just state this as a fact. Do note that
this is a really useful proposition, as it shows that we will only ever need to proof things for the terms
EiF kK l, given that what we need to show depends linearly on EiF kK l.

Proposition 5.4. The set {EiF kK l}i,j∈N,l∈Z is a basis for Uq(sl(2)). Furthermore, Uq(sl(2)) has no
zero-divisors.

Remember, for the quantum analogues, we normally had the nice, and intuitive, property that if
q = 1, then we end up back in the classical case. For example, SL1(2) ≃ SL(2) and (n)1! = n!. But,
due to how Uq(sl(2)) is constructed, we cannot define U1(sl(2)), as 1

q−q−1 is not defined in this case.
Since we still want to relate Uq(sl(2)) to U(sl(2)) in such a way that U1(sl(2)) ≃ U(sl(2)), we have the
following proposition:

Proposition 5.5. Let Uq(sl(2))
′ be the algebra generated by the 5 elements E,F,K,K−1, L such that

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK, [E , F ] = L,

(q − q−1)L = K −K−1, [L , E ] = q(EK +K−1E), [L , F ] = −q−1(FK +K−1F ).

Then Uq(sl(2)) ≃ Uq(sl(2))
′ for q /∈ {−1, 0, 1}.

The bracket [ · , · ] is again the commutator bracket.
Notice that this definition is a bit more complex than the simple Uq(sl(2)) defined in definition 5.1.
Just having one less generator and three less equation to worry about, will make the next parts a
lot easier. But, everything will off course still be true when one uses Uq(sl(2))

′ instead of Uq(sl(2))
everywhere, given that q /∈ {−1, 0, 1}.

Proof. To show that Uq(sl(2))
′ ≃ Uq(sl(2)), we will construct an algebra automorphism. Now, set

q ∈ C\{−1, 0, 1} and let ϕ : Uq(sl(2)) → Uq(sl(2))
′ be a linear map such that

ϕ(E) = E, ϕ(F ) = F, ϕ(K) = K.

Then ϕ is obviously a well-defined algebra morphism. And, since ϕ([E , F ]) = L, it follows that ϕ is
surjective.
To show that ϕ is a bijection, we will construct a new algebra morphism ψ : Uq(sl(2))

′ → Uq(sl(2)),

ψ(E) = E, ψ(F ) = F, ψ(K) = K, ψ(L) = [E , F ].

Note, obviously ψ ◦ ϕ = idUq(sl(2)) and ϕ ◦ ψ = idUq(sl(2))′ , so it is only left to show that ψ is indeed a
well-defined algebra morphism.
First, the first five equations of Uq(sl(2))

′ are obviously satisfied, so we only need to show that
ψ([L , E ]) = qψ(EK + K−1E) and ψ([L , F ]) = −q−1ψ(FK + K−1F ). Then it follows that ψ
is an algebra morphism, as it is well-defined for all of its generators. Now,

ψ([L , E ]) = [ψ(L) , ψ(E) ] = [ [E , F ] , E ] =
[K −K−1 , E ]

q − q−1

=
(q2 − 1)EK + (q2 − 1)K−1E

q − q−1
= q(EK +K−1E)

ψ[L , F ] = [ [E , F ] , F ] =
[K −K−1 , F ]

q − q−1

=
(q−2 − 1)FK + (q−2 − 1)K−1F

q − q−1
= −q−1(FK +K−1F.

So, ψ : Uq(sl(2))
′ → Uq(sl(2)) is indeed an algebra morphism. Thus, ϕ : Uq(sl(2)) → Uq(sl(2))

′ is an
algebra automorphism and Uq(sl(2)) ≃ Uq(sl(2))

′.
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We will now show how U1(sl(2))
′ is related to the classical case U(sl(2)). Since the quantum case

is generated by 5 elements and the classical case by only 3 elements, we do not get an equality.

Proposition 5.6. We have U1(sl(2))
′ ≃ U(sl(2))[K]/(K2 − 1) and U(sl(2)) ≃ U1(sl(2))

′/(K − 1).

Proof. Note, U1(sl(2))
′ is generated by E,F,K,K−1, L such that

KK−1 = K−1K = 1, KE = EK, KF = FK, [E , F ] = L,

K −K−1 = 0, [L , E ] = EK +K−1E, [L , F ] = −(FK +K−1F ).

The first three equations imply that K ∈ Z(U1(sl(2))
′) and K − K−1 = 0 gives us that K2 = 1, so

[L , E ] = 2EK, [L , F ] = −2FK. Then, ϕ : U1(sl(2))
′ → U(sl(2))[K] with

ϕ(E) = XK, ϕ(F ) = Y, ϕ(K) = K, ϕ(L) = HK,

is a well-defined algebra morphism with kerϕ being the ideal generated by K2 − 1. In other words,
U1(sl(2))

′ ≃ U(sl(2))/(K2 − 1).
The other isomorphism U(sl(2)) ≃ U1(sl(2))

′/(K − 1) is obtained via E → X, F → Y, L→ H,K → 1.
This defines an algebra morphism from U1(sl(2))

′ onto U(sl(2)) with kernel generated by K−1. Hence,
it induces an isomorphism U1(sl(2))

′/(K − 1) ≃ U(sl(2)).

For now we have only seen that Uq(sl(2)) is an algebra. But it is indeed a Hopf algebra and even a
Hopf ∗-algebra. To make it easier for ourselves, and since we are not fully interested in the case that q
is a root of unity, we will fix q ∈ C\{0} such that it is not a root of unity unless specified differently.
So, from this point on q ∈ C\{0} and qd ̸= 1 ∀d ∈ N, unless we define q otherwise.
This assumption will mostly avoid us having to do extra work due to powers of q sometimes being
equal to 1. But we will not fully ignore the case that q is a root of unity. For example, we will also
look at the Verma modules of Uq(sl(2)) when q is a root of unity, but we will only look at this case as
if Uq(sl(2)) was an algebra.
We will use the Hopf algebra properties of Uq(sl(2)) when q is not a root of unity.

Proposition 5.7. ∆: Uq(sl(2)) → Uq(sl(2)) ⊗ Uq(sl(2)) and ε : Uq(sl(2)) → k are algebra morphisms
defined by:

∆(E) = 1⊗ E + E ⊗K, ∆(F ) = K−1 ⊗ F + F ⊗ 1, ∆(K) = K ⊗K, ∆(K−1) = K−1 ⊗K−1,

ε(E) = ε(F ) = 0, ε(K) = ε(K−1) = 1.

These algebra morphisms induce a bialgebra structure on Uq(sl(2)).
Furthermore, S : Uq(sl(2)) → Uq(sl(2)) given by,

S(E) = −EK−1, S(F ) = −KF, S(K) = K−1, S(K−1) = K,

defines an antipode for Uq(sl(2)), i.e. Uq(sl(2)) is a Hopf algebra.

Proof. Note,

∆(K)∆(K−1) = ∆(K−1)‘∆K = 1,

∆(K)∆(E) = (K ⊗K)(1⊗ E + E ⊗K) = K ⊗KE +KE ⊗K2 = q2∆(E)∆(K)

∆(K)∆(F ) = (K ⊗K)(K−1 ⊗ F + F ⊗ 1) = F ⊗KF +KF ⊗K = q−2∆(F )∆(K),

∆([E , F ]) = (1⊗ E + E ⊗K)(K−1 ⊗ F + F ⊗ 1)− (K−1 ⊗ F + F ⊗ 1)(1⊗ E + E ⊗K)

= K−1 ⊗ [E , F ] + [E , F ]⊗K =
∆(K)−∆(K−1)

q − q−1
.
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So ∆ is an algebra morphism. To check that ∆ is coassociative, it suffices to show it for the generators
of Uq(sl(2)). For E,

(∆⊗ id)∆(E) = 1⊗ 1⊗ E + 1⊗ E ⊗K + E ⊗K ⊗K = (id⊗∆)∆(E).

This goes similar for F and K.
Now, ε is obviously an algebra morphism. It also satisfies the counit axiom, hence, Uq(sl(2)) is at least
a Hopf algebra.
Lastly, we want to show that S is an antipode. First,

S(K−1)S(K) = S(K)S(K−1) = 1,

S(KE) = S(E)S(K) = −EK−1K−1 = −q2K−1EK−1 = q2S(K)S(E) = S(q2EK),

S(KF ) = S(F )S(K) = −KFK−1 = −q−2K−1KF = q−2S(K)S(F ) = S(q−2FK),

S([E , F ]) = KFEK−1 − EK−1KF = [F , E ] =
K−1 −K

q − q−1
=
S(K)− S(K−1)

q − q−1
,

so S : Uq(sl(2)) → Uq(sl(2))
op is an algebra morphism. Now, by lemma 1.28, it suffices to show that∑

(x) x
′S(x′′) =

∑
(x) S(x

′)x′′ = ε(x)1 for x ∈ {E,F,K,K−1}. Now,

1 · S(E) + E · S(K) = −EK−1 + EK−1 = 0 = ε(E),

K−1 · S(F ) + F = K−1(−KF ) + F = 0 = ε(F ),

K · S(K) = KK−1 = 1 = ε(K).

Applying S to the left side gives the same results, thus it follows from lemma 1.28 that S is indeed an
antipode and (Uq(sl(2)), µ, η,∆, ε, S) is indeed a Hopf algebra.

Note, this is our first example of a non-abelian, non-cocommutative Hopf algebra. This is also clear
from the fact that S2 ̸= id. Even though S2 ̸= id, it is a nice function.

Proposition 5.8. S2(X) = KXK−1 for any X ∈ Uq(sl(2)).

Proof. S2(E) = q2E = KEK−1, S2(F ) = q−2F = KFK−1, S2(K) = K.

This now shows that we have another example of a Hopf algebra with an antipode of finite order
2n. As, if q is a 2n-th root of unity, it follows that S2n = id.

Since we know that the basis of Uq(sl(2)) is given by {EiF kK l}i,j∈N,l∈Z, if we can construct a
general expression for ∆(EiF kK l), it becomes a lot easier to calculate any coproduct in Uq(sl(2)).

Proposition 5.9. Let i, j ∈ N and k ∈ Z, then

∆(EiF jK l) =

i∑
r=0

j∑
s=0

qr(i−r)+s(j−s)−2(i−r)(j−s)

[
i
r

]
q

[
j
s

]
q

Ei−rF sK l−(j−s) ⊗ ErF j−sK l+(i−r).

Proof. First,

∆(EiF jK l) = ∆(E)i∆(F )j∆(K)l = (1⊗ E + E ⊗K)i(K−1 ⊗ F + F ⊗ 1)j)(K l ⊗K l),

and

(E ⊗K)(1⊗ E) = q2(1⊗ E)(E ⊗K),

(K−1 ⊗ F )(F ⊗ 1) = q2(F ⊗ 1)(K−1 ⊗ F ).
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So, we get that

∆(E)i =

i∑
r=0

qr(i−r)

[
i
r

]
q

Ei−r ⊗ ErKi−r,

∆(F )j =

j∑
s=0

qs(j − s)

[
j
s

]
q

F sK−(j−s) ⊗ F j−s.

We would love to also show that the center Z(Uq(sl(2))) is generated by the quantum Casimir
element Cq = EF + q−1K+qK−1

(q−q−1)2
, since this also shows a nice property of Uq(sl(2)), which is similar to

that of U(sl(2)). But, since this proof will use the concept of Verma modules of Uq(sl(2)), this will
have to wait until we have discussed Uq(sl(2))-modules. This will be done in the next section. The
last thing that we will do in this section, will be showing that Uq(sl(2)) is a Hopf ∗-algebra.

5.2 The ∗-structures of Uq(sl(2))

Now that we have shown that Uq(sl(2)) is a Hopf algebra, we want to finally conclude the remark made
at the start, that Uq(sl(2)) is a Hopf ∗-algebra.
Recall that the Hopf algebra structure is unique if it exists, but that is not the case for the ∗-structures.
We saw that this was the case for U(sl(2)), as it had 3 unique ∗-structures up to isomorphism. Here
we will see that Uq(sl(2)) can have up to three ∗-structures for certain fixed q ∈ C\{0}, with q not a
root of unity.

Theorem 5.10. Let q ∈ C such that qn ̸= 1 for n ∈ N>1. Then, a Hopf ∗-algebra structure can be
induced on Uq(sl(2)) if and only if q2 ∈ R or |q| = 1.
Moreover, any Hopf ∗-algebra structure is equivalent to one of the following three ∗-structures:

i) E∗ = E, F ∗ = F, K∗ = K, if |q| = 1,

ii) E∗ = KF, F ∗ = EK−1, K∗ = K, if q ∈ R\{0},

iii) E∗ = iKF, F ∗ = iEK−1, K∗ = K, if q = λi, λ ∈ R\{0}.

Proof. We will prove that the above three ∗-structures are indeed the only three up to equivalence in
the following manner. First, we will show some properties of the coproduct of Uq(sl(2)). Then we will
prove that all Hopf algebra morphisms f : Uq(sl(2)) → Uq′(sl(2)) are of the same form. Lastly, we will
proof that the above three ∗-structures are indeed the only three up to equivalence. This will be done
by constructing 5 ∗-structures, then ending with the fact that any ∗-structure will be equivalent to one
of those five and that two pairs of those ∗-structures are equivalent with each other.
So our first step is to prove certain properties of ∆: Uq(sl(2)) → Uq(sl(2))⊗Uq(sl(2)). Let x ∈ Uq(sl(2)),
then we will show that:

i) ∆(x) = x⊗ x ⇐⇒ x = K l,

ii) ∆(x) = 1⊗ x+ x⊗K ⇐⇒ x is a linear combination of E and KF ,

iii) ∆(x) = K−1 ⊗ x+ x⊗ 1 ⇐⇒ x is a linear combination of F and EK−1,

iv) ∆(x) = 1⊗ x+ x⊗K−1 ⇐⇒ x = 0.
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Recall that ∆(EiF jK l) =
∑i

r=0

∑j
s=0 q

r(i−r)+s(j−s)−2(i−r)(j−s)
[
i
r

][
j
s

]
Ei−rF sK l−(j−s)⊗ErF j−sK l+(i−r).

So, if x is grouplike, then r = 0 and s = 0. Thus, i = 0 and j = 0, hence x = K l, which proves i) as
K l is obviously grouplike itself.
Now, note that ∆(E) and ∆(F ) are of the second and third form respectively. Thus, ∆(S(F )) and
∆(S(E)) are also of the second and third form respectively, as S : Uq(sl(2)) → Uq(sl(2))

cop is an algebra
morphism. This at least shows the if implications of ii), iii) and equation iv).
For the “only if” implications, note that ∆ is linear, so we only need to check ∆(EiF jK l). Note that
∆(Ei1F j1K l1) and ∆(Ei2F j2K l2) only have at least one similar term if they are equal. In other words,
∆(x+ y) will only be of the desired form if both ∆(x) and ∆(y) are of the desired form. Now, an easy
check shows that if ∆(x) = 1 ⊗ x + x ⊗K, then either i = 0 and j = k = 1 or i = 1 and j = k = 0.
Thus x = αE + βKF . A similar check for iii) and iv) also shows that the "only if“ implications are
indeed true.
We want to use this to show that the following is true for Hopf algebra isomorphisms between Uq(sl(2))
and Uq′(sl(2)).
Claim: ∃f : Uq(sl(2)) → Uq′(sl(2)), Hopf algebra isomorphism ⇐⇒ q′ = ±q±1 and if q′ = q, then

f(E) = αE, f(F ) = α−1F, f(K) = K, for α ∈ C\{0}.

Let f : Uq(sl(2)) → Uq′(sl(2)) be a Hopf algebra isomorphism. Then, if x ∈ Uq(sl(2)) is grouplike, it
follows that f(x) is also grouplike. Since f⊗f(∆(x)) = f(x)⊗f(x) = ∆(f(x)). Thus, f(K) = K±1 as
f has to be bijective. Since ∆(E) = 1⊗E+E⊗K, it follows that ∆(f(E)) = 1⊗f(E)+f(E)⊗f(K),
thus f(K) = K. Else, ∆(f(E)) = 0 by iv), which implies that f(E) = 0, contradicting the fact that
f is bijective.
So we at least have that f(K) = K. Also, by similar reasoning with ii) and iii), f(E) = αE + βKF
and f(F ) = α′F + β′EK−1. Now,

αKE + βK2F = f(KE) = q2f(EK) = q2(αEK + βKFK) = αq2q′−2 + βq2q′2K2F,

so q′ = ±q if α ̸= 0 and q′ = ±q−1 if β ̸= 0 and α ̸= 0 if and only if β = 0 as q ̸= 0.
Similarly,

α′KF + β′KEK−1 = f(KF ) = q−2f(FK) = q−2(α′FK + β′E) = α′q−2q′2 + β′q−2q′−2KEK−1,

so q′ = ±q if α′ ̸= 0 and q′ = ±q−1 if β′ ̸= 0 and α′ ̸= 0 if and only if β′ = 0 as q ̸= 0. Thus it follows
that f can only be a Hopf algebra isomorphism if and only if q = ±q±1.
Now, set q′ = q, so f : Uq(sl(2)) → Uq(sl(2)). Then f(K) = K, f(E) = αE and f(F ) = α′F . Since

[E , F ] = [ f(E) , f(F ) ] = αα′[E , F ],

it follows that α′ = α−1 and f is indeed of the above form.
As an extra remark, this last equation can also be used to show that α′ = −α−1 if q′ = −q.
Since ∗ is a coalgebra morphism, by the same reasoning as above, K∗ = K, E∗ = αE or E∗ = αKF and
F ∗ = αF or F ∗ = αEK−1. As changing the algebra morphism property to an algebra antimorphism
property in the above proof, does not impact the conclusion that at most one of α and β can be
non-zero.
Since ∗ has to be an involution, it also follows that we have two options for ∗, E∗ = αE and F ∗ = α−1F
or E∗ = αKF and F ∗ = α−1EK−1. Set ∗ to be given by K∗ = K, E∗ = αE and F ∗ = α−1F . Then

αEK = (KE)∗ = (q2EK)∗ = αq2KE = αq2q2EK,

so q2q2 = 1 implies |q| = 1. When ∗ is given by K∗ = K, E∗ = αKF and F ∗ = α−1EK−1, we see
that

α−1E = (KF )∗ = (q−2FK)∗ = α−1q−2KEK−1 = α−1q−2q2E,
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so q−2q2 = 1 implies q2 ∈ R. So it follows that Uq(sl(2)) has a ∗-structure if and only if |q| = 1 or if
q2 ∈ R.
Claim: we have the following 5 ∗-structures for Uq(sl(2)) and they are unique up to equivalence for
their given q,

1. E∗ = E, F ∗ = F, K∗ = K, if |q| = 1,

2. E∗ = KF, F ∗ = EK−1, K∗ = K, if q ∈ R>0,

3. E∗ = −KF, F ∗ = −EK−1, K∗ = K, if q ∈ R<0,

4. E∗ = iKF, F ∗ = iEK−1, L∗ = K, if q = λi, λ ∈ R>0

5. E∗ = −iKF, F ∗ = −iEK−1, L∗ = K, if q = λi, λ ∈ R<0.

It is easy to see that any of these ∗ are at least involutions and that ∗ ◦ S ◦ ∗ ◦ S = id. Also, from the
above it immediately follows that these are our only options up to the choice of α and that they are
at least coalgebra morphisms. But, we have also seen that they are algebra antimorphisms, as that
property implies what choice of q is possible and vice versa.
So, by construction, we immediately see that these 5 options are indeed ∗ structures and also our only
options up to the constant α. Fix q ∈ C and let ∗1 be the corresponding ∗-structure given above, so
α = 1, and let ∗2 be the corresponding ∗-structure but with α ∈ C\{0} arbitrary.
Since f : Uq(sl(2)) → Uq(sl(2)), f(K) = K, f(E) = α(E), f(F ) = α−1F is a Hopf algebra automor-
phism, with the property that f(x∗2) = f(x)∗1 with ∗2. It immediately follows that ∗1 ≃ ∗2, in other
words, any ∗-structure on Uq(sl(2)) is equivalent to one of the above 5.
Now, we claimed at the start that there are only 3 ∗-structures on Uq(sl(2)) up to equivalence. Note
that if q ∈ R>0, then −q ∈ R<0 and if q = λi, λ ∈ R>0 then −q = λ′i, λ′ ∈ R<0. And earlier it
was shown that there exists a Hopf algebra automorphism f : Uq(sl(2)) → Uq′(sl(2)) if and only if
q′ = ±q±1, so options 2 and 3 and options 4 and 5 have the possibility to be equivalent ∗-structures.
Note that option 1 is in general unique, due to the fact that if |q| = 1, it need not be true that ±q±1

is of the correct form for any of the other ∗-structures.
Now, fix q ∈ R>0, then we have already seen that f : Uq(sl(2)) → U−q(sl(2)) given by

f(K) = K, f(E) = E, f(F ) = −F,

is a Hopf algebra automorphism. Furthermore,

f(E∗) = f(KF ) = −KF = E∗ = f(E)∗, f(F ∗) = f(EK−1) = EK−1 = −F ∗ = f(F )∗,

so it follows that the ∗ of Uq(sl(2)) is equivalent to that of U−q(sl(2)). In other words, since q was
chosen arbitrarily, ∗-structures 2 and 3 are equivalent. A similar calculation shows that ∗-structures 4
and 5 are equivalent.
Since we also showed that α ∈ C\{0} can be chosen arbitrarily and the ∗-structure will be equivalent
to any of the 5 structures given with α = 1. It indeed follows that Uq(sl(2)) has only 3 possible
∗-structures up to equivalence.
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6 The Verma modules of Uq(sl(2))
In this section we will look at the Verma modules of Uq(sl(2)). All of this will look fairly similar to

the classical case, if we assume that q is not a root of unity. In the case that qd = 1 for some d ∈ N>0,
we will still see that some simple finite-dimensional modules will be highest weight modules, but not
all of them.
Since this part will look fairly similar to the classical case. It will be structured in a similar fashion. We
will first start with looking at highest weight modules. Then show that any finite-dimensional simple
Uq(sl(2))-module is a highest weight module when q is not a root of unity. We will then define the
Verma module of Uq(sl(2)) and use that to show that the quantum Casimir element generates the center
Z(Uq(sl(2))). After that, we will show that any finite-dimensional Uq(sl(2))-module is semisimple and
define the quantum Clebsch-Gordan coefficients.
We will end this section with some theory on the Uq(sl(2))-modules for when qd = 1 for some d ∈ N>0,
but q ̸= ±1. That part will be structured similarly to any of the previous parts on finite-dimensional
simple modules, but we will see that it becomes a bit more complicated when q is a root of unity.

6.1 The Verma modules of Uq(sl(2)) when q is not a root of unity

As indicated by the title, we will assume that q ∈ C is not a root of unity in this part. To be precise,
we will always assume that q is not a root of unity, unless it is specified to be a root of unity. Now,
the following definitions are similar to that of the classical case.

Definition 6.1. Let V be a Uq(sl(2))-module and let λ ∈ C \ {0}. Then if v ∈ V, v ̸= 0 and Kv = λv,
then λ is called a weight of v. Furthermore, v is a highest weight vector of weight λ if Ev = 0 and
Kv = λv. And a Uq(sl(2))-module generated by a highest weight vector of weight λ is called a highest
weight module of weight λ.

Lemma 6.2. Let V be a Uq(sl(2))-module and let λ ∈ C \ {0} be a weight of v ∈ V . Then q2λ is a
weight of Ev and q−2λ is a weight of Fv.

Proof. K(Ev) = q2EKv = q2λEv and K(Fv) = q−2FKv = q−2λFv, showing that q2λ and q−2λ are
indeed weights of Ev and Fv respectively.

Proposition 6.3. Any non-zero finite-dimensional Uq(sl(2))-module V has a highest weight vector.
Furthermore, the actions of E and F on V are nilpotent.

Proof. Let V be a non-zero finite-dimensional Uq(sl(2))-module. Showing that it has a highest weight
vector is similar to that of proposition 3.38.
Now, to show that the actions of E and F are nilpotent, it suffices to show that they can only
have 0 as their eigenvalue. Say ∃v ∈ V {0} such that Ev = λv with λ ∈ C{0}. Then, EKv =
q−2KEv = q−2λKv, so {Knv}n∈N is a sequence of eigenvectors with distinct eigenvalues q−2nλ. But,
since dim(V ) <∞, this is impossible. So E is nilpotent.
The proof goes similar for F , but then {Knv}n∈N is a sequence of eigenvectors with distinct eigenvalues
q2nλ, again showing that F is nilpotent.

To construct certain highest weight modules, we will follow the same setup as in the classical case.

Lemma 6.4. Let v be a highest weight vector of weight λ. Let v0 = v and vn = 1
[n]!F

nv, n ∈ N>0.
Then

Kvn = λq−2pvn, Evn =
q−(n−1)λ− qn−1λ−1

q − q−1
vn−1, Fvn = [n+ 1]vn+1.

This directly follows from lemma 5.3. It also shows that we have a similar cyclic behaviour for
highest weight vectors as in the classical case. In the sense that they are eigenvectors of H and E
sends it to the "previous" eigenvector and F sends it to the "next" eigenvector. This behaviour allows
us, once again, to determine all simple finite-dimensional modules.
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Theorem 6.5. Let V be a finite-dimensional Uq(sl(2))-module generated by a vector v of highest weight
λ, then

i) λ = εqd, with ε = ±1 and dim(V ) = d+ 1,

ii) if vn = 1
[n]!F

nv, then vn = 0 if n > d and {v, v1, . . . , vd} is a basis of V ,

iii) the operator K acting on V is diagonalizable with eigenvalues {εqd, εqd−2, . . . , εq−d+2, εq−d},

iv) any w ∈ V that is a highest weight vector is of weight λ and of the form αv, α ∈ C,

v) V is simple.

Furthermore, any simple finite-dimensional Uq(sl(2))-module is generated by a highest weight vector.
And if W, W ′ are two Uq(sl(2))-modules generated by highest weight vectors of weight λ, then W ≃W ′.

Proof. i), ii), iii) and iv) are a direct consequence of the previous lemma in combination with V being
finite-dimensional. By lemma 6.4, we get that {vi}i≥0 is a sequence of eigenvectors of K with distinct
eigenvalues. Thus ∃d = dim(V )− 1 ∈ N such that vd ̸= 0, but vd+1 = 0. Then,

0 = Evd+1 =
q−dλ− qdλ−1

q − q−1
vd,

shows that q−dλ = qdλ−1 implies λ = ±qd. The other details are similar to the classical case, see
theorem 3.40.

Similar to the classical case, we again have unique, up to isomorphisms, simple Uq(sl(2))-modules
of dimension d + 1 generated by highest weight vectors of weight εqn. Since they are generated by
highest weight vectors of weight εqd, we will denote these modules by Vε,d. Note, the formulas given
in lemma 6.4 can be rewritten for Vε,d to:

Kvn = εqd−2nvn, Evn = ε[d− n+ 1]vn−1, Fvn = [n+ 1]vn+1.

Now, similar to the classical case, the formulas given in lemma 6.4 also define an infinite dimensional
Uq(sl(2))-module.

Lemma 6.6. Let V (λ) be a vector space with basis {vi}i∈N, then the formulas in lemma 6.4 with
Ev0 = 0 induce a Uq(sl(2))-module structure on V (λ) and it is generated by the highest weight vector
v0.

Proof. That the formulas induce a Uq(sl(2))-module structure immediately follow from simple compu-
tations.
Now, from these formulas, it follows that Kv0 = λv0 and Ev0 = 0, so v0 is indeed a highest weight vec-
tor. Furthermore, Fvn = [n+ 1]vn+1 shows that vn = 1

[n]!F
nv0 ∀n ∈ N, thus V (λ) is indeed generated

by v0.

The module V (λ) that is generated by a highest weight vector of weight λ is called the Verma
module, just like in the classical case. Just like in the classical case, these Verma modules also need
not be simple. We could again show this by constructing a submodule, but, just like in the classical
case, we have another way to show this fact.

Proposition 6.7. Any highest weight Uq(sl(2))-module V of highest weight λ is a quotient of the
Verma module V (λ).

Proof. The proof is similar to that of the classical case, proposition 3.43, but the linear map is now
given by f : V (λ) → V ; vi 7→ 1

[i]!F
iv0.
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This proposition is the quantum analogue of proposition 3.43 and shows that the Verma modules
V (λ) need not be simple in the quantum case. Since the simple modules Vε,qn are in particular a
quotient of the Verma module V (εqn), it follows that V (εqn) is not simple for n ∈ N>1. Thus it follows
that V (λ) is at least never simple when λ = ±qn for n ∈ N>1, since it has Vε,qn as a submodule.
Furthermore, we even have a similar fact in the quantum case for when V (λ) can only be simple.

Lemma 6.8. Let 0 ̸= λ ∈ C, then V (λ) is simple if and only if λ ̸= ±qn for some n ∈ N.

Proof. The above remark already shows that V (λ) is not simple if λ = ±qn for some n ∈ N. Thus, if
V (λ) is simple, then λ ̸= ±qn for some n ∈ N.
For the converse, assume that V (λ) is not simple. So, there is a submodule V ⊂ V (λ) that is not
trivial. Then, we can assume without loss of generality that V is a simple module, since if V is not
simple, we can take a submodule of V that is simple. Now, dim(V ) is either finite or infinite. If it is
finite, it immediately follows from theorem 6.5 that λ = ±qn for some n ∈ N.
So let dim(V ) = ∞. Then, for v ∈ V , since v ∈ V (λ), it is a linear combination of the vi. Hence,
Env = 0 for some n ∈ N. But, V is a submodule, so En−1v ∈ V and Env = 0 hence En−1v = αv0 for
some 0 ̸= α ∈ C, as λ−1 ̸= λ. Thus V = V (λ) and it follows that V (λ) cannot contain a non-trivial
infinite dimensional submodule.
Hence V (λ) is simple if and only if λ ̸= ±qn for some n ∈ N.

Something else that is also similar, is the fact that central elements act like scalars on non-zero
finite-dimensional simple Uq(sl(2))-modules.

Lemma 6.9. Let A ∈ Z(Uq(sl(2))), then Av = αv for any v ∈ Vε,λ, α ∈ C.

Since the proof of lemma 3.42 did not use any property of the U(sl(2))-module V (n), except that it
was non-zero, finite-dimensional and simple. A similar proof can be used to show that this also holds
in the quantum case. So, it directly follows that any X ∈ Z(Uq(sl(2))) acts as a scalar on any non-zero
simple finite-dimensional Uq(sl(2))-module V .
This is still true when q is a root of unity. Only, when q is a root of unity, it will hold for different
modules. Since we will see that the finite-dimensional simple modules will not necessarily have the
same form when qd = 1 for some d ∈ N>1.

Another property that is similar to the classical case is the following theorem:

Theorem 6.10. Any finite-dimensional Uq(sl(2))-module is semisimple, if q is not a root of unity.

To proof this, we will closely follow the proof of the theorem 3.45, which is the classical version of
this theorem. For this we will need the following:

Proposition 6.11. The element Cq = EF + q−1K+qK−1

(q−q−1)2
= FE + qK+q−1K−1

(q+q−1)2
∈ Z(Uq(sl(2))).

The proof of this proposition is a simple check that Cq indeed commutes with E,F and K. Note
that the equality follows from the fact that [E , F ] = EF − FE = (q−q−1)(K−K−1)

(q−q−1)2
.

The element Cq is called the quantum Casimir element and in a bit we will see that it generates the
center Z(Uq(sl(2))), just like in the classical case.

Lemma 6.12. ∃C ∈ Z(Uq(sl(2))) such that C acts on Vε,0 as 0 and on Vε′,d as a non-zero scalar when
d > 0.

Proof. Let C = Cq − ε q+q−1

(q−q−1)2
. Then it acts on Vε,0 as

ε
q + q−1

(q − q−1)2
− ε

q + q−1

(q − q−1)2
= 0
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and on Vε′,d as

ε′
qd+1 + q−(d+1)

(q − q−1)2
− ε

q + q−1

(q − q−1)2
.

This is not 0, since ε′ q
d+1+q−(d+1)

(q−q−1)2
− ε q+q−1

(q−q−1)2
= 0 =⇒ q2n+2 − εε′qn+2 − εε′qn + 1 = 0 ⇐⇒

(qn+2 − εε′)(qn − εε′) = 0 ⇐⇒ q is a root of unity. So C doesn’t act as 0 on Vε′,d for d > 0.

We will now prove theorem 6.10. Since this will be fairly similar to the proof of the classical case,
theorem 3.45, some of the details will be omitted.

Proof. We will follow the proof of the classical case step by step. Let V, V ′ be finite-dimensional
Uq(sl(2))-modules with V ⊂ V ′. We first show V = V ′ ⊕ V ′′, V ′′ a Uq(sl(2))-module, for when V ′ ⊂ V
is of codimension 1.
It is trivial if dim(V ′) = 0. If dim(V ′) = 1, V ′ and V/V ′ are 1-dimensional modules with weights ε1
and ε2. If ε1 ̸= ε2, there is a basis {v1, v2} of V with V ′ = kv1 such that Kvi = vi, Evi = 0 = Fvi for
i = 1, 2, hence V = kv1 ⊕ kv2.
If ε1 = ε2, there is a basis {v1, v2} of V with V ′ = kv1 and Kv1 = ε1v1, Kv2 = ε1v2 + αv1, Then
Ev1 = 0 and Ev2 = λv1 + µv2, so

ε1λv1 + µ(ε1v2 + αv1) = KEv2 = q2EKv2 = ε1q
2(λv1 + µv2),

so Ev2 = 0. From a similar computation, it also follows that Fvi = 0 for i = 1, 2. Hence K acts as
K−1 on V and it follows that α = −α, so K acts diagonal on V . In other words, we have the same
case as when ε1 ̸= ε2.
Now, assume the assertion holds for dim(V ′) < n and let dim(V ) = n. Then V ′ is simple or not
simple. When V is not simple, the same arguments can be used as in theorem 3.45. So assume V is
simple.
Then V/V ′ is a module of weight ε = ±1 and a similar argument shows that C

α is a projection of V
onto V ′. Thus, V = V ′ ⊕ ker(Cα ), with C as in the previous lemma.
For the general case, one can use similar arguments as in the proof of theorem 3.45 with the same
spaces W and W ′ to show that the generator f of W ′′, W =W ′ ⊕W ′′ acts as a non-zero scalar α on
V . Hence f

α is a projection of V onto V ′. Once again, showing that f is Uq(sl(2))-linear, completes
the proof.

6.2 The center of Uq(sl(2))

Similar to the classical case, we can use the theory on Verma modules to show that the center of
Uq(sl(2)) is generated by a single element. We will show that Z(Uq(sl(2))) is generated by the quantum
analogue of the Casimir element. But, we still need to be careful with our choice of q.

Lemma 6.13. Let q ∈ C\{0} such that qn = 1, n ∈ N>2, so q is a root of unity.

Let e =

{
n if n is odd,
n/2 if n is even.

Then, Ke, Ee, F e ∈ Z(Uq(sl(2))).

Proof. Note, that q2e = 1 and [e] = 0, so it follows from lemma 5.3 that Ke, Ee and F e indeed commute
with every element of Uq(sl(2)), as they commute with all of its generators.

This small lemma immediately shows why we need to be careful with our choice of q, since the
elements Ke, Ee and F e are obviously not in Z(Uq(sl(2))) if q is not a root of unity.
The goal for this part is to describe to center Z(Uq(sl(2))). We will do this with the Harish-Chandra
homomorphism, since we will see that this is an isomorphism from Z(Uq(sl(2))) to a subalgebra of
k[K,K−1].
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Definition 6.14. Let Uq(sl(2))
K = {X ∈ Uq(sl(2))|XK = KX} and let φ : Uq(sl(2))

K → k[K,K−1]
be a projection. Then φ is the so called Harish-Chandra homomorphism.

It is not immediately clear why this is an algebra morphism or even a projection, so we will show
this. First, note that Uq(sl(2))

K is a subalgebra of Uq(sl(2)) and k[K,K−1] is also an algebra. So, φ
is at least a map between two algebras.

Lemma 6.15. X ∈ Uq(sl(2))
K ⊂ Uq(sl(2)) if and only if X =

∑
i≥0 F

iPiE
i with Pi ∈ k[K,K−1] for

i ≥ 0.

Proof. Since K(F iK lEj)K−1 = q2(j−i)F iK lEj and {F iK lEj}i,j∈N,l∈Z was a basis of Uq(sl(2)). It
follows that KXK−1 = X ⇐⇒ X =

∑
i≥0 F

iPiE
i.

Lemma 6.16. Let I = FUq(sl(2))∩Uq(sl(2))
K = Uq(sl(2))E ∩Uq(sl(2))

K , then it follows that I is an
ideal of Uq(sl(2))

K and Uq(sl(2))
K = k[K,K−1]⊕ I.

Proof. Let X =
∑

i≥0 F
iPiE

i ∈ Uq(sl(2))
K . Then, if X ∈ Uq(sl(2))E, it follows that P0 = 0, hence

X ∈ FUq(sl(2)). Conversely, if X ∈ FUq(sl(2)) it follows that P0 = 0, hence X ∈ Uq(sl(2))E and
FUq(sl(2)) ∩ Uq(sl(2))

K = Uq(sl(2))E ∩ Uq(sl(2))
K .

Note, FUq(sl(2))∩Uq(sl(2))
K is a right ideal and Uq(sl(2))E ∩Uq(sl(2))

K a left ideal, as Uq(sl(2))
K is

an algebra. Thus it follows from the above that I is indeed an ideal.
Hence, we have an algebra morphism π : Uq(sl(2))

K → Uq(sl(2))
K/I; a 7→ a + I. Since a + I =

b+ I if and only if P a
0 = P b

0 , with a =
∑

i F
iP a

i E
i, b =

∑
i F

iP b
i E

i, and the form given in lemma 6.15
is unique, it follows that we can turn this into an algebra morphism π : Uq(sl(2))

K → k[K,K−1] ⊕ I,
a 7→ (P a

0 , I).

This shows that the map φ : Uq(sl(2))
K → k[K,K−1] is is indeed an algebra morphism and it is

the projection of Uq(sl(2))
K onto k[K,K−1] via π.

We want to use φ to describe Z(Uq(sl(2))). Since Z(Uq(sl(2))) ⊂ Uq(sl(2))
K and it is also a subalgebra,

we will do this by looking at the Harish-Chandra morphism restricted to Z(Uq(sl(2))).

Proposition 6.17. Let V be a highest weight module of Uq(sl(2)) with highest weight λ. Then, for
any Z ∈ Z(Uq(sl(2))), v ∈ V , we have Zv = φ(Z)(λ)v.

Proof. Let v0 be of highest weight λ, the vector that generates V , and let Z ∈ Z(Uq(sl(2))). Then,
Z = φ(Z) +

∑
i>0 F

iPiE
i. As Ev0 = 0, Kv0 = λv0 =⇒ Zv0 = φ(Z)(λ)v0.

Now, if v ∈ V arbitrary, then v = Xv0 for X ∈ Uq(sl(2)), thus Zv = ZXv0 = XZv0 = φ(Z)(λ)Xv0 =
φ(Z)(λ)v.

Lemma 6.18. Let Z ∈ Z(Uq(sl(2))), then φ(Z) = 0 if and only if Z = 0.

Proof. Let Z ∈ Z(Uq(sl(2))), Z ̸= 0, with φ(Z) = 0. Then Z =
∑l

i=k F
iPiE

i for 0 < k ≤ l, k, l ∈ N
and some Pi non-zero, Pk ̸= 0. Let V (λ) be a Verma module of highest weight λ ̸= εqn, n ∈ N.
Then, Evp = 0 if and only if p = 0 and Zvk = φ(Z)(λ)vk = 0. Also, Zvk = F kPkE

kvk = cPk(λ)vk, c ∈
C\{0}, thus Pk(λ) = 0. From this it follows that Pk is a polynomial with infinitely many roots, but
Pk ̸= 0, hence Z = 0.

We want to end this part with concluding that the center Z(Uq(sl(2))) is generated by the quantum
Casimir element Cq = EF + q−1K+qK−1

(q−q−1)2
= FE + qK+q−1K−1

(q−q−1)2
. We will do this in a similar fashion as

in the classical case. So, we will show that the φ(Z) have a special properties for Z ∈ Z(Uq(sl(2))),
then normalise the Harish-Chandra morphism with the use of this. Similar to the classical case, this
normalised morphism will be an isomorphism when restricted to Z(Uq(sl(2)))
So, to start, we have the following property for central elements of Uq(sl(2)):

Lemma 6.19. Let Z ∈ Z(Uq(sl(2))), then φ(Z)(q−1λ) = φ(Z)(q−1λ−1).
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Proof. Let n > 0 and consider the Verma module V (qn−1). Then,

Evn =
q−(n−1)qn−1 − qn−1q−(n−1)

q − q−1
vn = 0.

So, vn is of highest weight qn−1−2n = q−n−1. By the previous proposition, Zvn = φ(Z)(q−n−1)vn, but
vn ∈ V (qn−1), so Zvn = φ(Z)(qn−1)vn. In other words,

φ(Z)(q−n−1) = φ(Z)(qn−1).

It follows that φ(Z)(q−n) = φ(Z)(qn) and hence φ(Z)(q−1λ) = φ(Z)(q−1λ−1).

Let δq : k[K,K−1] → k[K,K−1] be the map given by δq(P (λ)) = P (q−1λ). Then δq ◦ φ is the
normalized Harish Chandra morphism and we will see that it is an isomorphism from Z(Uq(sl(2))) into
k[K +K−1].
To show this, we will use the following lemma in combination with the remark that δq(φ(Z)) is still a
Laurent polynomial for Z ∈ Z(Uq(sl(2))).

Lemma 6.20. Any element of P ∈ k[K,K−1] satisfying P (λ) = P (λ−1) is a polynomial in K +K−1.

This follows from a simple induction argument. So, for Z ∈ Z(Uq(sl(2))), δq(φ(Z)) is a Laurent
polynomial with the property that δq(φ(Z))(λ) = δq(ϕ(Z))(λ

−1). Hence, δq(φ(Z)) is a polynomial in
K +K−1. The next theorem will conclude that the center Z(Uq(sl(2))) is generated by the quantum
Casimir element Cq.

Theorem 6.21. Let q not be a root of unity, then Z(Uq(sl(2))) is generated by Cq. Furthermore,
δq ◦ φ|Z(Uq(sl(2))) : Z(Uq(sl(2)))

∼→ k[K +K−1].

Proof. We know that φ|Z(Uq(sl(2))) is injective, so it is only left to show that it is surjective. By the
remark, we know that Im(δq ◦ φ|Z(Uq(sl(2)))) ⊂ k[K +K−1].
Now, φ(Cq) = qK+q−1K−1

(q−q−1)2
, thus δq(φ(Cq)) = K+K−1

(q−q−1)2
. Thus Im(δq ◦ φ|Z(Uq(sl(2)))) contains the gen-

erator K +K−1 of k[K +K−1], hence δ ◦ φ(Z(Uq(sl(2)))) = k[K +K−1] and Z(Uq(sl(2))) is indeed
generated by Cq.

6.3 The quantum 3j-symbols of Uq(sl(2))

Now that we know that finite-dimensional Uq(sl(2))-modules are semisimple, we can discuss a property
of Uq(sl(2)) that is similar to the Clebsch-Gordan coefficients in the classical case. But this time we
want to go one step further. Besides only showing a relation between two bases of Vε,n⊗Vε′,m, we also
want to show that the obtained basis is orthogonal.
Since we want to look at an orthogonality property, our first step is to construct a bilinear form on
Uq(sl(2)).

Proposition 6.22. ∃! algebra antiautomorphism T : Uq(sl(2)) → Uq(sl(2)) such that T (E) = KF ,
T (F ) = EK−1, T (K) = K and T is a coalgebra morphism.

Proof. First, assume that a linear map T exists as described above, such that T (AB) = T (B)T (A) for
A,B ∈ Uq(sl(2)). Then,

T (KEK−1) = K−1(KF )K = FK = q2KF = T (q2E),

T ([E , F ]) = −[T (E) , T (F ) ] = −[KF , EK−1 ] = [E , K ] =
K −K−1

q − q−1
.

A similar calculation for KFK = q−2F shows that it is indeed an algebra antimorphism of Uq(sl(2)).
It obviously is an isomorphism, hence an automorphism. Showing that T is a coalgebra morphism also
follows from similar calculations.
Lastly, the existence and uniqueness follow directly from the properties of T .
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Theorem 6.23. On the simple Uq(sl(2))-modules Vε,d there exists a unique non-degenerate symmetric
bilinear form such that (v0, v0) = 1 and (Xv, v′) = (v, T (X)v′) for X ∈ Uq(sl(2)), v, v′ ∈ Vε,d and T
defined as in proposition 6.22.
Furthermore, the basis vectors vn = 1

[n]q !
Fnv0, n ≥ 0, are pairwise orthogonal and (vi, vi) = q−(d−n−1)n

[
d
i

]
q

Proof. Again, assume that a bilinear form as described above exists on Vε,d. Then we want to show
that it is unique, so we want to show that the vi are pairwise orthogonal and that the last formula
holds. Now,

(vi, vj) =
1

[i]q!
(Fv0, vj) =

1

[i]q!
(v0, T (F )

ivj) =
1

[i]q!
(v0, (EK

−1)ivj).

Since (EK−1)i = qi(i+1)K−iEi for i > 0, it follows that T (F )ivj = αEivj , 0 ̸= α ∈ k, hence (vi, vj) = 0
if i > j. As (·, ·) is symmetric, (vi, vj) = 0 if i < j. Lastly,

(vi, vi) =
1

[i]q!
qi(i+1)(v0,K

−iEivi) = εiqi(i+1) [d]q!

[i]q![d− 1]q!
(v0,K

−iv0) = qi(i+1)−di

[
d
i

]
q

(v0, v0).

Hence, this bilinear form is unique. For existence, note that (vi, vj) = q−(d−i−1)i
[
d
i

]
q
δij clearly is a non-

degenerate bilinear form. A quick computation shows that this satisfies the last relation given in the
theorem, showing that a bilinear form with the properties given above truly exists and is unique.

We can use this bilinear form to show that the two different bases of V1,n ⊗ V1,m that we will
find, are orthogonal. Before that, we want to rewrite V1,n ⊗ V1,m as a direct sum of simple modules.
That will give us our two bases and the relation between these basis will be described by the so called
3j-symbols, also known as the Clebsch-Gordan coefficients.
Note that Vε,d ≃ Vε,0 ⊗ V1,d ≃ V1,d ⊗ Vε,0. Since we have that Vε,0 = k, it suffices to only look at the
modules V1,n ⊗ V1,m, instead of Vε,n ⊗ Vε′,m.

Theorem 6.24. Let n,m ∈ N, n ≥ m, then V1,n ⊗ V1,m ≃ V1,n+m ⊕ V1,n+m−2 ⊕ · · · ⊕ V1,n−m.

The proof of this theorem is exactly the same as in the classical case, proposition 3.46. The following
lemma shows that we will also have all the highest weight vectors that we want in the quantum case.

Lemma 6.25. Let n,m ∈ N, n ≥ m and let v(n) ∈ V1,n, v(m) ∈ V1,m be highest weight vectors of
weight qn and qm respectively. Set v(n)k = 1

[k]!F
kv(n) and w(m)

k = 1
[k]!F

kw(m) for p ≥ 0. Then

v(n+m−2k) =
k∑

i=0

(−1)i
[m− k + i]![n− i]!

[m− k]![n]!
q−i(m−2k+i+1)v

(n)
i ⊗ v

(m)
k−i

is a highest weight vector of V (n)⊗ V (m) of weight qn+m−2k.

One can prove that v(n+m−2k) is indeed a highest weight vector by simply calculating how K and
E act on it.
Just like in the classical case, we now have two different bases for V1,n ⊗ V1,m, namely {v(n)i ⊗
v
(m)
j }0≤i≤n,0≤j≤m and {v(n+m−2k)

p }0≤k≤m,0≤p≤n+m−2k, with v
(n+m−2k)
p = 1

[p]!F
pvn+m−2k. This first

basis directly comes from the tensor product and the second one is more suited to work with when
regarding V1,n ⊗ V1,m as a Uq(sl(2))-module.
Since they are two bases of the same vector spaces, we can compare them with each other. In this
case, it is also a rather nice comparison, since

v(n+m−2k)
p =

∑
0≤i≤n,0≤j≤m

[
n m n+m− 2k
i j p

]
v
(n)
i ⊗ v

(m)
j ,

for certain coefficients
[
n m n+m− 2k
i j p

]
, which are referred to as the quantum 3j-symbols and are

defined for 0 ≤ k ≤ m and 0 ≤ p ≤ n+m− 2k.
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Lemma 6.26. For a fixed k and p, vn+m−2k
p is a linear combination of vectors of the form v

(n)
i ⊗v(m)

p−i+k,

so
[
n m n+m− 2k
i j p

]
= 0 if i+ j ̸= p+ k.

Furthermore, [
n m n+m− 2k
i j + 1 p+ 1

]
=

[j + 1]q−(n−2i) + [i]

[p+ 1]

[
n m n+m− 2k
i j p

]
.

Proof. We will proof this via induction on p. First, the case k = 0 follows directly from lemma 6.25.
Suppose we have vn+m−2k

p =
∑

i αiv
(n)
i ⊗ v

(m)
p−i+k, then

[p+ 1]v
(n+m−2k)
p+1 = Fv(n+m−2k)

p =
∑
i

αi

(
K−1v

(n)
i ⊗ Fv

(m)
k−i+p + Fv

(n)
i ⊗ v

(m)
k−i+p

)
.

From this, it follows that vn+m−2k
p is a linear combination of vectors of the form v

(n)
i ⊗ v

(m)
p−i+k. The

last equation also follows directly from the above.

As stated before, the two bases we have given here, are orthogonal bases. Furthermore, there are
also orthogonality relations for the 3j-symbols. With these we can even express the vectors v(n)i ⊗ v(m)

j

in terms of the vectors vn+m−2k
p . So we don’t just have 1 original bases and 1 basis that is expressed

in terms of the old one. We can indeed express both bases in terms of the other.
To do this, we will use the bilinear form of theorem 6.23. Note that if we equip both V1,n and V1,m
with this bilinear form, then we can also define another symmetric bilinear form on V1,n ⊗ V1,m given
by (v1 ⊗ v′1, v2 ⊗ v′2) = (v1, v2)(v

′
1, v

′
2) for v1, v2 ∈ V1,n, v′1, v′2 ∈ V1,m.

Lemma 6.27. The above defined symmetric bilinear form is non-degenerate and the basis {v(n)i ⊗
v
(m)
j }0≤i≤n,0≤j≤m is orthogonal with respect to this bilinear form.

Furthermore, ∀X ∈ Uq(sl(2)), w1, w2 ∈ V1,n ⊗ V1,m, (Xw1, w2) = (w1, T (X)w2).

Proposition 6.28. i) The basis {v(n+m−2k)
p }0≤k≤m, 0≤p≤n+m−2k is orthogonal with respect to the

bilinear of lemma 6.27.

ii) For fixed p, q, k, l, we have

0 =
∑
i,j

q−i(n−i−1)−j(m−j−1)

[
n
i

] [
m
j

] [
n m n+m− 2k
i j p

] [
n m n+m− 2q
i j l

]
,

when p ̸= l or k ̸= q and

∑
i,j

q−i(n−i−1)−j(m−j−1)

[
n
i

] [
m
j

] [
n m n+m− 2k
i j p

]2
= q−p(n+m−2k−p−1)

[
n+m− 2k

p

]
.

iii) Given i and j, we have

v
(n)
i ⊗v(m)

j = q−i(n−i−1)−j(m−j−1)

[
n
i

] [
m
j

] m∑
k=0

n+m−2k∑
p=0

qp(n+m−2k−p−1)

[
n m n+m− 2k
i j p

]
[
n+m− 2k

p

] v
(n+m−2k)
k .

The proofs of these two statements comes down to doing some calculations with the use of both
the 3j-symbols and the defined bilinear form. Since we are not too interested in how to do to use the
3j-symbols for these kind of calculations, the two proofs of these statements will be omitted, but can
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be found in [4].
Now, similar to the classical case, since the central elements of Uq(sl(2)) act like scalars on the modules

Vε,d, it also follows that the
∑

0≤i≤n,0≤j≤m

[
n m n+m− 2k
i j p

]
v
(n)
i ⊗ v

(m)
j are eigenfunctions of the

quantum Casimir element Cq, in the sense that

λCqv
n+m−2k
p = Cqv

n+m−2k
p =

∑
0≤i≤n,0≤j≤m

Cq

[
n m n+m− 2k
i j p

]
v
(n)
i ⊗ v

(m)
j

=
∑

0≤i≤n,0≤j≤m

λCq

[
n m n+m− 2k
i j p

]
v
(n)
i ⊗ v

(m)
j .

This can then be used to get an explicit formula for the Clebsch-Gordan coefficients. In this case, similar
to the classical case, the Clebsch-Gordan coefficients can also be described by certain polynomials, the
q-Hahn polynomials [12].

Before we move on to the Uq(sl(2))-module that will be our main subject for the rest of this thesis.
We will take a short detour to look at the case when q is a root of unity.

6.4 The Verma modules of Uq(sl(2)) when q is a root of unity

We have often said that the choice of q matters a lot for when we looked at certain properties of
Uq(sl(2)). Moreover, we even choose q ∈ C\{0} to specifically not be a root of unity for most of the
last two sections. To really indicate why we did this, we will look at the simple finite-dimensional
modules of Uq(sl(2)) for when qd = 1 for some d ∈ N>2. This will then be a second example of why
we need to be careful with how we choose q, with lemma 6.13 being our first example.
So, for this part, let q ∈ C\{0} such that qd = 1 for some d ∈ N>2. So q ̸= ±1. Recall that

e =

{
d if d is odd,
d/2 if d is even.

and that [e] = 0.

The next proposition shows that in certain cases, there is no difference between the Verma modules
Vε,n when q is or is not a root of unity.

Proposition 6.29. Let n ∈ N such that 0 ≤ n < e−1 and let V be a non-zero simple Uq(sl(2))-module
with dim(V ) < e. Then V ≃ Vε,n, ε = ±1.

This proof is exactly the same as when q is not a root of unity, theorem 6.5, since 1, q2, . . . , qn are
all distinct scalars when n < e. The biggest difference when q is a root of unity are when we look at
modules of dimension ≥ e.

Proposition 6.30. There are no simple finite-dimensional Uq(sl(2))-modules of dimension > e.

Proof. We will show that if V is a Uq(sl(2))-module, dim(V ) > e, then we can find a non-zero sub-
module V ′ ⊂ V . Thus showing that V cannot be simple.
Suppose there is an eigenvector 0 ̸= v ∈ V of K such that Fv = 0, then the vector space generated by
v is a submodule. So, let V ′ be generated by the vectors v,Ev, . . . , Ee−1v, then V ′ is stable under the
action of K, E(Eiv) = Ei+1v ∈ V if i+ 1 < e− 1 and E(Ee−1v) = Eev = αv for some α ∈ C as Ee ∈
Z(Uq(sl(2))) by lemma 6.13. And since Fv = 0, and F (Eiv) = Ei(Fv) − [i] q

−(i−1)K−qi−1K−1

q−q−1 Em−1v,
V ′ is also stable under F , hence V ′ ⊂ V is a non-zero submodule that is not V itself.
Now suppose that there is no non-zero eigenvector v of K such that Fv = 0, so Fv ̸= 0. Then we claim
that V ′ generated by v, Fv, . . . , F e−1v is a non-zero submodule of V . It again suffices to show that V ′

is stable under E,F and K. First, V ′ is again obviously stable under K and since F (F iv) = F i+1v
and F ev = αv for some 0 ̸= α ∈ C, V ′ is also stable under F .
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This time α ̸= 0, else F (F e−1v) = 0 with F e−1v an eigenvector of K, contradicting our assumption.
Lastly, for i > 0,

E(F iv) = EF (F i−1v) = (Cq −
q−1K + qK−1

(q − q−1)2
(F i−1v) = βF i−1v − q−1K + qK−1

(q − q−1)2
(F i−1v),

thus E(F iv) ∈ V ′ for i > 0, with Cq the q-Casimir element and β ∈ C. Since Ev = α−1EF ev, it
follows that Ev ∈ V ′. Hence V ′ ⊂ V is a non-zero submodule that is not V itself. So, for both cases
we could construct a non-zero submodule that is not V , hence V cannot be a simple module when
dim(V ) > e.

The last part of this section will be dedicated to show that we can still describe all simple Uq(sl(2))-
modules of dimension e. Immediately notice that proposition 6.3 does not hold in this case. Since
the proof relies on the sequence (Xnv)n∈N to give distinct eigenvalues for K for all n ∈ N. But, by
lemma 6.13, Ee ∈ Z(Uq(sl(2))), thus Eev has the same eigenvalue for K as v. Thus such a sequence
need not lead to a highest weight vector.
So, to find all possible simple Uq(sl(2))-modules of dimension e, we will first construct two e-dimensional
vector spaces, then show that any simple Uq(sl(2))-module of dimension e is isomorphic to one of those
two vector spaces.
First, set a, b, λ ∈ C, λ ̸= 0 and let V (λ, a, b) be a vectors space of dimension e with basis {v0, . . . , ve−1}.
For 0 ≤ p < e− 1, set

Kvp = λq−2pvp, Evp+1 =

(
q−pλ− qpλ−1

q − q−1
[p+ 1] + ab

)
vp, Fvp = vp+1,

and Ev0 = ave−1, Fve−1 = bv0 and Kve−1 = λq−2(e−1)ve−1. These formulas induce a Uq(sl(2))-module
structure on V (λ, a, b).
Secondly, let µ, c ∈ C, µ ̸= 0 and let Ṽ (µ, c) be another vector space of dimension e with basis
{v0, . . . , ve−1}. For 0 ≤ p < e− 1, set

Kvp = µq2pvp, Fvp+1 =
q−pµ−1 − qpµ

q − q−1
[p+ 1]vp, Evp = vp+1,

and Fv0 = 0, Eve−1 = cv0 andKve−1 = µq−2ve−1. These formulas induce a Uq(sl(2))-module structure
on Ṽ (µ, c).

Theorem 6.31. Any simple Uq(sl(2))-module of dimension e is isomorphic to one of the following
modules:

1. V (λ, a, b) with b ̸= 0,

2. V (λ, a, 0) with λ ̸= ±qj−1, 1 ≤ j ≤ e− 1.

Proof. Simple calculations will show that the actions of E,F,K on the vector spaces V (λ, a, b) and
Ṽ (µ, c) induce a Uq(sl(2))-module structure. So, we at least know that the given vector spaces are
modules. More precisely, lemma 5.3 shows that any vector space with basis given by {Fnv}0≤n<e and
{Env}0≤n<e have a Uq(sl(2))-module with the actions of E,F,K given by the formulas of V (λ, a, b)
and Ṽ (µ, c) respectively. So, to show that any simple Uq(sl(2))-module of dimension e is isomorphic
to one of the two given above, it suffices to show that can always generate a basis {v,Ev, . . . , Ee−1v}
for some vector v of a module V .
Let V be an e-dimensional simple Uq(sl(2))-module. Then, by an earlier remark, we cannot assume
that it has a highest weight vector. But, since C is algebraically closed, we still have that
∃0 ̸= v ∈ V (Kv = λv). And KFv = q−2FKv = q−2λFv, so Fv and Ev are also eigenvectors of K.
Since 0, q−2, . . . , q−e+1 are distinct numbers and F e, Ee ∈ Z(Uq(sl(2))), it follows that the sequence
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(Fnv)n∈N gives us e distinct eigenvectors of K, if F iv ̸= 0 when i < e. If F iv = 0 for some 0 ≤ i < e,
then we still have e distinct eigenvectors from the sequence (Env)n∈N if, again, Ejv ̸= 0 if j < e.
Note, if F iv = 0 and Ejv = 0 for some 0 ≤ i < e, 0 ≤ j < e, then {v,Ev, . . . , Ejv, Fv, . . . , F iv}
is a basis for V . Since, if these are not e linear independent vectors, it is a submodule of V . As
KEFv = EFKv = λEFv =⇒ EFv = αv, α ∈ C.
Similarly, FEv = α′v, α′ ∈ C. So it follows that the vector space with basis {v,Ev, . . . , Eiv, Fv, . . . , F jv}
is closed under the actions of F and E, hence it has to be equal to V .
Thus, we get three options.

1. We have a basis of V given by {v, Fv, . . . , F e−1v},

2. we have a basis of V given by {v,Ev, . . . , Ee−1v},

3. we have a basis of V given by {v, Fv, . . . , F iv,Ev, . . . , Ejv}.

This means that in the case of 1, we can change the basis to {v0, . . . , ve−1} with Fvp = vp+1 and
Fve−1 = F ev0 = bv0 for some b ∈ C. In other words, we get that V ≃ V (λ, a, b).
For the second and third case, note that we assume that F iv = 0 for some 0 < i < e. So, in both
cases, we can look at the sequence (EnF i−1v)n∈N. This sequence contains e different eigenvectors of
K, else V would not be simple by a previous remark. Thus, in both cases, we can construct a different
basis, given by {F i−1v, Fvi−2v, . . . , Fv, v, Ev, . . . , Ee−iv}. This can be rewritten into {v0, . . . , ve}
with Evp = vp+1 and Fv0 = 0, Eve−1 = Eev0 = cv0 for some c ∈ C. In other words, both cases are
isomorphic to Ṽ (µ, c).
We claim that Ṽ (µ, c) ≃ V (µ−1, 0, c). This directly follows from the fact that the Cartan automorphism
ω of lemma 5.2 is Uq(sl(2))-linear with the actions defined on Ṽ (µ, c) and V (µ−1, 0, c). So, this only
leaves us with one possible option for a simple Uq(sl(2))-module up to isomorphisms.
First, say b ̸= 0. Then we see that (Fnvi)n∈N is a sequence of e different vectors for all 0 ≤ i ≤ e− 1,
as Fve−1 = bv0 ̸= 0. So, V (λ, a, b) cannot have a non-trivial submodule in this case.
So, let b = 0, then Fve−1 = 0. Then, if Evi = 0, it follows that {vi+1, vi+2, . . . , ve−1} generates a
submodule of V (λ, a, 0). Thus, V (λ, a, 0) can only be a simple module when Evi+1 ̸= 0 for 0 ≤ i < e−1.
Now, since b = 0,

Evi+1 =
q−iλ− qiλ−1

q − q−1
[p+ 1]vi = 0 ⇐⇒ q−iλ− qiλ−1 = 0 ⇐⇒ λ = ±qi.

Thus V (λ, a, 0) is a simple Uq(sl(2))-module ⇐⇒ λ ̸= ±qj−1 for 1 ≤ j ≤ e− 1.
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In this section we will finally introduce the modular double of Uq(sl(2,R)), Q, together with a vector
space Pα on which we can define a natural Q-module structure.
However, before we will introduce the modular double and its natural module space, we will reintroduce
the Hopf algebra Uq(sl(2)). This will be done to get the same form for Uq(sl(2)) as is used in [1]. After
reintroducing Uq(sl(2)), we will show that our first definition will be a Hopf subalgebra of the new one.
After reintroducing Uq(sl(2)) and defining the Q-module Pα. We will look at some properties of this
module. So this section will mainly focus on the module Pα itself. In the next section we will look at
the other main subject of this thesis, the Clebsch-Gordan coefficients of Pα.

7.1 The Hopf ∗-algebra Uq(sl(2,R))

Before we are going to define our new module, we will look at another way to construct Uq(sl(2)), as
both [1] and [3] use a different construction for this Hopf algebra. After constructing this Hopf algebra,
we will show that we can project our earlier definition of Uq(sl(2)), definition 5.1, into the new one.
In other words, we will show that the Hopf algebra constructed in [1] and [3] is a bigger Hopf algebra,
but contains our earlier definition of Uq(sl(2)) as a subalgebra.

Definition 7.1. The Hopf ∗-algebra Uq(sl(2,R)) is the complex vector space generated by E,F,K
and K−1 such that

KE = qEK, KF = q−1FK, [E , F ] =
K2 −K−2

q − q−1
,

with coproduct ∆: Uq(sl(2,R)) → Uq(sl(2,R))⊗ Uq(sl(2,R)) given by

∆(K) = K ⊗K, ∆(E) = E ⊗K +K−1 ⊗ E, ∆(F ) = F ⊗K +K−1 ⊗ F,

counit given by
ε(K) = ε(K−1) = 1, ε(E) = ε(F ) = 0,

antipode S : Uq(sl(2,R)) → Uq(sl(2,R)) given by

S(K) = K−1, S(E) = KEK−1, S(F ) = KFK−1

and ∗-structure induced by the relations

K∗ = K, E∗ = E, F ∗ = F.

Notice that there are a lot of small things that are different when compared to definition 5.1 of
Uq(sl(2)). For example, the use of q instead of q2 in the commuting relation with K, the bracket
[E , F ] uses K2 instead of K and the coproduct does not have 1⊗X terms for X ∈ sl(2). However,
the differences with the bracket [E , F ] will help us to show why Uq(sl(2,R)) contains "more" elements
than Uq(sl(2)).

Proposition 7.2. Let Uq(sl(2,R)) be as above and let Uq(sl(2)) be generated by E′, F ′,K ′ and K ′−1

as in definition 5.1. Then, π : Uq(sl(2)) → Uq(sl(2,R)), given by

π(K ′) = K2, π(E′) = EK, π(F ′) = K−1F,

is an injective Hopf ∗-algebra morphism. In other words, we can identify Uq(sl(2)) with a subalgebra
of Uq(sl(2,R)) via π.
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Proof. It suffices to show that π is a well-defined Hopf algebra morphism for just E′, F ′,K and K ′−1

as those generate Uq(sl(2)). First, π(K ′K ′−1) = K2K−2 = 1 and

π(K ′E′) = π(K ′)π(E′) = K2EK = q2EKK2 = π(q2E′K ′),

π(K ′F ′) = K2(K−1F ) = K−1K2F = q−2K−1FK2 = π(q−2F ′K ′).

Also,

π([E′ , F ′ ]) = π

(
K ′ −K ′−1

q − q−1

)
=
K2 −K−2

q − q−1
= [E , F ] = [EK , K−1F ] = [π(E′) , π(F ′) ].

So we see that π is at least an algebra morphism. We also have ∆(π(K ′)) = K2⊗K2 = π(K ′)⊗π(K ′)
and

∆(π(E′)) = ∆(E)∆(K) = EK ⊗K2 + 1⊗ EK = (π ⊗ π) ◦∆(E′)

∆(π(F ′)) = ∆(K−1)∆(F ) = K−1F ⊗ 1 +K−2 ⊗K−1F = (π ⊗ π) ◦∆(F ),

so π is a bialgebra morphism as ε acts the same on Uq(sl(2)) and Uq(sl(2,R)).
For the antipode S, notice that π(E′K ′−1) = EK−1 and π(K ′F ′) = KF , thus

π(S′(E′)) = EK−1 = K−1KEK−1 = S(EK) = S(π(E′)),

π(S′(F ′)) = KF = KFK−1K = S(K−1F ) = S(π(F ′)),

and π(S′(K ′)) = S(K2), with S′ the antipode of Uq(sl(2)). Thus we see that π ◦ S′ = S ◦ π, showing
that π is also a Hopf algebra morphism.
Recall that Uq(sl(2)) also has the ∗-structure that sends the generators E,F,K,K−1 to itself. So, if
we induce Uq(sl(2)) with this ∗-structure, π turns into a Hopf ∗-algebra morphism.
The injectivity of π is obvious. And we can identify Uq(sl(2)) with the subalgebra of Uq(sl(2,R)) gener-
ated by K2,K−2, EK,K−1F , given that we induce Uq(sl(2)) with the same ∗-structure as Uq(sl(2,R)).

As a remark, all the theory we discussed on the Verma modules of Uq(sl(2)) also works for
Uq(sl(2,R)), it will only differ on some constants. As [E , F ] = K2−K−2

q−q−1 and EK = qKE, it fol-
lows that we get the same formulas as in lemma 5.3, but with K2 instead. Then we get the same
formulas as lemma 6.4, but with λ2 in the terms of E. So we can indeed redo all the proofs the same
way, but with different values for λ.
Now, since the relations between K,E, F are different in Uq(sl(2,R)) when compared to the relations
of Uq(sl(2)). It also follows that the quantum Casimir element Cq of Uq(sl(2,R)) is different than the
one we defined in proposition 6.11 for Uq(sl(2)).
Similar to proposition 6.11, note that

EF − FE − qK2 + q−1K−2

(q − q−1)2
= −q

−1K2 + qK−2

(q − q−1)2
.

Definition 7.3. Let Cq = −FE− qK2+q−1K−2

(q−q−1)2
, then Cq = −EF− q−1K2+qK−2

(q−q−1)2
and Cq ∈ Z(Uq(sl(2,R))

is called the quantum Casimir element of Uq(sl(2,R)).

That Cq is central, follows from a similar proof as in proposition 6.11. Since we are already talking
about the quantum Casimir element, we will sketch how we will use this element in the next section.
This will also show why we care about reintroducing this specific element.
Recall that we said that one can use the Casimir element to compute the Clebsch-Gordan coefficients
of the Verma modules of U(sl(2)) and Uq(sl(2)). This could be done via eigenfunction equations of the
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Casimir element and the same reasoning will be used in the next section. In other words, we will see
that the Clebsch-Gordan coefficients that will be constructed in the next section, can be computed via
eigenfunctions equations for Cq in a similar sense as in section 6.3.
But, before we will talk about the Clebsch-Gordan coefficients, we will first look at a natural module
for the modular double of Uq(sl(2,R)) and some of its properties.

7.2 A short remark on unbounded operators

Since the actions of the generators E,F,K of Uq(sl(2,R)) will be given by unbounded operators on the
module that we will construct, we will quickly look at some definitions and properties of unbounded
operators, as the unboundedness of these operators will be one of the reasons why some of the state-
ments or proofs will look a lot more complex when compared to previous statements on modules or
tensor products of modules (e.g. section 3.3 or chapter 6).

Definition 7.4. Let X,Y be Banach spaces, then an unbounded operator from X to Y is a pair
(A,D(A)) with D(A) ⊆ X and A : D(A) → Y a linear operator.
The subspace D(A) ⊆ X is known as the domain of A.

So we see that an unbounded operator on a Hilbert space H, only differs from a bounded operator
on H by the fact that it need not be able to act on all of H. However, this also means that we need
to be careful when we use an unbounded operator A or have A act multiple times on a single element.
Since we need to be certain that every element on which we let A act, is an element of its domain
D(A).
Now, the operators that we will be using later on, will not just be unbounded operators. To be precise,
they will be unbounded positive self-adjoint operators. So, we will also note a few facts on these types
of operators.
Let A be an unbounded operator on some Hilbert space H. Then, A is called densely defined if
D(A) ⊆ H dense.

Definition 7.5. Let A be a densely defined operator on a Hilbert space H. Then, the adjoint of A is
defined as the operator (A∗, D(A∗)) with

D(A∗) = {y ∈ H | ∃g ∈ H (∀x ∈ D(A) (x, g) = (Ax, y))}

and A∗ is defined as A∗y = g for y ∈ D(A∗).

So we see that the adjoint operator A∗ is similar to the adjoint operator of a bounded operator.
But we once again need to be careful of the domain for which A∗ is defined.
Now, A is called self-adjoint if we have that A∗ = A and D(A) = D(A∗). Note that we do need that
A is densely defined, else the adjoint is not defined.

We ends this short remark with a remark on when an operator is positive and with a statement on
when an operator has a self-adjoint extension. This last statement will be given due to the fact that
the representations of Uq(sl(2,R)) that we will define will have self-adjoint extensions.

Definition 7.6. The spectrum σ(A) of A is defined as

σ(A) = {λ ∈ C |A− λI has no inverse}

Do note that if A is an unbounded operator, we have that the inverse B of A − λI need not be
unbounded. However, we do need that Bx ∈ D(A) for any x ∈ H, as we have x = (A − λI)Bx =
A(Bx)− λI(Bx).
Now, if A is a self-adjoint operator such that σ(A) ⊆ [0,∞), then we call A a positive self-adjoint
operator. Note that it is unnecessary to keep calling a positive operator self-adjoint, as it is self-adjoint
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by definition. However, we call them self-adjoint positive operators to make sure that it is obvious
that the operators are self-adjoint.
Lastly, if A is an unbounded densely defined self-adjoint positive operator, we can construct a positive
self-adjoint extension B that will be defined on the closure D(A) = H. Note, if x ∈ D(A), then
Bx = Ax. Since we will not use these extensions ourselves, but are sometimes interested in the
existence of these extensions, just knowing when they exist suffices for our case.

7.3 A short remark on the Fourier-transform

Besides the use of unbounded operators, the module that we will study will also make use of the
Fourier transform. So we will also shortly talk about the Fourier-transform before talking about the
Uq(sl(2,R))-module.
We will give the definition of the Fourier-transform together with some small facts and useful theorems
for our setting.

Definition 7.7. Let f ∈ L1(R), then the Fourier transform of f is the function f̃ : R → C given by

f̃(ω) =

∫
Rd

e−2πiωxf(x)dx, ω ∈ Rd.

The Fourier transform f̃ is again a continuous function and it even vanishes at infinity. So, f̃ ∈
C0(Rd). Moreover, we have the following inversion formula:

Theorem 7.8. Let f ∈ L1(R) ∩ L2(R), such that f̃ ∈ L1(R), then

f(x) =

∫
R
e2πiωxf̃(ω)dω,

for almost all x ∈ R.

Note, the inversion theorem also holds when f ∈ S(R). And if f ∈ S(R), we even get that
f(x) =

∫
R e

2πiωxf̃(ω)dω. Now, since S(R) ⊂ L2(R) is dense, one can extend the Fourier transform
restricted to S(R) to an isometry to all of L2(R). Due to this fact, we will consider the given Fourier-
transform as a bijective unitary operator on L2(R).
Lastly, we have the following useful theorem and lemma that show when the Fourier transform of a
function is analytic.

Theorem 7.9 (Payley-Wiener). Let f ∈ L2(R), a± > 0, then (e2πxa+ + e−2πxa−)f ∈ L2(R) ⇐⇒
f̃ has an analytic continuation to {ω ∈ C | Im(ω) ∈ (a−, a+)} such that ∀ω2 ∈ (−a−, a+)

f̃(·+ iω2) ∈ L2(R) and supω2≤b

∫
R
|f̃(ω1 + iω2)|2dω1 <∞ ∀b ∈ (−a−, a+).

Lemma 7.10. Let f ∈ S(R) = {f ∈ C∞(R,C) | ∀α, β ∈ N
(
||f ||α,β = supx∈R |xα(∂βf)(x)| <∞

)
. The

following are equivalent:

i) f = F |R of some function F : D → C, D ⊆ C, that is meromorphic in {z ∈ C | Im(z) ∈
(−a−, a+)}, a± > 0, with finitely many poles in the upper and lower half plane I± = {z ∈
C | ± Im(z) > 0} and every map Fy(x) = F (x+ iy), y ∈ (−a−, a+), is of rapid decrease.

ii) f̃(ω) has the two following asymptotic behaviours if ω → ±∞ :

f̃(ω) = −2πi
∑
z∈I−

e−2πizωRes(F (z)) + f̃a+(ω) ω → ∞,

f̃(ω) = +2πi
∑
j∈I+

e−2πizωRes(F (z)) + f̃a−(ω) ω → −∞,

with f̃a± decaying faster than e−2πa|ω| ∀a ∈ (−a−, a+) as ω → ±∞.
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7.4 A family of Uq(sl(2,R))-modules

In this part we will finally introduce the modular double of Uq(sl(2,R)) and a natural module of
this algebra. But, before we will define the modular double of Uq(sl(2,R)) and construct our desired
module, we will first fix some variables. These variables will be fixed for the rest of this paper, unless
stated otherwise.
Let Uq(sl(2,R)) be as above and fix

q = eπib
2

for b ∈ (0, 1) ∩ R\Q, Q = b+ b−1, α = Q/2 + is, s ∈ R.

Then we see that q is not a root of unity and |q| = 1. Thus our choice of ∗ is valid according to
theorem 5.10. Furthermore, set q̃ = eπib

−2 and let K̃±1, Ẽ and F̃ be the generators of Uq̃(sl(2,R)).
Then Uq̃(sl(2,R)) is another quantum enveloping algebra and we get the following definition of the
modular double by Faddeev [2]:

Definition 7.11. Let Q = Uq(sl(2,R))⊗Uq̃(sl(2),R) be a tensor algebra. Then Q is called the modular
double of Uq(sl(2,R)).

Now, the elements of Q are given by U ⊗ Ũ for U ∈ Uq(sl(2,R)) and Ũ ∈ Uq̃(sl(2,R)). Then
U ⊗ 1 ∈ Q is the projection of U ∈ Uq(sl(2,R)) into Q. To make notation cleaner from this point on,
we will just write U ∈ Q instead of U ⊗ 1 for the projection into Q. This will be done as we will only
work with Q-modules from this point onwards.
Moreover, note that if U ∈ Uq(sl(2,R)), Ũ ∈ Uq̃(sl(2,R)), then we get UŨ = ŨU in Q. So the
projections of the algebras Uq(sl(2,R)) and Uq̃(sl(2,R)) commute with each other in Q. However, they
are both not contained in Z(Q), since one could easily find an element V ⊗ 1 or 1⊗ Ṽ in Q that would
not commute with some U or Ũ respectively. Thus the commutative property between Uq(sl(2,R))
and Uq̃(sl(2,R)) is a special property of these two Hopf ∗-algebras.
Now, since U ,Ũ ∈ Q commute, it also follows that if V is a Q-module, the actions of U and Ũ commute
on V . In other words, UŨv = ŨUv for any v ∈ V .
As we can also choose to only act with elements of Uq(sl(2,R)) or only elements of Uq̃(sl(2,R)), it even
follows that any Q-module will be both a Uq(sl(2,R)) and Uq̃(sl(2,R))-module. So we can simplify our
notation even more, and just talk about elements of Uq(sl(2,R)) or Uq̃(sl(2,R)) instead of elements of
Q.
Furthermore, due to how our actions will be defined. It suffices to only talk about the action of
U(sl(2,R)), since every proof will also be true for the actions of Uq̃(sl(2,R)). This will partly be due
to the fact that the only change between the two Hopf ∗-algebras is b 7→ b−1 and the only difference
between the actions will also be b 7→ b−1. Thus one can basically replace b with b−1 in every proof or
statement made for elements of Uq(sl(2,R)) to get the proof or statement for the dual Uq̃(sl(2,R)).
This is also precisely what we will do. So we will almost always only talk about the action of U ∈
Uq(sl(2,R)) and not talk about the action of Ũ ∈ Uq̃(sl(2,R)). Due to the fact that almost all proofs
and statements will be symmetric for the change b 7→ b−1.

Before we will start with the construction of the Q-modules, we will give one last remark on the
modular double. The module that we will look at, was originally a reason for Faddeev to unify the
algebras Uq(sl(2,R)) and Uq̃(sl(2),R) into one Hopf algebra. The reason for this is that the modules Pα

that we will construct below have a nice self-duality property. It is both a Uq(sl(2,R)) and Uq̃(sl(2),R)-
module by construction. Furthermore, the module Pα will not change when we replace b with b−1 in
its definition. Thus the module Pα will be self dual in the sense of replacing b with b−1.
However, we will immediately consider the modules Pα as Q-modules, instead of having them also be
Q-modules as a consequence of this self-duality. The reason for this is that the construction of the
module Pα will feel more natural this way in a mathematical sense, since we will see that Pα will be
the largest subspace of L2(R) on which the actions of Uq(sl(2,R)) and Uq̃(sl(2),R) are well-defined.

– 71 –



7.4 A family of Uq(sl(2,R))-modules

But to show this, we will need to use the fact that both U and Ũ , for U ∈ {E,F,K}, Ũ ∈ {Ẽ, F̃ , K̃},
have to be able to act on Pα at the same time.

Now, we will finally be looking at a certain "well-behaved" family of Q-modules. In the sense that,
the representations π coming from these modules, gives us self-adjoint integrable operators π(E), π(F )
and π(K). Similarly, the actions of Ẽ, F̃ and K̃ will also be given by self-adjoint integrable operators.
So the actions of Q will be generated by self-adjoint operators.
As was said above, to not constantly refer to both triples of generators of Uq(sl(2,R)) and Uq̃(sl(2),R)
separately, we will in general only refer to the elements of Uq(sl(2,R)) from this point onwards. Again,
do note that anything that will be said about the action of U ∈ Uq(sl(2,R)), will also hold for Ũ , but
one just needs to replace every q with q̃ or, equivalently, every b with b−1.

Since we have U∗ = U for U ∈ {K,E, F}, we need π(E), π(F ) and π(K) to be self-adjoint
operators to have π to be a ∗-representation. Furthermore, there is no representation on Uq(sl(2,R))
that is generated by bounded self-adjoint operators. So, the actions of K,E, F that we will construct,
will be given by unbounded operators. Due to this, some care is needed to end up with an interesting
Uq(sl(2,R))-module.
In [13] a notion of "well-behavedness" for Uq(sl(2,R))-modules generated by self-adjoint operators was
defined. Here they define when a representation is called integrable and it leads to a natural notion
for well-behavedness for Uq(sl(2,R))-modules. We will not be too concerned with all of the details of
this definition, but we will try to give enough details to understand what it means to be an irreducible
integrable representation of Uq(sl(2,R)).

The Uq(sl(2,R))-module that we will construct, will be dependent on one parameter, α, and it
will be a well-defined module for all allowed α. In other words, the module can be described as a
one-parameter family. Thus, we will not just construct one module, but we will construct a whole
family of modules, that are all similar, but differ due to the variable α.
Also, the actions of Uq(sl(2,R)) on this module will be given via finite difference operators T ia

x , the
shift operator, and the operator x. These are unbounded self-adjoint positive operators that act on
functions f ∈ L2(R), with

xf(x) = xf(x) and T ia
x f(x) = f(x+ ia).

Note, f(x) ∈ Dom(T ia
x ), i.e. T ia

x can only act on f(x) ∈ L2(R), if f has an analytic continuation to
{z ∈ C | im(z) ∈ [a−, a+]}, a− ≤ 0, a+ ≥ 0.

Now, our one-parameter class of Uq(sl(2,R))-modules will be denoted by Pα and be given by

Pα = {f : C → C | f is entire and f̃ is meromorphic on C with possible poles ω ∈ Ω±},

Ω± = {±s± i

(
Q

2
+ nb+mb−1

)
, n,m ∈ N}.

So, if ω± ∈ Ω±, then we get that

ω+ = s+ i

(
Q

2
+ nb+mb−1

)
= i(−α+Q+ nb+mb−1) = i(−α+ (n+ 1)b+ (m+ 1)b−1),

ω− = −s− i

(
Q

2
+ nb+mb−1

)
= i(α−Q− nb−mb−1) = i(α− (n+ 1)b− (m+ 1)b−1),

for n,m ∈ N. The last form will be useful for us to show that Pα is a module. For some details on
entire and meromorphic functions, see Appendix B: Complex Functions. In short, if f ∈ Pα, then f is
analytic on all of C and its Fourier transform f̃ is analytic on C\ (Ω+ ∪ Ω−).
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At the moment Pα is just a vector space of functions. We can induce a module structure on this space
by having E,F,K act on functions f ∈ Pα, x ∈ R, by

Kf(x) = T
ib
2
x f(x) = f(x+

ib

2
),

Ef(x) = e2πbx
eπib(Q−α)T

ib
2
x − e−πib(Q−α)T

−ib
2

x

eπib2 − e−πib2
f(x) = e2πbx

eπib(Q−α)f(x+ ib
2 )− e−πib(Q−α)f(x− ib

2 )

eπib2 − e−πib2

Ff(x) = e−2πbx e
πib(Q−α)T

− ib
2

x − e−πib(Q−α)T
ib
2
x

eπib2 − e−πib2
f(x) = e−2πbx e

πib(Q−α)f(x− ib
2 )− e−πib(Q−α)f(x+ ib

2 )

eπib2 − e−πib2
.

To make all of this easier to write, denote

[x]b =
sin(πbx)

sin(πb2)
, dx =

1

2π

d

dx
, [dx + a]b =

eπibaT
ib
2
x − e−πibaT

−ib
2

x

eπib2 − e−πib2
,

then we can simplify the actions of E,F,K to

Kf(x) = T
ib
2
x f(x), Ef(x) = e2πbx[dx +Q− α]bf(x), Ff(x) = e−2πbx[−dx +Q− α]bf(x),

which in turn gives rise to a representation πα : Uq(sl(2,R)) → End(Pα) by

πα(K) = T
ib
2
x , πα(E) = e2πbx[dx +Q− α]b, πα(F ) = e−2πbx[−dx +Q− α]b.

Recall that we get the actions of Uq̃(sl(2,R)) by replacing b with b−1 in the above given actions. To
summarise:

Definition 7.12. Let q = eπib
2 , b ∈ (0, 1)∩R \Q, Q = b+ b−1 and α = Q/2+ is for s ∈ R. Then, we

have a natural family of Q-modules given by

Pα = {f : C → C | f is entire and f̃ is meromorphic on C with possible poles ω ∈ Ω±},

Ω± = {±s± i

(
Q

2
+ nb+mb−1

)
, n,m ∈ N},

with the actions of E,F,K ∈ Uq(sl(2,R)) and Ẽ, F̃ , K̃ ∈ Uq̃(sl(2,R)) given by

πα(K) = T
ib
2
x , πα(E) = e2πbx[dx +Q− α]b, πα(F ) = e−2πbx[−dx +Q− α]b.

πα(K̃) = T
ib−1

2
x , πα(Ẽ) = e2πb

−1x[dx +Q− α]b−1 , πα(F̃ ) = e−2πb−1x[−dx +Q− α]b−1 .

To show that πα is a well-defined representation, equivalently that Pα is a well-defined Q-module,
we need to check two things.

Lemma 7.13. i) if f ∈ Pα, then Ef, Ff, Kf ∈ Pα, and

ii) E,F,K,K−1 generate a Q-module structure on Pα with the above defined actions.
In other words, Pα has a well-defined module structure and πα : Uq(sl(2,R)) → End(Pα) is a

well-defined representation.

Proof. Note, the operator T ia
x gets mapped to the operator e−aω by the Fourier transform in the sense

that
∼

T ia
x f(ω) =

∫
R
e−2πiωxf(x+ ia)dx =

∫
R
e−2πiω(x−ia)f(x)dx = e−2πωaf̃(ω),

– 73 –



7.4 A family of Uq(sl(2,R))-modules

so πα(K) gets mapped to the operator e−πbω. Similarly, πα(E) and πα(F ) get mapped to the operators
[−iω + α]bT

ib
ω and [iω + α]bT

−ib
ω respectively. As,

(eπib
2 − e−πib2)

∼
πα(E)f̃(ω) =

∫
R
e−2πiωxe2πbx

(
eπib(Q−α)f(x+

ib

2
)− e−πib(Q−α)f(x− ib

2
)

)
dx

=

∫
R
e−2πi(ω+ib)(x− ib

2
)eπib(Q−α)f(x)dx−

∫
R
e−2πi(ω+ib)(x+ ib

2
)e−πib(Q−α)f(x)dx

=
(
e−πb(ω+ib)eπib(Q−α) − eπb(ω+ib)e−πib(Q−α)

)∫
R
e−2πi(ω+ib)xf(x)dx

=
(
−e−πib(−iω+α) + eπib(−iω+α

)∫
R
e−2πi(ω+ib)xf(x)dx,

with ∼
πα(U) denoting the Fourier-transformed action of U ∈ Uq(sl(2,R)) on f̃(ω). A similar calculation

shows that πα(F ) gets send to the operator [iω + α]bT
−ib
ω by the Fourier-transform.

Now, f ∈ Pα, so f is an entire function, so T ia
x f(x) = f(x+ia) will still be an entire function. Similarly,

since ez, z ∈ C, is an entire function, exf(x) will be an entire function. So it follows that Kf,Ef, Ff
are at least entire functions.
Secondly, multiplying a meromorphic function g with an entire function h, gives us a meromorphic
function hg with the same poles as g. By the above, we see that πα(K), πα(E), πα(F ) get send to
operators that multiply f̃(ω) with entire functions, as sin(z) is also an entire function, and shift ω to
ω ± ib.
If x ∈ Ω±, so x is a pole of f̃ , then x ∓ ib is a pole of T±ib

x f̃ . To show that the Fourier transform of
Ef, Ff,Kf still only have poles in Ω±, we need to check that if x /∈ Ω±, then ˜πα(U)f(x) is well-defined
in C, for U ∈ {E,F,K}.
Since K gets send to the operator e−πbω. It follows that ∼

πα(K)f̃(ω) won’t have poles outside of Ω±.
It even has the same poles as f̃(ω). Note, every possible pole is of the form i(−α ± (nb + mb−1)),
n,m ∈ N>0 and E,F both get send to a multiple of the shift operator T±ib

ω by the Fourier transform.
Since, i(−α+mb−1)+ ib ∈ Ω+, m ∈ N>0 and ωm = i(−α+mb−1) /∈ Ω±. We see that ωm is a possible
pole of ∼

πα(E)f̃(ω), but should not be a possible pole if Ef ∈ Pα. Also, ωm is the only point such that
ωm /∈ Ω±, but ωm + ib ∈ Ω+. In other words, ωm is the only point that could be a pole of ∼

πα(E)f̃(ω),
which should not be a pole if πα is a representation.
Similarly, we get that ω′

m = i(α−mb−1) /∈ Ω±, m ∈ N>0, but ω′
m − ib ∈ Ω−. So, ω′

m is a possible pole
of ∼
πα(F )f̃(ω), but should not be a pole if πα is a representation. This is again the only point such

that ω′
m /∈ Ω±, but ω′

m − ib ∈ Ω−. Thus there are two cases that we are concerned with and we want
to know what the values of ∼

πα(E)f̃(ωm) and ∼
πα(F )f̃(ω

′
m) are. As these values could be ∞, but they

should have values in C.
Recall, [x]b = sin(πbx)

sin(πb2)
, thus [x]b = 0 ⇐⇒ x = nb−1, n ∈ Z. It follows that [−iω + α]bT

ib
ω is the

zero-operator in ω = ωm and [iω + α]bT
−ib
ω is the zero-operator in ω = ω′

m. So, ∼
πα(E)f̃(ωm) =

0,
∼
πα(F )f̃(ω

′
m) = 0 ∀f ∈ Pα. Thus, ωm is not a possible pole of ∼

πα(E)f̃ and ω′
m is not a possible pole

of ∼
παf̃ . Hence, Ef, Ff ∈ Pα.

It follows that the Fourier transform sends Ef, Ff,Kf to meromorphic functions with possible poles
in Ω±. So, πα(U) : Uq(sl(2,R)) → End(Pα) for U ∈ {E,F,K}.
By i) we know that the actions of E,F,K,K−1 are well-defined on Pα, so the only thing left to check
is that the relations between E,F,K,K−1 are still satisfied when considered as operators on Pα.
Let f ∈ Pα, then

πα(KE)f(x) = e2πb(x+
ib
2
) e

πib(Q−α)f(x+ ib)− e−πib(Q−α)f(x)

eπib2 − e−πib2
= eπib

2
παEπαKf(x) = qπα(EK)f(x),
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a similar calculation shows that πα(KF ) = πα(q
−1FK). Lastly, note

πα(E)πα(F ) =
−e−πib2T ib

x − eπib
2
T−ib
x + e2πib(Q−α)−πib2 + e−2πib(Q−α)+πib2

(q − q−1)2

=
−q−1T ib

x − qT−ib
x + e2πib(Q−α)q−1 + e−2πib(Q−α)q

(q − q−1)2
,

πα(F )πα(E) =
−eπib2T ib

x − e−πib2T−ib
x + e2πib(Q−α)−πib2 + e−2πib(Q−α)+πib2

(q − q−1)2

=
−qT ib

x − q−1T−ib
x + e2πib(Q−α)q−1 + e−2πib(Q−α)q

(q − q−1)2
,

so it follows that πα([E , F ]) = πα(
K2−K−2

q−q−1 ).
Thus, the defined actions of E,F,K on Pα induce a Uq(sl(2,R))-module structure and
πα : Uq(sl(2,R)) → End(Pα) is an algebra morphism, i.e. πα is a representation.
Now, it follows that Pα is also a Uq̃(sl(2),R)-module, due to the fact that the above proof still holds
when we replace b with b−1. Thus, since the actions of E,F,K commute with the actions of Ẽ, F̃ , K̃
on Pα, it follows that Pα is indeed a Q-module.

Note, in the above proof we did use the fact that f ∈ Pα was an entire function to show that
πα(K)f ∈ Pα. However, a much weaker condition for f(x) is sufficient if we are only concerned with
Pα as a Uq(sl(2,R))-module, instead of a Q-module. Since πα(K)f(x) = f(x+ ib

2 ), it follows that we
only need that f(x) has an analytic extension to {z ∈ C | im(z) ∈ [ inb2 − ε, inb2 + ε]} for some ε > 0 and
n ∈ Z. However, since we defined Pα as a Q-module, we also need to be able to act with πα(K̃) on
f ∈ Pα. Hence, f(x) needs to also have an analytic extension to {z ∈ C | im(z) ∈ [ imb−1

2 −ε, imb−1

2 +ε]}
for some ε > 0 and m ∈ Z.
In particular, f(x) needs to have an analytic extension to a strip around i

2(nb+mb
−1) for any n,m ∈ Z

when we allow πα(K)nπα(K̃)m to act on f(x) ∈ Pα. And since {nb+mb−1 |n,m ∈ Z} ⊆ R dense due
to b ∈ R\Q, it indeed follows that f ∈ Pα needs to be entire.

The module Pα has the following intertwining property:

Lemma 7.14. The Q-modules Pα and PQ−α are unitarily equivalent. I.e. ∃Ĩα : L2(R) → L2(R),
unitary operator, such that Ĩα(Pα) = PQ−α and ∼

πQ−α(U)(Ĩαf̃) = Ĩα(
∼
πα(U)f̃) ∀U ∈ Uq(sl(2,R)) and

f ∈ Pα.

Proof. Let Ĩα : L2(R) → L2(R) be given by (Ĩαf̃)(ω) = Sb(α−iω)
Sb(Q−α−iω) f̃(ω), with Sb(x) defined as in Ap-

pendix D: Special Functions, and let f ∈ Pα. Then | Sb(α−iω)
Sb(Q−α−iω) | = 1 and it follows that Ĩα is a unitary

operator.
Furthermore, the poles of Sb(x) are given by −nb − mb−1 and the zeros of Sb(x) are given by
Q + nb + mb−1, n,m ∈ N. So, it follows that Sb(α−iω)

Sb(Q−α−iω) has poles in ω = i(−α − nb − mb−1)

and ω = i(α+ nb+mb−1). So, Ĩαf̃ does have possible poles of the desired form.
Note, Sb(α−iω)

Sb(Q−α−iω) is zero at ω = i(Q− α+ nb+mb−1) and ω = i(α−Q− nb−mb−1). So, Ĩαf̃ is zero
if ω is a possible pole of f̃ . In other words, Ĩαf̃ is meromorphic with possible poles in Ω± of PQ−α.
Lastly, the asymptotic behaviour of Sb(α−iω)

Sb(Q−α−iω) as ω → ±∞, shows that Ĩαf̃ ∈ L2(R). As Sb(α−iω)
Sb(Q−α−iω)

acts as e2πα|ω| as ω → ±∞ and lemma 7.10 shows us that f̃ decays faster. Thus it follows that Ĩα
indeed maps Pα to PQ−α.
Now it is only left to show that ∼

πQ−α(U)(Ĩαf̃) = Ĩα(
∼
πα(U)f̃) ∀U ∈ {E,F,K}. First, the Fourier

transformed action of K is given by e−πbω for any α. So, the Fourier transformed action of K com-
mutes with the action of Ĩα.
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For the action of E, note that

T ib
ω Ĩα(ω) =

Sb(α− iω + b)

Sb(Q− α− iω + b)
=

sin(πb(α− iω))

sin(πb(Q− α− iω))
Ĩα.

It follows that ∼
πQ−α(E)Ĩαf̃(ω) = [−iω +Q− α]bT

ib
ω Ĩαf̃(ω) = Ĩα[−iω + α]bT

ib
ω f̃(ω) = Ĩα

∼
πα(E)f̃(ω).

Similarly, note that Sb(x) = 2 sin(πb(x− b))Sb(x− b) = −i(q−1eπibx − qe−πibx)Sb(x− b). So,

T−ib
ω Ĩα(ω) =

Sb(α− iw − b)

Sb(Q− α− iω − b)
=
q−1eπib(Q−α−iω) − e−πib(Q−α−iω−b)

q−1eπib(α−iω) − qe−πib(α−iω)
=

sin(πb(iω + α))

sin(πb(iω +Q− α))
Ĩα,

and it follows that ∼
πQ−α(F )Ĩαf̃(ω) = [iω+Q−α]bT−ib

ω Ĩαf̃(ω) = Ĩα[iω+α]bT−ib
ω f̃(ω) = Ĩα

∼
πα(F )f̃(ω).

Thus, ∼
πQ−α(U)Ĩα = Ĩα

∼
πα(U) for U ∈ {E,F,K} and it follows that ∼

πQ−α(U)Ĩα = Ĩα
∼
πα(U) ∀U ∈

Uq(sl(2,R)).
Since the proof is symmetric under the transformation b 7→ b−1, it follows that Ĩα also commutes with
Ũ ∈ {Ẽ, F̃ , K̃}. Hence, Pα ≃ PQ−α.

As a last remark, we get that Iαf(x) =
∫
RBα(x−x′)f(x)dx′ with Bα(x−x′) = Sb(2α)

Sb(
Q
2
+i(x−x′)−α)

Sb(
Q
2
+i(x−x′)+α)

by the inverse Fourier transformation. We can see Iα as the unitary operator that acts on the non-
Fourier transformed functions f(x) ∈ Pα.

Thus we have an equivalence relation between two different modules of the same family. So we see
that not all modules of our family are necessarily unique.
Furthermore, this relation will later on be used to show that we can define the Clebsch-Gordan coef-
ficients of Pα in more than one way. One definition will have nice analytic properties and the other
choice will be more natural, as it will make the Clebsch-Gordan coefficients invariant under the above
equivalence relation. In other words, it is possible to construct the Clebsch-Gordan coefficients such
that, if Ĩα is used to go from Pα to PQ−α, the only change in the Clebsch-Gordan coefficients of Pα

and PQ−α will be that α changes to Q− α.

We now know that our vector space Pα is indeed a Q-module with our defined actions of E,F,K
and Ẽ, F̃ , K̃. But, at the moment this class of modules seems a bit random and artificial. However,
we will soon see that Pα is a natural vector space to induce a module structure of the modular double
of Uq(sl(2,R)) on. This is the case due to two facts. The first is that πα(E), πα(F ) and πα(K) are
positive self-adjoint operators on L2(R), the second fact is that Pα is the largest space for which our
given actions of E,F,K and Ẽ, F̃ , K̃ are well-defined.
More precisely, the first fact should be that πα is an integrable representation. Hence, we will show
that πα is integrable, as this will show several nice properties of Pα. Also, the fact that our operators
are self-adjoint and unbounded is also a consequence of the fact that Pα was build as an integrable
representation.
However, it is best to keep in mind that we will care most about the fact that πα(U), U ∈ {E,F,K},
will be a positive self-adjoint operator. As that is in turn used to show that Pα is the largest subspace
of L2(R) such that πα is a well-defined representation. This property is also closely connected to the
fact that Pα is a natural choice for a module of the modular double of Uq(sl(2,R)). Since it allows us to
define the action of Ẽ, F̃ , K̃ ∈ Uq̃(sl(2),R) as certain powers of πα(E), πα(F ) and πα(K) respectively.

7.4.1 πα is an integrable representation

The notion of an integrable representation of Uq(sl(2,R)) has been defined in [13]. We will go over some
definitions and conclusions to give a broad idea of what it means to be an integrable representation in
this sense.
This definition makes use of the definition of an integrable representation of Rq[x, y] given in [14], so
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we will start with given a short explanation on this definition. In other words, we give all the details
that are needed to understand what an integrable representation of Uq(sl(2,R)) is in this part. This
will be done by summarising some main points of both [14] and [13]. However, we will omit the proofs
and some of the technical details, since they use results on operator theory that we do not want to
discus here.
Before we go on to the definitions and conclusion, let’s quickly sketch why it is called an integrable
representation. This will also sort of show why it is defined this way.

The notion of an integrable representation is used in representation theory of Lie algebras, ∗-
representations and operator relations. For example, in the case of Lie algebras, a representation
would be called integrable if the representation would come from the associated Lie group. Recall that
the associated Lie algebra g of a Lie group G is defined as TeG. So, in a sense, calling a Lie algebra
representation of g integrable if it originated from a Lie group representation of G sounds logical. As
we can sort of go back to the Lie group via integration.
Now, in the case of representation theory of Lie algebras and mathematical physics, one sometimes
deals with self-adjoint operators that also satisfy a certain algebraic relation. For example, if one wants
to define a representation of the relation ab− ba = −i, one could require that the self-adjoint operators
a, b satisfy the Weyl relation eitaeisb = eitseisbeita, s, t ∈ R.
As another example, if a is self-adjoint, b is normal and F : R → R, then one could define the integrable
representations such that ab = F (a)b, by requiring f(a)b ⊆ bf(F (a)) for f ∈ L∞(R). So, in a way,
being integrable is a notion of well-behavedness.

Since the definition of an integrable representation of Uq(sl(2,R)) is defined via integrable repre-
sentations of Rq[x, y], the real quantum plane. We will first look at the latter case.
For this part, let X,Y be self-adjoint operators on some Hilbert space H, let q = eiφ with |φ| < π
and q2 ̸= 1. Suppose Y > 0 or Y < 0 and that Y X = qXY . If f ∈ C[λ], then it follows that
f(Y )X = Xf(qY ). So, it is natural to define integrability by having f(Y )X = Xf(qY ) be satisfied
for some nice functions f .

Definition 7.15. Let Y > 0 or Y < 0 and X be a self adjoint operator. Then, a pair {Y,X} of
self-adjoint operators is called an integrable representation of Rq[x, y] if ∃k ∈ Z such that

|Y |itX = e(−φ−2πk)tX|Y |it, t ∈ R.

If Y ≥ 0 or Y ≤ 0, let H0 = ker(Y ) and Y1 = Y |H⊥
0
. Then, {Y,X} is called an integrable representation

of Rq[x, y] if ∃X0, X1, self-adjoint operators, X0 acting on H0 and X1 on H⊥
0 such that X = X0 ⊕X1

and {Y1, X1} is an integrable representation in the previous sense, as Y1 > 0 or Y1 < 0.

Note, if {Y,X} is an integrable representation, then we see that Y 2X = q2XY 2. Then, if ker(Y ) =
{0}, it follows that Y 2 > 0 and that integrability for {Y 2, X} is defined as usual. This reasoning can
then be used to define integrability for the pair {Y,X}, Y,X self-adjoint operators, using the polar
decomposition Y = UY |Y |. So, integrability can be defined for any pair {Y,X} of self-adjoint operators.
Thus, Y ≥ 0 or Y ≤ 0 can be shown to be an optional requirement.
Since the operators we use in the representation of Q are all positive, we will not be looking at this
more general definition. However, one can find more details about integrability in [14]. This goes over
more details on general integrability and also looks at integrable representations of two other quantum
groups.
Now, [14] concludes with the following theorem on irreducible integrable representations {Y,X} of
Rq[x, y]:

Theorem 7.16. Each irreducible integrable representation {Y,X} of Rq[x, y] is unitarily equivalent to
one of the following models:
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(I)ε1,ε2,k: Y = ε1e
Q, X = ε2e

(−φ−2πk)P on H = L2(R), with P = −i ddt , Q the multiplication operator
by t and ε1, ε2 ∈ {−1, 1}, k ∈ Z,

(II)k: Y =

(
eQ 0
0 e−Q

)
, X =

(
0 e(−φ−2π(k+1))P

e(−φ−2π(k+1))P 0

)
on H = L2(R)⊕L2(R), with k ∈ Z,

(III)α,0: Y = α, X = 0 on H = C, with α ∈ R,

(III)0,α: Y = 0, X = α on H = C, with α ∈ R.

Immediately note that this is about irreducible representations. So any representation that is
unitarily equivalent to one in the above list, will automatically be irreducible in addition to being
integrable. Also, this list of integrable representations {Y,X} will be used to construct a full list of
possible integrable representations of Uq(sl(2,R)).

Now, if {Y,X} is a pair of self-adjoint operators with trivial kernels, i.e. ker(Y ) = ker(X) = {0}.
Then it follows that if {Y,X} is an irreducible integrable representation of Rq[x, y] if and only if it is
unitarily equivalent to either:

(M1): Y = eαx ⊗ u, X = e2βP ⊗ v on H = L2(R) ⊗ K, with α, β ∈ R such that 2αβ = πb2 + 2kπ,
k ∈ Z and u, v are commuting self-adjoint unitary operators on the Hilbert space K,

(M−1): Y = eαx ⊗ σ0 ⊗ I, X = e2βP ⊗ σ1 ⊗ I on L2(R) ⊗ C2 ⊗ K, with α, β ∈ R such that 2αβ =
πb2 + (2k + 1)π, k ∈ Z, K a Hilbert space and

σ0 =

(
1 0
0 −1

)
σ1 =

(
0 1
1 0

)
.

Since we will be dealing with operators that are self-adjoint with trivial kernels, these two models
are the only ones that we will be dealing with. More precisely, for the next part it is assumed that
K,E, F are self-adjoint operators and ker(E) = ker(F ) = {0}. This is almost the same setting as what
we had in the construction of the module Pα, so these assumptions make sense for this specific case.
Do note that the operators K,E, F are unbounded as a consequence of E and F having trivial kernels.
So, trying to construct "well-behaved" representations is also partly where some of the difficulties arise
from.

Definition 7.17. Let {K,E, F} be a triple of self-adjoint operators on a Hilbert space H. Then
{K,E, F} is an integrable representation of Uq(sl(2,R)) if {K,E} and {F,K} are integrable represen-
tations of Rq[x, y] and if the closure of Cq = −FE− qK2−q−1K−2

(q−q−1)2
is a self-adjoint operator that strongly

commutes with K,E, F .

Note, if T is a bounded operator and S is a possibly unbounded operator on a Hilbert space H,
then T and S commute if TS ⊆ ST . So T and S commute when Dom(S) = Dom(TS) ⊆ Dom(ST )
and TSv = STv for v ∈ Dom(S).
Now, two self-adjoint operators A,B on H strongly commute if (A−z)−1 and B commute for z ∈ C\R.
(A− z)−1 is well-defined for z ∈ C\R as σ(A) ⊂ R, with σ(A) the spectrum of A (defined in [15]).

Since the integrability of {K,E, F} is fully dependent on the integrability on Rq[x, y], the above
two models can be used to describe integrable representations on Uq(sl(2,R)). Let K be a Hilbert
space and let c be a self-adjoint operator on K. Then we get the following two models that describe
the structure of integrable representations on Uq(sl(2,R)):

(M1): K = eαx ⊗ u, E = e2βP ⊗ v, F = (q − q−1)−2e−βP (e2αx + e−2αx)e−βP ⊗ v + e−2βP ⊗ vc on
H = L2(R)⊗K,

– 78 –



7.4 A family of Uq(sl(2,R))-modules

(M−1): K = eαx ⊗ σ0 ⊗ I, E = e2βP ⊗ σ1 ⊗ I, F = −(q − q−1)−2e−βP (e2αx + e−2αx)e−βP ⊗ σ1 ⊗ I +
e−2βP ⊗ σ1 ⊗ c on H = L2(R)⊗ C2 ⊗K,

where α, β, k, σ0, σ1 are as before.
These two models indeed satisfy the definition of an integrable representation of Uq(sl(2,R)). However,
F need not be self-adjoint necessarily. As one can show that it is sufficient to have that K,E are self-
adjoint and F is symmetric. In [13] it is checked what condition needs to be satisfied for F to be a
self-adjoint operator, but we will skip over this proposition to immediately look at the three conclusions
that follow this proposition.
These conclusions precisely show us when {K,E, F} is an irreducible integrable representation of
Uq(sl(2,R)) with E,F,K self-adjoint. Furthermore, it also follows that the models we obtain will be
∗-representations in the sense that U∗ acts as the adjoint of U on the given Hilbert spaces.

Theorem 7.18. Let {K,E, F} be a triple of self-adjoint operators on a Hilbert space H with ker(E) =
ker(F ) = {0}, then the following are equivalent:

i) {K,E, F} is an integrable representation of Uq(sl(2,R)),

ii) {K,A} is an integrable representation of Rq[x, y] and Cq is a self-adjoint operator that strongly
commutes with K and E,

iii) {K,E, F} is unitarily equivalent to either model M1 with n = 0, e+(c) = 0 or M−1 with 2n+1+
sign(φ) = 0, e−(c) = 0 and e+(c), e−(c) are the spectral projections of the self-adjoint operator
C discussed in the above models corresponding to the intervals (−∞, (q + q)(q − q−1)−2) and
((q + q)(q − q−1)−2,∞) respectively.

Note, in our specific case of Pα, we have φ = πb2. Thus we already see that we only have one
possible representation up to equivalence.
The models can be simplified with the use of the next corollary, which also shows that {K,E, F} is a
∗-representation.

Corollary 7.19. Let {K,E, F} be an integrable representation of Uq(sl(2,R)), then ∃D ⊂ D(K) ∩
D(K−1) ∩D(E) ∩D(F ) such that

i) KD = D, ED = D, FD ⊆ D, |K|itD = D, |E|itD = D for t ∈ R,

ii) D is a core for K,K−1, E, F , i.e. U |D = U for U ∈ {K,K−1, E, F} with U the closure of U ,

iii) the relations between elements of Uq(sl(2,R)) also hold for vectors in D.

As noted before, we get the following corollary, which will conclude two possible models of irre-
ducible integrable representations of Uq(sl(2,R), with the requirement of K,E, F being self-adjoint
operators.

Corollary 7.20. Any irreducible integrable representation of Uq(sl(2,R)) is unitarily equivalent to
one of the following:

(I)ε1,ε2,c: K = ε1e
αx, E = ε2e

2βP , F = ε2(q− q−1)−2e−βP (c(q− q−1)2 + e2αx + e−2αx) on H = L2(R)
with 2αβ = φ, ε1, ε2 ∈ {−1, 1}, c ≤ (q + q)(q − q−1)−2,

(II)c: K = eαx ⊗ σ0, E = e2βP ⊗ σ1, F = (q − q−1)−2e−βP (c(q − q−1)2 − e2αx − e−2αx)e−βP ⊗ σ1 on
H = L2(R)⊗ C2 with 2αβ = φ− sign(φ)π, c ≥ (q + q)(q − q−1)−2.

In other words, we see that there is only one possible integrable representation of Uq(sl(2,R)) that
acts on L2(R) with q = eπib

2 , b ∈ (0, 1)\(R ∩ Q). This is also a ∗-representation due to the previous
corollary. Also, it is a reasonable definition, as it is natural to want that the operators K,E, F are
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self-adjoint with our ∗-structure. Besides that, this definition makes sure that both the real powers
and complex powers of K,E, F satisfy the relations of Uq(sl(2,R)).
Now, do note that we only have Pα ⊂ L2(R) as our vector space. Thus our representation πα doesn’t
act on all on L2(R), even though the above constructions do act on all of L2(R). The reason for not
having πα(U), U ∈ Uq(sl(2,R)), act on all of L2(R) is due to the fact that the self-adjoint extensions
of πα(U) and πα(Ũ) need not commute on all of L2(R). But, since we want Pα to be a Q-module, we
do need that these two operators commute on the whole module. However, we do get the following
fact, that shows that we can at least extend our representations πα(U) to all of L2(R).

Proposition 7.21. The operators πα(K), πα(E) and πα(F ) generate an integrable representation of
Uq(sl(2,R)). So,

i) πα(K), πα(E), πα(F ) have self-adjoint extensions to all of L2(R),

ii) the unitary operators πα(E)it, πα(F )
it and πα(K)it satisfy the commutation relations of Uq(sl(2,R)),

i.e.

πα(K)isπα(E)it = q−tsπα(E)itπα(K)is, πα(K)isπα(F )
it = qtsπα(F )

itπα(K)is, s, t ∈ R

iii) the action of the q-Casimir element Cq strongly commutes with πα(K), πα(E) and πα(F ).

So we see that the extension of Pα to L2(R) is our only choice up to equivalence for a representation
with the above nice properties. Also, note that we immediately get that Pα is a simple module as
a consequence of corollary 7.20 giving us only irreducible representations. Note, [1] proofs the above
proposition by showing that the actions of E,F,K on Pα are given by

E = J−1
α ẼαJα = T ib

ω , J−1
α F̃αJα = [α+ iω]bT

−ib
ω [α− iω]b, J−1

α K̃αJα = eπbω,

with the unitary operator Jα given by Jαf̃(ω) = Sb(α − iω)f̃(ω). The above E,F,K are easily
recognized as the E,F,K in model (I)1,−1,c if one replaces the x with ω in this model.
Next we will see that Pα is also a maximal subspace of L2(R) with the property that πα(U), U ∈
Uq(sl(2,R)) is well-defined.

7.4.2 Pα is a maximal subspace of L2(R)

From the previous part we know that the operators πα(U), U = E,F,K, are self-adjoint operators.
Furthermore, they are also positive operators by construction. So the above definition of integrability
is completely defined via the first definition, definition 7.15.
Now, to show that Pα is a maximal subspace, we will first construct a basis for Pα. Since πα(E), πα(F ),
πα(K) are positive operators, we see that

πα(Cq)
lπα(K)

n
2 πα(E)mπα(K)

n
2 and πα(Cq)

lπα(K)
n
2 πα(F )

mπα(K)
n
2 , l,m ∈ N, n ∈ Z

are also positive operators. The linear span of the elements (Cq)
l(K)

n
2 (E)m(K)

n
2 and (Cq)

l(K)
n
2 (F )m(K)

n
2

forms a basis Bq for Uq(sl(2,R)). So we get that πα(b), b ∈ Bq is a positive operator.
As noted before, the actions of Uq(sl(2,R)) on L2(R) are given by unbounded operators. Which is why
our module is given by Pα and not all of L2(R). But, from the next lemma, it will follow that Pα is
the largest subspace of L2(R) on which all of the operators πα(U), U ∈ Q are well-defined.

Lemma 7.22. Pα is the largest space on which all πα(U ⊗ Ũ) = πα(U)⊗πα(Ũ), U ∈ Uq(sl(2,R)), Ũ ∈
Uq̃(sl(2),R) are well defined. In other words,

Pα =
⋂

b⊗b̃∈Bq⊗Bq̃

Dom(πα(b⊗ b̃)).

Furthermore, Pα is a Fréchet space for all possible α with topology induced by the seminorms

||f ||b = sup
k∈R

|(πα(b⊗ b̃)f)(k)|, b⊗ b̃ ∈ Bq ⊗Bq̃.
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This lemma is proven in [16]. The biggest difference with our definition of Pα, is that this proof
shows that ea|ω|f(ω) ∈ L2(R), a > 0, is a necessary condition for πα(K)nf to be well defined for n ∈ Z.
But, this is equivalent with f ∈ Pα being an entire function, since the proof uses the actions of K,E, F
under the Fourier transform.
Note, both the condition that f(x) needs to be entire and that ea|ω|f̃(ω) ∈ Pα for all a ∈ R follow due
to the fact that {nb +mb−1 |n,m ∈ Z} ⊂ R is a dense subset and that we want to act with both U
and Ũ on Pα.
In other words, this condition follows due to the fact that Pα is a Q-module. As the actions of K and
K̃ imply that we either need to be able to analytically extend f(x) to a small strip around nb+mb−1

or e−π(nb+mb−1)kf̃(k) ∈ Pα for all n,m ∈ Z.
Recall that {nb +mb−1 |n,m ∈ Z} is only dense in R due to the fact that b ∈ R\Q. So this specific
choice for b is necessary to get that Pα is a maximal subspace.

Note that the basis Bq of Uq(sl(2,R)) consists of only positive operators. So, the positivity of the
operators πα(U), U ∈ {E,F,K}, helps with showing that Pα is the largest possible subspace of L2(R)
that we can turn into a Q-module, which is given by an integrable representation.
Furthermore, with the positivity of the operators πα(E), πα(F ), πα(K), we can directly define the
operators πα(Ẽ), πα(F̃ ), πα(K̃). Since we have

πα(Ẽ) = πα(E)
1
b2 , πα(F̃ ) = πα(F )

1
b2 , πα(K̃) = πα(K)

1
b2 ,

which we can define via functional calculus due to the operators being positive. Combined with the fact
that the actions of πα(U) and πα(Ũ), U ∈ {E,F,K}, Ũ ∈ {Ẽ, F̃ , K̃}, commute on Pα by construction.
We see that it is not a weird assumption to want the actions of Uq(sl(2,R)) on Pα to be given by
positive operators.
Furthermore, we saw that the chosen actions lead to the fact that Pα is an integrable module. This
was also shown to be a unique module up to unitary equivalence. Together with the maximality of
Pα, we see why Pα is a natural choice to define a Q-module structure on. As Pα also naturally has
the same self-duality property for b→ b−1 as Q.

Besides being maximal, Pα has another nice property. It is dense in L2(R). This is due to the
fact that πα is an integrable representation and πα(E), πα(F ), πα(K) can be extended to self-adjoint
operators defined on all of L2(R), which is also true for the actions of Ẽ, F̃ and K̃.
Due to this, one could ask why we even bother with Pα and not just use the self-adjoint extensions.
As we could define the action of any element of Q on any f ∈ L2(R) via these self-adjoint extensions.
However, the issue is that it is not clear whether or not the self adjoint extensions of πα(U) would
commute with the self-adjoint extensions of πα(Ũ) for U ∈ {E,F,K}, Ũ ∈ {Ẽ, F̃ , K̃} on all of L2(R).
And in general, they do not need to commute. So, for any arbitrary f ∈ L2(R), it need not be true
that UŨf = ŨUf , with Uf, Ũf representing the action of the self-adjoint extension of πα(U) and
πα(Ũ) respectively.
Which is why we work with Pα as our Q-module. Do note that we could turn all of L2(R) into a
Uq(sl(2,R))-module via these self-adjoint extensions. The above issue only arises if we are talking
about modules of the modular double Q, not when we consider Pα as a Uq(sl(2,R))-module.

Now that we have a basic idea of what our module Pα is, why it is defined in this way and what
some properties are. We can finally move on to describing the Clebsch-Gordan coefficients of Pα2⊗Pα1 .
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In this section we will be looking at the Clebsch-Gordan coefficients of the tensor product Pα2 ⊗Pα1 .
We will do this by studying how [1] calculated these coefficients and adding some extra details to the
proofs that are given in that paper.
We will see that, similar to the classical and quantum case, we can decompose the tensor product of
two simple modules Pα2 ⊗ Pα1 . However, unlike the finite dimensional case, we cannot decompose
Pα2 ⊗ Pα1 into a direct sum of simple modules. However, we can decompose it into a direct integral
of simple modules, which is a generalisation of the direct sum, as shown in Appendix C: The Direct
Integral.

8.1 Small remark on distributions

Since the Clebsch-Gordan coefficients will be defined with the use of distributions, we will shortly talk
about them. In short, a distribution Φ is a linear functional that acts on Schwartz functions. This
is done via integration, so if f ∈ S(R), then Φf =

∫
RΦ(x)f(x)dx. So, in a sense, one can think of a

distribution Φ as a function that acts on f ∈ L2(R) by integrating the product (Φ · f)(x).

Recall that the Schwartz-space S(R) is dense in L2(R) and the Fourier-transformation is even a
unitary operator on S(R) and can be extended to an isometry to all of L2(R). Due to this, and since we
are working with functions in L2(R), it is useful to consider the space S′(R) of tempered distributions.
Then, if Φ ∈ S′(R), it acts on any f ∈ S(R) such that

Φf =

∫
R
Φ(x)f(x)dx.

Thus Φ ∈ S′(R) is a linear functional Φ: S(R) → C. We can then also consider the Fourier transform
of a distribution Φ ∈ S′(R) by setting Φ̃f̃ = Φf . It then follows that we have

Φ(x) =

∫
R
e−2πiωxΦ̃(ω)dω

as the inverse Fourier-transform for a distribution Φ. Notice that we have e−2πiωx instead of e2πiωx in
this case. This is due to the fact that∫

R
Φ̃(ω)f̃(ω)dω =

∫
R

∫
R
e−2πiωxΦ̃(ω)f(x)dxdω =

∫
R
Φ(x)f(x)dx.

Now, for our case, we will be defining distributions with the use of limits of the index of certain
families of meromorphic functions. Let {Φε}, ε > 0, be a family of meromorphic functions Φε(x) that
contain a certain strip around R in their domain. Furthermore, assume that ∀ε > 0, Φε(x) decreases
rapidly as x → ∞ and that Φε(x) has finitely many poles with residues that do not depend on ε and
have distance ε from R.
Then it follows that Φ := limε↓0Φε is a distribution that acts on S(R), so Φ ∈ S′(R).
It follows that we can generalise lemma 7.10 to the space S′(R).

Lemma 8.1. Let Φ ∈ S′(R), then the following are equivalent:

i) Φ = limε↓0Φε, with Φε, ε > 0, representing a restriction to R of a function Φε(x) that is
meromorphic in {z ∈ C | Im(z) ∈ (−a−, a+)}, a± > 0, with finitely many poles in the upper and
lower half plane I± = {z ∈ C | ± Im(z) > 0} at Jε

± = {zj ± iε | zj ∈ ±I±} and every function
Φε,y(x) = Φε(x+ iy), x, y ∈ R, y ∈ (−a−, a+) are of rapid decrease.
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ii) Φ̃ is represented by a function Φ̃(ω) ∈ C∞(R) that has the following asymptotic behaviours as
ω → ±∞:

Φ̃(ω) = +2πi
∑

zj∈J+

e2πizjωRes(Φ(zj)) + Φ̃a+(ω) ω → ∞,

Φ̃(ω) = −2πi
∑

zj∈J−

e2πizjωRes(Φ(zj)) + Φ̃a−(ω) ω → −∞,

with Φ̃a± decaying faster than e−2πa|ω| ∀a ∈ (−a−, a+) as ω → ±∞.

The biggest difference with the above lemma and lemma 7.10 is the change of signs. This is due to
the fact that the inverse Fourier-transform has a swapped sign for distributions.
As a quick remark, note that we have already seen some uses of distributions before. The non-Fourier-
transformed version of the unitary operator Ĩα of lemma 7.14 is defined as

Iαf(x) =
∫
R
Bα(x− x′)f(x)dx′,

hence Iα is a distribution. Another example of a distribution is the Dirac δ. As we get that∫
R
δ(x′ − x)f(x)dx = f(x′),

hence δ(x′ − x) is a linear functional on C(R).
We can mostly think about distributions as functions, but it is good to keep in mind why we can
integrate Φ(x) ·f(x) when f(x) ∈ L2(R) if Φ ∈ S′(R). Also, we will use the changed Fourier-transform
of distributions later on too.

8.2 The decomposition of Pα2 ⊗ Pα1

Since Uq(sl(2,R)) is a Hopf ∗-algebra, we can turn Pα2 ⊗Pα1 into a Uq(sl(2,R))-module, with the use
of the coproduct. This gives us:

U(f ⊗ g) = ∆(U)(f ⊗ g), U ∈ Uq(sl(2,R)), f ∈ Pα2 , g ∈ Pα1 .

Now, let π21(U) = πα2 ⊗πα1(∆(U)), then π21 is the representation belonging to the module Pα2 ⊗Pα1

as

π21(U)(f ⊗ g) = ∆(U)(f ⊗ g) =
∑
(U)

U ′f ⊗U ′′g =
∑
(U)

πα2(U
′)f ⊗ πα1(U

′′)g = πα2 ⊗ πα1(∆(U))(f ⊗ g),

for U ∈ Uq(sl(2,R)), f ∈ Pα2 , g ∈ Pα1 .
As before with the classical case and quantum case, we want to decompose Pα2 ⊗ Pα1 into a "direct
sum" of simple modules. However, we will soon see that we cannot do this with the use of a direct sum,
but we will need to use the direct integral. For some details on the definition of the direct integral, see
Appendix C: The Direct Integral. In short, the direct integral is a generalisation of the direct sum. So,
one could think of

∫ ⊕
S Pαdµ(α) as if it is

⊕
α∈S Pα, but with a different requirement than F ∈ ⊕α∈SPα

if and only if 0 ̸= F (α) = fα ∈ Pα for finitely many α ∈ S. The precise requirement would be that

F ∈
∫ ⊕

S
Pαdµ(α) ⇐⇒

∫
S
||F (α)||2L2(R)dµ(α) <∞,

so every F (α) = fα ∈ Pα needs to be square-integrable.

Before moving on to the Clebsch-Gordan coefficients, we will note the following fact:

– 83 –



8.3 Some properties of the Clebsch-Gordan coefficients

Lemma 8.2. Pα2 ⊗ Pα1 ⊂ L2(R)⊗ L2(R) is dense.

So, the fact that Pα ⊂ L2(R) is dense, still holds in the case of the tensor product.
Now, the main part of this section will be proving the following theorem:

Theorem 8.3. Let π21 : Uq(sl(2,R)) → End(Pα2⊗Pα1) be given by π21(U)(f⊗g) = πα2⊗πα1(∆(U))(f⊗
g). Then,

Pα2 ⊗ Pα1 ≃
∫ ⊕

S
Pαdµ(α), S = Q/2 + iR.

The isomorphism can explicitly be described in terms of Cα2,α1 : L
2(R× R) → L2(S × R, dµ(α3)dx3),

Cα2,α1(f(x2, x1)) = Ff (α3, x3) =

∫
R

[
α3 α2 α1

x3 x2 x1

]
f(x2, x1)dx2dx1,

with dµ(α) = |Sb(2α)|2 and the Clebsch-Gordan coefficients
[
α3 α2 α1

x3 x2 x1

]
are given by:

[
α3 α2 α1

x3 x2 x1

]
= e−

πi
2
(∆α3−∆α2−∆α1)Db(β32; y32)Db(β31; y31)Db(β21; y21),

with ∆α = α(Q− α), Db(α; y) =
Sb(y)

Sb(y+α) and

y32 = i(x3 − x2) +
1

2
(α3 − α2), β32 = −α3 + α2 − α1 +Q,

y31 = −i(x3 − x1) +
1

2
(α3 − α1), β31 = −α3 + α1 − α1 +Q,

y21 = −i(x2 − x1)−
1

2
(α2 + α1)−Q+ α3, β21 = α3 + α2 + α1 −Q.

Furthermore, the isomorphism is Uq(sl(2,R))-linear, so we have

Cα3
α2,α1

(π21(U)f(x2, x1)) = πα3(U)Cα3
α2,α1

f(x2, x1), U ∈ Uq(sl(2,R)),

where Cα3
α2,α1

f(x2, x1) = Ff (α3, x3) ∈ Pα3 is the projection of Pα2 ⊗ Pα1 into Pα3 .

Note, the last remark in the above theorem shows that the actions of Uq(sl(2,R)) intertwine with
our decomposition coordinate wise. But since it is true for any α3 ∈ S, it follows that the action
of Uq(sl(2,R)) intertwines with Pα2 ⊗ Pα1 and

∫ ⊕
S Pαdµ(α). Also, we could write the representation

belonging to
∫ ⊕
S Pαdµ(α) as

∫ ⊕
S παdµ(α), which again shows a similarity with direct sums. As we get∫ ⊕

S παdµ(α)(U)F =
∫ ⊕
S πα(U)Fαdµ(α), where F ∈

∫ ⊕
S Pαdµ(α) and Fα is the projection of F on Pα.

In other words, the representation
∫ ⊕
S παdµ(α) acts coordinate wise on the elements of

∫ ⊕
S Pαdµ(α).

Furthermore, recall that the representations πα3 were integrable. Assuming that we indeed have that
the map Cα2,α1 is a unitary isomorphism, it follows that πα2 ⊗πα1 is also an integrable representation.
This follows from the fact that the properties of proposition 7.21 hold for πα2 ⊗ πα1 by constructing
the self-adjoint extension via C−1

α2,α1

(∫ ⊕
S πα3dµ(α3)

)
. The other two properties also directly follow by

using this inverse mapping.

8.3 Some properties of the Clebsch-Gordan coefficients

Since the proof of theorem 8.3 is rather long, we will do that in the next part. For now, we will focus
on some small facts about the Clebsch-Gordan coefficients.
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Corollary 8.4. The Clebsch-Gordan coefficients
[
α3 α2 α1

x3 x2 x1

]
have the following orthogonality and

completeness relations:∫
R

[
α3 α2 α1

x3 x2 x1

]∗ [
β3 α2 α1

y3 x2 x1

]
dx2dx1 = |Sb(2α3)|−2δ(α3 − β3)δ(x3 − y3),∫

S
|Sb(2α3)|2dα3

∫
R

[
α3 α2 α1

x3 x2 x1

]∗ [
α3 α2 α1

x3 y2 y1

]
dx3 = δ(x2 − y2)δ(x1 − y1).

Here
[
α3 α2 α1

x3 x2 x1

]∗
denotes the complex conjugate of

[
α3 α2 α1

x3 x2 x1

]
.

This corollary is similar to proposition 6.28, where we saw an orthogonality relation of the 3j-
symbols for the Verma modules of the quantum case.

Recall that we have an equivalence between the modules Pα and PQ−α. At the moment the Clebsch-

Gordan coefficients
[
α3 α2 α1

x3 x2 x1

]
have nice analytic properties, but it is not true that Cα3

α2,α1
inter-

twines with the unitary operator Iα of lemma 7.14. But, since Pα and PQ−α are equivalent, it could
be natural to define Cα3

α2,α1
in such a way that it acts similar if we change αi with Q− αi.

Lemma 8.5. Let Iα be defined as in the proof of lemma 7.14 and set[
α3 α2 α1

x3 x2 x1

]int

= N(α3, α2, α1)

[
α3 α2 α1

x3 x2 x1

]
. Then

Cα3
α2,α1

(1⊗ IQ−α1) = Cα3
α2,Q−α1

, Cα3
α2,α1

(IQ−α2 ⊗ 1) = Cα3
Q−α2,α1

, Iα3C
α3
α2,α1

= CQ−α3
α2,α1

is true ifN(α3, α2, α1) = (Sb(2Q−α1−α2−α3)Sb(Q−α1−α2+α3)Sb(α1−α2+α3)Sb(−α1+α2+α3))
− 1

2 ,

with Cα3
α2,α1

(f(x2, x1)) =
∫
R

[
α3 α2 α1

x3 x2 x1

]int

f(x2, x1)dx2dx1.

This lemma is proven in [3]. Due to this lemma, we see that first definition of the Clebsch-Gordan
coefficients, theorem 8.3, is not the only possible one. To be precise, we could let N(α3, α2, α1) be any
function and the intertwining property Cα3

α2,α1
π21(U) = πα3(U)Cα3

α2,α1
, U ∈ Uq(sl(2,R)) would still be

satisfied if we use the above definition for the Clebsch-Gordan coefficients. It follows that there is no
canonical way to define the Clebsch-Gordan coefficients for our module Pα.

8.3.1 Proof of theorem 8.3

We will now finally show that the decomposition given in theorem 8.3 is well-defined and correct. This
will be done in a similar way as in the classical and quantum case, subsection 3.3.1 and section 6.3. In
those cases, both sides of V (n) ⊗ V (m) ≃

⊕
k V (n +m − 2k) where constructed in such a way that

they were generated by eigenvectors of H or K respectively. It was then only noted that one could
get an explicit value for the Clebsch-Gordan coefficients by using the fact that the Casimir and the
quantum Casimir element acted as a constant on the spaces V (n +m − 2k). This time, we will use

this fact to show that the Clebsch-Gordan coefficients
[
α3 α2 α1

x3 x2 x1

]
are of the desired form.

Thus, we will first get a decomposition of the space Pα2 ⊗ Pα1 into eigenspaces of the operator
π21(K). Then, since Cq acts as a scalar on the space Pα, thus also on all of the Pα3 , we will find
eigenfunctions of π21(Cq). These can then be used to show that the Clebsch-Gordan coefficients
are as defined in theorem 8.3. This last step will be done by constructing a unitary operator from∫ ⊕
S Pαdµ(α) to Pα2 ⊗ Pα1 , using the eigenfunctions of π21(Cq). In other words, we will show that
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Cα2,α1 is an isomorphism by constructing an inverse map.
Now, since we do not just have a direct sum in this case, we have to do some more work. Recall that
the direct integral

∫ ⊕
S Pαdµ(α) contains elements F (α, x) in such a way that F (α, x) ∈ Pα and∫

S
||F (α, x)||2dµ(α) <∞.

So, we need to show that the measure µ satisfies this definition. However, note that∫
S
||Ff (α3, x3)||2Pα3

dµ(α3) =

∫
S

∫
R
Ff (α3, x3)Ff (α3, x3)

∗dx3dµ(α3) =

∫
S

∫
R
|Ff (α3, x3)|2dx3dµ(α3),

thus the extra condition of the direct integral will be satisfied by the fact that Ff (α3, x3) ∈ L2(S ×
R, dµ(α3)dx3). As the condition

∫
S ||Ff (α3, x3)||2Pα3

dµ(α3) < ∞ is equivalent to Ff (α3, x3) being
square-integrable.
Lastly, we need to show that the projection of F ∈

∫ ⊕
S Pαdµ(α) onto Pα, intertwines with the action

of U , U ∈ Uq(sl(2,R)). In other words, that we indeed have

Cα3
α2,α1

(π21(U)f(x2, x1)) = πα3(U)Cα3
α2,α1

f(x2, x1), U ∈ Uq(sl(2,R)).

The first step is to decompose Pα2⊗Pα1 into eigenspaces of π21(K). We can do this by decomposing
all of L2(R × R) into eigenspaces. Similar to showing that Pα is a maximal subset and Pα ≃ PQ−α,
we will also use a Fourier-transformation to construct eigenspaces of π21(K).
Let F : L2(R × R) → L2(R × R); f(x2, x1) 7→ F (κ3, α3) =

∫
R e

−πiκ3x+f(x++x−
2 , x+−x−

2 )dx+, with
x± = x2 ± x1. Then,

F(π21(K)f(x2, x1)) =

∫
R
e−πiκ3x+f

(
x+ + x− + ib

2
,
x+ − x− + ib

2

)
dx+

=

∫
R
e−πiκ3(x+−ib)f

(
x+ + x−

2
,
x+ − x−

2

)
dx+ = e−πbκ3F (κ3, x−).

So we get an eigenspace decomposition of L2(R × R) into spaces Lκ3 = {F (κ3, x−) ∈ L2(R)}, with
κ3 ∈ R, of functions with a fixed κ3 ∈ R. Thus we get the decomposition L2(R× R) =

∫ ⊕
R Lκ3dκ3 ≃∫ ⊕

R L2(R)dκ3.
Now, let C ′

q = Cq− 2
(q−q−1)2

. Then C ′
q is still a central elements of Uq(sl(2,R)) and also acts as a scalar

on Pα. The action of π21(C
′
q) on Pα2 ⊗ Pα1 is given by

− π2(FE)⊗ π1(K)2 − π2(FK
−1)⊗ π1(KE)− π2(K

−1E)⊗ π1(FK)− π2(K
−1)2 ⊗ π(FE)

− 1

(q − q−1)2
(
qπ2(K)2 ⊗ π1(K)2 + q−1π2(K

−1)2 ⊗ π1(K
−1)2 + 2

)
Thus it follows that the transformed action of C ′

q under the Fourier-transform F is given by

C21(κ3)− [α3 − Q
2 ]

2
b = [−ix− − 1

2(α1 + α2 −Q) + (α3 − Q
2 )]b[−ix− 1

2(α1 + α2 −Q)− (α3 − Q
2 )]b

− [−ix+ 1
2(α1 + α2)−Q]b

(
eiπb(−ix−1

2 (α1+α2)){α−α2 + iκ3}b

− e−iπb(−ix−1
2 (α1+α2)){α1 − α2 − iκ3}b

)
T−ib
x−

+ [−ix+ 1
2(α1 + α2)−Q]b[− ix+ 1

2(α1 + α2)− 2Q]bT
−2ib
x− ,

where C21(κ3) denotes the operator that acts as C21(κ3)F(f(x2, x1)) = F(C
′
qf(x2, x1)), i.e. it acts as

the transformed action of C ′
q, with [x]b = sin(πbx)

sin(πb2)
and {x}b = cos(πbx)

i sin(πb2)
. The full calculations of the
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action of C21(κ3) on F(f(x2, x1)) can be found in Appendix E.
Notice that the action of C21(κ3) only shifts F (κ3, x−) in the x− term. Thus, this action leaves the
eigenspaces Lκ3 of π21(K) invariant. Furthermore, it follows that

Φα3(α2, α1|κ3|x) =Mα3;κ3
α2,α1

eπx(2Q−2α3−2α2+iκ3)Θb(T, y−)Ψb(U, V,W ; y+),

y+ = −ix− 1
2(α1 + α2) + α3, y− = −ix− 1

2(α1 + α2) +Q− α3,

T = α3 + α2 + α1 −Q, U = Q− α3 − α2 + α1, V = Q− iκ3 − α3, W = Q− iκ3 − α2 + α1,

is a solution to the eigenfunction equation
(
C21(κ3)− [α3 − Q

2 ]
2
b

)t
Φ = 0 and it is proven in [1] that

{(Φα3)
∗ |α3 ∈ S} is a set of generalised eigenfunctions for the operator C21(κ3). In other words,

the functions Φ∗
α3

are eigenfunctions of C21(κ3) in an algebraic sense, but do note that they are not
necessarily elements of Pα2 ⊗ Pα1 .

Lemma 8.6.[
α3 α2 α1

κ3 x2 x1

]
=

∫
R
e2πiκ3x3

[
α3 α2 α1

x3 x2 x1

]
dx3 = e−πiκ3x+Φα3(α2, α1|κ3|x−),

given that Mα3;κ3
α2,α1 = eπiα2(α2−Q+α3)e−πi(Q−α3−iκ3)(α2−α3).

We then get the following corollary:

Corollary 8.7.

Let F̃f (α3, κ3) =
∫
R e

−πiκ3x+Φα3(α2, α1|κ3|x−)f(x2, x1)dx−dx+ =
∫
R

[
α3 α2 α1

κ3 x2 x1

]
f(x2, x1)dx3dx2dx1,

then we get

f(x2, x1) =

∫
R
eπiκ3x+

∫
S
(Φα3(α2, α1|κ3|x−)∗F̃f (α3, κ3)dµ(α3)dκ3

Note, the above corollary gives us two maps that are both defined as a composition of a Fourier
transform with another operator. The function F̃f (α3, κ3) is obtained via first sending f(x2, x1) →∫
RΦα3(α2, α1|κ3|x−)f(x2, x1)dx−, then applying the Fourier transform. Then f(x2, x1) is finally ob-

tained by sending F̃f (α3, κ3) →
∫
S(Φα3(α2, α1|κ3|x−)∗F̃f (α3, κ3)dµ(α3), then applying the inversion

of the Fourier transform.
We already know that the Fourier transform is a unitary operator on Pα2 ⊗ Pα1 , even an isometry,
or at least the extended Fourier transform. So, it now suffices to show that sending f(x2, x1) →∫
RΦα3(α2, α1|κ3|x−)f(x2, x1)dx− is also a unitary operator, to show that Cα2,α1 is an isometry.

Lemma 8.8. The Fourier transformation of Φα3 , Φ̃α3(ω) = Φ̃α−3(α2, α1|κ3|ω), decays exponentially
as ω → ∞. Furthermore, it has the following asymptotic behaviour as ω → −∞ :

Φ̃α3(ω) = N+(α3)e
2πiωx+ +N−(α3)e

2πiωx− +R−(ω),

with R−(ω) decaying exponentially as ω → −∞, x± = i
2(α1 + α2 −Q)± i(α3 − Q

2 ) and |N±(α3)|2 =
|Sb(2α3)|−2.

Proposition 8.9. Due to the previous lemma, we can define an "inner product" (Φα3 ,Φα′
3
) as a

bi-distribution given by

(Φα3 ,Φα′
3
) = |N+(α3)|2δ(α3 − α′

3) = |Sb(2α3)|−2δ(α3 − α′
3).

Proof. To show that (Φα3 ,Φα′
3
) = |Sb(2α3)|−2δ(α3−α′

3), we will consider (C21(κ3)Φα3 ,Φα′
3
)−(Φα3 , C21(κ3)Φα′

3
),

with (f, g) =
∫
R f(x)

∗g(x)dx and f(x)∗ = f(x), and show that it is of the desired form.
Let Φα3(x) = Φα3(α2, α1|κ3|x) and note that

C21(κ3)− [α3 − Q
2 ]

2
b = δ+(x)e

πibQe2πbx − δ0(x) + δ−(x)e
−πibQe−2πbx,
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with

δ+(x) = T−ib
x [dx − α2 +

i
2κ3]b[dx − α1 − i

2κ3]b,

δ0(x) =
1

2
{0}b

(
{Q}bT−2ib

x −
(
eπbκ3{2α2 −Q}b + e−πbκ3{2α1 −Q}b

)
T−ib
x + {2α3 −Q}b

)
δ−(x) = T−ib

x [dx + α2 +
i
2κ3]b[dx + α1 − i

2κ3]b.

Since [α3 − Q
2 ]

2
b and δ0(x) are self-adjoint, it follows that

((C21(κ3)− [α3 − Q
2 ]

2
b)Φα3 ,Φα′

3
)− (Φα3 , (C21(κ3)[α3 − Q

2 ]
2
b)Φα′

3
) = (C21(κ3)Φα3 ,Φα′

3
)− (Φα3 , C21Φα′

3
)

=
∑
j=±

(δj(x)e
πibjQe2πbjxΦα3(x),Φα′

3
(x))− (Φα3(x), δj(x)e

πibjQe2πbjxΦα′
3
(x)).

Since lemma 8.8 shows the behaviour of Φ̃α3(ω), we want to know the Fourier transformed action of
δj(x)e

πibjQe2πbjx as (f(x), g(x)) = (f̃(ω), g̃(ω)). Do note that in lemma 8.8 the distributional Fourier-
transform was used, but in this case we will be using the standard Fourier-transform, similar to [1].
This will imply that the behaviour of Φ̃α3(ω) as ω → ∞ is the same, but we get

Φ̃α3(ω) → N+(α3)e
−2πiωx+ +N−(α3)e

−2πiωx− +R−(ω), as ω → −∞.

Let f ∈ Pα, then∫
R
e−2πiωxδ+(x)e

πibQe2πbx f(x)dx

=
eπibQ

(q − q−1)2

∫
R
e−2πiωx

(
e−πib(α2+α1)e2πbxf(x) + eπib(α2+α1)e2πb(x−2ib)f(x− 2ib)

−
(
eπib(−α2+α1+iκ3) + e−πib(−α2+α1+iκ3)

)
e2πb(x−ib)f(x− ib)

)
dx

=
eπibQ

(q − q−1)2

(
e−πib(α2+α1) + eπib(α2+α1)e4πbω −

(
(eπib(−α2+α1+iκ3) + e−πib(−α2+α1+iκ3)

)
e2πbω

)
T ib
ω f̃(ω)

=
1

(q − q−1)2

(
eπb(s2+s1) + e−πb(s2+s1)e4πbωq2 +

(
(eπib(s2−s1−κ3) + e−πb(s2−s1−κ3)

)
e2πbωq

)
T ib
ω f̃(ω)

= δ̃+(ω)f̃(ω + ib)

and∫
R
e−2πiωxδ−(x)e

−πibQe−2 πbxf(x)dx

=
e−πibQ

(q − q−1)2

∫
R
e−2πiωx

(
eπib(α2+α1)e−2πbxf(x) + e−πib(α2+α1)e−2πb(x−2ib)f(x− 2ib)

−
(
eπib(α2−α1+iκ3) + e−πib(α2−α1+iκ3)

)
e−2πb(x−ib)f(x− ib)

)
dx

=
e−πibQ

(q − q−1)2

(
eπib(α2+α1) + e−πib(α2+α1)e4πbω −

(
(eπib(α2−α1+iκ3) + e−πib(α2−α1+iκ3)

)
e2πbω

)
T−ib
ω f̃(ω)

=
1

(q − q−1)2

(
eπb(−s2−s1) + e−πb(−s2−s1)e4πbωq−2 +

(
(eπb(−s2+s1−κ3) + e−πb(−s2+s1−κ3)

)
e2πbωq−1

)
T−ib
ω f̃(ω)

= δ̃−(ω)f̃(ω − ib),

with αk = Q
2 + isk, k ∈ {1, 2}, where δ̃j(ω), j ∈ {+,−}, is used for a shorthand notation for the Fourier
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transformed action of δj . It follows that

(C21(κ3)Φα3 ,Φα′
3
)− (Φα3 , C21(κ3)Φα′

3
)

= lim
W→∞

∑
j=±

∫ W

−W

(
(δ̃j(ω)Φα3(ω + jib))∗Φα′

3
(ω)− (Φ̃α3(ω))

∗δ̃j(ω)Φα′
3
(ω + jib)

)
dω

= lim
W→∞

∑
j=±

−
∫ −W−jib

−W
(Φ̃α3(ω))

∗δ̃j(ω)Φα′
3
(ω + jib)dω −

∫ W

W−jib
(Φ̃α3(ω))

∗δ̃j(ω)Φα′
3
(ω + jib)dω,

as
∫W
−W (Φ̃α3(ω))

∗δ̃j(ω)Φα′
3
(ω + jib)dω =

∫ −W−jib
−W (Φ̃α3(ω))

∗δ̃j(ω)Φα′
3
(ω + jib)dω

+
∫W−jib
−W−jib(Φ̃α3(ω))

∗δ̃j(ω)Φα′
3
(ω + jib)dω +

∫W
W−jib(Φ̃α3(ω))

∗δ̃j(ω)Φα′
3
(ω + jib)dω, since neither δ̃j(ω)

nor Φ̃α3(ω) have singularities inside this contour. Furthermore,∫ W−jib

−W−jib
(Φ̃α3(ω))

∗δ̃j(ω)Φα′
3
(ω + jib)dω =

∫ W

−W
Φ̃α3(ω − jib)δ̃j(ω − jib)Φα′

3
(ω)dω

=

∫ W

−W
Φ̃α3(ω − jib)δ̃j(ω)Φα′

3
(ω)dω =

∫ W

−W
(δ̃j(ω)Φ̃α3(ω + jib))∗Φα′

3
(ω)dω,

since e4πb(ω−jib)qj2 = e4πbωq−j2 and e2πb(ω−jib)qj1 = e2πbωq−j1. Note that every other term of δ̃±(ω)
is either real or invariant under complex conjugation. Thus this is indeed enough to prove the above
equalities.
Now, by lemma 8.8, Φ̃α3(ω) decays exponentially as ω → ∞, hence

lim
W→∞

∫ W−jib

W
(Φ̃α3(ω))

∗δ̃j(ω)Φ̃α′
3
(ω + jib)dω = 0,

and it follows that

(C21(κ3)Φα3 ,Φα′
3
)− (Φα3 , C21(κ3)Φα′

3
) = lim

W→∞

∑
j=±

∫ −W

−W−jib
(Φ̃α3(ω))

∗δ̃j(ω)Φ̃α′
3
(ω + jib)dω.

Now, δ̃j(ω) → eπjb(s2+s1)

(q−q−1)2
as ω → −∞, in combination with the previous noted asymptotic behaviour

of Φ̃α3(ω), we get

(C21(κ3)Φα3 ,Φα′
3
)− (Φα3 , C21(κ3)Φα′

3
) →

1

(q − q−1)2
lim

W→∞

∑
j=±

∫ −W

−W−jib
N+(α3)

∗N+(α
′
3)e

−2πiω(s3−s′3)e2πjbs
′
3 +N−(α3)

∗N−(α
′
3)e

2πiω(s3−s′3)e−2πjbs′3

+ N+(α3)
∗N−(α

′
3)e

−2πiω(s3+s′3)e−2πjbs′3 +N−(α3)
∗N+(α

′
3)e

2πiω(s3+s′3)e2πjbs
′
3dω

=
1

(q − q−1)2
lim

W→∞

∑
j=±

∫ W

W−jib
N+(α3)

∗N+(α
′
3)e

2πiω(s3−s′3)e2πjbs
′
3 +N−(α3)

∗N−(α
′
3)e

2πiω(−s3+s′3)e−2πjbs′3

+ N+(α3)
∗N−(α

′
3)e

2πiω(s3+s′3)e−2πjbs′3 +N−(α3)
∗N+(α

′
3)e

−2πiω(s3+s′3)e2πjbs
′
3dω

=
1

(q − q−1)2
lim

W→∞

∑
j=±

∑
ε1,ε2=±

Nε1(α3)
∗Nε2(α

′
3)

2πi(ε1s3 − ε2s′3)
e2πiW (ε1s3−ε2s′3)e2πjε2bs

′
3(1− e2πjb(ε1s3−ε2s′3)).

According to the proof in [1], the above term simplifies to

(
[ip′3]

2
b − [ip3]

2
b

)
lim

W→∞
|N+(α3)|2

e2πiW (p3−p′3) − e−2πiW (p3−p′3)

2πi(p3 − p′3)
,
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due to the Riemann-Lebesgue Lemma and the fact that

e2πbp
′
3 + e−2πbp′3 − e2πbp3 − e−2πbp3

(q − q−1)2
= [ip′3]

2
b − [ip3]

2
b .

From this, it follows that

(Φα3 ,Φα′
3
) = lim

W→∞
|N+(α3)|2

e2πiW (p3−p′3) − e−2πiW (p3−p′3)

2πi(p3 − p′3)
,

and we get ∫
S

lim
W→∞

e2πiW (p3−p′3) − e−2πiW (p3−p′3)

2πi(p3 − p′3)
Ff (α3, κ3)dµ(α3) =∫

S
lim

W→∞

e2πiW (p3) − e−2πiW (p3)

2πi(p3)
Ff (α3 + α′

3, κ3)dµ(α3) = Ff (α
′
3, κ3) · µ(α′

3),

due to the Dirichlet kernel. It then follows that

lim
a→0

∫
R

sin(πx)

πx
f(x)dx = f(0)

for any f ∈ S(R). From this, it follows that, if we set µ(α3) = |N+(α3)|−2 = |Sb(2α3)|2, then∫
S
(Φα3 ,Φα′

3
)F̃f (α3, κ3)dµ(α3) = |N+(α

′
3)|2µ(α′

3)F̃f (α
′
3, κ3) = F̃f (α

′
3, κ3).

In other words, we see that (Φα3 ,Φα′
3
) acts as |N+(α3)|2δ(α3 − α′

3) if we set µ(α3) = |Sb(2α3)|2.

From this, it follows that the operator sending f(x2, x1) →
∫
RΦα3(α2, α1|κ3|x−)f(x2, x1)dx− =

F̃f (α3, x+) is a unitary operator if we set µ(α) = |Sb(2α)|2. Its inverse is then given by F̃f (α3, x+) →∫
S(Φα3(α2, α1|κ3|x−)∗F̃f (α3, x+)dµ(α3). Since the composition of two unitary operators is still unitary,

it follows that both F̃f (α3, κ3) and f(x2, x1) in corollary 8.7 are defined via unitary operators. Thus
it follows that the map Cα2,α1 is indeed a unitary isomorphism.
To conclude the proof of theorem 8.3, it is only left to show that Cα3

α2,α1
satisfies the intertwining

property and also that Cα3
α2,α1

f(x2, x1) ∈ Pα3 for all α3 ∈ S.

Proposition 8.10. The projection Cα3
α2,α1

maps Pα2 ⊗ Pα1 into Pα3 . Furthermore, we have

Cα3
α2,α1

(π21(U)f(x2, x1)) = πα3(U)Cα3
α2,α1

f(x2, x1), ∀U ∈ Uq(sl(2,R)).

Proof. First, due to the fact that
[
α3 α2 α1

κ3 x2 x1

]
has poles at κ3 = ±(Q− α3 + nb+mn−1), n,m ∈ N,

and f(x2, x1) is entire, it follows that the Fourier-transform of Ff (α3, x3),

F̃f (α3, κ3) =

∫
R2

[
α3 α2 α1

κ3 x2 x1

]
f(x2, x1)dx2dx1,

has poles of the same form as elements of Pα3 . To show that Ff (α3, x3) is entire, we will give an
explicit analytic continuation to x3 ∈ {x3 ∈ C | im(x3) ∈ [0, b2 ]} and x3 ∈ {x3 ∈ C | im(x3) ∈ [− b

2 , 0]}.
This can then be generalized to any {x3 ∈ R | im(x3) ∈ [0, nb2 ]}, n ∈ Z, and also holds for b−1, due to
the invariance of the Clebsch-Gordan coefficients for the change b→ b−1 and also due to the fact that
the proof is symmetric for the change b → b−1, since the poles we are dealing with are of the form
x3j = ±i(ε+ nb+mb−1), n,m ∈ N, j ∈ {2, 1}, ε > 0 and small.
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Now, one can construct an explicit analytic continuation to {x3 ∈ C | im(x3) ∈ [0, b2 ]} by first integrat-
ing over x1, then by integrating x32 = x3 − x2 − 1

2(s3 + s2) along the contour C1 which is the union of
(−∞,−δ], [δ,∞) and the half-circle in the upper-half plane at x32 = 0 with radius δ, b > δ > b

2 . In
other words, one gets

Ff (α3, x3) =

∫
C1

∫
R

[
α3 α2 α1

x3 x2 x1

]
f(x2, x1)dx1dx32,

for an explicit analytic continuation, with C1 visualised by:

Re(x32)

Im(x32)

−δ δ

iδ

To construct an explicit continuation to {x3 ∈ C | im(x3) ∈ [− b
2 , 0]}, one first integrates along x2.

Then integrates x31 = x3 − x1 +
1
2(s3 + s1) along the contour C2, which is the union of (−∞,−δ],

[δ,∞) and the half-circle in the lower-half plane at x31 = 0 with radius δ, b > δ > b
2 . In other words,

one gets

Ff (α3, x3) =

∫
C2

∫
R

[
α3 α2 α1

x3 x2 x1

]
f(x2, x1)dx2dx31,

for an explicit analytic continuation, with C2 visualised by:

Re(x31)

Im(x31)

−δ δ

−iδ

Note, in both cases the half-circle is needed to avoid the pole in ±i(ε + nb + mb−1). Since this
construction can be extended to {x3 ∈ C | im(x3) ∈ [0, nb2 ]} for n ∈ Z and also works when b is
replaced by b−1, it follows that Ff (α3, x3) is entire. In other words, Cα3

α2,α1
f(x2, x1) ∈ Pα3 for any

f(x2, x1) ∈ Pα2 ⊗ Pα1 .
The last thing to prove is that the projection Cα3

α2,α1
is also Uq(sl(2,R))-linear. To do this, we will

rewrite Cα2,α1π21(U)f(x2, x1), U ∈ {E,F,K}, then use the above analytic continuations to get to
π3(U)Ff (α3, x3). The analytic continuation is needed due to the fact that π3(U) contains the shift

operator T
±ib
2

x3 as U ∈ {E,F,K}.

First, note that π21(U) consists of a linear combination of the shift operators T
ib
2
x2 T

ib
2
x1 , T

− ib
2

x2 T
ib
2
x1 and

T
− ib

2
x2 T

− ib
2

x1 . Due to this, we are mostly concerned with how one would calculate∫
R2

[
α3 α2 α1

x3 x2 x1

]
T
± ib

2
xi f(x2, x1)dx2dx1. Now,

∫
R2

[
α3 α2 α1

x3 x2 x1

]
T
± ib

2
x2 f(x2, x1)dx2dx1 =

∫
R2

[
α3 α2 α1

x3 x2 x1

]
f(x2 ± ib

2 , x1)dx2dx1

=

∫
R∓ ib

2

∫
R

[
α3 α2 α1

x3 x2 x1

]
f(x2 ± ib

2 , x1)dx1dx2 +Res =

∫
R

∫
R

[
α3 α2 α1

x3 x2 ∓ ib
2 x1

]
f(x2, x1)dx1dx2 +Res,

where we shifted the contour of x2 to R ∓ ib
2 in the second step and Res is the contribution of the

residue due to this shift. This would be the contribution of the pole at x2 = x1 − i
2(2α3 − α1 − α2)−
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i(ε+ nb+mb−1) or x1 = x2 − i
2(α1 + α2 − 2α3) + i(ε+ nb+mb−1), n,m ∈ N, in the case of a shift in

x1. Since π21(U), U ∈ {E,F,K}, only contains shift operators as described above, it follows that we
get ∫

R2

[
α3 α2 α1

x3 x2 x1

]
π21(U)f(x2, x1)dx1dx2 =

∫
R2

(
π21(U)t

[
α3 α2 α1

x3 x2 x1

])
f(x2, x1)dx2dx1

=

∫
C2

∫
C1

(
π21(U)t

[
α3 α2 α1

x3 x2 x1

])
f(x2, x1)dx2dx1,

where π21(U)t denotes the operator that acts on
[
α3 α2 α1

x3 x2 x1

]
via the above described shifts in the

integral. For example, (T
ib
2
x1 )

t

[
α3 α2 α1

x3 x2 x1

]
=

[
α3 α2 α1

x3 x2 x1 − ib
2

]
.

Since we have that π21(U)t
[
α3 α2 α1

x3 x2 x1

]
= π3(U)

[
α3 α2 α1

x3 x2 x1

]
for U ∈ {E,F,K} [1], this follows

from the functional equation of Sb(x) as seen in Appendix D: Special Functions, It follows that we get∫
R2

[
α3 α2 α1

x3 x2 x1

]
π21(U)f(x2, x1)dx1dx2 =

∫
R2

π3(U)

[
α3 α2 α1

x3 x2 x1

]
f(x2, x1)dx1dx2,

for U ∈ {E,F,K}. Lastly, since E,F,K generate Uq(sl(2),R). It follows that the projection onto Pα3 ,
Cα3
α2,α1

, is indeed Uq(sl(2,R))-linear for any α3 ∈ Q
2 + iR.

We now see that the map Cα2,α1 : L
2(R2) → L2(S ×R, dµ(α3)dx3) is indeed a unitary isomorphism

that explicitly describes how to decompose

Pα2 ⊗ Pα1 ≃
∫ ⊕

S
Pα3dµ(α3).

Again, notice that the condition of Cα3
α2,α1

being Uq(sl(2,R))-linear is necessary and sufficient for Cα2,α1

to be a Uq(sl(2,R))-module morphism. Without this fact, we would only have an isomorphism between
the tensor product Pα2 ⊗ Pα1 and

∫ ⊕
S Pα3dµ(α3) as vector spaces.

In the last two sections we showed how one could find the values of the Clebsch-Gordan coefficients
and a similar strategy could also be used in sections 3 and 6 to calculate the Clebsch-Gordan coeffi-
cients of the Verma modules for the classical and the quantum case. However, since the operators in
those two cases aren’t unbounded operators, finding eigenfunctions does become a lot simpler. But
the idea is similar.
In the next section we will that we can generalise the strategy to calculate the Clebsch-Gordan coeffi-
cients. Since we will be looking at the Racah-Wigner coefficients. In short, these coefficients describe a
similar relation as the Clebsch-Gordan coefficients, but this time for the triple tensor Pα3 ⊗Pα2 ⊗Pα1

instead of the regular tensor Pα2 ⊗ Pα1 . However, we will not give an explicit calculation, but only
describe how one could find an explicit formula, similar to sections 3 and 6.
Even though we will not do any explicit calculations, it is still useful to shortly look at these Racah-
Wigner coefficients. As that will show how we could decompose any number of tensors of Pα into a
direct integral of simple modules. Concluding that we are not restricted to only the tensor product of
two irreducible representations.
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We have seen that we can decompose the tensor product Pα2 ⊗ Pα1 into a direct integral of simple
modules. One could wonder if this process could be generalised to the tensor product of more than two
modules. And this is indeed possible by decomposing "smaller" tensor products with known methods,
until one gets a full decomposition.
In this section, we will look at how to decompose a triple tensor product of modules Pα and we will
also look at what problems one will find in that case. Most notable, similar to the case of Pα2 ⊗ Pα1 ,
we will find self-adjoint extensions for the operators (πα3 ⊗πα2 ⊗πα1 ◦(∆⊗ id)◦∆)(U), U ∈ {E,F,K}.
But, since we will soon see that we can construct such an extension in two ways, it is not immediately
clear that the self-adjoint extensions of these operators are unique.
Do note that this question arises due to the fact that the action of Uq(sl(2,R)) is integrable and
unbounded. Since we are only talking about self-adjoint extensions due to the unboundedness. So this
is mainly a problem we get due to our specific setting.

9.1 The decomposition of the triple tensor product

Let α3, α2, α1 ∈ S = Q
2 + iR. Then, we want to decompose the triple tensor product Pα3 ⊗Pα2 ⊗Pα1

into a direct integral of irreducible representations. Now, the representation of Uq(sl(2,R)) on Pα3 ⊗
Pα2 ⊗ Pα1 is given by

π321 = (πα3 ⊗ πα2 ⊗ πα1) ◦ (∆⊗ id) ◦∆ = (πα3 ⊗ πα2 ⊗ πα1) ◦ (id⊗∆) ◦∆.

To decompose the module Pα3 ⊗ Pα2 ⊗ Pα1 , we will use what we know of the previous sections and
we will also decompose it in two canonical ways. Note, Pα3 ⊗ Pα2 ⊗ Pα1 = (Pα3 ⊗ Pα2) ⊗ Pα1 =
Pα3 ⊗ (Pα2 ⊗ Pα1), so we can see the triple tensor as the tensor product of (Pα3 ⊗ Pα2) and Pα1 or
as a the tensor product of (Pα2 ⊗ Pα1) and Pα3 . Since we already know how to fully decompose the
tensor product of Pα ⊗ Pβ for arbitrary α, β ∈ S with the isomorphism Cα,β , we can first decompose
(Pα3 ⊗ Pα2) into

∫ ⊕
S Pαtdµ(αt), then decompose Pαt ⊗ Pα1 , ∀αt ∈ S, to fully decompose the triple

tensor. This decomposition is often referred to as the t-channel.
Similarly, we can decompose Pα3 ⊗ (Pα2 ⊗ Pα1) by first applying id ⊗ Cα2,α1 and then decomposing
Pα3 ⊗Pαs , ∀αs ∈ S, which is often referred to as the s-channel. We will first describe the t-channel in
more detail.
Define a unitary map C(32)1 : L

2(R3) → L2(S2 × R, dµ(α4)dµ(αt)dx4), f(x3, x2, x1) 7→ F t
f (α3, αt, x4),

then F t
f is given by

F t
f (α4, αt, x4) = lim

ε2↓0
lim
ε1↓0

∫
R2

[
α4 αt α1

x4 xt x1

]
ε2

∫
R2

[
αt α3 α2

xt x3 x2

]
ε1

f(x3, x2, x1)dx3dx2dx1dxt,

x4 ∈ R, α4, αt ∈ S. Note that this does indeed show that we first decompose Pα3 ⊗ Pα2 , then apply
the unitary map of theorem 8.3 once more to fully decompose the triple tensor. To simplify notation,
set x = (x3, x2, x1) and dx = dx3dx2dx1, then we get

F t
f (α4, αt, x4) = lim

ε↓0

∫
R3

Φt
αt

[
α3 α2

α4 α1

]
(x4,x)f(x)dx,

with

Φt
αt

[
α3 α2

α4 α1

]
(x4,x) =

∫
R

[
α4 αt α1

x4 xt x1

]
ε

[
αt α3 α2

xt x3 x2

]
ε

dxt.

Since the map C(32)1 is constructed as a composition of Cα3,α2 and maps Cαt,α1 , it follows that the
action of Uq(sl(2,R)) on Pα4 intertwines with the action of π321 on Pα3 ⊗ Pα2 ⊗ Pα1 . In other words,
if Cα4,t

(32)1f(x) is the projection of F t
f (α4, αt, x4) onto Pt

α4
, then

πα4(U)
(
Cα4,αt

(32)1 f(x)
)
= C(32)1 (π321(U)f(x)) , ∀α4, αt ∈ S, U ∈ Uq(sl(2,R)),
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similar to the intertwining property described in proposition 8.10.
Note, we need both αt and α4 as we have a double direct integral in this case, so there are two
variables that act similar to coordinates. For example, only projecting onto α4 would still give us a
µ(αt)-measurable vector field that depends on αt. So we only get L2(R) functions after fixing both α4

and αt ∈ S.
From this, it also follows that

Pα3 ⊗ Pα2 ⊗ Pα1 ≃
∫ ⊕

S

∫ ⊕

S
Pt
α4
dµ(α4)µ(αt).

As noted before, we have a second canonical way to decompose the triple tensor Pα3 ⊗ Pα2 ⊗
Pα1 by using the s-channel. Similar as above, define a unitary map C3(21) : L

2(R3) → L2(S2 ×
R, dµ(α4)dµ(αs)dx4), f(x3, x2, x1) 7→ F s

f (α4, αs, x4), with F s
f (α4, αs, x4) given by

F s
f (α4, αs, x4) = lim

ε2↓0
lim
ε1↓0

∫
R2

[
α4 α3 αs

x4 x3 xs

]
ε2

∫
R2

[
αs α2 α1

xs x2 x1

]
ε1

f(x3, x2, x1)dx2dx1dx3dxs,

x4 ∈ R, α4, αs ∈ S. This can then be simplified to

F s
f (α4, αs, x4) = lim

ε↓0

∫
R3

Φs
αs

[
α3 α2

α4 α1

]
(x4,x)f(x)dx,

with

Φs
αs

[
α3 α2

α4 α1

]
(x4,x) =

∫
R

[
α4 α3 αs

x4 x3 xs

]
ε

[
αs α2 α1

xs x2 x1

]
ε

dxs.

This then leads to the decomposition

Pα3 ⊗ Pα2 ⊗ Pα1 ≃
∫ ⊕

S

∫ ⊕

S
Ps
α4
dµ(α4)dµ(αs)

and we also have a similar intertwining property given by

πα4(U)
(
Cα4,αs

3(21) f(x)
)
= C3(21)(π321(U)f(x)), ∀α4, αs ∈ S, U ∈ Uq(sl(2,R)).

Now, just like in the previous section, due to the fact that the maps C(32)1 and C3(21) are unitary
and the representations παt

α4
and παs

α4
are integrable, it follows that the representation π321 is also

integrable. We can construct self-adjoint extensions of π321(U), U ∈ {E,F,K,Cq}, via the inverse
maps C−1

(32)1 and C−1
3(21). Call these self-adjoint extensions π(32)1(U) = C−1

(32)1

∫ ⊕
S2 π

αt
α4
(U)dµ(α4)dµ(αt)

and π3(21)(U) = C−1
3(21)

∫ ⊕
S2 π

αs
α4
(U)dµ(α4)dµ(αs) respectively.

Now, since these two extensions are obtained via different unitary maps. It is not immediately clear
that π(32)1(U) and π3(21)(U) act similar on all of L2(R3). In other words, the self-adjoint extensions,
π(32)1(U) and π3(21)(U), of π321(U) to all of L2(R3) need not be the same or even equivalent. But,
that would imply that a self-adjoint extension of π321(U) to all of L2(R3) need not be unique.
Luckily enough, we will soon see that the self-adjoint extensions will be the same and it will follow
that the self-adjoint extension of π321(U) will be unique for U ∈ {E,F,K,Cq}.

To show that the self-adjoint extension of π321(U) is unique for U ∈ {E,F,K,Cq}, we will be looking

at the relation between the distributions Φs
αs

[
α3 α2

α4 α1

]
ε

(x4,x) and Φt
αt

[
α3 α2

α4 α1

]
ε

(x4,x). Now, the

Fourier-transform of these distributions is given by

∼
Φi
αi

[
α3 α2

α4 α1

]
ε

(κ4,x) =

∫
R
e2πiκ4x4Φi

αi

[
α3 α2

α4 α1

]
ε

(x4,x)dx4.
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Furthermore, since C(32)1 and C3(21) are unitary maps, we get the following relation between the
functions F s

f (α4, αs, κ4) and F t
f (α4, αt, κ4):

F̃f
s
(α4, αs, κ4) =

∫
S2

∫
R
K
[
α4 αs κ4
α′
4 αt κ′4

]
F̃f

t
(α′

4, αt, κ
′
4)dµ(κ

′
4)dµ(α

′
4)dµ(αt),

with the distribution K
[
α4 αs κ4
α′
4 αt κ′4

]
given by:

K
[
α4 αs κ4
α′
4 αt κ′4

]
= lim

ρ→∞
lim
ε↓0

∫
R

∫ ρ

−ρ

∫
R

∫ ρ

−ρ

( ∼
Φt
αt

[
α3 α2

α′
4 α1

]
(κ′4,x)

)∗ ∼
Φs
αs

[
α3 α2

α4 α1

]
(κ4,x)dx3dx1dx2.

Now, similar to the classical case, we will see that this relation will be 0 for a lot of values of α′
4 and

κ′4. To be precise, we will see that K
[
α4 αs κ4
α′
4 αt κ′4

]
will be 0 whenever α′

4 ̸= α4 and κ′4 ̸= κ4. From

this, it will follow that the self-adjoint extension of π321(U) will be unique for U ∈ {E,F,K,Cq}.

Proposition 9.1. The distribution K is of the form

K
[
α4 αs κ4
α′
4 αt κ′4

]
= δ(α4 − α′

4)δ(κ4 − κ′4)K

[
α4 αs

κ4 αt

]
,

with K
[
α4 αs

κ4 αt

]
a distribution that only depends on α4, αs, αt and κ4.

Proof. To prove this proposition, we will show that the following holds:([
α4 −

Q

2

]2
b

−
[
α′
4 −

Q

2

]2
b

)
K
[
α4 αs κ4
α′
4 αt κ′4

]
= 0

(
κ4 − κ′4

)
K
[
α4 αs κ4
α′
4 αt κ′4

]
= 0.

Then, as stated in the proof in [1], if the above claim is true, the statement in our proposition will
follow due to a certain theorem. This known fact implies the following:
Let f ∈ S(R) be such that f(x) ̸= 0 if x ̸= x0 and f(x0) = 0, x, x0 ∈ R and fg(x) ∈ S(R) ∀g(x) ∈ S(R).
Let T ∈ S′(R) be a tempered distribution such that Tf(x) = 0 ∀x ∈ R, then T = a0(x0)δ(x− x0). In
other words, it suffices to show that the first claim of this proof is true. The proposition then follows
from the above fact.

In our case, if we indeed have that
([
α4 − Q

2

]2
b
−
[
α′
4 −

Q
2

]2
b

)
K
[
α4 αs κ4
α′
4 αt κ′4

]
= 0 and

(κ4 − κ′4)K
[
α4 αs κ4
α′
4 αt κ′4

]
= 0, it then follows from the above fact that K

[
α4 αs κ4
α′
4 αt κ′4

]
= δ(κ4 −

κ′4)δ(α4 −α′
4)a0(α4, κ4;αs;αt). As K

[
α4 αs κ4
α′
4 αt κ′4

]
satisfies the conditions of the above fact if we take

f ∈ S(R3) with f(α4, αs, κ4) = 0 if α4 = α′
4 or κ4 = κ′4.

Recall that π21(C ′
q) and π21(K) decomposed L2(R2) into eigenspaces with eigenvalues e−πbκ3 and[

α3 − Q
2

]2
b
. As

∼
Φi
αi

[
α3 α2

α4 α1

]
(κ4;x) = limε→0

∼
Φαi

i
[
α3 α2

α4 α1

]
ε

(κ4;x), which consists of a multiplication

of two Clebsch-Gordan coefficients, it follows that we also have

πα4(K)F̃ i
f (α4, αi, κ4) = e−πbκ4F̃ i

f (α3, αi, κ4), πα4(C
′
q)F

i
f (α4, αi, κ4) =

[
α4 − Q

2

]2
b
F̃ i
f (α4, αi, κ4),
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with i ∈ {s, t}.
Now, it follows that we get([

α4 − Q
2

]2
b
−
[
α′
4 −

Q
2

]2
b

)
K
[
α4 αs κ4

α+ 4′ αt κ′4

]
=

lim
ε1,ε2↓0

lim ρ→ ∞
∫
R

∫ ρ

−ρ

∫ ρ

−ρ

((
∼
Φt
αt

[
α3 α2

α′
4 α1

]
ε1

(κ′4;x)

)∗

π321(C
′
q)

∼
Φs
αs

[
α3 α2

α4 α1

]
ε2

(κ4;x)

−

(
π321(C

′
q)

∼
Φt
αt

[
α3 α2

α′
4 α1

]
ε1

(κ′4;x)

)∗
∼

Φs
αs

[
α3 α2

α4 α1

]
ε2

(κ4;x)

)
dx3dx1dx2

for the action of C ′
q, with the above regarded as a distribution.

To show that this indeed vanishes, one can do something similar as what was done in the proof of
proposition 8.10. First, we have that π321(C ′

q) acts on f(x3, x2, x1) by shifts of the form T is1b
x1

T is2b
x2

T is3b
x3

,
si = ±, i ∈ {1, 2, 3}. Now, we can rewrite how π321(C

′
q) acts into shift operators of the form T123 =

Tx1Tx2Tx3 , T21 = Tx2T
−1
x1

and T32 = Tx3T
−1
x2

to get

π321(C
′
q) =

3∑
n1=−3

3∑
n2=0

3∑
n3=0

Pn1,n2,n3(x3, x2, x1)T
n1ib
123 T

2n2
3

ib

21 T
2n3
3 ib

32 ,

with Pn1,n2,n3(x3, x2, x1) some polynomial that depends on n1, n2, n3 and x3, x2, x1 and T a
123 = T a

x1
T a
x2
T a
x3

,
T a
21 = T a

x2
T−a
x1

, T a
32 = T a

x3
T−a
x2

. It follows that π321(Cq) contains positive imaginary shifts up to 2ib of the
variables x21, x32 and x31, with x32 and x31 as in proposition 8.10 and x21 = x2−x1+ 1

2(s2+s1−2s3).
Furthermore, the shifts of the form Tx3Tx2Tx1 can be replaced by e−2πiκ4 in the above integral. So we
indeed do end up with shifts in only x32, x31 and x21.
Now, by shifting the contours of integration, similarly to proposition 8.10, we get∫

R

∫ ρ

−ρ

∫ ρ

−ρ

(
∼
Φt
αt

[
α3 α2

α′
4 α1

]
ε1

(κ′4;x)

)∗

π321(C
′
q)

∼
Φs
αs

[
α3 α2

α4 α1

]
ε2

(κ4;x)dx3dx1dx2 =

∫
R

∫ ρ

−ρ

∫ ρ

−ρ
π321(C

′
q)

t

(
∼
Φt
αt

[
α3 α2

α′
4 α1

]
ε1

(κ′4;x)

)∗
∼

Φs
αs

[
α3 α2

α4 α1

]
ε2

(κ4;x)dx3dx1dx2 =

∫
R

∫ ρ

−ρ

∫ ρ

−ρ

(
π321(C

′
q)

∼
Φt
αt

[
α3 α2

α′
4 α1

]
ε1

(κ′4;x)

)∗
∼

Φs
αs

[
α3 α2

α4 α1

]
ε2

(κ4;x)dx3dx1dx2,

with π321(Cq)
t the transposed operator π321(Cq). It follows that we indeed have that([

α4 −
Q

2

]2
b

−
[
α′
4 −

Q

2

]2
b

)
K
[
α4 αs κ4
α′
4 αt κ′4

]
= 0.

A similar reasoning also shows that

(
κ4 − κ′4

)
K
[
α4 αs κ4
α′
4 αt κ′4

]
= 0,

when one uses the action of K instead of that of Cq. Hence, it follows that

K
[
α4 αs κ4
α′
4 αt κ′4

]
= δ(α4 − α′

4)δ(κ4 − κ′4)K

[
α4 αs

κ4 αt

]
,

by the first remark of the proof.
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From this proposition it now follows that the self-adjoint extension of π321(U) obtained via the
inverse mappings C−1

(32)1 and C−1
3(21) are the same for U ∈ {K,Cq}. Via similar reasoning as in the

above proof, one can also show that we have π(32)1(U) = π3(21)(U) for U ∈ {E,F}. In other words,
the two self-adjoint extensions of π321(U) obtained via the inverse mappings C−1

(32)1 and C−1
3(21) are the

same for U ∈ {E,F,K,Cq}. So these self-adjoint extensions are indeed unique.

As a final remark on the triple tensor, we would like to quickly give a definition of the Racah-
Wigner coefficients, also known as the b-6j symbols. Similar to the Clebsch-Gordan coefficients, the
Racah-Wigner coefficients also gives us a relation via a linear transformation. But, instead of showing
us how the decomposition is related to the tensor product, the Racah-Wigner coefficients give us a
relation between the two differently obtained decompositions.

Proposition 9.2. We have the following relation between Φs
αs
(x4,x) and Φt

αt
(x4,x):

Φs
αs

[
α3 α2

α4 α1

]
(x4,x) =

∫
S

{
α1 α2

α3 α4

∣∣∣∣ αs

αt

}
Φt
αt

[
α3 α2

α4 α1

]
(x4,x)dαt,

where this relation is either considered as

i) a relation between two analytic functions in

A(4) = {(x1, x2, x3, x4) ∈ C | im(x1) < im(x2) < im(x3)∧ im(x1) < im(x4) < im(x3)∧ im(x3−x1) < Q}

ii) a relation between meromorphic functions on C4,

iii) a relation between distributions defined as boundary values of Φδ
αδ

[
α3 α2

α4 α1

]
(x4,x) for δ ∈ {s, t}

and (x4,x) ∈ R4.

Note, the above can also be written as a relation between the functions F s
f (α4, αs, x4) and F t

f (α4, αt, x4).
This gives a fairly similar looking relation,

F s
f (α4, αs, x4) =

∫
S

{
α1 α2

α3 α4

∣∣∣∣ αs

αt

}
F t
f (α

′
4, αt, x4)dαt,

which is obtained with the use of the transformation between F̃ s
f (α4, αs, κ4) and F̃ t

f (α4, αs, κ4) via the

distribution K
[
α4 αs κ4
α′
4 αt κ′4

]
.

Finally, one can get the following explicit value of the Racah-Wigner coefficients [1]:

Proposition 9.3.{
α1 α2

α3 α4

∣∣∣∣ αs

αt

}
= N

Sb(α2 + αs − α1)Sb(αt + α1 − α4)

Sb(α2 + αt − α3)Sb(αs + α3 − α4)

· |Sb(2αt)|2
∫ i∞

−i∞

Sb(U1 + s)Sb(U2 + s)Sb(U3 + s)Sb(U4 + s)

Sb(V1 + s)Sb(V2 + s)Sb(V3 + s)Sb(V4 + s)
ds,

with N a certain constant and

U1 = αs + α1 − α2, V1 = 2Q+ αs − αt − α2 − α4,

U2 = Q+ α2 − α2 − α1, V2 = Q+ αs + αt − α4 − α2,

U3 + αs + α3 − α4, V3 = 2αs,

U4 = Q+ αs − α3 − α4, V4 = Q.
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Do note that because the Racah-Wigner coefficients give us a relation between F s
f (α4, αs, x4) and

F t
f (α

′
4, αt, x4), any obtained explicit value for the Racah-Wigner coefficients depend on the normaliza-

tion of the Clebsch-Gordan coefficients. In other words, the choice that is made for N(α3, α2, α1) in
lemma 8.5 will influence the obtained value for the Racah-Wigner coefficients.
Lastly, one can calculate the constant N of the Racah-Wigner coefficients either explicitly, or one could
use a similar approach as what was done earlier to get an explicit value for the Clebsch-Gordan coeffi-
cients. In other words, one can describe the Racah-Wigner coefficients with the use of eigenfunctions
of certain finite difference operators.
In[1] this is done by fixing three of the four variables of x1, . . . , x4 in proposition 9.2. This then gives a
linear transformation that depends on only one variable. One can then solve an eigenfunction problem
similarly to the eigenfunction problem of the Clebsch-Gordan coefficients to get a fully explicit value
for the Racah-Wigner coefficients.
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10 Summary

To give the reader a good idea how to work with Hopf ∗-algebras, we started with some general theory
on quantum groups and their modules. This started with general information Hopf algebras, where
we also looked at M(2), GL(2) and SL(2) as they are a great explicit example on Hopf algebras.
Especially since their quantum deformations Mq(2), GLq(2) and SLq(2) have fairly similar structures.
Since we also wanted to introduce Uq(sl(2)) as a quantum deformation of U(sl(2)), we also looked at
some general theory on Lie algebras. This contained some useful facts, like the Poincaré-Birkhoff-Witt
theorem 3.31 and the general structure of a universal enveloping algebra. This part also contained our
first explicit example of a module, the Verma modules. We showed the form of every finite dimensional
simple U(sl(2))-module and that the same construction could be used to get the infinite-dimensional
Verma modules.
The general theory ended with the study of the Hopf ∗-algebra Uq(sl(2)). Here we showed all possible
∗-structures of Uq(sl(2)), which was also done for GLq(2), SLq(2) and U(sl(2)). We then proceeded to
look at the Verma modules of Uq(sl(2)). The study of these modules and all finite dimensional simple
modules of Uq(sl(2)) was shown to be fairly similar to that of U(sl(2)), except for the fact that some
care was needed for the choice of the parameter q. To further show why care is needed, we ended the
general theory by looking at what happens when q is a root of unity. This changed several facts and
possible options on the finite dimensional simple modules of Uq(sl(2)).
We also looked at the tensor product of two Verma modules of U(sl(2)) and Uq(sl(2)) as an introduction
the the part about the modular double Q introduced by Faddeev. There we looked at a simpler version
of a decomposition into simple modules and also discussed how one could get an explicit formula for
the Clebsch-Gordan coefficients. Even though the setting was simpler, most of the strategies could
still be used in a similar way in the later sections on Q.

Our next main subject was a certain module of Q. Now, by defining Pα to be a Q-module by
definition, we saw that this space was a natural choice to induce a Q-module structure on. This was
because of two facts. The first was that Pα ⊆ L2(R) was a maximal subspace on which πα(E), πα(F )
and πα(K) where well-defined. Where we needed both actions of πα(K) and πα(K̃) to deduce that
f ∈ Pα needs to be an entire function and the actions of πα(E), πα(F ), πα(Ẽ), πα(F̃ ) showed that the
Fourier-transform of f , f̃ , has to be meromorphic with possible poles at

i(α−Q− nb−mb−1) and i(Q− α+ nb+mb−1), n,m ∈ Z.

The other reason was due to the fact that the actions of E,F,K were defined via positive self-adjoint

operators. Due to this fact, we can define the operators πα(U)
1
b2 for U ∈ {E,F,K}. The action of

πα(U)
1
b2 is the same as that of πα(Ũ). Combined with the fact that the actions of πα(U) and πα(Ũ)

commute by construction, Pα would automatically turn into a Q-module if one wants πα(U)
1
b2 to also

act on the module.
Besides seeing that Pα is a natural space to define a Q-module structure on, we also saw that the
representations πα was unique up to isomorphism. This followed from the fact that πα was an inte-
grable representation and there was only one, up to isomorphisms, irreducible integrable Uq(sl(2,R))
representation that acts on L2(R). So, in a way, Pα is both a natural choice for a Q-module and also
the only choice up to isomorphism.

Later on we saw that the tensor product Pα2 ⊗Pα1 was decomposable into irreducible representa-
tions, similar to the classical case. It followed that

Pα2 ⊗ Pα1 ≃
∫ ⊕

S
Pα3dµ(α3), with S = Q

2 + iR,
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and this isomorphism was given via

L2(R2) ∋ f(x2, x1) 7→ Ff (α3, x3) =

∫ 2

R

[
α3 α2 α1

x3 x2 x1

]
f(x2, x1)dx2dx1.

We then discussed how to decompose
∫ ⊕
S Pα3dµ(α3) into eigenspaces for the Fourier-transformed ac-

tions of πα21(K) and πα21(Cq). This then gave us the following equation for the Fourier-transformed
Clebsch-Gordan coefficients in terms of the eigenfunctions Φα3 :[

α3 α2 α1

κ3 x2 x1

]
=

∫
R
e2πiκ3x3

[
α3 α2 α1

x3 x2 x1

]
dx3 = e−πiκ3(x1+x2)Φα3(α2, α1|κ3|x2 − x1).

In the end we saw that we were not limited to only decomposing the tensor product of two modules
into a direct integral of simple modules. For example, we showed that we got

Pα3 ⊗ Pα2 ⊗ Pα1 ≃
∫
S2

Pαs
α4
dµα4dµ(αs),

by first decomposing the Pα2 ⊗ Pα1 , then decomposing the obtained tensor products Pα3 ⊗ Pαs .

10.1 Outlook

We will end this by noting some possible options that could be studied in more detail or what one
could study to add to this thesis. First, there are still some details of [1] that were not fully worked
out. For example, the proof of proposition 8.9 was for a part assumed to be correct, as it was not
possible to check some details in time. So, the details of this proof could be worked out in detail, or
one could look at other papers or use other methods to verify some of the facts on the direct integral∫ ⊕
S Pαdµ(α).

Furthermore, we did not look at how the eigenfunctions Φα3 were calculated or look at the spectral
analysis of the operator π21(C ′

q). This spectral analysis could be studied in more detail. The method
used to find the eigenfunctions Φα3 could then also be used to give a detailed proof for a set of
generalised eigenfunctions in the case of the Racah-Wigner coefficients.

Something that could be studied next is obviously the Racah-Wigner coefficients of Pα3⊗Pα2⊗Pα1 ,
as we only briefly went over a fact on the self-adjoint extension of π321(U) and gave the definition of
the Racah-Wigner coefficients as a fact. This could then also be combined with looking at applications
of the Racah-Wigner coefficients with respect to Liouville theory.
A more theoretical option could be to study universal R-matrices. These are, for example, used by
Faddeev in [2] to construct the modular double and also to point out some of the difficulties. So this
could then also be used to take a more detailed look at the exact construction of the modular double
of Uq(sl(2,R)).
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Appendix A: Tensor Products

In this appendix we will look at some small facts on the tensor product of vector spaces. We will also
look at how the tensor product of two linear maps f : U → U ′ and g : V → V ′ relate to linear maps
h : V ⊗ U → U ′ ⊗ V ′.

Theorem A.1. Let U, V be vector spaces over a field k. Then ∃ U ⊗ V , vector space, and a bilinear
map ϕ0 : U × V → U ⊗ V such that ∀ W , vector space,

Hom(U ⊗ V,W )
∼=−−→ Hom(U × V,W ); f 7→ f ◦ ϕ0,

is a linear isomorphism.

The vector space U ⊗ V in the above theorem is called the tensor product of U and V . This leads
to the following definition,

Definition A.2. Let U, V be vector spaces over a field k. The tensor product U ⊗ V of U and V is
the vector space consisting of elements of the form u⊗ v, u ∈ U, v ∈ V , where u⊗ v = ϕ0(u, v).

Since ϕ0 is bilinear, we get the following relations in U ⊗ V :
Let u, u′ ∈ U, v, v′ ∈ V, λ ∈ k

(u+ u′)⊗ v = u⊗ v + u′ ⊗ v,

u⊗ (v + v′) = u⊗ v + u⊗ v′

λ · (u⊗ v) = λu⊗ v = u⊗ λv,

also, every element w ∈ U ⊗ V is of the form

w =
n∑

i=0

ui ⊗ vi, u0, . . . , un ∈ U, v0, . . . , vn ∈ V, n ∈ N.

Now, a nice thing about the tensor product with vector spaces, is that it sort of acts distributively
and commutatively. k also acts like the identity for the tensor product in the following sense:

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ); via (u⊗ v)⊗ w 7→ u⊗ (v ⊗ w),

k⊗ U ∼= U ∼= U ⊗ k; via λ⊗ u 7→ λ · u and u 7→ u⊗ 1,

U ⊗ V ∼= V ⊗ U ; via u⊗ w 7→ w ⊗ v.

Besides acting commutatively on vector spaces, the tensor product also acts commutatively on the
direct sum of vector spaces:

Proposition A.3. Let U be a vector space and let (Vi)i∈I be a family of vector spaces with I being
its index set. Then,

U ⊗
⊕
i∈I

Vi ∼=
⊕
i∈I

(U ⊗ Vi)

Corollary A.4. Let U,V be vector spaces with bases {ui}i∈I and {vj}j∈J respectively. Then, {ui ⊗
vj}(i,j)∈I×J forms a basis of U ⊗ V and dim(U ⊗ V ) = dim(U)dim(V ).

This corollary follows due to the fact that we can write U =
⊕

i∈I kui and V =
⊕

j∈J kvj .

The previous corollary allows us to define the tensor product of linear functions on vector spaces
in an intuitive way. Let U,U ′ be vector spaces over a field k and V, V ′ be vector spaces over a field k′.
Since linear functions can be fully determined by how they act on the basis of their domains. If we have
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two linear functions f : U → U ′, g : V → V ′, we can define the tensor product f ⊗ g : U ⊗V → U ′⊗V ′

by
f ⊗ g(u⊗ v) = f(u)⊗ f(v); u ∈ U, v ∈ V,

This then gives rise to the following map:

λ : Hom(U,U ′)⊗ Hom(V, V ′) → Hom(V ⊗ U,U ′ ⊗ V ′); f ⊗ g 7→ (f ⊗ g) ◦ τV,U .

Theorem A.5. The map λ is an isomorphism if at least one of the following pairs consist of finite
dimensional vector spaces: (U,U ′), (V, V ′) or (U, V ).

Corollary A.6. The map λU,V : V ⊗ U∗ → Hom(U, V ); v ⊗ α 7→ α(·)v is an isomorphism if U or V
is finite-dimensional.
In particular, if dim(U) <∞, λU,U : U ⊗ U∗ → Hom(U,U) = End(U) is an isomorphism.

Here V ∗ = Hom(V,k). This new, less generic, λU,V can also be used to express the more generic λ
of Theorem A.5.

Lemma A.7. Let U, V be vector spaces over a field k and let U ′, V ′ be vector spaces over a field k′,
then the following diagram commutes:

U ′ ⊗ U∗ ⊗ V ′ ⊗ V ∗ Hom(U,U ′)⊗Hom(V, V ′)

U ′ ⊗ V ′ ⊗ U∗ ⊗ V ∗

U ′ ⊗ V ′ ⊗ (V ⊗ U)∗ Hom(V ⊗ U,U ′ ⊗ V ′)

λU,U ′ ⊗ λV,V ′

id⊗ τU∗,V ′ ⊗ id

λ

id⊗ id⊗ λ

λV⊗U,U ′⊗V ′

Also, note that λU,U ′ ⊗ λV,V ′ is invertible whenever U or U ′ is finite-dimensional, but both V and
V ′ are not finite-dimensional vector spaces.
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Appendix B: Complex Functions

This appendix summarises a few small facts about complex functions that are used in the definition of
the module Pα. Proofs and more details can be found in [17].

Definition B.8. Let f : D → C, D ⊆ C be a function. Then f is called complex differentiable at
a ∈ D if

limz→a
f(z)− f(a)

z − a
exists.

We have a few statements that are equivalent to the above definition of a function f being complex
differentiable at a point a.

Proposition B.9. Let f : D → C, D ⊆ C, then the following are equivalent:

i) f is complex differentiable at a ∈ D with l = f ′(a),

ii) ∃ϕ : D → C, continuous at a ∈ D, with f(z) = f(a) + ϕ(z)(z − a), ϕ(a) = l, z ∈ D,

iii) ∃ρ : D → C, continuous at a ∈ D, with f(z) = f(a) + l · (z − a) + ρ(z) · (z − a), ρ(a) = 0, z ∈ D,

iv) ∃r : D → C, continuous at a ∈ D, with f(z) = f(a)+ l · (z− a)+ r(z) =⇒ limz→a
r(z)
z−a = 0 ⇐⇒

limz→a
r(z)
|z−a| = 0.

Now that we know what it means for a function to be complex differentiable at some point a, we
can finally talk about what it means to be meromorphic or entire. These two terms are used in the
definition of Pα, thus we are mostly interested in what these terms mean.

Definition B.10. Let f : D → C, D ⊆ C open, then f is called analytic or holomorphic in D if f is
complex differentiable in all a ∈ D.
If f : C → C, then f is called entire if f is analytic on all of C.

Now, before being able to introduce the notion of being meromorphic, we first need to know what
singularities of an analytic function f : D → C, D ⊆ C open, are.

Definition B.11. Let D ⊆ C and let a ∈ C. Then a is called an accumulation point of D if
∀ε > 0∃d ∈ D such that 0 < |d− a| < ε.

A subset D ⊆ C is called discrete if a ∈ C is an accumulation point of D, then a /∈ D.
Now, let U ·

r(a) = {z ∈ C | 0 < |z − a| < r}, so U ·
r(a) is the open ball around a with radius r, with a

removed.

Definition B.12. Let f : D → C, D ⊆ C open and f analytic in D. Let a /∈ D such that ∃r > 0 with
U ·
r(a) ⊆ D. Then a is called a singularity of f .

Note that D ∪ {a} = D ∪ Ur(a) is open.

Definition B.13. Let a /∈ D be a singularity of an analytic function f : D → C. Then a is called
removable if ∃f̂ : D ∪ {a} → C, analytic, with f̂ |D = f . In other words, a is called a removable
singularity if f can be analytically extended to D ∪ {a}.
a is called a non-essential singularity if ∃m ∈ Z such that g(z) = (z − a)mf(z) has a removable
singularity at a.
a is called a pole if a is a non-removable non-essential singularity.
Lastly, a is called essential if a is not an non-essential singularity.

We get the following facts on singularities of an analytic function f : D → C :
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Proposition B.14. Let f : D → C, D ⊆ C open, be an analytic function. Then a singularity a /∈ D
is called:

i) removable ⇐⇒ f is bounded in a neighbourhood around a,

ii) a pole ⇐⇒ limz→a|f(z)| = ∞,

iii) essential ⇐⇒ f comes arbitrary close to any value in any neighbourhood around a.

Now, meromorphic functions are precisely analytic functions on an open subset D ⊆ C, which are
extended to take on the value ∞ in every a ∈ C that is a pole.

Definition B.15. Let f : D → C̄ = C ∪ {∞}, D ⊆ C open, is called meromorphic if

i) S(f) = f−1({∞}) = {ω ∈ C | f(ω) = ∞} is discrete in D,

ii) f0 = f |D\S(f) is analytic,

iii) if ω ∈ S(f), then ω is a pole of f0.

Lastly, lemma 7.10 uses the residue of f̃ to determine its asymptotic behaviour when ω → ±∞.
The residue of an analytic function f can be determined by using the Laurent decomposition. This
leads to the following lemma:

Lemma B.16. Let f : Ur(a) 7→ C be analytic with a singularity in a ∈ C. Set f(z) =
∑∞

n=−∞ an(z −
a)n, then Res(f(a)) = a−1 is the residue of f at a.
Furthermore,

i) a is removable ⇐⇒ an = 0 ∀n < 0,

ii) a is a pole ⇐⇒ a−k ̸= 0 and an = 0 ∀n < −k for some k ≥ 0,

iii) a is essential ⇐⇒ an ̸= 0 for infinitely many n < 0.

For more details on the Laurent decomposition of a function, see [17], this also has more details on
how to calculate the residues of a function using integrals along a contour.
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Appendix C: The Direct Integral

This appendix will be dedicated to some details regarding direct integrals, as defined in [18]. This
appendix is mostly here for completeness sake and to give concrete definitions. Around the end of
this appendix we will once again see that the direct integral can be regarded as a generalisation of the
direct sum.
For this appendix, it is assumed that the reader knows what Hilbert spaces are and what it means to
integrate a function or operator with respect to a measure.

Definition C.17. A Borel space (E,B) is a set E together with a set B of subsets of E such that

i) ∅ ∈ B,

ii) if Bi ∈ B for i ∈ N =⇒
⋃

i∈NBi ∈ B,

iii) if Bi ∈ B for i ∈ N =⇒
⋂

i∈NBi ∈ B.

The subset B ∈ B of E are called the Borel sets of E.

The third property for Borel sets is equivalent to B being closed under taking complements. Also,
one can think of the Borel sets of a Borel space E as all of its open, or closed, sets.

Definition C.18. Let (E,BE), (F,BF ) be Borel spaces and let f : E → F be a surjective map. Then
f is called a Borel map if the inverse map f−1(X) ∈ BE ∀X ∈ BF .

Two examples of Borel structures are the induced Borel structure and the discrete one. If (E,B) is
a Borel space, E′ ⊂ E is a subset of E and X ⊂ B is a Borel space of E. Then, the set X ∩ E′ define
a Borel space structure on E′, called the induced Borel structure. So BE′ = {X ∩ E′|X ∈ B}.
A Borel space (E,B) is called discrete if B = {X|X ⊂ E}, so if every subset of E is a Borel set of E.
This example will later on be used to show why one can think of a direct integral as a generalisation
of direct sums. For now, we will move on to measures.

Definition C.19. Let (Z,B) be a Borel space, a positive measure ν : B → [0,∞] is a map such that

i) if X1, X2, . . . ∈ B such that Xi ∩Xj ̸= ∅ for all i ̸= j, then ν(
⋃∞

i=0Xi) =
∑∞

i=1 ν(Xi),

ii) Z =
⋃∞

i=0 Yi with ν(Yi) <∞ ∀i ∈ N.

Now, a subset Z ′ ⊂ Z is called ν-negligible if Z ′ ⊂ X ∈ B, with ν(X) = 0. And Z ′ ⊂ Z is called
ν-measurable if Z ′ = X ∪N , with X ∈ B and N ν-negligible.

Now, the set M = {Y ⊂ Z|Y is ν-measurable} is closed under taking countable unions and count-
able intersections. So we can extend the measure ν to also be defined on M . Set ν(X ∪ N) = ν(X)
for X ∈ B and N ν-negligible. Then ν is defined on M and is still a positive measure.

To define a direct integral, we will also need the concept of fields of Hilbert spaces. As the direct
integral will be a field of Hilbert spaces together with a positive measure ν.

Definition C.20. Let (Z,B) be a Borel space. A field of complex Hilbert spaces over Z is a map
ζ 7→ H(ζ), ζ ∈ Z, such that H(ζ) is a complex Hilbert space for all ζ ∈ Z.

In other words, one could think of a field of Hilbert spaces as a collection of several Hilbert spaces
that are indexed by the elements of a Borel space (Z,B). From this definition, we see that the direct
product F = Πζ∈ZH(ζ) is a complex vector space. F contains vector fields x that are in a sense maps
on Z, with x(ζ) ∈ H(ζ). The vector fields x are called vector fields over Z.
Now, if Y ⊂ Z, then y ∈ Πζ∈YH(ζ) is called a vector field over Y . Notice that Πζ∈YH(ζ) is another
vector space.
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Lemma C.21. Let (Z,B) be a Borel space and let (xn)n∈N be a sequence of vector fields such that
the functions ζ 7→ (xm(ζ), xn(ζ)) are measurable.
For ζ ∈ Z, let X (ζ) be the complex vector space algebraically generated by the vector fields xn(ζ) and
set d(ζ) = dim(X (ζ)). Then

zp := {ζ ∈ Z|d(ζ) = p}, p ∈ N,

is measurable and ∃(yn)n∈N, a sequence of vector fields, such that

i) ∀ζ ∈ Z (the yn(ζ) algebraically generate X(ζ)),

ii) if d(ζ) = ℵ0, then the yn(ζ), n ∈ N, for an orthonormal system, if d(ζ) < ℵ0, the y0(ζ), y1(ζ), . . . , yd(ζ)(ζ)
form an orthonormal system and yn(ζ) = 0 for n > d(ζ),

iii) ∀yn∃ a cover of Z of disjoint measurable sets Z1, Z2, . . . such that

∀Zk yn(ζ) =
∑
i

fi(ζ)xi(ζ),

with fi measurable complex-valued functions which are identically 0 for sufficiently large i.

Now, if one looks at the direct integral, it is given as
∫ ⊕
Z H(ζ)d(ζ). So, we are kind of trying

to integrate Hilbert spaces. So, to be able to define this, we need more than just functions to be
measurable.

Definition C.22. Let (Z,B) be a Borel space, ζ → H(ζ) a field of complex Hilbert spaces and
F = Πζ∈ZH(ζ). Then, the H(ζ) for a ν-measurable field of complex Hilbert spaces if ∃S ⊂ F , linear
subspace, such that

i) ∀y ∈ S ( ζ 7→ ||y(ζ)||H(ζ) is ν-measurable),

ii) if y ∈ F (∀s ∈ S(ζ 7→ (s(ζ), y(ζ)) is ν-measurable )) =⇒ y ∈ S,

iii) ∃(xn)n∈N, xn ∈ S (∀ζ ∈ Z (xn(ζ))n∈N is a total sequence in H(ζ) ).

The last point is similar to (xn(ζ))n ∈ N being a basis for H(ζ), but not the same. However, for
our purposes, it is good enough to think of the (xn(ζ))n∈N as a basis for the Hilbert spaces H(ζ). As
we will soon see that this is the case for when we are working with direct integrals.
Now, the vector fields s ∈ S are called ν-measurable vector fields. And, the sequence (xn)n∈N of iii)
is called a fundamental sequence of ν-measurable vector fields. Also, property iii) implies that the
Hilbert spaces H(ζ) are separable.
Also, if x, y are measurable vector fields, then (x(ζ), y(ζ)) is a linear combination of ||(x+ y)(ζ)||2H(ζ),
||(x− y)(ζ)||2H(ζ), ||(x+ iy)(ζ)||

2
H(ζ) and ||(x− iy)(ζ)||2H(ζ) and it is a measurable function in ζ. We also

see that if we multiply x with a complex-valued measurable function f , then f ·x is again a measurable
vector field.

To get a bit more used to measurable fields of Hilbert spaces, we will give two examples.
First, let (Z,B) be a discrete Borel space. Then, every map f : Z → C is measurable. It follows that
the only option for S ⊂ F such that ζ → H(ζ) is a measurable field of Hilbert spaces, is S = F .
Next, let H0 be a separable complex Hilbert space and let (Z,B) be a Borel space. Then we can define
a ν-measurable field called the constant field corresponding to H0 over Z in the following way:

i) set H(ζ) = H0 ∀ζ ∈ Z,

ii) the ν-measurable vector fields s ∈ S are precisely the ν-measurable maps from Z into H0
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This is indeed a ν-measurable field of Hilbert spaces. Property i) of the definition is satisfied by
construction.
Note, the constant map s : ζ 7→ h, ζ ∈ Z, h ∈ H0, is measurable, thus s ∈ S. Let x ∈ F such that
ζ 7→ (x(ζ), y(ζ)) is measurable ∀y ∈ S. Then ζ 7→ (x(ζ), s(ζ)) = (x(ζ), h), is measurable. Since this
is true for all h ∈ H0 and all ζ ∈ Z, it follows that this map is only measurable when x is measurable
itself. Hence x ∈ S. So property ii) is also satisfied.
Lastly, if (xn)n∈N would be a total sequence in H0, then ζ 7→ an forms a fundamental sequence of
measurable vector fields. Showing that this construction satisfies property iii). Hence, this constant
field corresponding to H0 is indeed a measurable field of Hilbert spaces.

We now know when we have a measurable field for a given Borel space (Z,B). However, we would
also love to define a subspace for a measurable field in a certain sense.
So, let Y ⊂ Z be a measurable subset. Then if y is a vector field over Y , it is called measurable if it can
be extended to a measurable vector field over Z. Now, y can be extended to all of Z if ζ 7→ (y(ζ), x(ζ)),
ζ ∈ Y is measurable for any x ∈ F .
Since, if the above holds for y, we can extend y to all of Z by setting y(ζ) = 0 for ζ ∈ Z\Y. Then y is
indeed a measurable vector field over Z.
Now, the measurable vector fields over Y also induce a measurable field of Hilbert space structure on
ζ 7→ H(ζ) for ζ ∈ Y . This measurable field is called the induced field by Y . And one can sort of think
of this field as a subspace of ζ 7→ H(ζ) for ζ ∈ Z.

As a final remark on measurable fields of Hilbert spaces, let ν1 be a positive measure on Z that is
equivalent to another positive measure ν2. Then, if the H(ζ) form a ν1 measurable field of complex
Hilbert spaces with the subspace S ⊂ F , then it is also a measurable field of complex Hilbert spaces
with respect to ν2. In other words, the notation of ν-measurable Hilbert spaces involves the class of
positive measures ν.

For the next part, let (Z,B) be a Borel space, ν a positive measure on Z and ζ → H(ζ) a ν-
measurable field of complex Hilbert spaces.

Proposition C.23. The set zp := {ζ ∈ Z| d(ζ) = p} is measurable.
Moreover, ∃(yn)n∈N>0 , yi ν-measurable vector fields, such that

i) if d(ζ) = ℵ0, then (y1(ζ), y2(ζ), . . .) is an orthonormal basis of H(ζ),

ii) if d(ζ) = p, then (y1(ζ), . . . , yp(ζ)) is an orthonormal basis of H(ζ) and yi(ζ) = 0 for i > p.

So we see that we can find a sequence of vector fields such that the first n vector fields in ζ form
a basis for H(ζ). A sequence (yn)n∈N>0 satisfying the property of the above proposition is called a
measurable field of orthonormal bases.

Proposition C.24. Let (xn)n∈N>0 be a fundamental sequence of measurable fields. x ∈ F is measur-
able, if the functions λ 7→ (x(ζ), xi(ζ)) are measurable.

Proposition C.25. Let p ∈ {1, 2, . . . ,ℵ0} and set zp = {ζ ∈ Z| d(ζ) = p} and let Hp be a complex
Hilbert space with dim(Hp) = p. Then, the field induced by (H(ζ))ζ∈zp is isomorphic to the constant
field corresponding to Hp.

Proposition C.26. Let (xn)n∈N>0 be a sequence of vector fields such that

i) the functions ζ 7→ (xi(ζ), xj(ζ)) are measurable for i, j ∈ N>0,

ii) ∀ζ ∈ Z, the (xn(ζ))n∈N>0 form a total sequence in H(ζ).
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Then, ∃! measurable field structure on the H(ζ)’s such that all of the xi ∈ F are measurable.

We somehow want to turn a ν-measurable field of Hilbert spaces into a new Hilbert space. This
new Hilbert space will then be defined as the direct integral. But, we cannot do that with just
ν-measurability, we need something stronger.

Definition C.27. Let ζ 7→ H(ζ) be a ν-measurable field of complex Hilbert spaces. A vector field
x : ζ 7→ H(ζ) is called square-integrable if x is measurable, so x ∈ S, and if

∫
Z ||x(ζ)||2H(ζ)dν(ζ) <∞.

So, again, let (Z,B) be a Borel space, ν : Z → [0,∞] a positive measure and S ⊂ F = Πζ∈ZH(ζ)
the subspace of measurable vector fields. Let K := {s ∈ S |

∫
||s(ζ)||2dν(ζ) < ∞}, so K is the set of

square-integrable vector fields. Then K is a complex vector space.
Now, for x, y ∈ K, ζ 7→ (x(ζ), y(ζ)) is a square integrable map. Define a scalar product (·, ·) : K×K →
C by

(x, y) =

∫
Z
(x(ζ), y(ζ))dν(ζ).

Then we can turnK into a pre-Hilbert space with respect to the norm ||x||2 = (x, x) =
∫
Z ||x(ζ)||2H(ζ)dν(ζ).

We see that if x ∈ K and ||x|| = 0, then x is almost zero everywhere. So, we can construct a Hausdorff
pre-Hilbert space H associated with K by setting x ∈ H to be the class of y ∈ K that are almost equal
everywhere to x ∈ K.
We can consider the elements x ∈ H as vector spaces, but note that the values x(ζ) can only be deter-
mined up to within negligible sets. Since we are now dealing with classes of vector spaces that are equal
almost everywhere, instead of regular vector spaces. Nonetheless, we get the following proposition:

Proposition C.28. The above defined Hausdorff pre-Hilbert space H is in fact a Hilbert space.
Furthermore, if a sequence (xn)n∈N, xn ∈ H, converges to some x ∈ H with respect to the norm of H.
Then, ∃(xnk

)k∈N, a subsequence of (xn)n∈N, that converges to x almost everywhere.

Now, the above defined Hilbert space H is called the direct integral of the Hilbert spaces H(ζ),
ζ ∈ Z and is denoted by H =

∫ ⊕
Z H(ζ)dν(ζ). And if x ∈ H, one can write x =

∫ ⊕
Z x(ζ)dν(ζ).

Do note that H depends on the choice of S, as K, the set of square-integrable vector fields, is a subspace
of S. So, sometimes the direct integral is denoted as S∫ ⊕

Z H(ζ)dν(ζ), to indicate the specific choice of
measurable vector fields.

Just like Hilbert spaces have subspaces, we can also identify subspaces of a direct integral. Let
Y ⊂ Z be a measurable subset, then the square-integrable vector fields x that vanish on Y form a
closed linear subspace of H. In other words, we have a subspace

∫ ⊕
Y H(ζ)dν(ζ), which we can identify

as the direct integral of the induced measurable fields ζ 7→ H(ζ), ζ ∈ Y .

We will end this appendix with two examples of direct integrals.
First, let (Z,B) be a discrete Borel space and take ν(ζ) = 1 for ζ ∈ Z, so ν is the counting measure.
Recall that every map Z → C is measurable, and thus, every vector field x is measurable.
It follows that

∫
Z ||x(ζ)||2dν(ζ) < ∞ ⇐⇒

∑
ζ∈Z ||x(ζ)||2 < ∞. In other words, H =

⊕
ζ∈Z H(ζ).

So, in this special case, the direct sum is the same as the direct sum. Which is why one can think of
the direct integral as a generalisation of the direct sum. Furthermore, notice that we can identify the
subspaces of H with the use of the Hilbert spaces H(ζ). This is also not always the case.

For a second example, let H0 again be a separable Hilbert space and let ζ 7→ H(ζ) be the constant
field over Z. The square-integrable vector fields are in this case the square-integrable functions from
Z into H0. So, H =

∫ ⊕
Z H(ζ)dν(ζ) = L2(H0, ν).
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Appendix D: Special Functions

In this appendix we will describe a few facts and properties on special functions that are used to
describe the Clebsch-Gordan coefficients. We will first introduce the so called double sine function,
then build the other used special functions with the use of this one. To construct the double sine
function, we will use two approaches. One is via the quantum dilogarithm, which is used to define the
double sine function in [3], and the other approach is via the double Gamma function [1]. We will only
be giving definitions and properties here, for proofs of some of the identities see [1].
Note, the quantum dilogarithm is also related to the double Gamma function. So both approaches do
give the same function. We only describe both approaches to give more intuition on the double Sine
function. Regardless, it is best to keep in mind that the properties of these functions is what we are
most concerned about.

Since the quantum dilogarithm is also related to the double Gamma function. We will first start
with describing the latter one. The double Gamma function is a special function introduced by Barnes
and is defined by

log Γ2(s|ω1, ω2) =

 ∂

∂t

∞∑
n1,n2=0

(s+ n1ω1 + n2ω2)
−t


t=0

.

Now, the double Sine function is defined via the Γb(x) function, which is given by

Γb(x) = Γ2(x|b, b−1).

So we see that this function is invariant under the change b → b−1. Furthermore, we can also define
Γb(x) with the following integral representation:

log Γb(x) =

∫ ∞

0

1

t

 e−xt − e−
Qt
2

(1− e−bt)(1− e−b−1t)
− (Q− 2x)2

8et
− (Q− 2x)

t

 dt.

Properties of Γb(x) are:

functional equation: Γb(x+ b) =
√
2π bbx−

1
2Γ−1

b (bx)Γb(x)

analyticity: Γb(x) is a meromorphic function with poles at x = −nb−mb−1, n,m ∈ N.

Now, the quantum dilogarithm is related to the double Gamma function, but was also eventually
introduced independently. Let x ∈ C, im(x) < Q

2 , then we get the following integral representation of
for the quantum dilogarithm:

eb(x) = exp

(
−
∫
R−i0

1

4t

e−2itx

sinh(bt) sinh(b−1t)
dt

)
,

with the contour going around the pole at t = 0 in the upper-half plane. We can then define sb(x) =

e
iπ
2 x2+

iπ
24 (b

2+b−2)eb(x). The analytic continuation of sb(x) to all of C is a meromorphic function with
the following properties:

functional equation:
sb(x+

i
2 b

±1)

sb(x−
1
2 b

±1)
= 2 cosh(πb±1x),

reflection property: sb(x)sb(−x) = 1,

complex conjugation: sb(x) = sb(−x),
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poles and zeros: sb(x)±1 = 0 ⇐⇒ ±x ∈ {iQ2 + nb+mb−1 |n,m ∈ N},

residue: Res
x=−i

Q
2

(sb(x)) =
i
2π ,

asymptotic behvaiour: sb(x) ∼

e−
iπ
2 (x2+

1
12 (b

2+b−2)) as |x| → ∞, |arg(x)| < π
2

e
iπ
2 (x2+

1
12 (b

2+b−2)) as |x| → ∞, |arg(x)| > π
2 .

Now, the double Sine function can now be defined in two ways,

Sb(x) =
Γb(x)

Γb(Q− x)
= sb(ix− iQ

2
).

Another useful function, related to the double Sine function, is

Gb(x) = e
πi
2
x(x−Q)Sb(x).

These two functions have the following properties:

self-duality: Sb(x) = Sb−1(x), Gb(x) = Gb−1(x),

functional equation: Sb(x+ b) = 2 sin(πbx)Sb(x), Gb(x+ b) = (1− e2πibx)Gb(x),

reflection property: Sb(x)Sb(Q− x) = 1, Gb(x)Gb(Q− x) = eπi(x
2−xQ),

analyticity: Sb(x) and Gb(x) are meromorphic functions with poles at ix = −nb −mb−1 and zeros
at ix = iQ+ nb+mb−1, n,m ∈ N,

asymptotic behaviour: Sb(x) ∼

{
e−

πi
2
(x2−xQ) as Im(x) → ∞

e+
πi
2
(x2−xQ) as Im(x) → −∞

Gb(x) ∼

{
1 as Im(x) → ∞
eπi(x

2−xQ) as Im(x) → −∞.

We also have the following integral identity for Gb(x), called the b-beta integral :

Bb(α, β) =
1

i

∫ i∞

−i∞
e2πiτβ

Gb(τ + α)

Gb(τ +Q)
dτ =

Gb(α)Gb(β)

Gb(α+ β)
.

We then get the following function, which is also used to define the Clebsch-Gordan coefficients,

Θb(y;α) =
Gb(y)

Gb(y + α)
.

Note that the b-beta integral can be seen as a Fourier-transform for Θb(y;α) as,

Θb(y;α) =
1

iGb(y)

∫ i∞

−i∞
e2πiατΘb(τ + y;Q+ y)dτ.

The last special function that we use in the definition of the Clebsch-Gordan coefficients is Ψb(α, β; γ; y),
which is also given by an integral:

Ψb(α, β; γ; y) =
1

i

∫ i∞

−i∞
e2πisβ

Gb(s+ y)Gb(s+ γ − β)

Gb(s+ y + α)Gb(s+Q)
ds.

For the Racah-Wigner coefficients, we will see that we can represent the coefficients with a certain
integral relation. This integral can be calculated with the use of the b-hypergeometric function. This is a
function that is defined via the following contour integral, which seems similar to that of Ψb(α, β; γ; y):

Fb(α, β; γ; y) =
1

i

Sb(γ)

Sb(α)Sb(β)

∫
−i∞

i∞e2πisy
Sb(α+ s)Sb(β + s)

Sb(γ + s)Sb(Q+ s)
ds.
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The contour is taken on the right of the poles at is = −α− nb−mb−1 and is = −β − nb−mb−1 and
on the left of the poles at is = nb+mb−1 and is = Q− γ + nb+mb−1 with n,m ∈ N. Moreover, this
function is a solution to the equation

([δx + α][δx + β]− e−2πbx[δx][δx + γ −Q])Fb(α, β; γ;−ix) = 0, δx =
1

2π

d

dx
.

We end this appendix by given analytic properties of the Clebsch-Gordan coefficients and of the

kernels Φδ
αδ

[
α3 α2

α4 α1

]
. For the Clebsch-Gordan coefficients we have the following analytical and asymp-

totic properties, as given in [1]:

i)
[
Q− α3 α2 α1

x3 x2 x1

]
decays exponentially as e−2παi|xi| if any |xi| → ∞ for i ∈ {1, 2, 3},

ii) The Clebsch-Gordan coefficients are meromorphic in x1, x2 and x3 and have poles with respect
to x1 at:

Upper half plane: x1 = x2 − i
2(α1 + α2 − 2α3) + i(ε+ nb+mb−1),

x1 = x3 − i
2(α3 + α1 −Q) + i(ε+ nb+mb−1)

Lower half plane: x1 = x2 − 1
2(Q− α1 − α2)− i(Q+ nb+mb−1),

x1 = x3 − i
2(2α2 − α3 − α1)− i(Q+ nb+mb−1),

with n,m ∈ N and poles with respect to x2 at:

Upper half plane: x2 = x1 +
i
2(Q− α1 − α2) + i(Q+ nb+mb−1),

x2 = x3 − i
2(2α1 − α3 − α2) + i(Q+ nb+mb−1)

Lower half plane: x2 = x1 − 1
2(2α3 − α1 − α2)− i(ε+ nb+mb−1),

x2 = x3 − i
2(Q− α3 − α2)− i(ε+ nb+mb−1).

For the kernels Φδ
αδ

[
α3 α2

α4 α1

]
(x4,x), δ ∈ {s, t}, we have the following analytical and asymptotic

properties:

i) Φs
αs

[
α3 α2

α4 α1

]
ε

(x4,x) is meromorphic with respect to

x1 in {x1 ∈ C | im(x1) ∈ (−Q, b)}, x3 in {x3 ∈ C | im(x1) ∈ (−b,Q)},
x2 in {x2 ∈ C | im(x1) ∈ (−b,Q)}, x4 in {x4 ∈ C | im(x1) ∈ (−b, b)},

with poles at

x1 − x2 +
i
2(α2 + α1 − 2αs)− 2iε = 0,

x1 − x2 +
i
2(α2 + α1 − 2(Q− αs))− iε = 0, x1 − x4 +

i
2(α1 − α4)− 2iε = 0,

x1 − x3 +
i
2(α3 + α1 − 2(Q− α4))− 2iε = 0, x3 − x4 +

i
2(α4 − α3) + iε = 0,

and it decays exponentially as e−πQ|xi| if any |xi| → ∞ for i ∈ {1, 2, 3, 4},

ii) Φt
αt

[
α3 α2

α4 α1

]
ε

(x4,x) is meromorphic with respect to

x1 in {x1 ∈ C | im(x1) ∈ (−Q, b)}, x3 in {x3 ∈ C | im(x1) ∈ (−b,Q)},
x2 in {x2 ∈ C | im(x1) ∈ (−Q, b)}, x4 in {x4 ∈ C | im(x1) ∈ (−b, b)},
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with poles at

x3 − x2i
i
2(α3 + α2 − 2αt) + 2iε = 0,

x3 − x2 − i
2(α3 + α2 − 2(Q− αt)) + iε = 0, x1 − x4 +

i
2(α1 − α4)− iε = 0,

x1 − x3 +
i
2(α3 + α1 − 2(Q− α4))− 2iε = 0, x3 − x4 +

i
2(α4 − α3) + 2iε = 0,

and it decays exponentially as e−πQ|xi| if any |xi| → ∞ for i ∈ {1, 2, 3, 4}.
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Appendix E

This appendix contains the calculations that are needed to simplify the action of the representation
πα2,α1(Cq − 2

(q−q−1)2
) = π21(C

′
q) on the Fourier-transformed functions F(f(x2, x1). It starts with the

exact defined action and all following segments contain the calculations for each single term. No
conclusion is given, as the simplification is exactly as is stated in 8.3.1.

π21(C)f(x2, x1)

π21(C)f(x2, x1) =

(π2(FE)⊗ π1(K)2 +π2(FK
−1)⊗ π1(KE) + π(K

−1E)⊗ π1(FK) + π2(K
−1)2 ⊗ π1(FE)

)
f(x2, x1)

− 1

(q − q−1)2
(qπ2(K)2 ⊗ π1(K)2 + q−1π2(K)−2 ⊗ π1(K)−2 + 2)f(x2, x1) =

f(x2 + ib, x1 + ib)

(
eπib

2

(q − q−1)2
− q

(q − q−1)2

)
+ f(x2 − ib, x1 − ib)

(
e−πib2

(q − q−1)2
− q−1

(q − q−1)2

)

+f(x2, x1)

(
1

(q − q−1)2

[
−e−πib(2Q−α2−α1)e−2πbx2 ⊗ e2πb(x1+

ib
2
) − eπib(2Q−α2−α1)e2πb(x2− ib

2
) ⊗ e−2πbx1

]
− 2

(q − q−1)2

)
+f(x2, x1 + ib)

(
1

(q − q−1)2

[
−e−πib2e−2πib(α2−Q) − eπib

2
e2πib(α2−Q) + eπib(α2−α1)e−2πbx2 ⊗ e2πb(x1+

ib
2
)

+e−πib(α2−α1)e2πb(x2− ib
2
) ⊗ e2πbx1

])
+f(x2 − ib, x1 + ib)

(
1

(q − q−1)2

[
e−πib2 − eπib(2Q−α2−α1)e−2πbx2 ⊗ e2πb(x1+

ib
2
)

−e−πib(2Q−α2−α1)e2πb(x2− ib
2
) ⊗ e−2πbx1 + eπib

2
])

+f(x2 − ib, x1)

(
1

(q − q−1)2

[
−e−πib2e−2πib(α1−Q) − eπib

2
e2πib(α1−Q) + e−πib(α2−α1)e−2πbx2 ⊗ e2πb(x1+

ib
2
)

+eπib(α2−α1)e2πb(x2− ib
2
) ⊗ e−2πbx1

])
Immediately note that since q = eπib

2 , the terms regarding f(x2± ib, x1± ib) have no contributions.
So we will ignore those two terms from this point on.
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F(f(x2 − ib, x1 + ib)) term of q-Casimir

F
((
e−πib2 + eπib

2 − eπib(2Q−α2−α1)e−2πbx2 ⊗ e2πb(x1+
ib
2
)

−e−πib(2Q−α2−α1)e2πb(x2− ib
2
) ⊗ e−2πbx1

)
f(x2 − ib, x1 + ib)

)
= F

((
e−πib2 + eπib

2 − eπib(2Q−α2−α1)e−2πb(x2−x1− ib
2
) −e−πib(2Q−α2−α1)e2πb(x2− ib

2
−x1)

)
f(x2 − ib, x1 + ib)

)
=
(
e−πib2 + eπib

2
)∫

R
e−πiωx+f

(
x+ + x− − 2ib

2
,
x+ − x− + 2ib

2

)
dx+

− eπib(2Q−α2−α1)

∫
R
e−πiωx+e−2πb(x−− ib

2
)f

(
x+ + x− − 2ib

2
,
x+ − x− + 2ib

2

)
dx+

− e−πib(2Q−α2−α1)

∫
R
e−πiωx+e2πb(x−− ib

2
)f

(
x+ + x− − 2ib

2
,
x+ − x− + 2ib

2

)
dx+

=
(
e−πib2 + eπib

2
)
T−2ib
x− F(f(x2, x1))− eπib(2Q−α2−α1)e−2πb(x−− ib

2
)T−2ib

x− F(f(x2, x1))

− e−πib(2Q−α2−α1)e2πb(x−− ib
2
)T−2ib

x− F(f(x2, x1))

=
(
e−πib2 + eπib

2 − eπib(2Q−α2−α1)e−2πbx−eπib
2 − e−πib(2Q−α2−α1)e2πbx−e−πib2

)
T−2ib
x− F(f(x2, x1))

=
(
−e−πibQ − eπibQ + eπib(3Q−α2−α1)e−2πbx− + e−πib(3Q−α2−α1)e2πbx−

)
T−2ib
x− F(f(x2, x1))

In the last line, we used that Q = b+ b−1, so b ·Q = b2+1 and thus, eπib2 = eπi(bQ−1) = −eπibQ. Now,

eπib(3Q−α2−α1)e−2πbx− − eπibQ − e−πibQ + e−πib(3Q−α2−α1)e2πbx− =

eπib(3Q−α2−α1+2ix) − eπibQ − e−πibQ + e−πib(3Q−α2−α1+2ix) =

(eπib(2Q− 1
2
(α2+α1)+ix) − e−πib(2Q− 1

2
(α2+α1)+ix))(eπib(Q− 1

2
(α2+α1)+ix) − e−πib(Q− 1

2
(α2+α1)+ix)) =

4[ix− 1

2
(α2 − α1) +Q]b[ix− 1

2
(α2 − α1) + 2Q]b = 4[−ix+

1

2
(α2 − α1)−Q]b[−ix+

1

2
(α2 + α1) + 2Q]b

Where we used that sin(−x) = −sin(x).
Thus we see that the terms of the q-Casimir operator resulting in f(x2 − ib, x1 + ib) are mapped to
the operator [−ix+ 1

2(α2 − α1)−Q]b[−ix+ 1
2(α2 + α1) + 2Q]bT

−2ib
x− under the Fourier-transform F .
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F(f(x2, x1)) term

F
(
f(x2, x1)

(
1

(q − q−1)2

[
−e−πib(2Q−α2−α1)e−2πbx2 ⊗ e2πb(x1+

ib
2
) − eπib(2Q−α2−α1)e2πb(x2− ib

2
) ⊗ e−2πbx1

]
+

2

(q − q−1)2

))
= F

(
f(x2, x1)

(q − q−1)2

(
−e−πib(2Q−α2−α1)e−2πbx2 ⊗ e2πb(x1+

ib
2
) − eπib(2Q−α2−α1)e2πb(x2− ib

2
) ⊗ e−2πbx1 + 2

))
Now,

F
(
f(x2, x1)

(
−e−πib(2Q−α2−α1)e−2πbx2 ⊗ e2πb(x1+

ib
2
) − eπib(2Q−α2−α1)e2πb(x2− ib

2
) ⊗ e−2πbx1 + 2

))
= F

(
f(x2, x1)

(
−e−πib(2Q−α2−α1)e−2πb(x2−x1− ib

2
) − eπib(2Q−α2−α1)e2πb(x1− ib

2
−x1) + 2

))
= F(f(x2, x1))

(
−e−πib(2Q−α2−α1)e−2πb(x−− ib

2
) − eπib(2Q−α2−α1)e2πb(x−− ib

2
) + 2

)
.

This can then be rewritten to:

−e−πib(2Q−α2−α1)e−2πb(x−− ib
2
) − eπib(2Q−α2−α1)e2πb(x−− ib

2
) + 2 =

−e−πib(2Q−α2−α1)e−2πbx−eπib
2 − eπib(2Q−α2−α1)e2πbx−e−πib2 + 2 =

e−πib(2Q−α2−α1−Q−2ix−) + eπib(2Q−α2−α1−Q−2ix−) = e−πib(Q−α2−α1−2ix−) + eπib(Q−α2−α1−2ix−) + 2

Which in turn can be rewritten into:

[c]2b + [−ix− 1

2
(α1 + α2 −Q) + c]b[−ix− 1

2
(α1 + α2 −Q)− c]b,

which follows from

(ec − e−c)2 + (ea+c − e−(a+c))(ea−c − e−(a−c)) = e2a − e−2c − e2c + e−2a + e2c − 1− 1 + e−2c

= e2a + e−2a − 2,

with 2a = πib(−2ix− (α1 − α2 +Q)).
Note, this does use the fact that [x]b =

sinπbx
sinπb2

= eπibx−e−πibx

q−q−1 . Now we can also take c = α3 − Q
2 to get

the desired action that only depends on the variable α3 of the decomposition.
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F(f(x2, x1 + ib) term

F
((

−e−πib2e−2πib(α2−Q) − eπib
2
e2πib(α2−Q) + eπib(α2−α1)e−2πbx2 ⊗ e2πb(x1+

ib
2
)

+e−πib(α2−α1)e2πb(x2− ib
2
) ⊗ e−2πbx1

)
f(x2, x1 + ib)

)
=
(
−e−πib2e−2πib(α2−Q) − eπib

2
e2πib(α2−Q)

)∫
R
e−πiωx+f

(
x+ + x−

2
,
x+ − x− + 2ib

2

)
dx+

+ eπib(α2−α1)

∫
R
e−πiωx+e−2πb(x−− ib

2
)f

(
x+ + x−

2
,
x+ − x− + 2ib

2

)
dx+

+ e−πib(α2−α1)

∫
R
e−πiωx+e2πb(x−− ib

2
)f

(
x+ + x−

2
,
x+ − x− + 2ib

2

)
dx+

=
(
−e−πib2e−2πib(α2−Q) − eπib

2
e2πib(α2−Q)

)∫
R
e−πiω(x+−ib)f

(
x+ − ib+ x−

2
,
x+ − x− + ib

2

)
dx+

+ eπib(α2−α1)

∫
R
e−πiω(x+−ib)e−2πb(x−− ib

2
)f

(
x+ − ib+ x−

2
,
x+ − x− + ib

2

)
dx+

+ e−πib(α2−α1)

∫
R
e−πiω(x+−ib)e2πb(x−− ib

2
)f

(
x+ − ib+ x−

2
,
x+ − x− + ib

2

)
dx+

=
(
−e−πib2e−2πib(α2−Q) − eπib

2
e2πib(α2−Q) + eπib(α2−α1)e−2πb(x−− ib

2
)

+e−πib(α2−α1)e2πb(x−− ib
2
)
)
eπib(iω)T−ib

x− F(f(x2, x1))

In step two we changed the variable x+ → x+ − ib.
The terms in front of T−ib

x− can then be rewritten to:(
e−πib2e−2πib(α2−Q) − eπib

2
e2πib(α2−Q) + eπib(α2−α1)e−2πb(x−− ib

2
) + e−πib(α2−α1)e2πb(x−− ib

2
)
)
eπib(iω) =(

e−πibQe−2πib(α2−Q) + eπibQe2πib(α2−Q) − eπib(α2−α1)e−2πbx−eπibQ − e−πib(α2−α1)e2πbx−e−πibQ
)
eπib(iω) =

e−πib(2α2−Q−iω) + eπib(2α2−Q+iω) − eπib(α2−α1+2ix−+Q+iω) − e−πib(α2−α1+2ix−+Q−iω)
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F(f(x2 − ib, x1)) term

F
((

−e−πib2e−2πib(α1−Q) − eπib
2
e2πib(α1−Q) + e−πib(α2−α1)e−2πb(x2−x1− ib

2
)

+eπib(α2−α1)e2πb(x2− ib
2
−x1)

)
f(x2 − ib, x1)

)
=
(
−e−πib2e−2πib(α1−Q) − eπib

2
e2πib(α1−Q)

)∫
R
e−πiωx+f

(
x+ + x− − 2ib

2
,
x+ − x−

2

)
dx+

+ e−πib(α2−α1)e−2πb(x−− ib
2
)

∫
R
e−πiωx+f

(
x+ + x− − 2ib

2
,
x+ − x−

2

)
dx+

+ eπib(α2−α1)e2πb(x−− ib
2
)

∫
R
e−πiωx+f

(
x+ + x− − 2ib

2
,
x+ − x−

2

)
dx+

=
(
−e−πib2e−2πib(α1−Q) − eπib

2
e2πib(α1−Q)

)∫
R
e−πiω(x++ib)f

(
x+ + x− − ib

2
,
x+ − x− + ib

2

)
dx+

+ e−πib(α2−α1)e−2πb(x−− ib
2
)

∫
R
e−πiω(x++ib)f

(
x+ + x− − ib

2
,
x+ − x− − ib

2

)
dx+

+ eπib(α2−α1)e2πb(x−− ib
2
)

∫
R
e−πiω(x++ib)f

(
x+ + x− − ib

2
,
x+ − x− − ib

2

)
dx+

=
(
−e−πib2e−2πib(α1−Q) − eπib

2
e2πib(α1−Q) + e−πib(α2−α1)e−2πb(x−− ib

2
)

+eπib(α2−α1)e2πb(x−− ib
2
)
)
e−πib(iω)T−ib

x− F(f(x2, x1))

We again used a translation of x+ in the second step, but this time x+ → x+ + ib.
Then, the terms before T−ib

x− can be rewritten to:

(
−e−πib2e−2πib(α1−Q) − eπib

2
e2πib(α1−Q) + e−πib(α2−α1)e−2πb(x−− ib

2
) + eπib(α2−α1)e2πb(x−− ib

2
)
)
e−πib(iω) =(

e−πibQe−2πib(α1−Q) + eπibQe2πib(α1−Q) − e−πib(α2−α1)e−2πbx−eπibQ − eπib(α2−α1)e2πbx−e−πibQ
)
e−πib(iω) =

e−πib(2α1−Q+iω) + eπib(2α1−Q−iω) − e−πib(−α1+α2−2ix−−Q+iω) − eπib(−α1+α2−2ix−−Q−iω)

We can combine these terms together with the terms obtained from the f(x2, x1 + ib) part of the
Fourier transform, as both get send to a multiple of the operator T−ib

x− . Recall, those terms were:

e−πib(2α2−Q−iω) + eπib(2α2−Q+iω) − eπib(α2−α1+2ix−+Q+iω) − e−πib(α2−α1+2ix−+Q−iω) =

e−πib(2α2−Q−iω) + eπib(2α2−Q+iω) − e−πib(−α2+α1−2ix−−Q−iω) − eπib(−α2+α1−2ix−−Q+iω)

And note that

− eπib(−α2+α1−2ix−−Q+iω) − eπib(−α1+α2−2ix−−Q−iω) + eπib(2α1−Q−iω) + eπib(2α2−Q+iω)

+ e−πib(2α2−Q−iω) + e−πib(2α1−Q+iω) − e−πib(−α1+α2−2ix−−Q+iω) − e−πib(−α2+α1−2ix−−Q−iω) =

− [−ix− 1

2
(α1 + α2 −Q) + (α3 −

Q

2
)]b

(
eπib(−ix− 1

2
(α1+α2)){α1 − α2 + iω}b − e−πib(−ix− 1

2
(α1+α2)){α1 − α2 − iω}b

)
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