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(e diverse nature of vehicle categories and the resultant lane discipline in mixed (heterogeneous) traffic cause complex spatial
interactions. As a result, the driving behavior process in mixed traffic conditions is meaningfully different, where both longitudinal
and lateral movements of the vehicles continuously occur. Under prevailing homogeneous traffic conditions in developed
countries, driving behavior is partially discrete, where following longitudinal behavior and outboard lane-change models can
model traffic behavior. However, the established car-following and lane-change models cannot be directly used in shaping mixed
traffic conditions. Such conditions also warrant the use of high-quality microlevel vehicular trajectory data. Accordingly, realizing
this need, vehicular trajectory data for different traffic flow conditions were developed. (e data were used to extract the pa-
rameters required for modeling the vehicles’ positions using machine learning algorithms. (ree established supervised machine
learning algorithms (k-NN, random forest, and regression tree) and deep learning are selected to model mixed traffic conditions.
(e parameters which influence longitudinal and lateral movements are identified using Spearman correlation analysis. Fur-
thermore, simulation runs are performed using the python language. (e performance of the algorithms is evaluated both at the
microscopic and macroscopic levels using relevant traffic indicators. (e results show that a deep learning model and k-NN tend
to replicate better-mixed traffic conditions than random forest and regression trees.

1. Background

Understanding the traffic performance of the road section is
vital for effective utilization. In this direction, traffic flow
modeling concepts have proven to be an efficient source in
gauging network elements’ performance at microscopic and
macroscopic levels. Since its inception, researchers conceptu-
alized numerous concepts for traffic flow modeling for un-
derstanding the performance of road networks. Primarily, it
includes car-following models, such as Pipes [1], General
Motors [2], Gipps [3], andWiedemann [4], among others. To a
certain extent, these framed concepts produced a satisfactory
performance and can replicate the traffic characteristics.

Further, in this direction, researchers sensed the im-
portance of driving behavior in modeling the traffic, for

which significant efforts were put in exploring human
factors in developing car-following models, such as weather
conditions [5], drivers perspective [6], fatigue driving [7],
anticipation [8], among others. By incorporating the human
factors and the car’s performance, the following models is
found to increase. On the other side, researchers also un-
derstood the importance of lateral behavior of vehicles in
traffic streams. Numerous lane-changing models are con-
ceptualized for capturing the lateral behavior, including
research studies [9–11], and are able to model the lane-
changing movement of the vehicles. With advancements in
technology and the availability of computational tools,
numerous traffic microsimulation tools [12] are developed
by embedding the car-following and lane-changing models
for different road geometry and vehicular characteristics.
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(is includes a few examples, such as PTV VISSIM [13],
AIMSUN [14], PARAMICS [15], and SUMO [16]. It is well
established that these microsimulation tools boosted the
trafficmodeling studies to an exceptional level and facilitated
a more considerable extent in uncovering numerous con-
cepts. With the development of NGSIM [17], high-quality
trajectory data and driver behavior aspects have further
strengthened traffic flow modeling for evaluating policy
interventions more comprehensively. Further, in recent
times, researchers [18–20] tested the deep learning and
reinforcement learning strategies for improving the mixed
traffic flow efficiency levels.

It can also be noted that most of the literature mentioned
above entirely belongs to a homogeneous traffic environ-
ment with lane-based traffic conditions. On the other hand,
in the case of mixed traffic conditions with poor lane dis-
cipline, traffic streams can result in complex spatial inter-
actions among the vehicles in longitudinal and transverse
directions. In this direction, very few studies have been
carried out to assess different traffic characteristics, espe-
cially driving behavior (vehicle-dependent). Furthermore,
researchers applied the concepts mentioned above under
mixed traffic conditions, which includes studies such as
microsimulation [21], modeling traffic flow on expressways
[22], calibration of car-following models [23], to name a few.
To a certain extent, these strategies can perform better at the
macroscopic level, but their performance at the microscopic
level (vehicle-vehicle interaction) is questionable. Many
studies [24, 25] conducted under mixed traffic conditions
reported the predominant lateral movement of vehicles.

Mainly in case of mixed traffic conditions, with poor lane
discipline due to the involvement of different vehicle cat-
egories, both longitudinal and lateral movements of vehicles
can be observed simultaneously, whereas under homoge-
neous traffic conditions, lane-changing maneuvers are dis-
crete. (is significant difference in driving behavior can be
attributed as one of the main reasons for the limited per-
formance of established homogeneous traffic concepts in
mixed traffic conditions. Under mixed traffic conditions, due
to the predominance of lateral movement factor (driving
behavior), the subject vehicle movements are influenced by
the presence of surrounding vehicles. As a result, numerous
parameters that are not accounted for in following tradi-
tional behavior and lane-changing models impact the ve-
hicles’ movement. Furthermore, in recent times, researchers
[26, 27] highlighted the intricacies of nonlane-based mixed
traffic conditions. Given the variation in physical properties,
vehicles by virtue of their size acquire any available space
that can impact the driving behavior of the surrounding
vehicles.

From the literature [28–30], it is inferred that machine
learning tools are proven to be productive in understanding
complex data patterns supported by quality data. Yu et al.
[31] tested the Fixed Radius Near Neighbors (FRNN) for
modeling the longitudinal car-following behavior and
strongly advocated the usage of data driven approaches in
traffic modeling. After identifying the research gaps, in the
present work, it was decided to explore the performance of
machine learning algorithms to address the need for

modeling mixed traffic flow both at microscopic and
macroscopic levels. Hence, this study is focused on
employing machine learning tools from the branch of ar-
tificial intelligence in modeling this complex vehicular be-
havior using microlevel trajectory data. Finally, the
performance of the selected algorithms is evaluated thor-
oughly at different levels, including microscopic and mac-
roscopic level comparisons. Further, in recent times,
researchers [32] are strongly advocating the importance of
producing the reproducible research in transportation en-
gineering. In this direction, the trained models in this study
can be effectively used/improved with other data sources and
supports reproducible research in the domain of traffic
modeling.

Given the limitations of the traditional following and
lane-change models, this paper aims to model mixed traffic
conditions with machine learning algorithms.

(e study consists of the following main tasks:

(i) Develop vehicular trajectory data to capture the
study section’s driving behavior using a semi-
automated image processing tool

(ii) Explain mixed traffic conditions using an example
and mark the surrounding vehicles, which can in-
fluence the vehicles’ movements

(iii) Identify the parameters which influence the longi-
tudinal and lateral movements using correlation
analysis

(iv) Train three supervised algorithms and one deep
learning algorithm with the parameters, such as
dependent longitudinal and lateral speeds with
independent settings

(v) Conduct simulation runs based on the trained al-
gorithms, evaluate the algorithms’ performance,
and present the results with some meaningful
insights

2. Understanding Mixed Traffic Conditions

2.1. Study Section. For addressing the challenges of traffic
flowmodeling under mixed traffic conditions, it was decided
to design an experiment incorporating diverse roadways and
traffic conditions. A segment of the Western Expressway
(Mumbai) in India was considered for this purpose. A wide
variation in traffic flow was observed, ranging from free-flow
to near-capacity traffic conditions, supplemented even with
a stop-and-go congestion regime. Considering this as an
opportunity, video-graphic surveys were carried out, and
macroscopic plots were developed to identify different traffic
states. Further, to sense the driving behavior in a detailed
manner, high-quality trajectory data is generated at three
different flow levels for the section considered under this
research work. Considering the incompetence of automated
image processing tools under mixed traffic conditions, a
semiautomated image processing tool TDE [33] is used to
develop trajectory data. Unlike the automated trajectory
development tools, the semiautomated tool offers an added
flexibility for tracking each vehicle that individually
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demands huge human efforts. As a result, near to 100
percent of vehicles can be tracked over the study sections.
Simultaneously, to eliminate the perspectival distortions, the
developers of the TDE embedded a vanishing point mech-
anism to convert the perspective trapezoidal images of the
study section to the real-world coordinates. To eliminate the
occlusion effect in tracking demands good viewing angles. In
the present study, video recordings are captured from a
reasonable height to limit the occlusion effect. However, in
flow 3 in the congested traffic, some instant’s smaller vehicles
beyond a heavy vehicle are occluded, but the number of heavy
vehicles is less at flow 3, resulting in less occlusion. It may also
be noted that the authors developed trajectory data of well-
accepted sample size of more than 3312 vehicles, including all
classes of vehicles, for capturing the possible stochasticity in
terms of trajectory data. Keeping in view the complexity in
tracking and developing trajectory data under the traffic
conditions involving different classes of vehicles (implicitly
varying driver behavior), this may be considered as one of the
pertinent contributions from the present study.

Further, in line with the literature [34], to limit the noise
in trajectory data, smoothening techniques were applied,
and the details of traffic states, for which trajectory data is
developed, are given in Table 1. More details about the data
that can be used in the present work can be found from
authors’ previous studies [35, 36]. (e selected study sec-
tion’s snapshots and developed time-space plots of vehicles
observed during real field conditions on the western ex-
pressway are depicted in Figure 1. Based on the video-
graphic surveys broadly, six types of vehicle categories are
found on the selected roadway study section: Motorized
three-wheelers (M(W), Motorized two-wheelers (MTW),
Buses, Cars, Trucks, and Light commercial vehicles (LCV).

2.2. Overview of Mixed Traffic Conditions. In explaining the
mixed traffic conditions in a better manner, an example is
presented in Figure 2. It can be noted that the movement of
the subject vehicle (MTW as an example in Figure 2) is
depicted for different time frames in (a) through (h). It can
be observed that the subject’s motorized two-wheeler
(marked with a yellow star) is largely influenced by its
surrounding vehicles, and the subject vehicle tends to ma-
neuver out from its surrounding vehicles to have a better
movement and avoid delays. It may be noted that the MTWs
are acquiring any available position on a roadway space
based on the availability of adequate longitudinal and lateral
space simultaneously. Due to this traffic movement nature,
even the most established following behavior and lane-
changing models from homogeneous traffic conditions tend
to underperform under mixed traffic conditions (as depicted
in Figure 2). In general, most vehicles following behavior
models predict acceleration (a) and speed (v) of the follower
vehicle as a function of several variables related to its leader
vehicle, as follows:

a(or)v � f s,Δv, smin, V, . . . etc.( 􏼁, (1)

where s� relative spacing. Δ v � relative speed,
smin �minimum spacing, and V� desired speed.

On the other hand, in mixed traffic conditions, the
subject vehicle is primarily influenced by its surrounding
vehicles present in the traffic stream. Hence, the subject
vehicles’ movement can be governed by other added pa-
rameters discussed in the following sections.

2.3. Assessing Diving Behavior. Considering the vehicles’
naturalistic movement in the traffic stream, the subject ve-
hicle’s longitudinal and lateral movement is mainly depen-
dent on its surrounding vehicles. In the present work, initially
surrounding vehicles for a given subject vehicle are identified
accurately using trajectory data. In line with the literature
[37, 38], a surrounding zone created by the addition of 40m
distance in front (look-ahead) and 30m distance behind
(look-back) from the center of the subject vehicle is con-
sidered, with a total longitudinal distance of 70m forming a
longer side of a rectangle (Figure 3). A lateral distance of 5.5m
from the center position of the subject vehicle to the center
position of the surrounding vehicles, including the total width
of the subject vehicle (with an overlap of width), is considered
over the entire road space (in longitudinal and lateral di-
rections over time), as depicted in Figure 3. As per the de-
veloped logic, there can be a possibility of eight combinations
of surrounding vehicles for the subject vehicle.

Based on the literature [39, 40] from both homogeneous
and mixed traffic conditions, the parameters that influence
the longitudinal and lateral speeds are identified. On these
lines, for longitudinal speeds, around 16 independent pa-
rameters are identified, other 22 independent parameters are
identified for lateral speeds, as shown in Table 2, along with a
brief description. With the help of developed trajectory data
sets, using python code, surrounding vehicles are identified,
and all mentioned parameters are evaluated for each vehicle
at every instant of time.

Later, to identify the influential parameters for longi-
tudinal movement and lateral movement, the Spearman
correlation [41] test is performed between vehicles’ in-
stantaneous longitudinal speeds and 16 parameters, which
may influence the longitudinal movement. Similarly, for the
instant lateral speed of the vehicles along with other 22
parameters, which may influence lateral movement. (e
parameters identified are presented in Table 3, along with
their brief description. After correlation analysis, it is ob-
served that with a change in traffic flow conditions, the
correlation values differed substantially, and, in some cases,
the correlation nature has even varied. For example, in the
case of longitudinal movement, the parameters such as
lateral tilt (long_8), the lateral gap with adjacent vehicle
(long_10), present lane (long_12), presence of left leading
vehicle (long_13), and presence of right leading (long_14),
with a change in flow levels the nature of correlation is
varied. Mainly it can be noted that the parameters men-
tioned above are related to the lateral gap. However, it is
inferred that with the rise in flow levels, the vehicles’ lon-
gitudinal movement is constrained. As a result, vehicles tend
to find lateral gaps for better maneuverability, particularly
flow 2 and flow 3 (higher traffic flow levels). Due to this, with
a change in flow levels, the correlation is found to be varying.
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On the other hand, parameters such as right longitudinal
gap (long_7), angle of seeping (long_9), the lateral gap with
left adjacent (long_10), lateral gap with right adjacent
(long_11), presence of right leading (long_14), TTC
(long_15), and Smin/S (long_16) are found to be sparsely
active under the present traffic conditions for the longitu-
dinal movements, whereas parameters such as leader
presence (long_1), relative distance (long_2), relative speed
(long_3), leader vehicle category (long_5), left longitudinal
gap (long_6), lateral tilt (long_8), present lane (long_12),

and presence of left leading (long_13) are found to play a
governing role in the longitudinal movement of the vehicles.

From the correlation analysis on the instant lateral speed
with 22-lateral influencing parameters, it is found that,
unlike longitudinal movement correlation analysis, the sense
of the parameters (+ve/-ve correlation values) is similar for
all flow conditions, whereas the parameters, such as present
lane (lat_6), left front vehicle (lat_7), right front vehicle
(lat_8), left back speed (lat_11), lateral tilt (lat_16), distance
from left back (lat_17), distance from right back (lat_18), left

Table 1: Details of the study section (multilane urban road).

Trap length
(m)

Road width
(m)

Traffic flow
level

Traffic composition
(%)b

Avg. speed
(km/h)

Avg. flow
(pcu/h

V/
C

No. of vehicles
tracked

Trajectory data
duration (min)

120 17.5
Flow 1 15/35/5/40/2/3 65 4800 0.4 1080 15
Flow 2 20/29/2/45/1/3 42 10120 0.85 1715 15
Flow 3a 17/25/5/45/3/4 20 3500 <1 660 10

aStop-and-go conditions. bTraffic composition in order of M(W/MTW/Bus/Car/Truck/LCV.
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Figure 1: (a) Snapshots of the study section and (b) time-space plots of vehicles.
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longitudinal gap (lat_21), and right longitudinal gap (lat_22)
tend to have a good correlation with lateral speeds.

Based on the correlation analysis, it is observed that in
the case of flow 2 and flow 3 (higher flow levels), where
longitudinal movement is constrained, vehicles tend to find
the lateral movement to escape the delay in the traffic stream.
As a result, parameters associated with lateral gaps are better
correlated with instantaneous longitudinal speeds. Similarly,
parameters associated with longitudinal gaps are better
correlated with instantaneous lateral speeds. In most of these
cases, it may be noted that the correlation range of the
parameters is found to be within 0.5. Given the stochastic
nature of driving behavior, in line with the literature [42, 43],
this can be treated as an acceptable correlation.

3. Machine Learning Modeling

In line with the work objectives, it is attempted to model the
mixed traffic flow conditions. From the literature (Evan
Lutins, 2017), it is inferred that numerous car-following
behavior models are conceptualized. (e following behavior
models stood out for homogeneous traffic conditions and

proved their potential in traffic flow modeling. On the other
hand, in mixed traffic involving different vehicle categories
and lack of lane discipline in the traffic, the vehicles’ spatial
interactions will be more involved. Even from correlation
analysis, it is identified that numerous parameters affect the
longitudinal and lateral movement of the vehicles. Con-
sidering this, modeling mixed traffic conditions with
established car-following and lane-changing models from
homogeneous traffic conditions may not be prudent.

In overcoming this challenge in the present work, to
model the mixed traffic, machine learning from artificial
intelligence is considered. (ree established supervised
machine learning algorithms, such as k-NN, random forest,
and regression tree algorithms, are selected. Along with that,
deep learning is also explored for modeling mixed traffic
conditions.

3.1. k-NN Algorithm. In general k-NN algorithm (Min-Ling
Zhang & Zhi-Hua Zhou, 2005) works on the principle of
pattern recognition and learns the data patterns. To better
explain this, let (x1, y1), (x2, y2), . . ., (xn, yn) be the data points

(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 2: Movement of MTW over the road section at different time frames.

Journal of Advanced Transportation 5



from a sample space ‘S’ that belong to two classes, Class-I
and Class-II, as follows:

Class − I �

x1, y1( 􏼁

x2, y2( 􏼁

.

.

.

xm, ym( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

Class − II �

xm+1, ym+1( 􏼁

xm+2, ym+2( 􏼁

.

.

.

xn, yn( 􏼁

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Let the class of data point (xt, yt) be the point of interest
from another sample space. To identify the class of the data,
k-NN adopts the nearest neighboring approach. For ex-
ample, say in the present case, k-NN adopts 3-neighbors.
Initially, by means of Euclidean distance, the three nearest
neighbors will be identified. Further, based on the majority
class of the neighbors, the data point (xt, yt) class will be
predicted. On these lines, by changing the number of
neighbors and distances measures, the performance of the
algorithm can be improved. In the present trial and error
strategy adopted, 5-nearest neighbors are found to be op-
timized values.

3.2. Random Forest. In general, random forest [44] learns
the data with a constructive multitude decision tree
framework. Machine learning models the target outcomes in
the form of categorization with ascertained probabilities. If

the dependent variable is a categorical one, the category with
maximum probability is given as an outcome by themachine
learning models. On the other hand, if the target outcome is
a continuous variable, in that case, by means of the weighted
mean approach, the outcome is predicted. To explain the
basic framework of the random forest algorithm in a better
manner, let us consider the ‘N’ number of classes, with ‘M’
input variables or features. A number ‘t’ is specified (t<M)
such that at each node, t-variables will be selected at random
out of M. (e best split on these ‘t’ is used to split the node.
(e value of ‘t’ is held constant when the forest is developed.
Further, each tree will be grown to the most substantial
extent possible.

Let the training set X� x1, ..., xn with responses Y� y1, ...,
yn, bagging repeatedly (N times) selects a random sample
with replacement of the training set and fits trees to these
samples. In the next sample, t training examples are selected
from X, Y as Xt, Yt. Later by means of the random forest
framework, trees ft is trained on Xt, Yt. After training the
samples, the predictions can be given as follows:

􏽢f �
1
t

􏽘

t

b�1
fb xt( 􏼁, (3)

where the number of trees and t are independent parameters
that can be optimized using different cross-validation
strategies.

3.3. Regression Tree. Decision tree learning [45] is a pre-
dictive model, where the decision tree is framed as branches
(inputs) and leaves of the tree (outputs), in which the de-
cision variable is categorized into subsets. A tree can be
learned using recursive partitioning, in which the trained
data is split into subsets until the trained data is matched
with an observed target value. (is process of Top-Down
Induction of Decision Trees (TDIDT) [46] is generally
applied in developing the decision trees. (e independent

(a) (b)

Left trailing
vehicle

Left Adjacent
vehicle

Right Adjacent
vehicle

Trailing vehicle

Right trailing
vehicle

Left Leading vehicle

Leading vehicle

Right Leading vehicle
5.5 m

40 m30 m

(c)

Figure 3: Explaining the surrounding vehicle combination for the subject vehicle.
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variables are best riven for the target variable; on this basis,
the decree is selected to split the node. (e same process is
repeated until all the target values are sorted to either of the
nodes.

Further, every branch of the decision tree dismisses a
target value. Each target falls into one and exactly one
terminal node, and each terminal node is uniquely defined
by a set of rules [47]. Based on the class of the output

decision, variables decision trees are classified as classifi-
cation trees and regression trees.

Further regression trees employ Gini impurity [48] as a
measure to check the accuracy of the tree labeling. (e Gini
impurity is nothing but the sum of the probability pi of a
data point with class i being chosen times the probability
􏽐

n
t≠ i pk � 1-pi of error in selecting the class. (e Gini

impurity is given by the following:

Table 2: Parameters influencing the movement of mixed vehicles.
ID Longitudinal movement parameters Description

long_1 Leader presence (e presence of leader vehicle is taken, 0 is assigned when its absent and 1 is taken if
this is present

long_2 Relative distance (m) Relative distance from leader vehicle
long_3 Relative speed with leader (m/s) Relative speed (subject vehicle minus leader vehicle)
long_4 Subject vehicle category Vehicle class of the subject vehicle.
long_5 Leader vehicle category Vehicle class of the leader vehicle.
long_6 Left longitudinal gap(m) Available left longitudinal gap for the subject vehicle
long_7 Right longitudinal gap (m) Available right longitudinal gap for the subject vehicle

long_8 Lateral tilt with leader vehicle (m) Lateral incline of the subject vehicle towards the leader vehicle in terms of lateral
overlap (let side is taken negative value and right side as positive).

long_9 Angle of seeping(deg) Available angle for seeping
long_10 Lateral gap with left adjacent vehicle(m) Lateral gap clearance from the left adjacent vehicle

long_11 Lateral gap with right adjacent
vehicle(m) Lateral gap clearance from the right adjacent vehicle

long_12 Present lane of subject vehicle (1-
median) Present lane id in the order as median side lane -1, shoulder side lane -5

long_13 Presence of left leading (e presence of left leader vehicle is taken, 0 is assigned when its absent and 1 is taken if
this present

long_14 Presence of right leading (e presence of the right leader vehicle is taken, 0 is assigned when its absent and 1 is
taken if this is present

long_15 TTC (sec) Time to collision
long_16 Smin/S (e ratio of minimum relative distance to relative distance
Id Lateral movement parameters Description

lat_1 Leader presence (e presence of leader vehicle is taken, 0 is assigned when its absent and 1 is taken if
this is present.

lat_2 Leader vehicle category Vehicle class of the leader vehicle.
lat_3 Subject vehicle category Vehicle class of the subject vehicle.
lat_4 Relative speed with leader (m/s) Relative speed (subject vehicle minus leader vehicle)
lat_5 Subject vehicle longitudinal speed (m/s) Longitudinal speed of the subject vehicle
lat_6 Present lane Present lane id in the order as median side lane -1, shoulder side lane -5
lat_7 Left front vehicle Presence of left front vehicle, 0 is assigned when its absent and 1 is taken if this present.

lat_8 Right front vehicle Presence of right front vehicle, 0 is assigned when its absent and 1 is taken if this is
present.

lat_9 Left lateral clearance Available lateral clearance in the left side
lat_10 Right lateral clearance Available lateral clearance in the right side
lat_11 Left back vehicle speed (m/s) Left back vehicle longitudinal speed
lat_12 Right back vehicle speed (m/s) Right back vehicle longitudinal speed
lat_13 Left back vehicle acceleration (m/s2) Left back vehicle longitudinal acceleration
lat_14 Right back vehicle acceleration (m/s2) Right back vehicle longitudinal acceleration
lat_15 No. Of surrounding vehicles Number of vehicles in the surrounding vicinity of the subject vehicle.

lat_16 Lateral tilt with leader vehicle (m) Lateral incline of the subject vehicle towards the leader vehicle in terms of lateral
overlap (let side is taken negative value and right side as positive).

lat_17 Distance from left back vehicle (m) Longitudinal distance from left back vehicle
lat_18 Distance from right back vehicle (m) Longitudinal distance from right back vehicle

lat_19 Area occupancy the vehicles ahead of
subject vehicle (m2) Area occupied by the vehicles in the frontal surrounding vicinity

lat_20 Subject vehicle longitudinal acceleration
(m/s2) Instant longitudinal acceleration of the subject vehicle

lat_21 Left longitudinal gap(m) Available left longitudinal gap for the subject vehicle
lat_22 Right longitudinal gap (m) Available right longitudinal gap for the subject vehicle

Journal of Advanced Transportation 7



IG(p) � 􏽘 pi 1 − pi( 􏼁. (4)

3.4. Deep Learning. Typically, deep learning is developed
based on the neuron’s architecture in the human brain cells.
In which, the way electrical signals travel across the cells of
living, each subsequent layer of nodes is activated when it
receives stimuli from its neighboring neurons. Given this,
the accuracy from deep learning models predictions can be
increased with the right amount of training data. Deep
learning: there will be three different layers, as input layers,
hidden layers, and output layers, as shown in Figure 4.
Specifically, the input layers are provided with the input
vectors as x1, x2, . . . ..xn. to map the final outcomes in the
output layer. Given this, the input data is filtered through a
series of hidden layers. (e hidden layers are sandwiched
between the input and output layers.

(e deep learning models are developed with the help of
python programming [49] using the Google TensorFlow
[50] library environment. Later, the input parameters and
the output velocities are mapped over deep learning models
with numerous combinations of hidden layers, neuron ac-
tivation functions, and many epochs. Applying the trial and
error approach to limit the overfitting, for the present case,
three hidden layers with 128, 64, and 16 nodes were adopted
with 250 epochs by sequential modeling [51]. At the same
time, ReLU [52] activation functions are used other than the
final SoftMax [53] layer. (e details of the trained deep
learning models are presented in Table 4.

In the present study, the authors attempted to model the
vehicles’ instant longitudinal and lateral speeds instead of
instant acceleration. It can be noted that, in normal traffic
conditions, the acceleration values are in the range of -3.5 to
3.5m/s2, the longitudinal speeds are in the range of 0 to
25m/s. In comparison, the range and variation of speeds are

Table 3: Spearman correlation coefficient for different flow levels.

ID Parameter Spearman correlation coefficient
Flow 1 Flow 2 Flow 3

(a) Longitudinal movements
long_1 Leader presence −0.31 −0.52 −0.60
long_2 Relative distance (m) 0.20 0.45 0.65
long_3 Relative speed with leader (m/s) 0.10 0.43 0.28
long_4 Subject vehicle category −0.14 −0.08 −0.01
long_5 Leader vehicle category −0.11 −0.12 −0.25
long_6 Left longitudinal gap(m) −0.30 −0.16 0.15
long_7 Right longitudinal gap (m) 0.23 0.22 −0.01
long_8 Lateral tilt with leader vehicle (m) −0.27 0.45 0.55
long_9 Angle of seeping(deg) 0.01 −0.22 −0.12
long_10 Lateral gap with left adjacent vehicle(m) −0.08 0.03 0.19
long_11 Lateral gap with right adjacent vehicle(m) 0.02 0.13 0.06
long_12 Present lane of subject vehicle (1-median) −0.50 −0.38 0.46
long_13 Presence of left leading 0.31 0.10 −0.12
long_14 Presence of right leading −0.07 −0.16 0.12
long_15 TTC (sec) −0.02 −0.02 −0.17
long_16 Smin/S 0.00 -0.17 -0.06
(b) Lateral movements
lat_1 Leader presence 0 0 0.17
lat_2 Leader vehicle category 0.13 0.06 0.25
lat_3 Subject vehicle category 0.24 0.01 0.15
lat_4 Relative speed with leader (m/s) −0.1 0.30 0.13
lat_5 Subject vehicle longitudinal speed (m/s) 0.06 0.46 0.32
lat_6 Present lane −0.6 −0.70 −0.81
lat_7 Left front vehicle 0.18 0.59 0.59
lat_8 Right front vehicle −0.6 −0.5 −0.52
lat_9 Left lateral clearance 0 −0.2 −0.19
lat_10 Right lateral clearance 0.32 0.17 0.15
lat_11 Left back vehicle speed (m/s) 0.48 0.42 0.47
lat_12 Right back vehicle speed (m/s) −0.2 −0.21 −0.25
lat_13 Left back vehicle acceleration (m/s2) 0.07 0 0.02
lat_14 Right back vehicle acceleration (m/s2) 0.01 0 0.09
lat_15 No. Of surrounding vehicles 0 0.15 0.14
lat_16 Lateral tilt with leader vehicle (m) −0.5 −0.3 −0.61
lat_17 Distance from left back vehicle (m) −0.51 −0.4 0.65
lat_18 Distance from right back vehicle (m) 0.23 0.28 0.69
lat_19 Area occupancy the vehicles ahead of subject vehicle (m2) 0 0.07 0.24
lat_20 Subject vehicle longitudinal acceleration (m/s2) 0 0.04 0.07
lat_21 Left longitudinal gap(m) −0.6 −0.61 −0.7
lat_22 Right longitudinal gap (m) 0.53 0.43 0.58
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higher compared to the acceleration. Given the less range
and variation, it is envisaged that the models will be
underfitted if they are trained with acceleration as a de-
pendent parameter. Considering this, the speeds are taken as
a dependent parameter over the acceleration. In the present
work, to improve the precision of the training of the al-
gorithms, the dependent variables (instantaneous longitu-
dinal and lateral speeds) were rounded off to 0.5m/s and
0.01m/s, respectively. Due to this, the variable classes de-
crease, and the data correlation patterns can be refined. For
both the longitudinal and lateral movements, correlation
coefficients with values equal to or greater than 0.4 at any of
the flow levels were considered as influential parameters.

Using a similar approach, the preceding algorithms were
trained for the dependent variables as instantaneous lon-
gitudinal speeds and instantaneous lateral speeds. In the case
of k-NN, based on trial and error, the five-nearest neighbors
were considered. For random forest, 15 trees were selected
for training. (e regression trees and deep learning were
trained with their exact formulations.(e training and setup
process is carried out in python 3.7.0 programming language

(“A primer on scientific programming with python,” 2013).
For training and testing the data, the entire trajectory data
from the three different traffic flow conditions are divided
into two equal halves. One-half is used for training the data
and the other for testing purposes.

4. Simulation of Mixed Traffic

Further, based on the trained algorithms, vehicle movements
are simulated again in python 3.7.0, as shown in Figure 5.
According to their correct positions observed from field
conditions, the vehicles were generated one after another,
according to the initial time stamps and the positions, as
shown in Figure 6. For that, the initial positions of all the
vehicles are taken, and the vehicles are generated one after
another according to the initial time stamps. At the same
time, to sort the initial movement, the vehicles are placed
with the true speeds (not by models, in the present study: 7
Vehicles). Later the vehicles are generated according to the
initial start time and the positions. Upon their generation,
the trained algorithms governed the subject vehicle’s
movement concerning its surrounding vehicles and derived
the influential parameters in the traffic stream. On these
lines, the simulation of mixed traffic is performed. In the
present work, with the trained models along with sur-
rounding vehicle combination, the vehicles next time instant
longitudinal and lateral speeds will be predicted. For say at
given the data of time step tn, the speeds of tn+1 will be
predicted again with the combination data of tn+1; next tn+2
will be predicted and the process goes on till all predictions
are made.

To assess whether the calibrated models’ performance
mimics the traffic behavior, time-space plots of vehicles were
plotted one after another and compared with field extracted
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Figure 4: Deep learning architecture.

Table 4: Details of the trained deep learning model.

Layer (type) No. of nodes
Activation function
Input Output

L1 (dense) 128 ReLU
L2 (dense) 64 ReLU
L3 (dense) 16 ReLU SoftMax
Model Sequential
Epochs 300
Optimizer RMSprop
Loss function Mean square error
Metrics Mean absolute error
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vehicles, as shown in Figure 7. From the primary visual-
ization of the time-space scenarios, it is observed that the
simulated time-space plots using k-NN and deep learning
algorithms tended to match the field observed time-space
plots reasonably well. However, with random forest and
regression trees, significant variation in the time-space
plots was found. To assess the performance, the combined
mean absolute percentage error (MAPE) was computed
among the vehicle longitudinal and lateral positions for the
three flow levels, and the results are as shown in Table 5.

(e MAPE values show that as the traffic flow level in-
creases, the MAPE for each of the algorithms increases. In
the case of k-NN, the MAPE was well within the range of
10%. For deep learning, MAPE was about 5%. On the other
hand, in the random forest and regression tree case, the
error was 7% to 17%.

Similarly, based on vehicles’ simulated movement,
macroscopic traffic characteristics, such as stream speed,
density, and flow, are computed at every instant time frame
using simulation. As speed, density, and flow are computed
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Figure 5: Simulation framework.
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Figure 6: Snapshot of simulated movement of vehicles under mixed traffic environment.

10 Journal of Advanced Transportation



every immediate time frame, a large amount of data is
developed for developing fundamental macroscopic plots
for traffic conditions ranging from the free-flow regime to
the congested regime. Further to comprehensively develop
the macroscopic plots, it is planned to adopt the Rakha
model [54], as previously it is proven that it works well under
traffic conditions considered in this study. (e model for-
mulation is briefly given by the following:

h � c1 + c3un +
c2

uf − un

, (5)

where h � headway, un � speed of the nth vehicle, and uf

� free-flow speed. c1, c2, c3 � constants.
(e density of the traffic stream k is given by the

following:

k �
1
h

�
1

c1 + c3un + c2/uf − un

, (6)

where

c1 �
uf

kju
2
c

2uc − uf􏼐 􏼑, (7)

c2 �
uf

kju
2
c

uf − uc􏼐 􏼑
2
, (8)

c3 �
1
qc

−
uf

kju
2
c

. (9)

Using Equations (8)–(10), c1, c2 and c3 parameters are
estimated using the simulated macroscopic data and
speed-density plots are developed for each of the algo-
rithms, as shown in Figure 8. Further, speed-flow plots
are also compared with observed speed-flow data plots, as
shown in Figure 9. Additionally, boundary conditions
such as free-flow speed, optimum speed, capacity, and
jam density parameters derived from the macroscopic
plots developed using algorithms are evaluated and are
depicted in Table 6. Similar to microscopic outcomes,
again, it is witnessed that deep learning tends to match
the field conditions in a better manner. It is observed that
with deep learning capacity is found to be around 11,810
pcu/h/direction, free-flow speed 57 kmph, and jam
density as 815 pcu/km/direction. With observed field
conditions having respective values of capacity, free-flow
speed, and jam density as 11,860 pcu/h/direction, 61
kmph, and 810 pcu/km/direction. (is further proves
that the deep learning algorithm is fairly working well
under mixed traffic conditions, contributing a mean
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Figure 7: Time-space plots of the vehicles.

Table 5: Comparison of MAPE (%) in vehicle positions among the
algorithms at the microscopic level.

Flow type
MAPE of positions (%)

k-
NN

Random
forest Regression tree Deep

learning
Flow 1 5.2 7.5 8.2 3.9
Flow 2 7.6 14.5 13.2 4.7
Flow 3 9.7 17.7 16.9 5.2
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absolute percentage error (MAPE) of less than 5%. On
the other hand, in the case of random forest and re-
gression trees, mainly free-flow speeds are higher (about
70 kmph), even the jam densities are overestimated as
1,000 pcu/km/direction, contributing to a MAPE value of
more than 10%. In addition to this, from the shape of
macroscopic plots, it may be further corroborated that
these plots (developed using regression trees and random
forests) tend to deviate significantly from the forms of
macroscopic plots developed using actual field data.
Further, the macroscopic data is generated from the
trajectory data for every time instant from the study
section with both empirical data and the simulation data.
While simulating the congestion at its end times, the
vehicles in that traffic exited with their time stamps.
(ere are no vehicles to enter the section, with vehicles
exiting at lower speeds and no vehicles to enter the road
space. (e density levels in the traffic stream fell near the
end timestamps of the simulation. As a result, fewer
speeds are observed at lower density levels.

MAPE �
1

sample size
􏽘

sample size

position�1

simulatedposition − observedposition
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

observedposition
∗ 100.

(10)

5. Practical Aspects

In the present study, the models’ core logic in learning the
data patterns played a huge part in revealing the models’
performance. For example, the random forest and regression
trees apply ensemble learning methods for learning the data.
Given the multitude of decision trees in handling the data,
the target outcome speeds have deviated. Whereas k-NN
works on the nearest neighbor approach, with less variation
in the dependent variables in the close vicinity, k-NN
performance tends to show better results. On the other hand,
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Figure 8: Macroscopic speed-density plots from different algorithms. (a) k-NN. (b) Random forest. (c) Regression tree. (d) Deep
learning.
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the deep learning model depicts the speed variations given
the internal neural layered structure.

Presently modeling the car-following, lane-changing, and
lateral movements of the vehicles are challenging aspects for
the researchers and practitioners working under mixed traffic
conditions. With the help of the depicted methodology,
simulation modeling can be done with ease. Simultaneously,

the accuracy in the present simulation packages can be im-
proved by embedding the illustrated algorithms. Presently, in
mixed traffic, real trajectory datasets are very scarce in the
present context. As a result, very few driving behavior studies
are attempted in this direction. With the study methodology,
naturalistic trajectory data can be predicted for carrying
driving behavior instincts. Along with that, the vehicle’s
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Figure 9: Macroscopic speed-flow plots from different algorithms. (a) k-NN. (b) Random forest. (c) Regression tree. (d) Deep learning.

Table 6: Performance comparison of observed and predicted traffic flow measures for selected algorithms at the macroscopic level.

Measure Observed
Predicted

k-NN Random forest Regression tree Deep learning
Free-flow speed (km/h) 61 52 69 70 57
Optimum speed (km/h) 41 31 27 21 40
Capacity (pcu/h) 11860 11500 12514 13125 11810
Jam density (pcu/km) 810 912 987 980 815
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driving behavior can be quantified, and the level of aggression
can be checked with the modeled driving data.

Currently, trajectory prediction is one of the significant
hurdles remaining to achieve safe and reliable autonomous
driving. (ere have been many proposed metrics for eval-
uating the quality of forecasts on static datasets. However,
trajectory prediction for autonomous driving inherently
must run in real-time, in conjunction with other driving
pipeline components, such as planning. We have discussed
why algorithm runtime, environment complexity, and fre-
quency of predictions should also be considered when
evaluating a prediction algorithm. To do this, we imple-
mented several state-of-the-art prediction models and
evaluated their behavior in a realistic simulation.

6. Conclusions

In a mixed traffic stream, vehicular movement is primarily
influenced by its surrounding vehicles in the flow.(us, both
longitudinal and lateral movement continuously varied over
a given road space based on the traffic conditions. (is
continuous longitudinal and lateral movement phenomenon
is the principal root cause of the limited performance of the
established car-following and lane-changing models devel-
oped under the perfect lane-discipline environment pre-
vailing under homogeneous traffic conditions.

(e correlation analysis shows that the vehicles’ instanta-
neous longitudinal speeds are reasonably correlated with lateral
gap parameters under mixed traffic conditions. Similarly, lateral
speeds are also correlated with longitudinal distance parameters.
Interestingly, in the case of flow 1, that is, free-flow traffic
conditions, the correlation nature (positive/negative) for certain
parameters has differed compared to flow 2 and flow 3, both for
longitudinal and lateral speeds. (is analysis carried out in this
research work indicates that initially, at free-flow conditions, the
vehicle tends tomove continuously over the road space with less
lateral amplitude. But vehicles tend to find the lateral movement
for escaping the delay in the traffic stream when the vehicles’
longitudinal movement is constrained.

Based on the study, it is well established that by
deploying advanced computational tools such as machine
learning tools, mixed traffic conditions can be modeled with
better accuracy. Based on the analysis conducted here, it is
observed that k-NN and deep learning algorithms mimic the
mixed traffic conditions better with aMAPE of 3 to 9 percent
at microscopic and macroscopic levels.

(e algorithm performances can be attributed to their
core model stability in handling complex data patterns. On
the other hand, with a random forest and regression tree, the
results tend to deviate substantially from the actual field
observed traffic conditions. It can be noted that in both
algorithms, data is trained in a tree assembly. Due to this, the
predefined form (less flexibility) and multiple causal pa-
rameters, the algorithms’ performance is limited.

Further, the methodology adopted in the present work
addresses the challenge of reasonably replicating mixed traffic
conditions and will be useful in modeling such mixed traffic
scenarios effectively to develop viable, practical applications.
Interestingly, these tested algorithms can also be used in traffic

microsimulation tools to replicate mixed traffic and boost
traffic simulation studies in these conditions.

Furthermore, it is inevitable that, due to variation in the
driving behavior, the microscopic traffic simulation studies
are limited under mixed traffic conditions, given the better
accuracy of modeling the mixed traffic conditions using
machine learning algorithms. (ese algorithms can be em-
bedded in simulation tools as a substitute for following be-
havior and lane-changing models and could have a strong
potential to boost the simulation studies from these traffic
conditions (mixed traffic). Adopting this strategy for mod-
eling homogeneous traffic conditions, the simulation models’
accuracy may also be taken to the next level. [55–57].

7. Limitations and the Future Scope

Along with the research findings, the present study has
certain limitations, which can act as the future scope of the
work.

(i) Driving behavior is a stochastic phenomenon. All
the drivers might behave differently by their own
choice, which is highly discrete. Nevertheless, at
times, the machine learning models and the deep
learning model will remain ineffective due to
interdriver variability but observed to perform
better than the present limitations of conventional
models of traffic flow modeling under mixed traffic
conditions.

(ii) In the present work, the models are tested at three
different flow conditions from the study section.
However, the present study framework must be
tested over the study sections with even more dif-
ferent flow conditions with variations in vehicles’
proportion. (is can undoubtedly help in com-
prehensively gauging machine learning and deep
learning models for traffic flow modeling.

(iii) In the present study, the simulation analysis is
performed by generating the vehicles at the same
observed time stamps and the positions and gov-
erning the movement with models. As a result, the
variation in the vehicle’s arrival and the impact due
to the composition of the traffic is not much tested
in the simulation process. However, this can act as
the future scope of the work.
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