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Abstract
Reliable indoor navigation in the presence of dynamic obstacles is an essential capability for mobile
robot deployment. Previous work on robot navigation focuses on expanding the network structure and
hardware setup leading to more complex and costly systems. The accompanying physical demon-
strations are often limited to slow-moving agents and simplistic obstacle configurations. In this thesis,
we develop an end-to-end navigation system with a focus on real-world transferability and produce
a low-cost and customizable robot platform. Instead of expanding the network structure, we rely on
external capabilities such as backward motion, frame stacking, and behavioral reward design to im-
prove performance while preserving transferability. By convention, these methods have been largely
disregarded in previous works on deep reinforcement learning (DRL) for unmanned ground vehicle
(UGV) navigation. We analyze the effect on performance in simulation of different off-policy algorithms
with hyperparameter and reward function configurations. Experimental results show that our agent
can achieve state-of-the-art performance in challenging and unseen simulated environments. In addi-
tion, physical robot demonstrations show that our system is capable of dealing with fast-moving and
unpredictable agents in a real-world environment.
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1
Introduction

1.1. Motivation
The increasing demand for autonomous robot workers calls for reliable and robust robotic navigation
systems. Traditional motion planners and localization methods such as Simultaneous Localization and
Mapping (SLAM) [1], Dynamic Window Approach (DWA) [2], and Adaptive Monte Carlo Localization
(AMCL) [3] depend on manually designed feature extraction and a priori maps of the environment.
These classical methods require extensive parameter tuning and do not generalize well to new envi-
ronments without repeating the tuning process. Multiple independent modules are each responsible
for a single subtask such as vision, planning, or control. Each module tries to optimize for its assigned
subtask without considering the resulting joint performance of the system as a whole. In recent years,
deep learning has become a prevalent approach for autonomous navigation of unmanned ground ve-
hicles (UGVs). With the ability to map raw input directly to steering commands, deep learning systems
can form a single cohesive end-to-end system for motion planning and obstacle avoidance. Classic
machine learning methods such as supervised learning show improvement over traditional methods re-
ducing the amount of hand-tuning and providing better generalizability to new environments. However,
the data set collection process for supervised learning is time-consuming and the resulting performance
is highly dependent on the quality of the data set.

Deep reinforcement learning (DRL) promises to alleviate these shortcomings with the ability to train
models using only direct feedback from the environment without the need for laborious data collec-
tion. DRL has been the go-to approach for the majority of recent autonomous navigation research
works including both LiDAR and vision-based systems. Data is gathered through a trial-and-error pro-
cess which is costly and potentially dangerous in a real-world environment. Therefore, agents are first
trained in simulation with improved efficiency after which the system can be deployed on a physical
robot. However, training in simulation brings along new challenges as contemporary simulators can-
not perfectly mimic the physical world causing the agent to behave differently between simulation and
real environments. The accuracy of a simulation generally decreases as the system becomes more
complex due to the increased number of assumptions and computations involved.

The design factors studied in this thesis involving backwardmotion, full-range vision, frame stacking,
and reward design can be applied to both camera and LiDAR-based approaches. Since it is harder to
conduct this study using a camera-based system we focus solely on LiDAR sensors and leave camera
implementations for future investigation. One of our goals is to show that a differential-drive system
can perform effective navigation using only LiDAR distance measurements and odometry information
thereby limiting system complexity. Limiting complexity reduces the risk of overfitting during training
and facilitates the transfer of policies from simulation to the real world. Cameras are harder to simulate
compared to simple laser distance measurements from LiDAR. Including camera information in the
input can result in more deviations between simulation and reality. Also, by omitting cameras the
system utilizes only a single, inexpensive LiDAR sensor to observe its surroundings keeping costs to
a minimum. Part of the future vision for this work is to create a real-world platform that can be used
for swarm robot experimentation involving a large number of agents making individual robot cost an
important factor.
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Figure 1.1: The robot platform developed for this thesis.

Most previous works on DRL navigation for mobile UGVs do not consider the effect of certain design
decisions and follow common conventions regarding hyperparameters, sensor configuration, reward
design, frame stacking, and the direction of motion [4]. In this work, we question these conventions by
analyzing the effect of these design factors on the navigation performance of a UGV DRL agent. We
compare the results to develop a reliable, mapless, decentralized, autonomous navigation agent with
dynamic obstacle avoidance within our new framework. Our developed framework relies on the Robot
Operating System 2 (ROS2) middleware suite [5] and the Gazebo simulator [6]. Instead of limiting the
robot to forward motion, we expand the sensor range to cover every direction and investigate the us-
ability of backward motion, especially with regard to dynamic obstacle avoidance. We also implement
different frame stacking configurations to analyze their effect on dynamic obstacle avoidance. Fur-
thermore, we try to limit certain undesired behaviors such as ’swaying’ by introducing specific reward
components aimed toward increasing real-world transferability. The resulting system is successfully
demonstrated in unseen environments in simulation and on a self-developed physical mobile robot that
operates fully independently without a centralized entity. The ultimate goal of this thesis is to provide
the research community with design guidelines for developing DRL UGV navigation systems.
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1.2. Research Objectives
The following research questions represent the core objectives that this thesis aims to achieve:

• How can we develop a DRL stack for reliable real-world differential drive UGV navigation while
limiting system complexity?

• To what extent do different hyperparameters, off-policy algorithms, and reward functions influence
training and navigation performance for UGVs?

• How can we design a reward function to restrain undesired behavior to facilitate the transfer to a
physical system?

• What are the effects of frame stacking and backward motion on the overall performance and
dynamic obstacle avoidance capability of the system?

1.3. Contributions
In this thesis we present the following key contributions:

1. We developed an end-to-end framework for DRL-based UGV navigation including three off-policy
DRL algorithms.

2. We investigated the effect of different off-policy algorithms, hyperparameter configurations, and
reward functions for UGV navigation.

3. We examined frame stacking and backward motion for dynamic obstacle avoidance.

4. We demonstrate the system in the real world using a self-developedmobile robot with fast-moving
obstacles and challenging environments to validate the system.

1.4. Thesis Overview
The remainder of the thesis is divided as follows. Chapter 2 discusses the related work on DRL au-
tonomous navigation and dynamic obstacle avoidance. Chapter 3 discusses the problem setting and
gives a system overview describing both the software and hardware. Chapter 4 discusses the results
of experiments in simulation regarding different agent configurations and discusses generalizability.
Chapter 5 discusses frame stacking and backward motion for dynamic obstacle avoidance. Chapter 6
defines the different reward components and discusses their effect on performance and undesired be-
havior. Chapter 7 lays out the results of real-world experiments and showcases the capabilities of the
agent through demonstration. Finally, Chapter 8 concludes the thesis with a summary and discusses
limitations and future directions for the work.



2
Related Work

2.1. Deep Reinforcement Learning Navigation
The navigation problem can generally be described as a point-to-point movement in which the robot
has to travel from start to origin while avoiding obstacles. To simplify the problem, most research has
focused on a two-dimensional setting in which the robot moves along a flat plane.

DeepReinforcement learning (DRL) has beenwidely applied for local navigation and obstacle avoid-
ance because of its strong ability to represent and solve complex nonlinear environments. When com-
pared to classical navigation methods, DRL also has the advantage of being mapless and not needing
to rely on high sensor accuracy. This makes DRL navigation relatively robust and allows it to generalize
to different environments without the need for extensive parameter tuning.

Pfeiffer et al. [7] presented target-based autonomous navigation combining a deep neural network
with a Convolutional Neural Network (CNN) using dense laser scans for supervised learning. Training
data was collected in simulation using the ROS navigation package combined with expert demonstra-
tions. Their robot was able to navigate unknown scenarios but was tested only in smaller environments
and required interventions during real-world evaluation. Moreover, the performance of the agent relied
heavily on the quality of the labeled training sets.

One of the earlier DRL navigation research works stems from 2016 in which Duguleana and Mogan
[8] combined Q-learning with a neural network to form a DQNmotion planner which could output one of
three discrete actions: moving forward, turning left, or turning right. In order to reduce the state space
the environment was divided into eight angular sections. Their work was able to navigate in simple
environments and paved the way for more complex DRL navigation research.

In 2017, Tai et al. [9] developed low-cost mapless DRL-based navigation for mobile robots mapping
sparse LiDAR distance readings to continuous actions. Successful experiments in unseen environ-
ments with static obstacles confirmed the transferability of the model to the real world. However, due
to the low laser count and simplistic training environment, the model shows weak performance on
dynamic obstacles.

Choi et al. [10] replaced the conventional 360° LiDARwith a 90° depth camera and novel Long Short-
Term Memory (LSTM) network which outperforms the wide FOV memoryless agents. In addition, to
close the gap between simulation and the real world the authors implemented dynamics randomization
by adding noise to the scan readings, robot velocity, and control frequency. The trainedmodel inherently
learns these uncertainties and as a result, is more robust to the unpredictable dynamics of the real
world.

Surmann et al. [11] implemented a system to train many DQN agents in parallel using a lightweight
2d simulation each with a unique environment. However, their work does not include dynamic obstacles
and is still not entirely collision-free. Contrary to the authors’ claims, our work shows that Gazebo can
be used to effectively train an autonomous navigation agent with good generalization capabilities.

Nguyen et al. [12] demonstrated that DRL-based LiDAR navigation can also be applied to different
robotic models such as a four-wheel omnidirectional robot. Simulation experiments show that the agent
is able to move between waypoints while avoiding static obstacles.

5
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Weerakoon et al. [13] developed a navigation robot based on 3D LiDAR and elevation maps to
perform reliable trajectory planning in uneven outdoor environments. Their network makes use of a
Convolutional Block Attention Module to identify the regions in the visible environment on which the
robot has reduced stability. While their method achieves a high success rate compared to the dynamic
window approach, the robot still struggles with steep ditches and boundaries between different surfaces
for which it needs to rely on depth sensors and RGB cameras.

2.2. Dynamic Obstacle Avoidance
To achieve better performance on dynamic obstacles, Long et al. [14] developed a PPO-based multi-
robot motion planner which feeds three consecutive frames from a 180° scanner into a CNN network.
In addition, the authors make use of transfer learning between incremental stages to accelerate learn-
ing and achieve better final performance. The resulting system can effectively avoid collisions in a
simulated multi-robot scenario without centralized orchestration. Their work is evaluated by Fan et al.
[15] showing good performance in crowded real-world environments. However, the setup requires
fairly expensive hardware and the robot is not able to move backward to actively escape high-velocity
obstacles.

In 2018, Everett et al. [16] developed a multi-agent GA3C-based collision avoidance algorithm that
does not make any assumptions about the behavior of other agents. Their method makes use of an
LSTM module to deal with the variable number of up to ten other agents in the environment, where
the closest agent will have the biggest influence. In addition, instead of training a single agent the
experiences of multiple agents are collected into the training batch each episode to maximize the joint
reward.

Similarly, Liu et al. [17] incorporated structural RNNs into a PPO-based neural network to deal with
the unpredictability of human trajectories in dense crowds. Two separate RNNs are each designated
to either the spatial or the temporal relation with the nearby humans visible on camera allowing the
agent to reason about their trajectories. Their system outperforms other navigation approaches such
as ORCA and can handle a large number of humans, but is not compared with other deep reinforcement
learning approaches.

Wang et al. [18] demonstrated a novel approach to autonomous navigation using Deep MaxPain, a
modular DRLmethod involving two different policies for reward and punishment akin to the animal brain.
The authors propose a state-value dependent weighting scheme based on a Boltzmann distribution
that automatically mixes the ratio between the two separate signals for the final joint policy, which was
previously done by hand. The scale between the reward weight and punishment weight also determines
the balance between exploration and exploitation. Both LiDAR scans and RGB-camera images are
used as input for the neural network. The robot was trained and simulated both in simulation and on a
real robot achieving safe navigation and outperforming DQN.

It is important to note that with complex environments that involve large continuous obstacles DRL
navigation can get stuck in a local range. To be successful in such environments DRL navigation
requires global information which can be provided by a high-level planner based on more classical
techniques.
Kato et al. [19] developed such a long-range DRL navigation system by combining a local DDQN agent
with a topological map global planner. While the resulting agent was able to successfully navigate
among people in the real world, the speed of pedestrians was limited to 0.5 m/s. Moreover, the use of
a discrete algorithm requires a fixed set of outputs to be defined while the variable speed of pedestrians
requires more flexibility. Similarly, Gao et al. [20] combined TD3 with Probabilistic Road Maps (PRM)
to create a long-range motion planner for indoor environments. Their simulation results confirm that
the trained policy can generalize to larger, unseen environments.

Gao et al. [21] introduced a new method focused on detecting irregular obstacles by fusing laser
scan data and RGB camera data. The fused data is then passed through a newly developed depth
slicing method to obtain pseudo-laser data which encodes both depth information and semantic in-
formation combining the advantages of both. By making use of an LSTM module the field of view
can be reduced to 90° without a significant performance decrease which allows for the use of an in-
expensive depth camera. While the system shows decent performance during evaluation, the tested
environments are relatively simple and contain few dynamic obstacles.

Ejaz et al. [22] improved the training efficiency for depth camera D3QN-based autonomous nav-
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igation by applying layer normalization and injecting Gaussian noise into the fully connected layers.
Layer normalization reduces the computational cost as it prevents domination by gradients from larger
parameters. The factorized Gaussian noise is injected directly into the weights and biases of the lin-
ear layers to stimulate better exploration leading to shorter training times. Their method outperformed
several DQN variants in simulation and was validated on a real robot.

Corsi et al. [23] incorporated domain-expert knowledge into the DRL training process for mapless
navigation to avoid undesired behaviors, such as swaying, and improve performance. This is imple-
mented by connecting scenario-based programming (SBP) constraints to the cost function. Whenever
the agent selects an action that is mapped to a blocked SBP event the cost is increased which al-
lows explicit constraints to be injected directly into the policy optimization process. While their method
achieves good performance in simulation, the SBP events need to be designed manually and require
expert domain knowledge.

In this thesis, we aim to develop a DRL indoor navigation system that provides reliable performance
while also preserving simplicity. Liu et al. [17] and Gao et al. [21] achieved good performance for indoor
navigation but required a complex architecture consisting of multiple modules. Unlike the works by
Everett et al. [16], Fan et al. [15], and Gao et al. [21], we omit the use of a camera to minimize the
simulation-to-reality gap and focus solely on LiDAR distance readings. By making full use of off-policy
algorithms through hyperparameter tuning and reward function customization our agent can achieve a
high success rate without the need for additional modules or a camera. Similarly to Corsi et al. [23],
we aim to enforce specific desired behaviors upon the agent. However, instead of relying on manually
designed SBP constraints, we make use of simple reward components to achieve a similar effect.

The works by Choi et al. [10], Liu et al. [17], and Gao et al. [21] include real-world experiments but
these are limited to slow-moving pedestrians and simple obstacle configurations. Furthermore, their
robots are unable to handle nearby obstacles that have escaped the robot’s field of vision and cannot
deal with obstacles coming from behind. Instead of relying on short-term memory and limited FOV we
equip the robot with 360° LiDAR scans to continually monitor its full surroundings and anticipate obsta-
cles coming from any direction. We also aim to show that having a full range of sensing enables the
robot to safely move backward allowing it to deal with fast-moving obstacles and unexpected situations.
The included real-world demonstrations will show that backward movement allows the robot to react
quickly when an obstacle suddenly appears or changes direction.

2.3. Background
2.3.1. Reinforcement Learning
Reinforcement Learning (RL) is a computational approach to understanding and automating goal-
directed learning and decision-making [24]. The goal of an RL agent is to select a policy that max-
imizes the total reward it receives when interacting with an environment [25]. The training process of
reinforcement learning is often modeled as a Markov decision problem (MDP). An MDP is defined by
the tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝜌0), where:

• 𝑆 denotes the state space, the set of all valid states;

• 𝐴 is the action space, the set of all valid actions;

• 𝑃(𝑠′|𝑠, 𝑎) is a transition probability function that defines the probability of transitioning from the
current state 𝑠 to the next state 𝑠′ after an agent takes action 𝑎;

• 𝑅(𝑠, 𝑎, 𝑠′) is the reward function that defines the immediate reward 𝑟 that the agent observes after
taking action 𝑎 and the environment transitions from 𝑠 to 𝑠′.

• 𝜌0 is the state distribution at the start.

The total return (or reward) starting from time 𝑡 until the end of the interaction between the agent
and its environment is expressed as:

𝐺𝑡 =
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1, (2.1)
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where 𝑟𝑡 is a random variable that models the immediate reward and 𝛾 ∈ [0, 1) is a discount factor that
weights future rewards [26]. Value functions represent the expected return of being in a state or taking a
particular action. The state-value function 𝑣𝜋(𝑠) gives the expected return from state 𝑠 following policy
𝜋:

𝑉𝜋(𝑠) = 𝐸𝜋[𝐺𝑡|𝑠 = 𝑠𝑡] = 𝐸𝜋[
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑠 = 𝑠𝑡] (2.2)

The action-value function (or Q-function) 𝑞𝜋(𝑠, 𝑎) gives the expected return of taking action 𝑎 in state 𝑠
and following policy 𝜋 thereafter. The action-value function can be expressed in terms of the state-value
function using the Bellman equation as follows:

𝑄𝜋(𝑠, 𝑎) = ∑
𝑠′∈𝑆

𝑃(𝑠′|𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋(𝑠′)] (2.3)

The action selection process of an agent is governed by its policy, which in the general stochastic case
yields an action according to a probability distribution over the action space conditioned on a given
state 𝜋(𝑠, 𝑎).

The ultimate goal of the agent is to find the optimal policy 𝜋∗ which is the policy that maximizes
the total cumulative reward for the system. To do so the agent needs to find the optimal state-action
value function that indicates the maximum possible reward for each action given a specific state. The
maximum reward given a specific state is equal to the expected reward when taking the best possible
action from that state:

max
𝑎
𝑄∗(𝑠, 𝑎) = 𝑉∗(𝑠) (2.4)

Finally, combining equation 2.3 and equation 2.4 the optimal state-action value function that the
agent aims to find can be defined as:

𝑄∗(𝑠, 𝑎) = ∑
𝑠′∈𝑆

𝑃(𝑠′|𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾max
𝑎
𝑄∗(𝑠′, 𝑎′)] (2.5)

2.3.2. Off-Policy Algorithms
In recent years numerous different types of DRL algorithms with specific properties and applications
have emerged from research work. These algorithms can be divided into different categories, including
the category of on-policy and off-policy algorithms. on-policy algorithms, such as A3C, TRPO, and
PPO [27], update the Q-function based on the action taken according to the current policy. Off-policy
algorithms, such as DQN, DDPG, and TD3, update the Q-function according to the best possible action
to be taken in the current state, regardless of which action the current policy proposes. With off-policy
algorithms, the experience collection and training process can essentially be decoupled from each
other and run separately. Stored experiences can be used to train the current policy regardless of
which policy they were collected by. This allows the agent to perform exploration while simultaneously
optimizing the current policy. In addition, off-policy algorithms allow for an experience replay buffer so
that previous experiences can be reused resulting in greater sample efficiency [28]. For this reason,
we will consider only the off-policy algorithms which are commonly used for mobile robot navigation [4].

Deep Q-Network Deep Q-network (DQN) is a value-based DRL algorithm that combines the concept
of tabular Q-learning with a deep neural network to allow for problems with much higher complexity [29].
The most important limitation of the original Q-learning method is that every possible state-action pair
needs to be represented as an entry in the Q-table rendering it infeasible for solving complex problems
[30]. Thanks to recent advancements in neural networks this limitation has largely been solved by
replacing the Q-table with a deep neural network which instead approximates the Q-function allowing
for problems with much larger dimensionality. DQN forms the most basic variant of a model-free off-
policy DRL algorithm and we use it as the starting point for the autonomous navigation system.
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Figure 2.1: A schematic overview of the actor-critic pattern present in DDPG, taken from [31].

Deep Deterministic Policy Gradient Deep Deterministic Policy Gradient (DDPG) is a model-free
off-policy actor-critic algorithm designed for continuous environments [32, 33] making it a more suit-
able candidate for autonomous navigation compared to DQN. Unlike DQN, DDPG can output actions
with a continuous range allowing for more precise movement control. Figure 2.1 presents a schematic
diagram for the DDPG algorithm. Instead of a single network, DDPG features two separate neural
networks: a policy (actor) network and a value (critic) network which makes it an actor-critic algorithm.
At each time step, the actor network takes the environment state as input and outputs the most ap-
propriate action according to the current policy. The critic network concatenates the state observation
with the action proposed by the actor to output a Q-value which indicates the quality of that specific
action given the current state. The policy is then optimized according to the value assigned to the cur-
rent state-action pair. However, compared to DQN DDPG requires more tuning of hyperparameters to
achieve optimal performance as will be discussed in Section 4.

Twin Delayed Deep Deterministic Policy Gradient Twin Delayed Deep Deterministic Policy Gra-
dient (TD3) is a subsequent iteration of DDPG which introduces three improvements that address the
Q-values overestimation problem of DDPG which can lead to policy breaking [34]. The first and largest
improvement is the introduction of a second Q-function (critic network) which learns separately from
the first Q-function. At each training step, the smaller of the two Q-values is used as the target in the
Bellman error loss function which reduces the probability of overestimating the Q-value. Secondly,
noise is added to the target actions to smoothen out the Q-function over similar actions, essentially
serving as a regularizer for the algorithm. Without this adjustment, the function approximator error can
cause the critic to develop sharp incorrect peaks for certain actions which the policy will try to exploit
leading to incorrect behavior as the true value of these actions is much lower than estimated. By ex-
plicitly forcing similar actions to have a similar value the negative effect of the function approximator
error can be reduced. Lastly, the policy network is made to update less frequently than the Q-function.
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This effectively allows the Q-function to minimize the approximation error before generating Q-values
to update the policy. The delayed policy update is implemented on top of the target networks which
prevents the model from chasing ever-changing targets that would lead to instability.



3
System overview

The following chapter gives an overview of the theory behind the system and describes the different
tools and methods used for the experiments.

3.1. Local Navigation
The goal of this thesis is to develop a reliable, mapless, and decentralized motion planner for an un-
manned mobile ground vehicle. The robot needs to navigate from the starting location to the goal while
maintaining a safe distance margin to any obstacle. Essentially, we attempt to find the following optimal
translation function:

𝑣𝑡 = 𝑓(𝑜𝑡 , 𝑝𝑡 , 𝑣𝑡−1) (3.1)

where for each time step 𝑡, 𝑜𝑡 is the current set of readings from raw sensor data, 𝑝𝑡 is the current
estimated position of the robot, and 𝑣𝑡−1 is the velocity of the robot during the previous time step. The
model is trained to approximate this optimal translation function and directly maps the input observa-
tions to output action 𝑣𝑡, which holds the next velocity target for the robot.

Observation space The observation space 𝑂𝑁 consists of𝑁 LiDAR distance readings spaced evenly
over 360° around the robot, where 𝑁 is specified for each model. To increase the robustness of the
policy we addGaussian noise to the laser distance readings to reduce the simulation-to-reality gap. The
laser scan inputs are normalized to fall within the range of [0, 1]. The other inputs are normalized to the
range [−1, 1]. Furthermore, the distance and angle to the goal are derived from odometry information
and concatenated with the LiDAR readings. Lastly, the previous linear and angular velocities of the
robot are included to form the entire observation set.

Action space The action space 𝐴 is a two-dimensional vector that defines both the desired linear
velocity and angular velocity of the robot at each time step. Before being sent to the motor control unit,
both output velocities are fed through a tanh cell to obtain the normalized range [−1, 1]. Depending
on the model configuration, the linear velocity ranges either from zero velocity to maximum forward
velocity or from maximum backward velocity to maximum forward velocity. The angular velocity always
ranges from maximum clockwise velocity to maximum counter-clockwise velocity.

3.2. Method
This section describes the tools and methods used for the experiments in simulation and also discusses
the system architecture as a whole.

3.2.1. Simulator
Agents are trained in simulation to largely automate and accelerate the training process without the risk
of damaging equipment. However, contemporary simulators cannot perfectly model the complexity of

11
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Figure 3.1: System architecture for the navigation stack. The nodes and communication layer are
implemented using ROS2. The DRL environment node provides an interface to facilitate switching
between the Gazebo simulation and the physical robot.

the physical properties of reality and thus introduce discrepancies leading to the simulation-to-reality
gap. [35]. The simulation-to-reality gap can be partially amended by introducing noise to the simulation
to lower the dependency of the policy on the precision of input data. Selecting a simulator is a non-trivial
decision as there is generally a trade-off between performance, accuracy, and flexibility. The simulation
experiments in this thesis are performed using the Gazebo simulator[6], which is also the most frequent
choice among the prior works cited in Chapter 2. Gazebo is a popular open-source 3D robotic simulator
with a robust physics engine and wide support for ROS, mobile robots, and optical sensors. For our use
case, Gazebo offers the best balance between performance, accuracy, and speed of implementation.

3.2.2. Environment
Four different training and testing scenarios were built as showcased in Figure 3.2. The first scenario
involves an area of approximately 4.2×4.2meters surrounded by walls with no dynamic obstacles and
mainly serves as a control scenario. The second scenario involves no static obstacles other than the
perimeter walls and six dynamic obstacles to test how well an agent can deal with dynamic obstacles.
The third scenario involves seven additional static walls placed across the area and two dynamic ob-
stacles and forms the main scenario used during the majority of the experiments as it provides a good
balance in difficulty. The fourth and last scenario is similar to the third scenario with four additional dy-
namic obstacles. The last scenario functions as the final and most difficult test for the best-performing
policies. Goal positions are designated randomly from valid locations with a sufficient distance margin
to any obstacle.

3.2.3. Training Setup
The policies are implemented using PyTorch and trained on a computer equipped with an AMDRyzen 9
5900HX and CUDA-enabled RTX 3050 ti GPU for approximately 40 hours. During the training process,
the outcome per episode and the average reward per episode are recorded and visualized in a graph.

Each trained policy is evaluated for 100 episodes on the same stage it was trained on unless spec-
ified otherwise, during which the following evaluation metrics are collected for all of the experiments:

• Success Rate - The percentage of trials in which the robot reaches the goal.

• Collision (Static) - The percentage of trials in which the robot collides with a static obstacle.
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Figure 3.2: The different stages used during training and evaluation in simulation, TL: Stage 1, no
obstacles (4.2 × 4.2 m), TR: Stage 2, six dynamic obstacles (4.2 × 4.2 m), BL: Stage 3, Static and two
dynamic obstacles (6 × 6 m), BR: Stage 4, Static and six dynamic obstacles (6 × 6 m).

• Collision (Dynamic) -The percentage of trials in which the robot collides with a dynamic obstacle.

• Timeout - The percentage of trials in which none of the other outcomes happen within the spec-
ified time limit.

• Average Distance - The traveled distance in meters averaged over all successful trials.

• Average time - The elapsed time in seconds from start to goal averaged over all successful trials.

For some of the experiments, the following additional metric is also collected:

• Sway Index - A measure of how frequently the robot changes its angular velocity output possibly
causing the robot to sway.

3.3. Physical System
As part of the DRL autonomous navigation platform, an actual physical robot was developed which
can employ the policies trained in simulation to perform real-world autonomous navigation. This sec-
tion gives an overview of the hardware configuration for the robot. The robot is designed with two key
characteristics in mind: cost and customizability. The aim is to create an inexpensive robot while main-
taining the ability to scale its computational capabilities according to the demands of the task at hand.
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Figure 3.3: An overview of the robot hardware.

In the following section, we elaborate on the details of the hardware description.

Mainboard As the main controller for our system, we selected the Jetson Nano board developed by
Nvidia running Linux Ubuntu 20.04 as its operating system. The Jetson Nano features a dedicated
128-core Maxwell GPU with the capability to run neural networks efficiently while preserving battery
power. The board possesses sufficient computational power to run the trained DRL policies and is
available for less than €100 per unit. In addition to being affordable, the Jetson module gives a lot of
flexibility as the board can easily be swapped out for any of the other modules from the Nvidia Jetson
family.

LiDAR The current setup is equipped with the S1 RPLIDAR laser range scanner from Slamtec. The
S1 RPLIDAR offers up to 720 scan samples distributed over 360° around the robot at a maximum
frequency of up to 15 Hz. While the S1 RPLIDAR is relatively costly at approximately €600, it can easily
be exchanged for one of the cheaper liDAR variants from Slamtec such as the RPLIDAR A1 which is
sold at €100. While the less expensive RPLIDARs are less performant, they all offer a sufficient range,
accuracy, and sampling frequency for indoor navigation. For our application, we only require a total of
40 scan samples at a sampling frequency of 10 Hz with a maximum range of 3.5 meters. We modified
the RPLIDAR driver software so that only the 40 samples that are of interest are given to reduce the
overall latency of the system.

Low-level controller In order to simplify the design process an Arduino Mega 2560 is added as a
second controller for the low-level functions of the robot. The Arduino mega handles the PWM signals
for motor control and takes care of the interrupt handling for the tachometers. To receive motor control
commands and forward the tachometer counts the Arduino is connected to the Jetson Nano through a
UART channel over which ROS messages are sent using the Rosserial Arduino ROS package.

Motors and tachometer For the motors, we use two Chihai Gm25-370 300 RPM DC gear motors
with an integrated interrupt-based magnetic encoder that functions as a tachometer. The tachometers
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provide odometry to the robot based on kinematic calculations as seen in [36]. The motors are con-
nected to the rest of the system through an L298N DC motor driver module which regulates the speed
and direction of the motors.

Power and Chassis The entire system is powered by three rechargeable 4.2 V Li-Po batteries which
are connected to two DC-DC boost converter modules to provide a 5V power source for the Jetson
Nano and a 12V power source for the Arduino Mega and L298N motor driver module. The plastic
chassis and frame on top of which the LiDAR is mounted are produced using a 3D printer.



4
Navigation Performance

This section will present the results of the simulation experiments concerning different hyperparameter
and laser scan configurations to showcase the effect on navigation performance. Furthermore, the
different off-policy algorithms are compared and the best-performing policy is evaluated in different
stages to show the generalization capability of the system.

Figure 4.1: The initial network structure for the base DDPG model is taken from [9]. The dense layers
represent fully connected linear layers.

4.1. Hyperparameter Tuning
As DDPG forms the basis for most off-policy actor-critic algorithms, we start our experiments using the
DDPG algorithm to evaluate and select hyperparameter values that are common to all actor-critic algo-
rithms. While finding the exact optimal hyperparameter configuration is difficult and forms a research
field of its own [37, 38, 39], by heuristically selecting between extreme values and evaluating the effect
on the agent’s navigation performance we can achieve a sufficiently high success rate. We gradually
adjust each parameter based on the preceding results and then retrain the policy under the same con-
ditions. Figure 4.1 presents the initial structure for the actor and critic networks which is based on the
work by [9]. Table 4.1 shows the results of the first experiment conducted in stage 3 with the DDPG hy-
perparameter configurations and corresponding evaluation metrics. In addition, Figure 4.2 shows the

16
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Table 4.1: Turtlebot3 navigation performance for DDPG configurations in stage 3.

Training Evaluation

Model BSa RB b Discount LRc Success CSd CDe TO f Avg. Dist Avg. Time Avg. Speed
DDPG 1 g 128 1e+5 0.99 1e-3 100 0 0 0 3.45 20.11 0.78
DDPG 1 128 1e+5 0.99 1e-3 67 31 0 2 3.44 16.22 0.96
DDPG 2 128 1e+6 0.99 1e-3 75 13 7 5 3.94 17.12 0.99
DDPG 3 512 1e+6 0.99 1e-3 92 1 6 1 3.54 16.11 0.99
DDPG 4 1024 1e+6 0.99 1e-3 97 0 3 0 3.31 16.35 0.92
DDPG 5 1024 1e+6 0.99 3e-4 99 0 1 0 3.02 15.67 0.88
DDPG 6 1024 1e+6 0.99 1e-4 94 0 5 1 4.05 18.97 0.97
DDPG 7 1024 1e+6 0.999 3e-4 88 1 11 0 4.94 21.13 1.00

aBatch Size
bReplay Buffer Size
cLearning Rate
dCollision Static
eCollision Dynamic
fTimeout
gEvaluated in stage 1

reward scores over time during training averaged over 100 episodes. The initial parameters for model
DDPG 0 were based upon [9] and the baseline implementations by OpenAI 1. First, DDPG 0 is evalu-
ated in stage 1 with no obstacles as a control condition where it successfully reaches the goal in 100%
of the trials, confirming the expected behavior. Next, the model is evaluated in stage 3 containing static
and dynamic obstacles on which it was trained resulting in only a 69% success rate with most failures
being static collisions. Evidently, the current configuration is not sufficient for our environment setup
and further investigation of the hyperparameters is needed to improve performance. We increased the
laser scan density from 10 to 40 individual samples for DDPG 1 since the laser scan samples were too
sparse for the initial configuration, impeding the ability of the agent to detect obstacles on time. While
this adjustment initially gives no improvement, we hypothesize that as the other hyperparameters be-
come more well-tuned the increase in scan samples will start to take effect on performance as will be
discussed in this section.

Replay Buffer Size Looking at the reward graph for DDPG 1 in Figure 4.2 we see that while the agent
is able to learn a viable policy it remains unstable over the entire training session with large oscillations
and drops in the reward curve. The first large drop in performance appears approximately around the
1000 episodes mark which is approximately the number of episodes it takes for the experience replay
buffer to fill up. Once the replay buffer is full old experiences will start to be ejected and replaced by
newer entries. When the size of the replay buffer is too small the policy will forget important previous
experiences and use only themost recent data which can cause overfitting andmay lead to catastrophic
forgetting [25]. Therefore, we increase the size of the replay buffer for DDPG 2 in an attempt to stabilize
the learning process and prevent large relapses in the policy. Figure 4.2 suggests that the increase in
buffer size has a positive effect on training stability as the oscillations and drops in the reward curve
for DDPG 2 are less severe and the overall reward is higher. Table 4.1 confirms the improvement in
performance as the number of static collisions is reduced significantly for DDPG 2. We do not increase
the buffer size any further as it should be limited to reduce the probability of storing irrelevant expe-
riences. A larger replay buffer stores older experiences from a previous and usually less performant
iteration of the policy when training is stable. Experiences that are too old provide little value ultimately
slowing down the training process.

1https://github.com/openai/baselines
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Figure 4.2: The average reward per 100 episodes for different batch size and replay buffer size con-
figurations in stage 3.

Batch Size The batch size is another important hyperparameter that can affect both the speed and
stability of the training process. A larger batch size increases the available computational parallelism,
increasing the number of samples processed per second, and gives a better estimate of the error
gradient as more samples are processed per step. [40, 41]. Consequently, larger batch sizes generally
lead to better optima of the objective function and better stability at the cost of slower convergence as
more samples need to be processed. However, larger batch sizes can also lead to poor generalization,
carry a larger memory footprint and require additional processing power to limit the processing time per
step and keep the training process running smoothly. In their work from 2017 Tai et al. [9] configured a
batch size of 128 per training step. Since then, the computational capacity of machines has improved
and the software libraries for machine learning have been further optimized making it worthwhile to
explore larger batch sizes for improved stability and better convergence. Figure 4.2 shows the average
reward during training for the evaluated batch sizes. From the graph, it becomes evident that a higher
batch size significantly reduces the amplitude of fluctuations in the reward curve improving the stability
of the training process. With the highest batch size, DDPG 4 results in a better performance and reward
curve compared to the other two configurations as it processes more samples per timestep guiding it
toward better optima. We leave the batch size fixed at 1024 for the remaining experiments.

Learning Rate Lastly, the learning rate and tau parameter are two more important similar factors
that affect stability and training speed. It is generally recommended to start with a larger learning rate
and gradually decrease it until the best result is achieved [40]. With a larger learning rate, the model
learns faster but might converge early to a suboptimal solution or not converge at all, whereas a smaller
learning rate can provide more stability at the cost of longer training times. Upon observing the reward
graph for the different learning rates in Figure 4.3 it does not become immediately clear which model
performs best as some of the models feature a downward trend in the reward graph later on in the
training process. However, DDPG 5 appears to provide the most stable result and also reaches the
highest average reward. A lower learning rate may eventually recover and lead to better optima given
more training time. However, part of the objective is to find a balance between performance and training
time so we limit the training duration to 40 hours. During the evaluation, DDPG 4 achieved a success
rate of 97%. Lowering the learning rate seems to give a slightly more optimal solution for DDPG 5
with a success rate of 99% and lower averages for distance and time. Decreasing the learning rate
yet again for DDPG 6 gives no further improvement in performance, hence the learning rate and tau
parameters are fixed at 3e−4.
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Figure 4.3: The average reward per 100 episodes for different learning rates in stage 3.

4.2. LiDAR Configuration
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Figure 4.4: The average reward per 100 episodes for different DDPG laser scan densities in stage 3.

After establishing a set of hyperparameters with an acceptable performance we turn our attention
to the number of scan samples and their effect on obstacle avoidance. Table 4.2 shows the evaluation
results for several DDPG policies with different laser scan densities tested in stage 3. The laser scans
are distributed evenly across 360° around the robot. For the current environment, a configuration with
less than 40 scan samples severely deteriorates the performance of the agent. This can be explained
by the shapes and dimensions of the obstacles that are used in the simulation. Without a high enough
scan density, the agent is not able to reliably detect corners of the static obstacles often resulting in a
collision when the agent attempts to maneuver around the endpoints of a wall. In addition, with lower
scan densities dynamic obstacles might fall in between two adjacent scan points rendering them unde-
tectable until in close proximity to the agent making it harder to perform obstacle avoidance. At 40 laser
scan samples, the agent can detect obstacles early enough to avoid collisions and successfully navi-
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Table 4.2: Turtlebot3 navigation performance for DDPG configurations in simulation stage 3.

Training Evaluation
Model Scans Success CS CD TO Avg. Dist Avg. Time
s10 10 44 36 20 0 2.11 13.51
s20 20 54 37 9 0 2.62 14.82
s40 40 94 0 5 1 4.05 19.13
s120 120 91 0 9 0 4.32 20.46
s360 360 91 1 7 1 4.63 21.86
s720 720 87 9 3 1 4.22 19.56

gate the environment resulting in a 94% success rate during evaluation. For the current environment
setting, configurations with more than 40 scan samples do not seem to benefit the agent anymore re-
sulting in either no significant difference or slightly worse performance. Configurations with fewer scan
samples reduce the number of inputs for the neural network which simplifies the learned policy. Out of
the best-performing models, s40 also gives the best performance in terms of average distance and time
per episode. Figure 4.4 shows the average reward graphs for the DDPG models with different scan
densities, which are in line with the evaluation results. Around the 1500 episodes mark the difference
in performance starts to become evident as the rewards for policies with lower scan density policies
stagnate. The other policies follow a fairly similar curve with the 40-sample configuration reaching the
highest average reward. Note that the minimum detectable obstacle size is dependent on the number
of scan samples. With the current configuration, some smaller obstacles such as table legs might not
be detected when the robot is still far away. Other environment settings with differently sized obsta-
cles might require more or less scan sample density to achieve optimal performance. However, given
that additional laser scans seem to give no significant benefit for our current environment setting, we
continue with the 40-scan sample configuration to keep the network input dimensions to a minimum.

4.3. Algorithm Selection

Table 4.3: Navigation performance for different DRL algorithms in stage 4

Algorithm Success CS CD TO Avg. Dist Avg. Time Speed
DQN 79 1 10 10 4.01 20.27 0.90
DDPG 94 0 6 0 3.93 19.93 0.90
TD3 97 0 2 1 4.83 25.07 0.88

In order to determine which off-policy DRL algorithm is best suited for our application we train a
separate policy for DQN, DDPG, and TD3 with the same configuration and compare the results. Table
4.3 shows the evaluation results for the three different algorithms. As expected DQN performs worst
as it is designed for discrete action spaces while the navigation problem corresponds to a continuous
domain. DDPG achieves a much higher success rate as it is meant for continuous action spaces and
allows for finer movement control resulting in fewer dynamic collisions and timeouts. Unsurprisingly,
TD3 achieves the highest success rate as it is essentially an improved iteration of DDPG. However,
TD3 does take a slightly more conservative route as it has a lower speed and travels a greater distance
on average. Figure 4.5 shows the reward curve for each of the algorithms collected during training.
The reward curves correspond to the evaluation results with TD3 achieving the highest overall score,
although the difference with DDPG is small. DQN training also seems to be slightly more unstable
as the average reward drops significantly at some points. We choose TD3 as the algorithm for the
remaining experiments given that it shows the best performance without increasing training time.
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Figure 4.5: The average reward per 100 episodes for different DRL algorithms in stage 4.

4.4. Generalization

Table 4.4: Navigation performance for the best-performing TD3 policy trained in stage 4 and tested in
different stages.

Stage Success CS CD TO Avg. Dist Avg. Time Avg. Speed
4 a 100 0 0 0 3.90 19.00 0.93
4 97 0 2 1 4.83 25.07 0.88
2 94 0 5 1 2.95 14.53 0.92
5 94 1 0 5 11.78 55.51 0.96

aWith no dynamic obstacles

After completing the reward function design and tuning the hyperparameters, the best-performing
TD3 policy is evaluated on an unseen scenario with different dimensions and features to validate the
generalizability of the model. Table 4.4 shows the performance of the TD3 policy in different scenarios.
stage 5 (Figure 4.6) simulates a realistic house environment in an area of 15 × 10 meters, significantly
larger than the training stage with 6×6meters. In addition, stage 5 features multiple differently shaped
static obstacles that resemble common household objects. During the evaluation, the policy achieved
a 94% success rate in stage 5 where out of all failed trials 82% were terminated due to timeout and
only 18% of the total failures were caused by a collision. The relatively high number of timeouts can
be explained by the fact that stage 5 spans a larger area and contains longer contiguous obstacles,
occasionally causing the robot to get trapped in a loop continuously traversing the same area. As the
robot has no memory capability it does not recognize the repeating trajectory causing it to repeat the
same circular route until timeout. Also, during training, the range of the LiDAR sensor is limited to a
maximum of 3.5 meters which is rarely exceeded in the training stage while in stage 5 distance readings
often reach larger values. Therefore, additional work is required to ensure optimal performance in larger
environments which is beyond the scope of this thesis.
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Figure 4.6: Stage 5 (15 × 10 m) features larger dimensions than seen during training to verify the
generalizability of the agent.



5
Dealing with Dynamic Obstacles

In the previous section, we showed that the trained policy can reach a success rate of up to 97% in stage
3. According to the evaluation results, the majority of the remaining failures are caused by collisions
with dynamic obstacles. In fact, Table 4.4 shows that the TD3 policy can achieve a 100% success rate
in stage 2 with all dynamic obstacles removed. Note that static collisions are more likely to occur in
scenarios that include dynamic obstacles as they may cause the robot to steer into static obstacles
as the agent tries to avoid one. We reason that dynamic obstacles pose a more difficult challenge for
obstacle avoidance as they require the agent to have a temporal understanding of the environment to
consider the trajectory of dynamic obstacles. Observing the agent in action indeed suggested that the
dynamic collisions are likely caused by the fact that the agent has no way to process the relationship
between subsequent scan frames. Since the agent only processes a single individual frame of LiDAR
distance readings per step it is unable to distinguish between moving and static obstacles and cannot
deduce the velocity and direction in which a dynamic obstacle is moving. In addition, interactions with
dynamic obstacles generally occur less frequently than interactions with static obstacles meaning the
policy is more biased toward dealing with static obstacles. As a result, when moving toward a dynamic
obstacle the agent will, similarly to how it avoids the static walls, steer away from the obstacle only at
the last moment. While this strategy works for static obstacles, dynamic obstacles require a different
strategy as the added velocity gives the agent less time to respond increasing the probability of collision.
Therefore, we move from stage 3 to stage 4 (3.2) which adds four additional dynamic obstacles to
increase the number of interactions with dynamic obstacles and gear the policy more toward dynamic
obstacle avoidance.

In an attempt to reduce the number of dynamic collisions, we investigate different methods and
evaluate their effect on dynamic obstacle avoidance and overall performance as discussed below.

5.1. Frame Stacking

Table 5.1: Navigation performance for different DRL stacking algorithms in stage 2.

Training Evaluation
Model Stack Depth Frame Skip Success CS CD TO Avg. Dist Avg. Time Speed
TD3 S1 1 0 94 0 5 1 2.95 14.53 0.92s
TD3 S2 3 0 96 0 3 1 3.23 16.15 0.91
TD3 S3 3 3 93 1 5 1 2.90 14.40 0.92
TD3 S4 5 0 96 0 3 1 3.11 15.58 0.91
TD3 S5 5 5 93 0 6 1 3.04 15.09 0.92
TD3 S6 10 0 95 0 2 3 3.46 17.67 0.89

23
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Figure 5.1: Frame stacking enables the agent to distinguish between static obstacles (green) and
oncoming dynamic obstacles (red).

With frame stacking the agent processes the last 𝑠𝑑 observation sets at every step instead of only
the current observation, where 𝑠𝑑 is known as the stack depth. This is achieved by multiplying the
input dimension by the stack depth resulting in a total input size of 𝑂 ∗ 𝑠𝑑 = 𝑂𝑑. Essentially, this gives
the agent the ability to develop short-term memory and approximate the velocity of visible obstacles.
By combining the recent history of velocity commands and scan frames the agent can compare the
different values and detect how fast an obstacle is moving and in which direction. This enables the
agent to distinguish between static and moving obstacles as the velocity of a moving obstacle influ-
ences the distance readings as shown in Figure 5.1. Frame stacking has been used before in DRL
navigation systems [14, 15, 21] for UGVs and other applications [29, 42]. However, to the best of our
knowledge, the effect of frame stacking on navigation performance and collision avoidance has not
been extensively studied before. Figure 5.2 illustrates how frame stacking is implemented and how
multiple frames are used as input for the neural network.

5.2. Frame Stepping
The upper range for 𝑠𝑑 is limited by computational capabilities as the input dimension grows propor-
tionally to 𝑠𝑑. However, with small values for 𝑠𝑑 the subsequent frames will be very near to each other
in time providing little valuable information as the environment has shifted only minimally. A simple
way to increase the time range in which the agent can observe each step is to set a larger 𝑠𝑑. How-
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Figure 5.2: Frame skipping and frame stepping depicted with 𝑠𝑑 = 3 and 𝑠𝜖 = 3.

ever, as 𝑠𝑑 increases the number of input nodes to the network grows which can quickly increase the
complexity of the model making it more difficult to train. Another approach is to insert an artificial delay
to ensure enough time has passed in between steps, but this would significantly increase the reac-
tion time of the agent. Frame stepping enables the agent to insert any amount of time in between
two subsequent input frames, without heavily affecting the model complexity or responsiveness of the
agent. By keeping an active history of a number of the most recent observations, the agent can recall
and concatenate any of the samples stored in memory with the most recent observation. Figure 5.2
shows how frame stepping is implemented for our system using a rolling buffer principle. At every
timestep 𝑡 the robot takes 𝑠𝑑 observations at a step interval 𝑠𝜖 as input, which gives the observation
set 𝑂𝑡 , 𝑂𝑡−(𝑠𝜖)∗1, 𝑂𝑡−(𝑠𝜖)∗2, ..., 𝑂𝑡−(𝑠𝜖)∗(𝑠𝑑−1). This is achieved by storing the last 𝑁 = 𝑠𝜖 ∗ 𝑠𝑑 observations
in a FIFO buffer of size 𝐵 = 𝑂𝑛 ∗ 𝑠𝑑 ∗ 𝑠𝜖 that is updated with the most recent observation at every time
step. Effectively, this enables the agent to look back in time for 𝑠𝑑 frames at steps of exactly 𝑠𝜖 frames
at every time step without the need for an artificial delay.

5.3. Simulation Results
To analyze the effect of frame stacking and frame stepping on dynamic obstacle avoidance, we train
multiple policies with different frame stacking/stepping configurations in stage 2 which contains only
dynamic obstacles to ensure that static obstacles do not influence the result. Table 5.1 shows the
evaluation results for the different frame stacking and frame stepping configurations. The results in-
dicate that policies with frame stacking provide a slight benefit over non-stacking policies which is in
line with our expectations. The short history of scan observations and velocity commands allows the
agent to better anticipate the trajectory of moving obstacles and navigate around them. Contrarily, em-
ploying frame stepping on top of frame stacking did not seem to improve dynamic obstacle avoidance.
A possible explanation is that the time in between steps is already sufficiently large in which case the
additional time in between consecutive input frames delays the reaction speed of the agent. While
frame stepping did not seem to provide any benefit for our training setup, it can still improve frame
stacking performance on more powerful machines which may leave less processing time in between
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Figure 5.3: The average reward per 100 episodes for different frame stacking/stepping configurations
in stage 2.

steps. Looking at the corresponding reward graph in Figure 5.3 we see that the non-stacking model
learns slower and scores lower than most other models, but eventually reaches a similar reward value
as TD3 S2. The difference in average reward between the different stacking policies is relatively small,
with TD3 S4 performing slightly better than the other policies. This is also what we see in the evalua-
tion results where in terms of the average distance and time per trial TD3 S4 navigates more efficiently
compared to TD3 S2 with a similar success rate. In both cases, TD3 S2 and TD3 S4 performed bet-
ter than their counterparts with frame stepping. Lastly, increasing the stack depth beyond five frames
for TD3 S6 resulted in slightly worse performance, both in terms of success rate and path efficiency.
TD3 S6 also suffered more from timeout failures which can likely be explained by the larger number
of frames being processed as input making it harder for the agent to extract the correct information. A
larger stack depth results in each frame being retained in memory for a longer period, including frames
in which obstacles were near. This may cause the agent to take a more conservative and less optimal
route as the presence of obstacles influences the network input over a larger number of steps.

5.4. Backward Motion
In the majority of previous works on DRL UGV navigation, the agent is restricted to moving in the
forward direction only and unable to move backward [4]. However, the ability to move backward can
significantly improve the ability of the robot to avoid obstacles, especially dynamic obstacles. The main
argument for omitting backward motion is that it simplifies the model due to two factors: 1. The LiDAR
scan only needs to cover the front half portion of the robot. 2. The agent does not need to learn how to
effectively employ action commands for backward motion. However, we argue that backward motion
can provide a real benefit to navigation performance, especially in situations where the robot needs
to react quickly as depicted in Figure 7.3 where an obstacle suddenly approaches from around the
corner and the robot may not have sufficient time to maneuver it. In such a scenario the only option
is to quickly move backward until the collision can be averted. Table 5.2 highlights the difference in
performance for the same configuration except with backward motion both disabled and enabled once.
While both policies are able to achieve a near 100% success rate, the policy with backward motion
enabled performed slightly better and did not suffer from a single collision. Backward motion enables
the agent to avoid a collision in almost every situation although timeouts can still occur. The increase
in success rate does come at a cost as the backward-enabled (BE) agent travels longer on average.
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Figure 5.4: The average reward per 100 episodes showing the effect of backward motion in stage 4.

The increase in distance traveled and episode duration are not surprising as the agent generally moves
backward to avoid an obstacle and deviates from the path to the goal. Afterward, this deviation needs
to be corrected resulting in a longer path whereas other agents would have simply crashed. Looking
at the reward graph in Figure 5.4 it appears that the BE policy learns faster than its counterpart at the
beginning of training. This could be explained by the fact that the backward-disabled (BD) policy has
to first learn how to get around obstacles without moving backward which is a more complex behavior.
Although the BE policy gives better results during evaluation, both policies eventually seem to converge
to a similar reward value. The total reward per episode is based on multiple factors and decreases in
value as time progresses. The higher success rate is likely compensated by the increased distance
and time required for the BE, resulting in a similar reward curve. However, since the success rate
and collision count are the most important metrics for this study the BE agent is the preferred agent. In
addition, Using backward motion the agent is able to learn more complex maneuvers. Since the reward
component for linear motion remains unchanged (equation 6.5) the robot is discouraged from moving
in the backward direction unless necessary to avoid a collision. This gives rise to new behaviors such
as a turning maneuver similar to a three-point turn commonly seen in real-world driving to reverse the
heading direction. One of the challenges of training the agent with backward motion enabled is that
during the observation stage taking purely random actions will result in the agent oscillating around its
starting position as it alternates forward and backward movement commands resulting in low-quality
replay buffer samples. Therefore, we bias the random linear actions toward forward movement to
generate higher-quality samples as the robot interacts with a larger part of the environment. The effect
of backward motion will also be demonstrated on the physical robot in the corresponding section.

Finally, we compare the simulation results of our best-performing agent with different mapless in-
door navigation algorithms that were evaluated in a similar setting. Figure 5.4 shows the success rates
for each of these algorithms. The baseline TD3 is implemented by Gao et al. [20] as a local planner
for their long-range navigation system. GRainbnow [43] combines Genetic Algorithms with DRL to re-
duce the sensitivity to hyperparameter tuning. The same authors have also evaluated the standard
Rainbow method [44] which achieved the lowest score out of all algorithms. Corsi et al. [23] tested
their SBP-based DRL algorithm and compared it with a standard PPO implementation. All of these
algorithms were evaluated over 100 episodes using the Turtlebot3 simulation platform. Our implemen-
tation with backward motion achieves the highest success rate out of the tested algorithms. Although
the evaluated environments are not completely identical, our environment includes both dense static
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Table 5.2: The effect of backward motion on navigation performance in stage 4.

Training Evaluation
Model BS RB Discount LR Tau Success CS CD TO Avg. Dist Avg. Time Speed
TD3 BD a 1024 1e+6 0.99 3e-4 3e-4 97 0 2 1 4.83 25.07 0.88
TD3 BE b 1024 1e+6 0.99 3e-4 3e-4 99 0 0 1 5.57 27.44 0.92

aBackward Disabled
bBackward Enabled

and dynamic obstacles and is generally more challenging than the environments in the other works
presented in Figure 5.4. Furthermore, our system shows consistent performance in a variety of envi-
ronments with different characteristics. Therefore, it is reasonable to assume that the performance of
our algorithm will not decrease significantly in the slightly different environments tested by the other
papers.
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Figure 5.5: The success rate of different mapless navigation algorithms in simulation from the following
papers: Rainbow [44], Baseline TD3 [20], GRainbow [43], SBP-DRL [23].



6
Reward Design and Behavior Shaping

The following section will describe a set of reward components and their corresponding variants which
can be combined into a composite reward function. The goal for each of the reward components is to
facilitate the training process or to restrain certain undesired behavior. The resulting composite reward
functions are evaluated and compared in simulation. The goal is to find an efficient reward function
that learns a satisfactory policy within a reasonable amount of training time.

6.1. Reward Components
A well-designed reward function is essential for achieving good navigation performance within a fea-
sible training time [45]. In an environment where rewards are sparse, extra steps need to be taken to
accelerate the learning process of the agent, especially at the start of training [46]. Through reward
shaping [47] the agent is given incremental rewards with every step guiding it toward the final goal.
Although reward shaping usually requires hand-crafted solutions based on expert knowledge, it is still
widely used in recent works as even simple rules can significantly boost performance.

The autonomous navigation problem generally suffers from the sparse reward problem as the only
outcomes associated with a true reward are reaching the goal or ending in a collision with many steps
in between. The majority of works on autonomous navigation discussed in the related work make use
of a composite reward function consisting of several combined reward components [4] in order to guide
the agent toward the goal. By combining different reward components and adjusting the corresponding
scaling factors different types of behavior can be elicited from the agent. For example, penalizing the
agent for repeatedly adjusting its steering direction can reduce the amount of swaying and smoothen
the trajectories. In this section, we analyze the different reward components often used for 2d LiDAR
autonomous navigation and their effect on the training time and performance of the agent.

Distance The most common auxiliary reward component is based on the distance from the agent
to the goal. 𝑑𝑡 represents the distance from the agent to the goal at time step 𝑡. One version of this
component is defined by the difference in distance to the goal between two consecutive time steps,
rewarding the agent for moving closer to the goal, as seen in the works by Tai et al. [9] and Long et al.
[14]. The difference is usually multiplied by a scaling factor 𝑐𝑑 to keep the overall reward balanced and
account for differences in step frequency between machines. This results in the following formula:

𝑟𝑑1 = 𝑐𝑑 ∗ (𝑑𝑡 − 𝑑𝑡−1) (6.1)

Note that here the bounds of 𝑟𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 are defined by the maximum velocity of the robot and 𝑐𝑑. This
can make it difficult to select the optimal value for 𝑐𝑑 to find suitable reward limits.

For this reason, we propose a normalized version that takes into account the maximum amount
of distance the agent could have covered given the time difference 𝑡𝑖 − 𝑡𝑖−1. Let 𝑣𝑙𝑚𝑎𝑥 denote the
maximum linear speed of the robot:

𝑟𝑑2 = 𝑐𝑑 ∗
𝑑𝑡 − 𝑑𝑡−1

𝑣𝑙𝑚𝑎𝑥 ∗ (𝑡𝑖 − 𝑡𝑖−1)
(6.2)

29
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Using this approach the fraction part of the formula is bound to the range [−1, 1], effectively limiting
the range of the entire component to [−𝑐𝑑 , 𝑐𝑑] which facilitates clear bound selection in proportion to
other components.

Other approaches consider only the current distance and initial distance to the goal 𝑑𝑡 without taking
into account each previous time step:

𝑟𝑑3 = 𝑐𝑑 ∗
2 ∗ 𝑑0
𝑑0 + 𝑑𝑡

(6.3)

Effectively, this creates an attraction field in which the agent is rewarded for being in closer prox-
imity to the goal rather than being rewarded for actively moving toward the goal. While this approach
simplifies defining bounds for the component it has the downside of rewarding the agent for circling
close around the goal rather than terminating the episode. Therefore, it is best to ensure that the total
reward outcome per step can be at most 0 to avoid positive reward stacking.

Heading The heading component is not strictly required for a good function model as it partly overlaps
with the distance component, but it can accelerate the process, especially at the start of training. Given
the simple relation between the angle to the goal and the output of the reward, heading toward the goal
is often the first thing the agent learns.

𝑟𝛼 = −𝛼𝑔 (6.4)

Forward Velocity To encourage the robot to move forward, especially early on during the training,
a reward can be applied based on the linear velocity. By taking the square of the difference between
current linear velocity 𝑣𝑙 and maximum possible linear velocity 𝑣𝑙𝑚𝑎𝑥 the system penalizes slower ve-
locities exponentially. 𝑐𝑙 is the scaling constant for the component which can be adjusted to vary the
weight of the penalty.

𝑟𝑣𝑙 = −𝑐𝑙 ∗ (𝑣𝑙𝑚𝑎𝑥 − 𝑣𝑙)2 (6.5)

Steering Velocity Long et al. [14] and Choi et al. [10] give a penalty for larger angular velocities to
encourage the agent to follow a smooth trajectory. During training, it was observed that without this
component the agent might exhibit so-called ’swaying’ or ’spinning’ behavior. With swaying the agent
moves forward while constantly alternating between high negative and positive angular speeds causing
it to sway. Large angular velocities may cause the agent to sway too much into the opposite angular
direction resulting in overcompensation. While this behavior does not make it impossible for the agent
to reach acceptable performance in simulation, it is especially problematic when moving to the real
world where physical constraints, mechanical wear, and limited battery capacity play a role. There-
fore, it is desirable to have a stable navigation system that moves efficiently along smooth trails with
minimal excessive turning. Another hazard of omitting the angular velocity penalty is the occurrence
of ’spinning’ behavior in which the agent continuously spins in a single angular direction either in place
or with minimal linear velocity making little to no progress toward the goal. With an improper training
configuration, the agent can be stuck in this detrimental cycle for a long period without making progress
toward an optimal policy. One method is to assign an exponentially increasing penalty to larger angular
velocities to encourage the agent to turn as little as possible:

𝑟𝑣𝑎1 = −𝑐𝑎 ∗ 𝑣2𝑎 (6.6)

However, the steering penalty may lead to sub-optimal path planning as the agent avoids making
large turns resulting in less flexible path planning. Long et al. [14] and Choi et al. [10] take a different
approach by applying a steering penalty only at larger velocities to allow the agent to turnmoderately but
avoid large turns. This prevents the planned routes from becoming too stiff while producing smoother
trajectories.

𝑟𝑣𝑎2 = {
−𝑐𝑎 ∗ |𝑣𝑠|, if 𝑣𝑠 > |𝜋/4|
0, otherwise

(6.7)
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Obstacle Avoidance Another common practice is the use of safety margins to encourage the robot
to proactively avoid obstacles and keep a certain distance from them. The simple approach is to assign
a static negative reward when the smallest distance reading 𝑑𝑚𝑖𝑛 crosses a safety threshold 𝑑𝑜 and
the robot enters the ’danger zone’ of the obstacle:

𝑟𝑜𝑏1 = {
−20, if 𝑑𝑚𝑖𝑛 < 𝑑𝑜
0, otherwise

(6.8)

A more refined approach involves gradual danger zones in which the penalty increases as the robot
moves closer to the obstacle after entering the danger zone.

𝑟𝑜𝑏2 = {
𝑑𝑚𝑖𝑛 − 𝑑𝑐𝑜𝑙
𝑑𝑜 − 𝑑𝑐𝑜𝑙

if d𝑚𝑖𝑛 < 𝑑𝑜
0, otherwise

(6.9)

Termination Lastly, when the robot reaches a terminating state it receives a reward based on the
type of event which terminated the session. If the distance to the goal 𝑑𝑡 is smaller than the required
minimum distance to the goal 𝑑𝑔𝑜𝑎𝑙 the robot receives a large positive reward. Contrarily, if the smallest
detected distance value 𝑑𝑚𝑖𝑛 is less than the minimum allowed distance to any obstacle before collision
𝑑𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 the robot receives a large negative reward.

𝑟𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = {
2500, if 𝑑𝑡 < 𝑑𝑔𝑜𝑎𝑙
−2000, if 𝑑𝑚𝑖𝑛 < 𝑑𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
0, otherwise

(6.10)

6.2. Reward Functions
To evaluate the effectiveness of different reward components we train multiple models using different
composite reward functions. All of the DDPG models are trained for approximately 40 hours after
which the best-performing iteration is evaluated over 100 trials. The type of outcome for each episode
is recorded in Table 6.1 together with the average distance covered and episode duration over all the
successful episodes. The sway index represents the variance in steering and is calculated by taking
the squared sum of the difference in two consecutive angular actions. A higher sway index indicates
that the robot exhibits undesirable ’swaying’ behavior which makes the system less stable.

First, reward functions from various LiDAR-based DRL navigation papers are reimplemented and
evaluated in our environment. Next, the reward functions are modified incrementally based on results
and our hypotheses to improve performance and reduce training times. The first and most straightfor-
ward reward function 𝑅𝐴 considers only the difference in distance to the goal between consecutive time
steps (equation 6.1) as seen in the works of Tai et al. [9] and Kato et al. [19].

Next, reward function 𝑅𝐵 is derived from the study by Long et al. [14] and includes a penalty for
angular velocities. As discussed before, this is necessary in order to limit ’sway’ behavior. From the
results, we see that models trained without the angular velocity component have a significantly higher
sway index.

After observing the robot in action it became clear that the robot had too little incentive for moving
forward. The robot often came to a standstill when approaching walls to avoid the collision penalty. This
often resulted in a timeout and slowed down the training process to such an extent that it did not learn to
maneuver around obstacles. Therefore, in 𝑅𝐷 the linear velocity component is introduced to encourage
the robot to move forward. This eliminates the number of timeouts but results in a much higher number
of collisions as the robot does not continue to move forward even when close to obstacles.

Consequently, a non-terminating penalty is introduced which penalizes the robot for moving close
to any obstacles. This motivates the robot to turn away from the obstacle at an earlier time step giving
it more time to explore alternative routes and avoid a collision.

Combining all of the obtained insights results in the best-performing reward function 𝑅𝐺 with a 95%
success rate. While it is hard to exactly define the degree to which each component contributes to the
success rate, they all play a role as leaving any component out leads to worse performance.
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In addition, we test the effect of exchanging certain components with their alternative versions for
reward functions 𝑅𝐻 , 𝑅𝐼, and 𝑅𝐽. However, none of these functions seem to give a significant improve-
ment for any of the evaluation metrics.

Figure 6.1 shows the number of successful episodes over the first 3500 episodes. This graph
indicates how fast each model learns the desired behavior which translates into the efficiency of the
underlying reward function. We see that 𝑅𝐺, 𝑅𝐻, and 𝑅𝐽 show a similar success rate where small
discrepancies can be explained by small differences in starting conditions. The success rates remain
fairly constant after the first 3500 episodes showing little further improvement. Note that in theory, all
reward functions could eventually converge to a similar performance level given an infinite amount of
time. However, since part of our goal is to optimize the training duration we limit the amount of training
time. The evaluation of different reward functions concludes this chapter with 𝑅𝐺 being the reward
function of choice for our experiments.

Table 6.1: Evaluation of different reward functions with varying components in stage 3.

Function Components Success CS CD TO Avg. Dist Avg. Time Sway index
R𝐴 𝑟𝑑1 − 1 35 53 12 0 3.06 9.15 0.031
R𝐵 𝑟𝑑1 + 𝑟𝑣𝑙 + 𝑟𝑣𝑎1 − 1 35 60 5 0 4.48 14.49 0.011
R𝐶 𝑟𝑑1 + 𝑟𝛼1 + 𝑟𝑣𝑙 − 1 33 57 21 0 3.05 11.19 0.045
R𝐷 𝑟𝑑1 + 𝑟𝑣𝑎1 + 𝑟𝑜𝑏1 − 1 22 13 6 59 3.50 9.93 0.012
R𝐸 𝑟𝑑1 + 𝑟𝛼1 + 𝑟𝑣𝑙 + 𝑟𝑣𝑎1 − 1 32 57 11 0 2.75 9.75 0.011
R𝐹 𝑟𝑑1 + 𝑟𝛼1 + 𝑟𝑣𝑎1 + 𝑟𝑜𝑏1 − 1 22 1 29 48 2.19 19.50 0.005
R𝐺 𝑟𝑑1 + 𝑟𝑣𝑙 + 𝑟𝑣𝑎1 + 𝑟𝑜𝑏1 − 1 44 6 19 31 5.28 18.51 0.003
R𝐻 𝑟𝑑1 + 𝑟𝛼1 + 𝑟𝑣𝑙 + 𝑟𝑣𝑎1 + 𝑟𝑜𝑏1 − 1 93 2 3 0 4.30 23.01 0.012
R𝐼 𝑟𝑑2 + 𝑟𝛼1 + 𝑟𝑣𝑙 + 𝑟𝑣𝑎1 + 𝑟𝑜𝑏1 − 1 93 1 6 0 4.18 22.08 0.013
R𝐽 𝑟𝑑1 + 𝑟𝛼1 + 𝑟𝑣𝑙 + 𝑟𝑣𝑎1 + 𝑟𝑜𝑏2 − 1 93 1 6 0 3.99 18.12 0.005
R𝐾 𝑟𝑑2 + 𝑟𝛼1 + 𝑟𝑣𝑙 + 𝑟𝑣𝑎1 + 𝑟𝑜𝑏2 − 1 90 0 10 0 3.77 20.04 0.013
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Figure 6.1: The success rates over time during training for different reward functions.



7
Physical System Validation

In order to validate the developed platform we demonstrate and evaluate the trained policies in multiple
real-world scenarios.

7.1. Real-World Evaluation
One of the challenges of transferring the navigation policy from simulation to the real world is the tuning
required to accurately map model output actions to physical motor control commands. In simulation,
the resulting forward velocity of the robot always scales linearly with the action output at any value.
However, for the physical robot factors such as inertia, rolling resistance, and imperfect motor and
tachometer hardware cause the real-worldmotion to deviate from the behavior in simulation. To account
for the inertia and rolling resistance of the wheels a tuned base speed value is added to the motor PWM
signal to prevent the robot from remaining stationary when the model outputs lower velocity commands.
Furthermore, the maximum values for linear and angular velocity need to be tuned to the appropriate
values for the PWM signal to the motors. Lastly, a low-level PID controller is implemented on the
Arduino board using tachometer input to provide fast feedback to the motor actuators which requires
tuning according to the specifications of the robot model. A video demonstration of the progress and
effect of the tuning process is made available online 7.2.

Table 7.1: Evaluation on the physical robot over the same trajectory for 20 trials in real-world stage Ι.

Algorithm Success CS Timeout Avg. Dist (m) Avg. Time (s) Max speed ratio
TD3 18 2 0 6.83 22.15 0.88

To demonstrate the transferability of the trained policy to the real world a physical experiment is
conducted in which the robot is repeatedly tasked with navigating from the starting location to the goal
in the environment shown in Figure 7.1. The experiment consists of 20 trials during which the outcome,
distance traveled and duration are recorded. In addition, we also measure the portion of the total trial
during which the robot is moving at maximum linear velocity. Table 7.1 shows that the robot is able
to achieve a 90% success rate during the performed experiment. The shortest path for the current
scenario can be measured to be approximately 5 meters long while the robot traveled 6.83 meters on
average during the experiment. The additional distance can be explained by the fact that the robot
maintains a safety margin to any obstacles as well as inaccuracies in the distance measurements,
odometry, and motor output causing deviations from the desired trajectory which are corrected by the
robot, all resulting in longer paths. Despite being trained in an environment with different obstacles and
dimensions the robot is still able to navigate reliably in the unseen scenario.

34
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Figure 7.1: Stage Ι used for the real-world experiment presented in Table 7.1. The starting position
and goal are indicated by the blue and green circles.

Figure 7.2: QR code to video to tuning process
(https://www.youtube.com/watch?v=WJtpsJvSsEg).

7.2. Backward Motion
To demonstrate the viability and benefit of backward motion in the real world we reproduce a realistic
situation in which the agent has to rely on backward motion in order to avoid a collision as shown

https://www.youtube.com/watch?v=WJtpsJvSsEg
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in Figure 7.3. The objective of the robot in this scenario is to move forward toward its goal position
while avoiding any obstacles. The top left image shows the starting situation where both the robot
and dynamic obstacle are approaching the same corner without a line of sight between them. The top
right image shows the moment shortly after the robot detects the obstacle and starts to decelerate in
response to the approaching obstacle. The obstacle is turning toward the direction of the robot giving
the robot too little time to maneuver around the obstacle. The bottom left image features a robot with
backward motion. In this case, the robot is able to quickly react and keep a safe distance from the
obstacle even as it moves toward the robot. After the path has been cleared again the robot continues
to move forward toward its destination. On the contrary, the bottom right image shows a robot without
backward motion attempting to steer away from the robot which results in a collision. Note that in
this situation the robot could not simply avoid a collision by remaining stationary as the obstacle is
moving in the direction of the robot. Moreover, due to inertia, the robot will still move forward slightly
immediately after giving the stop command and will come to a halt closer to the obstacle as compared
to in simulation. A video demonstration of the depicted situation is made available online 1.

In addition, a further demonstration of how backward motion can help the robot respond quickly in
tricky situations is made available online (7.5).

1https://youtu.be/-eyNCvBohRk



7.2. Backward Motion 37

1. 2.

3a. 3b.

Figure 7.3: Backward motion enables the robot to avoid a collision when a dynamic obstacle suddenly
appears. TL (1): The robot approaches the corner with no vision of the obstacle. TR (2): The robot
detects the obstacle moving toward the robot. BL (3a): the BE policy evades the oncoming obstacle by
moving backward. BR (3b): The BD policy attempts to turn away and fails to avoid a collision. Video:
https://youtu.be/-eyNCvBohRk).

https://youtu.be/-eyNCvBohRk
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Figure 7.4: QR code to a video comparing the obstacle avoidance capability of a robot with backward
motion and a robot with only forward motion.
(https://pyoutu.be/-eyNCvBohRk)

Figure 7.5: QR code to a video demonstrating the capabilities of backward motion
(https://youtu.be/rEkPuWZlLK0)

https://youtu.be/-eyNCvBohRk
https://youtu.be/rEkPuWZlLK0


8
Conclusions and Limitations

8.1. Conclusions
For this thesis, a complete DRL navigation stack, including both software and hardware, has been
developed and demonstrated to be able to train and reliably transfer policies trained in simulation to a
physical robot to navigate previously unseen environments. The robot is able to handle both navigation
and obstacle avoidance by itself and operates independently without the need for a central entity. The
performance of the trained policies is validated through experiments both in simulation and in a real-
world environment. Furthermore, video demonstrations showcase the capability of the system when
dealing with fast-moving and unexpected obstacles. After evaluating different off-policy DRL algorithms
with different hyperparameter settings, LiDAR configurations, and reward functions, the resulting agent
is able to reach a 99% success rate in simulation in a challenging environment with uncooperative dy-
namic entities. We have also evaluated the concept of frame stacking and frame stepping and its effect
on dynamic obstacle avoidance in simulation. In the real world, the robot can navigate independently in
an unseen environment without extensive tuning. The robot is also capable of reacting to fast-moving
obstacles and human agents despite being trained on only a single type of moving obstacle. The
amount of swaying is reduced through the reward function design to smoothen the trajectories of the
robot. We have shown that backward motion can improve the performance of the robot and gives it the
ability to handle tricky real-world situations which would otherwise result in a collision. The 360° LiDAR
range allows the robot to make full use of backward motion and avoid obstacles from any direction.
Therefore, we conclude that the previously unquestioned conventions which largely disregarded the
above-mentioned factors are worth reconsidering as this can significantly improve the training process
and navigation performance.

8.2. Limitations
While the resulting system can successfully perform autonomous navigation in a real-world environ-
ment, several identifiable factors limit the performance of the current setup. Firstly, the robot hardware
is a prototype that suffers from several defects that require modification in order to improve reliability.
Currently, the robot is equipped with only two drive wheels in the front and a third caster wheel in the
back which limits maneuverability as the robot is not able to smoothly turn in place. A better hardware
design with higher quality joints or possibly a four-wheel drive system would improve the steering ability
and overall performance of the robot. Also, the LiDAR sensor is placed relatively high, hindering the
ability of the robot to detect obstacles closer to the ground. This could be amended by modifying the
mechanical design such that the LiDAR can be placed closer to the ground just above the wheels.
Next, we have chosen to avoid convolutional and LSTM networks as they are not required for the sys-
tem to navigate successfully and to limit system complexity. This is not to say that there is no value to
be gained from these techniques and they pose a promising future direction for further improvement of
the obstacle avoidance capabilities of the robot. Furthermore, while we believe that a LiDAR sensor is
essential for robust real-world navigation, a camera could still be a valuable addition to the system for
applications that require context-sensitive information. Whereas the LiDAR provides reliable 360° dis-
tance readings, an inexpensive RGB camera can provide the agent with additional context and identify

39
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different types of obstacles to improve dynamic obstacle avoidance. This would however once again
result in a more complex system requiring additional effort to retain transferability.
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