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Abstract: In recent years, heuristics for adaptive solutions to load frequency control (LFC)
in power systems have been proposed that include adapting the LFC targets or adapting the
participation factor for the resources. However, stability guarantees for these adaptation ideas
are missing, especially in the presence of switching/evolving topologies of the power system. In
today’s smart grids, switching topologies often arise from reconfiguration and resilience against
faults or from switching among different control areas in order to dampen oscillations and face
cyber attacks. This work proposes a novel LFC framework in which adaptation and switching
topologies are combined in a provably stable way.
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switching/evolving topologies.

1. INTRODUCTION

In power systems, randomness from the power load de-
mand and from renewable energy sources may cause fre-
quency oscillations among interconnected power systems.
A load frequency control (LFC) achieves stability of fre-
quency by adjusting the reference power of the governor.
Nowadays, LFC is often implemented beyond single areas,
i.e. it connects multiple areas of the power system, act-
ing in conjunction with wide area damping control (Roy
et al. (2018)). Therefore, LFC heavily relies on communi-
cation between sensors and energy management systems
which faces a wide range of unpredictable and highly-
uncertain parameters, including risks of faults or cyber-
attacks (Mahmoud et al. (2019); Schiffer et al. (2017)).
Several methodologies have been proposed for LFC and
it is difficult to give a complete overview: most LFC tech-
niques are based on fixed-gain ’robust’ controllers designed
for some worse-case deviations from the nominal parame-
ters of the power system. Examples include: proportional-
integral (PI) control, internal model control (Saxena and
Hote (2013)), fuzzy logic control (Yousef (2015); Yousef
et al. (2014)), model-predictive control (Ersdal et al.
(2016)), optimal control (Zhao et al. (2014); Mallada et al.
(2017)) (see also references therein).

With the presence of renewable energy systems and mi-
crogrids, the stress and the level of uncertainty in power
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systems goes beyond the capabilities of a robust control
approach (Doolla and Bhatti (2006); Fan et al. (2009);
Korkas et al. (2015); Abazari et al. (2019)), and stimulates
new studies on LFC. For these reasons, several researchers
in power systems have been looking for adaptive solutions
to LFC, where the controller is not fixed-gain, but is capa-
ble of adapting to changing circumstances: the essential
concept of adaptation in LFC is to enhance and lower
the controller activity by assigning weights throughout
the operation (Hanwate et al. (2018)), e.g. based on the
covariances between area errors (Polajžer et al. (2018)), or
on the participation factors for the resources (Boonchuay
(2014); Prostejovsky et al. (2018)). Unfortunately, as the
proposed adaptive LFC methods are based on heuristics, a
formal adaptation framework with stability guarantees is
to a large extent missing. It is also important to note that
interconnections in modern power systems are not fixed
a priori, but can change with time (switching topologies).
Regulating the system frequency may require coordinately
switching among different control areas in order to dampen
oscillations (Polajžer et al. (2018); Zhang et al. (2019)),
thus involving the design of switching signals that contin-
uously change the topology of the power system (Liu et al.
(2016)): no adaptation LFC framework has been proposed
that can handle this crucial challenge.

In view of the above discussion and towards the design
of resilient power systems under uncertainty, this work
proposes a novel LFC framework in which adaptation
and switching topologies are provably stable. The rest of
the paper is organized as follows: Section 2 introduces
the system dynamics and the problem formulation; the
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on the participation factors for the resources (Boonchuay
(2014); Prostejovsky et al. (2018)). Unfortunately, as the
proposed adaptive LFC methods are based on heuristics, a
formal adaptation framework with stability guarantees is
to a large extent missing. It is also important to note that
interconnections in modern power systems are not fixed
a priori, but can change with time (switching topologies).
Regulating the system frequency may require coordinately
switching among different control areas in order to dampen
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adaptive framework is proposed in Section 3. Simulation
results are shown in Section 4.

2. DYNAMICS AND PROBLEM FORMULATION

Before introducing a multi-area power system and its
dynamics, let us recall the standard dynamics for a single-
area power system (Mu et al. (2017); Dey et al. (2012)).
The area is indexed with subscript i:

∆Ṗmi(t) =
∆Pνi(t)

Tchi
− ∆Pmi(t)

Tchi
(1a)

∆Ėi(t) = −ki∆Pf (t) + kiBi∆fi(t) (1b)

∆Ṗνi(t) = −∆fi(t)

RiTgi
− ∆Pνi(t)

Tgi
− ∆Ei(t)

Tgi
+

ui(t)

Tgi
(1c)

∆ḟi(t) = −kpi∆Pdi(t)

Tpi
− kpi∆Pij(t)

Tpi
+

kpi∆Pmi(t)

Tpi

− ∆fi(t)

Tpi
(1d)

where all constants and variables can be found in the afore-
mentioned references. In (1), ∆Pij(t) is the disturbance
from neighboring areas (indexed by subscript j), which
will be clarified in the next subsection. The ∆ in front of
any quantity represents the deviation from the equilibrium
state of the system.

Remark 1. In this work we consider an uncertain power
system in which the exact value of all constants in (1) is
unknown and not available for control design.

2.1 Multi-area power system

The power system is essentially a network of dynam-
ical systems, linked to each other via a communica-
tion/interaction graph that captures the allowed infor-
mation flow or the allowed physical interaction. In this
work we consider for simplicity a unique communica-
tion/interaction graph, although one can have two differ-
ent graphs, one capturing communication flow and one
physical interaction. As standard in graph theory, we con-
sider connected graphs, i.e., a path exists between every
pair of areas. For a set of areas, there might be different
interconnections, or topologies : Fig. 1 shows a three-area
power system (each node denotes one area) with 4 possible
connected topologies, indexed by σ ∈ Ω = {1, 2, 3, 4}. We
use the notation Ni to indicate all the neighboring areas
to area i.

The introduction has mentioned several reasons why
topologies in power networks might evolve with time.
In this work, the changing topology is represented by a
piecewise constant time-dependent signal σ(·), called the
switching signal, taking values in the topology set Ω :=
{1, 2, . . . , N} (cf. the switching example in Fig. 2). The
switching instants of σ(·) are denoted by tl, tl+1, · · · , and
the intervals in between switching instants are [tl, tl+1),

Fig. 1. Switching topologies in a three-area network
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Fig. 2. A switching signal representing changing topologies

l = 1, 2, · · · . Accordingly, the set of neighbors of area i will
be topology-dependent and denoted by Niσ(t). Whenever
convenient we may not explicitly write the dependence of σ
on time. To represent the changing topologies orchestrated
by the switching signal, the following class of switching
signals is considered:

Definition 1. Average Dwell Time (ADT) (Hespanha
and Morse (1999)): For a switching signal σ(·), let
Nσ(t1, t2) denote the number of discontinuities in the
interval [t1, t2). Then σ(·) has average dwell time ϑ if

Nσ(t1, t2) ≤ N0 + (t2 − t1)/ϑ, ∀t2 ≥ t1 ≥ 0

where N0 > 0 is termed as chatter bound.

Interaction among two power-system areas i and j occurs
via the differences between their phases ∆θi and ∆θj ,
which creates a power flow ∆Pij , according to

∆Pijσ(t) = 2πTi

∑
j∈Niσ(t)

(∆θi(t)−∆θj(t)) (2)

∆Pijσ(t) = −∆Pjiσ(t) (3)

If area j is disconnected from area i, then ∆Pijσ(t) = 0.

2.2 Switched LFC Dynamics

From (1), a second-order model can be derived using the
fact that generator and turbine time constants are much
smaller than power time constants (Tgi and Tchi are at
least 10 times smaller than Tpi (Dey et al. (2012))), giving:

∆θ̈i(t) = (− 1

Tpi
− kpi

TpiRi
)∆θ̇i −

kpi
Tpi

2πTi

n∑
j=1


ij,σ∆θj

− kpi
Tpi

(
∆Pdi +∆Eiσ(t)

)
+

kpi
Tpi

uiσ(t) (4)

where 
ij,σ captures the topology (DeLellis et al. (2010))


ij,σ =




‖Niσ‖ if i = j

− 1 if (i, j) are connected

0 otherwise

(5)

where ‖Niσ‖ is the cardinality of the set Niσ.

Remark 2. The interest of considering a second-order
model as in (4) is to allow the use of proportional-
derivative controls, commonly adopted in power systems.

Let us define the state x � [∆θT ∆θ̇T ]T ∈ R2n, with

∆θ = [∆θ1, . . . ,∆θn]
T , ∆θ̇ = [∆θ̇1, . . . ,∆θ̇n]

T , and let us
rewrite (4) and (5) in the compact form:

ẋ(t) = Aσ(t)x(t) +Buσ(t)(t) + d(t) (6)

where uσ = [u1σ · · ·unσ] ∈ Rn is the (topology-dependent)
control input; d ∈ R2n is an external disturbance with
unknown bound, and σ(·) is the switching signal. The
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adaptive framework is proposed in Section 3. Simulation
results are shown in Section 4.

2. DYNAMICS AND PROBLEM FORMULATION

Before introducing a multi-area power system and its
dynamics, let us recall the standard dynamics for a single-
area power system (Mu et al. (2017); Dey et al. (2012)).
The area is indexed with subscript i:

∆Ṗmi(t) =
∆Pνi(t)

Tchi
− ∆Pmi(t)

Tchi
(1a)

∆Ėi(t) = −ki∆Pf (t) + kiBi∆fi(t) (1b)

∆Ṗνi(t) = −∆fi(t)

RiTgi
− ∆Pνi(t)

Tgi
− ∆Ei(t)

Tgi
+

ui(t)

Tgi
(1c)

∆ḟi(t) = −kpi∆Pdi(t)

Tpi
− kpi∆Pij(t)

Tpi
+

kpi∆Pmi(t)

Tpi

− ∆fi(t)

Tpi
(1d)

where all constants and variables can be found in the afore-
mentioned references. In (1), ∆Pij(t) is the disturbance
from neighboring areas (indexed by subscript j), which
will be clarified in the next subsection. The ∆ in front of
any quantity represents the deviation from the equilibrium
state of the system.

Remark 1. In this work we consider an uncertain power
system in which the exact value of all constants in (1) is
unknown and not available for control design.

2.1 Multi-area power system

The power system is essentially a network of dynam-
ical systems, linked to each other via a communica-
tion/interaction graph that captures the allowed infor-
mation flow or the allowed physical interaction. In this
work we consider for simplicity a unique communica-
tion/interaction graph, although one can have two differ-
ent graphs, one capturing communication flow and one
physical interaction. As standard in graph theory, we con-
sider connected graphs, i.e., a path exists between every
pair of areas. For a set of areas, there might be different
interconnections, or topologies : Fig. 1 shows a three-area
power system (each node denotes one area) with 4 possible
connected topologies, indexed by σ ∈ Ω = {1, 2, 3, 4}. We
use the notation Ni to indicate all the neighboring areas
to area i.

The introduction has mentioned several reasons why
topologies in power networks might evolve with time.
In this work, the changing topology is represented by a
piecewise constant time-dependent signal σ(·), called the
switching signal, taking values in the topology set Ω :=
{1, 2, . . . , N} (cf. the switching example in Fig. 2). The
switching instants of σ(·) are denoted by tl, tl+1, · · · , and
the intervals in between switching instants are [tl, tl+1),
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l = 1, 2, · · · . Accordingly, the set of neighbors of area i will
be topology-dependent and denoted by Niσ(t). Whenever
convenient we may not explicitly write the dependence of σ
on time. To represent the changing topologies orchestrated
by the switching signal, the following class of switching
signals is considered:

Definition 1. Average Dwell Time (ADT) (Hespanha
and Morse (1999)): For a switching signal σ(·), let
Nσ(t1, t2) denote the number of discontinuities in the
interval [t1, t2). Then σ(·) has average dwell time ϑ if

Nσ(t1, t2) ≤ N0 + (t2 − t1)/ϑ, ∀t2 ≥ t1 ≥ 0

where N0 > 0 is termed as chatter bound.

Interaction among two power-system areas i and j occurs
via the differences between their phases ∆θi and ∆θj ,
which creates a power flow ∆Pij , according to

∆Pijσ(t) = 2πTi

∑
j∈Niσ(t)

(∆θi(t)−∆θj(t)) (2)

∆Pijσ(t) = −∆Pjiσ(t) (3)

If area j is disconnected from area i, then ∆Pijσ(t) = 0.

2.2 Switched LFC Dynamics

From (1), a second-order model can be derived using the
fact that generator and turbine time constants are much
smaller than power time constants (Tgi and Tchi are at
least 10 times smaller than Tpi (Dey et al. (2012))), giving:

∆θ̈i(t) = (− 1

Tpi
− kpi

TpiRi
)∆θ̇i −

kpi
Tpi

2πTi

n∑
j=1


ij,σ∆θj

− kpi
Tpi

(
∆Pdi +∆Eiσ(t)

)
+

kpi
Tpi

uiσ(t) (4)

where 
ij,σ captures the topology (DeLellis et al. (2010))


ij,σ =




‖Niσ‖ if i = j

− 1 if (i, j) are connected

0 otherwise

(5)

where ‖Niσ‖ is the cardinality of the set Niσ.

Remark 2. The interest of considering a second-order
model as in (4) is to allow the use of proportional-
derivative controls, commonly adopted in power systems.

Let us define the state x � [∆θT ∆θ̇T ]T ∈ R2n, with

∆θ = [∆θ1, . . . ,∆θn]
T , ∆θ̇ = [∆θ̇1, . . . ,∆θ̇n]

T , and let us
rewrite (4) and (5) in the compact form:

ẋ(t) = Aσ(t)x(t) +Buσ(t)(t) + d(t) (6)

where uσ = [u1σ · · ·unσ] ∈ Rn is the (topology-dependent)
control input; d ∈ R2n is an external disturbance with
unknown bound, and σ(·) is the switching signal. The
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switched power system (6) is uncertain as some entries
of matrices Aσ ∈ R2n×2n and B ∈ R2n×n, σ ∈ Ω are
unknown: despite uncertainty, the reader can verify from
(4) that information about the structure of Aσ and B is
available, e.g. Aσ contains block integrators and B is block
diagonal (see the numerical example in Sect. 4).

Remark 3. According to (4), the disturbance in (6) con-
tains the load ∆Pdi and the unmodelled terms ∆Eiσ.
Robustness to unmodelled terms is an open challenge of
adaptive LFC, which calls for an adaptive approach known
in literature as robust adaptive control (Tao (2014)).

The standard stability concept in robust adaptive control
(Yuan et al. (2018)) is recalled.

Definition 2. Uniform Ultimate Boundedness (UUB).
The switched system (6) under switching signal σ(·) is
uniformly ultimately bounded if there exists a convex
and compact set C such that for every initial condition
x(0) = x0, there exists a finite time T (x0) such that
x(t) ∈ C for all t ≥ T (x0). Further, b is said to be the
ultimate bound if ‖x(t)‖ ≤ b for all t ≥ T (x0).

A group of switched reference models representing the
desired behavior of each topology is given as follows:

ẋm(t) = Amσ(t)xm(t) +Bmσ(t)r(t), σ(t) ∈ Ω (7)

where xm � [∆θTm ∆θ̇Tm]T ∈ R2n is the desired state
vector, and r ∈ Rn is a user-defined phase. The matrices
Amσ ∈ R2n×2n and Bmσ ∈ R2n×n are design-driven:
Amσ should be chosen Hurwitz with the same block of
integrators structure of Aσ, and Bmσ can be chosen in the
same block diagonal structure of Bσ.

If the matrices in (6) were perfectly known, the ideal
topology-dependent control that makes the power system
behave like the reference models is

u∗
σ(t) = K∗T

σ(t)(t)x(t) + L∗
σ(t)(t)r(t) (8)

where K∗
σ ∈ R2n×n and L∗

σ ∈ Rn×n, σ ∈ Ω, are unknown
gains satisfying the following matching conditions:

Aσ +BK∗T
σ = Amσ, BL∗

σ = Bmσ. (9)

The existence of solutions to (9) is guaranteed, accord-
ing to the model reference adaptive control theory (Tao
(2014)), by the structure of Aσ and B, which also guaran-
tee that L∗

σ is a diagonal positive definite matrix (see the
example in Sect. 4). Since (Aσ, B) are unknown, K∗

σ and
L∗
p are also unknown, so we define Kσ(t) and Lσ(t) as their

estimates and introduce the controller

uσ(t) = KT
σ(t)(t)x(t) + (Lσ(t)(t) + Γσ(t)(t))r(t), (10)

where Kσ ∈ R2n×n, Lσ ∈ Rn×n are to be updated from
adaptive laws, and Γσ = diag{γiσ}, i = 1, · · · ,m is an
auxiliary adaptive gain to be defined later.

Let e(t) = x(t) − xm(t) be the tracking error. After
substituting (10) into (6) and substracting (7), we obtain
the dynamics of the tracking error as follows:

ė(t) =Amσ(t)e(t) +B[K̃T
σ(t)(t)x(t) +

(
L̃σ(t)(t) (11)

+ Γσ(t)(t)
)
r(t)] + d(t)

where K̃σ = Kσ−K∗
σ and L̃σ = Lσ−L∗

σ are the parameter
estimation errors.

Control Problem: Design a multi-area LFC that can
track in UUB sense the desired frequency ∆θ̇m = ∆fm = 0
under uncertainty and ADT switching topologies.

3. ADAPTIVE CONTROL DESIGN

This section proposes adaptive laws for the gains in (10) to
solve the Control Problem. Correspondingly, switching
laws are designed in the framework of ADT switching.

3.1 Adaptive control

Let us denote with p ∈ Ω the index corresponding to the
active topology at time t (e.g. in the interval t ∈ [tl, tl+1)),
and p ∈ I(p) to indicate the set of inactive topologies with
respect to p. Let Pp > 0 be the solution to

AT
mpPp + PpAmp + (1 + κp)Pp = −Qp, (12)

where κp, Qp are user-defined parameters.

The adaptive law is designed, for t ∈ [tl, tl+1), as

K̇T
p = −SpB

T
mpPpex

T − δpSpK
T
p , K̇T

p = 0, (13a)

L̇p = −SpB
T
mpPper

T − δpSpLp, L̇p = 0, (13b)

γ̇ip = 0,

γ̇ip = −
(
βip + δp

(
{KpK

T
p }ii + {LT

p Lp}ii
))

γip + βipεip,

(13c)

with δp ≥ 2max
p∈Ω

(κp)λmax(S
−1
p ) ≥ 0, (13d)

and γip(t0), γip(t0) > εip, (13e)

where Sp = ST
p ∈ Rn×n, βip, εip ∈ R+ i = 1, · · · , n are

static design parameters and t0 is the initial time.

Remark 4. The adaptive laws (13) are differential equa-
tions that let the proportional-derivative action of Kσ, Lσ

adapt to unknown/changing power system parameters.

3.2 Switching Laws

Define ζ̄M � maxp∈Ω λmax(Pp) and ζ
m

� minp∈Ω λmin(Pp).
Following Definition 1, an ADT switching is proposed with

ϑ > lnµ/χ, (14)

where µ � ζ̄M/ζ
m

≥ 1, 0 < χ < κ, with κ � minp∈Ω{κp}.
Theorem 1. The closed-loop trajectories of power system
(6) employing multi-area LFC (10), with adaptive law (13)
and switching law (14) are UUB. An ultimate bound b on
the tracking error e(t) can be found as

b =

√
ζ̄
(N0+1)
M B/ζ(N0+2)

m
, (15)

B = max
p∈Ω


 ζ1√

ζ
m
(κ− χ)

+

√
ζ21

ζ
m
(κ− χ)2

+
ζ2

(κ− χ)




2

.

(16)

where ς1, ς2 are detailed in the proof.

Proof. See Appendix.

Remark 5. The importance of Theorem 1 is in providing
the first rigorous stability result for LFC with uncertain-
ties, unmodelled dynamics and switching topologies. The-
orem 1 involves the design of both adaptive and switching
laws, both designs contributing to stability of the system.

4. SIMULATION RESULTS AND DISCUSSION

For easiness of providing all numerical values, let us use
the three-area power system in Fig. 1 as a benchmark. For
each area, the parameters are:

Area-1: Tp1 = 10,
kp1

Tp1

= 0.1, R1 = 0.05, T1 = 2, B1 = 41, k1 = 0.5

Area-2: Tp2 = 8,
kp2

Tp2

= 0.083, R2 = 0.05, T2 = 5, B2 = 81.5, k2 = 0.5

Area-3: Tp3 = 8,
kp3

Tp3

= 0.063, R3 = 0.05, T3 = 8, B3 = 62, k3 = 0.5

These parameters are used for simulation purposes, but
unknown for control design. The switching topologies in
Fig. 1 result in a switched power system as in (4) with

A1 =




0 1 0 0 0 0

−1.256 −2.1 1.256 0 0 0

0 0 0 1 0 0

2.6062 0 −5.2124 −1.785 2.6062 0

0 0 0 0 0 1

0 0 3.165 0 −3.165 −1.385




A2 =




0 1 0 0 0 0

−2.512 −2.1 1.256 0 1.256 0

0 0 0 1 0 0

2.6062 0 −2.6062 −1.785 0 0

0 0 0 0 0 1

3.165 0 0 0 −3.165 −1.385




A3 =




0 1 0 0 0 0

−1.256 −2.1 0 0 1.256 0

0 0 0 1 0 0

0 0 −2.6062 −1.785 2.6062 0

0 0 0 0 0 1

3.165 0 3.165 0 −6.330 −1.385




A4 =




0 1 0 0 0 0

−2.512 −2.1 1.256 0 1.256 0

0 0 0 1 0 0

2.6062 0 −2.6062 −1.785 2.6062 0

0 0 0 0 0 1

3.165 0 3.165 0 −6.33 −1.385




B =




0 0 0

0.1 0 0

0 0 0

0 0.083 0

0 0 0

0 0 0.063




For simplicity, let us choose a common reference model for
all topologies, resulting from placing the closed-loop poles
at the roots of s2 + 0.5ωs+ ω2 with ω = 3.53rad/s:

Amσ =




0 1 0 0 0 0

−12.4609 −4.9420 0 0 0 0

0 0 0 1 0 0

0 0 −12.4609 −4.9420 0 0

0 0 0 0 0 1

0 0 0 0 −12.4609 −4.9420




Bmσ =




0 0 0

12.4609 0 0

0 0 0

0 12.4609 0

0 0 0

0 0 12.4609


 (17)

The solutions to (9) (unknown for control design) are

K
∗
1 =

[
112.0490 −30.4200 −12.5600 0 0 0

−31.4000 0 −87.3313 −41.0482 −31.4000 0

0 0 −50.2381 0 −147.5540 −60.4286

]

K
∗
2 =

[−99.4890 −30.4200 −12.5600 0 −12.5600 0

−31.4000 0 −118.7313 −41.0482 0 0

−50.2381 0 0 0 −147.5540 −60.4286

]

K
∗
3 =

[−112.0490 −30.4200 0 0 −12.5600 0

0 0 −118.7313 −41.0482 −31.4000 0

−50.2381 0 −50.2381 0 −97.3159 −60.4286

]

K
∗
4 =

[−99.4890 −30.4200 −12.5600 0 −12.5600 0

−31.4000 0 −118.7313 −41.0482 −31.4000 0

−50.2381 0 −50.2381 0 −97.3159 −60.4286

]

and L∗
σ = diag(124.609, 149.590, 196.854) for all topolo-

gies. Note that Aσ and Amσ have the same block of
integrators structure, and B and Bmσ are block diagonal,
so that the matching conditions (9) have solution.

Let κ1 = 0.25, κ2 = 0.5, κ3 = 0.4, κ4 = 0.6, Qi = 10I6×6

∀i. Solving (12) gives the positive definite matrices:

P1 =




25.4789 1.6792 0 0 0 0

1.6792 1.5472 0 0 0 0

0 0 25.4789 1.6792 0 0

0 0 1.6792 1.5472 0 0

0 0 0 0 25.4789 1.6792

0 0 0 0 1.6792 1.5472




P2 =




28.4021 2.1107 0 0 0 0

2.1107 1.6963 0 0 0 0

0 0 28.4021 2.1107 0 0

0 0 2.1107 1.6963 0 0

0 0 0 0 28.4021 2.1107

0 0 0 0 2.1107 1.6963




P3 =




27.1812 1.9282 0 0 0 0

1.9282 1.6332 0 0 0 0

0 0 27.1812 1.9282 0 0

0 0 1.9282 1.6332 0 0

0 0 0 0 27.1812 1.9282

0 0 0 0 1.9282 1.6332




P4 =




29.6984 2.3079 0 0 0 0

2.3079 1.7643 0 0 0 0

0 0 29.6984 2.3079 0 0

0 0 2.3079 1.7643 0 0

0 0 0 0 29.6984 2.3079

0 0 0 0 2.3079 1.7643




Remark 6. Some components in K∗
σ corresponding to

missing interconnection of the topology σ are 0 as a result
of taking Am in the same structure as Aσ. In addition,
choosing a block diagonal Am (feedback should reject cou-
plings among areas) results in a block diagonal Pσ: this
in turn allows the adaptive law (13) to implemented using
only neighboring information in the topology σ, along the
methodology in (Azzollini et al. (2018)).

The ADT constant resulting from (14) is ϑ = 7.6. We
consider the switching of Fig. 2, and design parameters
for (13): Si = 100I3×3, δi = 0.08, εip = 0.2, βip =
2 ∀i. The reference phase is r(t) = [1 1 1]T , with
time-varying load disturbance [∆Pd1 ∆Pd2 ∆Pd3] =
[−0.1 sin(0.5t) 0.25 sin(0.1t) 0.15 sin(0.2t)].
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Fig. 3. Phase and frequency deviation for all 3 areas

A part from the initial phase, where the frequencies are
initialized on purpose far from the equilibrium to highlight
the regulation capabilities, Fig. 3 shows that ∆θ and
∆f are small around 0. Stability is achieved despite the
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4. SIMULATION RESULTS AND DISCUSSION

For easiness of providing all numerical values, let us use
the three-area power system in Fig. 1 as a benchmark. For
each area, the parameters are:

Area-1: Tp1 = 10,
kp1

Tp1

= 0.1, R1 = 0.05, T1 = 2, B1 = 41, k1 = 0.5

Area-2: Tp2 = 8,
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= 0.083, R2 = 0.05, T2 = 5, B2 = 81.5, k2 = 0.5

Area-3: Tp3 = 8,
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Tp3

= 0.063, R3 = 0.05, T3 = 8, B3 = 62, k3 = 0.5

These parameters are used for simulation purposes, but
unknown for control design. The switching topologies in
Fig. 1 result in a switched power system as in (4) with

A1 =




0 1 0 0 0 0

−1.256 −2.1 1.256 0 0 0

0 0 0 1 0 0

2.6062 0 −5.2124 −1.785 2.6062 0

0 0 0 0 0 1

0 0 3.165 0 −3.165 −1.385




A2 =




0 1 0 0 0 0

−2.512 −2.1 1.256 0 1.256 0

0 0 0 1 0 0

2.6062 0 −2.6062 −1.785 0 0
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3.165 0 0 0 −3.165 −1.385




A3 =
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A4 =
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B =




0 0 0

0.1 0 0

0 0 0

0 0.083 0

0 0 0

0 0 0.063




For simplicity, let us choose a common reference model for
all topologies, resulting from placing the closed-loop poles
at the roots of s2 + 0.5ωs+ ω2 with ω = 3.53rad/s:

Amσ =




0 1 0 0 0 0

−12.4609 −4.9420 0 0 0 0
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Bmσ =
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The solutions to (9) (unknown for control design) are

K
∗
1 =

[
112.0490 −30.4200 −12.5600 0 0 0

−31.4000 0 −87.3313 −41.0482 −31.4000 0

0 0 −50.2381 0 −147.5540 −60.4286

]
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2 =

[−99.4890 −30.4200 −12.5600 0 −12.5600 0
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K
∗
3 =

[−112.0490 −30.4200 0 0 −12.5600 0

0 0 −118.7313 −41.0482 −31.4000 0

−50.2381 0 −50.2381 0 −97.3159 −60.4286

]

K
∗
4 =

[−99.4890 −30.4200 −12.5600 0 −12.5600 0

−31.4000 0 −118.7313 −41.0482 −31.4000 0

−50.2381 0 −50.2381 0 −97.3159 −60.4286

]

and L∗
σ = diag(124.609, 149.590, 196.854) for all topolo-

gies. Note that Aσ and Amσ have the same block of
integrators structure, and B and Bmσ are block diagonal,
so that the matching conditions (9) have solution.

Let κ1 = 0.25, κ2 = 0.5, κ3 = 0.4, κ4 = 0.6, Qi = 10I6×6

∀i. Solving (12) gives the positive definite matrices:

P1 =




25.4789 1.6792 0 0 0 0

1.6792 1.5472 0 0 0 0

0 0 25.4789 1.6792 0 0

0 0 1.6792 1.5472 0 0

0 0 0 0 25.4789 1.6792

0 0 0 0 1.6792 1.5472




P2 =




28.4021 2.1107 0 0 0 0

2.1107 1.6963 0 0 0 0

0 0 28.4021 2.1107 0 0

0 0 2.1107 1.6963 0 0

0 0 0 0 28.4021 2.1107

0 0 0 0 2.1107 1.6963




P3 =




27.1812 1.9282 0 0 0 0

1.9282 1.6332 0 0 0 0

0 0 27.1812 1.9282 0 0

0 0 1.9282 1.6332 0 0

0 0 0 0 27.1812 1.9282

0 0 0 0 1.9282 1.6332




P4 =




29.6984 2.3079 0 0 0 0

2.3079 1.7643 0 0 0 0

0 0 29.6984 2.3079 0 0

0 0 2.3079 1.7643 0 0

0 0 0 0 29.6984 2.3079

0 0 0 0 2.3079 1.7643




Remark 6. Some components in K∗
σ corresponding to

missing interconnection of the topology σ are 0 as a result
of taking Am in the same structure as Aσ. In addition,
choosing a block diagonal Am (feedback should reject cou-
plings among areas) results in a block diagonal Pσ: this
in turn allows the adaptive law (13) to implemented using
only neighboring information in the topology σ, along the
methodology in (Azzollini et al. (2018)).

The ADT constant resulting from (14) is ϑ = 7.6. We
consider the switching of Fig. 2, and design parameters
for (13): Si = 100I3×3, δi = 0.08, εip = 0.2, βip =
2 ∀i. The reference phase is r(t) = [1 1 1]T , with
time-varying load disturbance [∆Pd1 ∆Pd2 ∆Pd3] =
[−0.1 sin(0.5t) 0.25 sin(0.1t) 0.15 sin(0.2t)].
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Fig. 3. Phase and frequency deviation for all 3 areas

A part from the initial phase, where the frequencies are
initialized on purpose far from the equilibrium to highlight
the regulation capabilities, Fig. 3 shows that ∆θ and
∆f are small around 0. Stability is achieved despite the
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switching topologies of Fig. 2, which cause negligible
transients: the frequency deviations are inside ±0.05 Hz
even at switching instants. Stability is achieved in spite of
load disturbance and unmodelled dynamics.

5. CONCLUSION

Although the need for an adaptive LFC system that
dynamically weights its operation to adapt to changing
circumstances is recognized in the power systems commu-
nity, a formally stable adaptation framework around such
idea was still missing. This work proposed a novel LFC
framework in which provably stable adaptation can even
handle changing topologies arising from reconfiguration
against faults or switch among different control areas to
dampen oscillations and face cyber-attacks.

Appendix A. STABILITY ANALYSIS PROOF

Proof. Law (13c) reveal that ∃γ
iσ

∈ R+ such that

γ
iσ

≤ γiσ(t) ≤ γ̄iσ ∀t ≥ t0. (A.1)

Stability relies on the Lyapunov candidate:

V = eT (t)Pσ(t)e(t) +

N∑
s=1

tr[K̃s(t)M
−1
s K̃T

s (t)]

+
N∑
s=1

tr[L̃T
s (t)M

−1
s L̃s(t)] +

N∑
s=1

tr[ΓsΓs(t)]}, (A.2)

where Γσ = diag{1/γ
iσ
} and Mσ = L∗

σSσ. Analysis of

(A.2) at the switching instants is required, since Pp is
different for different topologies in general. Let topology
σ(t−l+1) be active when t ∈ [tl, tl+1) and topology σ(tl+1)
be active when t ∈ [tl+1, tl+2). Without the loss of
generality, the behavior of V (·) is studied at the switching
instant tl+1, l ∈ N+: we have, before and after switching

V (t−l+1) = eT (t−l+1)Pσ(t−
l+1

)e(t
−
l+1) +

N∑
s=1

tr[Γs(t
−
l+1)Γs(t

−
l+1)]

+
N∑
s=1

tr
[
K̃s(t

−
l+1)M

−1
s K̃T

s (t
−
l+1) + L̃T

s (t
−
l+1)M

−1
s L̃s(t

−
l+1)

]

V (tl+1) = eT (tl+1)Pσ(tl+1)e(tl+1) +

N∑
s=1

tr[Γs(t
−
l+1)Γs(tl+1)]

+
N∑
s=1

tr
[
K̃s(tl+1)M

−1
s K̃T

s (tl+1) + L̃T
s (tl+1)M

−1
s L̃s(tl+1)

]

Continuity of the tracking error e(·) in (11) and the gains
updated via (13), give

V (tl+1)− V (t−l+1) = eT (t−l+1)(Pσ(tl+1) − Pσ(t−
l+1

))e(t
−
l+1)

≤
ζ̄M − ζ

m

ζ
m

V (t−l+1) ⇒ V (tl+1) ≤ µV (t−l+1) (A.3)

with µ � ζ̄M/ζ
m

≥ 1. Next, the behavior of V (t) is studied

between two consecutive switching instants, t ∈ [tl tl+1).
Let σ(t) = p denote the active topology and p an inactive
one. Using (12), (11) and (13a)-(13c) we have

V̇ ≤ −eT (1 + κp)Ppe+ 2eTPp(B(K̃px+ (L̃p + Γp)r) + 2d)

+ 2
N∑
s=1

{
tr[K̃sM

−1
s K̇T

s ] + tr[L̃T
s M

−1
s L̇s] + tr[ΓsΓ̇s]

}

≤ −κpe
TPpe+ 2eTPpBΓpr + dTPpd+

∑
p∈I(p)

tr[ΓpΓ̇p]

− 2 tr[K̃pδpL
∗
p
−1KT

p ]− 2 tr[L̃T
p δpL

∗
p
−1Lp]. (A.4)

Using Young’s inequality, we have

−2 tr[K̃pδpL
∗
p
−1KT

p ] < − tr[K̃pδpL
∗
p
−1K̃T

p ]

+ tr[K∗
pδpL

∗
p
−1K∗T

p ], (A.5)

(and similar for L̃p) where the inequalities rely on the fact
that L∗

σ is a diagonal positive definite matrix. Further,

noting ΓpΓ̇p = diag{γ̇ip/γip
}, i = 1, · · · ,m, the following

can be deduced from (13c) and (A.1)

γ̇ip
γ
ip

=
−
(
βip + δp

(
{KpKpT }ii + {LT

p Lp}ii
))

γip + βipεip

γ
ip

≤ −δp
(
{KpK

T
p }ii + {LT

p Lp}ii
)
+

βipεip
γ
ip

. (A.6)

Moreover, Young’s inequality yield

tr[K̃σK̃
T
σ ] = tr[KσK

T
σ − 2KσK

∗T
σ +K∗

σK
∗T
σ ]

≤ 2 tr[KσK
T
σ +K∗

σK
∗T
σ ]. (A.7)

(similar for L̃σ). Using (A.5)-(A.7), (A.4) is simplified as

V̇ ≤ −κV + 2||e||||PpBΓpr||+ ζ̄M ||d||2 +
N∑
s=1

tr[κsΓsΓs]

+ tr[K∗
p
T δpL

∗
p
−1K∗

p ] + tr[L∗
p
T δpIn]

+
∑

p∈I(p)

m∑
i=1

(1
2
tr[K∗

p
T δpK

∗
p ] +

1

2
tr[L∗

p
T δpL

∗
p] +

βipεip
γ
ip

)
.

(A.8)

By definition r(t) ∈ L∞ and by design Γs ∈ L∞ from
(A.1). Therefore, ∃ζ1 ∈ R+ such that ||PpBΓpr|| ≤
ζ1, ∀p ∈ Ω. Further we define a scalar ζ2 as

ζ2 ��M ||d||2 +max
p∈Ω

(tr[K∗
p
T δpK

∗
p ] + tr[L∗

p
T δpL

∗
p])

∑
p∈I(p)

m∑
i=1

(1
2
tr[K∗

p
T δpK

∗
p ] +

1

2
tr[L∗

p
T δpL

∗
p] +

βipεip
γ
ip

)

+
N∑
s=1

tr[κsΓsΓs]. (A.9)

Again, the definition of the Lyapunov function (A.2) yields

V ≥ λmin(Pp)||e||2 ≥ �
m
||e||2. (A.10)

We had defined earlier 0 < κ < ζ. Hence, using (A.9)-
(A.10), (A.8) is simplified as

V̇ ≤ −χV − (κ− χ)V + 2ζ1

√
V/ζ

m
+ ζ2. (A.11)

Thus, V̇ ≤ −χV is established when

V ≥ max
p∈Ω


 ζ1√

ζ
m
(κ− χ)

+

√
ζ21

ζ
m
(κ− χ)2

+
ζ2

(κ− χ)




2

.

= B. So we obtain that a positive B as (16).

In light of this, further analysis is needed to observe the
behaviour of V (t) between the two consecutive switching
intervals, i.e., t ∈ [tl tl+1), for two possible cases:

(i) when V (t) ≥ B, we have V̇ (t) ≤ −χV (t) from (A.11)
implying exponential decrease of V (t);

(ii) when V (t) < B, V (t) may increase.

Analyzing the behaviour of V (t) for these two cases (Yuan
et al. (2018); Tao et al. (2020)) gives

V (t) ≤ max {cV (t0), cµB} , ∀t ≥ t0. (A.12)

with c = exp (N0 lnµ). The definition of the Lyapunov
function (A.2) yields

V (t) ≥ λmin(Pσ(t))‖e(t)‖2 ≥ ζ
m
‖e(t)‖2. (A.13)

Using (A.12) and (A.13) we have

‖e(t)‖2 ≤ 1

ζ
m

max {cV (t0), cµB} , ∀t ≥ t0. (A.14)

giving the ultimate bound b on the tracking error e as (15).
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In light of this, further analysis is needed to observe the
behaviour of V (t) between the two consecutive switching
intervals, i.e., t ∈ [tl tl+1), for two possible cases:

(i) when V (t) ≥ B, we have V̇ (t) ≤ −χV (t) from (A.11)
implying exponential decrease of V (t);

(ii) when V (t) < B, V (t) may increase.

Analyzing the behaviour of V (t) for these two cases (Yuan
et al. (2018); Tao et al. (2020)) gives

V (t) ≤ max {cV (t0), cµB} , ∀t ≥ t0. (A.12)

with c = exp (N0 lnµ). The definition of the Lyapunov
function (A.2) yields

V (t) ≥ λmin(Pσ(t))‖e(t)‖2 ≥ ζ
m
‖e(t)‖2. (A.13)

Using (A.12) and (A.13) we have

‖e(t)‖2 ≤ 1

ζ
m
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giving the ultimate bound b on the tracking error e as (15).
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