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INTRODUCTION

This thesis consists of five chapters that are written in such a way that
they may be read separately. The main purpose of this introduction is to
describe the history of the problems investigated in these chapters and the
connection between them. First a brief description of stochastic geometry
is given. Then we turn to the subjects treated in this thesis. We survey
the results known in the literature and the open questions concerning them.
This is done for convex hulls in section 2, for characterisation problems in
the third section and for stereological estimation in section 4. Finally the
last section summarises the new results obtained in this thesis.

1. Stochastic geometry.

The fundamental idea underlying stochastic geometry is that a probabi-
lity is related to a geometrical parameter. Its origin is geometric probability,
the starting point of which is usually considered to be the formulation of
a class of ‘games’ involving geometric objects by Buffon in 1733. One of
those was the famous needle problem. The needle problem can be consi-
dered as a classical coin-tossing game, where two players throw a coin and
guess beforehand whether it will show ‘head’ or ‘tail’. In the needle problem
the coin is replaced by a needle of length I say and the guess is about the
position of the needle on the floor after being thrown. The two players are
standing on a floor divided by infinite planks, all of the same width, w say,
where w is broader than I. The guess to be made beforehand is whether
the needle will cross one of the ‘joins’ between the planks, or will not cross
any of the ‘joins’. The probability of the first outcome is ﬁl . Thus here a
probability is linked to a length.

The derivation of the result involves a rather simple integration. This
shows that there is a natural probability measure underlying these kind of
geometrical games. However, Bertrand’s paradox (1888) demonstrated that
in more complicated situations it is not at all obvious which measure this is.
Bertrand asked for the probability that a chord drawn at random through
the unit disk in the plane has length greater than v/3. In order to perform
the computation the chords have to be parametrised. Bertrand showed that
this can be done in three different ways. Equipping the parameter spaces
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with Lebesgue measure — which he considered the only ‘natural’ measure
on the Euclidean space JR? — this yields three different results — %, %, %
— depending on the parametrisation. To avoid this paradox, one has to
consider an invariant measure on the set of all lines in the plane. (Here
invariance means invariant with respect to Euclidean motions of the plane.)
When the chords are viewed as the intercepts of lines with the unit disk,
this invariant measure is seen to be the one underlying the distributions
of the chords. Invariant measures of this sort and integrals with respect
to these measures had already been studied by Crofton, but a thorough
investigation originated with the work of Blaschke (1935) and Santald (see
his book (1976); see also Hadwiger (1957)). This new area was called integral
geometry.

This classical theory of probabilities and integrals was based upon finite
numbers of geometrical objects of a fixed form, but at random positions.
However, at the beginning of the seventies, it became clear that it was not
rich enough to deal with the much more complicated structures encountered
in nature. The description of structures as seen e.g. in rocks and the human
body or on satelite data needed more complicated models, that would allow
not only random positions but also random shapes and random numbers
of them. This was the beginning of the field now called stochastic geo-
metry, connecting geometry and the theory of stochastic processes, starting
with the introduction of random sets independently by Kendall (1974) and
Matheron (1975). An example of an interesting — and useful — random set
is the convex hull of random points in a compact set. A modified version of
this set for instance can be used as a ‘statistical’ estimator for the compact
set in which it is contained (Ripley and Rasson (1977)).

The mathematics used to develop stochastic geometry include convex ge-
ometry (Schneider (1993)), geometric measure theory (Federer (1969)), the
theory of stochastic processes (Daley and Vere-Jones (1988)) and Choquet’s
theory of capacities (1953).

Spatial statistics and stereology are examples of fields in which stochas-
tic geometry and integral geometry provide the theoretical background for
the models used. Spatial statistics analyses spatial structures from multi-
dimensional data. Consider for example the configuration of raindrops
which have fallen on a roof. A model to describe the drops as well as
an estimate for the expected area of the roof covered by them can be given.

In stereology, the estimators are derived from data of a lower dimension
than that of the parameter under study. For practical reasons it is not
always possible to make observations on the desired object directly. In those
cases, it is often possible to take lower dimensional sections of the object and
to estimate the desired geometric parameter from the information contained
in these sections. The mathematical formulas underlying these results come
from integral geometry.

Of course stochastic geometry is a much broader field than described
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here. For instance I have not mentioned integral geometry on Lie groups,
stochastic processes of fibres, stochastic geometry on manifolds, etc. For a
more complete account of the subject and its history the reader is referred
to the books by Mecke et al. (1990) and Santalé (1976) and to Baddeley
(1992). What we have encountered until now however suffices to go on with
a summary of this thesis.

Geometric parameters of (random) sets can be considered as functio-
nals of those sets. Several such functionals are investigated in this thesis.
This yields probabilistic results, new integral geometric relations, a new
stereological estimator for three-dimensional volume and a solution to a
characterisation problem. But it also leaves open many other problems...

2. Convex hulls.

First we consider functionals of the convex hull of random points and
their asymptotics.

Consider a sample of n independent points drawn uniformly from the
interior of a convex compact set C' in JR?. Then construct the convex hull
C,, of these points. C,, is a random set and we are interested in the behaviour
of functionals of C,, as the sample size n tends to infinity. It is clear of course
that C, itself will tend to the containing set C. Also some of the functionals
of C,, (like the volume) will tend to the corresponding functionals of C. The
question is: what can be said about this convergence?

Since C,, is random, functionals f : K(R%) — IR can be considered as
real-valued random variables and so we are interested in asymptotic pro-
perties of f(Cp). Examples of f are the number of vertices of C,, the
volume of C,,, the surface area of C,, etc. Until Groeneboom’s pioneering
paper (1988), the results about f(C,,) consisted mostly of upper bounds for
the expectation Ef(Cy), and some explicit expressions. The results were
improved every now and then by applying methods from convex geometry.
See the survey paper by Schneider (1988) for an extensive list of references
and the beautiful book by Schneider (1993) on convex geometry. See also
Brozius (1989). However, no information about higher moments, nor about
the limiting distribution was available. With the appearance of the paper
by Groeneboom mentioned earlier, it became clear that the use of proba-
bility theory and the theory of stochastic processes could solve a geometric
problem, rather than the other way around. In this paper uniform samples
from the unit square and the unit disk in the plane were studied, and the
functional under consideration was the number N,, of vertices of the convex
hull. The results contained not only the first two moments of the limiting
functionals, but also showed that NV, satisfies a Central Limit Theorem. For
the other functionals in the planar case, as in the case of C,, C R?, d > 3,
no such results have been obtained so far.
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3. Characterisation problems.

Next let me describe another class of problems concerning functionals of
sets in JR? and their ability to discriminate between sets.

In these problems one studies the amount of information contained in
functionals of (random) sets. Thus if for two sets these functionals coincide,
may we conclude that the sets themselves are equal? Mathematically this
is formulated as follows. Let ¢ : A — L1(JR%) be a mapping from a certain
class of subsets of R? to L'(IR%); i.e.

é: A— LY(IR%)
A ¢a,

where ¢4 is a function from R? to IR, or sometimes from a class of subsets
from IR* to IR. When does ¢4 = ¢p imply A = B? Examples of such
functions are the distribution function of the Radon transform of a set, the
set covariance function, dilation volume and interpoint distance distribution,
all to be specified below.

It was Blaschke (1949, p. 51) who asked whether a convex set is uniquely
determined by the distribution of its Radon transforms, or chord lengths.
To be more specific, denote by p the invariant measure on the set £ of all
lines in the plane. Then the distribution of Radon transforms is defined as

dalz)=P{le L: M (InA) <Lz}
_p{leL:InA#Pand (INA) <z}
- w{le L INA#0} ’

where )\; denotes d-dimensional Lebesgue measure, d > 1. An example
by Mallows and Clark (1970, 1971) showed that in general the answer to
Blaschke’s question was negative, but Waksman (1985) solved the problem
in the affirmative for ‘generic’ polygons satisfying an extra condition. It was
not hard to show that this extra condition could be disposed of (see Cabo
(1989)). For the case of general convex sets the problem is still open.

The next problem is known as Matheron’s conjecture (1986): is a convex
set uniquely determined by its covariance function (the volume of the inter-
section of the set with its translate)? This conjecture is closely related to
Blaschke’s and the situation is similar: Nagel (1993) proved uniqueness (up
to translation and reflection) for all convex plane polygons, but for other
convex sets no solution was known.

Lesanovsky and Rataj (1990) solved the dilation volume problem. Here
¢4 is defined on the class of compact subsets of R? by

$a(K) =2(ADK),
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where A@ K ={a+k:a€ A, k€ K}. The authors proved that A is not
only determined when one knows ¢4(K) for all compact sets KX, but also
that the knowledge of ¢4(K) for all K containing three points is sufficient
to reconstruct A. Finally they provided an example of two nonidentical
nonconvex sets that do have the same covariance function. (The example
of Mallows and Clark is not a counterexample to Matheron’s conjecture.)

In 1989, Pyke asked another closely related question, concerning the de-
termination of a convex set B from its interpoint distance distribution. Let
X and Y be two independent uniformly distributed points in B. Is B deter-
mined (up to translation and rotation) by ¢g(p) = P{||X — Y| < p}? It is
well known that the covariance function is the density of the vector X — Y
(up to a constant). Rost (1989) gave an example of two different noncon-
vex subsets of the real line for which the distributions of X — Y coincide.
Furthermore also the results of Lesanovsky and Rataj (1990) can be used
to show that for general sets the answer to this problem is negative. How-
ever, by the remark made above, Nagel solved Pyke’s problem for convex
polygons by solving the covariance problem for those sets.

4. Stereological estimation.

Stereology aims at obtaining (quantitative) information about d-dimen-
sional structures, from observations on lower-dimensional sections. For in-
stance, estimating the mean volume of certain cells, while only pictures
of plane sections through the cells are available. The first results in this
field were obtained for convex particles, which had to be of the same shape
or even spherical. Later the methods were extended to nonconvex sets by
Miles (1983, 1985) and Jensen and Gundersen (1985). These estimators
were based on line sections through the plane section. However it was not
clear how to use them in practice, when for instance an image of the data is
at hand. Moreover it seems to be more efficient — at least in some situations
— to use as much two-dimensional information as possible from the image.
Some work in this direction was started by Miles (1979) and Serra (1982).

5. Results.

In this section I describe the main results of this thesis. It will turn out
that for each of the problems described above a partial solution is found,
but the original questions in the most general case remain open.

In Capter I we show that the martingale approach and the use of the
vertex process introduced in Groeneboom (1989) yield asymptotic results
for the area and boundary length in the planar case. It is necessary to adapt
the definitions of the martingales to the specific functionals. The results
have been written down for the case of a uniform sample from the interior
of the unit square C. It is shown that the difference between the areas of C
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and C,, is asymptotically normal and the limiting expectation and variance
are explicitly computed. For the length functional however, the situation is
quite different. It is possible to give expressions for the first two moments
of the limiting random variable, but no distributional conclusions could be
drawn. For the case of a sample from a convex compact set with smooth
boundary, we do expect the method to work as well, and to yield Central
Limit Theorems for both functionals. Recently Hiiter has used this technique
to derive asymptotic expressions for the number of vertices of the convex hull
of random points drawn from a class of spherically symmetric distributions
(including the normal distribution) in higher dimensions. The question
how to extend this method to other distributions in higher dimensions is
still open.

The last four chapters of this thesis resulted from work on characterisa-
tion problems. The first (Chapter II) is based on part of my master’s thesis
and gives a new proof of a well-known integral geometric equality. Let P be
a convex plane polygon. The equality relates the integral of a C! function
of chord lengths over all lines that intersect P, to the sum of two integrals.
The first is over all lines intersecting P and integrates the derivative of f
and a function of the angles at which the chords cut P. The second is just
the sum of the integrals of f over the sides of P. The proof uses Stokes’
formula.

In Chapter IIT we tried to solve Matheron’s conjecture following Waks-
man (1987). The idea was to use the fact that the problem had been solved
for convex polygons, together with the fact that every convex set can be
approximated by such polygons. For this purpose, a metric seemed to be
needed on the space of (convex) sets and the completion of the metric space
under this metric had to be investigated. Waksman had introduced such a
metric on a class of open subsets of the plane. We modified his construction
to obtain a metric on bounded regular closed d-dimensional sets. First a new
function is constructed as the ‘derivative’ of the one-dimensional covariance
function of linear transects through a bounded regular closed d-dimensional
set. We called it the linear scan transform. The metric is then defined as
the L! distance between linear scan transforms.

The implications of this paper are twofold. First, the metric is shown to
be topologically equivalent to the Hausdorff metric for convex sets. Further
it turns out to be an appropriate tool for studying analytic properties of the
covariance function. Thus we prove continuity of the covariance function
of certain ‘regular’ sets and find an easy proof for continuity of Lebesgue
measure. However this did not solve Matheron’s conjecture. For this, in-
equalities in the reverse direction from those obtained in this paper are
needed.

Second, there is an interest in the linear scan transform itself. It turns out
that it provides a unification in integral geometry and stereology, clarifying
existing relationships between certain quantities, and establishing new ones.
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In Chapter IV we discuss the stereological estimation of the volume-
weighted mean volume of a population of ‘particles’ (not-necessarily-convex,
compact subsets) in JR® from plane sections. The standard method is to
place test lines in the plane section and measure cubed intercept lengths
with the two-dimensional particle profiles. We point out that the integral-
geometric identity on which this method is based, can be generalised by
replacing linear test lines by r-dimensional plane sections, forming a repro-
ductive family of similar identities. Using this we derive improved unbiased
estimators for mean particle volume in a variety of sampling regimes (design-
based and model-based) including vertical section designs. We prove that
these estimators have smaller variance than the line transect estimators,
and indeed are related to them by the Rao-Blackwell process. In the new
estimators the cubed intercept length is replaced by a moment of the dis-
tance between two points in the section profile; this can be computed in
practice as a moment of the set covariance function of the section profile.
Finally we present two practical applications. An unexpected result is that
the value of the estimator is often close to the area-weighted g—,nd moment
of the profile areas, which is a lower bound obtained from an isoperimetric-
type inequality. We estimate the variance of the technique and the gain in
efficiency over line transect techniques; the efficiency improvement appears
to be as much as one order of magnitude.

Finally in the last chapter, we actually solve one of the characterisa-
tion problems. Together with René Janssen we show that the covariance
function does characterise all symmetric bounded regular closed sets in R?,
d > 1. Hence it is seen that convexity nor connectivity play a role, as long
as the sets are symmetric (i.e. invariant under reflection with respect to the
origin). This was done using Fourier methods, from which an explicit recon-
struction procedure immediately follows. We also give a geometric proof of
the continuity of the covariance function of a bounded Borel set. Using the
continuity of this function and the characterisation result for symmetric sets
mentioned above, we solve Pyke’s problem for rotation invariant Borel sets
in IR?. Finally we introduce a generalisation of the covariance function,
dubbed the cross-covariance function of one set with respect to another.
This is defined as the volume of the intersection of the first set with a trans-
late of the other one. It is shown that the cross-covariance of a set with
respect to its reflection characterises any bounded regular closed set. Here
again the original question remains open, since for asymmetric convex sets,
it is still not known whether the covariance function itself would suffice.
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CHAPTER I

LIMIT THEOREMS FOR
FUNCTIONALS OF CONVEX HULLS

1. Introduction.

In 1963, Rényi and Sulanke (1963) derived asymptotic expressions for
the expected boundary length and the expected area of the convex hull of a
uniform sample from the unit square. They stated in their introduction that
the computations for more general convex polygons are rather complicated
(“ziemlich uniibersichtliche Rechnungen”). Moreover they noted that the
expected boundary length and the expected area of the convex hull behave
surprisingly differently, at least in a first analysis (“Hier ergiebt sich die auf
ersten Blick iiberraschende Tatsache, dafi sich Flicheninhalt und Umfang
asymptotisch verschieden verhalten”).

A paper by Buchta (1984), shows that indeed the computations of the
first moment measures become quite complicated for polygons more general
than the unit square, and proceeding in this way to the computation of
higher moments seems an extraordinarily hard task. We show that the
computation of asymptotic expressions for the first moments becomes rather
easy, if one looks at the process locally instead of globally, using an approach
which is most conveniently summarized by saying that “everything happens
in the corners”.

Moreover, we will derive the actual limiting behavior (after rescaling),
and show that the area of the region between the convex hull of the sample
and the boundary of the convex polygon satisfies a central limit theorem, in
contrast to the boundary length of the convex hull. In fact we will show that
the dominating asymptotic behavior of the boundary length of the convex
hull depends on a number of edges that remains bounded, as the sample
size tends to infinity, whereas the dominating asymptotic behavior of the
area of the region between the convex hull of the sample and the boundary
of the convex polygon will involve a number of edges tending to infinity, as
the sample size tends to infinity. In this sense the asymptotic behavior of
the boundary length is even more local than the behavior of the area.
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Another expression of the phenomenon just mentioned, is that there is a
natural stationary process, describing the limiting behavior of the area of
the region between the convex hull of the sample and the boundary of the
convex polygon, whereas no such stationarity holds for the limiting behavior
of the boundary length. However, we expect that this striking difference in
behavior would disappear when samples from convex figures with a smooth
boundary are considered. This would also provide an explanation for the
observations in Rényi & Sulanke (1963) on the differences in this respect
between samples from the unit square and samples from convex figures with
a smooth boundary.

This chapter is structured in the following way. Since we will relate the
behavior of the functionals of the finite sample process to the behavior of
corresponding functionals of a limiting Poisson point process, we first study
the functionals of the limiting process. This is done in section 2. Here we
already see the difference in behavior of the boundary length and the area:
for the “area functional” of the convex hull of the Poisson point process a
central limit theorem is obtained in contrast to the “length functional”.

In section 3 we relate the results for the Poisson process to the finite
sample behavior. Computations of the relevant second moments are given
in the appendix.

Since the computations, involving second moments, are considerably more
complicated than for first moments, we treat (for reasons of space) the case
of uniform samples from convex polygons separately. Moreover, this case
has some pecularities which are not present in, say, the case of samples
from convex figures with smooth boundaries or samples from absolutely
continuous distributions with infinite support, such as a two-dimensional
normal distribution. The latter case is studied in Hiiter (1992).

2. Functionals of the convex hull of a Poisson point process.

We shall study functionals of the Poisson point process P on Bi, with
intensity Lebesgue measure. The functionals will depend on P via another
process, which is defined by Definition 2.2 in Groeneboom (1988). For
convenience, this definition is repeated below.

2.1 DEFINITION. For each a > 0, W(a) is the point of a realization of the
Poisson point process P on R‘i , such that all points of the realization lie
to the right of the line = 4+ ay = ¢, which passes through W(a). If there are
several of these points, we take the point with the smallest y-coordinate.

We first consider the functional corresponding to “area”. To this end, we
introduce the following process, describing a “growing area”, as a function
of the parameter a in Definition 2.1.
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2.2 DEFINITION. Let 0 < @ < b < co. Then A(a,b) is the area of
the region bounded on the right and left by vertical lines through the z-
coordinates of the points W(a) and W(b), and bounded from below and
above by the line y = 0 and the (left lower) boundary of the convex hull of
P, respectively.

For each ag > 0, we introduce the increasing filtration {T[ao,u} ta > ao}
of o-algebras

2.1) Fiana = 0 {W(c) : c € [ap, al} .
Then the process {(W(a), A(ag,a)) : a > ao} is a Markov process with re-
spect to this filtration.

2.3 THEOREM. Let Cy be the set of continuous functions f : Bi_ — R,
with compact support contained in (0,00)? x [0, 00), and let, for each a > 0,
the linear operator L, : Cy — Cy be defined by

(2.2)
[Laf](xa :‘/, Z) -

y
:/ u{f(z+au,y—u,z+%au2+au(y—u))—fq:y, }du
0

for (z,y,2) € (0,00)% x [0,00). Then, for each f € Cy and each ag > 0, the
process

X(a) = £(W(a), A(ap, a)) — / (L] (W(e), Alao, ) de, a > a,

ao

is a martingale with respect to the filtration {]—"ao gia> ag}.

PROOF. We have to show that, for a > 0:
lim R E{ f(W(a+ h), A(ao,a + h)) — f(W(a), Alao,a)) |
(W(a), A(ao, a) ) (z,y,2)} =
= [Laf] (z,y, 2).

Observe that A(a,a + h) = 0 unless the Poisson point process P has a
point in the shaded region B(h) shown in Figure 2.1 below.

Moreover, the probability of getting more than one point in this region
is o(h). If P has a point in B(h), say at (z,y) + (au, —u) + r(h) (where
ir(R)]| = O(h)), then it may be easily verified that A(a,a + k) = Lau® +
au(y—u)+O(h), h | 0. The rest of the proof is the same as that of Theorem
2.1 in Groeneboom (1988). O
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L:x+ay=c¢

xy) = W)
B(h)

L:x+|(a+h)y=c

(0,0)
x+ay Xx+(a+hly

FIGURE 2.1.

It is convenient to write (2.2) in the following form:
03 Lefl@wa) = [ (w2 - fw)} Ma,usds),
where, for a > 0, the jump measure M(a,w;-) is defined by
(2.4) M(a,w;B) = /Uv ulp(au, —u, Lau? + au(y — v)) du,

where w = (z,¥, 2) and B C IR® is a Borel set.
We now transform the process

{(W(a) = (U(a),V(a)), A(ao,a)) : a > ao}

into a Markov process with stationary transition probabilities. First, we
introduce the process {Z(a) : a € IR}, by defining

X(a) = (U(e") +e°V(e"))/ exp {3a},

Y(a) = e2°V(e%),

Z(a) = (X(a),Y(a)).
The process {Z(a) : a € IR} has the one-dimensional marginal distributions
(2.5) P{X(a) € dr, Y(a) € dy} = exp {—32?} dzdy,
see (2.26) and (2.27) in Groeneboom (1988). Next, defining A(ay, a) by

A(ag,a) = A(e®*®,e%),a > ag
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and using the 1-1 correspondence between Z(a) and W (e®), we obtain

lim A7 E{ f(Z(a +h), A(as,a +h)) - f(z,y,7) |

(26) (Z(a),/i(ag,a)) = (:c,y,z)} =
v
:/U u{f(:z,y—u,z+%u2+uy) —f(z,y,z)} du
+ (y—%z) %f(:c,y,z)+%y(%f(z,y,z), GZG.()‘

As a corollary to Theorem 2.3 in Groeneboom (1988), we get the following
result.

2.4 THEOREM.
Let for each ag € IR the process {(X(a),Y(a),fi(ag,a)) ta>ag} be as
defined above. Then, for each ag € IR, this process is a Markov process with
stationary transition probabilities, and with an infinitesimal generator given
by (2.6). Moreover, the process is strongly mizing in the following sense.
Defining the o-algebra

Fr=0{(X(c),Y(c)) :c€ I}, for intervals I C R
we have
1

(2.7) |P(ANB) — P(A)P(B)| < c-e72°,
if A€ .7:"{00,0], Be ]:'[GH,OO), where ¢ > 0 is a fized constant.

PROOF. The statement about the (stationary) Markov structure imme-
diately follows from (2.6), and (2.7) follows from (2.30) in Groeneboom
(1988). a

Theorem 2.4 implies that the sequence X;, X5, ..., defined by
(2.8) X; = A(0,7) — A(0,i —1),i=1,2,...,

is a stationary sequence of random variables, satisfying the mixing condition

|P(AN B) - P(A)P(B)| < c- e~ 2",

if A€ a{Xy,...,X+} and B € 0{Xgym : m > n}, where k,n > 1 and c is
as in (2.7). If we can show that EX12+6 < o0, for some § > 0, we would get

(2.9) {A(0,n) —nEX,}/,/Var(A(0,n)) B N (0,1),

i.e. 4(0,n) would converge in distribution, after standardization, to a stan-
dard normal distribution.

The finiteness of the moments EX12+6 follows from the following lemma,
in which we show finiteness of all moments of X;.
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2.5 LEMMA. For each a > 1 the moment generating function
A — Eexp{AA(1,a)}
is finite for A in a neighborhood of the origin.

Proor.
Conditionally on (U(1),V(1)) = (,y), the area A(1,a) is bounded above
by 3(a — 1)y? (the area of the triangle with vertices (z,y), (z + ¥,0) and
(z+ay,0)). In Lemma 2.4 (Groeneboom (1988)), the marginal distribution
of the Markov process {W(a) : a > 0}, was computed. For convenience, the
statement of this Lemma is repeated at the beginning of section 4 of the
present chapter. By part (i) of this Lemma, we have

2
P{W(1) € (dz,dy)} = exp {_L:%y_)_} dedy, 0<z,y < oo.
From this, we obtain

(2.10) FEexp{AA(l,a)} < / exp {—1(z + ) + $Ma — 1)y} de dy,
,

and the right side of (2.10) is clearly finite for A in a neighborhood of zero

(depending on a). a

Since X1 = A(1,e), it follows that the moment generating function of X,
exists in a neighborhood of the origin. So it is clear that all conditions for a
central limit theorem of the form (2.9) are fulfilled, and all that is left to do
is to compute first and second moments. We will compute these moments
for the process {A(ag,a) : a > ag} in its original parametrization, since the
computations are somewhat simpler in appearance, and can be transferred
immediately to the process in its stationary form (and hence to properties
of the sequence X1, Xz,.-.).

We have the following result.

2.6 THEOREM. Let0<a<b<oo,,6=% and o = 3 —1. Then
()  EAab)=}logh,

50 2 4
Var(4(a,b)) _189 ogf = 302 3a
_ 1
(&) Zﬂ(‘lﬂ lsj:n Vo +3 {tan-l ‘/—} 135'

The proof of Theorem 2.6 will be given in the appendix. As a corollary
we obtain the following central limit theorem.
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2.7 COROLLARY. For any sequences (a,) and (b,) of positive numbers
such that limn_, o %‘- = 00, we have

bn bn
(2.11) {A(an,bn)— %log;}/ %loga —D>N(O,1), as n — oo,
where N'(0,1) denotes the standard normal distribution.

The proof follows the same lines as the proof of Corollary 2.3 in Groene-
boom (1988).

We briefly comment on the more general situation of a Poisson process
P, with intensity Lebesgue measure in the region R, defined by

Ry={(z,y):y >0,z - Ay >0}, A€ R.

Taking A = 0 we get the case we have considered so far. Here we only
consider the case A > 0, since the case A < 0 is quite similar. Let A'(a,b)
be the area of the region, bounded on the right and left by lines parallel
to the line £ = Ay through the points W(a) and W(b), and bounded from
below and above by the line ¥y = 0 and the boundary of the convex hull of
P, respectively. Here W (a) and W (b) are as defined in Definition 2.1, but
now with a,b € (—A, 00).

The process {(U(a),V(a), A'(ag,a)) : @ > —A} can now be transformed
into a Markov process with stationary transition probabilities, just as before.
This process has the same structure as before, in particular (2.5) and (2.6)
are satisfied. It follows that A’(a,b) has the same distribution as as the
variable A(a + A, b+ A), and we obtain the same central limit theorem as
before (with the parameters a and b shifted to @ + A and b+ )).

In section 3 we shall derive from Corollary 2.7 a central limit theorem for
the area of the convex hull of a uniform sample from a convex polygon. We
now first turn to the other functional: the boundary length. In analogy with
the area, we introduce processes, describing the “developing (remaining)
boundary length”.

2.8 DEFINITION. Denote by L.,(a,b) the boundary length of the convex
hull of P between the points W(a) and W(b). Furthermore, we define
L*(a,b), L¥(a,b) and L(a,b) as follows.

(z1) For 1 <a<b< oo,
L%(a,b) = Loo(a,b) — {U(b) — U(a)};
(ii) For0<a<b< 1,

L¥(a,b) = Leo(a,b) — {V(a) = V(b)};
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(42) For 0<a <1< b < o0,
L(a,b) =U(1) + V(1) — L¥(a,1) — L*(1,b).

2.9 Remark. In words: for 1 < a < b < 00, we define L%(a,b) as
L..(a,b) minus its projection on the z-axis, whereas for 0 < a < b < 1, we
define L¥(a,bd) as L.,(a,b) minus its projection on the y-axis. In the third
case, where we "round the corner”, we add to the projections on the z- and
y-axis the remaining segments of the boundary of the unit square, meeting
at zero, and compare the total length of these segments and the projections
with Lc,(a,b) (note that the total length of projections and segments in
bigger than L.o(a,b)). We will call L(a,b) the “remaining length”.

2.10 THEOREM. Let Cy be the set of continuous functions f : Bi — IR,
with compact support contained in (0,00)% x [0,00).
Let, for each a > 1, the linear operator L, : Co — Cp be defined by

[Lafl(2,y,2) =

:/yu{f(w+au,y—u,z+u\/1+a2—au) —f(z,y,z)} du,
0

for (z,y,2) € (0,00)* x [0, 00).
(1) For each f € Cy and each ag > 1, the process

Yi(a)= f(W(a),L‘”(a,g,a,)) — /a [Lcf] (W(c),L*(ao, c)) dec, a > ao

is a martingale with respect to the filtration {.7:[,,0,,,] ta > ao}.
(4) Let, for each a > ag > 1, W and LY be defined by

W(a) = (V(1/a),U(1/a)),  L¥(ao,a)=L*(1/a,1/ao).

Then, for each f € Cy and each ag > 1, the process
Y}’(a) = f(W(a),E”(ao,a)) —/ [Lcf) (W(c),i”(ao,c)) de, a > ay
ap

is a martingale with respect to the filtration {.7-'[1 Ja1/ao) : @ 2 ao}.

The proof is completely analogous to the proof of Theorem 2.3 and is there-
fore omitted.

In this case there is no obvious transformation of the process into a
Markov process with stationary transition probabilities, as with the number
of extreme points or remaining area. Nonetheless Theorem 2.10 is helpful
in computing the first and second moment measure of the process.
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2.11 THEOREM. Let, for a > 1, L(1/a,a) be the remaining boundary
length between the slopes 1/a and a of the (left-lower) convez hull of the
Poisson process P. Then

© L(1/a,a) = EU(1) + EV(1) — EL*(1,a) — EL¥(1/a,1)

1 *V1i+s2—35s d
- e s
(i7) Let the functions x and v be defined in the following way:

1 B 1 N 1tan"'\/s
2(s+1)2 4s(s+1) 4s /s

-1
P(s) := (E+—1—)—(i—§)+p——l) M, s> 0.

s>0

x(s) =

and

s s2 s2 s

Then, for a > 1,
EL(1/a,a)* =2 — 4/ {V1+s2—s}x(s—1)ds
1

2
a / 2 _
+é/ {————1+s S} dS
1

5 s

e () [ (Lo
/ / 1+52—5}{m—t} ¥ (st — 1)dsdt.

2.12 Remark. The functions x and ¢ have finite limits, as s | 0. We
have:

2 64
lslfgx( s) = 3 and lslﬁllib( s) = ToE"

It is easily seen that L(1/n,n) converges almost surely to a limiting random
variable, denoted L(0,00). A simple application of the monotone conver-
gence theorem then yields

o0 2 —
EL(0,00) = lim EL(1/n,n) = \/g{l - / —IJ;TS}ds ~ 1.06182,
1 S

and similarly
EL(0,00)? = 1.37575.

Details are given in Appendix B.
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3. Functionals of the convex hull of a uniform sample.

The results of the previous section and the strong approximation result,
Lemma 2.2 in Groeneboom (1988), yield limit theorems for the functionals
of the finite sample.

First we need to recall the definition of the process, running through the
vertices of the left-lower boundary of the convex hull of a uniform sample of
size n from the interior of the unit square. (Definition 2.1 in Groeneboom
(1988))

3.1 DEFINITION. For each a > 0, W,,(a) is the point of the sample, such
that all points of the sample lie to the right of the line x + ay = ¢, which
passes through W,,(a). If there are several such points, we take the one with
the smallest y-coordinate.

The point process {y/nW,(a):a > 0} converges in distribution to the
point process {W(a) : a > 0} (Groeneboom (1988), Corollary 2.2).

Let A, denote the difference between the area of the unit square and the
area of the convex hull of n uniform points in this square. Analogously, L,
denotes the difference between the boundary length of the unit square and
the boundary length of the convex hull of the uniform sample.

To give an idea of the proof of our main theorem, we recall some of the
results in Groeneboom (1988), on which the theorem heavily depends.

Consider the region R, of the unit square, that lies to the left and below
the curve C(31%62) where C(a) is defined by

3
C(e) = | Cilw),
=1

with
1
Ci(a) = {(x,y) '3 <y<lz=a

}

N | =
DN | k=t

a,alz<

Cafe) = {(2.9) 29 =

Grle) = { () 15 <2 < Ly=a}.

It was shown in Groeneboom (1988, Corollary 2.1), that the vertices
{Wha(a) : a > 0} of the convex hull of the uniform sample, belong to the
region R,, with a probability tending to 1, as n — co.

Now consider a Poisson point process &, on Ri with intensity n times
Lebesgue measure and let 7, be the sample point process corresponding
to the sample of size n from the unit square. Then, it was also shown in
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Groeneboom (1988, Lemma 2.2), that there exists a probability space such
that the probability that the realizations from n,|g, (7, restricted to the
region R,) and from &,|g, differ, tends to 0, as n — oo.

Let us introduce the following notation:
¢(¢n) is a functional of the convex hull of the process (., where in our
case, ¢ is one of the following

N, the number of vertices
An the remaining area
L, the remaining length,

where A,, and L,, are defined more precisely at the beginning of this section.

In analogy with the notation A(a,b), we introduce the notation A,(a,b)
to denote the area of the region, bounded on the right and left by verti-
cal lines through the z-coordinates of the points W,,(a) and W, (b), and
bounded from below and above by the line ¥y = 0 and the (left lower)
boundary of the convex hull of the sample, respectively (see Definition 2.2).
Similarly, we will use the notations L,(a,b), LZ(a,b), L¥(a,b), which are
defined in the same way as in section 2, but with the Poisson process P
replaced by the sample point process. A suffix 8y, as in ¢g,((n), is used
to express the fact that we consider the functional ¢ only for values of the
timeparameter in the interval [8,,1/0,] and 8, = ]—°Eﬂ

The crucial argument is the following. Summarizing the above mentioned
results, we get, loosely speaking,

(31) ¢/Bn (nn) - d)ﬂn (nann) = ¢ﬁn (ntRn) = ¢ﬁn (én)a

with the equalities only holding on a set having a probability mass, tending
to 1 and for n tending to infinity. Put differently: if we want to study a
functional of the convex hull of the sample point process, we might just as
well study the same functional of the convex hull of a Poisson point process,
as long as we restrict our attention to those lines generating the convex
hulls with slopes in the interval [8,,1/8,] and only for n large enough.
(See e.g. Lemma 2.2 and the proof of Corollary 2.4 in Groeneboom (1988),
where the approximation argument is given for N,.)

First, we show that it is sufficient to consider the part ¢z, of . By
symmetry, it is enough to prove the following lemma.

3.2 LEMMA.
(1) () With 8, = l—(’ﬁﬂ, we have

logl
EAn(O,,Bn) ~ C -——-———0g Ogn’ as n — 00,
n
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for a constant ¢; > 0.
(2) (i2) For each sequence (B3,), tending to zero, we have:

EL%(0,8,) ~ c2 ’n_llzﬂf/z, as n — oo,

for a constant ca > 0.

The proof is given in Appendix C.

We get the following result for the remaining area.

3.3 THEOREM. We have, as n — 00,
{An — 4b,} /20 B N(0,1),

where b, = %1—°;‘lﬂand Cp = }—gg—l"—ﬁﬂ, and N(0,1) denotes the standard

normal distribution.

Proor. From Corollary 2.7 and (3.1), we can deduce that

(3.2) {An(Bn,1/Bn) = ba} [2¢0 B N(0,1),35 1 — oo.

Furthermore, by Markov’s inequality and Lemma 3.2(3),
p(A0B) | LEAOR) o
n Y] Cn

Hence
An _ bn _An(,Bn’ l/ﬁn) _ bn
Cn - Cn

Z N(0,1), by (3.2).

+op(1)

Of course we may proceed in the same way for the other corners. The
only thing left to show is that the random variables A,(8n,1/85), for the
different corners, are asymptotically independent. Areas like A(0, 3,) give a
negligible contribution in view of Lemma 3.2(3). Since we now need to apply
exactly the same argument as the one used in the corresponding Corollary
2.4 in Groeneboom (1988), we refer to the last part of the proof of that
Corollary. O

It is clear from Theorem 3.3, that A, is of order lﬁ;‘;’—', as n — 0o. The
rate for the area A, is not surprising, since, as was shown in Groeneboom
(1988) the expected number EN,, of vertices of the convex hull is of order




33

logn, forn — 0o. Moreover, by a well-known relation (see e.g. Efron (1965))
between the expected area and the expected number of vertices , we have

EA, = 1ENn_l.
n

Next, consider a uniform sample from a convex plane polygon with k(> 3)
vertices. In the same way that led us to Theorem 3.3, we may derive from
Corollary 2.7 and the remarks made thereafter, the following more general
result.

3.4 THEOREM. Let A(Cy,) denote the area of the convex hull of a uniform
sample of size n from the interior of a convez polygon C with k(> 3) vertices
and area A(C). Then, for the remaining area

A, = A(C) — A(Cy),

we have, as n — oo,
_2zlogn
{A" k™ } D

" = N(0, 1),
/100 logn
189° 5

where N'(0,1) denotes the standard normal distribution.

The behavior of L,, is rather different. Essential in Theorem 3.3 is the
asymptotic negligibility (see Feller (1966, p. 177) of the individual com-
ponents of A,. However, as is seen from Theorem 2.11, the dominating
asymptotic behavior of L,, depends on a bounded number of parts. An-
other way of expressing this, is saying that the pieces of nA, constitute a
series that diverges as n — oo, whereas the pieces of \/nL, constitute a
series that converges in distribution to a (random) summable infinite series.
From Theorem 2.11 and part (i¢) of Lemma 3.2 we get the following result
for the sequence L,,.

3.5 THEOREM. For the remaining length L, of the boundary of the con-
vez hull of n uniform points inside the unit square, we have
\/ﬁLn—D»L, as n — 00,

where L is a random variable with

oo 2 —
EL = 2v2r {1 -~ / vits —s ds} ~ 4.2473.
1

253/2
Moreover
Var L = 4{EL(0, c0)? — (EL(0, 00)?} ~ 0.9932.

The analytic expressions for the moments of L(0,00) := limg_,co L(1/a,a)
are giwen in Theorem 2.11.
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4. Appendix.

For easy reference, we include the statement of Lemma 2.4 in Groene-
boom (1988), which will be needed in the sequel.

4.0 LEMMA. (Lemma 2.4 in Groeneboom (1988)) Let b > a > 0, and let
W(a) = (Ula), V(a), W(b) = (U(b), V(3)). Then
(i) P{U(a) € dz, V(a) € dy} = exp {—1%!)1} drdy, 0 < z,y < co.

(i) P{W(b) = W(a)|W(a) = (z,y)} = exp{—3(b—a)y®)}, f b > a and
0<z,y<oo.

(i13) P{U(b) € dzs, V(b) € dy2|U(a) = z1, V(a) = w1}
= eXp{—(:ltz + by —x1 — ay1)2/2(b - a)}dmz dys,
Ty >z >0,y >y2 >0, and 7 +ay < T2 +by2 < 71 + bys.

4.1. Appendix A. (Proof of Theorem 2.6)

In the proof of Theorem 2.6 we will need to evaluate integrals of the
following type

0

41) L) Pyt emioV’ ([ eTidt) dy , keven
. ko) =
[yt ey , kodd,

where o > 0. For these, we have the following lemma.

4.1 LEMMA. Let the integral Iy (c) be defined by (4.1), where k is a non-
negative integer and o > 0. Then we have

o~ 2tan"' /o, >0,
Io(o) = {
1, =0,
1
he =5

and, for k > 1, we get the recursive relations

2k -1 1
I (o) = Ly—2(0) — ;Izk—1(0),
2k
Lia(o) = o Ir_1(0).

PROOF. The recursive relations follow from integration by parts. Fur-
thermore, Io(o) was computed in Groeneboom (1988), (2.37), and I; (o) is
trivial. O
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As a consequence of the recursive relations in Lemma 4.1 and Lemma 4.0
we get:

EU(1)? = EV(1)? = I,(0) = 2/3,
(4.2) EU(1)* = EV(1)* = I,(0) = 8/5,
EU(1)® = EV(1)® = I(0) = 48/7.

We now proceed to the proof of Theorem 2.6.
ad (i). As shown in the proof of Theorem 2.3, with f(z,y,z) = =

1’513 ;IL—E {A(a,a+ h)|W(a) = (z,9)}

y
(4.3) :/ u(auy — —1-au2)du
0 2

5 4
—ﬂay

It follows that, for a > 1,
EA(l,a) = —5 /‘“ sEV (s)4ds = —1 loga
H 2 L 3 g

8
52
ad (ii). We consider the second moment of A(1,a): take f(z,y,2) = z* in
Theorem 2.3. Then

since EV(s)* = s 2EV(1)* = by Lemma 4.0 and (4.2).

1
lim 3 B {A(La+h)° ~ A(1,0)°|F1 o)}

.1 2
= l’:ﬁ} EE {A(a,a + h)*+2A(1,a)A(a,a + h)l}-[l,a]}

V(a) 1 2 5
= / u {auV(a) - —auz} du + —aA(1,a)V(a)*.
A 2 12

Hence

(4.4) EA(1,a)? = E-/ szEV(s)sds-%i/ sEA(1,s)V(s)ds.
120 /, 12 J,

The first integral of (4.4) is easily computed to be % log a, using that, by
Lemma 4.0 and (4.2),

EV(s)® =s3EV(1)8 = 4—783_3.
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For the second integral, we use a time reversal argument similar to the
one given on page 343 in Groeneboom (1988). It follows that

49 BALIWE) = 5 [ ZEUOWE)

where (4.3) is used.
So we have to compute EU(r)*V (s)*. We first take r = 1. From Lemma
4.0, it follows that

BU(1)*V(s)* =§EV(1)4U(1)4 exp {—%ch(l)z}
(4.6) - %EV(l)zU(l)“ exp {—%o‘V(l)z}

_ %EU(U‘* {exp {—%aV(l)z} - 1} ,

where o := s — 1.

Evaluating this term by term using Lemma 4.0(¢) leads to expressions con-
taining the integrals Ji = Ji(y), defined by

R 1
(4.7) Jo = / (u—y)* e 2% du,
Yy

which satisfy

S |
_—u2
J0=/ e 2% du
v

1 © 1
Jy = e 2V — y/ ez du,
v
(4‘8) Jr = (k - I)Jk_z - '.(/Jk—l, k > 2,

and

Ii(o) '—‘/ y*ed v Jo(y) dy.

Simple algebra then leads to the following expression for (4.6)

4
5{314 —5Is+6Ig — Iy + I
—(312 —5I3+6Iy— Is + Is)/O’
~2(31 — 55 + 6L, — I + I - EU(1)*) /o? }.
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Now, using the recursive relations for Iy = Ix(c), we obtain

16 (21 15\ tan~!\/G 16 8 4
4.9) EV(s)*U(1)* = D) == Ve A
(4.9) (&)U1) 5 (04 +a3) Vo 5 (04 s 5«72)

To simplify the notation slightly, we define the function ¢(s) = ¢(1 + o)
to be equal to the right-hand side of (4.9). Then, by the definition and the
stationarity of the process {Z(a) : a € R}, we get

EV(s)*U(r)t = t,a(%) ,8>r>0.

The second term in (4.4) equals

288/ sds/ oSy dr
288_/ - r/ o(u) du,

by Fubini’s theorem and a change of variables. By straightforward methods
or, easier still, by using a computer algebra package, we get the following
evaluation of the indefinite integral 25 [ uwp(u) du:

5 31
3w_1¢ o1y

16 2u? — 14u+4
— tan™ " Vu - 1.
T ow-1)  omonp Bn Ve

288 up{u) du = Iogu +
(4.10)

We note in passing that

VWAV = Jim o) =

Let h(u) denote the right-hand side of (4.10). Then we get
def

(1) = hm h(u) = 344/945.

Next we get

a a/r @

1 344 2 4
= Loga)r = 3 10ga - -
glloga)” — gz loga 3a—12 3a-1)
2a(4a—1)tan"ty/a -1 4
— —_ t —_—
*3 (@a— 1) +gltan™ Va—T)* 135

and this yields the second term of (4.4), whence the theorem follows.
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4.2. Appendix B. (Proof of Theorem 2.11)

To be able to do the computations, we observe that by Definition 2.8
(4.11) L(1/a,a) =UQ1) + V(1) — L¥(1/a,1) — L*(1,a), a 21
ad (i). From Theorem 2.10(i) we get fora > 1

lim —E {L*(a,a + h)|W(a) = (z,9)}

nlo h
:/ u{u(m—a)}du
(4.12) :13 8 (\/1+a2 —a)

Hence, for a > 1, we have

BL*(1,a) = %/ (VI+ 5 —s) EV(s)ds
1
By Lemma 4.0(2)

oo [ z + sy 3V2r
EV(s)® =/0 /0 y° exp{—(—-#}da:dy = gz

This yields

a 2 __
(4.13) EL*(1,a) = var | Y2F2 %4
1 853/2
Moreover,

414)  EUQ) =/0°° /;wxexp{—%(x-}-y)z}dzdy - %\/2_%

By symmetry, also EV(1) = 1+/2x. Since ELV( ,1) = EL*(1,a), we obtain
from (4.11) to (4.14):

EL( [{ /‘/I_J"si‘ss}.
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ad (ii).
Using (4.11) and the fact that the processes {W(a) = (U(a),V(a)) : a > 1}
and {(V(1),U(L)) : a > 1} are identically distributed, we obtain for a > 1:

EL(E, ) —E{U(1) + V(1)) — 4BL*(1,a) {U(1) + V(1)}
(4.15) a
+2EL*(1,a)* + 2ELy(i—, 1)L*(1,a).

First we have

(4.16) E{UML)+V)} = /OQ /m(:c + y)ze_%("”)zdzdy =2.
o Jo

The results of the computations of the other terms in (4.15) will be stated
as separate Lemmas.

4.2 LEMMA. Let the function x be defined as

1 1 4 1 tan~'y/5
2s+1)2 4ds(s+1) 4s /s

s> 0.

x(s) =

Then fora > 1
EL*(1,a){U(1) + V(1)} = /1 {\/1 Y2 s} x(s — 1) ds.

PROOF. Observe that
(417) E{L*(1,a)|W(1)} = % /la (\/ 1482~ s) E{V(s)*|W(1)}ds,

where we use (4.12). Hence

(4.18)
EL*(1,a){U1) +V(1)} =

1 /1 (‘/”—52‘ S) EV(s)’{U(1) +V(1)} ds.

3

From Lemma 4.0, we get

E{V(sFIW() = (z,9)} =597 57"
(4.19) 3 a3 Y i
Y sy -~ —sou
st LI +4U | e 27" du,

where 0 := s — 1.
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Consequently
EV(s)’{U(1)+V(1)} =§EV(1)2 {UQ) +V(1)}etova)’
— 2 BV){U) + V() 3O
3 V(1) doy?
+Epevay [ et

Similar computations as in Appendix A yield

1 1 + 1 tan"ly/s-1
252 4s(s—1) 4(s—1) s—1

EV(sP{UQ)+V(1)} =
Together with (4.18), this yields the Lemma. O

Next, we consider the second moment of L*(1,a) for a > 1.

4.3 LEMMA. Let the function ¢ be defined as

15 1 15 6 1)tan~!ys
(4.20) P(s) = (;g + 3—2> — (5—3 2 ;) —T, s> 0.
Then for a > 1
2
a 2 _
EL*(1,a)? :2/ {_____"1"'33} ds
5 1 S
1 [/ *14r2i—7r s
z 2 _ A AL AY
(4.21) +s/1 (Vits s)/l 4 (= —1) drds.
PROOF.

Taking f(z,y, z) = 2% in Theorem 2.10 and using (4.12) gives
3 1 T z
lim > B {L7(1,a+ h)? — L*(1,a)?|Fj1,q4]}

1
= 1’3% +E {L*(a,a + h)* + 2L7(1,a)L%(a,a + k)| Fi1,q}

V(a) 2
=/0 u{u(\/1+a2 —a)} du + g(\/1+a2—a)L‘(1,a)V(a)3.
Hence

EL*(1,a)? -1 /a(\/l + 32 — s)2EV(s)4ds

4/
+ %/:(\/1 + 82 — 8)EL*(1,5)V(s)%ds.
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As noted at the end of the proof of part (i) of Appendix A, EV(s)* = 5.
This leaves us with

2
a 2_
ELz(l,a)zzg/ {___VHS} s
1 b

2 [° T
+_/1 (V75 = s} BL (1, 5)V(s)ds

3

(4.22)

For the second integral we use a time reversal argument as before. It follows
that

E{L*(1,s)|W(s)} = E{U r)¥|W(s)} dr.

/ V1 -+— r2
So we have to compute EU(r)*V(s)3. First set 7 = 1. From (4.19), we get
EU(1)3V(s)® = ZEU(1)3V(1)26—%°V(1)’
3 1 2
- —EU(1)*V(1)e 27V
— EU(V(1)e
3 s YO L,
— 1 T2 gy,
+ 40'EU( ) /(; e U
This is similar to (4.6) and can be evaluated in the same way yielding

EU(1)*V(s)® = % ((s .1_51)3 + (s —11)2)
0 15 6 1 \tanty/s—1
( el

16 s—l)3+(s—-1)2_s——1 Vs—1

(4.23)

With 9 as defined in (4.20) the right-hand side of (4.23) is
%w(s —1). Then it is easily seen that

(4.24) EUr)?V(s)® = —¢ (- - 1) . s>7>0.
Together with (4.22) this proves Lemma 4.3. O

We now turn to the fourth term of (4.15).
4.4 LEMMA. Fora>1

ELV(§,1)L=(1 a) =

(4.25) / / 1+32—s}{\/1+t2—t}¢(3t—1)dsdt,
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where 1 is the function defined in (4.20).
PROOF. First observe that
EL”(%, 1)L*(1,a) = E {E{L”(%, 1)L’(1,a)IW(1)}}
= £ { B G OWa)EE L OW ) |

by the conditional independence of L¥(,1) and L*(1,a) given W (1), which
follows from Theorem 2.10. Now note

E{L*(L,a}W (1)} = %/111(\/1 +12 —t) E{V(t)}|V(1)} dt

B{LY(Z, )W () = %[(\/1 57 — 5) E{U(s)*|U(1)} ds.

Finally, by integrating with respect to the distribution of the vector W (1) =
(UQ),V(1)) we get

1
EL”(;, 1)L*(1,a) =
1// {\/1 + 82— s} {\/1 - t} EU(1/s)3V (t)? dsdt
9 1<s,t<a
The result now follows from (4.24). a
The integrals in the preceding lemmas were computed numerically for

the case a = oo. For the first and second moment of L(0, co) this yields

1 ™ ®V1+s2—s
li - =4/= — ————ds » = 1.061
Jim EL(a,a) 5 {1 /1 5532 s} 824,

and

1
lim EL(=,a)? =~ 1.37575.
a

a— 00
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4.3. Appendix C. (Proof of Lemma 3.2)

Let ¢ stand for either A, or L¥. Then

g3, ~ (3) [0 [ fana- Ay s,

0<z+ay<1

where A,(z,y) denotes the area of the region cut off from the unit square
to the left of the line I, : ¢’ + ay’ = c through (z,y), and where f,(z,v) is
defined by

%ay‘l, lf ¢(07/8n) = An(OMBYl)y
x3{\/1 +a? — 1}/(3a3), if ¢(0, Bn) = L¥(0, Bn),

See (4.5)-(4.7) of Appendix A3 in Groeneboom (1988), where the detailed
argument is given for the functional N,,. We now have

falz,y) = {

/Oﬁ" da // fa(z,9)(1 = Aa(z,y))" " dody

0<z+ay<l
o 1(z+ay)?""
=/ "4 (z,y) 1 — 2 ET ) dad
Y R
0<z+ay<a
B 1 n—1
+/ da / falz,y) {1 —z—ay+ Ea} dzdy.
0 alz+ay<l

It can be shown that we only need to consider the first integral (see Appen-
dix A3 in Groeneboom (1988)).

(i) Take ¢ = A,.
Then the first integral in (4.26) equals

Ba
— a,da/ / 1~—— )1 dydu

(4.27) 6n
514 ada/( ¥ - )" ! du.

To evaluate the inner integral, we set v = %Z, yielding

a

/00(3)5(1 _ et gy o %/0 (1 = v)" do.

N=
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Hence (4.27) is

1 ﬁn
(4.28) 5 / Lda / )1 dv.

But

/ (R YRR S FOS SN SR s
_ e gl @ 1
(4.20) 7o 4n 2 n(n+1) 2

2 gL
+n(n+l)(n-{-2){1 (1 2) }

Hence (4.27) is asymptotically equivalent to

1 Bn 1 ﬁn
- = ae” "% dg — ———/ e~ dg
24 J, 6n(n—1) Jo

+ ! /ﬁ"l | —exp{-1na}} da
—<{1—exp{—=n
Imn+)n+2) Jy a P1mgna
loglogn
~ C 5

3 n — 00.
n

(See Appendix A3 in Groeneboom (1988).) This yields part (i) of the
Lemma, since we now have

1
EAL(0,B) NC(';L) oglogn N qloglogn’ a5 1 o OO

n3 n
(iz) Take ¢ = L¥.
Then

n\ [ T -1
BLy0.8) = (3) [ o da 21— Au(o, )" dady.

0<z+ay<t

Again, it is enough to consider the following integral:

/ﬁ” 1+a2—1 / / "_ldmdu

~ L -—5/2‘/‘[3 V1+a‘2—]‘ 3/2e—nwd,w
3 0 V 0
V2

-~ —5/235/2
R n Bal*T(5/2).
Hence

EL¥(0,8,) ~c- n~1/285/% where ¢ = 11—0 12_r



CHAPTER II

AN ELEMENTARY PROOF OF THE
AMBARTZUMIAN-PLEIJEL FORMULA

1. Introduction.

Pleijel (1956) proved an identity relating the area A of a convex plane
domain and the length L of its boundary (of class C'). In particular, it
contains the isoperimetric inequality L2 — 474 > 0.

Ambartzumian gave two proofs of a generalized version of the Pleijel
identity for convex polygons. The first proof (Ambartzumian (1974)) con-
sisted of direct computations. In his book (1982) however, he shows that
the identity is an easy consequence of the solution to the Buffon-Sylvester
problem.

Pohl (1980) proved an analogous formula for closed convex plane
curves with smooth boundary, applying Stokes’ theorem to a suitable mani-
fold with boundary.

The aim of this chapter is to show that Stokes’ theorem may also be
used to prove Ambartzumian’s Pleijel-type identity for convex polygons
directly. It turns out that the use of differential forms leads to considerable
simplifications. The interesting question whether this method may be used
to derive a Pleijel-type identity for more general convex domains, remains
unanswered.

2. Ambartzumian’s Pleijel-type identity for convex polygons.

Throughout the section, let C' denote a (bounded) closed convex polygon
in the plane. The main idea of the proof is to compute the integral of a
differential form over two of the sides of C. Then by a limiting procedure
the result follows immediately.

To be able to perform the integration, we have to give an orientation
to the sides. Let a and b be two non-intersecting sides of C with distinct
endpoints A;, Ay and B, B; respectively. The set a x b is a two-dimensional
submanifold of IR*, which can be parametrized in the following way. Let u
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and v be the vectors A — A; and By — B; respectively. Then z € a and
y € b have the representations

z=A1+6;-u

y=B1+62-v

for some numbers 61,82 € [0,1].
If dl; (dly) is the element of length on a (b), directed from A4, to Az
(B; to Bz), then the 2-form dl; A dlz has the representation

dly Adly = |a| . |b| -dfy A dfs,

where df; A dfs is the canonical 2-form on IR? and |z| denotes the length of
the side z.

Using this parametrization, we can consider a x b as an oriented manifold
with boundary. Define the mapping ¢: [0, 1]2 —axbby

#(61,62) = (A1 + 61 -u, By +62-v).

Then we have
axb=¢([0,1]%)

and the oriented boundary of a x b is identified by this mapping with the
boundary in IR? of the unit-square with the usual counter-clockwise orien-
tation. From this identification, it is seen that a x {B1} and {A2} X b have
the same orientation as a, b respectively, and that @ x {Bs} and {A;} x b
have the opposite orientation.

We shall need the following lemma in the proof.

2.1 LEMMA. Let a and b be as described above and let (z,y) be a point
on a x b. Let dl, dly denote the element of length on a and b respectively
and let x denote the length of the segment joining x and y, that is directed
from z to y. Furthermore, let a; and a3 be the angles, lying to the right of
x, formed by x and the sides a and b respectively.

Then we have, for fized y

sin ap

(1) doy = dl,

and for fized x

(2) day = — =214y, .
X
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PrRoOF. First fix l;. Let h; be the length of the perpendicular from z
onto b.

Then
—= =tan(r — a2) = —tanay
—Iy
hence
he
ap = arctan —.
Iy
Consequently
dag hy _ E _ sinap
dl, b2 4+ h,? X2 X

Since clearly o) + ag = constant, the first assertion follows.

Next, fix I and let hy be defined similarly to h,. Then

das day v sin o
a2ty X
O
¥y
B]
hy
Al X Az

FIGURE 2.1

Observe that if Iy increases, for {; fixed, then the angle a; increases. On
the other hand, if l; increases, for I fixed, then the angle a; decreases. As
a consequence, we see that the signs of (1) and (2) are correct.

We are now ready to prove the Pleijel-type identity:

2.2 THEOREM. (Ambartzumian-Pleijel) Let C be a convex polygon with
n sides a; of length |a;|. Suppose that C is oriented as described above. Let
f: R — R be a C'-function; then

la:]

/[C] flx)dg = /[c] F'(x)x cot a; cot ag dg+i2:;/(; f(z)dz,
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where dg denotes the element of an invariant measure on the set G of non-
oriented lines in the plane and [C] := {g€ G : gNC # 0}.

PROOF. First consider two sides @ and b with endpoints A;, A; and B;,
B, respectively. Suppose that a and b are non-intersecting but not parallel

and that they do not share one of their endpoints.
Consider the orientation-preserving differential form

dly Adly,

where dl; (dl) is the element of length along a (b), as defined above.
Define the 1-form w on a X b by

w(z,y) = cos ardly + cos aadly
then
3) dw = —sina;da; A dly — sin agdag A dly.
By Lemma 2.1, (3) may be written as

sin ag sin ay

dw = — sin a1 dly A dly +

sin agdl; A dly

whence, by the anti-commutativity of exterior multiplication

sin o sin ag

(4) dw =2 dll A dlz

Define w; := f(x)w. Then we may apply Stokes’ theorem (see e.g. Guillemin
& Pollack (1974)) to the 1-form w; on a X b, since the latter is an oriented
2-manifold with boundary. This yields

(5) / W = / dwl
8(axb) axb

- /mf'(x)dxxxw+/axbf(x)dw-

Observe that

X _ cos(m — ag) = — cosay
dl,
hence

dx = cos azdls.
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Analogously, we find
dx = —cosaydly.

Consequently
dx Aw = dx A cosaydly + dx A cos apdly
= —2cosaj cosagdly Adly.
By (4) o
/ FOx) dw = 2/ SR TR 3 Adl,.
axb axb X

Hence (5) may be written as

/ FO)ZRALENA2 1y A dly =
axb X

1
(6) = / cosay cosaz f'(x)dly Adly + = / FOw.
axb 2 Ja(axb)

At the beginning of the section, we showed that the boundary 8(a x b) of
axbis

U ex{B:}) u | ({4} xb).

i=1,2 i=1,2
Consequently

Awﬁ“”:

:AMMJWW+AMM/“M+£umﬁ“”+anﬁ“”

== / f(x) cosaz dly + / F(x) cos aa dly
{A1}xb

{Ag}xb
(M + / f(x)cosay dly — / f(x)cosay dly,
ax{B1} ax{Bz}

where one has to take the orientation into consideration.
Equation (7) corresponds with equation (21) in Ambartzumian (1974), in a
version for directed lines.

Next, we let the endpoint By of b tend to the endpoint Ag of a, i.e.
the distance between B; and A; tends to zero. Then in the limit, where
Az = By, we get

(8)
/ fow =
3{axh)

la

| o]
fz)dz + f(z)dz
0 0

—/ f(x)cosay dl; —/ f(x) cos ag dl,.
ax{B2} {A1}xb
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Summation of (6) over all sides of C, using (8) as well as Lemma 2.1,

completes the proof of the theorem. Observe that indeed terms of the form
0'“" f(z) dz appear twice in the sum. Furthermore, there is a cancellation
of terms of the form

/ f(x)cosaz dly and f(x) cosay dly
{Ai}xa; aix{4;}

as desired. [



CHAPTER III

LINE TRANSECTS, COVARIANCE
FUNCTIONS AND A NEW METRIC FOR SETS

Introduction.

This chapter studies the determination of a set A C IR® from informa-
tion on one-dimensional linear transects A N!. Three separate issues are
discussed:

(a) characterisation: whether aset A C IR? is completely determined by
the values of an associated transform (such as the Radon transform
or the covariance function);

(b) stereology: whether geometrical parameters of A C JR? can be sta-
tistically estimated from randomly-sampled values of the transforms;

(c) approximation: whether good deterministic or stochastic approxi-
mation of transforms ensures closeness of the corresponding sets.

Although problems of this kind have received much attention (see the
references mentioned below) it is common for the issues (a)-(c) to be con-
sidered separately. In this chapter we introduce a construct, the linear scan
transform, that is serviceable in all three contexts.

Let us briefly sketch the relevant history (see also the introduction of this
thesis, §3). The interest in characterisation problems for the set covariance
function has recently grown. Nagel (1993) showed that a convex plane
polygon is uniquely determined by its set covariance. Lesanovsky and Rataj
(1990) constructed an example of two distinct non-conver sets with the same
covariance function. For a more restricted class of ‘generic’, not necessarily
convex polygons, excluding those of the abovementioned counterexample,
there is a reconstruction procedure due to Schmitt (1992). In Chapter V of
this thesis we show uniqueness of the set covariance function for a certain
class of bounded symmetric subsets of IR?.

The related class of problems concerning characterisation of a set from
information on linear transects, like the Radon transform, has a much longer
history. See e.g. Ambartzumian (1983) and Waksman (1985) and the refer-
ences therein. For the characterisation of polygons by the distribution of the
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Radon transform, see Waksman (1985). The famous example of Mallows
and Clark (1970) of two non-congruent convex polygons with the same chord
length distribution is not a counterexample for the covariance function (see
Nagel (1991)).

In the stereological context (b) above, there are several well known in-
tegral geometric identities connecting the chord length distribution of a
convex set with its interpoint distance distribution and its set covariance.
Moreover an identity of Crofton (1885) concerning the moments of chord
lengths was generalised to non-convex sets by Miles (1979) and Jensen and
Gundersen (1985) in the construction of an estimator for the total volume
of particles. See also Goodey and Weil (1991).

Suppose the intersection I N A of a line ! with a set A C IR? is a finite
union of compact intervals, with ordered endpoints z;,zs,...z5,. Miles
(1983) defined the k-linc as

2n—1 2n
AnA¥ =" > (1)t (e; — =)k, fork>1
=1 j=i+1

Later Waksman (1987) introduced the glance function of A. In our notation
its definition can be written as

2n—-1 2n
Hina(t) = Z Z (-1 {g; —2; <t}, fort>0.
=1 j=i+1

Waksman used this function to construct a metric on a class of ‘regular’
subsets of the plane with applications to the approximation problem (c).

The new geometric transform introduced in this chapter is also associated
with linear transects of a set A C IR?. The transform is a minor modifica-
tion of Waksman'’s glance function but turns out to be extremely natural,
arising as minus the derivative of the one-dimensional set covariance of a
linear transect. It turns out that all the abovementioned integral geometric
identities can be rewritten in terms of the linear scan transform.

The chapter can be divided into three parts. The first part (consisting of
the first two sections) provides necessary background such as the definition
of the covariance function and regular sets in section 1 and the definition
of the linear scan transform in section 2. The second part is devoted to
stereology and integral geometry, relating the linear scan transform with
the k-linc, volume and other quantities. This enables us to directly gener-
alise Crofton’s formula to nonconvex sets. Also it is now possible to define
stereological estimators in terms of the linear scan transform. This is done
in section 3. The third part is concerned with analysis and convex geometry.
We pursue the approximation problem in section 4 by constructing a metric
7 on regular subsets of IR® defined as the L!-distance between their linear
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scan transforms. In the convex case, i is the L! distance between Radon
transforms. One of the main results of this chapter is that for convez sets
7 is topologically equivalent to the Hausdorff metric.

In the final section we obtain analytic properties of the set covariance
function C4 of subsets A of R?, using the metric 7. The most important
result is continuity of C4 in A, for A in a class of uniformly bounded regular
sets A. We also obtain an elementary proof of Lipschitz continuity of d-
dimensional volume of a regular set, due to the definition of 7.

1. Preliminaries.
1.1 Notation.

Throughout this chapter A\; denotes d-dimensional Lebesgue measure de-
fined on the Borel o-algebra B(IR?). If it is clear what the dimension is, we
write A without the subscript.

Denote by £ the class of all one-dimensional lines in JRY, and by p the
normalised invariant measure on £ (see Santals, 1976, pp. 28, 200). For a
Borel set S € B(IR?), [S] is the set of lines that intersect S: [S] = {l € £ :
IN S # 0}. Furthermore, let S, S° denote topological closure and interior
of S respectively and B(z,r) the open ball with radius r centered at z.
Finally, H#%~! denotes d — 1 dimensional Hausdorff measure (“surface area”,

or in IR?, “length”) and kg = % is the volume of the unit ball in R®.

1.2 Covariance functions.
Let S € B(IR") be a bounded Borel set.

1.1 DEFINITION The covariance function of S is the function Cs : R% —
R, defined by
Cs(y):=AXSNT,S), ye R

where we write
T,S=S-y={s—y:s€85}
for the translation of S by a vector y € R?.
Observe that the covariance function is measurable as a function of y: the

function g(u,w) = 1g(u)1ls(u + w) is clearly measurable and integrable on
IR*® s0 Fubini’s theorem guarantees measurability of Cs(-).

1.2 Examples.

1.2.1For!l € £, S € B(IR?) as above, view I N S as a subset of IR'. Then
fort >0
Cins(t) =M (N S)NT(IN S)).
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1.2.2 If S is as in the previous example and also convez, Cins(t) =
(M(INS)—t)4.
The following properties are immediate consequences of Definition 1.1:

1.3 LEMMA.

(a) Cs(0) = X(S).

(b) Cs has compact support: Cs(y) = 0, for all y € R?, with |ly|| >
diam(S).

(c) Cs is symmetric: Cs(y) = Cs(—y), for ally € R

Rewriting an old result of Borel (1925) in terms of covariance functions, we
get

1.4 LEMMA (BOREL’S OVERLAP FORMULA). Let f : Ry — R be a
measurable function. Denote Euclidean length by || - ||. Then

an [ [ u-saudo= [ Qi) Cstw)du,

in the sense that whenever one side of (1.1) erists, so does the other in
which case they are equal. In particular

(12) [ Cswarw =Xy

PROOF. Set w = u —v. Then

[ [ st edudo= [ [ st tstat ) sGhul) dude
Now

15(’!1, + w) = 1Tw5(u)

so the inner integral above is

£lul) [ | 15(0) 17 s(0) du = £l XS 1 7u5)
= fllwll) Cs(w),
yielding the main result. The second formula is the special case f = 1. O
Next we give the relation between the distribution function of the dis-
tance between two independent uniformly distributed points in a set and

the covariance function of that set. This is a direct consequence of the Borel
formula (1.1).
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1.5 COROLLARY. Let X,Y be two independent uniformly distributed points
in S. Then

P{IX - Y| < p} = ﬁ /B o CsB)dy, for0 < p < diam(s).
Ny

The following result is also well-known:

1.6 LEMMA. For measurable f : IRy — IR

(13) //fllu~vll d“"’”'//ﬂs/ﬁs 9= f(1s — t]) ds dt du(l),

in the same sense as Lemma 1.4.

This is a consequence of the Blaschke-Petkantschin formula (see Santalé
(1976), eqn. (4.2) p. 46 and eqn. (12.23) p. 201).

1.3 Regular sets.

A regular closed set is one that satisfies § = §°. From now on we need
to consider a more restricted class V of regular closed subsets of R

Let D denote the collection of non-empty, open, convex, relatively com-
pact sets. Then the class C of closures of sets in D

C={5:D€D}

is the class of convex bodies (i.e. convex, compact with non-empty interior).
Let

E=DucC
and let W be the algebra generated by £, i.e. by finite intersections, unions
and differences of subsets of £.

1.7 DEFINITION. L
V={VeW:Ve=V}

An element of V will be called a regular set.

Observe that the elements of V are compact and that H?"1(8S) < oo
For details see Appendix A.

1.8 DEFINITION. For a regular set S and ! € £, write n(I N S) for the
number of components of {N S, and o({ N S) for the length (1-dimensional
Lebesgue measure) of [N S.

The following lemma is a version of a standard result in integral geometry
(e.g. Santalé (1976), pp. 29, 31, 234 and Federer (1969), pp. 173, 258, 294).
The proof is given in Appendix A.
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1.9 LEMMA. With respect to the usual o-algebra on L, we have for S € V
(a) o(INS) is a measurable function of l € L, and

(1.4) /£ o(1 $) du(l) = draX(S).

(b) n{INS) is a measurable function of l € L and

(1.5) /L n(IN ) du(t) = =L 741 (95).

In particular, for u-almost all lines [, the transect LN S is a finite union of
bounded line segments.

2. The linear scan transform.

We now define the linear scan transform of a set S in terms of the one-
dimensional covariance function of IN S.

2.1 DEFINITION. The linear scan transform of a regular set S € V is
defined for given [ € L as the function Ging(t), t > 0 such that

diam(S)
/ Gins(z)dz = Cins(t), 0<t< diam(S)
t
Gins(t) =0, for t > diam(S).

That Gins is well-defined for almost all I will be shown below.

The following properties are immediate.

2.2 LEMMA.

(a) IfINn S =0, then Cins = Gins = 0.

(b) For a compact convez set K the intersection I N K is either empty or
a compact interval of length o(IN K) > 0 in which case Cing(t) =
(e(INK)—~t)4 and

1 ifo(InK)>t

0 otherwise

Ging(t)=1{o(INnK) >t} = {

(¢) Cins(t) = Gins(t) =0 for all t > diam(S).

According to Lemma 1.9 we may assume [N S is a finite union of line
segments, and compute Cins, Gins.
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2.3 LEMMA. Represent IN S isometrically as a subset of R

(2.1) InsS= U[xzi—l,l‘zi]

i=1

where ) < T9 < -+ < 23, € IR are the coordinates of the endpoints of the
line segments (with respect to an arbitrary origin on l). Then fort >0

2n 2n
(2.2) Cins(t) = DY (1) (g — 2, ~ 1),
k=1 i=1
2n 2n
(2.3) Gins(t) = D) (1) 11 {zg ~ 2, > t).
k=1 i=1

This representation is independent of the choice of the origin on | and of
the choice of the orientation on l.

The fact that it is possible by Lemma 1.9 to represent [N S for almost
all lines as in (2.1) together with (2.3), shows that the linear scan transform
is well-defined almost everywhere.

PrROOF. First note that for J = IN S as in (2.1) and for any Lebesgue
integrable f : IR, — IR, trivially

2n
(2.9 [ 1®d= 3 (-1tFe,
J k=1
where F' is any primitive of f. Now consider

Cu(t) = Co(~1) = (I N (J 41
(2.5) - /J 1ye() du.

A primitive of 15 is

F(z) = /“’ 1y4e(u) du

-0

-/ m 15(s) ds

(2.6) = /J L o0,a—1)(s) ds.
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But 1(_oo,z—¢ has primitive

A0 == [ Uwamils)ds =@t =)
Yy

So by (2.4)
2n ) 2n ]
/Jl(_oo,z_t](s) ds = Z(—l)’Fl(zi) = Z(—U'“(z —t—z;)4,
i=1 i=1
whence by (2.6) and (2.4)
2n
Cs(t) =Y _(-1)*F(xx)
k;l,l 2n )
= Z Z(—1)1+k+l(:€k —X; — t)+.
k=1 i=1

Independence of the choice of the origin on [ follows immediately from these
representations since they only depend on the length of the intervals in
Ins. O

It is an interesting exercise to check that the alternating sum expression
for Cins(0) collapses to (1N S). Setting t = 0 in (2.2) gives

Cins(0) = Y > (1) (zp — z:);
i k>i

the inner sum collapses to (z;+1 — ;) for left endpoints (i odd) and to 0 for
right endpoints (i even) so the total is ) (z3m — Tam-1) = (I N S).
Observe that for £ > 0, (2.3) can be rewritten as

2n—1 2n
Gins(t)= D Y (-1 1z — i > t}.
=1 k=ti+1

3. Identities concerning the linear scan transform.
3.1 Basic relation.

First we establish a link between the covariance function of a set S in
R? and the linear scan transform.

Denote by z* the vector z, viewed as an object in a space of dimension
k. If it is clear from the context which dimension we are in, the index is
sometimes omitted.
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3.1 PROPOSITION. For a set S €V
oo
Cs(y) = / / Gizns(s)ds dz®',  for all y € RY,
1L Jt

where y = tw, t = ||y|| and w € §471, 1, is the line through the origin with
direction w, I} is the orthogonal complement of l,, and IZ =1, + z%~1.

PROOF. Let w = y/||ly|l € S¢~!. By definition
(3.1) Cs(tw) = / 15(29)15(2% + tw) dz?.
R4

Furthermore, z¢% and z% + tw lie on a line I, + 2%~! with direction w and
their coordinates on this line are z! and (z + tw)! = 2! + ¢ respectively.
Hence the right-hand side of (3.1) is

/ / ll:ns(zl)llzns(zl + t) le dzd_l = / C[: ns(t) d:l:d_l
l:‘; R w i w

w

This proves the Proposition because by definition

Cins(t) = /°° Gins(s) ds.

O

As a corollary to the previous proposition, we can write the expression
obtained for the interpoint distance in Corollary 1.5 in terms of G.

3.2 Stereological relations.

In this section we first establish a connection with n(I N S) and with the
so-called k-linc introduced by Miles (1983).

3.2 DEFINITION.(Miles) Let I € £ such that 1N S° # @. The k-linc (for
“k-th order line section of non-convex domain”) of a regular set S in IR, is

2n(INS)—12n(INS)
ens) =3 3 ()T (g -z
i=1 j=i+l

where 7, 22, ... are the ordered endpoints of intercepted intervals as before.

By Lemma 1.9, [o(I N S)¥] is well-defined for almost all lines. The k-linc
is of stereological importance, especially when d = 2 and k& = 3 and also
when d = 3 and k = 4 (see Miles (op.cit.) and Jensen and Gundersen
(1985)).
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3.3 LEMMA. Letl € L. For a regular set S we have for u-almost all |
(a) n{INS) = Gins(0).

(b) [e(INS)F] =k f0°° t*"1Gins(t)dt  for k> 1.

(c) [o(In S)¥] = k(k —1) f0°° t*=2Cins(t)dt  for k > 2.

ProOF. By Lemma 1.9, n(INS) < oo for almost all lines. For those
lines, the k-linc of S is well-defined and the linear scan transform is defined
for almost all lines. Throughout the proof we only consider those lines in £
such that n(INS) < 0o and such that Gins is well-defined.

To prove (a), set t = 0 in (2.3). This gives

Gins(0) = Y (-1 11 {zy > 23}
i ok

and the inner sum collapses to 0 for right endpoints (i even) and 1 for left
endpoints (i odd) so that the total is n(IN S).
For the second statement observe that by Lemma 2.3
2n(INS)—-12n(INS)
Gins(t) = Z > (—)"F 1z -z >t}
Jj=i+1
Hence the right-hand side of (b) is
2n(INS)—12n(INS)
/ Ktk Z S (-1 g —z; > t}dt
=i+l
2n(mS) 12n(INnS) z;—x;
Z z (-1) itj+1 / k1 dt
i =i+l
2n(lﬂ.5') 12n(INS)
Z Z (1) (g; — z;)*
=i+l
[e(In S)¥].
Finally, the third claim follows from the previous one by integration by
parts. O

3.4 Examples.

3.4.1. If S is convex, as when n(IN S) =1

a(lns) ]—/ Ktk o,(ms](t)dt

o(InS)
= / kt*—1 dt
0

=o(In S)*.
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342. If k=1,
(1N §)1] = /0 " Gins(t) dt = Cins(0) = o(IN S),

by part (a) of Lemma 1.3.

3.4.3. From Example 3.4.2 we obtain
(3.2) o(InS) = /0 " Gins(t) dt
for almost all I. Consequently
ey [ " Gins(t) dtdu(l) = [ 70 S)du(t) = anax(s),

see Lemma 1.9.

3.5 PROPOSITION. For f : IRy — IR integrable on compact sets and

SeVy
—v||)dudv = d-1 N
/S /S F(llu— of]) du d /ﬁ /m 1119 £ (1) Cins (£) dt du(l)
=2 /c /0 191 £()Cins (¢) dt du(l)
(3.4) =2 /,; /0 Fa_1(t) Gins(t) dt du(l)

where Fy_1(t) = f d-1£(s)ds.

PRrRoOOF. By Lemma 1.6

S = oydudo= [ [ [ oot s - o) dsaautty

Now we apply Borel’s overlap formula (1.1) to the one-dimensional set I N S
and the function |s — |41 f(|s — t]):

//ns./ns’s =" f(ls~t)) dsdt du(t) = // fw]*~* £ (|w])Cins (w) dw du(l).

By symmetry of the covariance function the integral over w is

2 /00 w* ! f(w)Cins(w) dw.
0
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Let F;_; be as defined in the statement of the Proposition. Integration by
parts yields

/oo wi ! f(w)Cing(w) dw = /w Cins(w) dFy—1(w)
0 0

= /-°° Fy_1(w)Gins(w) dw,

0

since Cjns(w) = 0 for w large enough and Fy_1(0) =0. 0O

From Proposition 3.5 and part (b) of Lemma 3.3, we obtain a generalisa-
tion of Crofton’s formula, relating chord length and interpoint distance for
non-convex sets cf. Santalé (1975), p. 238, (14.25). (See also Miles (1985).)

3.6 COROLLARY. For SeV

(3.5) 2 /E (01 0 S)¥] duu(l) = k(k—1) /S /S [u—vf*~4~  dudv, k>d—1.

PROOF. Take f(t) = t*~9~! in Proposition 3.5. Then

L/S llw — v]|F~4"! dudv = 2‘/1: /;oo (/Ot sk—2 ds) Cins(t) dtdu(l)

2 [o.9)
= /L /0 41 Gins (¢) dedu(l).
By Lemma 3.3(b) this is
s [len s aut)
Kk—1) /.7 #
which proves the claim. O

3.7 Remark. In the convex case we recover Crofton’s formula, since by
Example 3.4.2

[c(In S =0o(lnS)* for convex S.

3.8 Remark. Taking k = d+ 1 in Corollary 3.6 or f =1 in Proposition
3.5 we get

A5 = 1755 /L (10 S)**] du(l)

= 3 /L /0 ” t2Gins(t) dtdu(l).
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Finally, there is a connection with the chord length distribution
Fs(z)=P{le L:0(INn8) <z},

where P is a properly normalised probability measure on the set of lines
that intersect a convex set S.
Recall from Lemma 2.2(b) that 1{e(IN S) > 2} = Gins(z). Hence

1
P{o(ins) <ap=1- /L Gins() du(l).

Comparing this with results of Waksman and Pohl, we conclude that
f ¢ Gins(x)du(l) is equivalent to ag, the so-called associated function to
S. This function was defined by Pohl (1980) and used by Waksman (1985)
to partially solve the problem of characterising convex plane polygons by
their chord length distributions. (Extended to a slightly more general class
of polygons by Cabo (1989).)

3.3. Glance functions.

Waksman (1987) considered a subclass of open subsets of W with C?
boundaries made up of finitely many arcs on which the curvature does not
change sign. Moreover their diameters are bounded by a fixed constant D.
For such a set T, he introduced the glance function. In our notation, its
definition boils down to

2n—1 2n
Hir(t) =Y > (-1)"1{e; -z, <t}
=1 j=i+1

While the linear scan transform G takes into account only those endpoints
which are separated by more than a distance ¢, the glance function only
‘sees’ those endpoints that are not more than ¢ apart.

Our relations »(I N S) = Gins(0) and
diam(S)
o(InS) = / Gins(t) dt
0
are analogues of Waksman’s results n(I N S) = Hjng(D) and
D
c(InS)y=n(INS)-D - / Hins(t)dt.
0

Since the support of Hing is [0, diam(S)) these are equivalent to
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n(IN S) = Hins(diam(S)) and

diam(S)
o(in §) = n(IN §) - diam(S) — / Hins(t) dt.
0

Furthermore, the following general relation trivially holds

Hzns(t) = n(l n S) - Gms(t).
Hence Gins and Hjns can be considered as dual. The reason we prefer to
work with Ging is, among others, that it is possible to express well known
stereological entities in terms of the linear scan transform directly, whereas

the glance function would always involve some constants depending on !
and S.

4. Metrics.

4.1 A new metric for sets.

On the class of regular sets (introduced in § 1) we define a ‘stereological’
metric, following Waksman. It is defined only in terms of the linear scan

transform G.

4.1 DEFINITION. For S§,T € V, let

n(S,T) = /E 1Gins — Ginr s du(l)

(4.1) - /L / " |Gins(t) = Ginr (8)] dedu(l).

4.2 Remark. In fact this definition is a minor modification of the metric
defined by Waksman (1987) as the L' distance between glance functions.
Nevertheless the class of sets on which it was defined was different (see also
§3.3).

Measurability and integrability of the linear scan transform are proved
in Appendix B; this ensures that 7 is well-defined.

4.3 PROPOSITION. 7 is a metric on V.

PROOF. Since 7 is defined in terms of the L!-distance between linear
scan transforms, the only property we have to check is that (S,T) = 0
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implies S = T. Suppose #(S,T) = 0. Observe that

Lletns) - eanD|au) = [| [~ Gnsrae~ [ o) at] dut)

< [ [ 16uns(®) - Gunr(o) dtaut)
LJo
=n(5,T)
=0.
Thus
o(InS)=a(INnT), for p-almost lines 1.

Consequently the Radon transforms of the indicator functions of S and T
are equal for almost all lines. By Helgason (1980), Proposition 1.7.5, p. 52
this yields equality of these indicators in L. Equivalently

(4.2) MSAT) = 0.

Suppose there is an ¢ € S\ T. Because T is closed, we can find an open
ball B(z,r) around z such that

B(z,r)NnT =19
(4.3) (and B(z,7) NS # 0).

Recall that by regularity of S, S = §°. Hence, for all € > 0, we can find

y € S° such that ||z — y|| <e.
Take € = 1r. Then thereis a § < ir such that

B(y,6) C S.

Hence
B(y,6) C B(z,r) = B(y,6)nT =0, by (4.3).

However this would imply that A(S \ T) > A(B(y,6)) > 0, contradicting
(4.2). Thus we conclude S\ T = @ and by symmetry also T\ § = 0, yielding
the desired equality of S and T. 0O

4.4 Examples.

4.4.1. If K1, K; € V are both convex

(K1, Kp) = /L ol Ky) — o (10 Ky)| dull),
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the L' distance between their Radon transforms. To see this, observe that
for all [

Gink, (t) — Gink. (t) = 1j0,0(nk1)](t) — Lo,0(ink2)] (1),

by convexity (see Lemma 2.2(b)) so that

|Gink, — Gink.ll1 = / [Ljo,00nK ) (t) = 1jo,0(1nka)) (t)| dt
0
= |o(In K3) — o(l N K1)|-

4.4.2. If K;, K, are convex and K; C K3 then
n(K1, Ka) = dea{\(K2) — (K1)}

This follows from (1.4) together with the previous example since
c(InKp)—o(lNnKy) > 0.

Apart from this special case, it seems quite hard to give an explicit ex-
pression for the metric 7. For instance, the other relatively simple case
of two non-intersecting convex sets needs results related to the Sylvester
problem (see Santalé (1976), p. 63-65). On the other hand, a simple upper
bound obtains in the general case.

4.5 LEMMA. Let S, T € V. Then

78,7) < [ 1Gusldut) + [ IGunh dut)
(4.4) < diam(S)length(8S) + diam(T")length(3T).
PROOF. The first inequality simply follows from the triangle inequality

for the L' norm.
It is also clear that

(4.5) IGins(t)] < Gins(0) =n(InS)  forall t.

Thus we get

/||Glns||1dp(l)+/ [|GinT|lL du(l) =
£ c
=/;/0 |Gzns(t)|dtdﬂ(l)+/£/(; |Ginr(t)| dt du(l)

< diam($) /L Gins(0)du(1) + diam(T) /,; Ginr(0)du(l).
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This yields the Lemma by (1.5). (See Santalé (1976) p. 31.) O

4.6 Remark. This bound is sharp in the following sense:
Let z,, € R? be such that ||z,|| — oo, n — oo. Then 7(S,T,, T) tends to
the first bound in (4.4).

Proor. Let R, =T, T.
7(S, Ry) = /c 1Gins — Ginn, I du(l)
- / IGins — Ginr Il du(l)
[SIN[R.]

+ / IGins — Ging, |l1 du(l)
[SI\[R=]

+ / IGins — Ging, I du(l)
[R.\[S]

n

:/ |Gins — Ging, |1 du(l)
(SIN[R.]

+ / 1Gins| du(l)
[SI\[Rx]

+ / IGing, Il dul).
[RaJ\[S]

As n tends to infinity the first integral tends to zero because p([S|N[R,]) —
0 and the linear scan transforms are almost everywhere uniformly bounded
by the diameters of S and T. For the second integral, noting that 1ig)\(r,
converges pointwise to 1(s) and is dominated by the same function, we get
by dominated convergence that

[ WGumsldu() ~ [ Ginsll du(d)
[S\[Ba] (5]
For the third integral observe that by translation invariance of G

/ IGinm. lh du@) = | |Gurer | du(i)
[R.\[S] [T\[T-2, 5]

Then the same argument as above yields

0(S, Ra) — /L 1Gins |l dud) + /E 1Ginrls du(d),

as n tends to infinity. O
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4.2 Connection with the Hausdorff distance.

It is of interest to compare the metric 7 introduced in the previous section
with the well-known Hausdorff distance between sets.

4.8 DEFINITION. The Hausdorff distance between two nonempty sets
A,BC R%is

A,B) = inf ||l — b||, sup inf |ja— b
(A, B) maX{ilelgblgBIIa Josup int u}
=inf{r >0: ACB" and BC A"},

where B™ = {z € R® : infyep ||z — b|| < } denotes the parallel set of B.

The following example shows that the two metrics do not generate the
same topology (on V).

4.9 Example. Define
X, = B(0,1) U B(z, %) where n > 1 and ||z]| = 3.

In the Hausdorff metric X,, converges to B(0,1) U {z}. However in 7 it
converges to the unit ball:

n(Xa, B(0,1)) =

= /L lo(tn X,) — o(1 N B(0,1))] du(l)

/ lo(I N X)) — (10 B(0,1))] du(?)
[B(0,)\[B(=, )]

+ / lo(I N X,) — o(1 0 B(0, 1))| du(l)
[B(=,3)\[B(0,1)]

+ / lo(1 0 X,) — o1 1 B(0,1))| dp(l).
(BO.INB(z,2)]

The first integral is zero because o(INX,) equals o(INB(0, 1)) on the domain
of integration. For the second integral we have as n tends to infinity

01N Blz, 1)) du() < / o(In Bla, -)) du()

(B(=,2)]
_deg

/IB(:,%)I\[B(OA)]
0.

nd
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The third integral tends to zero by observing that the integrand is bounded
above by 2 and u([B(0,1)] N B(z,1)) - w([B(0,1)] U [{z}]) = 0, for n
tending to infinity.

However, for convez sets with non-empty interior (i.e. elements of C, see
§ 1.2) the metrics are topologically equivalent. The purpose of the remainder
of this section is to prove this.

4.10 THEOREM. The two metrics 1 and H are topologically equivalent
on the space of convex bodies.

Since the proof of Theorem 4.10 is rather lengthy, we treat the statement
in two separate parts. The first part is a straightforward application of
Steiner’s formula.

4.11 PROPOSITION. Given S € C and € > O there exists 6§ > 0 such that
forallT €C
H(S,T)< é6=>n(S,T)<e.

PROOF. Suppose S,T € C and § > 0 satisfy H(S,T) < 6. Then by
definition

(4.6) ScT? and TcS’.

Moreover, the convexity of S and T implies the convexity of their parallel
sets S% and T®. The triangle inequality yields

n(S,T) < n(S,5°) +n(5°,T).
Using (4.6) and Example 4.4.2 gives

n(S,5%) = dra (A(S®) — X(S))
(T, 5°) = dka (A(S®) — X(T)).
Let W,(-) for 7 = 0,... ,d denote the Minkowski functionals on C (see e.g.

Santalé (1976), p. 217). In particular Wy(K) = A(K). The Steiner formula
(see Santal6 (1976), p. 220; Federer (1969), p. 271) states that

d—r

ACDEDY (d R ) Wess(K)6°

s=0
Applying the case r = 0 to K = S yields
& d s
CHEPIGED I MV ACTE

S
s=1
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Applying the same to K =T

NT?) = g (‘:) W,(T)6*

This yields

n(S,T) < n(8,5%) +n(5°,T)
= dra (2(A(S?) — A(S)) + A(S) — X(T))

Kd (z i (‘j) WL(S)8* + A(S) — A(T))
(22 ( )W (S)8° + MT°) - A(T))
= dky (22( ) W(S) + W,(T))é )

Using the Steiner formula for general r, the inclusion T' C 5% and the
monotonicity of W,.(-)

d—
Wo(T) <W,(S) =) ( ) W, (S)6%.

k=0

Collecting together we have
d d d d d—s d—s
7(S,T) < dky (22 (8) W($)8* + Y (s) > ( . )Wk(S)é”")
s=1 s=1 k=0

This is a polynomial in § with zero constant term and finite positive coeffi-

cients determined by S. The result follows. O

Next we turn to the second part of the proof of Theorem 4.10.

4.12 PROPOSITION. Let {K,} be a sequence in C and let K € C.
If n(Ky, K) — 0 then also H(K,,K) — 0.

To prove Proposition 4.12 we need the following result, which shall be proved
later.
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4.13 PROPOSITION. Let K, K, be in C and suppose (K., K) — 0. Then
U,, K is bounded.

PRrROOF OF PROPOSITION 4.12. We assume that K, tends to K in 7,
but not in H. Then for all € > 0, there is a subsequence, K, say, such that

(4.7) H(Kn,,K)>e foralli.

Since by assumption (K, K) — 0, Proposition 4.13 yields that | J; Ky, is
bounded. However it then follows from Blaschke’s selection theorem (see
Eggleston (1958)) that there is a sub-subsequence, Ky, say, that does con-
verge in H. Suppose its limit is K™*:

H(KﬂipK*)_)O) ]—700
But then
n(K,K") <n(K, Kn.',-) + n(Knij’K*) -0,
by the assumption and Proposition 4.11. This implies n(K, K*) = 0. Since
7 is a metric, K = K*, that is
Kn, 5 K.
This contradicts (4.7), thus proving that convergence in 7 implies conver-
gence in H to the same limit. O
In the sequel we consider the inradius and minimal width of a convex set.
Their definitions are given below.
4.14 DEFINITION.(see e.g. Eggleston (1958)). Let K € C.

(%) The inradius r(K) of S is the supremum of the radii of all balls
contained in K.

(i) Consider all pairs of parallel support hyperplanes at K. The min:-
mal width w(K) of K is the minimum of the distances between these planes.

4.15 Remark. For a compact set K, K¢ denotes the set of all points
that are centers of balls of radius € contained in K:

K ¢ ={y:B(y,e) CK}.

K~¢ is called the erosion (see Serra (1982), p. 39) of K. From the definition
it is clear that r(K) < € is equivalent to K¢ = .

We now proceed with the proof of Proposition 4.13. It is divided into
three Lemmas.
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4.16 LEMMA. Suppose n(K,,K) — 0 and {J,, K, is unbounded.
Then r(K,) — 0 as n — oo.

PROOF. Assume without loss of generality that the entire sequence {Ky,}
diverges in the sense that there are points z, € K, such that 0 < ||z,|| 1
oo. We prove the result by contradiction. Suppose (again without loss of
generality) that 7(K,,) > € for all n, where € > 0. Thus by the Remark 4.15
K€ is not empty for all n.

We claim that D(K, K;Em) — 00, where

D(S,T) :=sup inf ||z — y||.
(5,7) = sup nf Iz~

For, either D(K, K €) — oo (which implies the claim) or D(K,K;€) < M
for all n (without loss of generality). In the latter case for every n we
can find y,, € K¢ such that d(y,, K) < M, so that B(y,,e) C KM. Put
Cr, := co (B(yn,€) U{zn}). Then C,, is contained in K,. Enclosing K in the
ball A, = B(yn, p) where p = e+2diam(K )+ M, we have K,,\ K D C,\ A,..
Defining 2z, = (zn, + yn)/2 simple trigonometry shows that

B, = B(z4,¢/2) C C,, C K.
Hence z, € Kf./ 2 and

d(me) 2 "zn - yn” - d(yn,K)
>lzn —yull - M

— 0O.

Thus D(K, B,,) — oo, proving the claim.
Consequently we can find balls B(z,,¢/2) = B, C K, such that
D(K, B,) — co. Now

NKn, K) > / a(ln By,)du(l)
[B.)\[K]

- / o(1N B,) du(l) - / o(i N By) du(l)
[Bn] [Ba]N[K]
> dkgA(Bn) — € u([Bn] N [K]),

by (1.4) and the fact that o(IN B,) < e. I B = B(z,diam(K)) is the
circumsphere of K, then we have

H([Ba] N [B]) = e(3diam(K), ¢/2, 12n ~ all),
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where ¢(rq,72, 5) is the measure of all lines intersecting two disjoint balls of
radii 1, o with midpoints separated by a distance s. By standard integral
geometric arguments it can be shown that for fixed ry, 73, ¢(r1,72,8) — 0
as s — oo. Hence u([B,|N[B]) — 0, i.e.

lim n(Kn, K) > xq(e/2)* > 0.
This contradiction proves the Lemma. 0O

4.17 LEMMA. For all € > 0 and for every compact convex set K
r(K) <e implies w(K) < i,
Cd

where cq is a constant depending only on the dimension d.

This is a consequence of the following inequality (see Eggleston (1958),
p. 112). For a compact convex set K

%d“%, d odd
(K) > ca-w(K), wherecy= (d+2)}
m, d even.

4.18 LEMMA. Let K € C. Then

liminf n(K,L)> 0.
Leé{g‘]g)dn( , L) >

ProoF. Fix 0 < a < r(K). Observe that for all 0 < o < r(K),
ME @) #£0. Let 0 < < %fedz\(K_“). Then

(4.8) AK™) > 2

Now we take 6y = 6(mg, K) < min(a, 3—]——~3N4A(K—a)—"° and let L be an element
2u([K])

of C with minimal width smaller than &y.

Choose a direction, 8., say, normal to two parallel support hyperplanes
containing L that are a distance w{L) apart. Write W for the region
bounded by the two supporting hyperplanes mentioned above and let £,
be the set of lines [ intersecting K~* whose directions (I) make an angle
<(8(1),0%,,) with 8%, that lies in the interval (— %, Z

min 313)°

Ea = {l € [K.‘a] : q(e(l)’ei;m) € (—g’ g)} )
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Let I € £,. Then by the assumption on <(6(1),8%;,

w(L)
cos(<t(6,0x. )

min

o(INnW)= < 2w(L),

where we use the fact that cos¢ >  if ¢ € (=%, %)- Thus also
(4.9 o(INL) < 2w(L).
Furthermore, observe that for lines intersecting K%,
(4.10) c(INK) > 2a.
Hence by (4.9) and (4.10)
c(INK)>2a> 26 >2w(L)>o(lNL) forle€ L.

Consequently

AWK D)2 [ o0 K) =oUn D] du)

-3

- / o1 N K) du(l) - / (10 L) du(l).
La

-3

By part (a) of Lemma 1.9 and the definition of L4

/ (10 K) du(l) > /E o(10 K~*) du(l) = gnd)\(K"’).

@

For the second integral we have by (4.9)
[ o0 D) dud) < 2w(z) uie)
< 20(L) w([K)).

Summarising

o

1K, L) 2 2raM(K ™) - 20(L)u((K])

> %ndz\(K_a) —260p([K]) by assumption
>ng >0, by (4.8).

This implies (ig)f 6?7(K, L) > 0 for § < & arbitrarily small and proves
w <

Lemma 4.18. O

To complete the proof of Proposition 4.13, suppose 7(K,,K) — 0 and
suppose to the contrary that U2, K, is unbounded. By Lemma 4.16 the
inradius of K, tends to 0. Then by Lemma 4.17, the same is true for the
minimal width of K,. But by Lemma 4.18, n(K,, K) > 0. This contradic-

tion implies that U ; K, is bounded, proving the Proposition.
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5. Continuity results.
5.1 Volume.

5.1 LEMMA. The mapping S — A(S) is Lipschitz-continuous with con-
stant 1 on (V, 7).

ProoF. Using Proposition 3.1, expressing the covariance function in
terms of G

[A(8) = A(T)| = |Cs(0) — Cr(0)]

< /L /0 " Gins (&) = Ginr(8)] dt du)
=n(S,T).

5.2 The covariance function.

As a corollary to the equivalence of 7 and H on the collection of convex
bodies we obtain pointwise convergence of an 5 (or H)-convergent sequence
in C.

5.2 COROLLARY. Let K, K,, € C and suppose H(K,,K) — 0. Then

Ck,(y) — Ck(y) pointwise.

ProOF. Fix y € IR* and write Ck (y) = [ 1k.(z) 11k, (z) dz. The
result will follow by applying dominated convergence to 1k, ()11, k., (7).
Since H(K,,K) — 0

K, C K, wheree, |0asn — oo.
But then by convexity, we also have
K~ C K,.
(See Matheron (1975).) Hence

lg-en(z) € 1k, (z) € 1gen(z), Vz.

Since the two bounds converge to 1x(z), Vr as n — oo, the same is true for
1k, (z). Thus

1k, (z) 11, K, (z) — 1k (z) 1T, K (Z) pointwise.
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Moreover the functions at the left hand-side are bounded above by 1 and
have compact support. Hence dominated convergence yields

Ck(y) = /;n‘ 1k, (2) 11,k (z) dz — /Ra 1k(z) 17,k (z) dx = Ck(y).
O

The representation of the covariance function in terms of the function G
also enables us to prove continuity results of the covariance function with
respect to the metric 77. As a first step in that direction the following lemma
proves useful.

5.3 LEMMA. Forr >0 and S,T €V
/” 105~ Cr@lder Sn(ST),
yli=r

where w, is the spherical measure on a ball with radius r.

Proor. By Proposition 3.1
05w = Cr)l =1 [ [ Gins(t) = Guar@) el 1)
v v
< [ [ 1Gins() - Gurr(®ldeduy 0
Ly Jilyll
< [ 1Gins = Ginzll duy (1)
£y
Integrating this inequality over all directions yields the Lemma. 0O

We now have enough tools to prove Lipschitz continuity of the covariance
function, for sets bounded by a fixed diameter. Denote by V(M) the subclass
of V consisting of all sets with diameter bounded by M; i.e.

V(M) :={S €V :diam(S) < M}.

5.4 THEOREM. For all M > 0 the mapping S +— Cgs from (V(M),n)
into L'(IR?) is Lipschitz continuous with constant M2

1
ICs ~ Crlly < 5M*n(S,T)  for all 5,T € V(M).
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PROOF. Let M >0 and S,T € V(M).
Transforming to polar coordinates we obtain

ICs ~Crlh = [ 105w - Or )l w)
=[] lest) - Cr)|dorar
0 llyll=r
M
=/ T/ |Cs(y) — Cr(y)| dw, dr
0 lyli=r
M
<n(S,T) / rdr by Lemma 5.3
0

= %M%(S,T).

This proves the Theorem. O

Lipschitz continuity of the function Ck : IR* — IR, for a fixed convex
body has been proved by Matheron (1986).

Recall that the breadth function bx : S~! — IR is defined as the d — 1-
dimensional volume of the projection of K onto a hyperplane orthogonal to
the direction u. For K € C, by is a bounded function.

5.5 THEOREM. (Matheron)

The mapping y — Ck(y) from IR? to R, is Lipschitz continuous for fized
Kec:
ICk(y) — Ck(z)| < 2b]lz -y,

where b is the supremum over S?~1 of the breadth function of K.
5.6 COROLLARY. Let K,, K € C and suppose n(K,,K) — 0. Then

Ck, — Ck uniformly.

ProoF. This is an application of Dini’s Theorem:
By Corollary 5.2

Ck.(y) = Ck(y).
As in the proof of Corollary 5.2 there is a sequence ¢€,, | 0 such that

K™ C K, C K~ by convexity.
This implies

(5.1) CK—(.-. S CK,. S CKcn .



78

Observe that the sequences {Cg - }32; and {Cken }32, are both mono-
tone.

Since H(K**,K) = €, | 0, Theorem 4.10 and Corollary 5.2 yield
Cke(y) | Cx(y), forye R

Moreover since K ~¢» 1 K then H(K~¢*,K) — 0 because K is compact
(see Matheron (1975), Cor. 3, p. 13). This yields H(K~*~,K) — 0 by
compactness of K(C RR?*). Thus also

Ck-e T Ck(y)-

By Theorem 5.5, all these functions are continuous. Since they all have
compact supports, Dini’s Theorem asserts that Cge. and Cg-<. converge
to Ck uniformly. The triangle inequality and other standard arguments
together with (5.1) yield the claim. O
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Appendix A. (Proof of Lemma 1.9)

To prove Lemma 1.9, recall the following concepts. As before H™ denotes
m-dimensional Hausdorff measure (see Simon (1983), p. 6).

A.1 DEFINITION. Let E C IR®. Then E is (K™, m)-rectifiable if H™(E) <
oo and there exists a set F' containing H™-almost all of E such that F =
U2, F,,, where each F), is the image of a bounded subset of IR™ under a
Lipschitz map.

(See Federer (1969) p. 251, 252 or Simon (1983).)

Federer proved that for an (H™, m)-rectifiable set E
(A1) H™(E) = c(m,d) / H™ =4I N E) du(l),
c

for a certain constant c¢(m,d).

It is well known that the boundary of a bounded convex set with non-empty
interior in IR? is (H?~1,d — 1)-rectifiable. The following result is easy to
prove.

A.2 LEMMA. Every W € W (see section 1.2) can be represented (not
uniquely) as a disjoint union

W= J (D; nC)\ (U2, E))
i=1
where D; € D, C; €C, Ejp € €.

A.3 COROLLARY. For the boundary of a set W € W
aw c | J(8D;)u(8C;) U | (OEsk).
i=1 k=1
Consequently there exist K; € C
ow c | J oK.
=1

In particular, W is (H3',d — 1)-rectifiable.
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Proor or LEMMA 1.9.

LetA:={l€ L:n(INS) # $H*(BSNI)}. Since S € V, 8S is (H31,d—-
1)-rectifiable, hence we can apply (A.1) withm =d~1andm+1—-d=0
yielding

/ HO(BS N 1) du(l) = c(d — 1,d) H*~2(8S).
L
So we have to prove that u(2) = 0.

Let {K:}: = {D;};U{C;}; U{Eji}; be the convex sets featuring in the
representation of S at Lemma A.2. Observe that

(N S) <H(ANS)+ D Lunk,ook}

since any endpoint of an interval of /N S belongs to 8S.

Fix 0 < € < min;7(K;). Consider an inner approximation S~ to S
obtained by replacing each D; by D; ¢, each C; by C; ¢, and Eji by Ej; in
the representation of S. Write { K }; for the replacements of the K.

Observing that for arbitrary sets A C B

1ig) = 14) + 1(B)\(4]

and applying inclusion-exclusion we obtain

Additionally,

_ 1
n(In57) 2 ZHUNS) = 3 Ly yary ()

because intervals of I N S~ do not contain points of I N 45, and with each
successive pair zx, Zr+1 of points of I N JS we can associate at least one set
K; such that 1N K; C [zk, Tk+1] with the K’s being disjoint for different k
and satisfying either I N [zg, zp41] #FPor INK, = 0.

Combining these three inequalities yields

1 1 1
SHO(NS) -2 Z Lgapxo) () S n(InS) < SHOINS)+5 Z L{ink. 50K}

However u([K;]A[K;]) | 0 as € — 0 and it is well known that p({l : I C
8K}) =0 for any K € C. Hence n(I N S) = 1H%(I N S) almost everywhere.
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Appendix B.
B.1 LEMMA. The function Gins is (measurable and) integrable simulta-
neously in I and t, for every S € V.

PROOF. We first prove measurability of the transect covariance function.
This is done by applying the coarea formula (Federer (1969),3.2.22) to the
functions and sets defined below.

First let V := R? x §9-1. Define
fVxR— R*
((z,u),t) — z + tu,

that is, f maps (z,u,t) onto a point at distance ¢ from z, lying on the line
with orientation u through z. Next let

g VxR — R*xR*
((z,u),t) = (=, f(=,u,1)).
For any measurable set 4 C JR® with finite Lebesgue measure, the set
A" =g YA x A) = {(z,u,t) 1z € A, f(z,u,t) € A}
is clearly measurable. Next consider
h:V—L
(z,u) = {z+au:a € R}.

Identifying £ as usual (Santalé (1976)) with the cylinder R x [0, ) it is
readily seen that A is Lipschitz. Finally we define

1t VXR—-LxIR
((x,u),t) = (h(z,u),t).

Then the coarea formula implies that

s(l,t): = /_W , 1 (e, 0! (2,
= 2C{nA(t)

is measurable in (I,¢). Now it is easy to prove Lemma. 4.2 for convex bodies.
For K €C

GmK(t) = l{CmK(t) > 0}
hence G is measurable in (I,t) and integrable since it has compact support.

The result for regular sets A € V now follows using similar arguments
applied to the representation in Lemma A.2.






CHAPTER IV

ESTIMATION OF MEAN PARTICLE VOLUME
USING THE SET COVARIANCE FUNCTION

Introduction.

A classical integral geometric result of Crofton and Hadwiger relates the
squared volume of a three-dimensional convex body to the fourth moment of
its chord length. This has important applications in stereology, to the prob-
lem of drawing statistical inferences about a population of three-dimensional
objects or ‘particles’ from information obtained on random two-dimensional
plane sections or one-dimensional linear probes of the population. Specifi-
cally the result provides an unbiased estimator of the volume-weighted mean
volume 7 of the particle population, Haas et al. (1967a,b).

The assumption of convexity is too restrictive for many applications.
Miles (1983b, 1985) and Jensen & Gundersen (1983, 1985) have generalised
the Crofton-Hadwiger identity to non-convex sets with nonempty interior,
yielding estimators of @ for populations of particles of very general shape.
The estimators use information from one-dimensional samples, such as ran-
dom linear probes and point-sampled intercepts, typically obtained by sub-
sampling a two-dimensional plane section.

A practical drawback of the line intercepts method is the very high sample
variability, especially when the particles are elongated rather than approxi-
mately spherical. It would be of great interest to develop estimators of
7 which efficiently exploit all the information in a two-dimensional plane
section. Miles (1985), p. 123 observed that

“there is a two-fold source of error — through choice of plane sec-
tions, and choice of line sections within plane sections. The latter
may be (...) eliminated by integrating (the estimator over all test
lines ...), a task theoretically within the capabilities of automatic
image analysis.”
The aim of the present chapter is to follow this suggestion. We point out
that there already exists a generalisation of the abovementioned integralge-
ometric results to r-dimensional plane sections of an n-dimensional regular

83
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compact set A C JR". The k-th moment of distance between two points
in A, J}(A) say, satisfies a reproductive or section formula analogous to
those holding for the quermass integrals. In case k = 0 this yields an iden-
tity relating the squared volume of A to the integral of J;,_,.(AN F) for all
r-dimensional plane sections AN F of A. These results are subsumed in
earlier work of Miles (1979). Here we also prove counterparts for the case
of ‘vertical sections’.

Secondly we relate JP(A) to the set covariance function of A. Similar
statements were obtained by Borel (1925) and Serra (1982). In applications,
the set covariance function can be easily computed for any binary image,
so we are able to implement an estimator of ¥ based on two-dimensional
plane sections of a particle population. We derive explicit estimators for
7 under a variety of sampling regimes, both design-based (area-weighted
random sampling and systematic sampling) and model-based (stationary
germ-grain models).

Thirdly, echoing the argument of Miles quoted above, we show that these
estimators have smaller variance than the estimators based on test lines, by
applying the Rao-Blackwell theorem (Baddeley & Cruz-Orive (1993)).

Finally we test the method on some real examples, assess the gain in
efficiency with respect to test line methods, and make some proposals for
data modelling and variance estimation.

1. Integral geometry of distance moments.
1.1 Definitions.
Fix a compact set A C IR™ which is assumed to be regular closed, A° = A,

and for brevity call this regular compact.

1.1 DEFINITION. For integer k£ > 1 — n define the kth moment of inter-
point distance

(1.1) JR(A) = /A/AHu—ka dudv

where the integrals are with respect to Lebesgue measure .

In particular

Tr4) = Pa(A)).

For the case where A is a convex body, a variety of integralgeometric results
is stated in Santalé (1976), pp. 46-49, 237-238. Additionally, Satz I of
Carleman (1919) states that among all (not necessarily convex) A C IR
with fixed area A»(A), the value of JZ(A) is maximised when A is a disc.
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In one dimension, if A is convex (i.e. a line segment) then trivially for
k>0

(1.2) Ji(A) 2 (P

Tkt )k +2

while if A is a finite union of line segments

N
A= U[xzi, T2it1]

=1

with z; < z;4; then (cf. Cabo and Baddeley (1993))
2 "
1.3 J’l A= — = -1 i+g+ls,, . i k+2.

The following definitions are standard.

1.2 DEFINITION. For 0 < r < n let F(n,r) be the space of r-flats (r-
dimensional affine planes) in R™, and p, , the standard invariant measure
on F(n,r), i.e. the measure invariant under Euclidean motions of IR™ defined
in Santal6 (1976), (12.18), p. 200. Let G(n, r) be the space of r-dimensional
linear vector subspaces (i.e. through the origin) in R", and 7, the standard
rotation-invariant measure on G(n,r).

The total mass of G(n,r) is (Santalé (1976), (12.35), p. 203)

N\ KnKn—1"" " Kn_ril
err = T (G, 7)) = (T) ﬂnnn 1°" -nmr+
river—

where &y, is the volume of the n-dimensional unit ball,

27[’"/2

Bn = —/———

nI'(n/2)

Useful values are c3; =7, c32 = c3,1 = 2m. For convenience, define ¢, o =1
for all n.

1.2 Reproductive formulae.

First we consider line transects. Define for k& > 0

(14) Ip(4) = ff oy SO D s (0
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where for a given r-flat F', we can define J{(B) for subsets B C F naturally
by identifying F with IR" by any isometry. Measurability of the integrand
was checked in Cabo and Baddeley (1993) (see Chapter III).

If A is convex then by (1.2), I?(A) is proportional to the (k+2)nd moment
of the chord length A;(£ N A) over all lines £ intersecting A. This is the
much-studied Sehnenpotenzintegral (see Blaschke (1949, §§8, 32), Hadwiger
(1950), Santalé (1976), pp. 46-49, 237-238).

For general A, the integrand Ji(¢ N A) can be interpreted using (1.3)
as an alternating sum of (k + 2)nd powers of distances between endpoints
of intervals of £ N A, whenever this consists of finitely many disjoint inter-
vals (we have shown in (1993) that this holds for a.e. £ when A is regular
compact).

1.3 PROPOSITION. Fork >0
IP(A) = Jgpn(4).
In particular I™_(A) = {An(A4)}2

For convex sets, similar results are stated in Santalé (loc. cit.). The
identity I™_,(A) = {An(A4)}? for convex 4, i.e.

PN A duna () = LD )
Fnl 2
was discovered for n = 2 by Crofton (1885), for n = 3 by Herglotz (Blaschke
(1949), §32, p. 76) and for general n by Hadwiger (1950). The general result
for not-necessarily-convex A was derived independently by Miles (1983b)
and Jensen & Gundersen (1983,1985). Miles dubbed the alternating sum in
(1.3) the (k + 2)-linc.

PROOF. Change the variables of integration in (1.1) by associating with
each pair of distinct points u#,v € IR" the line £ = £(u,v) containing them,
and mapping (u,v) € R" XIR" to (¢, u,v) where £ € ¥(n,1) and u,v € £. By
a special case of the Blaschke-Petkantschin formula (Santal6 (1976),(12.23),
p. 20) the inverse Jacobian of this mapping is ||u — v||*~! and we obtain

= [ ol dude duna(0)
Fn1) Jna Jena
ie thisis I7,, ,(A4). O

Our key result generalises this to r-dimensional plane sections.
1.4 PROPOSITION. For compact A C IR" and integers r,.k with 1 <r <

n,k>n-—r

as o TEAD ) (F) = o o1 n(A)
F(n,r
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In particular

18 @y = —— [ o Tl AN F) dp ().

Cn—1,r—1

These identities are subsumed in a result of Miles ((1979), eq. (16)). A
closely related result appears to have been stated in Serra (1982), p. 347.
For the proof we need the following extra definitions.

1.5 DEFINITION. For a given r-flat F and for 1 < s < r, write F(F,s)
for the space of s-flats contained in F, and pup , for the standard invariant
measure, so that (F(F,s), pr,,) is isomorphic to (F(r,s), pr.s).

For r <t < nlet F(n,t[F]) be the space of all t-flats in IR™ which contain
a given r-flat F. This is isomorphic to G(n — r,t — r); let Yn,[F] be the
standard rotation-invariant measure on F(n,t[F]) isomorphic to Yp—rs_r

(Santal6 (1976), p. 202).

PROOF OF PROPOSITION 1.4. If 7 = 1 then this reduces to Proposition
1.3. For r > 1,

/ Je(ANF)dun (F) = / I (AN F)dp, (F)
F(n,r) F(n,r)

— [ [ €0 ) dara€) i ()
Fn,r) JF(F,1)

using Proposition 1.3 and (1.4). Change the order of integration using
another result of Petkantschin (Santalé (1976), (12.52) p. 207) to obtain

/ [ T €n A) g (F) dins (0.
F(n,1) F(n,r[l])

Now the integrand does not depend on the containing r-flat F, so the last
expression becomes

notret [ Ty (€0 A) a0,
F(n,1)

The integral is I, _,(A) by definition. Applying Proposition 1.3 yields
(1.5).



88

1.3 Relation to set covariance function.

1.6 DEFINITION. (Matérn (1960, 1986)) The set covariance function of
a bounded Borel set A C R" is

Ca(z) = M(ANT.4), z€ R

where T; A = {a+ z : a € A} is the translation of A by vector z.

Elementary properties are that C4(0) = A,(A4), and C4 is symmetric,
Ca(—z) = C4(z). See also Serra (1982).

1.7 PROPOSITION. For compact A C IR" and integer k> 1—n

2= [ lell* Cate)ds;

in particular
| Cata)ds = a2,

This is proved by the simple change of variables (z,y) — (z,y — z)
(‘Borel’s overlap method’ (1925)) yielding

f/llz-yllkdzdy=/ / llz — yl|* 1a(z)14(y) d= dy
AJA R~ JR"
=/ / ||v||k1A(u)1A(u+v)dudv
R~ JR™

=/ / [v]|* 1La(u)17_, a(u) dudv
r JR"
= / vl An(ANT_yA) do.

Bn

The case of practical interest is an application of Proposition 1.4 with
n =3, r = 2, relating A\3(A)? to the integral of J2(A N F) over all section
planes F, using Proposition 1.7 to compute J?(4A N F) in terms of the
covariance function of AN F. We explore this in the sequel.

For an illustration of Proposition 1.7, consider a disc D of radius t. The
covariance is

2
Cp(z) = wt? — 2t* arcsin (@) - [jzlly/#? - @, Hlz|| < 2t.

Then from Proposition 1.7 (or e.g. Santalé (1976), (4.12), p. 48)

7

2
2 5
(1.7) J(D) = et
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Incidentally it then follows from the result of Carleman (1919, Satz I; see
below Definition 1.1) that for arbitrary regular compact sets A in R?

(18) )3 o haAP,
cf. Santal6 (1976), p. 48 where this is stated for convex sets only.

2. Sampling designs and unbiased estimators.

In this section we derive unbiased estimators of particle mean volume in a
randomised sampling design (cf. Jensen & Gundersen (1985), Miles (1983)).

Consider a fixed, finite collection of disjoint compact regular sets X; C IR",
1 =1,...,N henceforth called ‘particles’. Write

N
X = U X,'.
i=1
Define the volume-weighted mean volume of the particle population by
o Lity (X))
Zij\; An (Xi)

This is the weighted mean of the values A, (X;) with weights a; proportional
to An(X;). It may also be interpreted as the expected value of the volume
of a particle X; chosen at random with probability proportional to volume,
P{I =t} = Aa(Xi)/An(X). The latter distribution arises naturally if we
generate a random point Z uniformly distributed in the particle phase X,
and select Xy to be that (unique) particle which contains Z. See e.g. Davy
& Miles (1977), Jensen & Gundersen (1985), Miles (1983).

2.1 Single random section.

2.1 PROPOSITION. Let F be a random r-flat hitting X with the A.-
weighted distribution (cf. Davy and Miles (1977))

A (F 0 X)

(2.1) dP(F) = W e

dpn (F).

Then

tnr ey Jo(XinF)
Cn—1,r-1 Eil A,-(Xi n F)

(2.2) 5=
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is an unbiased estimator of .

The case of practical interest is n = 3, r = 2, for which ¢ r/ch—1,,—1 =
[T = 2.

PROOF.
Y T (XinF) SN I (X:iNF)
= = ~ dP;(F)
Yimi M(XinF) Flnr) L Ar(XiNF)
N
L JT_(XinF
— Zz_l n—'r( ) dl‘n,r(F)

.7:(",1‘) Cn,,-An(X)
N 2
_ Cn—1,r—1 Zizl {’\n(Xi)}
CnrAn(X)

Cn—1,r—1 _
= —"7

Cn,r

where the penultimate line follows from Proposition 1.4, equation (1.6). O

For illustration, consider the case when all particles X; are spherical. The
profiles X; N F are all discs of varying radii ¢; (taking t; = 0 if X; N F = 0);
the estimator is, from (1.7),

2 YN 8
455V 12

=

or equivalently
28 Zf:l a?ﬂ

4571’3/2 ZN a;

=1

=

where a; = wt?.
For general profile shapes, note that the numerator of (2.2) can be ex-
pressed using Proposition 1.7 as follows. Writing ¥; = X; N F and ¥ =

XnF=ULY,

N

S =5 [l One) e
= [ lellCi (@) ds
R?

where

N
Cy(e) = Y Cn(@)

(2.3) =X{y:y €Y; and z + y € Y; for some i}
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could be called the within-particle set covariance.
2.2 Systematic serial sections

In contrast with the previous model, we now consider the intersection of
X with a lattice of parallel r-flats. For simplicity we restrict the treatment
to planes in IR®, but the general case is analogous. Define the plane with
normal vector u € S? and displacement p € IR from the origin by

(2.4) Fup={z € R®: (z,u) = p}

where (-,-) denotes the usual scalar product in R>.
Fix d > 0 and consider a stack of parallel planes at separation d,

F[m] = Fp+md,u, meozl.
The section stack is isotropic uniform random (IUR) if p, v are independent
and uniformly distributed on S2 and (—7/2, r/2) respectively, where $3 =
{u = (v1,u2,u3) € R : ||u|| = 1, uz > 0}. Thus
1
dP(p, u) - ﬁ dpdua
2.2 PROPOSITION. If the section stack is IUR then the estimator
2 o Tty JE(Xi N Flm)
2::—00 Zi:l A2 (X‘ n Fim])
s “ratio-unbiased”, i.e
2B YR o Tita (XK O Fimp) _
= 7.
E Zm:—oo Zt 1 A2()( n F[m])
A comparable result appears to be stated in Serra (1982), pp. 237-238.

PROOF.
| The numerator is

EZZ,\Q(X N Flm) /S /d/ZZZAz(X N Fpimdu)5— ddpdu

m i=1

:'_' A i u d

| 2nd 21:/51 /;x, 2(Xi O Fyu) dp
1

=g

using standard results of integral geometry (Santalé (1976)). Similarly for
the denominator, using Proposition 1.4 we get

2 FE Z ZJanF dZ{Ag(X

m=—o00 i=1

Taking the ratio gives the stated result. [
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3. Model-based estimation.

In this section we consider a stationary process of compact sets X; in
IR?, sampled by taking the intersection with a fized plane L € F(3,2).

We formulate {X;} as a germ-grain model following Stoyan et. al (1987).
Let ® = {(x;,4:)} = {((#:,9:,2:),4i)}; be a first-order stationary and
isotropic marked point process in JR® with marks A; belonging to the space
IC(B3) of compact sets in IR®. Define X; = Ty, A; = T(z;,y:,2:)Ai- Thus for
example if the A; are spheres of random radius centred at the origin, the
X; are spheres centred at the points of the process {x;} = {(i, %, z:)}.

Without loss of generality, fix the section plane L to be the (z,y) plane
of IR®. We consider the process of nonempty intersections ¥; = X; N L.
Defining B; = A; N Tg0,—2,)L we have ¥; = T(z;,y:,0)Bi, s0 that the Y;
can be represented as the germ-grain model ¥ = {((z,%:), B:)} in IR? with
marks B; € K(IR?). ¥ is obtained from & by restricting ® to those i
satisfying A; N T{o,0,— ;)L # @ and mapping ((2:,¥:, 2i), Ai) — ((z:,%:), Bi)-
Clearly V¥ is first-order stationary and isotropic in R

Let « be the intensity of (the points of) &, and P2 the Palm distribution
of the typical mark A. The volume-weighted mean volume of the X; is
defined in this context as

Ej (M(A)*
ES \3(A)

T =

where Eg, denotes expectation with respect to P3. Clearly ¥ may be inter-
preted either as the ratio of two expectations under the Palm distribution
of A or as the expectation of A3(A) under the corresponding Az-weighted
distribution.

3.1 PROPOSITION. Let &, ¥ be as above. Then the intensity of ¥ is

«

3.1) B=

ES [ 1ANF £0)dusa(F)
F(3,2)

and the Palm distribution Py of the typical section profile B satisfies

«

(3.2) EY% )2(B) = ﬁmg A3(4)
(3.3) 285, J}(B) = 3, 5% (a(4))’
so we have

(3.4) ——————2E?" J(B) _ .

E% )(B)
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Again the left side of (3.4) may be interpreted as the expectation of
2J%(B)/A2(B) under the A;-weighted counterpart of the Palm distribution
of B.

PRroOF.
a and PJ are defined uniquely to satisfy the Campbell-Mecke formula
(Stoyan et. al (1987), p. 116)

(3.5) E Y h(xiA)=a / ESh(x, A) dx
(xi,A;) €D R?

for any nonnegative measurable function h : R3 x K(R?) — [0,00). This
identity is implied by the special case

(36) E Y g(A) = aX(C)E g(A)
G

for all measurable nonnegative g : K(R?) — [0,00), where C C IR® is an
arbitrary compact set with nonzero Lebesgue measure. Similarly for 3 and
=3

Let g : K(R?) — [0,00) be measurable and IPY-integrable. Assume
g(0) = 0 and that g is invariant under rotations and translations of IR2.
For arbitrary compact C C IR? with A3(C) > 0, the analogue of (3.6) for ¥
gives

BX(C)Eyg(B)=E )  g(B)

((ziw:),Bi)EY
(xi,yi)ec

=JF Z f((mi,yhzi)vAi)

((2i)yi,zi)1Ai)€‘p

where

f(x,4) = {(zi,9:) € C}I{Ai N T(o,o,—z.-)L # Q}Q(Ai n T(o,o,—z,-)L)
= 1{(zi,y:) € C}g(Ai N T(o,0,-2)L)

since g(@) = 0. Then (3.5) yields

E Y (@ z),A) = oES /R f(x, A) dx

((zi,9i,2:),A: )@

= aXy(C)E}S /}R 9(ANTqg,_, L) dz.
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Since Pg, is isotropic, we may replace A by r(A4) in the above expression,
where r € SO(3) is any rotation of IR?. Observe that

T(A) N T(o,o,_z)L = ’I‘(A n T_IT(O,O,_Z)L)
=r(ANF,_;)

where w = 771(0,0,1) and where F, , is defined in (2.4). Since g is r-
invariant we get

BES, ¢(B) = alES / o(ANF,.)dz
R

for any fixed w € S?. Averaging the right side over w € Sfr and recalling
that dug 2(Fo, p) = dpdw we get

o

BEY 9(B) = o

ES [ oAnF)dusa(r)

F(3,2)
Taking g(B) = 1{B # 0} yields the expression (3.1) for 3, and taking
g(B) = Xo(B), g(B) = 2J%(B) respectively yields (3.2)-(3.3), using (1.6) to
evaluate the integral over F(3,2). O

To estimate JEY J2(B), IEY X2(B) from a bounded sample of ¥ one can
use standard methods, see Stoyan et al. (1987). However an alternative is
suggested by equation (2.3); we have

0 72 _l |
By 72(B) = 5 [ lel| C ) de

where
Cl(z) = P{0 € Y; and z € Y; for some i}

might be called the within-particle spatial covariance . Given observations
within a fixed compact window W C IR?, a pointwise unbiased estimator of
CI, (z) is
- Tin(YinW)nT(Y;nW))
Cy(z) =
(Y nW)

which is a modification of the standard estimator of the spatial covariance
function.
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4. Variance comparison and Rao—Blackwell theorem.

In the practical case IR®, Jensen & Gundersen (1983, 1985) proposed an
estimator of ¥ constructed as follows:

1. Generate a plane F with the area-weighted distribution (2.1) with
T=2.

2. Given F, choose one of the profiles Y; = X; N F' with probability
proportional to area, say choosing I € {1,...,N} with

A2(Y)

]P{I=i|F}=/\2(Y)

where Y = Uil Y.

3. Given I = 1, generate a length-weighted random line through Y;, i.e.
a random line in F' with distribution

AM(ENY))

dPF,,(f) = 7r)\2(}/,) duF,l(E).
4. Calculate
_ 2rJ3(4nY))

Then [V(X)]; is an unbiased estimator of ¥ Jensen & Gundersen (1983,
1985), Miles (1983b); this is also a consequence of Proposition 1.4 The
variance of [V(X)]; is an important practical consideration; see e.g. Ar-
tach6-Pérula & Roldén-Villalobos (1994) for recent practical studies.

Jensen & Gundersen also considered an estimator denoted [V(X)]o ob-
tained by generating a uniform random point z in X and an isotropic ran-
dom line through z. They showed ((1985), Proposition 1) that

var[V (X)) < var[V(X)]o.

Here we shall show that, in turn, our estimator ¥ has smaller variance than
[V(X)]; in the present setting.

4.1 PROPOSITION. When [V (X)), is generated according to the construc-
tion above and U according to section 2.1

var (0) < var([V(X)]1).
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PrOOF. Both procedures begin by generating an area-weighted plane F'
through X. In the Jensen-Gundersen construction above, if we condition
on F and on I = { we have

1 . .
BV | F 1= = [ ZEEEISET g0
_ )
A2(Y3)

using Propositions 1.3 and 1.4. Since the conditional distribution of I given
F is area-weighted, we get

E{V(X)h | F} = E(E{[V(X)l | I,F} | F)
_ JE (Y1)
=5 {230 )
_ 23, RN

Zil\; ’\Z(Yi)

=7.

By the stereological Rao-Blackwell theorem (Baddeley & Cruz-Orive (1993))
we obtain the result. O

Comments in Baddeley & Cruz-Orive (1993) suggest that a general vari-
ance comparison (holding e.g. also for systematic sampling) may not be
available.

5. Vertical section designs.

Here we indicate the existence of counterparts of the integral geometric
results of §1 for “vertical sections” (Baddeley et al. (1986)).

Fix arbitrary orthonormal coordinates in IR3, designate the z3 axis as the
“vertical”, and identify the “horizontal” (z1,z2) plane with IR>. A vertical
plane is any flat V € F(3,2) such that the normal to V is horizontal.
Equivalently define 7 : IR® — IR? to be the standard coordinate projection;
then a vertical plane is any V € F(3,2) whose horizontal projection is a
line, #(V) € F(2,1). Let V(3,2) be the class of all vertical planes. Then
L==(V),V =n"1(L) = LxRis a 1-1 correspondence between F(2,1) and
V(3,2) under which the action of the Euclidean motions in IR? corresponds
to the action of those Euclidean motions in JR® which preserve the vertical
coordinate. Let v32 denote the invariant measure on V(3,2) obtained by
this correspondence.

Our objective is to produce a counterpart to Proposition 1.4 (case n = 3,
r = 2) where F(3,2) is replaced by V(3,2).
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Consider the integral in (1.4). Note that every line £ € (3, 1) determines
a unique vertical plane V € V(3,2) such that £ C V, by V = »~1(=(¢)),
except in the negligible case where £ is parallel to the vertical axis. This
leads to the factorisation (Baddeley et al. (1986))

dys 1 (€) = |sin 8(€)| duy,1(£) dvs 2(V)

where 6(£) is the angle between £ and the vertical axis, and as before puy,
is the invariant measure on F(V, 1), the space of lines contained in V.
Hence (1.4) becomes

Ji_o(4) = I}(4)

= [ AN dusa(0
F(3,1)
- / / JHAN ) |sin8(8)] duv.. (£) dvso(V)
v(3,2) F(V,1)
(5.1) = [ KEAnV)diam)
V(3,2)
where for compact regular B C V

K/ (B) = /f(vn JEH(B N £) |sin ()] duy1(£).

Next we find an analogue of Proposition 1.7. In the expression above,
replace J}(B N £) by its definition (1.1) and change variables by mapping
{(u,v,2) :u,v € £ € F(V,1)} to {(u,v) : u,v € V}. Observe that

_ ma(u—v)

sin8(f) = T =]l

where 73 : R> — IR is the projection onto the vertical (z3) axis. Hence
using the Blaschke-Petkantschin formula, cited in the proof of Proposition
1.3

KY(B) = / / I — v)| || — o|[F~2 du do.
BJ/B
By another change of variable (u,v) ~ (v,u — v) we obtain
(52) KY(B) = | im(a)llsll*Ca(a)da
where V* = {u — v : u,v € V} is the vector space parallel to V and as

usual Cg(x) = A\2(B NT,B) for z € V*. This is the desired analogue of
Proposition 1.7.
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In case k = 2 we find that

(5.3) A3(A)? = / K (ANV)dusa(V)
V(3,2)

where

(5.4) K)(B) = /;h |r3(z)| Cp(zx)dx.

Estimation formulae can be derived by the same means as in §2-3. For
example in the design-based, single section case (§2.1), let V be an area-
weighted vertical plane

A(X N V)

dP(V) = x(0) dv2(V);
then
. Z KZV(X, n V)
TS RN

is an unbiased estimator of ¥.
6. Applications.
6.1 Remarks on implementation.

A precondition for using the estimators described here is that the section
profiles Y; are fully identifiable, more precisely, that for any given points
z,y in the section plane,

(a) it is observable whether z belongs to Y,

(b) it is observable whether z and y belong to the same profile Y; for
some ¢.

Requirement (b) implies that (disconnected) profiles originating from the
same object X; are identifiable as such. A similar statement was emphasised
in Jensen & Gundersen (1985), Miles (1985, Introduction), Serra (1982,
p. 257).

In implementations based on image processing technology it would nor-
mally be convenient to calculate J? using (a discrete approximation to) the
covariance function Cy, of each individual profile, or the within-particle co-
variance function C§ of (2.3). If each profile is available as a binary image,
its covariance function can be computed either directly from the definition,
or by using the Fast Fourier Transform. If no profiles consist of more than
one connected component, C§ can be computed directly from the connected
component transform of a binary image of Y.
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Let s, sy denote the ‘real’ physical lengths of one pixel step in the z and
y directions respectively. To compute J? for each profile we determine the
set covariance of each binary image, expressed as a pixel count multiplied by
5z8y. The integral in Proposition 1.7 is then approximated by s;s, times

the sum over all pixel displacements (n,,ny) of |/s2n2 + s2n2 times the

estimated covariance function for this displacement.
6.2 Example 1: Synaptic boutons.

Our first dataset comes from a morphometric study of the effect of neu-
roleptic treatment on the morphology of encephalinergic synaptic boutons in
rat striatum, carried out at the Graduate School of Neuroscience, Free Uni-
versity of Amsterdam, The Netherlands (kindly provided by ir. G.J. Docter
and drs. M.J. Mijnster). The data analysed here consist of 33 separate
profiles of boutons in ultrathin (60nm) sections, visualised under electron
microscopy, from one selected animal. The outlines were manually digitised
on an IBAS image analyser to produce 33 separate binary images, each
512 x 512 pixels resolution. Magnification varied slightly from image to im-
age, and the linear magnifications in the x and y directions were very slightly
different. Figure 1 shows a composite of all 33 images: each is roughly 2
microns square in real units (the profile diameters are in the range 0.5 to
1.5 microns).

Taking the model based approach (§3) we treat these images as indepen-
dent samples B; from the Palm distribution of the section process ¥. The
standard, approximately unbiased, estimator of 7 is then

Yimy Vi
E:L X

with ¥; = 2J2(B;), X; = A2(B;). Note that from (1.8)

(6.1) 7=

(6.2) Y: > X}/

where ¢ = 28/(4573/?) = 1.02165. The images in Figure 1 have been sorted
in ascending order of Y; /X ,5 /2 (reading from left to right in rows from top to

bottom). The estimate (6.1) is ¥ = 0.232 um®. Further analysis is postponed
to §7.
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FIGURE 1. Composite of 33 separate binary images of synaptic
boutons, as described in the text.
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6.3 Example 2: Silicon carbide particles.

The binary image in Figure 2 was obtained from a colour micrograph
(magnification x1570) of a silicon carbide (SiC) composite material pu-
blished on the front cover of the Journal of Microscopy, volume 169 part 2
of 1993 (reproduced by kind permission of Dr. S.P. Justice and the Royal
Microscopical Society.) We scanned this 818 x 736 image directly from the
published micrograph. The real dimensions of the image are 131 x 118 um
so that 1 pixel step corresponds to 0.16 ym.

The total area of profiles was determined by pixel counting the binary
image, and J? using the connected component transform of this image. The
estimate (6.1) is ¥ = 195 um3.
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FIGURE 2. Binary image of SiC composite material, plane sec-

tion. Real dimensions 131 x 118 pm.
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7. Estimation of variance.
7.1 Boutons data.

Figure 3 shows the complete set of bivariate data (X;, Y;) for the synaptic
boutons example, with the dotted line indicating the theoretical lower bound
(6.2). It is remarkable that the observed data are very close to this lower
bound.

Figure 4 shows the same data after taking logarithms. Apart from li-
nearising the lower bound (6.2) this appears to transform log X; to an ap-
proximate normal distribution as judged by the histogram and Q-Q plot in
Figure 5. Additionally, the ‘excess’

cX;
seems to be approximately independent of X;, judging by Figure 6.
Hence we can arguably model

(7.1) Y = cRX®/?

where X and R are independent, X is lognormally distributed, and R has
some unspecified distribution. Then

_ EY I X5/?
v—ﬁ—cER- X

Our proposal is to replace (6.1) by

U =cTa

where 7 is the sample mean of the values r; = yi/(czflz) and @ is the

maximum likelihood estimate of a = IE[X®/?]/IE[X] under the lognormal
model. The variance of ¥ is then estimated by combining estimates of the
variance of 7 and of @ based on the sample variance and on maximum
likelihood, respectively. On the present data this procedure yielded v =
0.221 with estimated standard deviation 0.037.

For comparison we also applied a bootstrap technique to the statistic
(6.1). We generated 10,000 samples of n = 33 data points drawn at ran-
dom with replacement from the data (z;,y;), and formed the estimate (6.1)
for each sample. The resulting estimates ¥ had mean 0.230 and standard
deviation 0.042. The estimates are summarised below.

Method: v v

moment estimator (6.1) 0.232 -
lognormal model 0.221 0.037
bootstrap 0.230 0.042
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FIGURE 3. Bivariate data (X;,Y;) from individual bouton pro-

files. Dotted line indicates theoretical bound Y; > cX f 2,
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FIGURE 4. Plot of log-transformed data for boutons example.
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FIGURE 5. Histogram and normal Q-Q plot of log(X;) for bou-
tons example
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7.2 Silicon carbide data.

Figure 7 shows a logarithmic plot of the data for each particle profile
(n = 170) in the silicon carbide image of Figure 2. In contrast to the
boutons data, there are values which far exceed the lower bound (6.2); the
observed r; ranged from 1.03 to 2.5.

Note that in this case the data points may not be treated as indepen-
dent if there is spatial dependence between profiles on a section, or if we
cannot regard the particle process as ergodic (e.g. if different sections look
substantially different). We shall overlook this in the present analysis.

The histogram of log(z;) in Figure 8 shows that a lognormal model for
X is inappropriate. Furthermore a plot of the r; analogous to Figure 6
suggests possible dependence between R and X. We therefore abandon the
lognormal model.

The bootstrap approach can still be applied. A sample of 10,000 inde-
pendent resamples with replacement of size n = 170 from the data yielded
© values (calculated by (6.1)) with mean 193.9 and standard deviation 21.9.
Note again that the variance estimate is based on an assumption that the
particle profiles are independent, in particular, it ignores between-section
variance contributions.

o | .
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3 < ¢
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1 o 1 2 3 4
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FIGURE 7. Logarithmic plot of bivariate data for silicon carbide example.
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7.3 Comparison with line intercept techniques

In order to evaluate the gain in efficiency compared to the manual point
sampled intercept (p.s.i.) technique, we also implemented p.s.i. A laser
printer copy of Figure 2 (with further magnification 1.4 relative to the origi-
nal micrograph) was used. Materials and protocol for p.s.i. were taken from
an exercise given at the SCANDEM ’92 Stereology Course (Copenhagen,
Denmark, 1992) supplied by H.J.G. Gundersen, C.V. Howard, B. Pakken-
berg and F.B. Sgrensen, and used by kind permission of the authors. A
transparency, bearing a grid of equidistant parallel lines and equidistant test
points on each line, was superimposed 31 times on the printout. For each
test point which hit a SiC profile, the length of the line transect was mea-
sured with a logarithmically graduated scale (“63 ruler”), see Braendgaard
& Gundersen (1986).

The [3-ruler divides lengths into classes 1,...,15; the ith class includes
lengths in the range a;—; to a; where ag = 0 and

10714 —1

a;
where L = 35 mm is the physical length of the graduated scale. The ‘average
cubed length’ in class i is b; = (a_; +a3)/2.

Average cubed intercept lengths were computed as €5 = 3, n;b; where
n; was the count of intercept lengths in class . Then the p.s.i. estimate of
7 was computed from

V(X)h = gM-% mm®

where M = 1.4 x 1570 = 2198 is the real magnification. A histogram of the
values obtained is displayed in Figure 9. The sample mean and standard
deviation were 146.0 and 84.5 respectively (median 111, quartiles 81, 183).

The efficiency of the new technique relative to the p.s.i. technique is then

84.5% 4+ 21.92
iz = 15.8,

a substantial improvement. Again this assumes ergodicity of the particle
process, so the above efficiency calculation refers only to variance within a
given section.
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FIGURE 9. Histogram of 31 estimates of & (um3) for the SiC
image obtained by the manual p.s.i. technique
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CHAPTER V

CROSS-COVARIANCE FUNCTIONS
CHARACTERISE REGULAR COMPACT SETS

Introduction.

The (set) covariance function was introduced by Matérn in 1960 (see
Matérn (1985)) and Matheron (1965). It maps a Borel set A and a vector z
onto the volume of the intersection of A with the translation of A by z. The
covariance function is widely used in spatial statistics to investigate second
order properties of the model under study. It can be used for instance to
estimate the parameters of a Boolean model (e.g. Hall (1988), chapter 5).

Theoretically however the covariance function seems to have received less
attention. Two interesting questions immediately arise:

(1) how much geometric information about a set is contained in its co-
variance function?
(2) what are the analytic properties of covariance functions?

Concerning the first problem, Matheron (1986) conjectured that the set
covariance function of a convez set determines the set uniquely (up to a
translation and a reflection). For planar symmetric convex sets, he shows
the conjecture, using that for all sets the support of the covariance function
of a set A is equal to the set A® (—A) and for convez sets: A® (—A) = 2A.
The reason Matheron restricted attention to convex sets seemed to be due to
the analytic approach he used to describe the boundaries of the sets. Later
LeSanovsky and Rataj (1990) gave an example of two distinct nonconvex
sets with the same covariance functions. For convex polygons in the plane
the conjecture has recently been proved by Nagel (1993). (There the co-
variance function is called the covariogram of a set.) Schmitt (1993) gives a
reconstruction procedure that also works for a restricted class of nonconvex
polygons. Consequently the role of convexity is not yet completely clarified.
In this chapter we show that any regular closed symmetric Borel subset
of R, d > 1, is determined by its covariance function. Here symmetry
refers to the fact that A = —A. The symmetry forces the statement to
be complete in the sense that we obtain the set itself and not a set up to

113
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a translation. Observe that no convexity or connectivity assumptions are
made. The question whether convexity is enough to ensure uniqueness of a
set given its covariance function (up to translation and reflection) remains
unanswered.

In the same paper in which Matheron published his conjecture, Lipschitz
continuity of the covariance function of a convex set was proved. We give
a geometric proof of continuity of the covariance function of a bounded
Borel set (which in itself is a direct consequence of a standard result in
Fourier theory, see Zaanen (1989)). Continuity of the function considered
as a function acting on sets was proved for certain classes of regular closed
sets by Cabo and Baddeley (1993).

This chapter is organised in the following way. In section 1 we give the
result underlying the uniqueness theorems about the covariance functions.
The main idea is to apply Fourier methods to the convolution of two func-
tions to obtain equality almost everywhere of the functions. In section 2 this
is applied to the covariance function. Section 3 is devoted to the continuity
property. In section 4 we discuss two related problems of Pyke (1989) and
Adler and Pyke (1991). In the latter paper, they asked whether a convex set
is uniquely determined (up to translation and reflection) by the distribution
of the difference vector of two independent uniformly distributed points in
its interior. The well known relation between the covariance function and
this distribution immediately shows that the problem of characterising a set
by this distribution is equivalent to the problem of characterising a set by
its covariance function. The results of section 2 and 3 solve this problem for
all regular closed symmetric subsets of IR®. Nagel (1993) solves the latter
problem for convex polygons, but again for other sets this problem is still
open. As a special case of the abovementioned relation, we have a relation
between the covariance function and the interpoint distance distribution
(i.e. the distribution of the length of the difference vector). This relation is
exploited to prove that a rotation invariant, not-necessarily—convex regu-
lar closed set is uniquely determined by its interpoint distance distribution.
This answers a question of Pyke (1989).

In the last section we introduce a new function, the cross-covariance
that is shown to characterise any regular closed Borel set, thus providing an
alternative to the so-called three point covariance (see Nagel (1991,1993)).

1. A uniqueness result for convolutions.

1.1 General finite Borel measures.

Let M denote the space of all finite Borel measures on IR, with non-zero
total measure; i.e. Y € M : 0 < p(R) < 0o. The moments p,, of p € M
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are given by
L =/ z" p(dz), n=0,1,2,...
R

Let B(IR) denote the Borel o-algebra on IR.
Recall that the convolution p * v of two measures u,v € M is defined by

pxv(B) = /Rzp(B —tyv(dt), B € B(R)
where B —t = {y — t : y € B}, see e.g. Dudley (1989).
1.1 THEOREM. Suppose all moments of p and v exist:
fn <00 and v, <oo for alln.
Then
(1.1) P P =V*V

implies
fn = Vp for all n.

PROOF. Let ¢ and v be the characteristic functions of 4 and v respec-
tively, that is

o) = [ euiaz)
Y(t) = /Reit’t/(d:v), te R.

It is well-known that the characteristic function of the convolution of two
measures equals the product of their characteristic functions. Consequently
the characteristic functions of g * g and v * v are given by ¢? and ?
respectively. Thus assumption (1.1) is equivalent to

d(t)* = (t)? for all t.

Since all moments exist, the k-th derivative #F) of ¢ exists and is a con-
tinuous function that is equal to

&Wﬂ=ﬁ/m%Mme

R

for all k (Feller (1968), XV .4).
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Hence for t = 0 we obtain
#*®(0) = i*¥ py  for all k.
Moreover (1.1) yields

o" il
(1.2) (—BT);gb(t)z = @t P(t)? for all t and =,

and thus in particular this is true for ¢ = 0. By Leibniz’s rule we have

CRCAEDS (+) e @0

= n
1.3 =" n—k, foralln
(13) > (&)

and a similar expression for 1. We prove the theorem by induction.
For n =0, (1.2) yields
$(0)* = 9(0)?,

hence

to = $(0) = $(0) = o,
since by definition ¢(0) = (IR) > 0 and ¥(0) = v(JR) > 0. Now suppose

(1.4) ur =1 forallk <mn.
Then (1.2) and (1.3) yield

i g (Z) Prfin_t =1" kZ:;] (:) VkVUn—k

k=0

which is equivalent to

n—1 n—1
n n
2pnpo + E (k) Mk n—k = 2vqlg + E (k) Vk Vn—k-
k=1 k=1

By (1.4) the sums cancel and by the first induction step pg = 9 > 0, so we
can divide both sides by u¢ to obtain

Hn = Vn.
Hence by mathematical induction we have

bn =v, foralln. 0O
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It is clear that Theorem 1.1 does not depend on the number of dimensions.
The analogues for IR? will be used in the sequel without further comment.

1.2 Remark. Suppose the additional condition is satisfied that the
measures are determined by their moments, that is

(1.5) tin =v, for all n implies p = v.

A necessary and sufficient condition for this was given by Carleman (see
Shohat and Tamarkin (1943)): a finite measure is uniquely determined by
its moments f

1

(16) "1‘2_112—; = ©0O0.

(See also Feller (1968), VIL.3 for an example of a distribution that is not
determined by its moments.) For measures concentrated on a compact set
K this condition is trivially satisfied. Indeed we can bound the function
z2" on K by its supremum Mg" say, consequently ps,, is bounded above by

M = M3 u(RR). Hence

- 1 1 1
2n > g .
2”2 Mop(IR)z= Mo~ y(R)%

2n

1
.
u(IR) 2=

Since the sequence {¢(IR) } converges to 1 the series diverges.

Theorem 1.1 can be rephrased in several ways. For a probabilistic inter-
pretation suppose X and Y are independent random variables with the
same distribution P and let Z and W be independent random variables dis-
tributed according to Q. Suppose moreover that P and Q satisfy condition
(1.5) of remark 1.2. Then Theorem 1.1 states that if the distribution of
X +Y coincides with the distribution of Z + W, then P = Q.

1.2 Absolutely continuous measures.
If the measure y has a Radon-Nikodym derivative with respect to Lebesgue

measure, f € L! say, the characteristic function ¢ is the Fourier transform
f of f. Moreover the convolution of two such functions is defined as

froly) = /B f(y - 2)g(x) de,

and it is well-known that (f xg)~ = f§.
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1.3 COROLLARY. Suppose u and v are absolutely continuous with respect
to Lebesgue measure A. Let f and g denote their Radon-Nikodym derivatives
and suppose f and g have compact supports. Then (f * f)"(t) = (g * g)"(t)
for all t tmplies

f = g for A-almost all x.

PrOOF. By Theorem 1.1, (f*f)"(t) = (g*g)"(t) for all t implies equality
of all moments, i.e.

/ f(z)z" dx = / g(z)z" dz, for all n =0,1,2....
R R

Since f and g have compact supports this immediately implies

f = g for A-almost all z.

O

1.4 Example. Let A and B be compact Borel sets in IR and let f =
14,9=1p. Suppose 14%14 =1p*1p. Then (1a*14)°(t) = (1p*1B)"(t)
for all ¢, thus the corollary yields

14 =1 almost everywhere.
In the next section we shall give a geometric interpretation of this example.

In the case of two finite absolutely continuous Borel measures on [0, 00)
the conclusion of Theorem 1.1 can be changed into the direct statement
that p * 4 = v * v implies 4 = v, thus avoiding the somewhat unnatural
detour via moments. In fact this is a consequence of the following theorem
by Titchmarsh (see Mikusiniski (1983), Dieudonné (1960)).

1.5 THEOREM (Titchmarsh). Let f and g be integrable over [0,T]. If
the convolution of f and g vanishes almost everywhere in [0,T| then there
exist two numbers Ty > 0, Ty > 0, such that Ty + T» > T and such that f
vanishes a.e. on [0,T1] and g vanishes a.e. on [0, T3]

1.6 THEOREM. Let pu and v be two finite Borel measures on [o, 00) that
are absolutely continuous with respect to Lebesgue measure A on [a, o0), for
some fized o € R.

Then

L*U=V*V

implies
L=v.
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ProoF. It suffices to give the proof for @ = 0. Let f and g be the
densities of y and v respectively. Thus f and g are nonnegative almost
everywhere on [0, 00).

From p * p = v * v, we immediately obtain

fxf=gxg ae. on|0,00).
Equivalently

(f—9)*(f+g)=0 ae. on[0,00).

Since f and g are integrable a.e. on [0,00), for all T' > 0 they are integrable
a.e. on the interval [0,T]. Then Titchmarsh provides us with T} > 0, 7% > 0
such that Ty + T5 > T and such that

(3) f—g9g=0 ae. onl0,T]
(%) f+g=0 ae. on[0,T3].
This implies that f = g a.e. on [0, max(T},T3)]. Indeed, if T} = max(Ty,T3),
(¢) implies f = g a.e. on [0,T1] = [0, max(T},T>)]. If To = max(73,Ts), (i1)

implies that f = g = 0 a.e. on [0,T32] = [0, max(T1,T?)], because f, g > 0
a.e. on [0,00). Now note that

T<Th+Ty = min(Tl,Tg) + max(Tl,Tz) < Zmax(Tl,Tg),

thus f = g a.e. on (0,17, for all T > 0. Letting T — oo, this yields f =g
a.e. on [0,00). O

In Mikusinski (1987) one can find a higher-dimensional analogue of Theorem
1.5 on the convolution ring of continuous functions with supports in a given
cone.

2. Covariance functions determine regular compact symmetric
sets.

Denote by B = B(IR?) the Borel o-algebra of IR®. A set A € B is regular
closed if it equals the closure of its interior:

A° = A
If a regular closed set is bounded, we call it regular compact.

2.1 DEFINITION. For a bounded Borel set A the covariance function of
A is defined as

(2.1) Ca(y) =MAN(A-y)), yeR"



120

Here ) is d-dimensional Lebesgue measure. When we wish to stress the
dimension, we use a subscript as in Aq4.

The following properties are easy to check:

- (1) Ca(0) = A(A);
(2) C, is symmetric: Ca(y) = Ca(-y), Yy € R,
(3) C4 has compact support.

An equivalent definition is obtained by writing (2.1) in terms of convo-
lutions.

(2.2) Caly) = (Lax1-4)w),

where —A = {—z: = € A}.
As a consequence of Corollary 1.3, we immediately obtain the following
uniqueness theorem.

2.2 THEOREM. Let A, B € B(IR?) be regular compact sets such that
A=—A and B= —B. Then C4 = Cp tmplies A= B.

Observe that the sets are completely determined and not just up to some
translation.

PROOF. By (2.2) for all y € R?
Ca(y) = (1a*1_a)(y) = (1a * 14)(y) since A = —A.

Hence the assumption is equivalent to (14 * 14)(y) = (1 * 15)(y) for all
y € IR®. Exactly as in Example 1.4 it follows from Corollary 1.3 that the
Fourier transforms of the convolutions are equal and thus 14 = 1p a.e..
Regularity of the sets now implies A = B. (For a proof: see Chapter III,
proof of Proposition 4.3.) O

3. Continuity of the covariance function.

In section 4 we need continuity of the covariance function. This is a direct
consequence of the continuity of the convolution of of an L! function and
an essentially bounded function (Zaanen (1989)). Here we give a geometric
proof for the special case of the covariance function.

3.1 THEOREM. Let B be a Borel set with A\q(B) < oo. Then the mapping
z + Cp(z) is continuous on R?.

PROOF. From the definition of the covariance function we easily derive

|Ca(z) — Cr(y)| < 2(Cp(0) - Cp(z - v))
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(see also Matheron (1986)). Thus it is enough to prove continuity in 0. Let
€ > 0 be given. By Theorem 11.4 (Billingsley (1979)), there exists a finite
sequence {U;}7; of hypercubes such that

(3.1) AMBAU; U;) < €/2.

Set U = U, U;. It suffices to prove that

(3.2) AB) - ABNTB) < AU) = ANUNTU) + \(BAU),
for all € R%. Indeed, once we have (3.2)

A(B) = A(BNT,B) < AU) — MU NT,U) + A(BAU)
= MU UT,U) - A(U) + A(BAU)
< AU U) + MBAU)
< AU\ U) +¢/2, by (3.1),

where Ull®ll consists of all points in IR? at a distance atmost ||z|| from

U. Now observe that A(UlIEl \ U) < ¥, /\(U}'z” \ U;). Since the U; are
convex, we can use the Steiner formula (see Schneider (1993)) to write each

/\(Ui”zll \ U;) as a polynomial in ||z|| with zero constant term and finite
positive coefficients determined by U;.
Now choose 6 > 0, such that AU\ U) < €/2 for all ||z|| < 6.
Then for ||z|| < §
Cg(0) — Cg(z) = A(B) - A(BNT.B) < e.
So let us proceed with the proof of (3.2). First observe that
(3.3 B=(B\U)u(BnU).
By (3.3)

A(B) —A(BNT.B) = A\(B\U)+ A(BNU) = M(BNU)NTo(BNU))
—M(B\U)NT.(B\U))
(3.4) —A(B\U)NT(BNU)) - X(BNU)NT,(B\U)

Since the last three terms at the right-hand side of (3.4) are nonnegative,
we trivially get

(3.5) A(B)—ANBNT.B) < NB\U)+MBNU)-\(BNU)NT,(BNU)).
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Now rewrite A((BNU)NT,(BNU)) as 2A(BNU) - A((BNU)UT(BNT)),
using translation invariance of Lebesgue measure. Then the right-hand side

of (3.5) is
(36) AB\U)+AXBNU)=-2X(BNU)+A(BNU)UT(BnU)).
Moreover

MBNUYUT(BNU)) (UuT(BnU))

<A
< MU UTLU),

and

AMBNU)=XU)-XU\B).
So (3.6) is not greater than

AU UTU) = MU)+ AB\U)+ MU\ B) =
= AU) — MU NT,U) + A(BAU).

O
4. Interpoint distance distributions.

In a sequence of subsequent volumes of the IMS Bulletin (see Pyke (1989))
Pyke asked the following question:

given two independent points uniformly distributed over the interior
of a compact set C, does the distribution of their distance determine
c?
Rost (1989) produced an example showing that in general this need not be
true and later Lesanovsky and Rataj (1990) published a paper containing
among others a result about the structure of these examples. The examples
were based on non convex sets and therefore Pyke’s question was restricted
to conver C (see also Adler and Pyke (1991)). However, the following
theorem shows that this restriction is not needed as long as symmetric sets
are involved. This is a direct consequence of Theorem 2.2 and the continuity
of the covariance function.
Recall the relation between interpoint distance distributions and covari-
ance functions derived from Borel’s overlap Lemma. (Borel (1925); Sheng
(1985). See also Cabo and Baddeley (1993).)

4.1 LEMMA. For two independent points X, Y uniformly distributed over
the interior of a regular compact set A € B(R?)

(41) 1P<|1X—Yu5p)=A—(iW /B o, Catw)du, p20
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First observe that this implies the equivalence of the problem of cha-
racterising a set by the distribution of the difference vector of two indepen-
dent uniformly distributed points X, Y in its interior and the problem of
characterising a set by its covariance function. Indeed, from (2.2) it is seen
that A(A)~™2 Ca(-) is the density of the distribution of the difference vector,
since X —Y = X + (-Y). Nagel’s result (1993) thus solves the problem for
convex polygons in the plane. Our Theorem 2.2 together with the continuity
of the covariance function solves the problem for regular closed symmetric
subsets of IR%. In the case of the distribution of the length of the difference
vector, it is clear that the restriction on the sets to be characterised will
have to be more severe, since this distribution throws away the information
on the directions. Theorem 2.2 yields the following result.

4.2 PROPOSITION. Let A and B be regular compact Borel sets that are
rotation invariant (and hence centrally symmetric). Let X,Y be independent
uniform points in the interior of A and let Z,W be two such points in B.
Then

(4.2) PIX-Y||<p)=P(|Z-W| <p) foralp>0
implies equality of the sets A and B.
PROOF. Rewrite (4.1) as

1 p
(4.3) P(| X -Y||<p)= W/o - Ca(ru) dudr.

Since A is rotation invariant, its covariance function only depends on the
distance, hence (4.3) is

dK,d

/\(A)Z/; Ca(rug)dr

where dkg is the surface area of the unit sphere S§4-1 in IR? and ug € S¢-1
is arbitrary but fixed. By (4.2) we have

1 d 1 P
,\(A)Z/O CA(TUO)dT_—A(B)2/0 Cg(rug)dr, for all p.

Since by continuity of the covariance function we may take the derivative
with respect to p on both sides, this is

1 1
A(4)? A(B)?
In particular, if p = 0 we get A(4) = A(B) thus

Calpug) = Cg(puo) for all p.

Ca(pwo) = Cp(pup) for all p.
Since ug was arbitrary, Theorem 2.2 yields A =B. O
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5. Cross-covariance functions determine regular compact sets.

In this section we introduce a generalisation of the covariance function,
that is shown to characterise every regular closed subset of R°.

5.1 DEFINITION. Let A, B € B(JR?) be bounded. The cross-covariance
function of A with respect to B is defined as

(5.1) Ca(y) =MAN(B+y)), yeR"

The following properties are immediate consequences of the definition:

(1) CA,B(O) = )\(Aﬂ B) (= 0if AnNB= 0),
(2) Ca,p is anti-symmetric in the following sense:

Ca,p(y) = Cpa(—y), Vye€ RY

(3) C4,p has compact support;

(4) Ca a(y) = Ca(-y) = Caly), wy € R? in other words Matérn’s
covariance function can be considered as an ‘autocovariance’ in this
setup.

We call C4,_ 4 the cross-covariance of A.

As for covariance functions, an equivalent formulation in terms of convo-
lutions exists:

(5:2) Ca,sly) = (1a*1_5)(y).
Using Theorem 1.1, we now immediately derive the uniqueness result.

5.2 THEOREM. Let A, B € B(IR?) be regular compact sets. Then Ca—a=
Cp,—p implies A = B.

Again, observe that the sets are completely determined and not just up to
some translation.

PROOF. Suppose C4,_4 = Cp,_p, or by (5.2)
(1a*1a)(¥) = (1 *18)(y), Vye R’
Exactly as in the proof of Theorem 2.2 this implies 14 = 1p a.e., whence

A = B by regularity. 0O

Remark. This result can be extended slightly to the following situation.
Suppose we are given the normed cross-covariance functions (for example
normed by their maximum value); i.e.

(5.3) ach,_A(z) = ,3203,_3(1:), Vz € Rd,
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where o, 3 € R,. Then A = B.
Indeed, writing (5.3) in terms of convolutions yields

algxaly(c)=p1p *B1p(z), forall z.
Hence from Theorem 1.6 we get
(5.4) aly(z) =PB1pg(z) for almost all z.

Let A denote the null set for which (5.4) does not hold. We now first prove
that this implies & = 3.

Suppose z € A\ N. Then (5.4) gives a = f1p(z) thus ¢ € B\ N, implying
o = 3. But then 14 = 15 a.e. which implies A = B by regularity. 0O

Next we prove continuity of the the cross-covariance function using the
result of section 3.

5.3 THEOREM. Let A and B be Borel sets with finite Lebesgue measure.
Then the mapping © — C4 p(z) is continuous on R?.

PROOF. By definition
|Ca5(@) — Cas(y)] = | / La(t)1542(t) — 1a(8)154y(t) di]
< / La(®)|Ls(t — ) — 15(t — )| dt.

Since obviously 14 < 1, this is smaller than

[ 18t =2) = 18t -t = [(1p(e - 2) ~ 15(¢ - ) .

By a change of variables and because of the translation invariance of Lebesgue
measure this is

2(A(B) — Cg,s(z —y)) = 2(Cp(0) — Cp(z — y)).

Hence the assertion follows from the continuity of the covariance function
of B, which was proved in Theorem 3.1. O

Observe that Theorem 5.3 implies uniform continuity of the cross-covariance,
since C'4,p has compact support if A and B are compact.

There does exist another generalisation of the covariance function that
also characterises all regular closed sets. It is called the ‘three point covari-
ance function’ and is defined as follows (see Nagel (1993)):

Ca(z,y) =XAN(A-2)n(A~y)), z,y€R"
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It was proved by Nagel (1991) that it is possible to determine the corre-
sponding regular set from the three point covariance function considered as
a function of the two variables z and y up to translation. To conclude this
paper we would like to remark that these two characterising functions can
be considered as special cases of the following unifying entity.

5.5 DEFINITION. Forn = 1,2... and A,B € B(IR%) bounded let the
n-th order motion covariance function of A w.r.t. B, be defined as

T (a1, 02, .03 91,42, - - ¥n) = A(AN (@B —31) N---N (anB —yn)),

where a1, as, . ..o, € SO(d) denote rotations of R®and y1,v2, .. .yn € R,
Writing the cross-covariance and three point covariance functions in terms
of motion covariances, we get
1 2
Cyp,—alz) = I’g‘)A(a,,; —-z) = I‘(A,)A(a,,, 1;—z,0);
2
Calz,y) =TE4(1,1;2,9),

where a, denotes point reflection w.r.t. the origin and 1 is the identity of
SO(d). Hence the results obtained until now may be summarised by saying
that for regular closed sets it either suffices to know the motion covariance
with two translations, or the one with one ‘reflection’ and one translation. In
these terms Matheron’s conjecture is that for convex sets, motion covariance

with only one translation - i.e. I‘g,)A(l; z) - is sufficient.
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SAMENVATTING

Meetkundige parameters van verzamelingen kunnen worden beschouwd
als functionalen van die verzamelingen, dat wil zeggen als functies die aan
een verzameling een reéel getal toevoegen. Hierbij kan men bijvoorbeeld
denken aan het volume van een verzameling, het aantal hoekpunten van een
veelhoek, enzovoort. Als de verzamelingen stochastisch zijn, beschouwt men
de functionalen als stochastische variabelen en bekijkt men hun momenten.
Bijvoorbeeld: het verwachte aantal eiken dat in één vierkante kilometer
bos groeit of de verwachte oppervlakte die bedekt wordt bij de bestraling
van een bepaald deel van het menselijk lichaam. In dit proefschrift wor-
den twee soorten functionalen bestudeerd: functionalen van stochastische
convexe veelhoeken in het platte vlak en de zogenaamde covariantiefunctie
van deterministische verzamelingen in de Euclidische ruimte van dimensie
d > 1. Daarbij worden de volgende problemen behandeld:

(1) Wat zijn de asymptotische eigenschappen van functionalen van
stochastische veelhoeken?

(2) Hoeveel informatie over een verzameling A is bevat in zijn covari-
antiefunctie? (De waarde van de covariantiefunctie van A is het
volume van de doorsnede van A met een verschoven versie van A.)

De stochastische veelhoeken in het eerste deel van het proefschrift wor-
den geconstrueerd als convexe omhulsels C,, van een uniforme steekproef
ter grootte n uit het eenheidsvierkant (in JR?). Convexe omhulsels zijn on-
der andere interessant omdat men met behulp van het convexe omhulsel
van punten uit een onbekende verzameling die verzameling kan schatten.
Resultaten over functionalen van convexe omhulsels in de literatuur bevat-
ten uitdrukkingen voor en afschattingen van hun verwachting. Wij zijn
geinteresseerd in de asymptotische verdeling als de steekproefgrootte naar
oneindig gaat.

In Hoofdstuk I van dit proefschrift wordt het asymptotische gedrag van
twee functionalen van C,, bestudeerd: de omtrek en de oppervlakte. Met be-
hulp van de kanstheoretische methoden, ontwikkeld in Groeneboom (1988)
— een artikel waarin asymptotische normaliteit van het aantal hoekpunten
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werd bewezen — leiden we expliciete uitdrukkingen af voor de limietstochas-
ten van deze functionalen. Bovendien bewijzen we dat voor de oppervlakte
een Centrale Limiet—Stelling geldt. Voor de omtrek is dat niet zo, althans
niet als de steekproef uit een veelhoek wordt genomen. Hoe de asympto-
tische verdeling er in dat geval uitziet weten we niet. Ook voor convexe
omhulsels van uniforme steekproeven uit een verzameling in R? zijn nog
geen resultaten bekend, voor d > 3. We vermoeden echter dat voor een
uniforme steekproef uit een verzamling met gladde rand (als de cirkel in het
platte vlak) zowel voor de omtrek als voor de oppervlakte functionaal een
Centrale Limiet-Stelling geldt. Op de reden hiervoor wordt in Hoofdstuk I
nader ingegaan.

De volgende hoofdstukken van het proefschrift zijn integraalmeetkundig
van aard. Dat wil zeggen dat we in eerste instantie deterministische verza-
melingen bekijken. (Veel van de behaalde resultaten hebben echter ook een
stochastische interpretatie.) In Hoofdstuk II geven we een nieuw bewijs
voor een bekende formule voor lijnintegralen van convexe veelhoeken, met
behulp van differentiaalmeetkunde.

In de laatste drie hoofdstukken bekijken we de covariantiefunctie van
een verzameling. Deze functie wordt gebruikt in de ruimtelijke statistiek
om tweede-orde—eigenschappen van statistische modellen te bestuderen. Zo
kan de covariantiefunctie van een Boole-model worden gebruikt om de para-
meters van dat model te schatten. We onderzoeken analytische (Hoofdstuk
III), stereologische (Hoofdstuk IV) en eenduidigheidseigenschappen (Hoofd-
stuk V) van deze functie.

In Hoofdstuk IIT wordt een nieuwe functie geconstrueerd — de lijnsectie—
functionaal (linear scan transform) — die beschrijft hoe een lijn een verzame-
ling snijdt. Deze functie is gedefinieerd in termen van de covariantiefunctie
van lijnsecties van de verzameling. De lijnsectie—functionaal brengt een aan-
tal bestaande integraalmeetkundige formules met elkaar in verband, en er
kunnen nieuwe formules mee worden afgeleid. Met behulp van de lijnsectie—
functionaal wordt een nieuw afstandsbegrip op compacte verzamelingen
gedefinieerd. Deze metriek levert een goed alternatief voor de Hausdorff-
metriek, onder andere doordat de Hausdorff-metriek overgevoelig is voor
afstanden tussen punten van de verzameling. We bewijzen dat de twee
metrieken op de klasse van convexe lichamen topologisch equivalent zijn.

De nieuwe metriek wordt vervolgens gebruikt om analytische eigenschap-
pen van de covariantiefunctie te bestuderen; zo bewijzen we continuiteit van
de covariantiefunctie als functie van de verzameling en als functie van de
verschuivingsvector.

De lijnsectie—functionaal (en de covariantiefunctie zelf) hebben als belang-
rijk kenmerk dat convexiteit van de verzameling voor de berekening niet
van belang is. Dit is vooral relevant voor de toepassingen in de stereologie.
Hierbij wordt geprobeerd om drie-dimensionale parameters van een object
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te schatten uit informatie bevat in lager-dimensionale secties van het ob-
ject. In de praktijk zijn deze objecten (cellen, mineralen en dergelijke) niet
noodzakelijk convex. In Hoofdstuk IV worden de resultaten uit het derde
hoofdstuk gebruikt om een nieuwe zuivere schatter van het volume van deel-
tjes te bepalen uit gegevens op vlakke secties van die deeltjes. Hierbij wordt
de covariantiefunctie weer gebruikt. We vergelijken deze schatter met een
bestaande schatter van Jensen en Gundersen (1985) en concluderen dat de
covariantieschatter van het volume een kleinere variantie heeft. Tenslotte
is deze schatter eenvoudig te implementeren en dus goed bruikbaar in de
praktijk. Dit wordt aan de hand van twee voorbeelden geillustreerd. Deze
voorbeelden komen uit de medische en de bodemkundige wetenschappen.

In het laatste hoofdstuk tenslotte houden we ons bezig met de vraag hoe-
veel informatie over een verzameling A de covariantiefunctie van A daad-
werkelijk bevat. Er is een vermoeden van Matheron (1986) dat zegt dat voor
convexe verzamelingen in het platte vlak die informatie volledig is. Voor
convexe veelhoeken is dit inderdaad bewezen door Nagel (1993). Dus, als P,
en P, twee zulke veelhoeken zijn en Cp, Cp, hun covariantiefuncties, dan
is Cp, = Cp, dan en slechts dan als P, = P, (op verschuiving en spiegeling
na). Het bewijs van deze stelling hangt echter duidelijk af van de dimensie,
mede hierdoor is er voor algemene convexe verzamelingen nog niets bekend.
Dit geldt zelfs voor convexe verzamelingen met gladde rand in het platte
vlak.

In Hoofdstuk V laten wij met behulp van Fourier-methoden zien dat
C4 = Cp gelijkheid van A en B impliceert, mits A en B symmetrisch ten
opzichte van de oorsprong zijn. De gebruikte methode levert ook meteen
een procedure op voor de reconstructie van de verzamelingen. Hierbij zijn
de verzamelingen regulier gesloten deelverzamelingen van IR% (en dus niet
noodzakelijk convex of samenhangend). Pyke (1989) vroeg zich af of verza-
melingen ook gekarakteriseerd worden door de verdeling van de afstand
tussen twee onafhankelijke, uniform gekozen punten in die verzameling. We-
gens de bekende relatie tussen die verdeling en de covariantiefunctie, geven
we dus ook een antwoord op Pyke’s vraag. Het resultaat is dat rotatie-
invariante verzamelingen door de afstandsverdeling eenduidig worden vast-
gelegd. Tenslotte voeren we een uitbreiding van de covariantiefunctie in —
de kruiscovariantie — die alle regulier gesloten verzamelingen karakteriseert.
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