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1
Introduction

Cycling is extremely popular in the Netherlands, according to an article from the Dutch Central Burea
of Statistics(CBS), the Dutch citizens cycled a total of 14.75 billion kilometers[2], that could take us
around the earth 369,000 times. Needless to say cycling is very popular in the Netherlands, however
very few data exist on the flow and route choices of cyclist, especially when we compare it to regular
vehicle traffic. That is where the FlowCube[29] comes into play.

The FlowCube is a product being developed by Technolution. The FlowCube is a single-box traffic
sensor that aims to replace different conventional traffic monitoring systems (e.g. traffic radars, float-
ing car data, induction loops), based on computer vision and edge AI. One of the initial use cases for
FlowCube is measuring travel times and route selection of cyclists. There is currently no effective solu-
tion for measuring this. There is also a strong societal urge to stimulate the usage of bicycles (Climate
change, less pollution). One of the purposes of this product is to map the route choices made by cy-
clists on the road. This information can be extracted by automatically matching the cyclist in different
video streams. The task of finding the same person in multiple images or video resources is known as
person re-identification.

This work is focused on improving the achieved cyclist re-identification score. To achieve this, first
a dataset was created. Next the effect of anonymization on the re-identification performance was eval-
uated. This anonymization was subsequently applied to our own dataset and next several benchmark
models were built and applied to our new dataset. Next some heuristics and a loss function from other
deep learning fields were evaluated for person re-identification. These steps are described in the sci-
entific paper. Some general background information is given in the deep learning section, the literature
review is also included for the interested readers.
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Anonymous Open-World Cyclist Re-Identification

Michael Schoustra
Technical University of Delft

m.schoustra@student.tudelft.nl

Abstract— This paper explores the topic of anonymous
open-world cyclist re-identification. Person re-identification
(re-ID) with deep neural networks has made progress and
achieved high performance in recent years. However, most
existing re-ID works are designed for closed-world scenarios
rather than realistic open-world settings, which limits the
practical application of the re-ID technique. Currently, no
dataset of cyclists exists. Directly applying a trained re-ID
network on another dataset does not yield good results.
Therefore, a new dataset of cyclists is introduced in this paper.
Our dataset is different than most existing benchmark datasets
as every person in our dataset has been blurred to respect their
privacy. In this paper the effect of blurring on re-identification
performance is evaluated. To evaluate the impact of blurring
on the re-identification performance we first tested it on the
Market1501 dataset. Here, the performance of the blurred
version could easily be compared to the original version
blurring. The experiments show that blurring the data only
impacts the rank-1, and mAP score by 1-4% for the Market1501
dataset. This impact depends on the size of the blurring window
that is used. Several state of the art performing re-identification
models were rebuilt and evaluated on our new dataset and their
performance was compared. Furthermore, different backbone
architectures were evaluated, we found that EfficientNetB0
outperforms the standard ResNet50 backbone architecture for
re-identification, while using fewer parameters. Next the effects
of RandAugment and Cosine learning rate decay were evaluated
for re-identification. It was found that including RandAugment
increases the rank-1 and mAP scores achieved on our dataset
by up to 3%, and that using cosine decay further improves
the achieved score. The final scores achieved on our dataset
are 89.8% rank-1 accuracy and a mAP of 81.4%. Next we
show that the batch hard pairwise loss function increases
the F1-score by 7% for open-world re-identification. It was
concluded that combining the embeddings is necessary to
achieve good performance for open-world re-identification.

I. INTRODUCTION

In recent years, person re-identification has become
increasingly popular in the research community due to its
application and significance. It is also a controversial topic
together with facial recognition; an article published in
the Financial times[1] showed that the datasets used for
re-identification and facial recognition are often collected
without the consent of the clearly recognizable people in
the images. Even your face or mine could be in one of
the datasets. As a result of this article, the Duke MTMC
Re-ID[2] dataset was discontinued.

The re-identification task can be summarized as matching
a pedestrian from an input image to a gallery set which has
been captured by different cameras. Some challenges seen in
the person re-identification task are the variations in lighting,
view angle, pose of individuals, low resolution and (partial)

occlusion of individuals[3]. These challenges are shown in
Figure 1.

Figure 1: Challenges seen in re-identification. Images from the
Market1501[4]. From left to right we have bad image quality,
occlusion, change of viewpoint angle, change of person appearance,
illumination changes and similar-looking individuals.[5]

Recent models have learned to deal with these challenges
and are able to outperform humans on certain benchmark
datasets. For example, on the Market1501 dataset[4], the
state of the art achieves a rank-1 accuracy of 94.5% while
the human level accuracy was tested at 93.5%[3]. This
implies that the re-identification models are ready to take
a step towards the more challenging issue of open-world
re-identification. In an open-world situation, captured images
from pedestrians do not have to be in the gallery set and
the gallery set should contain lots of irrelevant images. This
means the model cannot simply return the best match from
the gallery; it must also have the ability to return that no
match was found. Current benchmark datasets[2, 4, 6, 7] do
not provide a benchmark method to evaluate the effectiveness
of an open-world model. Also, the standard metrics used for
person re-ID, the cumulative matching curve (CMC), and
the mean average precision (mAP) cannot be used for an
open-world evaluation as not every input has a match in the
gallery set.

There are only very few researchers who reported their
open-world scores[8, 9]. The concept was first introduced
by Gong et al.[10]. The researchers created a gallery
set consisting of targets and used the other images as
query images; next, they evaluated the amount of true
targets rates (TTR) at certain false target rates (FTR). For
the Market1501[4] they use 15 identities as target people
and use 2 images per person as the gallery set. In this
work, we further investigate the concept of open-world



re-identification.
Re-identification can be used for many more purposes than

just surveillance. In this work, we show that re-identification
can also be used to measure cyclist flow and route
mappings accurately. This data can subsequently be used by
municipalities that are interested in optimizing their cyclist
flows. In order to train a model that works well on cyclists,
a dataset of cyclists is required. Therefore we create our
own dataset to train our model. This dataset is created
from multiple cameras set up in multiple cities (Groningen,
Rotterdam and Copenhagen). To comply with the privacy
laws of the different countries, all of the images of cyclists
have been anonymized. In this paper the effect of this
anonymization on the re-identification model is investigated.
Current works in re-identification mainly use ResNet50 as a
backbone, however this network is not ideal to use in an
embedded manner. Therefore different mobile models are
evaluated. Also current loss functions for re-identification
do not actively enforce a certain distance between positive
and negative matches. This is problematic for open-world
scenarios where a certain threshold is used to classify if there
is a match or not. To tackle this problem we introduce a new
loss function for re-identification.

The rest of the paper is organized as follows. Section
2 provides an overview of related work in the person
re-identification field. Section 3 describes techniques applied
during the creation of our dataset, and during the training of
our models. Section 4 describes current benchmark datasets
in re-identification. Section 5 describes the experiments and
their results. Finally, Section 6 describes our main findings.
research.

II. RELATED WORK

Person re-identification can be divided into
classification-based learning and metric-based learning.
This section will be focused on person re-identification in
images. Since the work of Gheissari et al.[11] in 2006,
person re-identification has mostly been applied to single
images. Gheissari et al.[11] used invariant signatures for
each image, which are generated by combining normalized
color and salient edges. These are hand-crafted features,
which performed quite well on their own small scale dataset,
but they are not suitable for current benchmark datasets.
The state of the art models are all learned models[3]. The
best performing model that uses handcrafted features is
provided by Zheng et al.[12], they learn a discriminative
null space for their features; they achieve a rank-1 accuracy
of 69.9%. To achieve good scores for re-identification, it
is required that the feature extractor deals well with the
challenges mentioned in the previous section. Mainly deep
network-based approaches deal well with these challenges.
Therefore they are the main focus in this section. For
a more elaborate view of person re-identification, we
refer to [3, 13] which provides recent surveys covering
the entire re-identification field. Generally speaking, two
types of deep approaches can be done; one is treating
person re-identification as a classification problem; the

other is using metric learning based approaches. These
approaches can be distinguished by the way the network is
optimized. Classification based models are optimized using
cross-entropy loss. Models based on metric learning use a
distance metric based loss function like the triplet loss to
optimize their network.

A. Models based on classification

A model based on classification creates a class prediction
for an input image. Here each class represents a unique
individual; this means there could be millions of classes for
real-world systems.

Figure 2: An input image is passed through a convolutional neural
network (CNN), and the output is a probability value from 0 to 1
for each of the classification labels the model is trying to predict.

A standard classification model is shown in Figure 2. The
loss can be calculated for each image in the training set by
calculating the cross-entropy loss between label prediction
and ground truth labels. Since often the persons in the
training set are not part of the test set, the final prediction
layer cannot be used during testing. During testing, the layer
of the neural network, which is before the class predictions, is
used as an embedding. An important aspect of classification
models are the feature extraction networks or backbone
networks. In early re-identification works, authors[14]–[19]
used shallow CNN’s with less than 10 layers as their
backbone networks. In later works pre-trained networks from
the ImageNet[20] challenge are used as backbone network.
These networks are pre-trained because of the small dataset
size for re-identification. Mainly ResNet50[21] is a popular
choice of backbone network for re-identification.

B. Models based on metric learning

Metric learning approaches generally use Siamese neural
networks, which contain two or more identical sub-networks.
These sub-networks share the same architecture, weight
and parameters. In re-identification, we typically see
two or three branch networks, respectively pairwise and
triplet networks. Pairwise models are used by some
researchers[16, 17, 22, 23]. A pair of images is used as an
input into Siamese convolutional neural networks(SCNN).
First a convolutional model is used to create a feature
vector for each image. The similarity between the vectors
could be calculated using the cosine distance[14, 16] and
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subsequently optimized for positive and negative pairs. The
pairwise models have lost their popularity in recent years,
because the performance is inferior to the triplet networks.
Triplet networks use three images as input, one anchor,
a positive match and a negative match. Triplet networks are
popular for re-identification [24]–[27], and have proven to be
successful. The goal of these networks is to pull the positive
match closer to the anchor while pushing the negative match
further away. This is done by means of optimizing a loss
function. The triplet loss can be calculated in different ways,
so Hermans et al.[26] compared different formulations of
the triplet loss function. They conclude that the batch hard
triplet loss yields the best results for person re-identification.
The batch hard triplet loss function for each anchor within a
batch finds the hardest positive and hardest negative match.
In euclidean space, the hardest positive is the positive with
the largest distance to the anchor, and the hardest negative
is the negative with the smallest distance to the anchor.
Recent works combined classification-based models with the
models based on Siamese networks, here the loss functions
for classification loss and triple triplet loss are combined with
certain weights[28]–[31].

C. Global vs. part-based methods

In literature, a distinction can be made between part-based
and global methods. The key difference between the methods
is that global feature methods use an entire image as
input and extract one feature vector from this image, while
part-based methods split the input image into parts, and for
each of these parts a feature vector is created. Next the
feature vectors of the parts are combined into a single feature
vector. Splitting the image into parts can be done in many
ways. Like using manually designed horizontal windows[32],
or extracting the locations of body parts from the image and
using these as features[15, 33]. Others divide the image into
parts before the pooling layer[34], or using attention-based
models to find the most important features of each part of the
feature map[35]. Even though part-based models have proven
to be very successful at solving the re-identification task, they
still rely heavily on the quality of the bounding box[36].
In most challenging cases, current detection performance is
not sufficient enough to guarantee a good bounding box.
Therefore in this work we emphasize the use of global feature
models.

D. Training strategy

An often overlooked part of person re-identification is
the method applied during training. For example, adding
augmentation to training data, like random erasing data
augmentation[25] where random boxes of random images
were replaced by random pixel values. This was done
to tackle occlusion. Another possibility are methods that
allow the model to converge faster, like adding a batch
normalization layer or warming up the learning rate[37].
For warm-up, instead of starting at a certain predefined
learning rate, the learning rate is linearly increased from 0
towards this learning rate. This is a method used to reduce

the effect of early training examples. It was first used for
re-identification by Fan et al.[31] and later adapted by many
other researchers[27, 29, 38]–[40] in the re-identification
field. Another method to increase the score is changing the
last stride of the network from 2 to 1[29, 34]. Changing the
last stride from 2 to 1 increases the size of the feature map.
Higher spatial resolution enriches the granularity of features
and can increase the achieved accuracy by a few percent.
Another approach seen is adding external information, for
example Wang et al.[40] added spatial-temporal information
to the images and Lin et al.[41] added 27 attribute labels
to each of the images. Adding external information during
training is not plausible for an open-world system, so it is
outside of the scope for this work. Often these heuristics or
methods are adapted from other deep learning tasks, like the
ImageNet[20] challenge. Another popular tool is re-ranking
(RR)[42], which is applied after the distance matrix has
been computed, thus it is considered as post-processing. Here
the calculated distance matrix is re-ranked by encoding the
nearest neighbors into a vector and using these vectors to
re-rank the images based on the Jaccard distance. Using RR
can add 10% to the achieved mean average precision (mAP)
score and can be defined as post-processing (it is applied
after the distances are calculated). It is unfair to compare
researchers that applied RR to those who did not. Therefore,
often researchers report both scores with and without RR.
The scores reported in this work are without RR unless it is
explicitly mentioned.

E. Benchmark datasets
To get an idea of the datasets used in person

re-identification we compare the CUHK01[43],
CUHK03[44], Duke MTMC[2], ViPer[7], and
Market1501[4] datasets.

Dataset BBoxes Identities Detection method # cam
CUHK03[44] 28,192 1467 DPM, hand 2
CUHK01[43] 3884 971 hand 10
Duke MTMC[2] 36,411 1812 hand 8
ViPer[7] 1264 632 hand 2
Market1501[4] 32,364 1501 DPM, hand 6

TABLE I: Re-identification benchmark datasets. Detection is done
by hand or with the deformable parts model(DPM) as described in
[45]

A comparison of available benchmark datasets can be
seen in Table I. The ViPer[7] dataset was one of the first
datasets available for re-identification and is still considered
one of the most challenging ones[10], this is due to the
fact that there are only two images of each person to train
on. The CUHK01[43] and CUHK03[44] datasets were both
recorded on the campus of the Chinese University of Hong
Kong. While the CUHK01 dataset is considered too easy
the CUHK03 is certainly not, however the CUHK03 only
uses two cameras and researchers prefer the slightly larger
Duke MTMC[2] dataset. The Duke MTMC was recorded on
the campus of Duke university and was later discontinued
because of the breach in privacy of the students and the
applications of the dataset[1].
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The Market1501[4] is a popular benchmark dataset for
re-identification, it contains 32,634 images of 1501 identities.
It is used extensively in re-identification research. This
dataset is split into 12,936 images of 750 identities for
training and 19,271 images of 751 identities as the test
set. This test set is then split into a query and gallery
set, respectively containing 3360 and 15,913 images. The
authors also provided 500,000 images which can be used as
distractors in the gallery set. These images however are a
collection of bad bounding boxes and do not contain any
full persons. All identities in the query set are also present
in the gallery set. This dataset will be used to validate the
effectiveness of the experiments.

F. Results on benchmark datasets

The scores of the papers submitted to CVPR 2016-2019
are shown in Figures 3 and 4, which are the scores
on the Market1501 and Duke dataset. To fairly compare
achieved scores, models using re-ranking[42] have not been
included in the graph. The scores are given in mean average
precision(mAP) and rank-1 accuracy. The scoring metrics
will be further exaplained in the third section. Currently
the best performing model on the Market1501 benchmark
dataset is the one created by Luo et al.[29]. They collected
different loss functions and training strategies and applied
these for person re-identification, yielding them a 94.5%
rank-1 accuracy and a mAP of 85.9%. They combined
the triplet loss with center loss and the cross-entropy loss.
A Resnet50[21] architecture was used as backbone feature
extractor, they changed the last stride from 2 to 1 giving
them a larger feature vector output.

Figure 3: Results on the Market1501[4] dataset. The almost linear
increase in scores over the years can be seen in this graph.

The Duke dataset is considered to be slightly more
challenging than the Market1501 dataset and this can also be
seen in the achieved scores. The results on the Duke dataset
are very comparable to the results on the Market1501 dataset,
but they are about 10% lower on average, they are shown in
Figure 4.

Figure 4: Results on the Duke Re-id[2] dataset. The almost linear
increase in scores over the years can be seen in this graph.

For both benchmark datasets we see that the scores
are increasing each year showcasing that this is a subject
where a lot of improvement is possible. In this work the
Market1501[4] dataset will be used to validate the rebuilt
models.

III. METHODOLOGY

In this section we will discuss the methods applied
during our research, first the methods for the creation
of the dataset will be discussed, then the methods for
re-identification will be explained. Finally the evaluation
metrics for re-identification will be explained.

A. Dataset creation

Cross domain performance is generally not consistent with
the performance on the original dataset[29]. So to get good
performance for cyclist re-identification our own dataset was
required. First video footage was collected from different
locations, then object detection was applied to all of the
footage and finally the tracklets were extracted from the
video data.

1) Camera setup: We set up our cameras in three different
cities: Copenhagen, Groningen and Rotterdam. An example
of the camera setup is shown in Figure 5, and with
permission of the different municipalities over 50 hours of
video data was collected. The video footage was directly
blurred to respect the privacy of the individuals in the
footage.

Our main interest in the video footage are the cyclists that
pass through one or multiple camera views. From this video
data we want images of each unique cyclist to be saved under
a new identity. To extract the images of each cyclist from the
video footage, first the cyclists must be detected. A region of
interest(ROI) was formulated for each camera and location.

An example of this ROI is shown in Figure 6, here the ROI
is defined as the red polygon. The ROI was implemented to
ignore pedestrians and walking cyclists. For each bounding
box we required the center of the bottom axis of the bounding

4



Figure 5: An example of the Camera setup in Groningen. Here
five camera’s were set up along one of the busiest cycling streets
in Groningen.

Figure 6: Camera B view in Groningen with ROI in red and
bounding box of cyclist in purple

box to be within the ROI. After the ROIs were defined for
all cameras and locations, the object detection was applied.

2) Object detection: Object detection is applied to each
frame. An object detection model returns the bounding
boxes of each frame, and for each bounding box the score,
location and class are stored. In a recent survey on object
detection[46] the performance of object detection models on
the COCO[44] dataset was compared. The COCO[44] dataset
is a large benchmark dataset for object detection with over
1.5 million object instances and 80 object categories. The
object detection can be applied offline, therefore inference
time is disregarded and the model with the best performance
is chosen. The updated version of the faster R-CNN[47]
is the current state of the art. The faster R-CNN[47] was
run over all of the video footage, generating the bounding
boxes for each frame. This returned over 10 million bounding
boxes for 2 million frames. From all of these bounding boxes
the dataset must be created, in this dataset bounding boxes
belonging to the same person must be assigned the same
identity. To achieve this we must must create tracklets of
each cyclist by tracking them through each camera’s view.

3) Tracklet creation: To create tracklets the cyclists are
tracked through the camera view. This is known as object
tracking and is an entire different field of deep learning. For
our dataset creation, objects are tracked by using Intersection

over Union(IOU) and a Kalman filter[48]. First the bounding
boxes which do not meet the requirements (Classification
score, Aspect ratio, Horizontal size) are filtered out, the
requirements are shown in Table II. The score is the
classification probability which is output by the object
detection model. The aspect ratio was added to filter out
boxes which only contained partial cyclists. The horizontal
size requirement was added to filter out small bounding
boxes.

After the bounding boxes that did not meet the
requirements have been filtered out, the tracklet creation
process can start. The tracklet creator is run over successive
frames. Given a certain frame’s bounding boxes, the IOU
of the boxes is calculated with the boxes of the next frame.
Boxes with high IOU are potentially the same cyclist while
boxes with an IOU of 0 represents bounding boxes without
any overlap. The formula for intersection over union is given
in Equation 1.

IOUij =
Boxi ∩Boxj

Boxi ∪Boxj
(1)

In an ideal case the IOU would be sufficient to extract
the track of a cyclist that has cycled through the camera
view, however often cyclists are close together. Thus only
using IOU is not an effective solution and gives many
incomplete/incorrect tracklets. Many other object tracking
models[49] add a re-identification algorithm to their object
trackers. Here, bounding boxes are compared by extracting
feature vectors and comparing them to find the same person.

Using re-identification to create a dataset for
re-identification can be problematic, an example is occlussion
of individuals. A well performing re-identification model
should be able to re-identify partially occluded individuals,
however if these examples are not included in the training
set the model will not perform well for occlusion. Therefore
we decided not to include re-identification in our tracklet
creation process. Instead a Kalman filter[48] was added to
predict the location of the bounding box in the next frame,
given the previous boxes. Next the IOU of the predicted
box with the actual box is calculated. The entire algorithm
for the tracklet creation can be found in the Appendix, and
the values of the parameters are shown in Table II.

Attribute Req
Classification Score 0.7
Aspect Ratio 0.6
Horizontal size 60
Expiration time (s) 0.5

Attribute Req
Min pickup time (s) 0.3
IOU min 0.3
IOU max 0.9
IOU Kalman 0.5

TABLE II: Tracklet creation variables. These variables were were
chosen through trial and error.

B. Methods in re-identification

In this section the methods used for person
re-identification are explained. The methods for
re-identification are divided into five parts: loss functions,
backbone networks, data augmentation, training details and
inference details.
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1) Loss functions: During training a function is defined
which should be minimized, this is known as the loss
function. The performance of the model will greatly depend
on the choice of the loss function. These loss functions differ
greatly in their complexity. An optimizer is used to minimize
the loss functions and they exist in many different forms.
The choice of optimizer is beyond the scope of this paper,
so the most common one for re-identification is used, which
is the ADAM optimizer[50]. In the person re-identification
field four types of loss functions are used: cross-entropy loss,
triplet loss, pairwise loss and center loss.
Cross-entropy loss uses the probability predictions and
compares these to the true label. The logits are defined as
the output of the layer before the classification layer. The
logits are passed through a softmax activation function and
this turns them into probabilities. The labels are one-hot
encoded vectors, containing all 0s and a single 1. Sometimes
researchers[27, 31, 39] add noise to the label vectors, this is
known as label smoothing. The natural way to measure the
distance between two probability vectors is by calculating
the cross-entropy loss. The cross-entropy loss is calculated
by taking the log of the predicted probability and multiplying
this with the probability of the ground truth label. If the
labels are one-hot encoded this only requires one calculation
per embedding and thus is quite efficient. The formula for
the cross-entropy loss is given in Equation 2.

Lidentity = − 1

N

i=N∑
i=0

Label ∗ log(Pred) (2)

Here N represents the batch size. During inference the
classification layer is discarded and the logits are used
as embedding for comparison. This is done because it is
unknown how many identities are included during inference
time and the classes differ from the training set thus it is not
effective to use the classification layer as embeddings.

Triplet loss requires three inputs, an anchor, a positive
match and a negative match. It uses the logits of the deep
model as an embedding. The euclidean distance between
each of the embeddings is calculated, and with these
distances the triplet loss can be calculated. The triplet loss
function knows many different formulations, the standard
formulation is given in Equation 3.

Ltriplet =
∑
a,p,n

[m + Da,p −Da,n]+ (3)

Here D represents the distance, a are the anchors, p are
the positive matches, n are the negative matches and m is
the margin. So Da,p is the distance between the anchor and
positive match. Da,n is the distance between the anchor and
the negative. The margin is the distance which is enforced
between positive and negative matches. If the value for a
certain triplet becomes negative, it is replaced by a zero. In
this implementation a certain set of B triplets is chosen and
their images are stacked into batches of size 3B, because
each triplet consists of 3 images. Each batch of 3B images
has B terms which contribute to the triplet loss, given the

fact that there are up to 6B2 − 4B possible combinations of
these 3B images that are valid triplets, using only B of them
seems wasteful. Hermans et al.[26] introduced a solution for
this, they create batches by randomly sampling P classes
(person identities), and then randomly sampling K images
of each class, resulting in a batch of PK images. Within
a batch of size PK there are different ways of formulating
the triplet loss for the batch. Hermans et al.[26] introduce
the batch hard triplet loss and the batch all triplet loss. The
formulas are given in Equations 4, and 5 respectively.

Ltriplet−BH =
P∑

a=1

K∑
i=1︸ ︷︷ ︸

anchors

[m + max(Dai,p)−min(Dai,n)]+

(4)

Ltriplet−BA =
P∑

a=1

K∑
i=1︸ ︷︷ ︸

anchors

K∑
p=1︸︷︷︸
pos

K∑
n=1︸︷︷︸
neg

[m + Dai,p −Dai,n]+ (5)

The difference between the batch all triplet loss and the
batch hard triplet loss is that the batch hard triplet loss only
takes into account the hardest positive and hardest negative
relative to the anchor. This means, within each batch, only the
positive match with the largest distance to the anchor, and the
negative match with the smallest distance to the anchor are
used to calculate the batch hard triplet loss. For the batch all
triplet loss, all positive and negative matches for each anchor
within the batch are used to calculate the loss.

A disadvantage of the triplet losses is that they only
consider the difference between the positive and negative
distance and ignore the absolute values of them. For example
with m = 0.3, if the distance with the positive is 0.4 and
the distance with the negative is 0.6 the loss for that triplet
is 0.1. In another case, the positive distance is 1.4 and the
distance with the negative is 1.6, here the loss for the triplet is
also 0.1. Since in an open-world scenario we cannot simply
prescribe the closest image as a match, a threshold must
be set where images are assigned a distractor label. This
means the triplet loss might not be suitable for an open-world
scenario. Therefore it might be useful to include this margin
in the loss function. Therefore we introduce the batch hard
pairwise loss.

Batch hard pairwise loss is quite similar to the batch
hard triplet loss. For each anchor the hardest positive and
hardest negative within the batch are used to calculate the
loss. The formula is given in Equation 6.

Lpair−BH =
P∑
i=1

K∑
a=1︸ ︷︷ ︸

anchors

[max(Da,p)−mp]++[mn−min(Da,n)]+

(6)
Here mp is the positive margin and mn is the negative

margin. The key difference between the batch hard triplet
loss, and the batch hard pairwise loss, is that the margin
is enforced separately for each positive and negative pair.
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This gives us more control over the distance that a
positive/negative match should have.

Center loss is often added to maximize intra-class
compactness, it is mainly popular in the facial recognition
scene[51]. The formula for center loss is:

Lcenter =
1

2

B∑
j=1

|Lj − Cj |2 (7)

L represents the embedding of a certain input image, C
is the center of all embeddings of the matching identity
and B represents the batch size. This function learns a
center for each class and calculates the Euclidean distance
of the sample to its center. The sum of these distances is
then multiplied by 0.5. Minimizing center loss will increase
intra-class compactness, meaning positive pairs are pulled
closer together. The center loss can be combined with the
triplet loss to make the result more robust. A disadvantage
of the center loss is that it is sensitive to outliers.

2) Backbone networks: Backbone networks form an
important part of re-identification models. Given an input
image, the backbone network returns a feature vector of N
features. During training these features are used to calculate
the loss and train the network. The size of the feature vector
N depends on the size of the final layers of the network.
For Resnet50[21] the layer before the classification layer
has 2048 nodes, most researchers use these 2048 nodes
as their feature vector. Resnet50[21] is the most popular
backbone network for re-identification at this moment,
however there are networks which outperform Resnet50 in a
number of other deep learning tasks. A few networks which
could outperform Resnet50 for re-identification were chosen:
EfficientNets[52], MobileNets[53] and Xception[54].

ResNets were introduced in 2015 by He et al.[21], they
introduced residual connections which made it possible
to train deeper networks. The ResNet architectures were
originally created for use on the ImageNet[20] challenge
and were later adapted for many other deep learning tasks
among which person re-identification. ResNet50 is used by a
significant amount of person re-identification researchers[3],
however there are many other potentially effective backbone
networks. In this work we compare the effectiveness of
several state of the art architectures from other deep learning
tasks for person re-identification. We compare the standard
ResNet50 backbone to EfficientNets[52], MobileNets[55]
and Xception[54].

EfficientNets were first introduced by Tan et al.[52], they
showed that instead of just scaling networks in depth it is
also useful to scale the network in width and resolution. They
created different scales of models ranging from B0 to B7 and
from 5.3m parameters to 66m respectively. They show that
their network is able to outperform ResNet50 on a number
of classification tasks.

MobileNets currently have three versions: MobileNet[53],
MobileNetV2[56] and MobileNetV3[55]. For each version
the achieved accuracy on ImageNet was improved and they
use roughly the same amount of parameters (4m). For

re-identification to be successful we believe it must be
deployed in an embedded way. MobileNets have a small
number of parameters and they have been optimized for use
on mobile devices. This makes them ideal candidates for
re-identification.

Xception was introduced by Chollet et al.[54] shortly
after ResNets were invented. It outperformed Resnet on
many challenges but has not been used for re-identification.
The architecture is heavily inspired by the Inception
architecture[57] but the Inception modules are replaced
by depth wise separable convolutions. In this work both
Inception and Xception are evaluated for re-identification.

3) Data augmentation: In this work different types
of data augmentation are applied. The effect of these
augmentations on the performance is evaluated. Random
Erasing Augmentation[25], which is very popular in the
re-identification field, will be applied. Also the effect of
RandAugment[58] which is used by the top performing
models on the ImageNet challenge is evaluated for
re-identification.

Random Erasing Augmentation has proven to be
very successful for person re-identification. Occlusion is a
common challenge in person re-identification. To address the
occlusion problem and improve the generalization ability of
re-identification models, Zhong et al.[25] introduced random
erasing augmentation. Within an image they select a random
region W x H and replace the pixel values in this region by
pixels of random values. Random erasing is not applied to all
images, it is applied with certain probability Perase. In this
work, we use the same hyperparameters as described in the
original paper[25]. An example of random erasing is shown
in Figure 7, here the same image was sampled independently
eleven times through the random erasing procedure with
Perase = 1.0.

Figure 7: Random Erasing Augmentation[25] applied to the image
in the top left, 11 times with perase = 1.0

RandAugment is a data augmentation technique,
introduced by Cubuk et al.[58]. In this work this technique
of augmentation is applied for person re-identification.
RandAugment[58] applies a random number of
augmentations from a list of possible augmentations:
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• identity
• autoContrast
• Equalize
• Rotate
• Solarize

• Color
• Posterize
• Contrast
• Brightness
• Sharpness

• Shear-x
• Shear-y
• translate-x
• translate-y

Both the number of augmentations that are applied, and
the magnitude of these augmentations, are hyperparameters.
Cubuk et al.[58] state that the values for these
hyperparameters depend on network size, and the size
of the training set. For Resnet50 they use magnitude M =
9 and number of transforms Ntransforms = 8. An example
of RandAugment applied to images is shown in Figure 8.

Figure 8: RandAugment[58] applied to the image in the top left,
11 times with Ntransforms = 5 and M = 5

4) Training details: After the augmentations have been
applied to the training data, the images are pre-processed.
After pre-processing the images the training process can
start.

Pre-processing is applied to the training data before
training our network. We follow the pre-processing steps as
described by Luo et al.[29]. First each image is resized to
the input size used by the different networks, for example
256x128 pixels. Following the ImageNet pre-processing
steps each image is decoded into 32-bit floating point raw
pixel values in [0, 1]. The RGB channels are normalized by
subtracting 0.485, 0.456, 0.406 and dividing by 0.229, 0.224,
0.225, which are the mean and the standard deviation of the
images used for ImageNet. These values are used since the
backbone models are often pre-trained on ImageNet. Next
a 1xN dimensional fully connected layer is added to the
network which is used as logits for the triplet losses. If a
classification loss is used then another fully connected layer,
with softmax activation function is added. This final layer
can be used for ID predictions.

For each epoch the dataset is divided into batches of
P identities and K images per identity, our standard
batch size is 64 images with P = 16 and K = 4.
Each identity is only sampled once for each epoch. If an
identity has less than K images available a random copy
of one of the available images is added for that identity.
In available benchmark datasets persons that appeared in
multiple cameras subsequently are manually labeled as
the same person. This is one of the factors why person

re-identification datasets are relatively small as this is a lot
of work. In our dataset these persons are not saved under
the same identity since this would results in an immense
workload. To prevent the same person from appearing under
a different identity code in the same batch, we sample our
batches from a single camera. Next the loss is calculated for
each batch. The loss is defined as one of the described loss
functions or a combination thereof. Once the loss function
has been defined, an optimizer can be deployed to minimize
the loss function and find a global minimum of the defined
loss function. In this work, the ADAM[50] optimizer is
used. The optimizer takes the learning rate as an input. The
learning rate weighs how heavily the calculated gradient is
used to update the existing values. A large learning rate
results in fast initial convergence but it might fail to converge
to global minimum. Using a small learning rate will result
in slow convergence and is therefore also not optimal. To
get fast convergence and find a global minimum both high
and low learning rates are needed and therefore learning rate
schedules are created. The learning rate schedules used in
this work will now be explained. Learning rate decay is the
practice of decaying the learning rate at certain epochs by
a certain factor and this helps convergence towards a global
optimum of the loss function. This is known as step decay.
Instead of starting at a certain learning rate, the learning
rate is warmed up as done by Fan et al.[31]. The Learning
rate is increased from 0 to the learning rate used as input
in 20 epochs. Cosine Learning rate decay is an alternative
learning rate schedule. After the warm-up stage described
earlier, the cosine decay decreases the learning rate slowly at
the beginning. Around the middle the learning rate decreases
almost linearly, and the decrease slows down again around
the end. The idea of cosine decay was introduced for other
deep learning tasks by Loshcilov et al.[59]. In this work it
is adapted for person re-identification. An example of the
different learning rate schedules is shown in Figure 9.

LRstep =



e ∗ LR
20

e ≤ 20

LR 20 < e ≤ 100

LR ∗ 10−1 100 < e ≤ 150

LR ∗ 10−2 150 < e ≤ 200

LR ∗ 10−3 200 < e ≤ 250

(8)

LRcosine =


e ∗ LR

20
e ≤ 20

10
−4.5+1.5∗cos (

e− 40

65
)

20 < e ≤ 250

(9)

The formulas of the learning rate schedules are given in
the equations above. Here e represents the current epoch and
LR is the learning rate for the optimizer. The formula for
step decay without warm-up is the same as the formula for
the step decay with warm-up with exception of the first step
where the learning rate starts from the constant value.

5) Inference details: Inference/testing is different from
training for re-identification. During inference the amount of
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Figure 9: Step decay and Cosine decay scehdules. Here 10−3 was
used as learning rate and the schedules were created for 250 epochs.

classes is unknown. Also since a class represents a person
the details of each class are still unknown, thus a standard
classifier cannot be applied to classify an input image. In
benchmark datasets the test set is split into two parts, a query
set and a gallery set. The goal is to match each person from
the query set to the correct identity in the gallery set. Multiple
images of an identity might exist in the gallery/query. In most
cases Euclidean distance is used as a similarity measure, the
smaller the distance between two feature vectors, the more
similar the images should be. During the calculation of the
scores images taken from the same camera are not compared.
This is done to simulate the objective of re-identification,
which is to find an individual in a different camera view.
In a closed-world situation a ranking is created based on
Euclidean distance. Given an image from the query set, the
images from the gallery set are ranked based on Euclidean
distance. In an open-world situation a threshold is used to
describe if an image is a match or not. Therefore different
scoring metrics must be used.

C. Evaluation metrics

To gain understanding of the model’s performance, first the
underlying metrics must be explained. A distinction is made
between closed-world and open-world scoring metrics.

1) Closed-world: The cumulative matching curve(CMC)
and the mean average precision(mAP) are used as the
benchmark scoring metrics in person re-identification. The
CMC measures the retrieval precision, given a list of closest
matches from the gallery, the rank-x indicates the probability
that the matching image is among the first x positions. The
rank-1 accuracy gives the probability that the top ranked
image is a match. In early research in person re-identification
only the CMC scores were reported, but with growing
datasets this score on its own is not a good representation of
the model’s performance anymore. The mAP was added to
take into account the position of all positive matches from
the gallery. The mAP is calculated by first calculating the
Average Precision (AP), subsequently the mean of all the

average precisions is calculated. In Figure 10 a calculation
example of these scoring metrics is given. The mAP gives a
better indication of the performance since it takes the position
of each matching person into account.

Figure 10: Example scores for rank-1 and average precision. Only
using the rank-1 accuracy does not give a good indication of the
performance if a large gallery set with multiple matches is used.

2) Open-world: In the real-world application the gallery
size may vary, and not every query image has a
match in the gallery set. The scoring metrics used
for closed-world re-identification would not give a good
indication of the model’s performance. Therefore the
open-world re-identification problem is viewed as a binary
classification problem. For each gallery image the model
must classify whether it matches the query image or not.
The F1-score can be used as a scoring metric for open-world
re-identification. First the precision and recall are calculated,
next these can be used to calculate the F1-score. The
precision and recall are defined in Equation 10.

Precision =
TP

TP + FP
and Recall =

TP

TP + FN
(10)

With TP = True positives, FP = False positives, and FN
= False negatives. The formula for the F1-score is given in
the equation below.

F1 = 2 ∗ Recall ∗ Precision

Recall + Precision
(11)

The F1-score helps find a balance between the precision
and recall, a value of 1.0 portrays a perfectly working system.

IV. DATASET

In this section the created dataset is discussed, and some
comparison with benchmark datasets is made.

A. Cyclist Re-id

In this paper a new dataset named ’cyclist Re-id’ is
introduced. It was created because no dataset of cyclists
for re-identification exists. Another issue in re-identification
datasets compared to datasets in other deep learning fields
is that they lack in size. Also our dataset is the first fully
anonymized re-identification dataset. Following the methods
described in the previous section, this dataset was extracted
automatically from the 52 hours of video footage. Given
video footage the algorithm returns the tracklets of unique
identities that cycled through the camera views. An overview
of the compositions of the training data is given in Table III.
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Location Cam Hours # Crops # IDs
Groningen 5 40 188,571 9584

A 8 53,105 3120
B 8 65,369 2674
C 8 16,079 914
D 8 17,221 1303
E 8 36,797 1573

Rotterdam 2 8 51,863 1296
A 4 28,390 706
B 4 23,473 590

Copenhagen 2 4 20,347 789
A 2 8,121 264
B 2 12,226 525

Total 52 260,781 11,669

TABLE III: Composition of training data from different locations
and cameras

This gives us a total of 260,781 images of 11,669
non-unique identities. These identities are defined as
non-unique as they have not been labeled for cross camera
re-identification. The test set must consist of identities which
have been labeled across cameras so that we can assess the
cross camera re-identification performance. To collect test
data the videos were first split into training/validation parts.
For each hour of footage, 50 minutes were reserved for
training data and 10 minutes for validation data. Next the
tracklet extractor was also applied to the validation videos,
and the cross camera labeling was done manually. The test
set contains identities from all of the recorded locations, an
overview can be seen in Table IV.

Location # IDs # Images
Groningen 110 7856
Rotterdam 91 7345
Copenhagen 60 120
Total 261 15161

TABLE IV: Composition of test data from different locations

In total there are 15,161 images of 261 identities split over
up to 4 cameras per location. These images are saved in their
original size. Instead of splitting the data into a query and
gallery set, we sample each image as a query and compare
it to the left over images. So the gallery set is the test set
without the current image. Before calculating the score, we
remove the images which belong to the same identity from
the gallery set.

V. EXPERIMENTS DISCUSSION

In this section five different experiments are discussed,
in the first experiment the effect of different types of
blurring on the re-identification performance were evaluated.
This experiment was done to test the feasibility of using
blurred/anonymized images (as required by municipalities)
for re-identification. In the second experiment, four models
that perform well on benchmark datasets are rebuilt and
tested on our own data. In the third experiment lightweight
backbone networks which can be used on embedded
platforms are evaluated for re-identification. In the fourth
experiment we evaluate cosine learning rate decay and
RandAugment for re-identification. In the fifth experiment

the introduced loss function, batch hard pairwise loss, is
compared with other triplet losses for closed-world and
open-world re-identification.

A. Experiment 1: Influence of blurring on re-identification
performance

It was agreed with the municipalities, where the video
footage was taken, that the stored data must not contain
any recognizable persons. To achieve this, blurring must be
applied to the created training set. This experiment was set up
to evaluate which type of blurring has the least effect on the
re-identification performance. Different blurring strategies
were tested: average blurring; gaussian blurring; and median
blurring from the OpenCV library[60] were applied to the
entire image dataset. Another blurring strategy, YoloFace[61]
was also included. YoloFace[61] finds bounding boxes of
the faces in each crop, and applies a median blur to these
bounding boxes.

The blurring was applied to the training set of the
Market1501[4] dataset while varying the blurring window.
Since the image size in the Market1501[4] data is the same
for all images, fixed values of 5x5, 7x7 and 9x9 pixels were
chosen for the blurring window size. From a visual test it
was concluded that using 5x5 pixels as blurring windows
was sufficient to anonymize. The larger windows were added
to test the effect of these larger windows on the achieved
accuracy. The visual effect of the different blurring types is
shown in Table V.

Here we see that the Average Blurring technique has
trouble anonymizing the crop. The larger the window used
the more recognizable features disappear. YoloFace yields
the best visual results.

The TriNet[26] model is commonly used as a baseline due
to the simple structure. For this experiment we will also use
TriNet as a baseline model. In their paper they achieve a
rank-1 score of 83.3% and mAP of 64.3% while using a
margin of 0.2 for the triplet loss. Resnet50[21] is used as a
feature extractor and it is trained for 150 epochs. The batch
all triplet loss is used as a loss function, and the standard
learning rate decay without warm-up is used. The re-created
baseline achieves a rank-1 score of 83.7% and mAP of 66.0%
on the market1501 dataset.

This network was now trained on the different blurred
training sets, and evaluated on the original test set. The
rank-1 and mAP scores have been summarized in Table VI.

Window size 5 7 9
rank-1 / mAP rank-1 / mAP rank-1 / mAP

Gaussian 79.1% / 61.3% 76.6% / 56.2% 73.2% / 51.4%
Average 77.5% / 56.1% 71.7% / 49.3% 64.5% / 39.8%
Median 79.3% / 61.7% 73.2% / 51.0% 65.6% / 42.7%

YoloFace 82.8% / 65.3% Original 83.7% / 66.0%

TABLE VI: Rank-1 and mAP performance on the market1501
dataset with different anonymization strategies.

The visual effect of the larger blurring windows is
minimal, however the effect on the performance of the larger
window sizes is significant. The effect of the YoloFace
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Blur window 5 7 9

Gaussian

Average

Median

Original YoloFace

TABLE V: Visual effect of different types of blurring, and
the different blurring windows on the same image from the
Market1501[4] dataset. The original image can be found in the
bottom left.

blurring strategy on the re-identification performance is
significantly less than standard blurring strategies, however
the Yoloface strategy adds an uncertainty. The YoloFace
algorithm at this time cannot guarantee to find the face in
each of the crops. Given the responsibility of anonymizing
the dataset it was chosen to continue with the median blur.

B. Experiment 2: Performance on our own dataset

In this experiment several state of the art models were
rebuilt and evaluated on our own dataset. The first model
used is the model designed by Zheng et al.[62] which in
literature is often described as a baseline for ID based
re-identification. The cross-entropy loss function described
in the previous section is used. The next model used is the
TriNet model which was introduced by Hermans et al.[26].
This model uses different representations of the triplet
loss, we will evaluate this model with the batch all triplet
loss and the batch hard triplet loss. Next Random Erasing
augmentation was added to the TriNet model as demonstrated
by Zhong et al.[25]. The final model used is the Bag of Tricks
model designed by Luo et al.[29]. They combine the triplet

loss with the cross-entropy loss, and the center loss. Also
Random Erasing and a learning rate schedule were used. A
short overview of the models can be found in Table VII. To
verify the models were rebuilt correctly we trained/evaluated
them ourselves on the Market1501 dataset. The scores in the
table represent the scores that our rebuilt models achieved,
not the scores originally reported in the papers.

Model Loss Heuristics rank-1 / mAP
DCNN[62] Cross-entropy - 78.04% / 58.89%
TriNet[26] Triplet - 82.60% / 65.79%
Random Erasing[25] Triplet RE 83.94% / 68.67%
Bag of Tricks[29] Combined RE, WL 91.01% / 80.43%

TABLE VII: State of the art models for Market1501 dataset (RE
= Random erasing augmentation, WL = warm-up learning rate).

These models use Resnet50 as backbone network with the
learning rate set to 3.5 ∗ 10−4 and decayed by a factor 10
after 100, 150, and 200 epochs. The margin for the triplet
losses is set to 0.3 for all models. The Bag of Tricks model
uses the warm-up learning rate schedule. The batch size is set
to 64, and the pre-processing steps described in the training
details section are applied. The models were trained for 250
epochs, each epoch containing 400 batches of images. The
scores that the different models achieve on the combined test
set are shown in Table VIII.

Model rank-1 / mAP
TriNet (batch all)[26] 75.8% / 63.1%
TriNet (batch hard)[26] 74.2% / 60.8%
TriNet[26] + Random erasing[25] 78.8% / 67.8%
DCNN[62] 70.3% / 57.1%
DCNN[62] + Random erasing[25] 75.5% / 57.6%
BoT (batch all)[29] 84.7% / 75.2%
BoT (batch hard)[29] 84.0% / 73.8%

TABLE VIII: Scores of different benchmark models on the cyclist
dataset.

As expected the model with the best performance on the
Market1501 dataset also has the best performance on our
dataset. Furthermore, it can be seen that the random erasing
heuristic increases the accuracy, and using the batch hard
triplet loss instead of the batch all variant seems to have
a negative effect on the performance for our dataset, while
on the Market1501 dataset it increased performance. This
might be caused due to errors in the training set. The batch
hard triplet loss finds the most difficult positive and negative
match. If one of these contains a wrong identity the model
will perform well. The Bag of Tricks model was chosen as
baseline for the next experiments.

C. Experiment 3: Backbone network

Resnet50[21] is the most popular backbone network in
person re-identification. Resnet50 used to have state of
the art performance on the ImageNet challenge. However,
in recent years many networks have outperformed the
Resnet50[21] network on the ImageNet challenge. Another
issue encountered while using Resnet50 for re-identification,
is that it does not run well on embedded platforms due to
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its large size. In this experiment we focus on networks that
achieve similar performance on the ImageNet challenge but
use fewer parameters and thus should have faster inference
time on an embedded platform. An overview of the networks
that will be evaluated in this experiment are shown in Table
IX.

Model rank-1(%) # Parameters Year
Resnet50[21] 75.9 26m 2016
MobileNetV1[53] 70.6 4.2m 2017
MobileNetV2[56] 72.0 3.4m 2019
MobileNetV3[55] 73.3 4.0m 2020
EfficientnetB0[52] 77.3 5.3m 2019
EfficientnetB1[52] 79.2 7.8m 2019
NasNetMobile[63] 74.0 5.3m 2018
InceptionV3[57] 78.8 24m 2017
Xception[54] 79.0 23m 2017

TABLE IX: rank-1 accuracy of different backbone networks on
the ImageNet[20] challenge

The Bag of Tricks model of Luo et al.[29], which had the
best performance on our dataset in the previous experiment
is used as a baseline. The Resnet50 backbone they used is
replaced by the networks shown in Table IX. These networks
are available through the Keras[64] Python library. Next the
different backbone networks are trained on our dataset. The
training steps are similar to the previous experiment. The
results have been summarized in Table X.

Backbone network rank-1 / mAP
Resnet50[21] (baseline) 84.7% / 75.2%
MobileNetV1[53] 76.4% / 65.0%
MobileNetV2[56] 81.4% / 69.3%
MobileNetV3[55] 82.8% / 73.8%
EfficientNetB0[52] 86.2% / 78.4%
EfficientNetB1[52] 86.6% / 79.0%
NasNetMobile[57] 82.8% / 73.9%
InceptionV3[51] 83.2% / 74.0%
Xception[54] 81.8% / 73.2%

TABLE X: Scores of different backbone networks using the Bag
of Tricks[29] model as a baseline.

Strong correlation can be seen between the results
achieved on the ImageNet challenge, and the results
achieved by these backbone architectures when applied
to our dataset. The Inception and Xception backbone
networks do not outperform Resnet50. EfficientNetB0 has
fewer parameters than ResNet50, and achieves a better
score. EfficientNetB1 only gives a slight increase in
performance over EfficientNetB0, while using significantly
more parameters. Given the results of this experiment we
conclude that EfficientNetB0 is the best alternative network.

D. Experiment 4: Evaluating Heuristics

Heuristics applied during training have great influence on
final model performance. Some heuristics are already used
by the Bag of Tricks model such as warm-up and random
erasing. In this experiment two heuristics are introduced for
re-identification: RandAugment[58] and Cosine learning rate
decay[59].

1) Randaugment: Will be evaluated using different values
for the amount of transforms (N ) used, and the magnitude
(M ) of the transforms. The optimal values of N and
M depend on the size of the dataset and the backbone
architecture that is used[58]. In this experiment the amount
of transforms will be varied from 1-16, and the magnitude
is varied from 1-30. These will be evaluated using the
EfficientNetB0 setup from the previous experiment as a
baseline. This baseline scored a rank-1 accuracy of 86.2%,
and a mAP of 78.4%. Cubuk et al.[58] found that the optimal
value of the Magnitude was 9 while using a ResNet50
backbone network. Using this value for the magnitude we
first vary the number of transforms, the corresponding scores
are shown in Figure 11.

Figure 11: Randaugment with the magnitude set to 9, and the
number of transforms varied from 0-16

Here we find that the optimal amount of transforms is
8. For the next part the amount of transforms N is set to
8, and the experiment is repeated but now the number of
transforms is kept constant. The magnitude is varied from
0-30. The achieved accuracy’s are shown in Figure 12.

Here we find that the optimal value for the magnitude is
8. Furthermore we conclude that the magnitude has greater
influence on the performance than the number of transforms.
For EfficientNetB0 and our dataset the optimal values are
N = 8 and M = 8. After adding RandAugment the rank-1
accuracy is further increased to 89.1%, and the mAP is
increased to 80.2%.

2) Cosine Learning rate decay: Using cosine decay
instead of step decay could further increase the convergence
towards a global minimum. In this part the performance of
networks trained with different learning rate schedules is
compared. This experiment is repeated 5 times in order to
calculate the mean and the standard deviation of the achieved
scores. The mean results and the standard deviations are
presented in Table XI.

We see the importance of warming up the learning rate,
also we see that using a cosine decay increases the final
performance slightly while also decreasing the variance in
the results.
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Figure 12: Randaugment with number of transforms set to 8 and
the Magnitude varied from 0-30.

Learning Rate Schedule rank-1(%) mAP(%)
Step decay 87.2±1.7 77.1±1.3
Step decay + warmup 89.0±0.7 80.2±0.5
Cosine decay + warmup 89.6±0.3 81.1±0.4

TABLE XI: Influence of learning rate schedules on final model
performance. The mean performance is shown with the standard
deviation.

E. Experiment 5: Batch hard pairwise loss

In this experiment the effectiveness of the batch
hard pairwise loss function is evaluated for open-world
re-identification, and closed-world re-identification. We will
use the setup from the previous experiment, and replace the
batch all triplet loss with the batch hard pairwise loss.

1) Closed-world: First the loss functions are compared
in a closed-world setting. The setup from the previous
experiment is used as a baseline, this baselines achieves
a rank-1 accuracy of 89.8% and a mAP of 81.4%. If the
batch hard pairwise loss is used this setup achieves a rank-1
accuracy of 87.3% and mAP of 79.2%. So in a closed-world
setting the batch hard pair loss yields slightly worse results.

2) Open-world: For this part of the experiment we
switch to the open-world scoring metrics, which have been
explained in the third section. A distance threshold must be
chosen, if the distance is larger than this threshold then the
image is not a match, and if the distance is smaller than the
threshold the image is saved as a match. This threshold is
chosen at the point where the F1-score is maximized, this
can be done since the precision, recall and F1-score depend
greatly on the distance threshold. The curve of the false
positives/false negatives is shown in Figure 13, the green line
represents the threshold where the F1-score is maximized.

Figure 13: False positives/false negative curve using the batch hard
pairwise loss

The achieved scores are shown in Table XII. The batch
hard pairwise loss performs slightly better for an open-world
setting.

Loss function Precision Recall F1-score Threshold
Batch all triplet 34.8% 23.6% 28.1% 0.82
Batch hard pairwise 38.9% 30.3% 34.1% 0.62

TABLE XII: Precision, recall, F1-score and threshold for the triplet
loss variants

Changing to an open-world setting has a lot of impact
on the achieved scores. To increase the scores we try and
simulate a more realistic real-world scenario where instead
of using single images for re-identification, the tracklet of
images is used as an input. This should create a more
robust embedding. The tracklet of images is combined into a
single embedding by taking the average of all single image
embeddings. The F1-score after applying averaging over the
embeddings is shown in Table XIII.

Method Precision Recall F1-score Threshold
Averaging 93.2% 89.9% 91.5% 0.92

TABLE XIII: F1-score after applying averaging

VI. CONCLUSIONS AND OUTLOOK

In this study, a new dataset for re-identification of
cyclists was created from actual camera footage in different
municipalities. We evaluated different blurring techniques
and their effect on the re-identification performance. We
evaluated various state-of-the-art models for re-identification
on our dataset, and replaced the large backbone architectures
by smaller ones. Furthermore the effect of several heuristics
from other deep learning areas was evaluated. We also
evaluate several variants of the triplet loss function for
open-world re-identification.

The experiments show that currently the most effective
blurring method is YoloFace, this method impacts the
re-identification score with less than 1%, however YoloFace
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in the current state is not reliable enough. Therefore a median
blur was used which impacts performance by around 4%.
The best performing model on our dataset that uses global
features is the Bag of Trick model, which achieves a rank-1
score of 84.7% and a mAP of 75.2%. Replacing the standard
ResNet50 backbone by other backbone architectures with
better performance on the ImageNet challenge can further
increase the performance. Also similar performance can be
achieved using backbone architectures with up to 5 times
fewer parameters. Adding RandAugment to our dataset, and
tuning the hyper-parameters can improve the score with up
to 3%. Using Cosine decay instead of step decay further
increases the performance by 0.7%. Furthermore we show
that for an open-world scenario the batch hard pair loss yields
better results than the other triplet loss functions used in
closed-world re-identification. Open-world re-identification
remains challenging, an effective method for increasing the
performance in an open-world scenario is combining the
embeddings of the tracklets per camera. This increases the
F1-score to 91.5%.

In the future, we would like to improve our dataset.
This could be done by including re-identification during
the dataset creation process. Applying re-identification to
the bounding boxes which have been detected per frame
would increase the quality/quantity of the tracklets that are
extracted, and would prevent simple tracking errors being
present in the dataset. Also, the training set could include
cross-camera identities which would increase the quality
of the training set. Furthermore, the current state of the
art performing models in re-identification are approaching
perfect scores on benchmark datasets, anonymizing the data
could make it more challenging to achieve high scores.
We believe the current re-identification research is ready
to make the step towards the more practical open-world
re-identification, however currently the area of open-world
re-identification remains greatly overlooked.
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APPENDIX

Algorithm 1 Extract tracklets from set of bounding boxes

1: Frames← List of sequential frames for a single camera
2: TrackedObject← ArrayList containing a currently tracked object‘s box sequence
3: TrackedObjects← ArrayList containing all TrackedObject Lists
4: for all frame ∈ Frames do
5: Boxes← result of Object Detection on frame
6: for all TrackedObject t ∈ TrackedObjects do
7: for all box ∈ Boxes do
8: IOU ← IOU score of box with last box of t . Intersection Over Union
9: if IOU ≤ 0.6 & boxClass == Person & boxAR ≤ 0.6 & boxwidth > 60px then

10: MatchType← MATCHBOXES(box, t, IOU)
11: if MatchType == ”Tracked” then . Matched and tracked
12: TrackedObjects[t].append(box)
13: else if MatchType == ”Stationary” then . Matched but stationary
14: TrackedObjects.replace(t[lastBox], box) . Update the stationary box‘s values
15: else
16: TrackedObjects← newTrackedObject(box)

17:
18: procedure MATCHBOXES(box,TrackedObject t,IOU )
19: if IOU < MIN IOU then
20: return NoMatch
21: else if IOU > MAX IOU then
22: return ”Stationairy” . Subject moves little
23:
24: if |t| ≤ 2 then . If t is too small to apply Kalman Filter use the naı̈ve approach
25: ∆t← time between measuring box and last box in t
26: if ∆t ≤ 1 then
27: return ”Tracked” . Found significant overlap within required time-frame
28: else
29: IOUKalman ← IOU with predicted next box in t using Kalman Filter
30: if IOUKalman ≥MIN IOUKalman then
31: return ”Tracked”
32: else
33: return NoMatch . No tracked match found during procedure
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3
Background information

In this chapter some additional background information on techniques used in this thesis will be dis-
cussed. In section 3.1 the basics of deep learning are discussed. In section 3.2 some popular backbone
architectures used in this thesis are discussed, next the optimization of networks is discussed in section
3.3. In the final section person re-identification is discussed.

3.1. Deep learning
Deep learning has been the backbone of the advancement of many applications, such as computer
vision, natural language processing, and speech recognition. Deep learning is considered a part of
machine learning but there are some differences. Deep learning models require more data, take longer
to train and often do not contain elements of feature engineering. In deep learning the input is passed
through multiple layers / a hierarchy of transformations, instead of having a single, linear formula that
calculated the output directly. Often the networks used are referred to as deep neural networks(DNN)
and the most basic unit in these networks is a neuron as shown in figure 3.1.

Figure 3.1: A single neuron as used in a neural network. Before the neuron, each input is multiplied with the corresponding
weight and the results are summed. Next an optional bias term is added. Next the activation function is applied to the result.

The output of this function is the output of a single neuron[3]

Convolutional Neural Networks (ConvNet) is a type of neural network that works well with images.
Recently, ConvNet is the primary method for many computer vision tasks, such as image classification,
image retrieval, object detection, and recognition.

3.1.1. Fully connected layer
A fully connected layer in a neural network connects all outputs of the previous layer to each neuron in
the current layer. Each connection add a trainable parameter, the weight. The outputs of fully connected
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layers are often used to classify images by using a softmax activation function.

3.1.2. Convolutional layer

Convolutional Neural Networks (CNN) are a type of neural network that works well with images. Cur-
rently, CNN’s are the primary method for many computer vision tasks, such as image classification,
image retrieval, object detection, and recognition. Meanwhile, a regular feedforward or fully connected
neural networks are not used for dealing with image data because they do not scale well with images.
At the core of these CNN’s are the convolutional layers. In this layer a set of filters are used to slide
over the input, and each of these filters produce a filter map as output. Convolutional layers can deal
with inputs of many dimensions, but in this section we will focus on the convolutional layer that work
with image data. Image data is often 2 dimensional data with 3 input channels(RGB). The convolutional
filters will consist of a stack of kernels, equal to the number of channels from the input. The size of
these filters differs greatly over the many available networks. The filters slide along the input width and
height, producing a value for each location and mapping this to a feature output. In a convolutional
layer these filters are the trainable weights. For each convolutional layer the amount of filters, the filter
size, the stride and if padding is to be used. Padding is used to overcome border effects caused by the
filter size, and the stride can be used to down sample the size of the feature map. An example of what
the filters might look like is shown in figure 3.2.

Figure 3.2: An example of what 64 5x5 convolutional filters look like[5], these are trained on different datasets.

3.1.3. Pooling layer

Pooling layers are an important part of neural networks, and are generally used for reducing the spatial
resolution of the input from the layer. For filters this means the width and the height are scaled down.
In a pooling layer a pooling region convolved over a region. The stride determines the step size when
sliding the pooling region and therefore the reduction in resolution. A stride of 2 results in half the spatial
resolution. We generally see two types of pooling; Average pooling and Max pooling, they are further
explained in figure 3.3
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Figure 3.3: An example of pooling applied to a 4x4 filter, the difference between max and average pooling can also bee seen.
For average pooling the average value of the pooling region is chosen, and for max pooling the largest value in the pooling

region is used.

3.1.4. (Batch)Normalization
More recent CNN’s, like ResNet50[10] use batch normalization. Batch normalization for each mini-
batch, normalizes the output of the previous layer using the mini-batch mean and standard deviation. If
batch normalization is applied higher learning rates can be used, because batch normalization makes
sure there are no activations with very high or low values. In layer normalization, the statistics are
computed across each feature over the entire dataset, and are independent of other examples.

3.2. Network optimization
Training or optimizing a network for a certain tasks is done by maximizing/minimizing a cost/loss func-
tion. Two important choice must be made; which function is going to be optimized?, and how is this
function going to be optimized. First some popular loss functions will briefly be explained and next the
optimizers will be discussed.

3.2.1. Loss Function
The performance of any model will greatly depend on the choice of loss function. Here two types of
loss functions will be discussed. The cross-entropy loss and the triplet loss. For these loss functions
the logits are often used, the logits the output of the final layer of the network.

Cross-entropy loss
Cross entropy loss is the most applied loss function for classification problems. A classification prob-
lems samples contain the truth labels and the prediction vector. This prediction vector is created by
passing the logits through a softmax activation function, this turns them into class probabilities. Of-
ten the final layer of a classification network contains 1x𝑁 values, where 𝑁 is equal to the amount of
classes. The formulae for the cross entropy loss is:

𝐿ፂ፫፨፬፬፞፧፭፫፨፩፲ = −
1
𝑁

።዆ፍ

∑
።዆ኺ
𝐿𝑎𝑏𝑒𝑙 ∗ log(𝑃𝑟𝑒𝑑) (3.1)

Triplet loss
The triplet loss can be applied directly to the logits, or the output of the final layer before the softmax
activation. Here the images are represented on an hyperplane by the 1x𝑁 dimensional feature vector.
An illustration of the triplet loss is shown in figure 3.4, here the goal is to pull positive matches closer
together while pushing away negative matches.
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Figure 3.4: Triplet loss optimization [26]

The triplet loss is formulated as:

𝐿፭፫።፩፥፞፭ = ∑
ፚ,፩,፧

[𝑚 + 𝐷ፚ,፩ − 𝐷ፚ,፧]ዄ (3.2)

Here 𝐷ፚ,፩ is the distance between the positive match and the anchor, and 𝐷ፚ,፧ is the distance
between the negative match and the anchor. The 𝑚 is the margin which is a hyperparameter. Several
other formulations of the triplet loss exist, these other formulations are used to combine the triplet loss
with other loss functions when working with batches of images.

Center loss
the center loss is often added to maximize intra-class compactness, it is mainly popular in the facial
recognition scene[33]. The formula for center loss is:

𝐿፜፞፧፭፞፫ =
1
2

ፁ

∑
፣዆ኻ
|𝐿፣ − 𝐶፣|ኼ (3.3)

𝐿 represents the logits/embedding for a certain input image, 𝐶 is the center of the matching identity
in the training set and 𝐵 represents the batch size. This function learns a center for each class and
calculates the euclidean distance of the sample to its center. The sum of these distances multiplied
by 0.5 equals the center loss. Minimizing center loss will increase intra-class compactness, meaning
positive pairs are pulled closer together. The center loss can be combined with the triplet loss to make
the result more robust. A disadvantage of the center loss is that it is sensitive to outliers.

3.2.2. Optimizers
Besides selecting a model, it is also important to select a suitable optimizer for training the model.
Stochastic gradient descent (SGD)[23] is a popular choice as optimizer, mainly the mini batch is used
a lot. The standard SGD algorithm updates the weights after each sample, while the mini-batch variant
updates the weights after each mini-batch. This means the standard SGD path to the minima is noisier
(more random) than that of the mini-batch gradient. SGD minimizes a loss function by updating the
parameters in the opposite direction of the gradient of the loss function. Several derivatives of the
standard SGD algorithm exist. Often these derivatives show improved performance while requiring
less settings to be fine tuned. An overview is created by Ruder et al.[24], here we will briefly discuss
the most common ones.

• Momentum [21] adds a term to the standard SGD, which is the momentum term. The momentum
term is based on exponentially weighted averages of the previous gradients, and together with
the calculated gradient it calculates the step update.

• Adagrad[7] adapts the learning rate to the parameters, thereby performing larger updates for
infrequent and smaller updates for frequent parameters. It is therefore suitable for usage with
sparse data. A problem with Adagrad is that it is designed in such a way that its learning rate
converges to a zero. When this happens the model stops learning.
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• Adadelta[35] is an extension of Adagrad that prevents the learning rate from converging to 0.
When using Adadelta we do not even have to specify a learning rate, it finds a suitable learning
rate by itself.

• RMSprop[30] is similar to Adadelta as in that it combats the ever decreasing learning rate problem
of Adagrad. It’s an extension of Adagrad but it deals with the problem of the low learning rate in
a different manner.

• Adam[13] uses an adaptive learning rate like Adadelta and RMSprop, but also uses a momentum
term.

• Adamax[13] is an extension of Adam which aims at making the optimizer more stable and more
suitable for sparse data.

• Nadam[6] combines Nesterovmomentumwith RMSprop, as Nesterovmomentum generally gives
better results than standard momentum. It can therefore be seen as an updated version of
AdaMax.
An example of the optimization using these different optimizers is shown in figure3.5. In this case
a simple CNN was optimized on the MNIST[15] dataset, which consist of handwritten digits.

Figure 3.5: Different convergence speeds and final cost values for some of the optimizers[13]

3.2.3. Fine-tuning backbone network
When a task introduced for a deep learning network, the first thought would be to train it from
scratch. However, in practice these deep neural nets have a huge number of parameters. If
we train these neural nets with huge amounts of parameters on a relatively small dataset it
would greatly affect the neural networks ability to generalize well, and often result in overfitting.
Therefore, in practice often these large networks are often pre-trained on a large dataset, like
ImageNet[4]. Another reason for not training a network from scratch is that it takes up alot of
time, for example the ResNet50[10] network takes 14 days to train on the ImageNet dataset. The
next step is to take the pre-trained network and fine tune it on the smaller dataset. Often the first
step is adjusting the final layer of the network, since the new task will almost always contain a
different amount of classes. While fine-tuning often a small learning rate is used, since we do not
want to distort them too quickly and too much. A common practice is to make the initial learning
rate ten times smaller than the one used for scratch training with randomly initialized weights.
Also, it is common practice to freeze the weights of the first few layers of the pre-trained network.
This is because the first few layers capture universal features like curves and edges that are also
relevant to our new problem. We want to keep those weights intact. Instead, we will get the
network to focus on learning dataset-specific features in the subsequent layers. The pre-trained
networks weights are available through the keras library, or authors upload them on their github
pages.
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The advantage of using one of these optimizers over SGD is that these optimizers do not require the
learning rate to be specified manually during training. During our research we chose to use the Adam
optimizer[13] as this optimizer is the most popular in the re-identification field. We did not investigate
the effect of changing the optimizer.

3.3. Backbone architectures
The choice of backbone architecture is an important factor for any deep learning model, here three
types of backbone architectures are briefly explained. One of the largest scale classification challenges
available is the ImageNet[4] challenge. Here there are over a million images available for 1000 different
classes.

Figure 3.6: Some example classes of the ImageNet dataset[4]

In 2012 the state of the art model, which was created by Krizhevsky et al.[14], achived a top-5 test
error rate of 15.3%. The second best entry achived a top-5 test error rate of 26.2%. Since then the
deep convolutional neural networks have evolved rapidly. Currently the best performing model is the
EfficientNetB7[28] which achieves a top-5 test error of 1.9%. These networks are often adapted for
many other deep learning challenges, and in this section a few of the networks which seem interesting
for person re-identification are discussed.

3.3.1. ResNets
The Resnet architecture consists of many building blocks, which vary depending on which architecture
is chosen. In their paper He et al.[10] introduce varying depths from 16 to 152 layers. The core idea
of ResNet is the skip connection and the use of batch normalization. This skip connection is shown
in figure 3.7 and its goal is to counter the problem of the vanishing gradient, which was common for
very deep networks. The vanishing gradient is the problem that the gradient shrinks to zero for deep
networks as it is back-propagated. If the gradient shrinks to zero the model is unable to learn. This
skip connection allows the gradient to skip layers and this stops the gradient form shrinking to zero.

Figure 3.7: Residual learning: a building block[10]

Different network depths are suggested by the authors, they are shown in figure 3.12. These net-
works are built with several blocks of convolutions. The filter size and amount of filters is shown for
each block of convolutions.
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Figure 3.8: Architecture of Resnet18, Resnet34, Resnet50, Resnet101 and Resnet152[10]. The networks are built with several
blocks of convolutions.

The Resnet architecture won the Imagenet challenge in 2015.

3.3.2. MobileNets

MobileNets are class of efficient models for mobile and embedded vision applications. MobileNets
are based on depthwise separable convolutions with the goal of building light weight deep convolu-
tional models. So far there are three MobileNet versions available, MobileNetV1, MobileNetV2 and
MobileNetV3 where V1 is the first version and the later versions can be considered improved versions.

Figure 3.9: MobileNetV1[12] architecture

Figure 3.10: MobileNetV2[25] architec-
ture

Figure 3.11: MobileNetV3[11] architec-
ture. Here NL denotes the nonlinear acti-
vation function used, HS denotes h-swish
and RL denotes RELU.

The architectures of the MobileNets are shown in figures 3.9, 3.10 and 3.11. The MobileNetV2
architecure uses two different blocks



28 3. Background information

Figure 3.12: Bottlenecks used in MobileNetV2[25]

MobileNetV3[11] applied AutoML to find the best possible neural network architecture for a given
problem, which is a type of reinforcement learning. They also added the swish activation function to
some of the layers. All of the MobileNet architectures are designed for use on mobiles and embedded
hardware, and they have a maximium of 5 million parameters. This makes them interesteing networks
to use on board of camera systems for re-identification.

3.3.3. EfficientNets
EfficientNets were first introduced by Tan et al.[28], they showed that instead of just scaling networks
in depth it is also useful to scale the network in width and image resolution, these scaling methods
are visualized in figure 3.13. They created different scales of models ranging from B0 to B7 and from
5.3m parameters to 66m respectively. The EfficientNets largest variant is currently the state of the art
model for the ImageNet challenge. The smallest variant EfficientNetB0 is able to outperform ResNet50
on the Imagenet challenge, while using more than 5 times less parameters. This makes it at interest-
ing network for embedded hardware. Tan et al.[28] found their baseline architecture by using neural
architecture search(NAS), and optimizing for accuracy and FLOPS.

Figure 3.13: Different scaling methods used for creating the EfficientNet architectures[28]

3.4. Person re-identification
In this section person re-identification will briefly be discussed. Person re-identification as a task is
quite simple to understand. As humans, we do it all the time without much effort. Our eyes and brains
are trained to detect, localize, identify and later re-identify objects and people in the real world. Re-
identification implies that a person that has been previously seen is identified in their next appearance
using a unique descriptor of the person. Humans are able to extract such a descriptor based on the
person’s face, height and built, clothing, hair color, hair style, walking pattern, etc. A person’s face is
the most unique and reliable feature that humans use to identify each other. The field that is focused
at recognizing faces is called facial recognition. The person re-identification field has alot of similarities
with the facial recognition field, but both fields deal with different challenges. Some challenges seen
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in re-identification are changes in color, lighting, view angle, pose of individuals, low resolution and
(partial) occlusion of individuals. A few examples are given in figure 3.14.

Figure 3.14: Challenges (left to right): low resolution, occlusion, viewpoint, pose, and illumination variations and similar
appearance of different people[34]

A typical end to end re-identification pipeline is given in figure ??. First the person must be detected
on an input video or image, then this person is tracked through a sequence of input images and tracklets
are created. Tracklets are multiple image crops containing a certain person. In existing re-identification
datasets these tracklets are already created. The next step is extracting features from these input
images and matching them based on similarity. This is done by means of a backbone network. These
backbone networks extract features from the input images and based on these features images are
matched. In re-identification an input image is often compared to a gallery of images, the size of this
gallery varies greatly over the different datasets. The images of the gallery will then be ranked based
on similarity. An example of this ranking is shown in figure 4.6, here the images are ranked based on
euclidean distance.

Figure 3.15: All of these images have a euclidean distance smaller than 0.6 and are classified as matches.

What makes re-identification challenging is that the people in the training set are often not part of the
test set. This means re-identification is not a typical classification problem and often during inference
a distance metric is used to express similarity of the images.

3.4.1. Part based vs global models
Two approaches can be distinguished in person re-identification, part-based models and global feature
models, and they differ in the feature extraction part. Global features are learned from the entire image
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and intend to capture the most discriminative features of appearance but may fail to capture discrim-
inative local features. Therefore local features may be used so that local discriminative features can
also be captured. Combining local and global features is a popular approach[17, 27, 31, 36, 37, 40]
some authors randomly divided the image into parts[17, 27, 31] and extracted local features from these
image parts and combine them with the features from the entire image. Others[36, 37] extract infor-
mation about the pose and used this information to find certain body parts subsequently extracting
features from these body parts. Other authors added external information to the images like attribute
labels[19] or spatial temporal information[32]. Most researchers only use the global features/feed the
entire image into their model.

Figure 3.16: Zheng et al.[38] split a person into different horizontal parts of multiple scales. The feature representations
produced by Global Average Pooling (GAP) and Global Max Pooling (GMP) of each part are then treated for re-identification

independently.[38]

3.4.2. Datasets
Re-identification datasets contain three parts; A training set, a query set, and a gallery set. The size
of the datasets differ greatly, and all of these datasets mainly contain pedestrians. In our case is to
re-identify cyclists thus a new dataset must be created, which contains cyclists. An overview of current
benchmarks datasets for re-identification is shown in Table 3.1.

Dataset BBoxes Identities Detection method # Cam
CUHK03[18] 28,192 1467 DPM, hand 2
CUHK01[16] 3884 971 hand 10
Duke MTMC[22] 36,411 1812 hand 8
ViPer[9] 1264 632 hand 2
Market1501[39] 32,364 1501 DPM, hand 6

Table 3.1: Re-identification benchmark datasets. Detection is done by hand or with the deformable parts model as described in
[8]

Currently the most popular benchmark dataset for re-identification is the Market1501[39] dataset, a
few examples are shown figure 3.17. Another popular benchmark dataset is the Duke-MTMCdataset[22],
but this one was discontinued by the authors due to privacy violations of the people in the dataset[20].
This opens an interesting discussion; Cant re-identification be applied to anonymized persons? This
question is further investigated in this work.
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Figure 3.17: An example from the market dataset, this is the same person in the six different camera views.

3.4.3. Open vs closed-world
Generally speaking there are two approaches in re-identification, open and closed world situations. In a
closed world situation, the assumpion is made that each identity in the query set can also be found in the
gallery set. In real world situations this is alsmost never the case. In a closed world scenario the image
with the smallest euclidean distance is chosen as a match, while in an open world scenario a certain
threshold is chosen. Images that have a smaller euclidean distance than the threshold are considered
to be a match, and if the euclidean distance is larger than the threshold the images is described as a
negative match. Both cases also have their own scoring metrics, which are briefly explained below.

Closed-world
The cumulative matching curve (CMC) and the mean average precision (mAP) are used as the bench-
mark scoring metrics in person re-identification in a closed-world setting. The CMC measures the
retrieval precision, given the list of closest matches from the gallery, the rank-x indicates the probability
that the matching image is among the first x positions. The rank-1 accuracy gives the probability that
the top ranked image is a match. In early research in person re-identification only the CMC scores
were reported. But with growing datasets this score on its own is not a good metric of the models
performance anymore thus the mAP score was added. The mAP takes into account the location of
all matching images from the gallery. The mAP is calculated by first calculating the Average Preci-
sion (AP). Then the mean of all the average precisions is calculated and this forms the mAP. In figure
3.18 a calculation example of these scoring metrics is given. The mAP gives a better indication of the
performance since it takes the position of each matching person into account.

Figure 3.18: Example scores for rank1 and average precision. Only using the rank1 accuracy does not give a good indication of
the performance if a large gallery set with multiple matches is used.

Open-world
In the real world application the gallery size may vary in size and not every query image has a match
in the gallery set. The scoring metrics used for closed-world re-identification would not give a good
indication of the models performance. Therefore the open world re-identification problem is viewed as
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a binary classification problem. The model must classify if the query image matches with an individual
gallery image or not based on the euclidean distance. The F1-score can be used as a scoring metric
for open-world re-identification. First the precision and recall are calculated, next these can be used to
calculate the F1-score. The precision and recall are defined in equation 3.4.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3.4)

With TP = True positives, FP = False positives and FN = False negatives. Next the F1-score is
calculated as:

𝐹1 = 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (3.5)

The F1-score helps us find a balance between the precision and recall, a value of 1.0 portrays a
perfectly working system.

3.5. Object detection
To create a dataset of cyclists seen in different camera views, first object detection must be applied to
the frames. Object detection algorithms take a video frame as an input and returns the locations, and
classes of objects which have been detected in the frame. An example of objects detected in a video
frame are shown in figure 3.19.

Figure 3.19: Object detection applied on Rotterdam video footage

Generally object detectors consist of two parts, a region proposal network, and a classification
network. The region proposal network is used to find regions in the input image, which are then fed to
the classification network, which gives a classification output.

3.6. Blurring
The computer vision library, OpenCV[1] offers three types of blurring that can be used to anonymize
data; Average blurring, Gaussian blurring and Median blurring. In the process of blurring a filter of size
𝑁 is convolved over the image and a new blurred image is calculated. The difference between the types
of blurring lies in the type of filter used. For average blurring simply the average value of the pixels
under the filter is calculated, for a Gaussian filter a Gaussian kernel is used as filter and for Median
blurring simply the median value of all pixels under the kernel is calculated. An example person from
the Market1501[39] is shown in 3.20.
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Figure 3.20: Types of blurring, from left to right; Original, Average, Gaussian and Median.
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Supplementary figures

Figure 4.1: An example of re-identification from our blurred dataset, the green boxes contain the correct match while the red
ones are mismatches. The distance mentioned above the images is the euclidean distance, the smaller the euclidean distance

the more similar the images are.

35
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Figure 4.2: Example of perfectly working system, where the person is re-identified over three cameras and all others are
discarded as non matching

Figure 4.3: Example of model recognizing red scooters

Figure 4.4: Example of difficult situations; a very unclear person and low illumination conditions

Figure 4.7: F1 score of best setup with batch all triplet loss
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Figure 4.5: All of these images have a euclidean distance smaller than 0.6 and are classified as matches.

Figure 4.6: An example of re-identification from our blurred dataset, the green boxes contain the correct match while the red
ones are mismatches. The distance mentioned above the images is the euclidean distance, the smaller the euclidean distance
the more similar the images are. Here we see two distractors as input, and the returned euclidean distances are larger than 0.6

so these are correct.

Figure 4.8: F1 score of best setup with batch all triplet loss and averaging of embeddings
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Figure 4.9: Camera setup in Rotterdam
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Literature Report

This literature report is included for the interested reader on the topic, who wants a more elaborate
overview of approaches takes in the re-identification field. It has been graded separately from the
thesis.
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ABSTRACT

Person re-identification has seen fast-paced improvement in recent years. This review summarizes
recent literature on the person re-identification field and compares the performance achieved on
certain benchmark datasets. Some of the state of the art performing research on facial recognition was
also included in this review as their approaches might also be applicable to the person re-identification
field. The state of the art systems are all based on deep CNNs. Authors choose different approaches
to solve the person re-identification task. Taking architectures that perform well on the Imagenet
challenge and applying them to person re-identification has proven beneficial. The choice of features
which are fed into the network is also of great importance. During training the choice of loss
function is essential for the performance of the model; it teaches the backbone network which features
should be extracted and which values the features should have. Two main loss functions could
be distinguished; ID/verification loss and distance metric-based loss. Often these two losses are
combined and jointly optimised. A lot of different heuristics can be applied to the data to increase
the accuracy achieved on a certain dataset; however the effectiveness of each particular heuristic is
hard to prove. Most of the research is focused on a closed-world setting as it is easier to solve. Also
the researchers can easily compare their solution if they use the same benchmark dataset as others.
Recently some models have been created to solve the open-world problem, however there are very
few models available. Systems that perform well on a closed-set will also be able to perform well on
open-world settings.

Keywords Person Re-identification · Open-set · Deep Learning

1 Preface

The FlowCube is a product being developed by Technolution[1]. It is a single-box traffic sensor that aims to replace
different conventional traffic monitoring systems (e.g. traffic radars, floating car data, induction loops), based on
computer vision and edge AI. One of the initial use cases for FlowCube is measuring travel times and route selection of
cyclists, for which there is currently no effective solution. There is also a strong societal urge to stimulate the usage of
bicycles[2].

One of the purposes of this product is to map the route choices made by cyclists on the road. This information can be
extracted by automatically matching the cyclist in different video streams. Matching the same cyclist in multiple video
streams is known as re-identification. This is relevant because we want to create an automated system. An initial model
to solve the cyclist re-identification was created by Technolution, it is desirable that this model is improved so that the
product works better.

Since no dataset of cyclists exists to test the solution on, a dataset of labeled cyclists was created from video data of
cyclists in Copenhagen, Rotterdam and Groningen. The ground truth of this data is known thus we can verify the
effectiveness of our model.



It is required that the system has semi real-time performance and it must function as an embedded system. If a cyclist
is detected in an image, the features of this cyclist will be extracted by a network and communicated towards a main
server. The main interest is the path and flow data of the cyclist and once the features have been extracted the images
can be destroyed thus the privacy of the individual cyclists can be respected.

2 Introduction

In recent years, person re-identification has become increasingly popular in the research community due to its application
and significance. The re-identification task can be summarized as matching a pedestrian from an input image to a gallery
set which has been captured by different cameras. It is a challenging issue since the appearance of a pedestrian can be
very different in different camera views. Some challenges seen in the person re-identification task are the variations in
lighting, view angle, pose of individuals, low resolution and (partial) occlusion of individuals(Leng[3],2019). Also the
fact that some individuals may only appear in a single camera view, making it impossible for them to be re-identified.
Recently models have learned to deal with these challenges and are able to outperform humans on certain benchmark
datasets.

All of the state of the art systems can be considered deep re-identification networks, they are the most successful
systems to solve the person re-identification challenge. Recently we have seen a huge increase in accuracy on various
challenging datasets. However, a of the research in the re-identification task is focused on pedestrians, but how can this
research be applied to other traffic participants. Another issue which isn’t often addressed is the open/closed world
concept. In a closed world every person can be re-identified as all of them appear in multiple cameras. However in the
real world people often do not reappear in the camera’s view.

The best performing models in the person ReID task all use deep architectures. Recently we have seen the Rank1
accuracy rise from 35,68% in 2015 by Zhang et al. [4] who used the null Foley-Sammon transform [5] to learn a null
space in which image embedding are represented to 98.0% in 2019 by Wang et al. [6] who used spatial-temporal
information to remove lots of irrelevant images from the search query. These accuracy’s were achieved on the
Market1501[7] dataset.

This literature review provides an overview of current methods for person re-identification. Several other surveys
exist[8, 9, 10, 11]. These surveys focus on a wide range of approaches for person re-identification, in this survey we
mainly discuss the deep learning based models as these are the most promising for solving the person re-identification
task and will most likely be the models chosen for future work. In the surveys[9, 10, 11] deeply learned systems are put
into a single category while there can be major differences between them. None of the previous surveys mention the
heuristics used during training whilst these have great influence on the final accuracy achieved. In this survey a more in
depth explanation of deeply learned person re-identification models is given and each model is described by four design
choices. By categorizing person re-identification models in these four categories we can get a broader understanding in
the effectiveness of the adjustments which researchers make to recent models.

3 Definitions
• Re-identification: According to Gong et al.[9] the re-identification pipeline can be summarized as follows: First

features must be extracted from an input image, with these features a descriptor must be constructed and finally
the probe and gallery images must be defined and matched based on the created descriptor. Extracting features
from images is also very important for the tasks of object detection/recognition and since the introduction
of convolutional neural networks(CNN) to the image recognition task they have dominated the field. They
were first introduced by Lecun et al.[12]. For the person re-identification task we also focus on deeply learned
systems as these are currently the most promising systems for solving person re-identification.

• Open and closed-set: As stated in the introduction most of the research done in the person re-identification
field is applied to a closed-set. In a closed-set the assumption is made that every person which has been
identified can be linked to a person in a image gallery. For a closed-set system the objective question is
’Which image from the gallery matches with the probe?’ this obviously is not representative of a real world
scenario where people can appear and disappear in every camera view. In an open-set not every person which
has been identified can be re-identified as they may only appear in a single camera shot. Here the objective
question is ’Does the probe appear in a certain gallery and in which images?’. The results achieved by models
on closed-sets are represented in the Rank1 accuracy(%) which represents the odds of the correct match
being the first ranked match in the query. The mean average precision(mAP) is also used for the closed-set
re-identification:

mAP =
TP

TP + FP
(1)

2



TP = True positive and FP = False positive. For open-set problems the most used evaluation terms are TTRs
(True Target Rates) at certain FTRs (False target rates).

• Datasets: Several benchmark datasets exist in the person re-identification field, in this review we will mainly
compare the scores that the models achieved on Market1501[7], DukeMTMC[13], CUHK01[14] and VIPeR
dataset[15]. Details about these datasets are summed up in table 3. These images are taken from at least two
different camera streams and up to 8 different camera streams. As can be seen in the table the amount of
available data differs greatly per dataset, having less images to train on makes a dataset more challenging.

Dataset No of Identities(train/test) No of cameras No of images(train/test)
Market1501[7] 751/750 6 12,936/19,732

DukeMTMC[13] 702/702 8 16,522/2,228
CUHK01[14] 961 2 3884

VIPeR[15] 632 2 1264
Table 1: Closed-set ReID benchmarks

• Feature extractor: One of the most successful convolutional neural network architectures for feature extraction
are residual networks. Soon after the first success of convolutional neural networks the scientific community
realized that it was necessary to have deeper networks to avoid overfitting. However, stacking more layers in a
network led to the vanishing gradient problem. A vanishing gradient occurs, when back-propagating through
a lot of layers with repeated multiplications. This makes the gradient extremely small and learning is not
possible anymore. First introduced by He et al.[16], Residual neural networks(Resnet) were invented to tackle
the ’vanishing gradient’ problem by adding a identity shortcut to skip layers in the network. Many state of the
art systems use Resnets.

• Loss function: The performance of the model will greatly depend on the choice of loss function. For training
the network a function is defined which should be minimized or maximized. These loss functions differ greatly
in their complexity. Also a function should be chosen which can be optimized otherwise the network will not
be able to find an optimal solution. Different optimizers exist which are used to minimize the loss function
and find the optimal solution, but these are beyond the scope for this review. In the person re-identification
field we generally see two types of loss functions: softmax loss and metric-based loss. Softmax loss teaches
the backbone architecture to output similar embeddings for similar persons. Distance metric loss teaches the
backbone architecture to output embedding which have a small euclidean distance between the matches and a
larger distance between false matches.

4 Methods for Deep person re-identification

In this section we provide an overview of models in the person re-identification field. Also some of the state of the art
performing models in the facial recognition field are summarized. The initial systems in person Re-identification used
hand crafted features from the computer vision field, nowadays all of the state of the art performing models use either
deep features or a combination of deep features and hand-crafted features. To get an idea of the maximum achievable
rank accuracy using non deep systems the following paper was included;

Wu et al.[17] created one of the best models that do not use CNNs in their approach. They argue that CNNs need
large amount of training data which is not available in the person re-identification domain. They extract SIFT and
color histogram features from an input image and subsequently apply principal component analysis(PCA) to reduce
the dimensions. Next they use a Gaussian mixture model(GMM) to construct fisher vectors from the features which
were extracted. They train their network using their own LDA(linear discriminant analysis) based loss function which
enforces the feature vectors to become linearly separable. Their method achieves a rank1 accuracy of VIPeR[15]
44.11%, CUHK01[14] 67.12% and Market-1501 48.15%. Mainly the score achieved on the VIPeR[15] dataset is good,
this dataset contains only two images per person.

4.1 Deep person re-identification

Before the rise of convolutional neural networks(CNNs), features used to be extracted from the images using hand
crafted features from the computer vision field. Later CNNs were widely deployed in the field of image recognition, for
example to detect pedestrians [18][19] and also on the Imagenet[20] challenge which contains over 14 million images of
20.000 categories. The state of the art performing models on the Imagenet[20] challenge all deploy a variant of CNNs,
since the task of extracting features is an overlapping area between person re-identification and image recognition the
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same type of systems can be used. In this chapter a distinction will be made between id/verification based approaches
and distance metric based approaches. Also authors that created a system for an open-set and added external data are
separated.

4.1.1 ID/verification based approach

Yi et Al.[21] introduce a siamese convolutional neural network(SCNN), where several CNNs are trained and the weights
are shared. They first they divide the input image into three overlapping segments, for the head, torso and legs. They
train the SCNN on each of the parts and then for each of the parts calculate the cosine difference between the pair of
input images. The summation of these seperate similarity values indicates the similarity between the input images. They
use a simple CNN with 5 layers to extract the features. They achieve an rank1 accuracy of 34.4% on the VIPeR[15]
dataset.

Ahmed et al.[22] slightly improve the SCNN model introduced by [21] instead of looking at the similarties between
the pair of input images they look at the differences. They use the global image features in their work and outputs
a verification score thus if the pair of images belongs to the same class or not. They achieve a rank1 accuracy of
34.84% on the VIPeR[15] dataset and a rank1 accuracy of 65.0% on the CUHK01[14] dataset. The results reported are
slightly better than Yi et al.[21] but they also added some augmentation to their data thus it is unknown which change is
beneficial to the achieved accuracy.

Wu et al.[23] improve the model of Ahmed et al.[22] by using more convolutional layers with smaller filter sizes, which
at that time was also the trend for state of the art performing models on the Imagenet[24] challenge. They use the
same data augmentation as Ahmed et al.[22] and also suggest using a different optimizer to train the network might be
beneficial to the final accuracy achieved. They achieve a rank1 accuracy of 71.14% on CUHK01[14] and 37.21% on
Market1501[7].

Varior et al.[25] investigated the use of a gated function to improve the CNN model for person re-identification. They
argue that features in the middle levels of a CNN might also be useful to compare between the input images to achieve
this comparison they propose using a gating function between layers which compares the features of the SCNN at
each layer. They apply the same data augmentation and optimization strategy as Wu et al.[23]. They achieve a rank1
accuracy of 65.88% on Market1501[7] and 37.8% on the VIPeR[15] dataset.

Zhao et al.[26] introduce Spindlenet, they use a CNN to find 14 body joints and combine these into 7 sub regions.
Combined with the original image they now have 8 regions from which they extract features using a 5-layer CNN
network and combine these into one feature vector using their Feature Fusion Net(FFN). They achieve a rank1 accuracy
of 76.9% on the Market1501[7] dataset.

Zheng et al.[27] suggest that combining the identification and verification loss might be beneficial to the networks
performance. They try different backbone CNNs; CaffeNet[20], VGG16[28] and Resnet-50[16]. They show that
Resnet50[16] achieves the highest scores across multiple datasets and show that combining the verification and
identification loss results in a rank1 accuracy of 79.51% on the Market1501[7] dataset. Only using verification or
identification loss would have resulted in 64.58% and 73.69% respectively.

Sun et al.[29] introduce SVDNet, the goal of SVDNet is to tackle the correlation between the weights in the final fully
connected layer. They use singular value decomposition(SVD) which is a similar technique as Principal component
analysis(PCA) to make the weights less correlated. They perform ranking based on the euclidean distance between the
obtained features. Their best performing setup, using Resnet50[16] as a backbone achieves a rank1 accuracy of 82.3%
on the Market1501[7] dataset.

Zhong et al.[30] introduce a fully automatic and unsupervised re-ranking method for person re-identification. For
each image the k-reciprocal nearest neighbours are calculated and stored in a vector. The final distance between two
images becomes a combination of the euclidean distance between the k-reciprocal vector and the standard feature
vector extracted by the backbone network. Using a standard Resnet50[16], they achieve a rank1 accuracy of 77.11% on
Market1501[7].

To tackle the problem of occlusion, Zhong et al.[31] introduce random erasing data augmentation where they randomly
erase patches of the training images and replace these patches with random pixel values, this way they try to improve
the robustness of their model by adding occlusion to the training images. They report 89.13% rank1 accuracy on
the Market1501[7] dataset using the network created by Sun et al[29]. This heuristic has a positive impact on the
performance, a lot of researchers used this random erasing data augmentation in fututre work.

Li et al[32] argue that only using local or only global features is disadvantageous for the systems accuracy, they decide
to combine both. They use Resnet39[16] which is a a compareable network to Resnet50[16] but slightly less deep. The
global features are extracted from the entire image input and for the local features the image is divided into horizontal

4



stripes and features are extracted form these stripes. They are then concatenated into a single feature vector. The CNNs
which extract the features do not share weights which is pretty uncommon in the person re-identification field. They
achieve 85.10% rank1 accuracy on the Market1501[7] dataset.

Sun et al.[33] reshape the standard backbone network by removing the global average pooling(GAP) and any following
layers from it. The output from the backbone network is now a 3D tensor, they split this tensor into parts. For each of
the parts they now extract feature vectors by performing the average pooling operation separated for each part of the
image. These vectors are then passed through a series of fully connected layers and a softmax to create id predictions
per part. During testing the features extracted of each part are concatenated into a single vector. They achieve a rank1
accuracy of 93.8% on Market1501[7].

Li et al.[34] argue that using deep architectures for person re-identification is not optimal, because in the input images
the persons are not aligned while for most facial recognition data this is the case. They propose using an attention
mechanism which is able to locate the important pixels in an image. The attention mechanism makes the network focus
on these pixels which belong to the person while making sure background regions in the input image are treated as
less important. Their network which they name an Harmonious attention CNN (HA-CNN) has almost 10 times less
trainable parameters compared to the often used Resnet50[16] network but still achieving a 91.2% rank1 accuracy on
the Market1501[7] dataset.

Zhou et al.[35] argue that the features extracted from the images should be omni-scale or multi-scale, to match people
and distinguish them from impostors small local regions like shoes are just as important as global whole body regions.
To extract these omni-scale features they introduce their own OSnet which is a lightweight feature extractor for multiple
image scales. They achieve a rank1 accuracy of 94.8% on the Market1501[7] dataset.

Wang et al.[6]argue that using a GAP layer which treats activation’s on the same feature map equally regardless of
their location makes the model less robust to absence of certain features. To overcome this disadvantage they add their
spatial attention layer. They use the same network set up as Sun et al.[33] and only add their SA layer before the GAP
layer. They achieve a 94.7% rank1 accuracy on the Market1501[7] dataset.

4.1.2 Distance metric based approach

Ding et al.[36] are the first researchers in the person re-identification field to use a distance metric based approach. They
us a 5-layer CNN to extract features from a batch of images. They train their network using the triplet loss function,
it was first proposed by Wang et al.[37] who used it in an image classification task. The triplet loss function takes a
set of triplets as input, a set of triplets consists of an anchor image, one positive match and a negative match. The
features of these images are calculated by the CNN, the triplet loss is minimized if the features of the positive pair have
a small euclidean distance while those of the negative pair should have a large euclidean distance. This method is also
more computationally efficient only the features from a probe have to be calculated and compared to the features of the
images in the gallery which have already been computed. They achieve a rank1 accuracy of 40.5% on the VIPeR[15]
dataset.

Wang et al.[38] propose an SCNN which generates an embedding for the single image(SIR) and for the cross-image(CIR).
The SIRs are trained using the triplet loss and the CIR are trained using softmax loss. They thus combine the verification
loss with the distance metric based loss. Both embeddings are combined to produce a single similarity measure for the
two input images. In their paper they showed the addition of this pair loss only resulted in an accuracy gain of 0.5% on
the CUHK01[14] and 0.6% on the VIPeR[15] datasets resulting in a final rank1 accuracy of 71.8% on CUHK01[14]
and 35.76% on VIPeR[15]. Their score on the VIPeR dataset is significantly lower than the score of Ding et al[36]
while they only added complexity by adding more layers and features.

Hermans et al.[39] introduce two new variants of the the triplet loss function used by Ding et al.[36], the batch hard and
batch all variants. In the standard implementation, once a certain set of B triplets has been chosen, their images are
stacked into a batch of size 3B, for which the 3B embeddings are computed, which are in turn used to create B terms
contributing to the loss. In their implementation they form batches by randomly sampling P classes, and then sampling
K images of each class. For each sample in the batch they select the hardest positive and hardest negative within the
batch for computing the loss. They report a rank1 score of 84.90% on Market1501[7]. In their paper they also show
that adding the re-ranking method[31] their rank1 accuracy rises to 86.67% on the Market1501[7] dataset.

Zhang et al.[40] combine two streams in their network, one which uses the image as an input an collects the global and
local features another which from the input image first extracts the dense semantic aligned parts(DSAP) from the input
images, these are passed through a similar CNN architecture. All features are extracted and combined to two feature
vectors. They use the batch hard triplet loss from Hermans et al.[39] and the random data augmentation from Zhong et
al[31]. They achieve a rank1 accuracy of 95.7% on the Market1501[7] dataset.
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Luo et al[41] collected different heuristics used in the perosn re-identification field and evaluated the impact of different
heuristics. They use a standard Resnet-50[16] pre-trained on Imagenet[20]. The first heuristic they apply is warming
up the learning rate, which was first introduced by Fan et al.[42]. Next they added the random data augmentation
which was first introduced by Zhong et al.[31]. Next they added label smoothing, which is common practice in a lot
of classification tasks, first introduced by Szegedy et al.[43]. Another heuristic to improve accuracy is adjusting the
size of the last stride, resulting in larger feature vectors. They also state that using a batch normalization layer after the
feature layer and before the final fully connected layer. They also suggest using Center loss, which is used in facial
recognition[44]. Center loss minimizes the intra-class compactness, they suggest combining the center loss with the
identification loss and the triplet loss.

Wang et al.[45] show that adding attentive layers to the standard Resnet50[16] backbone can be beneficial to the
networks performance. They Combine the identification and classification loss and achieve a 93.1% rank1 accuracy on
the Market1501[7] dataset.

Chen et al.[46] build upon the idea of attentive layers used by Wang et al[45], they add regularization and split the
network in to two branches; a global branch and an attentive branch. The attentive branch consists of two modules
named Channel attentive module(CAM) and Part attentive module(PAM). The network combines the branches into a
2048-dimensional feature vector. They achieve a rank1 accuracy of 95.6% on the Market1501[7] dataset.

Lawen et al.[47] build upon the idea of using attention based CNN’s from[34] and add the training heuristics used
by Luo et al[41]. Only adding these heuristics to the baseline HA-CNN already increases the rank1 accuracy on the
Market1501[7] dataset to 93.2%. Next they also make some adjustments to the baseline HA-CNN making it deeper
and wider, these adjustments increase the rank1 accuracy on the Market1501[7] dataset to 96.2%. They show that
using simple L2 normalization instead of the batch normalization used by Luo et al.[41]. They also show that the
less complex version of their network with the same amount of parameters as the HA-CNN, is able to outperform the
standard HA-CNN version by achieving a 95.8% accuracy on the Market1501[7] dataset.

Quan et al.[48] argue that the backbone network architectures which are often used for person re-identification;
VGG[28], Inception[49] and Resnet[16] are not specialized for this task as they are are trained for image classification
and not re-identification. They suggest using a neural architecture search network(NAS) which searches for an
optimal architecture for solving the task. They find an architecture with 50% less parameters than the standard Resnet
architecture and achieve a rank1 accuracy of 95.4% on the Market1501[7] set using re-ranking[30].

4.1.3 Open-set focus

Li et al.[50] introduce an open-set person re-identification model, their idea is to use a generative adversarial
network(GAN)[51]to generate images which look alot like the target image and add these to the training set. This way
the feature extractor will be able to learn to separate the generated image from the true target even though they look
very similar. They define the open-set person re-identification problem as a target search; The model has a gallery of
targets or people we want to find, images are then fed to the network and it reports if the input person is one of the
targets. They report a TTR of 22.32% for a FTR of 1% on the Market1501[7], only slightly outperforming a simple
Resnet50[16] baseline which gets a TTR of 20.79% for a FTR of 1% on the same dataset.

Yu et al.[52]propose that instead of representing each person image as a feature vector, it should be modeled as a
Gaussian distribution with its variance representing the uncertainty of the extracted features. They use a standard
Resnet50[16] as their backbone network. Representing the feature vector as a Gaussian distribution will make the
network more robust against noisy training samples which is especially useful in the open world scenario. They
achieve a rank1 accuracy of 87.3% on the Market1501[7] dataset and also propose an open-world scenario using the
Market1501[7] dataset, in the open-world scenario they achieve a TTR of 87.88% for FTR of 1%.

4.1.4 Adding external information

Lin et al[53] manually added 27 attribute labels to several benchmark datasets, the network learns to extract these
attributes for new input images. These attribute labels describe different attributes of the probe person, for example
the type of clothing and the color of the clothing. They concatenate the 27 dimensional attribute vector with a 512
dimensional feature vector extracted by a standard Resnet50[16] backbone. The define an objective function which
combines the identification features and the attribute labels and train their network. They achieved a rank1 accuracy of
87.04% on the Market1501[7] dataset.

Some researchers decided that instead of trying to improve the feature extraction, they would focus on adding spatial-
temporal information. Adding spatial-temporal constraint can improve the accuracy by eliminating irrelevant gallery
images. Cho et al.[54] first used this by creating a strong assumption, given a person image at timestamp t, this person
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should appear at the next camera within t plus or minus some delta, they unfortunately do not run tests on any benchmark
datasets. Wang et al.[6] further explore the idea of using spatial temporal information by running a parzen-window of
the temporal statistics from the dataset and combining the spatial-temporal data and CNN features in to a joint metric.
They report rank1 accuracy of 98.0% on Market1501[7].

4.1.5 Deep facial recognition

The facial recognition task is technically the same as the re-identification task; The probe face must be matched to one
of the faces in the gallery. Two big differences can be seen between facial recognition and person re-identification.
Firstly in the facial recognition field the datasets are larger, for example the Megaface[55] dataset which contains over
a million pictures of more than 600.000 identities thus being more representative of real world scenarios. Secondly
the differences per image in the facial recognition field are more subtle[9]. In the state of the art literature for facial
recognition researchers take similar approaches as the researchers in the person re-identification field.

Schroff et al.[56] Introduced the triplet loss for facial recognition which was later adapted and used in the person
re-identification research.

Liu et al. [57] introduce Angular Softmax where the softmax decision boundary only depends on an angle. In the
re-identification field the main loss functions used were the triplet loss and the center loss, however in the facial
recognition field some of the top performing networks use an angular margin based loss. Triplet loss requires sample
mining while angular margin based losses do not. Three state of the art performing papers on the Megaface[55]
dataset are; SphereFace[57],CosFace[58] and ArcFace[59]. Liu et al.[57] map the images on the surface of a hypsphere
which limits the possible space distribution to a restricted angular space. To overcome the difficulty of optimizing
the sphereface loss, which incorporates the angular margin in a multiplicative manner ArcFace[59] and CosFace[58]
respectively introduced and additive angular/cosine margin which are able to converge without softmax supervision.
Resnet[16] is used as backbone network by the authors of these papers. The results on the MegaFace[55] dataset are
summed up in the table below.

Rank1 accuracy(%) Verification accuracy(%)
SphereFace[57] 75.61 89.14
CosFace[58] 77.11 89.88
ArcFace[59] 77.50 86.47

Table 2: Results on the MegaFace dataset

Fan et al[42] used the idea of embedding the images on a hypersphere plane for the person re-identification task, using
the angular softmax function which was introduced by Liu et al[57] for the facial recognition task. They used a basic
Resnet50[16] as their feature extractor and added some data augmentation and normalization, with these relatively
simple adjustments they achieve a rank1 accuracy of 93.1% on the Market1501[7] dataset.
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5 Discussion

The methods described in the previous chapter have been summed up in table 3. Each approach to the person re-
identification problem can be separated into four design choices; Loss function, Backbone architecture, training
heuristics and which image features are extracted. In this chapter we will discuss the different approaches for each of
these design choices.

5.1 Backbone architecture

Before the network can be trained first features must be extracted from an image, these features are extracted by a
backbone network. From the papers discussed in this review, it can be concluded that the deeper backbone architectures
are more successful at solving the person re-identification task. The best performing non deep system was created by
Wu et al.[62] and is still inferior to any state of the art deep methods. Many authors[21, 22, 36, 23, 38, 25, 26] decided
to build their own convolutional neural networks and train them from scratch, while other authors[9, 29, 31, 30, 32, 39,
53, 33, 40, 41, 46, 6, 60, 42] used deeper networks which already proved to be successful for image recognition tasks
like Resnet50[16], VGG16[24] and Caffenet[28]. From table 3 we can conclude that deeper backbone architectures
outperform the more shallow ones used in earlier works. Most researchers use Resnet50[16] or one of its adjusted
versions as their backbone network. Authors that used these deep networks had to use the pre-trained versions in their
models because of the limited amount of training data available in the person re-identification task. Some more recent
works have argued that using a backbone network which is pre-trained on Imagenet[20] is disadvantageous as it is not
specialized in extracting features that distinguish persons but it is specialized in extracting features which distinguish
objects. However until the discovery of attention based networks, which were used by[53, 46, 47, 35, 48] there simply
wasn’t a network which was able to achieve the same performance. Another possibility is to use a neural architecture
search to search for an optimal network for the task, Quan et al.[48] deployed this idea. Using Resnet50 as backbone
network is not coincidence, Sun et al.[29], Li et al.[32] and Zheng et al[27] tried different backbone networks like
VGG16[24], Caffenet[28] and Resnet50[16] which were all top performing networks on the Imagenet[20] challenge.

5.2 Image features used

As discussed in 4.1 features are extracted by the backbone network, but which features are interesting? Two main types
of features can be defined; Global and local features.

Global features are learned from the entire image and intend to capture the most discriminative features of appearance
but may fail to capture discriminative local features. Therefore local features may be used so that local discriminative
feature can also be captured. Combining local and global features is a popular approach[38, 26, 32, 40, 33, 35] some
authors randomly divided the image into parts[38, 32, 33] and extracted local features from these image parts and
combine them with the features from the entire image. Others[26, 40] extract information about the pose and used this
information to find certain body parts subsequently extracting features from these body parts. Other authors added
external information to the images like attribute labels[53] or spatial temporal information[6]. Most researchers only
use the global features/feed the entire image into their model.

5.3 Loss function

Machines learn by means of a loss function. It’s a method of evaluating how well specific algorithm models the
given data. If predictions deviates too much from actual results, the loss function would become a very large
number(Goodfellow[51],2016). Generally the objective is to minimize the loss function. In the field of person re-
identification we can split the loss functions used into three main categories; distance metric based, verification based
loss and identification based loss. For distance metric based loss functions the euclidean distance between two feature
vectors is computed and these are compared. Minimizing the euclidean distance between two feature vectors extracted
from images which belong to the same person is called using the euclidean loss or L2 loss. If we add a term to the loss
function which also pushes feature vectors from different images away we get the triplet loss. The triplet loss not only
maximizes inter class compactness, it also maximizes intra class distance.

Verification based loss treats the person re-identification problem as an binary classification problem, the network takes
a pair of images as input and outputs a binary classification score 1 or 0. Identification based loss treats the person
re-identification problem as a retrieval problem, each person is treated as a separate class, so instead of outputting if two
input images are the same person or not, the output is a classification. Identification based systems are often optimized
using the softmax or cross-entropy loss. Often identification and verification losses are combined to create a more
robust system.
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During testing and validation the true labels are not part of the final classification layer as these are new people, this
means the performance needs to be measured by looking at the euclidean distance between the extracted feature vectors.
The smaller this distance is, the more similar the images should be thus the greater the chance of a correct match. Often
the gallery is ranked based on euclidean distance to the probe image. In an open world setting a threshold is set, when
this threshold is exceeded by the closest match from the gallery then no match is given. The idea to embed image
features on a hypersphere plane and then separate them by an angular margin, which was mainly used in the facial
recognition field[57, 58, 59] can also be used for the person re-identification field, this was shown by Fan et al.[42].

5.4 Training heuristics

Like with any other deep learning problem the representation of the data is of extreme importance[51]. Data can be
changed to best match your systems requirements, this is called data augmentation. Many different forms of data
augmentation exist; Padding where zero values are added to image. Random cropping where a random crop is taken
from an input image. Mirroring/flipping training data to create more data and to make the system more robust. Often
the images are normalized so each pixel represents a value between 0 and 1 instead of 0 to 255. Some authors calculate
the mean image and then subtract it from the input image. To make the model more robust against occlusion many
author[31, 40, 41, 46, 47, 60] use random erasing data augmentation, here a random box of the image is selected and its
pixel values are randomised. Label smoothing is another heuristic which is applied quite often by authors[41, 47, 35]
here they adjust the labels by adding a threshold, by doing this the model is less confident on the training set. If the
training set is small this could prevent overfitting. Re-ranking is also often applied for person re-identification, it
was first introduced by Zhong et al.[30] and later added to their models by the following authors[31, 39, 41, 60]. For
each image the k-reciprocal nearest neighbours are calculated and stored in a vector. The final distance between two
images becomes a combination of this k-reciprocal distance and the euclidean distance. Warming up the learning rate is
something that is popular in the re-identification field as well. It is used by the authors[41, 46, 47, 35, 60, 42] which are
mainly the authors of the more recent papers(after 2018). Warming up the learning rate is a pretty simple heuristic where
instead of starting with a high learning rate and slowly decaying it over time, the learning rate starts relatively low and
then ’warms up’ and then decays over time. Normalizing the feature is also a popular strategy for a lot of deep learning
approaches[51] this also applies to the person re-identification problem. If the features are normalized each dimension
of the feature vector is balanced. The features now have a Gaussian distribution near the surface of a hypersphere, thus
keeping a compact distribution of features that belong to the same class. Mainly the authors who focused on distance
metric based person re-identification used normalization in their setup[36, 41, 33, 42, 47]. Extracting more information
from an image could also prove beneficial, by changing the lasts stride in the final filtering layer of Resnet50[16] some
authors[33, 41, 60] extract a larger feature vector from the image and show that this increase the accuracy.

Training heuristics are an essential part of every person re-identification model however it is hard to estimate the effect
of each heursitic. Luo et al.[41] try to show the influence of different heuristics on the accuracy achieved in their
research. They first showed their standard accuracy and then subsequently add training heuristics and show the resulting
accuracy but it still remains challenging to estimate the effect of a single heuristic, the final accuracy increased more
than 7% with all heuristics applied. Lawen et al.[47] added training heuristics to the network of Li et al.[34] and the
heuristics resulted in more than 5% accuracy gain on the Market1501[7] dataset.

5.5 Open-set

Much effort has been expended on developing methods for person re-identification. However existing research aims at
maximising ranking performance on closed-set benchmark datasets these datasets are unrepresentative of scale and
complexity of more realistic open-world scenarios. The most popular benchmark dataset in the research community is
the Market1501[7] dataset. It has 750 identities in the training set and each identity has between 2 and 20 images. As
argued in the open-set re-identification survey[3] the difference between the real world scenarios and the scenarios
created in the datasets is still very big, so a lot of the work done can not be applied to real world use cases. The first
steps to creating more releastic open-world scenarios are to add distractors to the probes and to add distractors to the
gallery images. In this review two approaches to the open-set problem were discussed, in these approaches the authors
modified the standard Market1501[7] so that the probe persons were not necessarily in the gallery thus giving the
network the option to output that the probe does not exist in the gallery. Li et al.[50] tried to generate images which
had a similar appearance as the targets to try and make the model more robust against similar looking people, however
they only slightly outperformed a standard Resnet50[16]. Yu et al.[52] showed that modeling the features as Gaussian
distributions with its variance representing the uncertainty of the extracted features can be very successful for open-set
person re-identification.
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5.6 Dataset

From table 3 we can conclude that the performance over the different datasets varies greatly. Some authors decide
only to mention certain datasets in their research papers which may be beneficial to the accuracy of their system. For
example Zhong et al.[31] achieve a rank1 accuracy of 84% on the DUKE datasets and 89.1% on the Market dataset,
while Fan et al.[42] achieve a lower accuracy on the DUKE dataset 83.9% they achieve almost 5% higher accuracy
on the Market150 datasets, similar examples are given in table3. So even though a system may work very wel on a
particular dataset it might be inferior on other datasets. The accuracy achieved also differs greatly per dataset, one being
more challenging[15] than the others[7, 14, 13]. The VIPeR[15] dataset can be considered more challenging because it
only contains two images per person.

6 Future Directions

Backbone architecture The choice of backbone architecture is of extreme importance for the person re-identification
task. The most used backbone architecture is Resnet50[16] which at the time of its introduction was the top performing
model for the imagenet challenge. Recently new networks have been discovered which outperform the aforementioned
architectures and some even have fewer parameters. The best performing architectures have been summed up in table 6.
The InceptionV3[43] and Xception[63] were already applied to the person re-identification challenge by Rooijen et
al.[64] and were beneficial to the accuracy. Using Efficientnet[65] might also be beneficial to the achieved accuracy.

Model Rank1(%) #parameters
Caffenet [28] 68.9 11m
VGG16 [24] 70.5 138m
Resnet50 [16] 75.9 26m
InceptionV3 [43] 78.8 24m
Xception [63] 79.0 23m
EfficientnetB1 [65] 79.2 7.8m
EfficientnetB2 [65] 80.3 9.3
EfficientnetB3 [65] 81.7 12m
GPIPE [66] 84.3 557m
EfficientnetB7 [65] 84.4 66m
Resnext101 [67] 85.4 829m

Table 4: rank1 accuracy on the Imagenet[20] challenge

Loss function In recent literature we have seen that the triplet loss and the softmax loss are most often applied. Very
few research in the person re-identification field deviates from these loss functions, while in the facial recognition field a
lot of research is aimed at finding a loss function which increases performance. From the facial recognition survey[68]
we see that state of the art performing models have created their own loss functions, like the A-softmax[57],CosFace[58]
and ArcFace[59]. So far only Fan et al.[42] adapted one of these functions, the A-softmax for the person re-identification
field. Using one of the other above mentioned loss functions might also prove beneficial to the achieved accuracy.

Training heuristics Using can significantly improve performance, different heuristics are beneficial for different
datasets. Some researchers however tend to overlook the heuristics and just focus on improving the loss function or
backbone network. There are a few examples in literature where authors took an improved architecture/loss function
and simply added some training heuristics resulting in a gain in final accuracy. Applying these heuristics on the work of
Wang et al.[6] or Quan et al.[48] could potentially improve the state of the art accuracy. Also researching which type of
heuristics are useful for which type of data can be very useful for the person re-identification research field.

7 Conclusion

In this review, an overview of the current top performing re-identification models is given. First, the person re-
identification task and the connected issues were discussed. Second, a brief overview of the current state of the art
performing models is given, these were split into ID/verification based approaches and distance metric based approaches.
Some models from the facial recognition field were also included in this survey as the task of facial recognition is very
similar to person re-identification. Each approach can be summarized in four design choices; Loss function, Backbone
architecture, training heuristics and the features that were used. Finally, we suggest some future directions which might
be beneficial to the achieved accuracy.
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