
Understanding Normalizing
Flows

W.H. van den Bos

Bachelor Project
2024
Applied Mathematics

Understanding
Normalizing

Flows
by

W.H. van den Bos
to obtain the degree of Bachelor of Science

at the Delft University of Technology,

Student number: 5323924
Project duration: April 2, 2024 – June 18, 2024
Thesis committee: Dr. ir. J. Bierkens, TU Delft, supervisor

Dr. D. de Laat, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Normalizing flows are a probabilistic method to estimate the underlying density of data samples. The method
is flow based and non-parametric, with the aim of being flexible, but still computationally manageable. This
report aims to explain the process of normalizing flows by the underlying principles of this probabilistic
method. Both the method itself and the underlying principles are explained and reduced. An example of
a normalizing flow is then implemented to showcase the method and support the underlying principles.

W.H. van den Bos
Delft, June 2024

iii

Contents

1 introduction 1

2 Underlying principles 3
2.1 The normalizing flow process . 3

2.1.1 The idea behind normalizing flows . 3
2.1.2 Example of the idea of normalizing flows . 4
2.1.3 Introducing density estimation via flow functions . 5
2.1.4 Density estimation for flow based models . 7

2.2 Log-likelihood function . 8
2.3 Density estimation - the continuous case . 9

2.3.1 Log-likelihood in the continuous case . 9
2.3.2 Evolution of the flow function φt . 12
2.3.3 Evolution of the density function ρt . 12
2.3.4 Example of the continuous case . 15

2.4 Kullback-Leibler divergence . 16
2.4.1 Kullback-Leibler divergence of ρt and µ . 16
2.4.2 Kullback-Leibler divergence of ρ and ρ̃t . 19

2.5 Individual flow requirements . 23

3 Applying a linear normalizing flow 25
3.1 normalizing flow with µ(y) the standard Gaussian and a linear flow 25

3.1.1 The map y(x) as a linear function . 25
3.1.2 Linear flow functions to construct arbitrary y(x) . 27

3.2 Example of a normalizing flow based on a linear flow function 29
3.2.1 Five parameter linear flow function . 29
3.2.2 Implementing a five parameter linear flow function . 31

4 Discussion 37

5 Conclusion 39

A Additional definitions and theorems 41
A.1 Definition of the Jacobian matrix . 41
A.2 Change of variables in Rn . 41
A.3 Divergence theorem . 41
A.4 Jensen’s inequality . 42
A.5 Integration by parts . 42
A.6 Law of the subconscious statistician for discrete random variables 42
A.7 Law of the subconscious statistician for continuous random variables 42

B Code 43
B.1 Numerical solution of equation (2.52) as plotted in figure 2.8 43
B.2 Numerical solution of equation (2.52) as plotted in figure 2.9 44
B.3 Example five parameter normalizing flow. 45

Bibliography 49

v

1
introduction

Normalizing flows are a probabilistic models to approximate the underlying density function from sample
data. Approximating distributions from data samples is known as the density estimation problem. This prob-
lem is faced in many fields. Environmental scientists encounter it when estimating the distribution of pol-
lutant concentrations in air or water samples for the identification of contamination hotspots and informing
regulatory actions [5]. In medical imaging, density estimation in segmenting MRI scans by estimating the
distribution of pixel intensities helps differentiate between healthy and diseased tissues, improving diagnos-
tic accuracy and treatment planning [9]. Normalizing flows are a probabilistic method for density estimation.
Normalizing flows are particularly an increasingly active area of machine learning research. This is because
normalizing flows are commonly implemented for the training of deep neural networks because of their com-
putationally simple architecture [10].
These are just some of many examples of the use of probabilistic models that showcase the importance of
them in various fields. One of the issues probabilistic models face when estimating densities from data sam-
ples is data sparsity. Data sparsity refers to the situation where the available data points are insufficient or
unevenly distributed across the space being analyzed. This lack of data density can lead to several significant
issues. The model may struggle to identify true patterns and may instead capture noise, leading to unreliable
estimations. This is called overfitting on the data. Conversely, data sparsity can also lead to underfitting,
where the model is too simplistic and fails to capture the complexity of the data. Another challenge for prob-
abilistic models is overcoming the curse of dimensionality: As dimensions increase, the data volume grows
exponentially, requiring more data, more complex models and more computational resources to produce
reliable underlying densities. A related issue is that of computational efficiency. To produce reasonable esti-
mates of underlying densities, probabilistic models can require a large amounts of data. The model needs to
efficiently compute with these large amounts of data.
Many probabilistic models have been developed for the density estimation problem, often specified for a par-
ticular application. Depending on the application, there is for example a choice between parametric meth-
ods, which assume a specific form for the distribution of the sample data, and non-parametric methods,
which make minimal assumptions about the distribution shape. Normalizing flows are non-parametric, flow
based models. The term flow based describes the algorithmic approach of this probabilistic method. The
model starts with a simple estimation of the data samples. When the data samples follow a complex distribu-
tion, this simple density estimation might not be a reasonable estimate of the real density function. The goal
of this flow based model is to push this estimation through a flow of many small and simple transformations
to produce a density function that better describes the underlying distribution.
This paper aims to provide an overview of the probabilistic model called normalizing flows and the underly-
ing principles of this method. This is done based on the structure of normalizing flows as explained in [13],
[10] and [12]. Principles underlying this probabilistic method provide an understanding of why normaliz-
ing flows work and are useful for density estimation of data samples. Additionally, the underlying principles
of normalizing flows are widely used in many other probabilistic models [3]. Explaining normalizing flows
will be done by dividing this paper into two parts. In chapter 2, Underlying principles, the focus is on the
underlying principles of normalizing flows. In chapter 3, Applying a linear normalizing flow, to showcase
the underlying principles of normalizing flows indeed result in a working probabilistic model, the model is
executed on real sample data.

1

2 1. introduction

Chapter 2 provide a general overview of the normalizing flow probabilistic model. In section 2.1 the normal-
izing flow algorithm is introduced by first demonstrating that the goal of the model is to estimate the map
y(x) from the samples of random variable x to samples of random variable y with a flow function. In section
2.2 we then focus on how we can use the log-likelihood to produce the flow functions. To showcase how this is
done, in chapter 2.3 we look at the continuous case. For this case we can derive expressions for the evolution
of the flow function that increases the log-likelihood. Finally in section 2.3.4, two examples of normalizing
flows in the continuous case are provided in figures 2.8 and 2.9.
After showing the basic principles of normalizing flows in the continuous case, in section 2.4 the Kullback-
Leibler divergence is used to prove that normalizing flows can be used to estimate probability density func-
tions from samples that follow arbitrary distribution. The final part of chapter 2 is about individual flow
requirements that are proposed for better results of the normalizing flow algorithm.
Chapter 3 serves to support the knowledge gained about the underlying principles of normalizing flows in
chapter 2. This is done by applying a normalizing flow based on linear flow functions. Section 3.1 introduces
the framework of the normalizing flow algorithm as described in 2.1 in the context of linear flow functions. To
understand the effect of the linear flow we first introduce a parametric procedure, where we impose that the
samples are made from a distribution with a linear relation to the standard Gaussian distribution. Then we
introduce a flow based approach, where each of the flows is the result of a linear parametric procedure. Sec-
tion 3.2 uses a 5 parameter flow function to illustrate a normalizing flow model based on linear flow functions.
The examples showcase the statements from previous sections on real data samples.

2
Underlying principles

In this chapter we will explain the underlying principles of normalizing flows. normalizing flows are proba-
bilistic models to approximate the underlying density of data samples. We will introduce normalizing flows
by first explaining the process and the goal, which is to approximate a function that maps the data samples
of an unknown distribution into a new random variable with a relative simple and known density. In practice
a normally distributed random variable is chosen for the known density, hence the name normalizing flows.
This map is approximated using flow functions that together form a flow. From this flow we can then retrieve
an estimation of the density underlying the data and generate new samples of the data. We will explain how
to construct a flow function that increases the log-likelihood. Finally we will explain why the normalizing
flow process works as a probabilistic model based on the Kullback-Leibler divergence and individual flow re-
quirements.

2.1. The normalizing flow process
We have observations x j with j = 1...m of continuous random variable x in Rn . The goal is to find the un-
known probability density function ρ(x), or generate new samples of the data. This section will introduce the
process of a normalizing flow to estimate this unknown probability density function. We will first show how
this can be done when we know a function y(x) mapping the samples to samples of random variable y with
known density function, such as the standard normal density function µ(y). We will then demonstrate this
with an example. We will then introduce how flow based models estimate this function y(x), and explain how
this estimation can be used to estimate the underlying density ρ(x) of the samples.

2.1.1. The idea behind normalizing flows
Let y(x) be a function that maps data x j into a new set of variables y j of random variable y with known density
µ(y). In practice, µ(y) is taken to be a simple density. For example,[13] gives a motivation for choosing the
isotropic Gaussian. One defining property of flow-based models is that y(x) is invertible and differentiable
and y−1(x) is invertible and differentiable. A consequence of the change of variables (appendix A.2) is that we
can compute the density ρ(x):

Proposition 2.1.1. Let x ∈ A ⊂ Rn . Now suppose y(x) maps random variable x to random variable y. When
y(x) is differentiable and invective, then

ρ(x) = Jy (x)µ(y(x)). (2.1)

In this equation Jy (x) is the Jacobian determinant of the map y(x) that maps random variable x to y . For
the definition of the Jacobian matrix, see appendix A.1. Notice that the Jacobean determinant, Jy (x), can be
computed since y(x) is differentiable. In figure 2.1 the goal of the normalizing flow is visualized.

Proof. Notice that the function y(x) is injective since it in invertible. This means we can apply the change of

3

4 2. Underlying principles

variables formula from appendix A.2 to find that for all A ⊂Rn : [4]:

P(x ∈ A) =
∫

A
ρ(x)d x =P(y ∈ y(A)) =

∫
y(A)

µ(y)d y =
∫

A
µ(y(x))Jy (x)d x. (2.2)

Since it holds for all A, we must have that ρ(x) = Jy (x)µ(y(x)).

Figure 2.1: The normalizing flow algorithm constructs y(x).

The function y(x) allows both sampling from the model, and evaluating the model’s density. Sampling
from the model means generating a sample of variable y via the distribution µ(y) and calculating from it a
new sample of variable x using the map y(x)−1. For this application of the flow we make the restriction on
y(x) that it has to be invertible. The second operation is evaluating the model’s density. This can be done
from equation (2.1), and therefore requires the calculation of the Jacobian determinant of y(x). Therefore we
have that y(x) must be differentiable.The application of the flow will determine which of these operations
will be used. For sampling via y it is beneficial to have y−1(x) to be efficient. Evaluating the density would
focus more on efficiently computing Jy (x). However, the function y(x) is unknown. We want to estimate the
function y(x) based on the data x. This will be done by introducing a flow φt (x).

2.1.2. Example of the idea of normalizing flows
We will now showcase the idea behind normalizing flows with an example inR1. In this example, 100 samples
x j , j = 1,2, ..,100 are generated from random variable x which is distributed according to a normal distribu-
tion with mean 2 and standard deviation 1. This is visualized in figure 2.2.

Figure 2.2: 100 samples from N(0,2).

Suppose that we do not know that the samples x j follow this distribution. However, we do know a function
y(x) from random variable x towards random variable y , where y has known probability density function
µ(y). In this example µ(y) is the density function of the standard normal:

µ(y) = 1p
2π

e
y2

2 . (2.3)

2.1. The normalizing flow process 5

Figure 2.3: 100 samples from N(0,2) transformed by y(x).

We know the function y(x) = x −2. This function is applied to the data to get the resulting data of figure 2.3.
The density ρ(x) can be computed with (2.1). When we do not know the function y, an an estimate of ρ(x)
would be made by choosing y(x) as the identity map. In other words, the best guess at ρ(x) is saying it is
the standard normal density function. Now we will proceed with computing the density of x when we do
know the function y . The Jacobian determinant in R1 is just the derivative. Therefore, the Jacobian of the

transformation y(x), jy (x) = d y(x)
d x = 1. This means equation (2.1) becomes

ρ(x) = Jy (x)µ(y(x)) = 1p
2π

e
(x−2)2

2 . (2.4)

This is exactly the density function belonging to the normal distribution with standard deviation - 1 and mean
2. This was the indeed the distribution the 100 samples where generated from. Figure 2.4 is the plot of this
density function ρ(x).

Figure 2.4: ρ(x) computed with y(x) = x −2.

We can use the result to generate new samples in two ways:

• y(x) = x −2 has inverse function y−1(x). We can generate samples by generating a sample of random
variable y and computing the inverse x = y +2.

• We can sample directly from the computed ρ(x) we computed with equation (2.1).

In this simple example we made the assumption that the function y(x) was known to illustrate that we can
use this function to evaluate the density of the samples ρ(x), and generate new samples of random variable
x. Normalizing flows are used to construct an approximation of this function y(x). In the next section we will
introduce the flow based structure of a normalizing flow.

2.1.3. Introducing density estimation via flow functions
In practice, a function y(x) is unknown. Also, function y(x) can be very complex. This is because we want
apply the model to samples from random variable x with arbitrary density function ρ(x). For example, there

6 2. Underlying principles

might not exist a linear function y(x) to map the samples from random variable x to samples from random
variable y . To construct an approximation of unknown function y(x) for arbitrary density function ρ(x), we
can view this function as an infinite composition of infinitesimal transformations [13]. For this, we introduce
the flow z =φt (x) such that for t = 0 this is the identity map. Additionally, the flow will evolve in the direction
of a real y(x) that maps x to y . This is done by evolving φt (x) in a way that increases the Log-likelihood,
which will be discussed in section 2.2. Sinceφt evolves in the direction of a real y(x), the infinite composition
of infinitesimal transformations maps the observations x to a variable y with known probability density µ(y).
For individual transformations we use ϕt (x). The composition of these smaller transformations together
form the current flow φt (x). Therefore we introduce the following notation:

φ0(x) = x, φt (x) = (ϕt ◦ ...◦ϕ3 ◦ϕ2 ◦ϕ1 ◦ϕ0(x)), y(x) = lim
t→∞φt (x) = (...◦ϕ3 ◦ϕ2 ◦ϕ1 ◦ϕ0(x)). (2.5)

The flow based model must allow two operations: sampling from the model, and evaluating the model’s
density. Sampling from the model means generating a sample of variable y via the distribution µ(y) and
calculating from it a new sample of variable x using a map y(x)−1. For this application of the flow we made the
restriction on y(x) that it has to be invertible. Since the composition of invertible functions is again invertible,
the flow functions φt (x) are all invertible. Suppose for example that the current flow is φ1(X) =ϕ1(x). We will
evolve the flow function by using the composition with a new flow ϕ2 to construct:

φ2(x) =ϕ2(x)◦φ1(x) (2.6)

We can then compute the inverse as follows:

(ϕ2 ◦φ1)−1 =φ−1
1 ◦ϕ−1

2 . (2.7)

The second operation that the normalizing flow algorithm will allow is evaluating the model’s density. This
can be done from equation (2.1). This means that we need to compute the Jacobian determinant of y(x).
Since the composition of differentiable functions is again differentiable, the flow functions ϕt (x) that are
used are differentiable. We can compute the Jacobian determinant of the composition with the chain rule for
the Jacobian and using that the determinant is a multiplicative image [1].

Jφ2 (x) = Jϕ2◦φ1 (x) = Jϕ2 (φ1(x))Jφ1 (x) (2.8)

This means that invertible and differentiable transformations have the property that they are composable:
given φ1 and ϕ2, their composition ϕ2 ◦φ1 is also invertible and differentiable. This is useful since "in conse-
quence we can built complex transformations by composing multiple instances of simpler transformations,
without compromising the requirements of invertibility and differentiability" [10]. The application of the
flow will determine which of these operations will be used. For sampling via y it is beneficial to have y−1(x)
to be efficient. Evaluating the density would focus more on efficiently computing Jy (x). Depending on the
application, certain constrains can be made on the maps ϕt (x) [10]. This composition of flow functions is
incorporated to the diagram of figure 2.1 in figure 2.5.

Figure 2.5: y(x) is approximated by the flow φt (x). The red dotted arrow shows that the flow will evolve in the direction of the real y(x).

2.1. The normalizing flow process 7

2.1.4. Density estimation for flow based models
The flow based structure is used to construct y(x) for arbitrary densitiesρ(x). Next, we will look at how to use a
flow based construction of y(x) for estimating the density ρ(x). Introduce ρ̃t (x) as the density approximation
of the random variable x when using the current approximation of y(x), with flow φt (x). This current density
estimation of the density of random variable x, ρ̃t (x), is given by:

ρ̃t (x) = Jφt (x)µ(φt (x)). (2.9)

This formula can be derived from change of variables in a similar way as equation (2.1). We will use (2.5) and
that the Jacobian determinant of the identity map Jφ0 (x) = 1 to find the expression for the estimated density
after no time step and after infinite time steps:

ρ̃0(x) = Jφ0 (x)µ(φ0(x)) =µ(x), and (2.10)

lim
t→∞ ρ̃t (x) = Jy (x)µ(y(x))

(2.1)= ρ(x). (2.11)

The estimated density of x after no time steps is µ(y). We will show later that (by choosing the flow func-
tions such that the log-likelihood increases) the estimated density, ρ̃(x) evolves into the direction of the real
density ρ(x). This convergence is proved with the use of Kullback-Leibler divergence in section 2.83. This
convergence is incorporated into the diagram of figure 2.5 in figure 2.6.

Figure 2.6: The estimated density ρ̃(x) evolves into the direction of ρ(x)

We will now derive an expression for the density of the current flow of the samples. Recall that we use the
variable z for the current flow: z =φt (x). Also equation (2.5) stated that

y(x) = lim
t→∞φt (x) = (...◦ϕ3 ◦ϕ2 ◦ϕ1 ◦ϕ0(x)).

Therefore the density of the current flow z converges to µ(y). This convergence is proved using Kullback-
Leibler divergence in section 2.4.1. The density of z can be given by

ρt (z) = ρ(x)

Jφt (x)
. (2.12)

This equation is the result of change of variables by similar arguments as (2.1). Now we have that ρ(x) is
the probability density function of the random variable x, and ρt (z) is the probability density function of
z = φt (x) [13]. Figure 2.7 gives a schematic overview of the basic principles of the normalizing flow algo-
rithm. The red dotted arrows resemble convergence. ρ̃t (x) converges to the unknown density ρ(x) and ρt (z)
converges to the density µ(y). This is called dual ascent of the Log-likelihood. Next, we will introduce the
log-likelihood function and show how to use it to determine the flow functions φt (x).

8 2. Underlying principles

Figure 2.7: Flow chart of the normalizing flow algorithm. The red dotted lines resemble convergence, the blue squares are functions, the
white trapezoids are data samples and the gray ovals are density functions.

2.2. Log-likelihood function
The goal of the normalizing process is to find a good estimate of ρ(x). To measure the quality of the estimated
density at time t , ρ̃t (x), we use the log-likelihood of the sample x with respect to this density. The likelihood
sums for all observed x j the probability of observing this x j when the data would have been extracted from
the estimated probability density function ρ̃t (x). In this context it is clear that when ρ̃t (x) is a good estimate
of the true underlying density ρ(x), the log-likelihood is high. We will now introduce the log-likelihood more
formally using definitions from [2].

Definition 2.2.1 (Likelihood function). [2] Let X be a random vector with probability density pθ that depends
on a parameter θ ∈Θ. For x fixed, then the function

θ→ L(θ; x) := pθ(x), (2.13)

seen as a functionφ ∈Θ (whereΘ is the parameter space), is called the likelihood function. When X = (X1, X2, ..., Xn)
is a vector with independent identically distributed coordinates Xi . The density of X is the product

∏n
i=1 pθ(xi)

of the marginal probability densities of X1, ..., Xn , and the likelihood function is equal to

θ→ L(θ, x1, ..., xn) =
n∏

i=1
pθ(xi), (2.14)

where pθ(x) is the marginal density of one Xi .

The logarithm of the likelihood is often taken since the logarithm is convenient for a maximization pro-
cess. For example since we can write products inside the logarithm as sums. Since the Logarithm is a mono-
tonically increasing function of its argument, maximizing the logarithm of a function is equivalent to maxi-
mizing the function itself.

Definition 2.2.2 (Log-likelihood). [2] If the observation X = (X1, ..., Xn) consists of independent, identically
distributed subobservations Xi , then the log-likelihood is

θ→ logL(θ; x1, ..., xn) = log
n∏

i=1
pθ(xi) =

n∑
i=1

log pθ(xi). (2.15)

We can use the definitions above for the log-likelihood function related to the flow φt (x) and correspond-
ing estimated density ρ̃t (x)

Definition 2.2.3 (Log-likelihood of the flow function). Let X be a random vector of m observations x1, x2, ..., xm

with estimated probability density ρ̃t (x). φt (x) is a differentiable, invertible transformation of x. Let µ be a
probability density function. When ρ̃t (x) is given by

ρ̃t (x) = Jφt (x)µ(φt (x)),

then the log-likelihood of the flow function φt (x) is defined as

L[φt] = 1

m

m∑
j=1

log(ρ̃t (x j)). (2.16)

2.3. Density estimation - the continuous case 9

Lemma 2.2.4. We can rewrite the log-likelihood using the definition of ρ̃t (x) to

L[φt] = 1

m

m∑
j=1

log(ρ̃t (x j)) = 1

m

m∑
j=1

log(Jφt (x j)µ(φt (x j))) = 1

m

m∑
j=1

(log(Jφt (x j))+ log(µ(φt (x j)))). (2.17)

Since the log-likelihood is a measure for the quality of ρ̃t (x) that increases for when ρ̃t (x) gets closer to
the unknown density ρ(x), we want to maximize the log likelihood of z =φt (x). Therefore, we will construct
the flow φt (x) by following a direction of ascent of L[φt], such that the log-likelihood is always increasing,

dL[φt]

d t
≥ 0. (2.18)

When this is the case, the map y(x) = limt→∞φt (x) is a local maximizer of the log-likelihood function of the
sample with respect to ρ(x) = ρ̃∞(x) [13]. This maximum is then given by:

L[y] = L[lim
t→∞φt (x)] = 1

m

m∑
j=1

log(lim
t→∞ ρ̃t (x j))

(2.11)= 1

m

m∑
j=1

log(Jy (x j)µ(y(x j))) = 1

m

m∑
j=1

(log(Jy (x j))+log(µ(y(x j))))

(2.19)
We will evolve φt (x) such that the Log-likelihood is increasing. One of the main ideas of normalizing flows is
that the direction of ascent can be determined based on the current values of z j =φt (x j), without reference
to the original sample, x j [13]. Therefore, in section 2.3.1, φt (x) evolves in a way that increases the log-
likelihood, but also ensures that we only need the current values of z.

2.3. Density estimation - the continuous case
In this section we assume there is an infinite amount of data samples available. This is called the continuous
case, since in this case ρ̃t (x j) is defined for all x j in the domain of ρt . Therefore, for all x:

ρ̃t (x) = ρ̃t (x j) for x = x j . (2.20)

This case allows us to find an integral expression of the log-likelihood. This will help us to find an evolution
of the flow φt into the direction of y(x). To do this, we first seek the direction of φt that increases the log-
likelihood the most (2.29). From this, we make a choice for the evolution of φt (2.43) that ensures that only
the current values of φt (x) are needed to compute this evolution, instead of the original data points.

2.3.1. Log-likelihood in the continuous case
The case where infinite amount of data is available means that the number of observations, m, tends to
infinity. We will use theorems from [7] to derive an expression for the log-likelihood in the continuous case:

Lemma 2.3.1 (The log-likelihood for the continuous case). When the number of observations of random vari-
able x with density function ρ(x) tends to infinity, and after the map φ∞(x) the density function is given by µ,
then the log-likelihood of the flow function can be written as

Lρ[φt] =
∫

(log(Jφt (x))+ log(µ(φt (x))))ρ(x)d x. (2.21)

Proof. (2.21) First we rewrite the log likelihood in the case where the number of observations tends to infinity:

Lρ[φt] = lim
m→∞

1

m

m∑
j=1

(log(Jφt (x j))+ log(µ(φt (x j)))) (2.22)

Now we will use the law of the subconscious statistician for discrete random variables, which can be found
in the appendix A.6. Substitute g (x) = log(Jφt (x))+ log(µ(φt (x))) inside equation (A.5) , and use that we have
m observations of random variable x. When we assume the observations are distinct we get P (x = x j) = 1/m,
and therefore

E(g (x)) = 1

m

m∑
j=1

log(Jφt (x j))+ log(µ(φt (x j))) = Lρ(φt (x)). (2.23)

10 2. Underlying principles

Recall that the density of random variable x is ρ(x). As the amount of observations tend to infinity, the data
x can be viewed as a continuous random variable. This means we can apply the law of the subconscious
statistician for continuous random variables that is stated in appendix A.7. This results in

E(g (x)) =
∫

(log(Jφt (x))+ log(µ(φt (x))))ρ(x)d x (2.24)

Combining this gives the desired expression:

Lρ(φt (x)) =
∫

(log(Jφt (x))+ log(µ(φt (x))))ρ(x)d x

Now that we have an expression for the log-likelihood in the continuous case, we will use it to decide on a
direction to evolveφt in. We do this by first finding the direction with respect toφt in which the log-likelihood
increases the most. For this we will first introduce the functional derivative:

Definition 2.3.2 (Functional derivative). [6] Let F [φ] be a mapping from a normed linear space of functions
(a Banach space) M = {φ(x) : x ∈ R} to the field of real or complex numbers, F : M → R or C. Just as could be

expected for a derivative, δF [φ]
δφ(x) tells how the value of the functional changes if the function φ(x) is changed at

the point x. The functional derivative is defined as

δF [φ] =
∫

d x
δF [φ]

δφ(x)
δφ(x). (2.25)

Equivalently, we can write the functional derivative as the limit of divided differences. To see this we construct
a variation of the the function φ(x) which is localized at the point y having strength ϵ:

δφ(x) = ϵδ(x − y). (2.26)

Inserted into (2.25) this leads to

δF [φ] = F [φ+ϵδ(x − y)]−F [φ] =
∫

d x
δF [φ]

δφ(x)
ϵδ(x − y) = ϵ δF

δφ(y)
, (2.27)

Now we use that the derivative is the limit of vanishing ϵ of the divided differences:

δF [φ]

δφ(y)
= lim
ϵ→0

F [φ+ϵδ(x − y)]−F [φ]

ϵ
. (2.28)

We can now use this definition to calculate the functional derivative of the log-likelihood function:

Proposition 2.3.3. Let L(φt (x)) be the log-likelihood of the flow function. The functional derivative [6] of the
log-likelihood of the flow function is given by

δLρ
δφt

= Jφt (x)

(∇zµ(z)

µ(z)
ρt (z)−∇zρt (z)

)
, (2.29)

where z =φt (x) and ρt (z) is as described in equation (2.12). Recall from section 2.1 that ρ(x) is the probability
density function of the variable x, then ρt (z) is the probability density function of z =φt (x).

Proof. We will prove equation (2.29) in the one dimensional case. The statement is also used for higher di-
mensions [13]. To prove (2.29) we will use the following expression to determine the functional derivative
[6]:

lim
ϵ→0

δLρ[φt] = lim
ϵ→0

(
Lρ(φt (x)+ϵη(x))−Lρ(φt (x))

)= ∫
δLρ
δφt

ϵη(x)d x. (2.30)

In this equation L(φt (x)+ ϵη(x)) resembles the log-likelihood function after a small perturbation, ϵη(x), in
φt (x), where η(x) is assumed to vanish at the boundary (in infinity). Recall the equation of the log-likelihood
(equation (2.21)):

Lρ(φt) =
∫

(log(Jφt (x))+ log(µ(φt (x))))ρ(x)d x.

2.3. Density estimation - the continuous case 11

In the one dimensional case the Jacobian determinant is the derivative. Therefore (2.21) becomes

Lρ(φt) =
∫ (

log

(
dφt (x)

d x

)
+ log(µ(φt (x)))

)
ρ(x)d x

=
∫ (

log

(
dφt (x)

d x

))
ρ(x)d x +

∫
(log(µ(φt (x))))ρ(x)d x.

(2.31)

The perturbation results in a perturbed log-likelihood given by

Lρ(φt (x)+ϵη(x)) =
∫

(log(Jφt (x)+ϵη(x)(x))+ log(µ(φt (x)+ϵη(x))))ρ(x)d x

=
∫

(log(Jφt (x)+ϵη(x)(x))ρ(x)d x +
∫

log(µ(φt (x)+ϵη(x))))ρ(x)d x
(2.32)

For the one dimensional case, (2.32) becomes

Lρ(φt (x)+ϵη(x)) =
∫

log

(
dφt (x)

d x
+ϵdη(x)

d x

)
ρ(x)d x +

∫
(log(µ(φt (x)+ϵη(x))))ρ(x)d x (2.33)

Now consider inside equation (2.33) the perturbed target density,

µ(φt (x)) →µ(φt (x)+ϵη(x)).

The perturbed target density can be estimated by it’s first order Taylor polynomial around z =φt (x):

µ(φt (x)+ϵη(x)) ≈µ(z)+ϵη(x)
dµ(z)

d z
(2.34)

To further simplify (2.33) we will rewrite the formula of the logarithm of the perturbed target density (equation

(2.34)). For readability we introduce ∇zµ as a notation for dµ(z)
d z ,

log
(
µ(φt (x))+ϵη(x)

)≈ log
(
µ(φt (x))+ϵη(x)∇zµ(φt (x))

)
= log(µ(φt (x)))

(
1+ ϵη(x)∇zµ(φt (x))

µ(φt (x))

)
= log(µ(φt (x)))+ log

(
1+ ϵη(x)∇zµ(φt (x))

µ(φt (x))

)
≈ log(µ(φt (x)))+ ϵη(x)∇zµ(φt (x))

µ(φt (x))
.

(2.35)

In the last step we used that for small a,
log(1+a) ≈ a. (2.36)

We can now use this to find a final form for the log-likelihood of the perturbed flow:

Lρ(φt (x)+ϵη(x)) =
∫

log

(
dφt (x)

d x
+ϵdη(x)

d x

)
ρ(x)d x +

∫ (
log(µ(φt (x)))+ ϵη(x)∇zµ(φt (x))

µ(φt (x))

)
ρ(x)d x. (2.37)

Now, we will calculate the form where we can recognize the the functional derivative of equation 2.30. For
this, we calculate the difference of the log-likelihood and the perturbed log-likelihood. We can simplify the
expression by using linearity of the integral and calculation rules for the logarithm. For readability and since

this proof is for one dimension we use Jφt (x) for dφt (x)
d x , and Jη(x) for dηt (x)

d x . This results in

Lρ(φt (x)+ϵη(x))−Lρ(φt (x)) =
∫ (

log

(
1+ϵ Jη(x)

Jφt (x)

)
+ ϵη(x)∇zµ(φt (x))

µ(φt (x))

)
ρ(x)d x

(2.36)= ϵ

∫ Jη(x)

Jφt (x)
ρ(x)d x +

∫
ϵη(x)∇zµ(φt (x))

µ(φt (x))
ρ(x)d x

(2.38)

We will now first simplify the first integral with integration by parts, which can be found in appendix A.5.
Since this proof is for R1, for readability we introduce the notation ∇x = d

d x . We will also use the formula

12 2. Underlying principles

for ρt (z) from equation (2.12). Additionally, we use the assumption that η(x) vanishes at the boundary. The
simplification we find is∫ Jη(x)

Jφt (x)
ρ(x)d x = 0−

∫
∇x

(
ρ(x)

Jφt (x)

)
η(x)d x =−

∫
∇x (ρt (z))η(x)d x (2.39)

Now we will use the following expression, where we again use the notation for ∇z = d
d z :

∇x = d

d x
= d z

d x

d

d z
= dφt

d x

d

d z
= Jφt (x)

d

d z
= Jφt (x)∇z . (2.40)

Substituting this result into (2.39) results in the expression∫ Jη(x)

Jφt (x)
ρ(x)d x =−

∫
Jφt (x)∇z (ρt (z))η(x)d x (2.41)

Substitute this back in the expression (2.38) to find

Lρ(φt (x)+ϵη(x))−Lρ(φt (x)) =
∫ (

−Jφt (x)∇z (ρt (z))η(x)+ ϵη(x)∇zµ(φt (x))

µ(φt (x))

)
ρ(x)d x

=
∫ (

−Jφt (x)∇z (ρt (z))η(x)+ ϵη(x)∇zµ(z)

µ(z)

)
ρ(x)d x

(2.12)=
∫ (

Jφt (x)

(∇zµ(z)

µ(z)
ρt (z)−∇zρt (z)

))
ϵη(x)d x.

(2.42)

In this form we finally recognize the form as in equation (2.30)

2.3.2. Evolution of the flow function φt
Equation (2.29) is the gradient of the log-likelihood function, and therefore represents the direction of φt (x)
in which the log likelihood will increase the most. In [13] it is suggested to evolve φt (x) according to

φ̇t (x) = ut (φt (x)) (2.43)

where

ut (z) = ∇zµ(z)

µ(z)
ρt (z)−∇zρt (z). (2.44)

Notice that ut (z) is the gradient of the log-likelihood function divided by Jφt (x). This guarantees that φt (x)
evolves in an ascending direction of the log-likelihood function. Although choosing the gradient as a whole
for the direction would be the steepest ascent, we will give a motivation for this choice of ut (z). One important
characterization for normalizing flows is that only the current flow of the samples, z =φt (x) is needed for the
computation of the next flow. When we use the current flow of the samples z as input and find the gradient
of the log-likelihood from this, and use that we can always apply the identity map, we find the following
expression:

δLρ[ϕ◦φt]

δϕ

∣∣∣∣
ϕ=id

= ∇zµ(z)

µ(z)
ρt (z)−∇zρt (z), (2.45)

Thus,(2.44) corresponds to the evolution by steepest ascent on a modified log-likelihood function in which,
at time t, where at time t we use z =φt (x) as the current flow rather than the original x [13].

2.3.3. Evolution of the density function ρt
The flow φt (x) evolves over time in the direction of y(x). Now let us look at the evolution of ρt (z). Recall that
ρt (z) is the probability density of the variable z = φt (x) given that x is distributed according to ρ(x)[13]. We
want the distribution of the transformed data, ρt (z), to converge to the target distribution µ. Therefore, we
are interested in the evolution of the density ρt (z) over time. To formulate an expression for the evolution

of ρt (z), ∂ρt
∂t , we use that this satisfies the differential form of the continuity equation [14]. The continuity

equation describes the transport of for example particles. To apply it to a normalizing flow, we interpret the
current samples of the flow z =φt (x) as particles. In differential form the continuity equation is given by:

2.3. Density estimation - the continuous case 13

Lemma 2.3.4 (Differential form of the continuity equation). When we have that

• ρt (z) is the density function of continuous random variable z, that is interpreted as a moving particle,

z = φt (x), with density ρt (z) = ρ(x)
Jφt (x) , where ρ(x) the density function of continuous random variable x.

The evolution of the particles z =φt (x) is according ut (z) and ρt (φt (x)) is differentiable with respect to t.

• f is the flux density of z. f = ρt ut .

• σ is the generation of particles z per unit volume per unit time.

Then the differential form of the continuity equation [14] says that

∂ρt (z)

∂t
+∇· f =σ. (2.46)

To understand why the function satisfies the continuity equation, we can interpret the situation in terms
of a particle flow. As the particles x j flow from x to y(x) via φt (x) , their probability density ρt evolves from
the (unknown) initial ρ toward the target µ. We can view ρt as a conserved quantity that cannot be created or
destroyed, and therefore σ= 0. Intuitively this makes sense because the total probability is always equal to 1:
no particles are destroyed or created during the process. We now substitute f = ρt ut in the equation (2.46):

∂ρt (z)

∂t
+∇· (ρt ut) = 0. (2.47)

We will now use equation (2.47) to derive an explicit expression for ∂ρt (z)
∂t as in [13] by substituting ut (z) from

equation (2.44).

Lemma 2.3.5 (Explicit expression for the evolution of the density of the flow). Let ρt (z) be the density function

of continuous random variable z, that is interpreted as a moving particle, z =φt (x), with density ρt (z) = ρ(x)
Jφt (x) ,

where ρ(x) the density function of continuous random variable x. let µ be a density function. Let φt (x) evolve
according ut (z) from equation (2.44). The evolution of the density of the flow z is then given by

∂ρt (z)

∂t
=∇·

((
∇zρt (z)− ∇zµ

µ
ρt (z)

)
ρt (z)

)
. (2.48)

Proof. Substitute u(z) from equation (2.44) into the continuity equation (2.47)

∂ρt

∂t
+∇·

(
ρt

∇zµ(z)

µ(z)
ρt (z)−ρt∇zρt (z)

)
= 0. (2.49)

Therefore
∂ρt

∂t
=∇· (ρt (z)∇zρt (z)

)−∇·
(
ρt (z)∇zµ(z)

ρt (z)

µ(z)

)
=∇· (ρt (z)∇zρt (z)

)−(
∇zρt (z)

(
∇zµ(z)

ρt (z)

µ(z)

)
+ρt (z)∇·

(
∇zµ(z)

ρt (z)

µ(z)

)) (2.50)

Recall that the goal is to proof equation (2.48). We will do this by rewriting equation (2.48) in the form of
(2.50). We rewrite this using the product rule and use that ∇· (ρt∇ρt) =∇ρt∇ρt +ρt∇· (∇ρt) holds also by the
product rule. This gives us the desired expression of equation

∇·
((
∇zρt (z)− ∇zµ

µ
ρt (z)

)
ρt (z)

)
=∇zρt (z)

(
∇zρt (z)− ∇zµ

µ
ρt (z)

)
+ρt (z)∇·

(
∇zρt (z)− ∇zµ

µ
ρt (z)

)
=∇zρt (z)∇zρt (z)+ρt (z)∇· (∇zρt (z))−∇zρt (z)

(∇zµ

µ
ρt (z)

)
−ρt (z)

(∇zµ

µ
ρt (z)

)
=∇· (ρt (z)∇zρt (z)

)−(
∇zρt (z)

(
∇zµ(z)

ρt (z)

µ(z)

)
+ρt (z)∇·

(
∇zµ(z)

ρt (z)

µ(z)

))
= equation (2.50)

(2.51)

14 2. Underlying principles

We want the distribution of the transformed data, ρt (z) to converge to the target distribution µ. The first
step in showing this, is proving that the desired target µ is a stationary solution of the partial differential
equation (2.48). The consequence of this is that when ρt is equal to the target µ, it will stay at the target.
Therefore we rewrite equation (2.48) in the form where we can recognize that ρt (z) = µ(z) is a stationary
solution:

Proposition 2.3.6. Let ρt (z) be the density function of continuous random variable z, that is interpreted as a

moving particle, z = φt (x), with density ρt (z) = ρ(x)
Jφt (x) , where ρ(x) the density function of continuous random

variable x. let µ be a density function. When φt (x) evolves according ut (z) from equation (2.44). The evolution
of the density of the flow z can be written as

∂ρt

∂t
=∇·

(
µ(z)2∇

(
1

2

(
ρt (z)

µ(z)

)2))
(2.52)

Proof. We will substitute v = ρt
µ into equation (2.48), since then

ρt =µv.

Now taking the gradient. For the notation we use ∇ for ∇z . This gives

∇ρt =∇(µv) =µ∇v + v∇µ.

This gives the following expressions:
ρt∇ρt =µv(µ∇v + v∇µ)

=µ2v∇v +µv2∇µ (2.53)

∇µ
µ
ρ2

t =
∇µ
µ

(µv)2 =µv2∇µ. (2.54)

We will now substitute these expressions into equation (2.48):

∂ρt

∂t
(2.48)= ∇·

((
∇ρt − ∇µ

µ
ρt

)
ρt

)
=∇·

(
(∇ρt)ρt − ∇µ

µ
ρ2

t

)
=∇· (µ2v∇v +µv2∇µ−µv2∇µ)
=∇· (µ2v∇v)

(2.55)

By the chain rule

v∇v =∇
(

1

2
v2

)
. (2.56)

Substitute in equation (2.55) gives the form we desire in equation (2.52):

∂ρt

∂t
=∇·

(
µ2∇

(
1

2
v2

))
=∇·

(
µ2∇

(
1

2

(
ρt

µ

)2))
(2.57)

From the form in equation (2.52) we can conclude that ρt =µ is a stationary solution:

Lemma 2.3.7. ρt =µ is a stationary solution for ∂ρt
∂t .

Proof. A stationary solution is a constant solution. Therefore, the time derivative must be 0. Substituting
ρt =µ into (2.52) gives

∂ρt

∂t
= =∇·

(
µ2∇

(
1

2

((
ρt

µ

)2)))
=∇·

(
µ2∇

(
1

2

(
µ

µ

)2))
=∇·

(
µ2∇

(
1

2

))
=∇· (µ20

)= 0 (2.58)

In the section 2.4, Kullback-Leibler divergence will be used to show that for all initial probability densities
ρ0 converge to µ. In the next section, the evolution of ρt (x) we found in equation (2.52) will be applied to the
one-dimensional case, where x, y and z are one dimensional.

2.3. Density estimation - the continuous case 15

2.3.4. Example of the continuous case
Equation (2.52) provides a way to evolve ρt towards the target µ. To showcase that this evolution works,
we will find the numerical solution of the partial differential equation by implementing a finite difference
method. In this example we will look at the one dimensional case. Therefore, the divergence operator has
the same result as the gradient, which in the one dimensional case is the derivative. We will use central
differences to estimate the derivatives. The central difference method is a numerical method to approximate
derivatives. In the one dimensional case, equation (2.52) becomes

∂ρt

∂t
= ∂

∂z
·
(
µ2 ∂

∂z

(
1

2

((
ρt

µ

)2)))
(2.59)

Definition 2.3.8. For a function f (z) and a small step size∆z, the central difference approximation for the first
derivative at a point z0 is given by:

d

d z
f (z0) ≈ f (z0 +∆z)− f (z0 −∆z)

2∆z
(2.60)

In the case of formula (2.52),

f (z) =µ2 ∂

∂z

(
1

2

((
ρt

µ

)2))
(2.61)

To approximate the derivative inside the function f (z) we will apply the central differences again, but to

g (z) = 1

2

((
ρt

µ

)2)
(2.62)

From this approximation and formula (2.52), we can use finite differences to estimate ρt (z):

ρt (z) ≈ ρt−1(z)+∆t
∂ρt

∂t
(2.63)

Figure 2.8 is an example that shows the evolution from a uniform distribution on [-0.2, 0.2] towards the tar-
get Gaussian using central differences. Figure 2.9 shows the evolution from an exponential distribution with
λ= 1 towards the target Gaussian. These examples use time steps, ∆t = 0.001 and ∆z = 0.1. The code can be
found in appendix B.1 and B.2.

Figure 2.8: Numerical solution of (2.52), displaying the flow from a uniform distribution on [-0.2, 0.2] evolving towards the target Gaus-
sian. This example uses central differences with delta x = 0.1 and delta t = 0.001.

In these examples we see that the density of the current flow ρt (x), which in this plot is shown as ρ(z), con-
verges towards the target µ. To prove convergence for general initial initial probability density function ρ(x)
we will introduce Kullback-Leibler divergence in the next section.

16 2. Underlying principles

Figure 2.9: Numerical solution of (2.52), displaying the flow from an exponential distribution with λ = 1 evolving towards the target
Gaussian. This example uses central differences with delta x = 0.1 and delta t = 0.001.

2.4. Kullback-Leibler divergence
This chapter aims to show convergence of the solution of equation (2.52) towards the target µ. We consider
ρt to be the estimation of µ at time t . The Kullback-Leibler divergence, Dkl (µ,ρt), is a measure for dissimi-
larity of the two distributions µ and ρt [3]. To use the Kullback-Leibler divergence for the convergence of the
solution of equation (2.52), we will also need the Kullback-Leibler divergence of ρ̃t and ρ.

Definition 2.4.1 (Kullback-Leibler divergence). [3] Let X be a continuous random variable. The formula of
the Kullback-Leibler divergence for density functions p(x) and q(x) is given by

Dkl (p, q) =−
∫

p(x) ln q(x)d x −
(
−

∫
p(x) ln p(x)d x

)
=−

∫
p(x) ln

{
q(x)

p(x)

}
d x.

(2.64)

In the first part of this chapter (2.4.1), we will work towards this result by showing that minimizing Dkl (µ,ρt)
is the same as maximizing Lρ(φt (x)) (lemma (2.4.3)). In lemma 2.4.7, we will show that Dkl (µ,ρt) ≥ 0, with

equality if and only if ρt = µ. Then, in 2.4.8 we show that d
d t DK L(µt ,ρt) ≤ 0. We will use this to show that

Dkl (µ,ρt) does not stop decreasing until ρt (z) reaches the target µ(z). In equation (2.58) it was shown that µ
is a stationary solution. Therefore once ρt reaches the target µ, it will stay there.
However, the Kullback-Leibler divergence of µ and ρt is not enough for the proof of convergence. In section
2.4.2 we will look at the Kullback-Leibler divergence of ρ and ρ̃t , Dkl (ρ, ρ̃t). Recall that ρ̃t (x) is the current
estimation of the density ρ(x). We will use Dkl (ρ, ρ̃t) to give a more general argument to prove convergence
of the solution of equation (2.52) to µ.

2.4.1. Kullback-Leibler divergence of ρt and µ
We will use definition (2.64) to find the Kullback-Leibler divergence of µ and ρt , Dkl (µ,ρt):

Lemma 2.4.2.

Dkl (µ,ρt) =
∫
µ(z) log

(
µ(z)

ρt (z)

)
d z. (2.65)

2.4. Kullback-Leibler divergence 17

Proof.

Dkl (µ,ρt) :=−
∫
µ(z) log(ρt (z))d z −

(
−

∫
µ(z) log(µ(z))d z

)
=−

∫
µ(z) log

(
ρt (z)

µ(z)

)
d z

=
∫
µ(z) log

(
µ(z)

ρt (z)

)
d z.

(2.66)

Suppose the data x is being generated from a distribution µ(z). The density ρt (z) aims to model this
distribution. In chapter 2.2 we suggest that finding this density function can be done by maximizing the log-
likelihood. We will now show that minimizing the KL divergence with respect to t is the same as maximizing
the log likelihood of φt (x). Therefore, one way to determine φt (x) such that eventually ρt (z) ≈ µ(z) that is
suggested in [13] is to minimize the Kullback-Leibler divergence between µ(z) and ρt (z) with respect to t .

Lemma 2.4.3. Minimizing the DK L(µt ,ρt) has the same result as maximizing Lρ[φt].

Proof. Finding a maximum DK L(µt ,ρt) can be done by looking at where the time derivative is equal to 0. We
use linearity of the derivative and that the second integral is independent of t to find

d

d t
Dkl (µ,ρt) := d

d t

(
−

∫
µ(z) log(ρt (z))d z

)
− d

d t

(
−

∫
µ(z) log(µ(z))d z

)
=− d

d t

(
−

∫
µ(z) log(ρt (z))d z

)
= d

d t
Lµ[φ−1

t]
(2.67)

This last step follows from the invertibility of the flow function and lemma 2.3.1: the inverse flow function
maps random variable z with density µ(z), and after this map the density is given by ρt (z). This can then be
applied to the lemma 2.3.1. Since Lµ[φ−1

t] is maximal forφt (x) = y(x) and so is Lρ[φt], we get that minimizing
DK L(µt ,ρt) has the same result as maximizing Lρ[φt].

We want to use the Kullback-Leibler divergence as a measure of the dissimilarity of the two distributions
µ(z) and ρt (z)[13]. We will now work towards showing that the Kullback-Leibler divergence of µ and ρt does
not stop decreasing until ρt (z) reaches it’s target µ(z) [13]. To proof this, we first introduce some useful lem-
mas about the Kullback-Leibler divergence.

Lemma 2.4.4.
Dkl (µ,ρt) = 0 ⇐⇒ µ(z) = ρt (z) for all z, (2.68)

Proof. We will prove both ways:

1. Dkl (µ,ρt) = 0 ⇒ µ(z) = ρt (z), since∫
µ(z) log

(
µ(z)

ρt (z)

)
d z = 0 =⇒ log

(
µ(z)

ρt (z)

)
= 0

=⇒ µ(z)

ρt (z)
= 1

=⇒ µ(z) = ρt (z)

(2.69)

2. µ(z) = ρt (z) ⇒ Dkl (µ,ρt) = 0, since then for all z, log
(
µ(z)
ρt (z)

)
= log(1) = 0

We will now work toward proving Dkl (µ,ρt) ≥ 0. For this, we first need to show f (y) =− log(y) is a convex
function.

Definition 2.4.5 (Convex function). [3] A function f (y) is said to be convex if it has the property that every
chord lies on or above the function. This can be expressed as follows: ∀y ∈ [a,b],∀0 ≤λ≤ 1:

f (λa + (1−λ)b) ≤λ f (a)+ (1−λ) f (b). (2.70)

This is equivalent to the requirement that the second derivative of the function be everywhere positive. We call
the function f (y) strictly convex if equality only holds for λ= 0 and λ= 1.

18 2. Underlying principles

Lemma 2.4.6. f (y) =− log(y) is a strictly convex function

Proof. This follows from taking the second derivative:

d 2

d y2 (− log(y)) = 1

y2 >= 0 for all y , with equality only for lim
y→±∞ . (2.71)

Now we can use this result to apply Jensen’s inequality for continuous random variables (which can be
found in A.4) in the proof of the following:

Lemma 2.4.7.
Dkl (µ,ρt) ≥ 0, with equality if and only if µ= ρt (2.72)

Proof. We will apply Jensen’s inequality for continuous random variables, which can be found in appendix

A.4. Let X = ρt (z)
µ(z) = g (z). Then

E(X) =
∫
µ(z)g (z)d z =

∫
µ(z)

ρt (z)

µ(z)
d z =

∫
ρt (z)d z = 1. (2.73)

Introduce h(X) =− log(X). We can show that E(h(X)) = Dkl (µ,ρt):

E(h(X)) = E(h ◦ g (z)) =
∫
µ(z)

(
− log

(
ρt (z)

µ(z)

))
d z = Dkl (µ,ρt). (2.74)

Now we use that h(X) =− log(X) is a strictly convex function, so we can apply Jensen’s inequality:

Dkl (µ,ρt) = E(h(X)) ≥ h(E(X)) =− log(1) = 0, with equality if and only if µ= ρt . (2.75)

We have just shown that the Kullback-Leibler divergence is 0 if and only if the corresponding densities are
equal. We will now prove this as well for the derivative of the Kullback-Leibler divergence.

Lemma 2.4.8.
d

d t
DK L(µ,ρt) =−

∫
µ

ρt

∂ρt

∂t
d z =−

∫ (
µ3

ρt

)∣∣∣∣∇(
ρt

µ

)∣∣∣∣2

d z ≤ 0, (2.76)

Proof.

d

d t
DK L(µ,ρt)

(2.66)= d

d t

∫
µ(z)

(
log

µ(z)

ρt (z)

)
d z

=
∫
µ(z)

d

d t

(
logµ(z)− logρt (z)

)
d z

=−
∫
µ(z)

d

d t

(
logρt (z)

)
d z (since µ(z) is independent of t , the time derivative is 0)

=−
∫

µ

ρt

∂ρt

∂t
d z.

(2.77)

This equation can be further simplified to the form

d

d t
DK L(µ,ρt) =−

∫
µ

ρt
∇·

(
µ2∇

(
1

2

(
ρt

µ

)2))
d z (by substituting equation (2.52))

=
∫

∇
(
µ

ρt

)
µ2∇1

2

(
ρt

µ

)2

d x (by integration by parts, using that densities vanish at the border in infinity)

=
∫

∇
(
µ

ρt

)
µ2

(
ρt

µ

)
∇

(
ρt

µ

)
d x (chain rule)

=
∫ (

(∇µ)ρt

ρ2
t

− µρt

ρ2
t

)
µρt ·∇

(
ρt

µ

)
d z (quotient rule)

=
∫

−∇
(
ρt

µ

)
µ2

ρ2
t

µρt∇
(
ρt

µ

)
d z (quotient rule explained at the bottom of this proof)

=−
∫ (

µ3

ρt

)∣∣∣∣∇(
ρt

µ

)∣∣∣∣2

d z ≤ 0.

(2.78)

2.4. Kullback-Leibler divergence 19

In the second to last step we used the quotient rule:

−(∇ρt)µ+ρt∇µ
µ2 =−∇

(
ρt

µ

)
, and therefore

(∇µ)ρt

ρ2
t

− µρt

ρ2
t

=−∇
(
ρt

µ

)
µ2

ρ2
t

(2.79)

Lemma 2.4.9.

d

d t
DK L(µ,ρt) = 0 ⇐⇒ µ(z) = ρt (z) for all z, (2.80)

Proof. We will prove both directions:

1. For the direction where we assume that µ(z) = ρt (z), we can use that µ(z) is a stationary solution from

lemma 2.3.7. Therefore ∂ρt
∂t = 0, and thus d

d t DK L(µ,ρt) = 0 .

2. When d
d t DK L(µ,ρt) = 0, first notice that µ(z)

ρt (z) ̸= 0. Therefore we have that ∂ρt
∂t = 0. We have shown that

ρt (z) =µ(z) is a stationary solution for which this holds. However, we have not shown that it is the only
stationary solution. To proof this direction and complete the proof we will use the Kullback-Leibler
divergence of ρ and ρ̃t . This will be done in the next section in 2.4.17.

We can combine the results of lemmas 2.4.8 and 2.4.9 to conclude that finding ρt ≈µ can be done by min-
imizing the Kullback-Leibler divergence, instead of maximizing the log-likelihood. During this minimization
process, the Kullback-Leibler divergence of µ and ρt does not stop decreasing until ρt (z) reaches it’s target
µ(z) [13]. However, the proof of lemma 2.4.9 is not complete yet. To finish this prove and then use this to
show convergence of ρ̃t (x) to the target µ, in the next section we will look at the Kullback-Leibler divergence
of ρ and ρ̃t .

2.4.2. Kullback-Leibler divergence of ρ and ρ̃t

The aim is still to to prove convergence of ρ̃t (x) to the target µ for every initial density of the samples, ρ(x).
To accomplish a more general argument for the convergence of the solution of equation (2.52) to µ and to
complete the proof of lemma (2.4.9), in this section we consider the Kullback-Leibler divergence of ρ and
ρ̃t , DKL(ρ, ρ̃t). Intuitively, this makes sense since equation (2.11) shows that we want interpret ρ̃t (x) as a
current estimation of the density function ρ(x). For DKL(ρ, ρ̃t) we will also prove that the evolution is smaller
or equal to 0, with equality only when ρ̃t = ρ. From this we will retrieve that the Kullback-Leibler divergence
of ρ and ρ̃t will keep decreasing until ρ̃t reaches the target density ρ. This can be used to show convergence
of the solution of equation (2.52) to µ [13]. We start with using equation (2.64) from the definition to find the
Kullback-Leibler divergence of ρ and ρ̃t , Dkl (ρ, ρ̃t):

Lemma 2.4.10.

Dkl (ρ, ρ̃t) =
∫
ρ(x) log

(
ρ(x)

ρ̃t (x)

)
d x. (2.81)

We can derive the following form of DKL(ρ, ρ̃t):

Lemma 2.4.11.

DKL(ρ, ρ̃t) =
∫

log(ρ(x))ρ(x)d x −Lρ(φt). (2.82)

20 2. Underlying principles

Proof.

DKL(ρ, ρ̃t) =
∫

log

(
ρ

ρ̃t

)
ρd x

=
∫

log(ρ)ρd x −
∫

log(ρ̃t)ρd x

=
∫

log(ρ)ρd x −Lρ(φt).

Here we used that∫
log(ρ̃t)ρ

(2.9)=
∫

log(Jφt (x))µ(φt (x))ρd x

=
∫

log(Jφt (x))µ(φt (x))ρ(x)d x

(2.21)= Lρ(φt).

(2.83)

Lemma 2.4.12. Minimizing the Kullback-Leibler divergence of ρ and ρ̃t is the same as maximizing the log-
likelihood Lρ(φt (x)).

Proof. Is similar to that the proof of 2.4.3. Just as before, to minimize DKL(ρ, ρ̃t) we are looking for when
the time derivative equals 0. Notice that in the expression of equation (2.83), only Lρ(φt) is time dependent.
When taking the time derivative, all other parts of this expression become 0. Therefore

d

d t
DK L(ρ, ρ̃t) =− d

d t
Lρ(φt). (2.84)

This shows that minimizing the Kullback-Leibler divergence is the same as maximizing the log-likelihood of
ρ and ρ̃t .

The goal is to show that that the DKL(ρ, ρ̃t) will keep decreasing until ρ̃t reaches the target density ρ. For
this we need want to show that

d

d t
DK L(ρ, ρ̃t) ≤ 0, with equality if and only if ρ(x) = ρ̃t (x). (2.85)

Recall that in equation (2.5), y(x) maps the observed xi from random variable x to random variable y with
known density µ(y). In section 2.1.3 we introduced y as the composition of infinitesimal transformations
[13]. Let us now consider φt (x) to be the composition of two maps, φt (x) =φt1+t2 (x) = (φt2 ◦φt1)(x). We will
now analyze the log-likelihood of this composition:

Lemma 2.4.13. Let φt (x) =φt1+t2 (x) = (φt2 ◦φt1)(x). Then define

L̃ρ[φt1] =
∫

log(Jφt1
(x))ρ(x)d x. (2.86)

Using this notation, the log likelihood of the composition, Lρ[φt1+t2 (x)], is given by

Lρ[φt1+t2 (x)] = Lρt1
[φt2]+ L̃ρ[φt1], (2.87)

Proof. From applying the definition of the log-likelihood we get

Lρ[φt1+t2 (x)]
(2.21)=

∫ (
log

(
Jφt1+t2

(x)
)
+ log

(
µ(φt1+t2 (x))

))
ρ(x)d x. (2.88)

By the chain rule, the Jacobian of φt1+t2 ,

jφt1+t2
= jφt2

(φt1 (x)) jφt1
(x). (2.89)

Since the determinant is a multiplicative image [1],

Jφt1+t2
(x) = Jφt2

(φt1 (x)) Jφt1
(x). (2.90)

2.4. Kullback-Leibler divergence 21

Also notice that we can compute the log-likelihood associated with φt2 (y) under a distribution ρt1 (y),

Lρt1
[φt2] =

∫ (
log(Jφt2

(y))+ log(µ(φt2 (y)))
)
ρt1 (y)d y (2.91)

We will now combine the above statements:

L[φt1+t2 (x)] =
∫ (

log
(

Jφt2
(φt1 (x)) Jφt1

(x)
)
+ log

(
µ(φt1+t2 (x))

))
ρ(x)d x

=
∫ (

log(Jφt2
(φt1 (x))) + log(Jφt1

(x))+ log
(
µ(φt1+t2 (x))

))
ρ(x)d x

Now substitute y =φt1 (x) and log
(
µ(φt1+t2 (x))

)= log(µ(φt2 (φt1 (x)))),

=
∫ (

log(Jφt2
(y)) + log(Jφt1

(x))+ log
(
µ(φt2 (y))

))
ρ(x)d x

=
∫ (

log(Jφt2
(y)) + log

(
µ(φt2 (y))

))
ρ(x)d x +

∫ (
log(Jφt1

(x))
)
ρ(x)d x.

Now apply change of variables d x = d y

Jφt1 (x)
, ρt1 (y) = ρ(x)

Jφt1 (x)
and therefore

=
∫ (

log
(

Jφt2
(y)

)
+ log

(
µ(φt2 (y))

))
ρt1 (y)d y +

∫
log

(
Jφt1

(x)
)
ρ(x)d x

= Lρt1
[φt2]+ L̃ρ[φt1]

(2.92)

After the map φt1+t2 (x) we want to find the direction in which the log-likelihood of Lρ(φt1+t2) = Lρ(φt)
evolves. We compute the time derivative of Lρ(φt1+t2) at a fixed t1. We use that L̃ρ[φt1] does not depend on
t2. Therefore, at fixed t1 we get

d

d t
DK L(ρ, ρ̃t)

(2.84)= − d

d t
Lρ(φt) =− d

d t2
Lρt1

(φt2). (2.93)

In [13], it is stated that "on the other hand, modifying the intermediate time t1 does not affect the value of
DKL, just the relative weight of its components under the partition (2.88)". To understand this, let us write
explicitly what modifying the intermediate time t1 to t̃1 does. First notice that t = t1 + t2 = t̃1 + t̃2.

φt =φt1+t2 =φt2 (φt1) =φt2 ◦φt1 ,

φt1 =φtN ◦φtN−1 ◦ · · · ◦φt1 ,

φt2 =φtK ◦φtK−1 ◦ · · · ◦φtK−K ,

Substitute φt1 and φt2 into the expression of φt ,

φt =φtK ◦φtK−1 ◦ · · · ◦φtu−u ◦φN ◦ · · · ◦φN−N ,

=φt̃2
◦φt̃1

=φt̃1+t̃2

(2.94)

Therefore, when modifying the intermediate time t1 to t̃1 in equation (2.88)

L[φt1+t2 (x)] = L[φt (x)] = L[φt̃1+t̃2
] = Lρ t̃1

[φt̃2
]+ L̃ρ[φt̃1

]. (2.95)

From this it is clear that Lρ(φt) is not affected by modifying t1, and from equation (2.83) it follows that the
value of DKL does not change. Since modifying the intermediate time t1 does not affect the value of DKL, in
[13] it is suggested to calculate the limit in which t1 ↑ t and t2 ↓ 0 with t1 + t2 = t . This is useful, since then we
precisely obtain "the likelihood Lρt that determines the flow φt in (2.43)" [13], since

d

d t2
Lρt1

(φt2) → ut (φt) as t1 ↑ t and t2 ↓ 0 with t1 + t2 = t . (2.96)

This claim comes directly from article [13] and is in this paper not supported by a proof. This statement is
used to prove the following lemma:

Lemma 2.4.14.
d

d t
DK L(ρ, ρ̃t) =−

∫ ∣∣ut (φt (y))
∣∣2 d y ≤ 0 (2.97)

22 2. Underlying principles

Proof.
d

d t
DK L(ρ, ρ̃t) =− d

d t
Lρt

=− lim
ϵ→0

1

ϵ

(
L(φt+ϵ)−L(φt)

)
=−1

ϵ

(
L(φ+ϵφ̇t)−L(φt)

)
.

Now we will apply the formula of the functional derivative 2.30 on this

=−1

ϵ
ϵ

∫
δLρt

δφt
φ̇t (y)d y

(2.96)= −
∫ ∣∣ut (φt (y))

∣∣2 d y

≤ 0

(2.98)

This can be used to show equation (2.97) holds, with equality only when ρ̃t = ρ:

Lemma 2.4.15.
d

d t
DK L(ρ, ρ̃t) = 0 ⇐⇒ ρ = ρ̃t (2.99)

Proof. We use equation (2.97) find that

d

d t
DK L(ρ, ρ̃t) = 0 ⇐⇒ ut (φt (y)) = φ̇t (x) = 0 (2.100)

This means that the evolution of φt (x) is equal to 0, which means that the Jacobian is the identity matrix,
and therefore the Jacobian determinant Jφt (x) = 1. We find finish the proof by using the formula from (2.12):

ρt (z) = ρ(x)
Jφt (x) = ρ(x).

We can now derive the desired statement

Proposition 2.4.16. The Kullback-Leibler divergence ofρ and ρ̃t will keep decreasing until ρ̃t reaches the target
density ρ.

Proof. Follows directly from the equivalences of lemmas 2.4.15 and 2.4.14.

Now we can finally use this to finish the second statement of the proof of lemma 2.4.9. All we still needed
was the following:

Proposition 2.4.17.
d

d t
DK L(µ,ρt) = 0 ⇒µ(z) = ρt (z) for all z. (2.101)

Proof. We will prove the statement by proving the contrapositive:

µ(z) ̸= ρt (z) ⇒ d

d t
DK L(µ,ρt) ̸= 0 for all z. (2.102)

Suppose µ ̸= ρt , then we get

µ ̸= ρt ⇒ ρ ̸= ρ̃t

⇒ DK L(ρ, ρ̃t) ̸= 0

⇒ We have not reached a maximum of Lρ(φt).

⇒ We have not reached the maximum of DK L(µ,ρt).

⇒ d

d t
DK L(µ,ρt) ̸= 0.

(2.103)

We conclude the prove by contrapositive

We can now combine all the results into a theorem for convergence of ρ̃t (x) to the target µ(φt (x)) :

2.5. Individual flow requirements 23

Theorem 2.4.18 (Convergence of ρ̃t (x) to the targetµ(φt (x)). Let x be a random variable with density function
ρ(x). When φt (x) is given by (2.43), then the estimated density ρ̃t (x), calculated by 2.9 converges to the target
µ(φt (x)) for all initial densities of the random variable x.

Proof. Follows from lemmas 2.4.8, 2.4.7 and 2.4.9.

We have now shown convergence for all ρ̃t to ρ. However, when the flow functions keep the log-likelihood
constant, we will not reach the desired target density. Therefore in [13] the following restriction is proposed:

ρt ̸=µ ⇒ δLρt [φt]

δφt
̸= 0. (2.104)

In this equation, the variation is taken at fixed ρt . In the next section we will discuss other requirements for
the maps φt (x).

2.5. Individual flow requirements
It is clear from (2.7) and (2.8) that the functions φt (x) and φt (x)−1 need to be invertible and differentiable for
the purpose of a normalizing flow. In the section 2.4 we saw that for convergence of ρ̃t to ρ we only need the
constraint of equation (2.104). In this section we will discuss other requirements to enhance the performance
of the normalizing flow procedure that are suggested in [13].

• Over-resolution occurs when the flow φt (x) is excessively fine-tuned to the data points. The estimated
density function ρ̃t (x) then captures noise and minor variations rather than the underlying distribu-
tion. In other words, ρ̃t (x) then fails to represent a smooth continuous probability function. For this
reason we need smoothness of the maps φt (x). This can be ensured by restricting to maps with length
scale at all points larger than the typical distance between nearby flow-makers [13]. This smoothing is
done with a mollification factor. This factor makes sharp features smooth, while still remaining close to
the original. Later we will see how the parameter ϵ functions as mollifier to guarantee that when data
points are closer together, more mollification of the map happens. Figure 2.10 provides an example of
what overfitting would look like in the context of density estimation.

Figure 2.10: Histogram of 50 samples from the standard normal density. The density of the normal distribution is plotted as a red line.
The data is actually distributed according to this is the density function. The orange curve is an example of what overfitting on the data
would look like: the curve does not represent the correct underlying density, but rather captures minor variations in the data.

• Flexible and Simple maps that are computationally manageable are used as building blocks. These
blocks have to be flexible to have a fast convergence to arbitrary distributions ρ(x). One way of achiev-
ing flexibility would me to implement flow functions with many parameters. However, since for every

24 2. Underlying principles

iteration the parameters of the flow function need to be decided, this does have computational disad-
vantages. We also can achieve flexibility by keeping the flow simple and computationally manageable.
This can be done by taking many near identity maps. This second method is extremely flexible since
arbitrary densities can be built through the composition of simple maps [12], and computationally
manageable since we only have to decide a few parameters per iteration of the algorithm. Therefore
taking many near identity maps is preferred.

• Explicit forms of the flow and their parameters ensure our ability to easily compute the Jacobian and
the flow functions. By keeping computations in explicit form, the algorithm stays computationally
manageable.

3
Applying a linear normalizing flow

3.1. normalizing flow with µ(y) the standard Gaussian and a linear flow
The situation is the same as in section 2.1.1: we aim to estimate the underlying probability density function
of random variable x, ρ(x), from observations of this random x j , j = 1...m. We do this by looking for a map
y(x) to map observations towards the random variable x with unknown density towards the random variable
y with known density function µ(y). In this section, for µ(y) we will use the isotropic Gaussian.

µ(y) = N (0, In) = 1

(2π)
n
2

e−
∥y∥2

2 (3.1)

When function y(x) and µ(y) are known we can apply equation (2.1) to retrieve the density of x:

ρ(x) = Jy (x)µ(y(x)).

This section will first look at the case where we impose that the distribution of the sample data is a linear
map from the isotropic Gaussian. We then use a flow based architecture so that this restriction is no longer
necessary.

3.1.1. The map y(x) as a linear function
In this section we will investigate a linear function y(x). In some cases, it might be known or reasonable to
assume the density, ρ(x) of the random variable belonging to the samples is a linear transformation from the
known density, µ(y). This means we assume that there is a linear map from random variable x to random
variable y . Since we impose a linear transformation to the standard Gaussian, this is a parametric method.
We will follow a similar procedure as in [12]. The parameter β determines the linear function that is used:

yβ(x) = A(x −b)
(
β= {

A ∈Rn×n ,b ∈Rn})
. (3.2)

Just as before we choose β to maximize the log-likelihood of the data.

Lemma 3.1.1.

β= arg max
β∈{A,b}

L = arg max
β∈{A,b}

m∑
j=1

[
log

(
Jyβ (x j)

)
− ∥yβ(x)∥2

2

]
(3.3)

25

26 3. Applying a linear normalizing flow

Proof.

β= arg max
β∈{A,b}

L[yβ(x)]

= arg max
β∈{A,b}

m∑
j=1

[
log(ρ(x j ;β))

]
= arg max

β∈{A,b}

m∑
j=1

[
log(µ(yβ(x j))Jyβ (x j))

]
= arg max

β∈{A,b}

m∑
j=1

[
log(Jyβ(x) (x j))+ log

(
1

(2π)n e−
1
2 ∥yβ(x j)∥2

)]

= arg max
β∈{A,b}

m∑
j=1

[
log(Jyβ(x) (x j))− n

2
log(2π)− 1

2
∥yβ(x j)∥2

]
In this form we recognize that − n

2
log(2π) is independent of β, so

β= arg max
β∈{A,b}

m∑
j=1

[
log

(
Jyβ (x j)

)
− ∥yβ(x)∥2

2

]

Lemma 3.1.2. The output of the maximization of (3.3) is given by

b = x̄, A =Σ− 1
2 , (3.4)

Where Σ is the empirical covariance matrix, Σ = 1
m

∑m
j=1 x j x t

j , of the data and x̄ denotes the mean of the data

(x t
j resembles the transposed of x j). x̄ = 1

m

∑m
j=1 x j .

Proof. The log-likelihood L(yβ(x)) is dependent on the choice of β = {
A ∈Rn×n ,b ∈Rn

}
. We will now derive

the output of the maximization of equation (3.3) by setting the derivative of L with respect respect to b to 0.
Notice that the Jacobian matrix of yβ(x) = A(x −b) is given by

jyβ(x) =



∂yβ1
∂x1

∂yβ1
∂x2

· · · ∂yβ1
∂xn

∂yβ2
∂x1

∂yβ2
∂x2

· · · ∂yβ2
∂xn

...
...

. . .
...

∂yβn
∂x1

∂yβn
∂x2

· · · ∂yβn
∂xn



∂yβi

∂x j
= ∂

∂x j

(
Ai ,1(x1 −b1)+ Ai ,2(x2 −b2)+·· ·+ Ai ,n(xn −bn)

)
= Ai j .

(3.5)

Therefore we have that jyβ(x) = A. Therefore we combine equation (3.5), (3.2) and (3.3) to get the following:

L(yβ(x)) =
m∑

j=1

(
log(A)− ∥A(x j −b)∥2

2

)
(3.6)

Now take the derivative with respect to b:

L(yβ(x))

∂b
= ∂

∂b

m∑
j=1

−∥A(x j −b)∥2

2

=−
m∑

j=1

∂

∂b

(∥A(x j −b)∥2

2

)

=
m∑

j=1
AT A(x j −b)

(3.7)

3.1. normalizing flow with µ(y) the standard Gaussian and a linear flow 27

Where we used the following:
∥A(x j −b)∥2 = (A(x j −b))T (A(x j −b))

= (x j −b)T AT A(x j −b)
(3.8)

∂

∂b
(x j −b)T AT A(x j −b) =−2AT A(x j −b) (3.9)

Now we want to find the optimum, and therefore we set the derivative equal to 0.

L(yβ(x))

∂b
= AT A

m∑
j=1

(x j −b) = 0 (3.10)

Now use that A⊤A ̸= 0 since A is invertible, and therefore

m∑
j=1

(x j −b) = 0

m∑
j=1

x j = mb

b = 1

m

m∑
j=1

x j

= x̄

(3.11)

Now we still need to derive the expression A = Σ− 1
2 . Only the scalar of the transformation changes the co-

variance, the additive term does not. When the data is linearly transformed by matrix A, the covariance is
transformed by AΣAT . In our case random variable y is distributed as an isotropic Gaussian distribution,
so yβ(x) ∼ µ(y) = N (0, In). The covariance is therefore transformed to In . Therefore we can calculate A as
follows:

AΣAT = I

A−1 AΣAT (AT)−1 = A−1(AT)−1

ΣAT (AT)−1 = A−1(AT)−1

Σ= A−1(AT)−1

Σ−1 = AT A

A =Σ− 1
2

(3.12)

From equation (3.4) we can explain that a linear choice for yβ(x) results in subtracting the mean and
dividing by the square root of the covariance matrix [12]. Therefore, from equation (3.1) we find that the
density function of x, ρ(x) is given by:

ρ(x) = 1

(2π)
n
2 |Σ| 1

2

e−
1
2 (x−x̄)TΣ−1(x−x̄) (3.13)

The diagram in figure 3.1 summarizes the knowledge we acquired for a linear map yβ(x) onto the isotropic
Gaussian. The problem with this parametric procedure is that we assume an underlying probability, since we
assume there is a linear transformation from x onto y . However, this might not at all be the case. We solve
this by factoring the map y(x) into N parametric maps. This will be done in section 3.1.2

3.1.2. Linear flow functions to construct arbitrary y(x)
In section 3.1.1 we imposed that the data samples are from a particular distribution. We want the probabilis-
tic method is able to estimate complex and ideally arbitrary densities. For example, for the application of
probabilistic methods on deep neural networks we need to be able to estimate very complex densities. By the
restriction of the map, this might not be possible. In this section, we solve this by factoring the map y(x) into
N parametric maps, the flow functions, ϕβi (z):

yN (x) =ϕβN ◦ϕβN−1 ◦ · · · ◦ϕβ1 (x) (3.14)

28 3. Applying a linear normalizing flow

Figure 3.1: Flow chart of the normalizing flow algorithm. Where we assume the density ρ(x) is a linear transformation from the isotropic
Gaussian distribution.

The benefit of the flow based model is that the composition of many simple maps can be made arbitrarily
complex [12]. Therefore we can estimate the density of arbitrary density functions ρ(x). The map yβ(x)
depends on the family of parameters β = (β1 · · ·βN). By considering yβ(x) as a composition of functions we
can compute the ϕβi ’s sequentially by following ascent of the log-likelihood as explained in section 2.3.1.
First we calculate β1 from y1(x) =ϕβ1 (x) in (3.2), then we use β1 fixed at the value found in the prior step to
calculate y2(x) [12]:

y2(x) =ϕβ2 (ϕβ1 (x)) =ϕβ2 (y1(x)) =ϕβ2 (z). (3.15)

Where just as before in section 2.1.3 we introduce the notation z as the current flow of the observations: after
iteration i ,

z j = yi−1(x j) (3.16)

We always include the identity mapϕβi=0. Therefore each step will only increase the value of the log-likelihood.
Note that we do not maximize the log-likelihood, but only ascend the log-likelihood when computing the
next ϕβi , since maximizing the log-likelihood depending on β would result in the linear mapping (3.2), but
the idea is to also be able to construct non-linear maps via this composition.

Lemma 3.1.3. We can calculate the Jacobian of the current map yi (x j) sequentially based on the current flow
of the observation zi :

Jyi (x j) = Jϕi (z j)Jyi−1 (x j) (3.17)

Proof.

From the chain rule we have that:

J f ◦g (x) = J f (g (x))Jg (x)

Now we write out the expression of yi (x j) :

yi (x j) =ϕβi (ϕβi−1 (ϕβi−2 (. . . (ϕβ1 (x j)) . . .)))

Now we apply the chain rule to yi (x j) :

Jyi (x j) = Jϕβi

[
ϕβi−1

(
ϕβi−2 (. . . (ϕβ1 (x j)) . . .)

)]
Jϕβi−1

ϕβi−2
(...(ϕβ1 (x))...)(x j)

= Jϕβi
(yi−1(x j))Jyi−1 (x j)

(3.18)

In the diagram of figure 3.2, the scheme of figure 2.7 is rewritten in the case of a linear flow. Here we see
again the duality of the algorithm: as yi (x) converges to the real y(x), the estimated density, ρ̃i (x) converges
to ρ(x).

3.2. Example of a normalizing flow based on a linear flow function 29

Figure 3.2: Flow chart of the normalizing flow algorithm with ϕβi
(x) linear flow functions.

3.2. Example of a normalizing flow based on a linear flow function
To showcase that the normalizing flow probabilistic model based on a linear flow function can be used for
density estimation, we will provide examples of the procedure on real data. To create the examples we will
first specify a linear flow function, which is a parametric map that uses five parameters. This five parameter
map is used to create two examples. The first example uses samples from a normal density with mean 2 and
standard deviation 1. This showcases that this probabilistic model works, however, it could also be done with
the parametric procedure of section 3.1.1, since there is a linear map from this density towards the standard
normal density. The second example uses uses samples from an exponential density function withλ= 1. This
showcases the power of a flow based model for non parametric density estimation, since there is not a linear
map from the exponential density function towards this exponential density.

3.2.1. Five parameter linear flow function
In [13] a family of functions with five parameters (γ,σ, x0,ϕ0,ϵ) is used that satisfies the requirements from
section 2.5, given by

ϕα(x) = (1−σ)x +ϕ0 +γ
√
ϵ2 + [(1−σ)x −x0]2, (3.19)

with α = (γ,σ,ϕ0). An explanation of this five parameter family of functions is given below. To support the
explanation, figure 3.3 shows a plot of three cases of the five parameter function. The function f1(x) = x −1+√

(x −1)2 is plotted in green, f2(x) = x −1+
√

0.1+ (x −1)2 is plotted in blue and f3(x) = x −1+
√

1+ (x −1)2

is plotted in red.

• Notice that whenγ,σ, andϕ0 are zero, the map reduces to the identity. From the requirement of flexible
and simple maps it follows that these are chosen close to 0 in the ascent direction of the log-likelihood.
The parameters x0 and ϵ are not selected by ascent of the log likelihood, but we will see that these are
chosen to avoid over-resolution.

• The parameter σ quantifies the amount of stretching and ϕ0 the displacement of the data x.

• To increase the flexibility, but maintain smoothness, we introduce the additional termγ
√
ϵ2 + [(1−σ)x −x0]2.

– x0 is the point where ϕt (x) switches between dϕ/d x ≈ 1−σ−γ and dϕ/d x ≈ 1−σ+γ. That x0

is the location of the slope switch can clearly be seen in the figure 3.3. The value x0 is picked
at random from a standard normal distribution. This is motivated in [13] by the fact that that
then, near convergence, the number of opportunities for local distortions is proportional to the
density of the current flow of the samples ρt (z). This is because ρt (z) converges to µ(z), and in
this example, µ(z) is the standard normal.

– γ is the slope change at x0.

– The parameter ϵ mollifies the transition between the two slopes of the map to the left and right of
x0. The value of ϵ is x0-dependent:

ϵ=
√

2πnp exp

(
x2

0

2

)
, (3.20)

30 3. Applying a linear normalizing flow

where np is the desired average number of data points within the transition area. In figure 3.3, the
effect of the mollifier is shown.

Figure 3.3: Plots made with Geogabra, in particular showcasing the effect of the mollifier. The function f1(x) = x−1+
√

(x −1)2 is plotted

in green, f2(x) = x −1+
√

0.1+ (x −1)2 is plotted in blue and f3(x) = x −1+
√

1+ (x −1)2 is plotted in red.

As stated before, the parameter α = (γ,σ,ϕ0) are chosen close to 0 and in direction of ascent of the log-
likelihood. In [13] it is suggested to take at each step

α=∆t
∇αL√

1+δ2|∇αL|2
. (3.21)

In this formula ∆t and δ are adjustable parameters which control the size of the steps.We will now sum op all
the expressions needed to calculate ∇αL from equation (3.21). Since in the chapter 2 we used the notation
ϕt (x), we will adapt this notation now instead of ϕα(x).

L(x j) = 1

m

m∑
j=1

log(ρ̃t (x j)) (3.22)

∇α(L) =
[
∂L

∂γ

∂L

∂σ

∂L

∂ϕ0

]
(3.23)

∂L

∂γ
= 1

m

m∑
j=1

∂

∂γ
log(ρ̃t (x j)) = 1

m

m∑
j=1

1

ρ̃t (x j)

∂ρ̃t (x j)

∂γ
(3.24)

∂L

∂σ
= 1

m

m∑
j=1

1

ρ̃t (x j)

∂ρ̃t (x j)

∂σ
(3.25)

∂L

∂ϕ0
= 1

m

m∑
j=1

1

ρ̃t (x j)

∂ρ̃t (x j)

∂ϕ0
(3.26)

ρ̃t (x j) = Jy (x j)µ(ϕ̃t (x j)) = Jϕt (x j)Jy−1(x j)µ(ϕt (x j)) (3.27)

We work in R1, so

Jϕt (x j) = dϕt (x j)

d x
= (1−σ)+γ ((1−σ)x j −x0)(1−σ)√

ϵ2 + ((1−σ)x j −x0)2
. (3.28)

Also, µ is the standard Gaussian, so we have that

µ(ϕt (x j)) = 1p
2π

e−
(ϕt (x j))2

2 (3.29)

• Formulas needed for ∂L
∂γ :

– An expression for ∂ρ̃t
∂γ :

∂ρ̃t

∂γ
=

[(
∂

∂γ
Jϕt (x j)

)
µ(ϕt (x j))+ Jϕt (x j)

∂

∂γ
µ(ϕt (x j))

]
Jy−1 (3.30)

3.2. Example of a normalizing flow based on a linear flow function 31

– From equation (3.28)
∂

∂γ
Jϕt (x j) = ((1−σ)x j −x0)(1−σ)

ϵ2 + ((1−σ)x j −x0)2
(3.31)

– From equation (3.29) and the chain rule

∂

∂γ
µ(ϕt (x j)) = 1p

2π
e−

(ϕt (x j))2

2 (−ϕt (x j))
∂

∂γ
ϕt (x j) = 1p

2π
e−

(ϕt (x j))2

2 (−ϕt (xi))
√
ϵ2 + ((1−σ)x j −x0)2

(3.32)

• Formulas needed for ∂L
∂σ :

– An expression for ∂ρ̃t
∂σ :

∂ρ̃t (x j)

∂σ
=

[(
∂

∂σ
Jϕt (x j)

)
µ(ϕt (x j))+ Jϕt (x j)

∂

∂σ
µ(ϕt (x j))

]
Jy−1 (3.33)

– Let u = (1−σ)x j −x0.

– From equation (3.28) and the quotient rule

−1+γ
(−2(1−σ)x j +x0)

p
ϵ2 +u2 + x j u(1−σ)up

ε2+u2

ϵ2 +u2 (3.34)

– From equation (3.29) and the chain rule

∂

∂σ
µ(ϕt (x j)) = 1p

2π
e−

(ϕt (x j))2

2 (−ϕt (x j))
∂

∂σ
ϕt (x j)

= 1p
2π

e−
(ϕt (x j))2

2 (−ϕt (x j))

(
−x j +γ u(−x j)p

ϵ2 +u2

) (3.35)

• Formulas needed for ∂L
∂ϕ0

:

– An expression for ∂ρ̃t
∂ϕ0

:

∂ρ̃t

∂ϕ0
=

[(
∂

∂ϕ0
Jϕt (x j)

)
µ(ϕt (x j))+ Jϕt (x j)

∂

∂ϕ0
µ(ϕt (x j))

]
Jy−1 (3.36)

– Note that ∂
∂ϕ0

Jϕt (x j) = 0

– Also note that ∂
∂ϕ0

ϕt (x j) = 1 simplifies the expression for ∂
∂ϕ0

µ(ϕt (x j))

∂

∂ϕ0
µ(ϕt (x j)) = 1p

2π
e−

(ϕt (x j))2

2 (−ϕt (x j)) (3.37)

– Therefore
∂ρ̃t

∂ϕ0
= Jϕt (x j)

1p
2π

e−
(ϕt (x j))2

2 (−ϕt (x j)) (3.38)

3.2.2. Implementing a five parameter linear flow function
In this section we will be implementing the linear flow function of section 3.2.1 and evaluate the results. The
result of the prescribed normalizing flow in section 3.2.1 are plotted by Python code that can be found in the
appendix B.3. The result is the histogram of the data, the evolution of the log-likelihood and the estimated
densities of the data points. Recall that the aim of the flow is to transform the initial data samples into samples
of a standard normal random variable. The flow does so by increasing the log-likelihood in every iteration of
the flow. We can use the current flow to give an estimation of the ρ̃t (x).

32 3. Applying a linear normalizing flow

The first experiment is executing this five parameter normalizing flow on 100 samples of a random vari-
able x that is distributed as a normal random variable with mean 2 and standard deviation 1.

ρ(x) = 1p
2π

e
(x−2)2

2 . (3.39)

The normalizing flow of section 3.2.1 is implemented on 100 samples generated from normal distribution
with standard deviation 1 and mean 2. Other parameters are ∆t = 1, δ = 1000, np = 1. 500 iterations of the
described five parameter normalizing flow is given in figures 3.4, 3.5, 3.6 and 3.7. We see the expected results:
the histogram of the data after the flow looks like that of standard normal distributed samples. We see that
the log-likelihood converges to a maximum. We also see that the estimated densities, ρ̃(x) converge to the
real densities, ρ(x) of the standard normal with mean 2 and deviation 1.

3.2. Example of a normalizing flow based on a linear flow function 33

Figure 3.4: Normalizing flow of 5 parameter flow functions applied to samples from a normal density with mean 2 and standard deviation
1 after 0 iterations. Left shows the histogram of the data, the middle shows the evolution of the log-likelihood and the right shows the
estimated density of the data points. This flow uses parameters ∆t = 1, δ= 1000, np = 1.

Figure 3.5: Normalizing flow of 5 parameter flow functions applied to samples from a normal density with mean 2 and standard deviation
1 after 100 iterations.

Figure 3.6: Normalizing flow of 5 parameter flow functions applied to samples from a normal density with mean 2 and standard deviation
1 after 300 iterations.

Figure 3.7: Normalizing flow of 5 parameter flow functions applied to samples from a normal density with mean 2 and standard deviation
1 after 500 iterations.

34 3. Applying a linear normalizing flow

The second experiment is executing this five parameter normalizing flow on 100 samples of a random
variable x that is distributed according the exponential distribution with λ = 1. The exponential density
function is:

ρ(x) =
{
λe−λx if x ≥ 0,

0 otherwise.
(3.40)

The normalizing flow of section 3.2.1 implemented on 100 samples generated from the exponential with
λ= 1, ∆t = 1, δ= 1000, np = 0.01 and 18000 iterations is given in figures 3.8, 3.9, 3.10 and 3.11.

Figure 3.8: Normalizing flow of 5 parameter flow functions applied to samples from an exponential density with λ= 1 after 0 iterations.
Left shows the histogram of the data, the middle shows the evolution of the log-likelihood and the right shows the estimated density of
the data points. This flow uses parameters ∆t = 1, δ= 1000, np = 0.01.

Figure 3.9: Normalizing flow of 5 parameter flow functions applied to samples from an exponential density with λ = 1 after 2000 itera-
tions.

Figure 3.10: Normalizing flow of 5 parameter flow functions applied to samples from an exponential density with λ = 1 after 10000
iterations.

Figure 3.11: Normalizing flow of 5 parameter flow functions applied to samples from an exponential density with λ = 1 after 18000
iterations.

3.2. Example of a normalizing flow based on a linear flow function 35

The choice for δ ensures thatα is not drastically changing when the size of ∇αL is large, while keeping the
process computationally possible. This is necessary for some form of numerical stability: although the steps
of α are in a direction to increase the log-likelihood, if the size of ∇αL is very large, we might change α so
much that the log-likelihood after ϕα(x) actually decreases. While avoiding steps in the wrong direction, this
does mean we take smaller steps for increasing the log-likelihood. In the next experiment, this five parameter
normalizing flow is executed on 100 new samples of the exponential with λ = 1. However, we change δ to
100 instead. The result is plotted in figures 3.12 and 3.13. After 4000 iterations we see a better result with
respect to the log-likelihood than before, however, the evolution of the log-likelihood is less smooth. Figure
3.12 clearly shows a big step that decreases the log-likelihood. This misstep is a numerical issue. Figure 3.13
also clearly shows that the the following steps quickly increase the log-likelihood. The values log-likelihood
clearly show when a step is taken into the wrong direction. This suggests that although a smaller δ makes the
ascent of the log-likelihood less smooth, it can be beneficial for the maximization process.
The same result can be seen when we look at the scenario of the first experiment with samples from the
normal density with mean 2 and standard deviation 1. For this experiment the value δ = 1000 was used.
When we change this to δ= 100 and run the described 5 parameter normalizing flow algorithm we see faster,
but less smooth convergence. This is illustrated in figure 3.14.

Figure 3.12: Normalizing flow of 5 parameter flow functions applied to samples from an exponential density with λ = 1 after 400 iter-
ations. Left shows the histogram of the data, the middle shows the evolution of the log-likelihood and the right shows the estimated
density of the data points. This flow uses parameters ∆t = 1, δ = 100, np = 0.01. The middle image clearly shows a step decreasing the
log-likelihood.

Figure 3.13: Normalizing flow of 5 parameter flow functions applied to samples from an exponential density with λ = 1 and parameter
δ= 100 after 4000 iterations, showing the limited impact of the missteps on the log-likelihood.

36 3. Applying a linear normalizing flow

Figure 3.14: Normalizing flow of 5 parameter flow functions applied to samples from a normal density with mean 2 and standard devia-
tion 1 after 300 iterations. Left shows the histogram of the data, the middle shows the evolution of the log-likelihood and the right shows
the estimated density of the data points. This flow uses parameters ∆t = 1, δ = 100, np = 1. The evolution of the log-likelihood shows
some steps decreasing the log-likelihood. However, we also see fast convergence to a maximum of the log-likelihood.

4
Discussion

This paper explains the normalizing flow model for density estimation by their underlying principles. Many
of these underlying principles are motivated by results of sources [13] and [12]. Many of the statements of
the follow directly from these two sources. Not all statements from these papers are included in this paper.
Although this paper aims to give a comprehensive view on the underlying flow model, this is not fully ac-
complished. For example, we only proof proposition 2.3.3 for the one dimensional case. We also only use
examples in the one dimensional case in sections 2.3.4 and 3.2. There are also other parts of these papers not
included. For example, much about computational efficiency of the flows is not included, although this is an
important reason for the popularity of normalizing flows. Additionally, sometimes the motivations given in
these papers are not entirely understood. For example the proof of equation (2.96) is missing. Finally, there
are possibly many more sources about normalizing flows with different perspectives and explanations.
One example of a different source it [10]. This paper attempts to provide a unified perspective. Therefore,
looking into this paper could be interesting future research. Additionally, [10] focuses on the computational
trade-offs that need to be made when choosing a particular flow function. And relates it to subjects as gen-
erative modelling and supervised learning. It would be interesting to show the application of flow models in
areas related to machine learning, since there is a lot of research going on in this field currently.
Lastly, in this paper we only implement the five parameter flow from [13]. Future research could look at the
implementation of different flow functions and compare these. Future research could also include compar-
ing normalizing flows to other probabilistic models.

37

5
Conclusion

In this thesis, we explored the concept and application of normalizing flows as a method for density estima-
tion of data samples. We started by outlining the underlying principles of normalizing flows, which are non-
parametric, flow based probabilistic models. The model is non parametric and therefore does not assume
an underlying density of the data. This makes normalizing flows flexible and applicable to complex datasets.
The model is flow based since it approximates the underlying density function of sample data through a se-
quence of invertible and differentiable transformations. These transformations, or "flows," are designed to
progressively map a complex data distribution to a simpler one, often a standard Gaussian distribution. This
flow is then use to find an estimation of the density of the data. The success of the model is based on the con-
vergence of the estimated density towards the real density of the data when using a flow that increases the
log-likelihood. Additionally, this choice in flow function ensures that the current flow of the data converges
towards a standard Gaussian distribution. The convergence is shown with the help of the Kullback-Leibler
divergence, which is an estimate for the similarity of two density functions. Finally, this convergence is shown
in examples where a five parameter flow is applied to real data samples. Due to the flow based architecture,
where the samples are transformed through many relative simple maps, the normalizing flow model has the
flexibility to estimate density functions from complex data samples, while staying computationally manage-
able.

39

A
Additional definitions and theorems

A.1. Definition of the Jacobian matrix
Definition A.1.1 (Jacobian matrix). Let y(x) be a function that maps a vector x ∈Rn to a vector y ∈Rn : y :Rn →
Rn , given by

y(x) =


y1(x)
y2(x)

...
yn(x)

 .

The Jacobian matrix, jy , of function y(x) is the n ×n matrix that contains all the first-order partial deriva-
tives of the function. Each element (jy)kl is the partial derivative of yk with respect to xl :

jy (x) =


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

...
...

. . .
...

∂yn
∂x1

∂yn
∂x2

· · · ∂yn
∂xn



We use the notation Jy for the determinant of the Jacobean matrix of transformation y.

A.2. Change of variables in Rn

Theorem A.2.1. [4] If the mapping F is injective on U , then, for any measurable set A ⊂ U and any Borel
function g ∈ L1(Rn), one has the equality∫

A
g (F (x))JF (x) d x =

∫
F (A)

g (y)d y.

That g is a Borel function g ∈ L1(Rn) means that g is Lebesque measurable. This is necessary so the integral is
finite. [4].

A.3. Divergence theorem
The divergence theorem, commonly referred to as Gauss’s theorem, states that the volume integral of the
divergence of a vector field within a region enclosed by a surface is equivalent to the surface integral of the
vector field over that closed surface. A more formal statement is given in [8]: suppose V is a subset of Rn ,
which is closed and bounded with piecewise smooth boundary S = δV . let U ⊂Rn . If F : U →Rn is a continu-
ously differentiable vector field, then ∫

(δ ·F)dV =
∫
δV
Fn̂dS. (A.1)

41

42 A. Additional definitions and theorems

A.4. Jensen’s inequality
Jensen’s inequality for the probability distribution of random variable X and a convex function f (X), where
X has probability density function p(X) can be written as

E[f (X)] ≥ f (E[X]) (A.2)∫
f (X)p(X)d X ≥ f

(∫
X p(X)d X

)
. (A.3)

A.5. Integration by parts
Theorem A.5.1. [11] Suppose F and G are differentiable functions on [a,b],F ′ = f ∈R, andG ′ = g ∈R. Then∫ b

a
F (x)g (x)d x = F (b)G(b)−F (a)G(b)−

∫ b

a
f (x)G(x)d x. (A.4)

A.6. Law of the subconscious statistician for discrete random variables
Lemma A.6.1 (Law of the subconscious statistician for discrete random variables). [7] If x is a discrete random
variable and g :R→R, then

E(g (x)) = ∑
x j ∈Imx

g (x j)P (x = x j) (A.5)

whenever this sum converges absolutely.

A.7. Law of the subconscious statistician for continuous random variables
Lemma A.7.1 (Law of the subconscious statistician for continuous random variables). [7] If x is a continuous
random variable with density function ρ(x) and g :R→R, then

E(g (x)) =
∫

g (x)µ(x)d x (A.6)

whenever this integral converges absolutely.

B
Code

B.1. Numerical solution of equation (2.52) as plotted in figure 2.8
The code below has ρ(x) as the uniform density on [−0.2,0.2] as in figure 2.8.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.stats import norm
4

5 # Define the standard normal PDF
6 def mu(z):
7 return norm.pdf(z)
8

9 # Initial condition: exponential pdf for z > 0, and 0 for z <= 0
10 def initial_condition(z, lambda_param):
11 return np.where(np.abs(z) <= 0.2, 1/0.4 , 0)
12 #return np.where(z > 0, lambda_param * np.exp(-lambda_param * z), 0)
13

14 # Boundary condition (assuming rho is zero at boundaries)
15 def boundary_condition(t):
16 return (0, 0)
17

18 # Discretization parameters
19 dx = 0.1
20 dt = 0.001
21 t_max = 3
22 L = 5.0
23 z = np.arange(-L, L+dx , dx)
24 nz = len(z)
25 t = np.arange(0, t_max+dt , dt)
26 nt = len(t)
27

28 # Initialize the solution matrix
29 rho = np.zeros ((nt, nz))
30

31 # Set initial condition with a lambda parameter for the exponential distribution
32 lambda_param = 1.0
33 rho[0, :] = initial_condition(z, lambda_param)
34

35 # Time -stepping loop
36 for n in range(0, nt -1):
37 for i in range(1, nz -1):
38 mu_z = mu(z[i])
39 mu_z_plus = mu(z[i+1])
40 mu_z_minus = mu(z[i-1])
41

42 mu_phi_plus = mu(z[i+1]) **2 * ((rho[n, i+1] / mu_z_plus)**2 - (rho[n, i] /
mu_z)**2) / (2 * dx)

43 mu_phi_minus = mu(z[i-1]) **2 * ((rho[n, i] / mu_z)**2 - (rho[n, i-1] /
mu_z_minus)**2) / (2 * dx)

44

45 d_mu_phi_dz = (mu_phi_plus - mu_phi_minus) / (2 * dx)

43

44 B. Code

46

47 # Update rho
48 rho[n+1, i] = rho[n, i] + dt * d_mu_phi_dz
49

50 # Apply boundary conditions
51 rho[n+1, 0], rho[n+1, -1] = boundary_condition(t[n+1])
52

53 # Print the solution at multiple time steps
54 if n % 300 == 0: # Adjust the step size as needed
55 print(f"Time step {n+1}, Time {t[n+1]:.5f}")
56 print(rho[n+1, :])
57

58 # Plotting the results
59 plt.figure(figsize =(10, 6))
60 for i in range(0, len(t), 300): # Adjust the step size as needed
61 plt.plot(z, rho[i, :], label=f’t={t[i]:.5f}’)
62 plt.xlabel(’z’)
63 plt.ylabel(r’$\rho(z)$’)
64 plt.legend ()
65 plt.show()

B.2. Numerical solution of equation (2.52) as plotted in figure 2.9
The code below has ρ(x) as the exponential density with λ= 1 as in figure 2.8.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.stats import norm
4

5 # Define the standard normal PDF
6 def mu(z):
7 return norm.pdf(z)
8

9 # Initial condition: exponential pdf for z > 0, and 0 for z <= 0
10 def initial_condition(z, lambda_param):
11 return np.where(z > 0, lambda_param * np.exp(-lambda_param * z), 0)
12

13 # Boundary condition (assuming rho is zero at boundaries)
14 def boundary_condition(t):
15 return (0, 0)
16

17 # Discretization parameters
18 dx = 0.1
19 dt = 0.001
20 t_max = 5
21 L = 5.0
22 z = np.arange(-L, L+dx , dx)
23 nz = len(z)
24 t = np.arange(0, t_max+dt, dt)
25 nt = len(t)
26

27 # Initialize the solution matrix
28 rho = np.zeros((nt, nz))
29

30 # Set initial condition with a lambda parameter for the exponential distribution
31 lambda_param = 1.0
32 rho[0, :] = initial_condition(z, lambda_param)
33

34 # Time -stepping loop
35 for n in range(0, nt -1):
36 for i in range(1, nz -1):
37 mu_z = mu(z[i])
38 mu_z_plus = mu(z[i+1])
39 mu_z_minus = mu(z[i-1])
40

41 mu_phi_plus = mu(z[i+1]) **2 * ((rho[n, i+1] / mu_z_plus)**2 - (rho[n, i] /
mu_z)**2) / (2 * dx)

42 mu_phi_minus = mu(z[i-1]) **2 * ((rho[n, i] / mu_z)**2 - (rho[n, i-1] /
mu_z_minus)**2) / (2 * dx)

43

B.3. Example five parameter normalizing flow 45

44 d_mu_phi_dz = (mu_phi_plus - mu_phi_minus) / (2 * dx)
45

46 # Update rho
47 rho[n+1, i] = rho[n, i] + dt * d_mu_phi_dz
48

49 # Apply boundary conditions
50 rho[n+1, 0], rho[n+1, -1] = boundary_condition(t[n+1])
51

52 # Print the solution at multiple time steps
53 if n % 1000 == 0: # Adjust the step size as needed
54 print(f"Time step {n+1}, Time {t[n+1]:.5f}")
55 print(rho[n+1, :])
56

57 # Plotting the results
58 plt.figure(figsize =(10, 6))
59 for i in range(0, len(t), 1000): # Adjust the step size as needed
60 plt.plot(z, rho[i, :], label=f’t={t[i]:.5f}’)
61 plt.xlabel(’z’)
62 plt.ylabel(r’$\rho(z)$’)
63 plt.legend ()
64 plt.show()

B.3. Example five parameter normalizing flow
This is the code for the example using samples from the exponential density function. This code is very
similar to the code used for the example with samples from the normal density with mean 2 and standard
deviation 1. To find this a similar figure, change line 40 to

1 x = np.random.normal(loc=2, scale=1, size =100)

and change line 173 to "delta = 1000" and line 174 to "n_p=1". For the experiment. To find similar figures of
the experiment in this paper, is also advisable to change line 177 to "for t in range(0,1000):" and line 201 to if
"t%100 == 0:". To find the examples from the figures, the code is run in Jupyter Notebook.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.stats import expon
4 from scipy.stats import norm
5 from scipy.stats import expon
6

7

8 def generate_centered_exponential_samples(lam=1, num_samples =100):
9

10 # Generate samples from the exponential distribution
11 exponential_samples = expon.rvs(scale =1/lam , size=num_samples)
12

13 # Center the samples
14 centered_samples = exponential_samples #- np.mean(exponential_samples)
15

16 return centered_samples
17

18 def plot_samples_histogram(samples):
19

20 #plt.figure(figsize =(8, 6))
21

22 # Calculate the histogram
23 counts , bins = np.histogram(samples , bins =20)
24

25 # Normalize the histogram
26 bin_width = bins [1] - bins [0]
27 normalized_counts = counts / (counts.sum()* bin_width)
28

29 # Plot the histogram
30 plt.bar(bins[:-1], normalized_counts , width=bin_width , edgecolor=’blue’, color=

’blue’, alpha =0.7)
31

32 plt.title(’Histogram of the data’)
33 plt.xlabel(’z=x’)
34 plt.ylabel(r’$\rho(z)$’, labelpad =20)
35 #plt.grid(True)

46 B. Code

36 plt.xlim(-4, 4)
37 #plt.show()
38

39 #Generate and plot the samples
40 x = generate_centered_exponential_samples ()
41 plot_samples_histogram(x)
42

43

44

45 def plot_likelihood(data):
46 # Find the minimum and maximum values in the array
47 min_val = np.min(data)
48 max_val = np.max(data)
49

50 # Create a plot
51 plt.plot(data , linestyle=’-’)
52

53 # Set the y-axis limits based on the min and max values
54 plt.ylim(min_val - 1, max_val + 1)
55

56 # Adding labels and title
57 plt.xlabel(’iteration ’)
58 plt.ylabel(’log -likelihood ’)
59 plt.title(’The evolution of the log -likelihood ’)
60

61 def Log_likelihood(rho_tilde):
62 return np.sum(np.log(rho_tilde))
63

64 def plot_estimated_density(x,y):
65 #initialization: we start with gues rho(x) is the standard normal density
66 x_for_density = np.linspace (-5,5,1000)
67 rhox_for_density = 1/np.sqrt (2*np.pi)*np.exp(-((x_for_density)**2) /2)
68 plt.plot(x_for_density , rhox_for_density , label=’Standard Normal Density ’)
69 plt.scatter(x, y, label=’Current density estimate ’)
70 plt.xlabel(’x’)
71 plt.ylabel(’Density ’)
72 plt.title(’Plot of estimated Density ’)
73 plt.legend(loc=’upper right’, fontsize=’small ’)
74 #plt.grid(True)
75 #plt.show()
76 #plot_estimated_density(x_for_density , rhox_for_density)
77

78 x_axis = x
79 #initial values
80 #rho is at the start the standard normal density function
81 #the phi is at the start just the identity , so the total jacobian is 1
82 rho0 = np.array ([(1/(np.sqrt (2*np.pi)))*np.exp(-((xj)**2) /2) for xj in x])
83

84 #de begin jacobian is de identiteit want phi0 is de identiteit
85 Jacobian_t = np.array ([1 for s in x])
86 #we beginnen met phi0 = de identiteit , dan is alfa 0 en dus sigma , gamma en phi_0
87 sigma = 0
88 gamma = 0
89 phi_0 = 0
90 #after the identity tranformation , the data is still the same , thus phix = x
91 phix = x
92

93 #the current estimated density of the samples
94 rho_tilde = rho0
95

96

97 #mu(y) with mu as N(0,1)
98 def mu(phix):
99 return np.array ([(1/(np.sqrt ((2*np.pi))))*np.exp(-((zj)**2) /2) for zj in phix])

100

101

102 def rho_tilde_t(phix , Jacobian_t):
103 #jacobian_t is the jacobian det of the total transformation this far , not a

smaller the jacobian of a smaller phi
104 return np.array ([Jacobian_t[j] * mu(phix)[j] for j in range(0, len(phix))])
105

B.3. Example five parameter normalizing flow 47

106

107 def Jacobian_phi(x, sigma ,gamma , epsilon , x0):
108 return np.array ([1-sigma + gamma *((1- sigma)*xj - x0)*(1- sigma)/np.sqrt(epsilon

2 +((1- sigma)*xj - x0)2) for xj in x])
109

110

111 def delta_Jacobian_t_gamma(x, sigma , epsilon , x0):
112 return np.array ([((1 - sigma)*xj - x0)*(1- sigma)/(np.sqrt(epsilon **2+((1 - sigma)*

xj - x0)**2)) for xj in x])
113

114 def delta_mu__t_gamma(phix , sigma , epsilon , x0, x):
115 return np.array ([(1/np.sqrt ((2*np.pi)))*np.exp(-(phix[j]**2) /2)*(-phix[j])*np.

sqrt(epsilon **2+((1 - sigma)*x[j]-x0)**2) for j in range(0,len(phix))])
116

117 def delta_rho_tilde_gamma(phix , Jacobian_t ,sigma , epsilon , x0, x):
118 Jacobian_phi1 = Jacobian_phi(x, sigma ,gamma , epsilon , x0)
119 delta_Jacobian_t_gamma1 = delta_Jacobian_t_gamma(x, sigma , epsilon , x0)
120 delta_mu__t_gamma1 = delta_mu__t_gamma(phix , sigma , epsilon , x0 ,x)
121 return (delta_Jacobian_t_gamma1 * mu(phix) + Jacobian_phi1*delta_mu__t_gamma1)*

Jacobian_t
122

123 def dLdgamma(phix , rho_tilde , delta_rho_tilde_gamma):
124 m = len(phix)
125 summation = 0
126 for j in range(0,m):
127 summation += (1/ rho_tilde[j])*delta_rho_tilde_gamma[j]
128 #print(summation)
129 return 1/m*summation
130

131 def delta_Jacobian_t_sigma(phix , sigma ,gamma , epsilon , x0,x):
132 return np.array ([-1+ gamma *(((-2*(1 - sigma)*x[j] +x0)*np.sqrt(epsilon **2+((1 -

sigma)*x[j]-x0)**2)+x[j]*((1- sigma)*x[j]-x0)*(1-sigma)*((1- sigma)*x[j]-x0))/(np.
sqrt(epsilon **2+((1 - sigma)*x[j]-x0)**2)))/(epsilon **2 + ((1- sigma)*x[j]-x0)**2) for
j in range(0, len(phix))])

133

134 def delta_mu__t_sigma(phix , sigma ,gamma , epsilon , x0 ,x):
135 return np.array ([(1/np.sqrt (2*np.pi))*np.exp(-(phix[j]**2) /2)*(-phix[j])*((-x[j

])+(gamma *((1- sigma)*x[j]-x0)*(-x[j]))/np.sqrt(epsilon **2+((1 - sigma)*x[j]-x0)**2))
for j in range(0, len(phix))])

136

137 def delta_rho_tilde_sigma(phix , Jacobian_t ,sigma , gamma , epsilon , x0 ,x):
138 Jacobian_phi1 = Jacobian_phi(x, sigma ,gamma , epsilon , x0)
139 delta_Jacobian_t_sigma1 = delta_Jacobian_t_sigma(phix , sigma ,gamma , epsilon , x0

,x)
140 delta_mu__t_sigma1 = delta_mu__t_sigma(phix , sigma ,gamma , epsilon ,x0,x)
141 return (delta_Jacobian_t_sigma1 * mu(phix) + Jacobian_phi1*delta_mu__t_sigma1)*

Jacobian_t
142

143

144 def dLdsigma(phix , rho_tilde , delta_rho_tilde_sigma):
145 m = len(phix)
146 summation = 0
147 for j in range(0,m):
148 summation += (1/ rho_tilde[j])*delta_rho_tilde_sigma[j]
149 return 1/m*summation
150

151

152 def delta_mu__t_phi_0(phix , sigma ,gamma , epsilon ,x0 ,x):
153 return np.array ([(1/np.sqrt (2*np.pi))*np.exp(-(zj**2) /2)*(-zj) for zj in phix])
154

155

156 def delta_rho_tilde_phi_0(phix , Jacobian_t ,sigma , gamma , epsilon , x0 ,x):
157 Jacobian_phi1 = Jacobian_phi(x, sigma ,gamma , epsilon , x0)
158 delta_mu_t_phi_0 = delta_mu__t_phi_0(phix , sigma ,gamma , epsilon ,x0,x)
159 return (Jacobian_phi1*delta_mu_t_phi_0)*Jacobian_t#*(- Jacobian_t)
160

161 def dLdphi_0(phix , rho_tilde , delta_rho_tilde_phi_0):
162 m = len(phix)
163 summation = 0
164 for j in range(0,m):
165 summation += (1/ rho_tilde[j])*delta_rho_tilde_phi_0[j]

48 B. Code

166 return 1/m*summation
167

168

169

170

171 Delta_t = 1
172 delta = 100
173 n_p = 0.01
174 Log_evolution = []
175

176 for t in range (0 ,4000):
177 #x0 is random sample of N(0,1)
178 x0 = np.random.normal(loc=0, scale =1)
179 epsilon = np.sqrt (2*np.pi)*n_p*np.exp((x0**2) /2)
180 delta_rho_tilde_gamma1 = delta_rho_tilde_gamma(phix , Jacobian_t ,sigma , epsilon ,

x0,x)
181

182 delta_rho_tilde_sigma1 = delta_rho_tilde_sigma(phix , Jacobian_t ,sigma ,gamma ,
epsilon , x0,x)

183

184 delta_rho_tilde_phi_01 = delta_rho_tilde_phi_0(phix , Jacobian_t ,sigma ,gamma ,
epsilon , x0,x)

185

186 gradL = [dLdgamma(phix ,rho_tilde , delta_rho_tilde_gamma1), dLdsigma(phix ,
rho_tilde , delta_rho_tilde_sigma1), dLdphi_0(phix ,rho_tilde , delta_rho_tilde_phi_01
)]

187 alpha = np.array([Delta_t * grad / np.sqrt(1 + delta **2 * np.linalg.norm(grad)
**2) for grad in gradL])

188 gamma , sigma , phi_0 = alpha[0], alpha [1], alpha [2]
189 x = phix
190 phix = (1 - sigma) * phix + phi_0 + gamma * np.sqrt(epsilon **2 + ((1 - sigma) *

phix - x0)**2)
191 phix = np.nan_to_num(phix , nan =0.0)
192

193

194 Jacobian_t = Jacobian_t * np.array ([(1- sigma) + gamma * ((1- sigma)*xj -x0)*(1-
sigma)/(np.sqrt(epsilon **2 + ((1-sigma)*xj-x0)**2)) for xj in x])

195

196 #update the estimate density rho tilde t
197

198 rho_tilde = rho_tilde_t(phix , Jacobian_t)
199 Log_evolution.append(Log_likelihood(rho_tilde))
200 if t%200 == 0:
201 plt.figure(figsize =(20, 5))
202

203 plt.subplot(1, 3, 1)
204 plot_samples_histogram(x)
205

206 plt.subplot(1, 3, 2)
207 plot_likelihood(Log_evolution)
208

209 plt.subplot (1,3,3)
210 plot_estimated_density(x_axis ,rho_tilde)
211 plt.tight_layout ()
212 plt.show()
213 print("log -likelihood", Log_likelihood(rho_tilde))

Bibliography

[1] Fraleigh Beauregard. Linear algebra. Pearson South Africa, 2000.

[2] Fetsje Bijma, Marianne Jonker, and Aad van der Vaart. Inleiding in de statistiek. epsilon uitgaven, 2017.

[3] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

[4] Vladimir I Bogachev. Operations on measures and functions. Measure Theory, pages 175–248, 2007.

[5] Prachi Goyal, Sunil Gulia, and S.K. Goyal. Identification of air pollution hotspots in urban areas - an
innovative approach using monitored concentrations data. Science of The Total Environment, 798:
149143, 2021. ISSN 0048-9697. doi: https://doi.org/10.1016/j.scitotenv.2021.149143. URL https:
//www.sciencedirect.com/science/article/pii/S0048969721042169.

[6] Walter Greiner and Joachim Reinhardt. Field quantization. Springer Science & Business Media, 2013.
Page 37.

[7] Geoffrey Grimmett and Dominic JA Welsh. Probability: an introduction. Oxford University Press, 2014.

[8] Erwin Kreyszig, Herbert Kreyszig, and Edward J. Norminton. Advanced Engineering Mathematics. John
Wiley and Sons, 10 edition, 2011. ISBN 978-0-470-45836-5.

[9] Reabal Najjar. Redefining radiology: a review of artificial intelligence integration in medical imaging.
Diagnostics, 13(17):2760, 2023.

[10] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning
Research, 22(57):1–64, 2021.

[11] Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York, 1964.

[12] Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation algorithms. Com-
munications on Pure and Applied Mathematics, 66(2):145–164, 2013.

[13] Esteban G Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the log-likelihood.
Communications in Mathematical Sciences, 8(1):217–233, 2010.

[14] EM Wahba. Derivation of the differential continuity equation in an introductory engineering fluid me-
chanics course. International Journal of Mechanical Engineering Education, 50(2):538–547, 2022.

49

https://www.sciencedirect.com/science/article/pii/S0048969721042169
https://www.sciencedirect.com/science/article/pii/S0048969721042169

	introduction
	Underlying principles
	The normalizing flow process
	The idea behind normalizing flows
	Example of the idea of normalizing flows
	Introducing density estimation via flow functions
	Density estimation for flow based models

	Log-likelihood function
	Density estimation - the continuous case
	Log-likelihood in the continuous case
	Evolution of the flow function t
	Evolution of the density function t
	Example of the continuous case

	Kullback-Leibler divergence
	Kullback-Leibler divergence of t and
	Kullback-Leibler divergence of and t

	Individual flow requirements

	Applying a linear normalizing flow
	normalizing flow with (y) the standard Gaussian and a linear flow
	The map y(x) as a linear function
	Linear flow functions to construct arbitrary y(x)

	Example of a normalizing flow based on a linear flow function
	Five parameter linear flow function
	Implementing a five parameter linear flow function

	Discussion
	Conclusion
	Additional definitions and theorems
	Definition of the Jacobian matrix
	Change of variables in Rn
	Divergence theorem
	Jensen's inequality
	Integration by parts
	Law of the subconscious statistician for discrete random variables
	Law of the subconscious statistician for continuous random variables

	Code
	Numerical solution of equation (2.52) as plotted in figure 2.8
	Numerical solution of equation (2.52) as plotted in figure 2.9
	Example five parameter normalizing flow

	Bibliography

