
1

A Responsive Schedule Management System for

Large Homecare Organizations

Chakar, T.M. (1397818)

taner.sezgin@gmail.com

Program: Master Engineering and Policy

Analysis, Faculty of TPM

Delft University of Technology (TU Delft)

Supervised by:

 Alexander Verbraeck (TU Delft)

 Joseph Barjis (TU Delft)

 Scott Cunningham (TU Delft)

 Ali Tamer Unal (BOUN)

Rev: Tuesday, 07 March 2011

mailto:taner.sezgin@gmail.com

2

Table of Contents

SUMMARY.. 5

1. INTRODUCTION .. 5

2. PROBLEM EXPLORATION.. 7

2.1. DIFFICULTIES IN SCHEDULING FOR LHO .. 7

2.2. HOW SCHEDULE SOFTWARE CAN HELP TO OVERCOME DIFFICULTIES? .. 8

2.3. THE SOFTWARE REQUIREMENT OF LHO.. 10

2.4. THE PROBLEM ... 10

3. RESEARCH .. 13

3.1. PROBLEM STATEMENT .. 13

3.2. RESEARCH OBJECTIVE .. 13

3.3. RESEARCH QUESTIONS .. 13

3.4. SOLUTION APPROACH ... 14

3.5. RESEARCH METHODS AND TOOLS ... 17

3.6. STRUCTURE OF THE REPORT ... 18

4. SCHEDULING SOFTWARE SCOPE .. 20

4.1. THE ENVIRONMENT .. 20

4.1.1. Basic Processes and Terms ... 20

4.1.2. The organization .. 23

4.2. THE SOFTWARE REQUIREMENT OF LHO.. 23

4.3. THE SCOPE ... 25

5. LITERATURE REVIEW .. 26

6. OBJECT MODEL .. 30

6.1. SCHEDULING SYSTEM SEPARATION ... 30

6.2. RELEVANT ONTOLOGIES IN THE LITERATURE .. 31

6.3. CLASS DIAGRAM .. 31

6.3.1. Organizational Classes ... 31

6.3.2. Scheduling Classes.. 34

6.3.3. Rule Support Classes .. 35

6.3.4. Shared resource classes ... 36

6.3.5. Distributed Decision Making Support Classes .. 36

6.4. THE DISTRIBUTED DECISION MAKING AND AUTHORIZATION PROCESS .. 37

7. SCHEDULE CONSISTENCY AND PROCESS MANAGEMENT ... 38

7.1. IMPORTANCE OF SCHEDULE (DATA) CONSISTENCY ... 38

7.2. ALTERNATIVE DATA PROTECTION METHODS ... 38

7.3. WHY CENTRALIZED MODEL FOR LHO? ... 40

7.4. SYSTEM CONFIGURATION .. 41

7.5. IMPLEMENTATION OF DATA LOCKING TO LHO ... 41

7.5.1. Data locking mechanism .. 42

7.5.2. The Data Locking unit (atomic unit) ... 43

7.5.3. Implementation of data locks .. 46

7.5.4. Object Locking .. 47

7.6. SOFTWARE TASK PRIORITIZATION .. 48

3

7.7. SOFTWARE TASK ABORTS ... 48

8. SOLUTION IMPLEMENTATION .. 50

9. CONCLUSION ... 55

10. REFLECTION ... 57

11. BIBLIOGRAPHY ... 59

12. APPENDIX 1: USE CASES ... 63

13. APPENDIX 2: STATISTICS AND COUNTERS .. 72

14. APPENDIX 3: CONSTRAINTS ... 73

AN EXAMPLE SCHEDULE.. 73

Schedule from the employee perspective .. 74

Schedule from the client perspective ... 75

Schedule from the organizational/administration perspective ... 76

15. APPENDIX 4: TEST RESULTS .. 77

RPDS SCENARIO .. 77

BDS SCENARIO .. 78

GLS SCENARIO ... 82

4

Figures
FIGURE 1: EXAMPLE GANTT CHART FOR AREA 1 .. 12

FIGURE 2: THE RATIONAL UNIFIED PROCESS ... 16

FIGURE 3: STRUCTURE OF THE REPORT .. 19

FIGURE 4: BASIC PROCESS DEFINITION FOR LHO ... 20

FIGURE 5: SIMPLIFIED ORGANIZATIONAL STRUCTURE .. 23

FIGURE 6: EMPLOYEE RELATED CLASSES ... 32

FIGURE 7: CLIENT RELATED CLASSES .. 33

FIGURE 8: ORGANIZATIONAL STRUCTURE CLASSES ... 33

FIGURE 9: SCHEDULING CLASSES .. 34

FIGURE 10: RULE SUPPORT CLASSES .. 35

FIGURE 11: CLASSES RELATED TO SHARED RESOURCES .. 36

FIGURE 12: DISTRIBUTED DECISION MAKING SUPPORT CLASSES .. 36

FIGURE 13: CLIENT-SERVER CONFIGURATION ... 41

FIGURE 14: LOCK ACQUISITION PROCEDURE ... 42

FIGURE 15: LOCK PRIORITIZATION .. 43

FIGURE 16: THREAD STATES (WITH AND WITHOUT LOCKS) ... 45

FIGURE 17: THREAD STATES WITH GLOBAL LOCK .. 46

FIGURE 18: AVERAGE RESPONSE TIMES FOR RPDS .. 52

FIGURE 19: USER RATINGS FOR RPDS .. 52

FIGURE 20: AVERAGE RESPONSE TIMES FOR BDS .. 53

FIGURE 21: USER RATINGS FOR BDS... 53

FIGURE 22: AVERAGE RESPONSE TIMES FOR GLS ... 54

FIGURE 23: USER RATINGS FOR GLS ... 54

FIGURE 24 GANTT CHART FOR TANER CHAKAR .. 75

FIGURE 25: GANTT CHART FOR THE CLIENT 1, CLIENT2 AND CLIENT 3 ... 76

 Tables
TABLE 1: SWOT ANALYSIS FOR SCHEDULING SYSTEM IMPLEMENTATION .. 9

TABLE 2: METHODOLOGY SUMMARY .. 17

TABLE 3: HOMECARE TERMS ... 21

TABLE 4: CATEGORIZATION OF THE AVAILABLE LITERATURE .. 29

TABLE 5: THREAD STATES.. 43

TABLE 6: TEST RESULTS .. 51

TABLE 7: EXAMPLE SCHEDULE FOR ONE EMPLOYEE TANER CHAKAR ... 73

file://tudelft.net/student-homes/C/tchakar/Desktop/Thesis_TanerChakar_07Mar2011_Final.docx%23_Toc287375363
file://tudelft.net/student-homes/C/tchakar/Desktop/Thesis_TanerChakar_07Mar2011_Final.docx%23_Toc287375366
file://tudelft.net/student-homes/C/tchakar/Desktop/Thesis_TanerChakar_07Mar2011_Final.docx%23_Toc287375369
file://tudelft.net/student-homes/C/tchakar/Desktop/Thesis_TanerChakar_07Mar2011_Final.docx%23_Toc287375370
file://tudelft.net/student-homes/C/tchakar/Desktop/Thesis_TanerChakar_07Mar2011_Final.docx%23_Toc287375382

5

Summary

The planning and scheduling process of large homecare organizations (LHO) must be
responsive as LHO cannot afford postponement and cancellation of services. However,
achieving such responsiveness (respond to schedule change requests without violating timing
constraints) is a very complex task for such large organizations, due to their extensive
geographical spread, fuzzy objectives and uncertain environment. In our research we
developed a software architecture which will help LHO to achieve responsive scheduling
process. We defined the architecture in four steps. As the first step we proposed to separate
the schedule into independent sub schedules. As second step, we proposed scheduling
system object model which is suitable for handling of low-level scheduling processes in
distributed, multi-user environment. Thirdly, we proposed a centralized scheduling system
which can handle shared resources and high level organizational policies. In order to protect
the consistency of the centralized schedule, we proposed to use data locks. We propose to
use Area (or Team) as atomic locking unit in order to ease the maintenance of the software
and to have responsive scheduling process. As fourth and last step of the architecture, we
propose to break long taking software tasks into subparts so that the other software tasks
can also be processed without waiting too long in the queue.

Keywords: homecare, responsive, scheduling, distributed, multi-user

1. Introduction
Homecare is the umbrella term for care services that take place at a patient’s home.

These care services include a wide range of supportive services, ranging from help with basic
daily activities (e.g. help with bathing, eating, walking or going to the toilet) to medical
activities like nursing.

In the last decade, there is an increasing demand for homecare in Europe, as the number
of elderly people has grown continuously. According to EU statistics, the number of elderly
people will continue growing for the next 20 years, thus increasing the demand for homecare
(see ‘Eurostat regional yearbook 2009’ for details).

Homecare services were originally introduced with a need to improve responsiveness,
continuity, efficiency and equity (Baris, 2008). With the introduction of homecare services,
demand for hospitals declined, thus decreasing the domestic healthcare costs spend on
elderly care. However, with the growth in demand, the homecare costs rose dramatically.
The homecare costs currently comprise a major part of the total healthcare costs. With the
intention to reduce national budget deficits, several European governments are searching for
appropriate austerity measures, some of which are to be found in their healthcare programs.

As the reduction in healthcare budgets will likely result in lower profit margins for
homecare organizations, it is very important for homecare organizations to be cost effective.
One of the ways to reduce the costs within homecare organizations is to increase the
efficiency of the core business. As the scheduling of activities is intimately related to the
efficiency with which core business activities are performed, Scheduling has become a very
important element for homecare organizations and a strong potential tool for cost reduction.

Unfortunately, the scheduling of large homecare organizations is not such an easy task.
First of all, the problem size is very big due to the amount of employees and patients active
at any one time. Secondly, the scheduling is related to humans, subjects that are notorious
for their fuzzy objectives and soft constraints. Finally, the scheduler or the scheduling system
must be responsive (respond to schedule change requests without violating timing

6

constraints) to urgent tasks because the homecare environment is very uncertain and
requested services cannot be postponed or cancelled.

Achieving such responsiveness is a very complex task for Large Homecare Organizations
(LHO, organizations with more than 100 employees which operates in more than one
location is considered to be large) since they have to deal with distributed, co-dependent
decision making. LHO are distributed in wide geographical areas and so are the decision
makers (planners). But decisions that one of the planner makes, influences the other.

In this Thesis, we will develop an architecture for a LHO scheduling software system
which will help LHO to achieve responsive schedules. The proposed model will define an
object model for a scheduling system and propose a systematic method to manage low-level
processes in a distributed, multi-user environment. Afterwards, the proposed model will be
tested with a pilot organization, and results will be examined.

In the literature, there are solutions which may be used to solve some parts of the
problem that we study but there are none that accommodate all of the problem
characteristics here present, rendering them obsolete for direct and integral application to
the LHO problem (see section ‘5. Literature Review’ for details).

The rest of the thesis is organized as follows: the next section of this document will frame
the problem and define its context. It will be followed by an explanation of the Objective of
the research and research questions. The fourth section will define the scheduling software
scope. The fifth section will present the literature findings. The following four chapters will
define the solution model and illustrative implementation. The last chapter is dedicated to
conclusions.

7

2. Problem Exploration
 This chapter will define the architectural requirements of the LHO scheduling software

system and it will address the problems that arise around it. In order to do so, we first define
the LHO environment. Next we will describe the scheduling problems in LHO from different
perspectives and define the scheduling system requirements. The last section of this chapter
will define the research problem of this study.

2.1. Difficulties in scheduling for LHO
In this study, we define the scheduling process as the process of matching the service

requirements (demand) with company resources. The demand is expressed in the form of
tasks. Employees are the company resources which perform the tasks. The schedule of the
LHO is obtained by assigning the tasks to the employees. The scheduling process consists of
2-10 weeks. This type of scheduling is generalized as operational planning and dispatching.

A good plan is defined as one that is capable of collectively matching the
expectations of the clients, employees and the organization. However, the matching of
expectations is a difficult process because the size of the scheduling problem is very big and
it involves many different human actors who have fuzzy objectives. We summarize the
scheduling difficulties of LHO into five main items:

On average, each employee visits 2 clients per day. In order to create a plan for one
week, the planning department of LHO with 10000 employees must plan 100000 tasks. Such
a workload is far too demanding to be handled centrally by one person. Alternatively, the
scheduling problem can be solved using optimization techniques or heuristics. But the
solution time may take hours, even days. As the scheduling system of LHO is expected to be
responsive, implementing such techniques alone will not be a solution to the problem. For
instance, imagine that an employee calls the planning department and reports that she is
sick. After getting this input, the planner needs to replace her with another employee within
few minutes because the next client might be in urge. For example, there are clients who
cannot feed themselves or cannot go to bathroom on their own. Their services can’t be
skipped or postponed.

The basic job of a LHO planner is to match expectations of the actors involved. In the LHO
case, the most crucial actors for planning are employees, clients and the LHO organization.
Each of these actors imposes different constraints on the planning process. For instance, an
employee expects that she doesn’t work more than her contracted hours; that her
preferences are considered; she gets enough rest, etc. A client expects that her requests are
satisfied on time. A LHO organization expects to satisfy all clients on time. It is possible to
extend the list of constraints. During our analysis, we came across more than 15 major
constraints. These constraints are demonstrated with an example in “Appendix 3:
Constraints”.

From the list of constraints provided in “Appendix 3: Constraints” we can conclude that
the number of constraints which need to be considered when planning a task is far greater
than human mind can handle.

1. The size of the problem is very big

2. There are many constraints

8

Especially the short term planner (in the dispatching phase) must respond to state
changes within a minute or two. For instance, sometimes employees can’t find the client at
home because he is taken to hospital. In such a situation, the employee calls the dispatching
centre and asks for instructions. The planner needs to analyse the situation and assign a new
task to the employee in a few minutes. Otherwise, employee capacity will be wasted.

The objectives of the employees or clients cannot be defined concretely as they are
humans. The human mind may behave very differently under different circumstances. It is
well known fact that an employee may have different objectives over time. For example, an
employee may not prefer to do overtime. However, she may consider doing overtime if she
needs extra money.

In addition, the human mind is different from that of a machine. The human has a lot
more states than “working” or “non-working”. This implies that employees may have soft
constraints which are case dependent and cannot be generalized. For instance, quite
commonly, people are specified as morning person or evening person. A morning person is
more efficient if she starts working early. Similarly, evening person will prefer to start
working late. The planner must consider such states of mind when making a plan.

The planning of LHO cannot be handled by a single planner because the problem is too
big. Therefore the schedule of LHO is created by several planners. Each planner is responsible
from one part of the planning. The most common way is to assign a planner is on a
geographical basis (e.g. to each Area). An Area is defined as “a team of employees who have
a similar set of skills and deliver services to the clients located in the same geographical
area”. However, the planning of Areas is not independent as employees/clients can have
multiple contracts with different areas. Therefore the planners of different Areas need to
synchronize their planning in order to avoid conflicts like over-planning, etc.

2.2. How schedule software can help to overcome difficulties?
The Scheduling software has various benefits for the scheduling process which may help

to overcome the difficulties described in the previous section. Moreover, it may provide
improvements on many other aspects. Table 1 provides SWOT analysis about
implementation of scheduling software at a homecare organization.

3. The scheduling process must be responsive to urgent requests

4. The objectives are fuzzy and the constraints are soft

5. There are multiple planners who work at distributed locations.

9

Table 1: SWOT analysis for scheduling system implementation

Strengths

 Easier and faster schedule alterations

 Timely and accurate schedule outputs

 Cost reduction via increasing efficiency
and decreasing administrative costs

 Possibility of implementing complex
solutions like optimization, heuristics,
etc.

Weaknesses

 High cost (software license,
implementation costs, maintenance fees)

 Result of the outcome depends on data
inputs

 Requires commitment from many parties,
not only planning departments

Opportunities

 It will steer improvements in data
collection process, which will result in
many benefits like timely and accurate
invoices.

Threats

 Planners and other employees can be
threatened by losing their jobs

 Employee unions may oppose to various
processes like data collection

Although, the benefits of the organization will vary based on the industry and size of the
company, it is possible to generalize the benefits of the scheduling software for the planner
(or planning department). We list five major points:

 The Scheduling system can help to retrieve accurate and timely inputs by
interfacing to different data sources like backbone systems, payroll systems,
spread sheets, personal PDA’s, etc. This will reduce enormous effort from
planner’s shoulders.

 The software may generate automated schedules using various techniques like
optimization, heuristics, etc. These techniques may generate schedules for the
organization without any human intervention.

 The scheduling system may provide an opportunity for the planners to
manually/semi manually generate schedule in electronic environment. In most of
the cases, automated schedule generation techniques are not sufficient and
comprehensive enough to cover all the objectives and constraints, e.g. fuzzy
objectives or soft constraints. In such cases, a planner needs to interfere with the
schedule and manipulate it manually. Or in dispatching process, the planner may
only require only manual scheduling support if she wants to have control on the
schedule at all times.

 The software may provide decision support by signalling constraint violations,
calculating aggregate counters, keeping track of unutilized resources, etc. Such
calculations can be performed very efficiently by a software and make the
planner’s life very easy.

 The software may help with visualization of schedule outputs. It may display the
same schedule in various forms. There are many stakeholders who want to see
the planning in their own customized way. For instance, an employee will want
to see only her tasks, a client wants to see when she receives help, a customer
relations department will want to extract automatically created letters in order
to inform clients about the planning, etc.

10

In our study, we will look for a software architecture which is suitable for scheduling
systems which provide the benefits mentioned above. Specifically, we will concentrate on
large home care organizations. In LHO, the decision makers (planners) are working at
distributed locations but they control the shared resources.

In the next section, we will specify briefly the homecare scheduling software
requirements. Then we will explain the problems around the LHO scheduling software
architecture.

2.3. The software requirement of LHO
LHO usually deploys scheduling software to solve its complex scheduling problem. The

scheduling software intends to support decision makers by providing different sorts of
information, generating schedules, calculating scheduling outputs, etc.

In this section, we will summarize the most important scheduling software requirements
of LHO. The extended and complete list of the requirements can be found in section 4.2 The
software requirement of LHO. We will consider operational planning and dispatching (see
section 4.3 The scope for details) and we will concentrate only on low-level scheduling
processes. When defining the scheduling requirements, we will exclude data interfacing
requirements.

The LHO scheduling system requirements can be described in three major items:

 Functional requirements: LHO scheduling software is expected to support low-
level scheduling processes, e.g. plan a task, plan a holiday, etc. Each use case in
“Appendix 1: Use cases” represents a low level scheduling process. Each use case
usually inherits a set of rules/constraints. The scheduling system must support
the LHO rules, constraints and objectives. The rule/constraint handling requires
the handling of information on various levels of aggregations.

 Non-Functional requirements: The software is expected to support a multi-user
architecture because there can be multiple planners who share responsibilities.
The planners are located at different offices. Therefore the software is expected
to support distributed decision making. Most importantly, the software must be
responsive in order to support fast decision making. We define responsive
scheduling system as a scheduling system which responds to schedule change
requests without violating the timing constraints. Each use case of the scheduling
system will have a timing constraint which defines the expected runtime of the
use case.

2.4. The problem
Based on the software requirements given in the previous chapter, we can conclude that

LHO need a responsive scheduling system which will manage low-level processes in a
distributed, multi-user environment. In our study, we will look for architecture for LHO
scheduling software system which will help LHO to achieve responsive schedules. We define
an architecture in two parts: (i) an object model and (ii) a systematic method to manage
processes (software tasks) in a distributed, multi-user environment.

The first challenge is to find the suitable object model for the LHO scheduling software.
The scheduling problem of LHO needs to be decomposed as it cannot be solved as one piece
due to difficulties we mentioned in section “2.1 Difficulties in scheduling for LHO”. Therefore,
a suitable object model depends strongly on the decomposition of the whole problem. The
decomposition level depends on a large number of factors like decision makers, their

11

responsibilities, the aggregation level of decision making, etc. In other words, the
decomposition strongly depends on the LHO environment.

The LHO scheduling software cannot be decomposed into very small (atomic),
independent pieces which concern only one decision maker because different levels of
aggregation are required for decision making. Planners are responsible for making global
and/or local decisions. For instance, when planning the summer holidays of the employees,
the planner must control not only the available capacity of her region but also the available
capacity of the entire city. Otherwise the capacity in the summer time may drop below the
demand. Or when there are shared resources among Areas, e.g. employees who are working
for different Areas, then a decision of one planner will influence the decision of another.

However, the atomic unit cannot be very large because it will reduce the responsiveness.
In order to protect the feasibility of the schedule, the software will try to process the
software requests sequentially instead of parallel. Consequently, the responsiveness of the
software will decrease. Imagine there are N planners in the organization who want to work
simultaneously. Then the software will process the request of one of the planner while the
rest (N-1) planners will wait. Or one of the planners will need to wait for N-1 planners. In
Europe there are organizations with more than 400 planners. It means that one of the
planners will have to wait until the tasks of the previous 399 planners are executed by the
software.

Therefore, the way that the software tasks will be processed is very important for the
feasibility of the schedule. Moreover, it has tremendous influence on the responsiveness of
the scheduling system. However, defining a systematic approach to prioritize software tasks
is difficult due to resource sharing requirements and different scheduling rules on different
levels of aggregation. For instance, registering one employee as sick seems to affect only the
employee herself. However, it will also affect the other Areas where the employee is
working. In addition, it will also influence the other neighbouring Areas since it will affect the
total available capacity of the region. And if there are tasks which are at the time of the
sickness, then the clients of these tasks will also be affected.

We will illustrate the problems described above with a simple example. Let us assume
that the GANTT chart given in Figure 1 represents a schedule for Area 1. In a typical LHO, this
plan may be created by several planners. For our example, let us assume that a short term
planner (STP1) is responsible for generating a schedule for 25/11/2010 and long term planner
(LTP1) is responsible for generating a schedule for 26/11/2010. If STP1 makes a change on
the schedule of the E1, then the LTP1 has to be notified about the change. Otherwise they
may make conflicting decisions. For instance, assume that STP changes the end time of the
task on E1 on 25/11/2010 to 24:00. The result will be that E1 will not have enough rest as she
starts to work at 08:00 in the next day. Therefore the LTP needs to be notified that she needs
to change the schedule of E1. The situation is even more complicated for E3. E3 is loaned to
Area 2 between 25/11/2010 20:00 and 26/11/2010 04:00. Assuming that STP2 has control
over Area 2 on 25/11/2010 and LTP2 has control over Area 2 on 26/11/2010, we can say that
any decision concerning E3 on 25/11/2010 and 26/11/2010 will influence 4 decision makers.
In practice, there are LHO organizations with over 1000 Areas. This creates a huge network of
decision makers whose decisions are not totally independent. Moreover, these decision
makers are working in different locations, i.e. physical communication is not easy.

12

Figure 1: Example GANTT chart for Area 1*

Time 25/11/2010 26/11/2010

Emp 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00

E1 Task 1 Task 3

E2 Task 2

Task4

E3 Loaned to Area 2

*Each row represents one employee. Yellow boxes demonstrate tasks. Blue box represents a time where employee works for different Area.

In this study, we are going to define a scheduling software architecture which will help
planners avoid conflicting decisions and still be responsive. As our example demonstrates, it
is not possible to separate schedules of different Areas. However, not decomposing the
problem will also cause responsiveness issues. Therefore, we seek for an object model which
is suitable for a LHO environment and which will support distributed decision making with
multiple users.

We can summarize the problem as:

“LHO requires a responsive scheduling software system to support its low-level scheduling
processes. Achieving responsiveness for such scheduling software is a very complex task since
LHO environment includes distributed, co-dependent decision making. The LHO scheduling
software must be able to operate in a distributed, multi-user environment and must comply
with timing constraints (expected runtime of a use case).”

In the literature, there are solutions which may be used to solve some parts of the

problem but they can’t be applied directly to LHO problem. Itabashi et al. (2005), Corchado et

al. (2008), Fraile et al. (2009), Huang et al. (1995) and Date and Matsuo (2008) explored the

homecare scheduling area using distributed and/or multi-agents systems. However their

models are not directly applicable to our problem (See ‘5. Literature Review’ for details).

A number of papers in the homecare literature concentrate on optimal scheduling of the

homecare organizations. This approach is helpful for our problem since it may reduce the

need for changing the plan by improving the initial plan. However, it will never remove the

requirement for real time system which handles daily schedule changes that requires

distributed, multi-user handling. The models that are most relevant to our study are Eveborn

et al. (2006), Borsani et al. (2006), Hutzschenreuter et al. (2008) and Begur et al. (1997). In

the Literature Review chapter we discuss in detail the overlap of the existing literature with

our problem.

13

3. Research
This chapter will define the research questions and an approach to solve these questions.

First, we will define the scope of the research. Next, the problem statement, the research
objectives and the research questions will be formulated. At the end of the chapter, we will
explain our solution approach to the research problem.

3.1. Problem statement
As a summary of the knowledge gaps provided in previous sections, the problem

statement of this research can be defined as:

“LHO needs a responsive scheduling software system which will support the management
of low-level processes in a distributed, multi-user environment.”

Key concepts:

Responsiveness: Real-time systems are expected to complete software tasks within
specified time limits. The time limits are called timing constraints. In LHO case, there are soft
timing constraints (Santos et al., 2008) for each use case. For example, the planning of one
task should take no longer than 2 seconds. Soft timing constraints can be violated. However,
the violation of the soft constraints may cause significant damages. For instance, a planner
needs to respond within a few seconds to an employee who is waiting on the phone for a
new schedule. Otherwise, the organization will underutilize its resources. We define a
responsive scheduling system as a system which performs without violating timing
constraints.

Consistency: Consistent schedule is one that does not contain a contradiction.
Contradiction occurs when: (i) two or more planners make decisions which result in an
infeasible schedule (ii) when planner makes a decision based on obsolete information.

For example, imagine that a short term planner (STP) registers an employee as absent for
the next 15 days. Infeasibility will occur if the long term planner (LTP) plans the employee for
the same period.

In order to avoid contradiction, both planners should see the same schedule. In other
words, a planner must be notified if other planners change the planning of her Area.

3.2. Research objective
The objective of this thesis will be:

“To provide LHO with an architecture for a scheduling software system that will
achieve responsive and consistent schedules. A scheduling system must support
management of low-level processes in a distributed, multi-user environment.”

3.3. Research questions
This thesis will seek an answer of the following question:

“What is a suitable software architecture for large and dynamic homecare
organizations to achieve a responsive and consistent scheduling process in a
distributed, multi-user environment?”

14

Sub questions:

1. Can we separate the schedule of different locations into independent sub schedules?

2. What is a suitable object model which will support scheduling processes in a
distributed, multi-user decision making environment?

3. How can the scheduling system handle the scheduling rules and constraints on
different aggregation levels in a distributed, multi-user environment?

4. How can we ensure the consistency of the schedule in a distributed, multi-user
environment without worsening responsiveness?

5. How can we prioritize LHO scheduling software tasks in a distributed, multi-user
environment in order to achieve responsiveness?

We define the architecture through an object model and a mechanism to support low-
level process management in a distributed, multi-user environment. In order to solve our
problem, we first seek a possible separation of schedule. After this we seek for a suitable
object model for the independent sub schedules. Then we research the way to manage the
software tasks. First we need to find a way to structure/decompose the scheduling system.
Then we need to define concurrent access procedures. These procedures are important
because they will have big influence on responsiveness. Then we need to define a way to
prioritize software tasks when there are software tasks with different execution times.

3.4. Solution approach
The software quality problems are a 100 to 1000 times more expensive to find and repair

after deployment than before Kruchten (2004). We expect that using traditional linear
methods like ‘the Waterfall method’ for our research will result in high project costs as they
push the risks forward in time. The cost of undoing mistakes later in the project is lot more
costly than undoing them early in the process. Instead we focus on iterative approach which
will allow continuous verification of the software quality and reduces the risk of costs
incurring late in the project phase. An iterative process is required for our research because
the research requires the matching of conflicting goals of different actors. For example,
management expects cost reductions while employees expect convenient and flexible
working times. In addition, iterative approach will be beneficial to define the software
requirements as there is no single language which can be used to define technical
requirements and functional requirements. Therefore misunderstandings and
miscommunications can occur during the analysis process which can be corrected earlier in
the project by using an iterative approach.

As a solution approach, we will follow The Rational Unified Process (RUP) which is an
iterative model that is created based on similarities between different software development
projects across the world has led to the construction of a so-called Rational Unified Process
(RUP) framework that aims to capture the temporal character of the different tasks to be
performed (see Figure 2). By setting out the different tasks (vertical axis) as a function of time
(horizontal axis), common task overlaps become visible due to the iterative development that
is commonly observed between the tasks. Through this conceptualization, it is possible to
identify different phases along the timeline that are common to most software development
projects.

The inception phase is primarily characterized by an iterative process of both business
modelling and the formulation of software requirements. Once the initial requirements are

15

roughly formulated, an elaboration phase sets in. In this phase, the business modelling and
requirement formulation are elaborated while an initial analysis and design, implementation
and testing is conducted. It is even possible to commence the initial steps for deployment at
this stage. Through an iterative process of mutual adjustment and development, software
construction itself takes off. At this stage, the implementation of software takes the
overhand, translating the software requirements into code that is to be tested and eventually
deployed. Through an iterative process of analysis and design, implementation and testing,
the deployment of the software takes the lead in the last phase, the transition.

As the Figure 2 figure shows, the RUP process dictates that software development is
performed in six tasks: (i) Business modelling, (ii) Requirements, (iii) Analysis and design, (iv)
Implementation, (v) Test and (vi)Deployment. Figure 2 provides an overview of RUP steps
over time.

The first two tasks of the RUP, Business modelling and Requirements, are the motivations
for this study. Brief description of the Business modelling and Requirements steps is provided
in the first two chapters of the thesis.

For the analysis task, we will follow an iterative software development process because
the analysis process of the architecture is very complicated. The analysis process is
complicated because it requires involvement of many parties with different expectations and
goals. For example, planners expect the software to help them in the planning process, while
management expects cost reductions. In addition, software requirements need to be defined
in a more abstract and technical level while the analysis language is usually more functional.
Therefore misunderstandings and miscommunications can occur during the analysis process.

As a result of analysis process we define the scheduling software requirements. We
perform the analysis process with two LHO (both employ over ten thousand employees)
located in North Europe. We did a series of interviews with various stakeholders including
the management, planners, finance managers, etc. Most of the time, it is hard to gather all
the stakeholders in one meeting. Therefore we also had to scan many internal documents on
the scheduling system definition.

The design process is also complicated because the impacts of the designs are not
predictable. For example, the impact of various atomic locking units is not easily predictable
as there is a trade-off between using low level locks and spending more time for the
acquisition of locks, using high level locks and waiting for locks.

As first step of the design process, a literature review (or desk) research is performed to
gain insight into the problem. Then we search the answers of each sub-question in the
literature. After the literature research, we continue a design process that aims to design an
object model and construct a mechanism for the management of software tasks. We perform
the design phase in three steps. First, we design the complete architecture in a less detailed
manner to oversee the integration problems from the beginning. Second, we design
individual components of the research and share it with other developers and planners. By
taking this step, we try to eliminate functional misunderstandings and possible bugs. Third,
we change the design (if necessary) according to the feedback. We will call this method
Iterative Architecture Development.

16

Figure 2: The Rational Unified Process*

 *Source: Downloaded from http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process#Six_Engineering_Disciplines on 20th of January, 2010

We outsource the implementation phase, where the designed architecture is
implemented as software.

In the next step, we test and validate the architecture that we propose with the
implementation done at Company A.

Table 2: Methodology summary provides summary of methodologies which are going to
be utilized to answer each question.

17

Table 2: Methodology summary

Question Methods

How can we separate the schedule of different
locations into independent sub schedules?

1. Desk research
2. Iterative Architecture

Development

What is a suitable object model which will
support scheduling processes in a distributed,
multi-user decision making environment?

1. Desk research
2. Iterative Architecture

Development

How can the scheduling system handle the
scheduling rules and constraints on different
aggregation levels in a distributed, multi-user
environment?

1. Desk research
2. Iterative Architecture

Development

How can we ensure the consistency of the
schedule in a distributed, multi-user
environment without worsening
responsiveness?

1. Desk research
2. Iterative Architecture

Development

How can we prioritize LHO scheduling software
tasks in a distributed, multi-user environment in
order to achieve responsiveness?

1. Desk research
2. Iterative Architecture

Development

3.5. Research Methods and Tools
In order to answer the questions mentioned above the following methodology will be

used:

Desk research

Literature survey will be done to investigate existing solutions on the problem.
Furthermore, external limitations will also be researched from scientific papers, journals,
governmental publications, etc. In addition, we scan various company documents in order to
define software requirements.

Direct interviews and interviews with interviewer

We did a series of interviews with various stakeholders including the management,
planners, finance managers, etc. Most of the time, it is hard to gather all the stakeholders in
one meeting. Therefore, from time to time we do interviews with analysis group
representatives or other analysts who interviewed the analysis groups beforehand.

UML diagrams

The UML technique will be used to present our software architecture proposal. The
expected output will be a class diagram and use cases of proposed schedule management
and sharing software. In addition, state charts will be used to illustrate the distributed
decision making and prioritization of tasks.

18

ICRON:

Icron software will be used to develop the model and perform tests. It has its own
language to model scheduling processes. More information about company and the product
can be found at http://www.icrontech.com/.

3.6. Structure of the report
Figure 3 illustrates a map of the report. In the first two chapters, we explore the

problem. In the third chapter, we formulate the problem statement and research questions.
In the fourth chapter, we define the LHO software requirements in detail and indicate a
scope for the study. In the fifth chapter, we will present the literature findings. In the
following two chapters we will describe the results (the architecture) of the analytical
research we conducted in order to find a suitable architecture for LHO scheduling software.
We divide architecture into two parts: object model and process management.

In Chapter 6 we will define an object model for a scheduling system which will support a
distributed, multi-user environment. The scheduling problem of LHO is too large to be
managed as a single problem. Therefore we first look for a method to simplify the scheduling
problem by separating the whole problem into independent sub problems. This way, we can
define a separate scheduling system for each problem separation. After separating the
problem, we will define the software system architecture of each separation.

In chapter 7 we will define the methods and procedures that will be deployed to ensure
scheduling data consistency in a scheduling system. We will also advice a method to
prioritize software tasks in a scheduling system when the processing time of the software
tasks is variable, i.e. there are software tasks with short processing times and software tasks
with long processing times.

The last two chapters are dedicated to the solution implementation and conclusion. In
Chapter 8, we will describe the results of the pilot implementation. In Chapter 9 we will
conclude the results of our findings.

http://www.icrontech.com/

19

Figure 3: Structure of the report

20

4. Scheduling software scope
This chapter will describe the software requirements of LHO and determine the scope of

this study. First, we define the LHO environment. Next we will define the scheduling system
requirements. The last section of this chapter will define the scope of this research.

4.1. The environment
This section will define basic processes and terms that are required to describe the

environment of LHO. It will be followed by the organizational structure of a LHO.

4.1.1. Basic Processes and Terms
Figure 4 displays the basic process steps from initiation of a help request until the help is

delivered. The first step in a homecare service delivery is the Help Request. At this stage the
Client requests help from the homecare organization. In the next step, a Care Inspector visits
the Client and is accompanied by the client’s doctor if necessary. During the inspection
process, the Care Inspector and the Client decide on a Visit Schedule which defines the Client
Contract. In addition, the Care Inspector assigns the visit request(s) to the most suitable
Team(s) in the organization.

In the third step, the Planner of the Team assigns the Task(s) to the most suitable
Employee(s). In the fourth step, the assigned Employee(s) execute(s) the Task. The third and
fourth steps are repeated until the Client is recovered.

Figure 4: Basic process definition for LHO

For the sake of clarity, we give the definitions that are used in this Thesis in Table 3:

21

 Table 3: Homecare terms

DEFINITIONS

Client

A client of LHO is generally a physically injured person who cannot perform daily
activities such as showering, cleaning, etc. without assistance of someone else. There
are many types of services that are requested by the clients. However, this research will
focus on the following service types:

1. Health care: The treatment at home. This also includes nursing services.

2. Personal care: Personal care can be summarized as helping the client to perform
her daily activities. For instance, helping a client to take a shower in case of physical
injuries, etc.

3. Domestic help: These are side help services which are delivered to clients who
cannot perform the tasks themselves. For instance, old people or people with
physical injuries who cannot cook for themselves or cannot do shopping, etc.

4. Psychological support: It is delivered to the clients who need psychological support
because of a trauma, etc.

5. Babysitting: This is also a side service that is delivered in case that the parent is
injured and cannot take care of the baby.

6. Cleaning help: Cleaning is also considered to be side service which is delivered to
the clients who are not able to clean their homes themselves.

Client Contract

Each client has a contract with the homecare organization which specifies what services
are going to be delivered at what time frame.

Care Inspector

A Senior employee who is responsible for the estimation of visits that is required for the
client recovery. She is also responsible for negotiating visiting hours with the client.

Visit Schedule

A List of tasks (task is defined below) that needs to be fulfilled. Each task has an earliest
start time, a latest finish time and a defined duration. The task needs to be performed
within the earliest start and latest finish time. The Task duration can be shortened in
specific cases but these are considered out of scope for this study.

Task

A task is defined as a help activity has to be performed within a certain time period at
certain location. Every task can have only one help type, like cleaning, babysitting, etc.
Each task has an earliest start, a latest finish and duration definition. A Task needs to be
performed within its earliest start and latest finish time.

22

Employee

An employee who works for homecare organization and who is responsible for
delivering help to the client. Each employee has specific skills and qualifications.

Employee Contract

Each employee has a contract with the homecare organization which defines the
working times and the salary of the employee. In some cases it also defines specific
preferences of the employee such as a preferred carrier path, etc.

Work Pattern

The work pattern defines the start time, break times and end time of each working day
within a week. Typically a full time employee starts working at 08:00 and takes lunch
break at 12:00. Then she starts working again at 12:30 and ends her work at 16:30.

Team

A group of employees who deliver service to specific geographic area. Each employee is
assigned to a team.

Area

A group of employees who have similar set of skills and deliver service to the clients
located in same the geographical area. Each employee is assigned to a team.

Geographical area boundaries are determined by the company rules. Each LHO has
different rules for determining Areas. Most common examples are division based on
demand, division based on the employees, etc.

Area Team

A group of employees who have similar set of skills and deliver service to the clients
located in same the geographical area. Each employee is assigned to a team.

Short Term Planner

An administrative employee who is responsible for maintaining the plan of one or more
Areas. The short term planner aims to maintain the short term plan with minimum
changes possible. The most common tasks of short term planner are registering sickness
of an employee, replacing her tasks with other employees, etc.

Long Term Planner

An administrative employee who is responsible for maintaining the plan of one or more
Areas.The long term planner is more concerned about the optimality of the schedule.
The long term planner aims to plan all of the demand in such a way that it meets
organizational objectives like client and employee satisfaction, costs, etc.

23

4.1.2. The organization
LHO employs in the range of hundreds to ten thousands of employees. The employees

are grouped into teams who deliver a specific type of service
(personal care, psychological support, etc.) to a client at a specific
location.

A simplified LHO organizational structure can be seen in Figure 5.
The organization is decomposed hierarchically based on the
geographical measures. In our simplified example, the LHO is first
decomposed into large regions (e.g. provinces), then to cities and lastly
to areas. In practice, the number of hierarchical levels can differ for
each company. However, the lowest hierarchy is mostly an Area.
Sometimes it may also be called Team or Area Team.

The planning department is also structured to fit into this
organizational structure. There is at least one planner for each Area.
The most common practice is to assign two planners to every Area.
One of the planners is responsible for short term planning of the Area
while the second one is responsible for long term planning of the Area.
The objectives of the both planners differ from each other. The long
term planner is more concerned about the optimality of the schedule.
On the other hand, the short term planner maintains the already
existing plan with minimum changes possible.

4.2. The software requirement of LHO
LHO usually deploys a scheduling software to solve its complex scheduling problem. The

scheduling software intends to support decision makers by providing different sorts of
information, generating schedules, calculating scheduling outputs, etc.

In this section, we will transform the scheduling requirements of LHO into software
requirements. We will consider operational planning and dispatching (see section 4.3 The
scope for details) and we will concentrate only on low-level scheduling processes. When
defining the scheduling requirements, we will exclude data interfacing requirements.

The scheduling requirements were defined as a result of the analysis which we did with
two LHO (both employ over ten thousand employees) located in North Europe. We did a
series of interviews with various stakeholders including the management, planners, finance
managers, etc. The requirements are grouped into three categories: functional, non-
functional and architectural.

Functional requirements

Functional requirements describe the functions which define what a system is supposed
to accomplish.

In this study we are seeking to design a scheduling system which will support low-level
scheduling processes (daily scheduling activities, e.g. plan a task). In this section we will
transform the low-level process requirements into functional software requirements. We
describe the scheduling functionalities in the form of use cases. The list of the use cases that
we see relevant for this case can be seen in Appendix 1: Use cases. We summarized the five
use cases as four major functional requirements:

Figure 5: Simplified
organizational structure

24

Functional Requirement 1 (FR1): The first requirement of the LHO scheduling software is
to support low-level scheduling processes, e.g. plan a task, plan holiday, etc. Each use case in
“Appendix 1: Use cases” represents a low level scheduling process.

Functional Requirement 2 (FR2): The scheduling system must support the LHO rules,
constraints and objectives. Employees, clients and the organization have various objectives
and constraints (See Difficulties in scheduling for LHO section for details). These objectives
and constraints are usually transformed to scheduling rules. These rules can have different
level of aggregation. The scheduling rules are also incorporated to the use cases defined in
Appendix 1: Use cases.

Functional Requirement 3 (FR3): It must support different aggregation levels. When
making a decision, the planner must check policies at different levels. For instance, when
planning a holiday for one of the employees, the planner must check if the employee is
authorized to have a holiday. This check can be considered as local check because it only
concerns a specific employee. At the same time, the planner must check the capacity of the
region or even the city and compare it with the available workforce before approving a
holiday. If the available workforce cannot fulfil the demand, then the planner may choose
not to approve the holiday.

Functional Requirement 4 (FR4): The software must support resource sharing between
different Areas. The resource sharing requirement is defined by Use Case 5 in Appendix 1:
Use cases.

Non-functional requirements

Non-functional requirements specify how a system is supposed to function. The non-
functional requirements of LHO scheduling system are defined below:

Non-functional Requirement 1 (NR1): It is expected to support distributed decision
making since the planners are located at different locations.

Non-functional Requirement 2 (NR2): The software is expected to support multi-user
architecture because there can be multiple planners who share responsibilities. The short
term planners, for instance, do not have predictable work environment. The organization
doesn’t know who is going to call next with what request. Therefore they assign similar
responsibilities to every maintenance planner (a planner who is responsible for maintaining
the current week). In other words, at a given time T, there might be more than one planner
editing/reading the same information.

Non-functional Requirement 3 (NR3): The software must protect the feasibility of the
plan at all times. In other words, it should not allow conflicting decisions to be taken
simultaneously.

Non-functional Requirement 4 (NR4): The software should display the latest status of
the planning changes to all related planners. In other words, if the change made by one
planner is affecting another planner, the second planner must be notified for the changes
that the first planner makes. For instance, consider the case where employee works for 3
days in one Area and 2 days in another Area. The planning decision for the first 3 days are
made by one planner while planning decisions for the last 2 days of the week are made by a
second planner. However, the decisions made by the first planner will affect the decision of
the second planner since the employee has only one contract. The system must be able to
notify the planners if the employee is over-planned.

25

Non-functional Requirement 5 (NR5): The software must be responsive in order to
support fast decision making. We define responsive scheduling system as a scheduling
system which responds to schedule change requests without violating the timing constraints.
Each use case of the scheduling system will have a timing constraint which defines the
expected runtime of the use case.

Architectural requirements

Architectural requirements describe the system architecture constraints. The
architectural requirements of LHO scheduling system are defined below:

Architectural Requirement 1 (AR1): The software must comply with the LHO IT
infrastructure. There may be various infrastructures deployed throughout LHO but the most
common one is centralized IT. In this infrastructure the computing power is located at one
central location and the users (planners) are given monitors (thin clients) which they use to
monitor their space (every planner can only monitor the sections which she is responsible
for).

4.3. The scope
For this study, a LHO scheduling software system is defined as a decision support system

that can help the planners to perform daily activities such as plan-in operation, plan-out
operation, register unavailability, etc. The system also provides support for different types of
rules like governmental or organizational regulations, or employee/client preferences, etc.

In this study we do not seek for a solution that will optimally assign tasks to employees.
Instead, we seek for a real time system which will support planners to perform daily
scheduling activities mentioned in the paragraph above (daily activities are explained in
detail in “Appendix 1: Use cases”).

The daily scheduling activities mentioned in the paragraph above are concerning
Operational Planning and Dispatching. The other types of planning are excluded from the
scope of this project. The scope of Operational Planning and Dispatching are defined as
follows:

1. Operational Planning: At this level of planning, each task (demand) is assigned to
one or more employees. Additionally, holidays or absences of employees are also
planned at this level of planning. Usually it covers the next 2-5 weeks.

a. The functionalities covered in operational planning are described by use
cases. The use cases considered in this study are defined in the Appendix
. Use cases from 1 to 5 are related to operational planning.

2. Dispatching: The Dispatching department is responsible for the maintenance of
the plan which was created at an Operational Planning level. The need to change
the plan occurs in the case of an employee falling sick or a client going to
hospital, etc. The Dispatching department responds to such unexpected events
by rescheduling task(s), assigning the employee to new task(s), etc. The changes
in this level of planning are done in real-time.

a. The functionalities covered in operational planning are described by use
cases (See the Appendix for the list of use cases). Use Case 1, Use Case 2,
Use Case 4 and Use Case 5 are included in Dispatching.

26

5. Literature Review
The existing literature was studied in four parts. Firstly, we studied the literature related

to distributed scheduling system architecture for homecare. Secondly, we searched the
literature of related fields involving human resource scheduling in distributed environments.
Thirdly, we searched for scheduling software architectures (ontologies) that may be partially
applied to a homecare problem. We also included software architectures for distributed
manufacturing scheduling systems as the distributed scheduling field is at quite an advanced
stage in the manufacturing area. These four parts will now be elaborately discussed.

(I) There are some studies which explored the homecare scheduling area using
distributed and/or multi-agents systems. However they failed to include two or more of the
seven requirements mentioned in the beginning of this section. The papers that are closely
related to our study in this stream of research are:

 Itabashi et al. (2005) define a decision support system for Home Care services in
Japan. They modelled each employee and client as an agent. Each agent
functions autonomously and scheduling is achieved by negotiations between
agents. This study however doesn’t include support for high level aggregation
rules. Additionally, the scheduling is done by employees themselves rather than
planners.

 Corchado et al. (2008) developed a multi-agent system named ALZ-MAS which
works in real environment. The application itself schedules different tasks using
deliberate agents. But it doesn’t support multi-user architecture and global
policies. It can be considered as an important example for deliberative agent.

 Fraile et al. (2009) developed a hybrid multi-agent architecture for homecare

environments to monitor patients at their houses.

 Huang et al. (1995) defined agent based approach to Health Care Management.
The decision support was designed for situations where distributed and
collaborative decision making is required. However, it doesn’t include detailed
homecare constraints and lacks support for global policies (global autonomy).

 Date and Matsuo (2008) proposed a method of discovering the best combination
between helpers and elders under much restriction based on multi-agent
systems. The agent system was based on negotiation among users. The
organizational structure and autonomy defined in this study was different than
our problem.

A number of papers in the homecare literature concentrate on optimal scheduling of the
homecare organizations. They usually also incorporate soft scheduling constraints so as to
handle human scheduling problems. This approach is helpful for our problem since it may
reduce the need for changing the plan by improving the initial plan. However, it will never
remove the requirement for real time system which handles daily schedule changes that
requires distributed, multi-user handling. The models that are most relevant to our study are:

 Eveborn et al. (2006) focused on staff planning problem. They included some
restrictions and soft objectives in the model. The model itself however
concentrates on one time solution of the planning puzzle.

 Borsani et al. (2006) defined an optimization model for home care scheduling.

The model was defined to solve the planning puzzle for one week.

 Bricon-Souf et al. (2005) worked on the definition of a coordination platform for
homecare. They mainly analysed inefficiencies due to lack of coordination and
proposed a method to avoid these inefficiencies.

27

 Hutzschenreuter et al. (2008) proposed an agent-based simulation model for
admission scheduling in hospitals.

 Begur et al. (1997) provided solutions to the assignment problem for homecare
business. However, these methodologies are not suitable for real time systems
with timing constraints because solution times are longer.

(II) In the literature there are also examples that are related to other fields than
homecare but provide a useful approach to multi-user, decentralized systems which support
soft timing constraints and global policies. These studies are not adequate to solve our
problem but they might provide useful insight for different methodologies:

 Israel and Heineman (1996) developed a decentralized atomicity model for multi-
site, decentralized workflow management system. The study itself is far from
homecare environment but it is a good example for a procedure which tries to
protect the consistency of data in the decentralized environments.

 Carrascosa et al. (2008) represented a multi-agent architecture for real-time
problems. The study focused on hard timing constraints and it is not in the
homecare domain. Nevertheless it is an important example where deliberative
and reactive processes are included together.

 Isern et al. (2010) created a detailed review for the agents which are applied in
the health care domain. They concluded that agent technology can offer value to
planning and resource allocation in health care domain.

 Ben-Shaul et al. (1992) proposed an architecture for multi-user software
development environments. Although it lacks some parts of the LHO scheduling
requirements, it can serve as a good base for data sharing purposes.

 Huang et al. (1994) defined a corporation method for physically distributed
health care settings. They focused on developing communication standards and
agent commitment.

 Koutkias et al.(2005) proposed a multi-agent system for the management of
chronic diseases. In their model, they included an approach to minimize the
communication between agents by replicating the previous state of agents to the
Information Blackboard.

 Nealon and Moreno (2003) argued that multi-agent systems are beneficial to
health care solutions (including home care) because of their autonomous and
dynamic behaviour.

 Pinelle and Gutwin (2001) defined collaboration and communication
requirements for Home Care which are interesting for agent based modelling.

(III) Several studies in the literature have proposed ontologies and planning approaches
for various industries. Although these studies were defined for industries other than
homecare, there are lot of elements that can be reused for homecare environment. The
ontologies in the literature are as follows:

 Rajpathak et al. (2001) presented generic task ontology for scheduling problems.
The study covers a lot of aspects as scheduling objects, hard/soft constraints,
preferences, etc. However, it lacks LHO specific aspects as organizational
structure, distributed decision making, etc.

 Motta et al. (2002) proposed a general ontology for all types of scheduling
problems however it lacks sector specific requirements as company structure,
multi-user support, etc.

 Frankovič et al. (2002) defined a general guideline for creating scheduling and
planning ontology.

28

 Merdan et al. (2007) proposed an ontology for assembly domains.
 Wang (2010) proposed an approach for developing a distributed process

planning, real-time monitoring and remote machining system.
 Guo and Zhang (2009) proposed a multi-agent method for dynamic and flexible

manufacturing scheduling which is based on cooperation and coordination
among the agents.

Literature categorization

In order to systematically compare the relevant materials in the literature, we
categorized the studies in the literature. Based on the software requirements defined in
section 2.3 (The software requirement of LHO) we derived seven categories. The list of the
categories and mapping between categories and software requirements are given below:

 Decentralized [D]: decision making is dispersed to smaller regions. (NR1)

 Multi-User Support [MUS]: support simultaneous decision making from different
actors in cases where decisions interfere with each other. (NR4, NR2)

 Soft Timing Constraints [STC]: soft timing constraints are crucial to achieve
responsiveness. (NR5)

 Local Decision Making [LDM]: most of the times, the planning decisions are local.
The planner must be able to work independently. (NR5)

 Global Policies [GP]: The system is expected to support common global polices
like exchanging employees, trainings schedules, holiday management per
location, etc. (FR2, FR3, FR4, NR3)

 Home/Health Care [HC]: scheduling of human resources is very different than
machine scheduling as people have much more states than functional and non-
functional. Furthermore homecare has its special environment where the
employees are delivering services at the home of the client. (AR1, FR1)

 Low-Level Process Management [LLPM]: due to the environment, there are lots
of uncertainties involved in the planning process of the homecare organizations.
Therefore the generated schedules must be frequently updated. (FR1)

The current literature does not provide any solution that covers all seven simultaneously.
Most of the available solutions cover the items separately or covers only a part of the
requirements. The categorization of the available literature can be found in Table 4.

29

Table 4: Categorization of the available literature [as of 18
th

 June, 2010]

Reference D MUS STC LDM GP HC LLPM

{A. Moreno, 2004}

{Akjiratikarl, 2007}

{Berrada, 1996}

{Borsani, 2006}

{Carrascosa, 2008}

{Corchado, 2008}

{Ernst, 2004}

{Eveborn, 2006}

{Fraile, 2009}

{Graham, 2001}

{Huang, 1994}

{Huang, 1995}

{Israel, 1992}

{Israel, 1996}

{Itabashi, 2005}

{Koutkias VG, 2005}

{Mackworth, 2003}

{Neelamkavil, 1992}

{S. Begur, 1997}

30

6. Object Model
In this chapter, we will define an object model that is suitable for the LHO environment.

As the scheduling problem of LHO is too large to be managed as a single problem, we first
look for a method to simplify the scheduling problem by separating the whole problem into
independent sub problems. Then we will then subsequently define an object model for the
independent separations.

After defining a method to separate the scheduling system into separate parts, findings
from the existing object models in the literature will be presented. Thereafter, we will
present the object model through the use of class diagrams. Afterwards we will demonstrate
the use of the object model in a distributed, multi-user environment.

6.1. Scheduling system separation
The focus of our problem is on large homecare organizations. As the name suggests,

these homecare organizations are large in size, sometimes reaching tens of thousands of
employees. In order to manage the schedules of such large organization effectively and
increase their responsiveness, we propose to separate the scheduling problem into several
independent sub-problems. Each separation will be independent from other separations and
each separation will have its own scheduling system.

The most preferred way of separating the scheduling problem will be to decompose the
scheduling problem into very small scheduling problems in such a way that every decision
maker can work independently. But the LHO scheduling software cannot be decomposed to
very small pieces which concern only one decision maker because of two reasons: (i)
resource sharing among locations (ii) planners have to base their decisions on aggregate level
counters which can be influenced by other planners (FR3 and FR4).

In the literature, we can find several types of separations, mostly defined for multi-agent
systems. Most of them divide the problem into autonomous agents. However, these
solutions are generally far from being responsive and they lack the support for global policies
(global autonomy). For instance, Itabashi et al. (2005) created a decision support system for
Home Care services in Japan. They modelled each employee and client as an agent, thus
giving autonomy to clients and employees, instead of the planners. However, this kind of
separation doesn’t include support for high level aggregation rules. Additionally, the
scheduling is done by employees themselves rather than planners. Similarly, Huang et al.
(1995) defined agent based model for situations where distributed and collaborative decision
making is required. However, it doesn’t include detailed homecare constraints and it is
lacking support for global policies (global autonomy).

During our research, two major factors were identified that have influence on schedule
separation: these are shared resources and aggregate counters on higher organizational
levels (e.g. available capacity per Area, per Region, per City, per Province, etc.). Consequently
we based the separation of the scheduling method on these factors. The scheduling system
can be separated with the following steps:

1. Identify the organizational or practical rules which constrain the resource
sharing. The lowest organizational unit that fits to resource scheduling rules can
be used as independent separation. For instance, sharing resources is only
meaningful when two Areas are close to each other. An Area which looks for
additional capacity will hardly request capacity from another province because

31

travelling time will be very long. In this case, a province will be the smallest
organizational unit to be used as a separation unit.

2. Identify the aggregation levels which are influential for decision making for the
schedulers. Take the highest level as the smallest separation unit in order to
handle different aggregation rules. For instance, the available capacity rules are
commonly checked for the City or the Area but not for the Province.

3. Take the larger separation unit of the first two steps and use it to separate on the
scheduling problem into smaller pieces.

Every separation will act as a separate scheduling system. Hence there will be no physical
dependency between planners who are not influencing each other. For instance, the
installations can be done on different computers to remove CPU dependencies, memory
dependencies, etc. Removing dependencies will increase the responsiveness (NR5) of the
scheduling software as there will be less interrelated users.

6.2. Relevant Ontologies in the literature
The existing ontologies in the literature do not cover the homecare process. The existing

approaches focus mostly on the manufacturing processes. Motta et al. (2002) proposed a
general ontology for all types of scheduling problems. However, it lacks sector specific
requirements as company structure and multi-user support. Frankovič et al. (2002) defined a
general guideline for creating a scheduling and planning ontology. Merdan et al. (2007)
proposed an ontology for assembly domains. In the Class Diagram section we evaluate
further the ontologies in the literature and describe the overlaps of these ontologies with our
research.

6.3. Class Diagram
This section will describe an object model for LHO scheduling software system. The

model will be presented using an UML Class Diagram.

This section is organized as follows. We start with the definition of classes that are used
to model the LHO organization like employee, clients, contracts, organizational structure, etc.
Next, we describe the classes that are used to meet scheduling requirements. After this, we
describe classes (and processes) that are used to support business rules and resource
sharing. The last part of this section will describe the classes that are used to a support
distributed, multi-user architecture.

6.3.1. Organizational Classes

This part will describe the classes and their relations that are used to model the LHO
organization. We divided these classes into three parts: Employee, Clients and Organizational
Structure classes respectively.

Employee Classes

Figure 6 shows the class diagram which is used to model employee related attributes.
Rajpathak et. al. (2001) generalizes the employees as resources. In our architecture, the
employees of the organization are modelled by an Employee class. In our architecture, we
consider only Employees as scheduling resources. Every employee has one or more contracts
with the organization. Contracts are represented by a EmployeeContract class. Every contract
also defines the WorkPattern of the employee.

32

The ShiftAssignHandler defines the time intervals when an employee is working. The
ShiftAssignHandler calculates the working times by subtracting the Holidays, Absences and
PublicHolidays from the WorkPattern of the employee.

Every employee has a right to have a holiday every year. Her holiday allowance (or initial
balance) depends on her contract, age and her history with the company. The holiday right is
modelled by a HolidayRight class. Every holiday right has a type, modelled as HolidayType.

Figure 6: Employee related classes

Client Classes

Figure 7 shows the client related class diagrams. The client class also defines the service
requirements. Rajpathak et al. (2001) models clients as an attribute of job. Frankovič et al. ,
(2002) models clients as a separate class named “customer”. In our model, we consider a
client as separate object.

Each Client has one or more contracts with the organization. A clients’ contract(s) with
the organization is modelled as CareContract. Each care contract contains details about the
work that needs to be performed and the time frame it needs to be performed in. These
details are modelled through a ClientContractDetail class. The tasks are generated based on
the ClientContractDetail. The tasks are represented with a Operation class.

For LHO case, client needs to be available during service delivery. Therefore we model
the client absences as Absence.

33

Figure 7: Client related classes

Organizational Structure Classes

The organizational structure varies from organization to organization. Factors like size,
geographical location are influential on
the structure of the company. Figure 8
represents the organizational structure
model which we will use in this study. In
our research we assume that the
organization deploys a team based
structure. Therefore the basis for the
organizational structure is Area. The Area
class in this model represents a team of
employees who are working in a specific
geographical region. Each employee is
assigned to at least one Area.

The organizational levels of the
company are generalized as an OU
(organizational unit) class. An OU
represents the hierarchies in the

organization. Every organizational level may have more than one child. The organizational
hierarchy is modelled by OURelation class. This way every OU knows her parent OU and vice
versa.

In this study, we will use Area, City, Region, and Company as organizational units. The
Company is decomposed into several Regions. Every Region contains one or more Cities. Each
City contains several Areas.

The three levels (Area, City, Region) were chosen as representative set of hierarchy. The
planning decisions are made on an Area level as the planner responsibilities are defined per
Area. Therefore we choose higher hierarchical levels in the organization. We consider these
three levels as sufficient in order to demonstrate aggregated counters.

Figure 8: Organizational structure classes

34

6.3.2. Scheduling Classes

The scheduling classes can be categorized into two parts: scheduling input classes and
scheduling output classes. The scheduling input classes represent the calculated information
that is extracted from different sources. The scheduling output classes represent the classes
which are used to model the outputs of the scheduling process, e.g. the task assignments,
capacity usages, etc. In Figure 9, the scheduling input classes are shown in the blue rectangle
while the scheduling output classes are shown in the pink rectangle.

The scheduling input classes are usually derived from information which is extracted
from different sources. Alternative class represents the alternative employees who can
perform the Operation. An Employee can be an Alternative for an Operation if:

 The Employee who has the necessary skills to perform the task; and

 The Employee lives in the same city as the Client; and

 The Employee who fits with the other business rules.

A task may require one or more Employees. The requirement is represented by
ResourceRequirement class.

Figure 9: Scheduling classes

Scheduling is done by assigning operations to employees. The scheduling information is
represented by a class named OperationSchedule. The OperationSchedule object keeps
information about the used resources. The usage of resources is represented by
ResourceUsage class. Resource usages are used by AvailableCapacity to calculate the net
available capacity at each moment. AvailableCapacity has a list of TimeValueNode’s which
shows the increment/decrement times and the value (e.g. capacity) at that time.

35

6.3.3. Rule Support Classes

Homecare organizations have different indicators at different levels of aggregation. We
refer to them as counters. The counters are used to monitor organizational policies. For
instance, LHO want to keep track of the “total planned hours” for every Employee, Area, City,
Region, etc. In this way the organization can control the planned capacity and compare it
with the demand. The “planned hours” indicator needs to be calculated per week so that it
can be compared to contracted hours (contracted hours of employee are defined on a weekly
level).

In addition to the aggregated values, there are also some variables on the employee or
client level. For instance, it is important to know the capacity utilization on the employee
level, the fulfilled hours for each client as well as the number of visits the employee makes to
each client.

Figure 10 shows the classes which are used to model rule checks.

The Rule Support classes that we consider in this section are more representative that
complete the set of counters. With this set of counters, we aim to demonstrate the different
level of aggregated counters. Most of the scheduling decisions are made on counters on Area
level or employee/client level. However, some decisions are made on higher level counters.
In order to include such decisions in the architecture, we also include City or Region level
counters. Most frequently, counters are measured for a specified time frame. We choose
WEEK as a representative time period which we will use in our architecture.

Figure 10: Rule support classes

36

6.3.4. Shared resource classes

Due to the uncertain nature of the homecare environment, it is common to share
resources between Areas. This process
is modelled as loaning an Employee.

Figure 11 shows the classes which
are used to model resource sharing
between Areas. A LoanedEmployee
class is used as an intermediate
between two Areas. The
LoanedEmployee class represents
an Employee (TheEmployee) who is
loaned from one Area
(LoaningArea) to another Area
(BorrowingArea). An Employee can
be loaned multiple times from one
Area to another at different times.
LoanedCapacities show the
different time intervals during
which an employee is loaned
between Areas.

6.3.5. Distributed Decision Making Support Classes

The LHO scheduling system will be used by multiple users that are working at different
geographical locations. Every planner will have different responsibilities with respect to

different Areas. Some planners will be
responsible for short term planning of
the Area; others will be responsible
for long term planning. In addition,
there might be planers who want only
to see the planning (read only). The
scheduling system needs to support
an authorization mechanism which
will set the boundaries of each
planner.

The authorization mechanism is
based on Area. Every planner can be
authorized to change or read the parts

of the schedule which are related to a specific Area. Figure 12 represents the classes and
their relations that are used to model the authorization mechanism. Each planner is modelled
as a ClientUser. Every ClientUser has one or more permissions (ClientUserPermission) to one
or more Areas. The permissions are defined for a specific time window. Outside that window
the permission is invalid.

The next section will explain the authorization process in detail.

Figure 11: Classes related to shared resources

Figure 12: Distributed Decision Making Support Classes

37

6.4. The distributed decision making and authorization process
The authorization mechanism is required for a LHO scheduling system because the users

are distributed over wide geographical regions and cannot communicate with each other
directly. As a result, their will to change the planning must be regulated in such a way that
their decisions are not conflicting with each other.

In order to avoid conflicts in the schedule, we introduced the authorization mechanism.
An authorization mechanism restricts a planner in terms of geographical region and time. In
other words, a planner can edit the schedule of an Area only if she has the right to change it.

Moreover, we also restricted the number of users who can edit the planning of an Area
at the same time as it is not very meaningful to allow different planners to change the
planning of the same employee for the same day. We allow only one Long Term Planner (LTP)
and one Short Term Planner (STP) to edit the planning of an Area at any time T. Before
starting to plan, the planner sets the Area she wants to work on as her current Area and sets
her role (LTP or STP). If there is already a user who is working on the same area with the
same role, then a second user is not allowed to edit the schedule of the Area.

The authorization time window of a user doesn’t only depend on the rights of the user
but also on the planning status. The LTP is responsible to create the schedule for the coming
weeks. Once she is finished with scheduling, she releases a plan to STP. Then STP gets the
authorization for the released period. If the LTP needs to correct the released plan, then STP
gives her authorization back to LTP. In such a case, LTP has to release the plan again.

To sum up, we introduce an authorization mechanism which will help to keep the
schedule consistent. This way we can allow multiple (LTP and STP) and geographically
dispersed planners to work simultaneously on the same scheduling system.

However, the authorization mechanism is not adequate to keep the schedule consistent
at all times. There are calculated values on different aggregation levels which can be
influenced by multiple decision makers. In such a case, these values need to be protected
from concurrent access as concurrent access may cause conflicts. The next chapter will focus
on handling issues of objects/ fields/ functions in LHO scheduling system and describe a
method to solve it.

38

7. Schedule consistency and process management
Our goal is to find a suitable software architecture for large and dynamic homecare

organizations to achieve a responsive and consistent scheduling process in a distributed,
multi-user environment. In the previous section, we defined the first part of the architecture,
i.e. the object model. The next step will be to define a systematic method to manage low-
level processes in a distributed, multi-user environment. The challenge is to develop a
systematic method which will keep the schedule consistent and still be responsive.

In this chapter we will begin with the definition of the consistency requirement and its
importance. Then, we will evaluate alternative methods which we can use for keeping the
schedule consistent. Next, we will select an alternative and we will explain physical
architecture of the selected alternative. Afterwards, we will explain how we will apply the
chosen method to create responsive scheduling system. In the final section, we will have a
look at the responsiveness when there are software tasks with long durations.

7.1. Importance of schedule (data) consistency
One of the requirements of LHO scheduling system is to achieve consistent scheduling

process (NR3). Inconsistencies may occur when two decisions interfere with each other. Most
frequently conflicts occur when multiple planners execute decisions simultaneously. For
example, conflict occurs when one planner is registering a holiday and at the same time
another planner is assigning a task to the same employee for an overlapping time period. If
we translate this situation to scheduling software language, it means that two threads are
updating the same fields, objects, etc. as both threads are updating data which is related to
the same employee object.

Simultaneous access to the same object is not desirable because allows creation of
infeasible schedules. In our example, the second planner probably wouldn’t have assigned a
task to the employee if she would have known that the employee is on holiday for that time
period. Such access may lead to a number of problems, e.g. miscalculation or system crash if
one of the threads deletes an object when another thread tries to access it. Consequently,
we have to protect the data or synchronize access to data (Ben-Shaul et al., 1992) if we want
to keep it consistent.

Next section will define the alternative methods to synchronize simultaneous access to
data in distributed, multi-user homecare environment.

7.2. Alternative data protection methods
According to (Ben-Shaul et al., 1992), there are two alternative methods to synchronize

simultaneous access to scheduling data. First method is to replicate the data in such a way
that every user has their own workspace. The second method is to define access rules for the
data which is located on central location where every user is connected to.

Data replication

The first method implies that first the data is replicated to each user’s space. Afterwards,
every change the user makes is only done in her own copy. The last step of the process is
integration of the separate workspaces.

Replication of data is good option to reach responsiveness because it allows users to
work on their own workspace without interfering with any other decision maker (or being
interfered by other decision makers). However, the integration of the separate workspaces is
not very easy when there are conflicting decisions. For instance, imagine a case where one

39

planner is deleting one of the previously created absences and the second planner prolongs
the same absence. The scheduling system must be capable of handling such a situation. In
practice, it is very hard to define a rule which states priority of one scheduling decision over
another, especially if those decisions are made by different planners.

Centralized approach

The second method requires a central architecture. The software (the scheduling system)
is placed on a central location (server) and the planners are connected to it via client
software. In this architecture, the server acts as a service provider. In our case, the service is
scheduling process. The software client is an interface between the planner and the server. It
is responsible for displaying scheduling charts, reports, etc. to the planner and initiating
scheduling requests. Whenever planner wants to make a change in the schedule, she will
trigger the Use Case from the client software GUI. The client software will trigger the
scheduling activity on the server. The server will process the request and then send the
results to the client software. Client software will display the results to the planner.

The centralized approach requires implementation of data locks in order to protect data
(or synchronization). The locking mechanism prevents concurrent access to the same object.
Instead, simultaneous requests are performed sequentially. This way, the schedule is always
consistent.

The biggest challenge in the data locking is to find the right level of locks. If the data lock
is defined on very high level, i.e. data subset is very large, then the responsiveness becomes
an issue in multi-user applications. On the other hand, lower level locks increases the
possibility of deadlock and reduce the maintainability of the application.

During our research, we discovered that the data protection can also be delegated to the
database. If the scheduling system was built as database application which displays
information from database instead of running on memory, then the data protection could
have been delegated to the database. The databases have well-structured synchronization
mechanisms for multi-user environments. However, in our case, we are not only displaying
information but also processing information. Sometimes the scheduling algorithms require
implementation of complex optimization methods or scheduling heuristics. Implementing
these procedures on a transactional system will reduce the responsiveness dramatically.
Therefore we decided to eliminate this alternative.

Existing implementations

The implementations existing in the literature mostly focus on multi-agent systems. They
try to secure data consistency by separating autonomy over objects. They allow only one
agent to change the state of an object which prevents inconsistencies. However, such an
approach creates problem in response times. Isern et al. (2010) created a detailed review for
the agents which are applied in the health care domain. Huang et al. (1995) defined agent
based model for situations where distributed and collaborative decision making is required.
Huang et al. (1994) defined a corporation method for physically distributed health care
settings. They focused on developing communication standards and agent commitment.

There are also good examples for centralized systems from other research areas. Israel
and Heineman (1996) developed a decentralized atomicity model for multi-site, decentralized
workflow management system. The study itself is far from homecare environment but it is a
good example for a procedure which tries to protect the consistency of data in decentralized
environments. Ben-Shaul et al. (1992) proposed an architecture for multi-user software

40

development environments. Although it lacks some parts of the LHO scheduling
requirements, it can serve as a good base for data sharing purposes as it provides a good
approach to handle multi user software tasks.

There are also detailed studies about Real-Time Database Systems (RTDBS). Likewise LHO
scheduling system of our study, RTDBS has to process transactions triggered by different
sources and guarantee that database consistency is not violated (Abbott & Garcia-Molina,
1992). Abbott & Garcia-Molina (1992) proposes four component scheduling algorithm for
database transactions: (i) a policy to manage overloads, (ii) a policy for assigning priorities to
tasks, (iii) a concurrency control mechanism, (iv) a policy for scheduling I/O requests. Abbott
& Garcia-Molina (1992) test different scheduling policies for different scenarios like high-load
times, increasing conflicts, etc. Even though their study provides very useful insights in
transaction scheduling, the transactions they are considering are simpler than the
transactions in homecare scheduling. LHO scheduling system requires more comprehensive
concurrency control mechanism as the subset to be locked is depending on the content of
the use case.

Weikum (1991) studied RTDBS system with layered architecture. He focused on
concurrency control strategies. Further he investigated protocols for aborting transactions
and restarting the system after crash.

Baccouche (2005) defined a dynamic admission control and parametrable priority based
scheduling algorithm called H/M/L.

Haritsa et al. (1991) developed priority assignment algorithm called Adaptive Earliest
Deadline which detects overload conditions and modifies transaction assignments
accordingly.

Weikum and Hasse (1993) developed algorithms for multi-level transaction management
in a database kernel system.

Weikum and Schek (1992) studied concepts and applications of multi-level transactions
and open nested transactions.

Ramamritham (1993) and Ulusoy and Belford (1993) studied concurrency control
protocols for RTDBS.

The next session will elaborate the alternatives and choose the one that suits best to our
problem.

7.3. Why centralized model for LHO?
There are two different approaches that we can use for synchronization of data: by

centralizing the system and controlling the simultaneous access or by decentralizing the
system and later integrating the separate pieces into one schedule Ben-Shaul et al. (1992).

Both methods can contribute to our problem. The decentralized approach can be
selected because it is more responsive. But it is hard to maintain the consistency of the
schedule. The centralized approach will keep the schedule consistent but achieving
responsiveness in multi-user environments is challenging.

In our model, we choose the centralized approach because responsiveness and
consistency are not the only requirements we are considering. The scheduling system

41

requires support for different level of aggregation and rules (FR2 and FR3). It is hard to
maintain the high level aggregation in a distributed system.

Additionally, the scheduling system must allow resource sharing (FR4). In a decentralized
system, implementing the resource sharing use cases will be very difficult due to extensive
communication requirements.

Lastly, the LHO usually have centrally focused IT infrastructure. The LHO is spread over
large geographical areas. It is not economically feasible for each area to keep their own IT
infrastructure. Therefore LHO deploys centralized architectures where computational power
is located at central location.

The next section will describe the application of centralized software system to LHO.

7.4. System Configuration
The configuration that we choose for LHO is called Client-Server configuration because

LHO IT systems are located on a central location while the planners are located at various
locations. Figure 13 shows graphically the physical architecture of the system and the
communication between its independent parts. The scheduling system is placed on a central
server and the planners are connected to it via client software. In this architecture, the server
acts as a scheduling service provider. The software client is an interface between the planner
and the server. It is responsible for displaying scheduling charts, reports, etc. to the planner
and initiating scheduling requests. Whenever a planner wants to make a change in the
schedule, she will trigger the Use Case from the client software GUI. The client software
triggers the scheduling activity on the server. Then the server processes the request and
sends the results to the client software. Client software will display the results to the planner.

There are two software components of this architecture. One is the scheduling engine
which is located on the server application. The second one is the GUI component which is
located in the client application. LHO scheduling software might contain many other
components (e.g. communication manager) but only the Schedule Engine and GUI are
relevant for our case.

Figure 13: Client-Server configuration*

 *Source: Downloaded fromhttp://code.google.com/edu/parallel/dsd-tutorial.html on 1st of August, 2010

7.5. Implementation of data locking to LHO
This section will propose a data locking method for LHO. First it will describe the basics of

data locking. Second, it will define an atomic unit for data locking. Third, it will explain how
the data locking is working at LHO environment. In the last part, it will describe a solution for
a special case, i.e. concurrent access to the same object.

42

7.5.1. Data locking mechanism

Our goal is to protect the scheduling data. There are two types of access to the
scheduling data: read and write. Software components like GUI are only displaying the
scheduling data, i.e. they only need read access to data objects. On the other hand, the
Scheduling Engine component not only reads data but it also changes, deletes or creates
data. Therefore the scheduling engine activities generally require write access.

As a result we identified two types of data locks for the scheduling system: Reader Lock
(R) and Writer Lock (W). The both locks control the access to memory which is shared by
multiple threads (or users). R lock allows concurrent access to multiple threads to the same
memory (data). The W lock however is an exclusive lock, i.e. no other thread can read or
write to the same memory area once a write lock is acquired.

In order to control concurrent access to the scheduling data, we added Lock Manager
component to the LHO scheduling system. The Lock Manager is responsible for granting or
denying authorization to threads which are trying to access the scheduling data. When a
thread attempts to access the scheduling data, it must first acquire a lock from the lock
manager. Figure 14 shows the lock acquisition procedure. Data Reader/ Writer thread
requests access to data. Depending on the required access type, the thread requests W or R
lock(s). The thread can start to read or write action after the requested lock(s) has been
granted by the Lock Manager. After the thread is finished with reading or writing the data, it
releases the acquired locks.

Figure 14: Lock acquisition procedure

A lock is acquired for specific context. A lock context defines the subset of the scheduling
data to be locked. For instance, if we need to lock data related to one employee, then we can
define the lock context as the unique ID of the employee.

When there are multiple threads trying to acquire the same lock context, then the lock
manager regulates the acquisition process based on prioritization rules. The lock manager
will allow multiple threads to have R of the same context but it will allow only one thread to
be running when there is a thread which has W lock. Figure 15 illustrates the behaviour of
lock manager with an example of three threads trying to acquire the same lock context.

43

Additional to R and W priority rules, we also defined priority rules for the queue. The
regular queue is working on FIFO basis. But there is an exception for W locks. The W locks are
more prior to R locks and they always go to the front of the queue. The W lock has to be
given priority because the system allows multiple R locks. This means when R lock is taken,
the new coming R locks will be acquired but W lock will keep waiting until all R locks are
released. Consequently, the priority between W and R locks need to be implemented to
avoid situations where W lock waits for very long time.

Figure 15: Lock prioritization

 *Source: Downloaded from http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/ARH9RCTE/DOCU0009.HTM on 1st of

August, 2010

The next section will define the lock context which will be used in LHO scheduling
software.

7.5.2. The Data Locking unit (atomic unit)

In the previous section, we explained the locking procedure and locking parameters. In
this section, we will make the choices regarding the locking parameters, lock context and lock
type. In order to describe our choices, we will use thread state diagrams. Therefore we will
start this section with definition of states. Then we will continue with our choices. The
definition of states is given in Table 5.

Table 5: Thread states

DEFINITIONS

ThreadInitialized

Thread is triggered, algorithm is ready for run.

http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/ARH9RCTE/DOCU0009.HTM

44

WaitingForLocks

The thread requested locks from the Lock manager and is waiting for reply.

AcquiredLocks

Thread has acquired the requested locks.

UserInputsAcquired

Use cases usually requires additional input from a planner. State reaches user inputs
acquired state after the system validates the inputs entered by the planner.

RulesValidated

There are various rules/constrants in LHO. These rules are validated before scheduling
task starts. A thread is at RulesVallidated state if all rules are obeyed or when a planner
accepts the rule violation.

Rules are validated after locks are acquired. Therefore it is not possible for other users
to change the state of the objects which are used in rule checks.

SchedulingActionExceuted

A thread reaches this state after scheduling action is executed. For instance after a task
is assigned to the employee or task is removed from employee.

Waiting [Master][W] Lock

A thread requested [MASTER][W] lock from the Lock manager and is waiting for it.

Acquired [Master][W] Lock

The thread acquired [MASTER][W] lock from the Lock manager.

AggregateValuesRecalculated

Aggregate values are recalculated after the scheduling activity is executed. Aggregate
values are recalculated after [Master][W] lock is acquired in order to avoid concurrent
access.

LocksReleased

All locks are released.

GUIUpdated

The GUI of the planner and related planners are updated. Related planners definition
can vary per organization and per GUI items. Most frequently the GUI update rule is to
update the planning GANTT chart of every planner which is working on the Area where
the schedule changed.

45

LHO requires both lock types, i.e. R and W. The Scheduling Engine component will
require W locks when executing the use cases. The GUI component will use the R lock when
retrieving data from the server. Figure 16 demonstrates the states of a thread when
executing typical use case of LHO. When executing the use cases of the LHO, it needs to
acquire W lock because it updates shared information regarding the schedule. On the other
hand, the GUI component only needs R lock because it only retrieves the information and
displays it.

Figure 16: Thread states (with and without locks)

The second decision regarding the implementation is the lock context. The lock context is
a very important concept because it determines the subset of data to be locked. The subset
of data to be locked has large impact on responsiveness. The larger the subset, the higher the
response time. For instance, if we choose not to split the data and have one subset, then all
the software tasks will be running sequentially. Responsiveness will be very poor in such
environments. On the other hand, defining a very small data subset as atomic unit brings the
complexity of lock management. When locking level is low (e.g. Employee level), then threads
require to acquire multiple locks which will increase the chances of running into deadlock
situation.

LHO requires a suitable subset which will be easy to maintain and still responsive. We
propose that Area (or Team) is a suitable data subset because it is not a very low level subset
and it is the only subset that exists in all organizational structures. Additionally, most of the
dynamic data of LHO scheduling system is on Area level or lower level. For the software, it
means that dynamic object creation and deletion happens on lower levels than Area.
Moreover, the management of the locks is easier because every data in the system is
connected to Area. Employees belong to an Area, Clients belong to an Area, the planner
responsibilities are defined per Area, etc.

The second alternative for data subset could have been employee and client level.
However, then the management of the locks will be very difficult because use case itself
doesn’t define the locks to be required. However, if we define lock contexts on area level,
then we can calculate the list of locks to be acquired based on the authorization definition of
the user no matter what use case is executed.

46

Consequently, we can conclude that Area level lock is a suitable for LHO scheduling
system. But it is not sufficient subset to protect higher level aggregate values, like Available
Capacity per city. Therefore we need to add more locks to protect aggregate values. We
identified two alternative locking solutions for higher level aggregate values: (i) to lock all the
areas which are below the level (ii) to lock the entire data. As locking of the entire data much
easier to manage by a global lock, we preferred to introduce such a lock for entire data. We
called this lock MASTER.

Every thread will acquire the MASTER lock as R lock when it starts execution. When the
execution comes to calculation of higher level values, then the thread will upgrade
[MASTER][R] lock to [MASTER][W] (the first bracket represents the lock context, the second
bracket represents the lock type). After the aggregate values are recalculated, the thread
downgrades the global lock to [MASTER][R]. Since all the threads will have to acquire
[MASTER][R] all the time, they will have to wait if someone acquired [MASTER][W]. At first
glance, it may seem that it will have dramatic influence on responsiveness of the system, but
it actually doesn’t. The calculation of the aggregate values is done in very short time, in a few
milliseconds because all we need to do is to add or subtract a number to/from the existing
value. Figure 17 demonstrates the state diagram for a thread with the global lock.

Figure 17: Thread states with global lock

7.5.3. Implementation of data locks

In the previous section we have defined the two type of locks we are using: the area lock
and the global lock. The global lock will be used when the thread is calculating aggregate
values. The area lock will be used in the remaining part of the thread.

In this section, we will define the method we use to find which area locks to acquire at
each thread. Because every thread will be doing a different job, the data subset they will
influence will be also different. For instance, if we are assigning a task to of client C to
employee E, then we need to locks the Area to which C and E belong. The other Areas
doesn’t need to be locked since the changes the thread makes will not influence them.

The management of such dynamic lock mechanism, however, requires additional
procedure to calculate what locks to acquire at what thread. This procedure can be very
complicated because the dataset that needs to be locked depends on the decisions which are
done after the execution start of the thread. In order to simplify the management process,
we propose to use more pessimistic approach where a thread acquires all the Area locks
which user may be influencing.

47

From section 6.4 we know that a user is authorized to make changes in only one Area at
a time. And we are also able to calculate the Areas that may be influenced by a change in one
Area. Therefore, we can calculate the list of Areas which the thread needs to acquire based
on the user who triggers the thread.

The calculation of the locks to be acquired in each thread will be calculated as follows:

 Every planner is working on one Area at a time. And every Area has a list of Areas
which may be influenced by a change in the schedule of the current area. This list
is called RelatedAreas. The thread will get the list of the RelatedAreas of the
CurrentArea (see section 6.3.5 for class diagram) of the user and lock them. The
calculation of the RelatedAreas is done as follows:

1. Employees of the current area of the user may have contracts with other
Areas. The thread needs to lock them to prevent conflicts. Therefore we
get the list of Areas for which employees of CurrentArea have contract
with. We call it OA.

2. Clients of the current area of the user may have contracts with other
Areas. The thread needs to lock them to prevent conflicts. Therefore we
get the list of Areas for which the clients of CurrentArea have contract
with. We call it OAC.

3. The employees may be loaned to other areas. Therefore we need to get
the list of areas to which employees of the Area are loaned to. We call it
LA.

4. The area might have borrowed employees from other areas. Therefore
we need to get the list of Areas from which the employees are borrowed.
We call this list BA.

5. {RelatedAreas} = {OA} U {OAC} U {LA} U {BA}

Recalculation of data locks (after changed in Resource Sharing, etc.)

The RelatedAreas list which defines the locks that a thread will acquire before execution
is not a static list. It depends on the dynamic factors such as loaned employees or borrowed
employees. Therefore the locks to be acquired for a user must be recalculated after a change
in loaned employees or borrowed employees, or when employee changes the current area.
The recalculation of the RelatedAreas list doesn’t only concern the user who makes the
changes but also the users who are controlling one of the RelatedAreas. Therefore during the
recalculation of locks to be acquired list, the scheduling system must not process any other
changes which may cause conflicts. We propose to acquire [MASTER][W] lock before
recalculation of RelatedAreas list and release it after recalculation of RelatedAreas list.

7.5.4. Object Locking

The Area locks are sufficient for concurrency control for most of the scenarios. However
there are exceptions where Area lock is insufficient. For instance, if two planners delete the
same object exactly at the same time, then the system may be halted. Since both of the
planners trigger the delete activity at the same time, both threads will be initialized. But only
one of them will be executed and the second one will wait for the locks. When first one is
finished, the second one will start execution. However, the object which the second thread is
trying to delete is already deleted by the first thread. This situation may have deadly results
for the application. To prevent such problems, we propose object locking mechanism which
allows only one user to be deleting or editing an object. The object lock manager keeps track

48

of the locked objects. If an object is locked, the second thread is not initialized. Therefore the
problem is cleared.

7.6. Software task prioritization
The key design point of the architecture we propose is the execution time of the Use

Cases. Most of the use cases of the LHO scheduling system take relatively short execution
time. When there are use cases with long execution times, then the responsiveness become
a problem in multi-user environment. To improve responsiveness in situations where long
software tasks are executed, we propose to split the long software tasks.

The long software tasks can be grouped into two types. First group is the one which we
can break into smaller repeating tasks. The second ones are the ones who contain one long
taking activity.

If the software task can be broken into smaller repeating tasks, then we can redefine the
use cases to release area locks after executing small part of the thread. Then the thread will
acquire Area locks again. This way, we will give priority to the other waiting users; and
consequently increase the responsiveness.

If we cannot break the software task, then it is better to replicate the information the use
case needs and work on the copied data. For instance, usually the optimizers like LP solvers
cannot be interrupted and calculation may take long time. In such a case, we propose to
create the input for the solver and release locks before solver start execution. After the
solver is finished, the thread acquires locks again.

7.7. Software task aborts
There are several situations where software tasks can be aborted after it started: (i) a

transaction can be aborted by the user, (ii) a deadlock may occur and transaction may be
automatically terminated, (iii) a system crash may occur. The architecture which we propose
doesn’t allow deadlock situations. However, a system crash or deadlock situation may occur
because of implementation bugs, or other external problems. In such situations, it is
important for a system to recover and perform inverse operations (Weikum, 1991). Inverse
operations are the operations which return the system to the state before triggering the
software task.

Determination of an inverse operation is a complicated process as it requires more than
knowledge about the object which was triggered and the operation which was performed on
that object. For example, deleted objects will no longer exist. Therefore it will be difficult to
perform the inverse operation unless the information about deleted object is stored
somewhere. Inverse operations may also depend on the state at which the primary operation
was triggered (Weikum, 1991).

Hadzilacos et al. (1991) proposed a method for UNDO/REDO actions for RTDBS. They
proposed to copy data of atomic units before transaction is started and keep it until
transaction is committed. If a transaction is aborted before commit, then the system restores
the initial state of the system.

The restore procedure also requires concurrency control as it will change the state of the
system. The software tasks of LHO scheduling system are very short and have very small
impact on the system. In addition, in a well-tested and approved system failures will occur
very seldom. Therefore implementing recovery procedures for such software tasks may be
also a burden on the system. Although, we don’t have data on what would have happened if

49

we had recovery processes in place, we estimate that adding recovery processes will slower
the scheduling system, thus it will reduce the responsiveness. Therefore we leave
implementation of recovery procedures for future studies.

However, we consider user abortions within the scope of this study as they may occur
frequently. In our architecture, we allow user to abort the software task in all input points.
For that reason, we propose to only change the state of the system after all user inputs are
acquired. For cases where user inputs are acquired after preliminary calculations and state
changes, we propose to perform calculations and state changes on temporary fields/objects
and do the permanent state changes after all inputs are acquired. For example, a typical LHO
use case requires inputs when it is triggered and during validation of rules. The trigger
generally requires the user to input various inputs like employee, time frame, etc. During rule
checks, user may be asked to approve/disapprove violation of rule/constraint. For such cases
we propose to do the permanent state changes after all rules are validated or approved by
the planner.

50

8. Solution implementation
In this chapter, the proposed architecture will be implemented to allow for an analysis of

its responsiveness. The analysis of responsiveness was based on two measures: (i) the run
time of a variety of use cases (ii) the user perception of the software. The run time of use
cases is defined according to the time elapsed between trigger and completion of a use case.
A run time is a numerical measurement of the response time that can be used to judge the
responsiveness of the system. The user perception is a subjective measurement that rates
the overall system performance. The amount of possible use case combinations makes it
infeasible to measure the responsiveness of all use cases by numerical values. Furthermore,
the scheduling system can have many states. Therefore we have introduced the indicator
‘user perception’ as a measurement of the overall responsiveness of the system.

We implemented the proposed architecture in ICRON software for a large European
homecare organization (LEHO). ICRON is a rule-based, object-oriented, finite-capacity
planning and scheduling solution. ICRON is supplied by Icron Technologies. Icron
Technologies is a global firm with expertise in industrial and operational processes,
specialized in manufacturing and supply chain management solutions. (See
http://www.icrontech.com/ for more company and product details.)

The scheduling problem of LEHO was decomposed into several separations.
Responsiveness measurements were performed on the largest separation (in terms of
employees and planners).

In order to measure the responsiveness of the implemented architecture, we defined
three types of scenarios. We based the scenarios on the number of planners. The largest
separation of LEHO has 20 planners. The first scenario was called ‘regular planning day’
scenario (RDPS). It was based on the fact that on a regular day, there are 5 ST planners and
15 LT planners working on the system. The second scenario was named ‘busy day scenario’
(BDS). This scenario was designed to test the system performance with simultaneous and
interdependent planners. The third scenario was called ‘global lock scenario’ (GLS). It was
designed to measure system responsiveness when global lock is used.

 The details of the scenarios are as follows:

1. Regular planning day scenario (RDPS): In this scenario there are 20 planners
working on the system; 5 ST planners and 15 LT planners. We simulate a regular
planning day where LT planners are extending the existing planning for one more
week and ST planners are maintaining the existing planning. This scenario was
tested for 1 day (8 hours).

2. Busy day scenario (BDS): In BDS scenario, we simulate the worst case scenario in
which for each Area there are two planners working simultaneously. In this
scenario we have 10 ST planners and 10 LT planners. The scenario was tested for
4 hours.

3. Global lock scenario (GLS): In GLS scenario we test the impacts of the global
locks. We divided the planners into 2 groups. The task of 10 of the planners was
to trigger use cases where global lock is used extensively (E.g. Share capacity with
other Areas). The second 10 planners were planning normal tasks. This scenario
was tested for 2 hours.

We tested each scenario in two parts. Firstly, for each of the scenarios, we measured the
results of three use cases: Open Planning GANNT Charts, UC01 - Schedule operation, UC 04 -
Plan holiday / absence. We asked the planners to trigger the tested use case at exactly the

http://www.icrontech.com/

51

same time and to measure the response time. The response time is the time between the
trigger time of a use case and the time the use case is fully performed. The last action of each
use case is to refresh the views of the user. The testers measured the time of each use case
by holding a stop-watch in one hand and a mouse on the other. Whenever they trigger a use
case, they start the stop-watch and they stop it when they see the result of their request (use
case) on the screen. For each use case, we measured 8 runs per user. The details of the
measured results can be seen in Appendix 4.

Secondly, we asked each user to rate the system performance at the end of each day.
We defined an ordinal scale according to {Very good, Good, Acceptable, Bad, Very bad}. We
asked every user individually to write down their response to the following question: “How
would you rate the performance of the system on the following scale: {Very good, Good,
Acceptable, Bad, Very bad}?” We also explained to the user that we will consider
“Acceptable” as the minimum “PASS” grade of the system. In this case, a “PASS” refers to the
system implementation in terms of its performance. As a second step of the performance
rating, we gathered the users who were not satisfied with performance in one room and
asked them the following questions in open form: (i) Do you think that the system GUI and
use cases are sufficient to fulfil your expectation? (ii) Were you able to find the information
you needed quickly? (iii) Were you able to execute planning actions fast and accurately? (iv)
What action(s) (use cases) do you consider as not adequate? (v) Do you consider the system
to perform inadequately during the entire test? With the first two questions we wanted to
identify the root cause of the users’ dissatisfaction. It may well be possible for a user to be
dissatisfied because she can’t read/understand the GUI, or because he find the GUI not to be
user-friendly or because the implemented use cases are not meeting her needs in terms of
the process. For example, a user may think that the system is slow because it requires a lot of
inputs, some of which could be gathered automatically. The other 3 questions were designed
to discover which use cases are not performing well under what circumstances.

Table 6 displays the results of our tests. The norm values are defined by the LEHO
organization. The average value for each scenario is calculated by taking the average of the
average times of each user. The maximum value for each scenario is calculated by taking the
maximum of all runs. User rating is calculated by taking the averages of each user. In order to
take the average, we converted the scale {Very good, Good, Acceptable, Bad, Very bad} into
numeric scale {5, 4, 3, 2, 1}.

Table 6: Test results

"Open Planning
GANTT charts" UC 01 UC 04 User rating*

Avg
(sec)

Max
(sec)

Avg
(sec)

Max
(sec)

Avg
(sec)

Max
(sec)

 Norm Values (Time cons.) 2 4 2 3 11 12 Acceptable

RDPS 1.8 4.1 1.5 2.5 3.2 7.2 Good

BDS 2.2 4.1 2.3 5 4.6 9.9 Acceptable

GLS 2.3 5.2 2.4 4.6 4.2 8.4 Acceptable

*Scale: Very good, Good, Acceptable, Bad, Very bad

Our findings from the tests are as follows:

A. RPDS: In the regular scenario, the results were interpreted as “Good” by the
planners. The measured results were below the Norm response time for most of
the cases. Figure 18 displays the average response time of each user and Figure

52

19 displays the user ratings. We didn’t perform the second part of the user
ratings questionnaire in this scenario because all of the ratings were “Acceptable”
or above.

Figure 18: Average response times for RPDS*

*Each point represents an average response time of a user

Figure 19: User ratings for RPDS

B. BDS: After the BDS test, the planners interpreted the responsiveness of the
system as “acceptable” but with the remark that the switching between views
must be improved. In the BDS scenario, If one of the planners is triggering the use
cases very fast, the second planner will have to wait for the refresh actions at her
screen. In such cases, switching between views is not very responsive. The
measured results of the use cases indicate that the timing constraints (Norm
values) are violated only slightly for some of the use cases. Figure 20 displays the
average response time of each user and Figure 21 displays the user ratings. Based
on the results displayed in Figure 21, we interviewed the two planners who rated
the system performance as bad. During our interview, we found out that both
users had more than 7 reports/charts open simultaneously. Therefore they had
to wait long time for their client to refresh the open reports/charts after each use
case run. As a solution to such cases, we propose two solutions: (i) to create
workspaces for planners so that they can open only the views that they need
during the use process they perform. For example, a planner requires different
views for planning tasks than planning summer holidays, (ii) to refresh only the
part of the views which are changed. The implementation of the second
approach is more related to GUI architecture than the scheduling system
architecture.

53

Figure 20: Average response times for BDS*

*Each point represents an average response time of a user

Figure 21: User ratings for BDS

C. GLS: After the GLS test, the planners interpreted the responsiveness of the
system as “Acceptable”. The users added a remark that there were fluctuation
between the response times but in general the performance was interpreted as
“Acceptable”. The measured results also indicate that timing constraints (Norm
values) are not violated most of the times but there is considerable fluctuation in
the response times. Figure 22 displays the average response time of each user
and Figure 23 displays the user ratings. Based on the results displayed in Figure
23, we interviewed the three planners who rated the system performance as
bad. During our interview, we spotted two potential problems:

1. Similar to the problem with the BDS scenario, one of the users was
working with minimum 8 charts/reports at the same time.

2. Two of the users were from one Area. We identified that this Area had a
double number of employees/clients compared to the regular area. This
indicates that GUI actions are slower for larger Areas. As a solution we
propose to reduce the size of the GUI report/charts as not all of the
information is required at the same time.

54

Figure 22: Average response times for GLS
+

+Each point represents an average response time of a user

Figure 23: User ratings for GLS

55

9. Conclusion
The Scheduling of a large homecare organization is a complicated task because of the

following three problem characteristics (i) the problem size is very big (in terms of the
amount of staff and clients); (ii) the existence of numerous fuzzy objectives and soft
constraints; (iii) a highly uncertain environment.

Achieving responsiveness for Large Homecare Organizations is a very complex task as it
has to deal with distributed, co-dependent decision making. LHO, as well as the decision
makers (planners) themselves, are distributed across wide geographical areas, where the
decision of one planner influences the decision making of the other.

In this research, a software architecture was constructed in order to help LHO achieve a
responsive scheduling process. This architecture was defined in four steps. Firstly, a proposal
was made to separate the schedule into independent sub schedules. It was recognized that in
homecare environments, the shared resources and organizational policies are the most
influential factors determining separation. Secondly, a scheduling system object model was
proposed, that is suitable for the handling of low-level scheduling processes in a distributed,
multi-user environment. Thirdly, a centralized scheduling system was developed that is
capable of handling shared resources and high level organizational policies. In order to
protect the consistency of the centralized schedule, we proposed to use data locks. As an
atomic locking unit, we propose the use of Area (or Team) so as to reduce the maintenance
requirements of the software and to facilitate a responsive scheduling process. As a last step
we proposed to break the software tasks that take a long time into subparts. This will allow
other software task to be processed without waiting too long in a queue.

The schedule separation method that we propose is a pessimistic approach that
separates the schedule into identical subparts. During the implementation of the
architecture in a pilot organization we identified possibilities to separate the schedule into
subparts of different size. For example, resource sharing is possible for the cities which are
close to each other. If there are two cities that are close to each other, the separation
method will propose to define a scheduling system for a unit that is larger than a city.
However, in reality there are only a few cities that are close to each other. Therefore, the
scheduling problem can be separated into non-identical subparts. Reducing the size of the
separations will improve the overall system responsiveness. However, it will increase the
complexity in managing the software. For example, all processes (scheduling input data
maintenance) must be designed to support different separations.

We aimed to design an object model that is suitable for the handling of low-level
scheduling processes. However, an object model for a scheduling system has several other
components such as interfacing to external systems, schedule optimization, etc. A system
designer must enhance the scheduling system architecture by adding these components to
the design. For example, a scheduling system is almost unacceptable if it does not have
interface to backbone systems or if it does not support outgoing interfaces like email or SMS.

We propose to use Area (or Team) as the atomic locking unit because the scheduling
system is responsive and the maintenance of the software is simpler. However, during our
research we also tested two other atomic locking units. The first scenario we tested allowed
only one edit action at a time, i.e. used global lock. The run times of use cases are relatively
low (1 to 5 seconds). Therefore, it may be possible for users to work without interfering with
each other. Using global locks leads to acceptable results for five users. However, when we
increased the number of users to 20, we observed run times which are five times higher than
using Area locks. The second scenario was to use employee and client as atomic locking unit.

56

However, this brings complexity in management of locks as the locks needs to be
recalculated based on the triggered use case. Moreover, for the same use case, different
locks may need to be obtained over time. For instance, employee contracts are changing
over time. Therefore when high level counters are calculated, then the locks to be acquired
(see section 6 for definition) need to be recalculated. In some cases, recalculation of locks
may take more time than the use case itself. Therefore, using employee or client locks does
not always result in a responsive system. Additionally, using thousands of locks increases the
chance of falling into deadlock. Resolving a deadlock requires tremendous amount of effort.

The results of implementation of our architecture in two large homecare organizations
showed that the proposed architecture is responsive in most of the scenarios. In one of the
pilot organizations, we observed that long term planners can extend the planning of one
Area for one week in 20% of the time she needed before. Previously an organization was
using spread sheets as a planning tool.

Our solution focuses on an architecture which handles existing scheduling processes. For
future research, it might be beneficial to study process change possibilities that could
simplify the schedule separation.

Additionally, it may be beneficial to test the architecture with client-based, periodical
refreshes, where each client refreshes itself periodically instead of the server refreshing it
automatically after each change.

57

10. Reflection
The thesis aimed to provide guidelines for homecare software architecture developers.

The focus of the proposed software architecture is responsiveness in a multi-user
environment where software users are located at different locations. Although the software
will serve as a basic architecture for scheduling systems designed to serve large homecare
organizations, not all components of a complete scheduling software program are included.
To identify the scope and limitations of the current findings, the dimensions by which the
literature was reviewed will be applied to the current study.

In the Literature Review chapter we have categorized the relevant literature in terms of
the requirements of the current study. We will use the same categorization to rate the
architecture that we propose. The analysis of the requirements applied to the current study
are as follows:

 Decentralized [D]: The architecture that we propose supports decentralized
decision making where multiple decision makers are collaborating in order to
obtain a schedule for the organization. In order to support distributed, co-
dependent decision making we propose a suitable object model and we propose
a locking method to handle dependent decision making.

 Multi-User Support [MUS]: Our architecture enables multiple users to work
simultaneously on the same schedule. However, it doesn’t define the procedures
for handling parallel threads and different queuing models.

 Soft Timing Constraints [STC]: We measure the responsiveness of our
architecture by inserting soft timing constraints to use cases and we obtain
acceptable results for the implementation we do for LEHO. However, we think
that it needs to be tested further with more use cases and preferably different
organizational structures.

 Local Decision Making [LDM]: Most of the times, the planning decisions are local.
Area level of locking enables the planner to work independently.

 Global Policies [GP]: The architecture which we propose supports common
global polices.

 Home/Health Care [HC]: the object model and locking mechanism which we
propose is suitable for team based organizational structures which work on task
basis rather than shift basis.

 Low-Level Process Management [LLPM]: the architecture which we propose
support low-level scheduling processes.

In addition to the aforementioned requirements, a complete architecture must consider
many other aspects of the scheduling system, such as optimization modules, interfaces and
additional and custom constraints. The most important aspects requiring further
consideration are as follows:

Organizational structure: The software architecture was designed for large homecare
organizations that deploy a team based organizational structure. The proposed architecture
may not provide as good a performance in an organization with a different organizational
structure than the team based structure. For example, there are organizations that expect
the employees to manage their own schedule. Every employee then serves a specific number
of clients. The assignment of employees to clients doesn’t change unless something critical
happens. In such situations, Area locking may be unnecessary. Wider research about the
organizational structures of homecare companies may be performed to determine the
common organizational structures.

58

Transaction management: In our research, we do not consider the transaction

management of deadlock or system crashes as software tasks of LHO scheduling system are
very short and have very small impact on the system. In addition, in a well-tested and
approved system, failures will occur very seldomly. Therefore, implementing recovery
procedures for reversing the executed transactions may also be a burden on the system.
However, we think that it may be useful to research transaction management methods for
scheduling use cases which have big impact on the system state. For example, the impact of a
use case which proposes a schedule for a city for two weeks will have a large effect on the
system. Therefore a transaction management method needs to be considered by the
software designers.

Other locks: In our study, we propose to use “Area” level locks in order to protect the
feasibility of the plan. One of the alternatives we considered before choosing “Area” level
locks was to use Employee\Client level locks where schedules are obtained by assigning a
task of a client to an employee. We chose for an “Area” lock because it allows for the
separation of lock management from use case definitions as it simplifies the development
and maintenance of the software. However, Employee\Client level locks may result in a more
responsive system. Therefore, for future research, we suggest to investigate possibilities for
implementing Employee\Client locks in LHO scheduling systems.

Integration with other systems: In our research, we do not consider integration with
other systems as part of the scheduling system architecture because the focus of our study is
on responsiveness. However, as the scheduling system requires inputs from various sources
(e.g. ERP systems, personnel system, CRM, backbone systems, payroll systems, etc.) and
requires the provision of various outputs (e.g. email, personal agenda, schedule reports, SMS,
etc.) we advise the system architects to consider integration with other systems when
designing their architecture.

Physical infrastructure: Our research is centred on the responsiveness of the LHO
scheduling system. However, the scheduling system responsiveness also depends on the
physical resources that the software utilizes. For example, the network speed has significant
effect on responsiveness as a relatively large amount of data needs to be transferred from
server to the planner’s location. Therefore we advise the system architects to consider the
physical IT infrastructure in their architecture.

Graphical User Interface (GUI): During our implementation tests, we discovered that
Graphical User Interface actions like refresh has significant effect on responsiveness as the
duration of refresh is relatively high compared to the execution time of the use cases like
“Schedule operation”. Therefore we suggest system architects to consider system
performance when designing GUI interactions.

59

11. Bibliography
Abbott, R. K., & Garcia-Molina, H. (1992). Scheduling real-time transactions: a
performance evaluation. ACM Trans. Database Syst., 17(3), 513-560.

Akjiratikarl, C., Yenradee, P., & Drake, P. R. (2007). PSO-based algorithm for home care
worker scheduling in the UK. Computers & Industrial Engineering, 53(4), 559-583.

Baccouche, L. (2005). Scheduling Multi-Class Real-Time Transactions: A Performance
Evaluation. World Academy of Science, Engineering and Technology, 11, 65-68.

Baris, E. (2008). Home care in Europe: World Health Organization.

Begur, S. V., Miller, D. M., & Weaver, J. R. (1997). An Integrated Spatial DSS for
Scheduling and Routing Home-Health-Care Nurses. Interfaces, 27(4), 35-48.

Ben-Shaul, I. Z., Kaiser, G. E., & Heineman, G. T. (1992). An architecture for multi-user
software development environments. Paper presented at the Proceedings of the fifth
ACM SIGSOFT symposium on Software development environments.

Berrada, I., Ferland, J. A., & Michelon, P. (1996). A multi-objective approach to nurse
scheduling with both hard and soft constraints. Socio-Economic Planning Sciences, 30(3),
183-193.

Berrada, I., Ferland, J. A., & Michelon, P. (1996). A multi-objective approach to nurse
scheduling with both hard and soft constraints. Socio-Economic Planning Sciences, 30(3),
183-193.

Borsani, V., Matta, A., Beschi, G., & Sommaruga, F. (2006, 26 February 2007). A Home
Care Scheduling Model For Human Resources. Paper presented at the Service Systems
and Service Management, Troyes.

Bosman, R., Bours, G. J. J. W., Engels, J., & de Witte, L. P. (2008). Client-centred care
perceived by clients of two Dutch homecare agencies: A questionnaire survey.
International Journal of Nursing Studies, 45(4), 518-525.

Bricon-Souf, N., Anceaux, F., Bennani, N., Dufresne, E., & Watbled, L. (2005). A
distributed coordination platform for home care: analysis, framework and prototype.
International Journal of Medical Informatics, 74(10), 809-825.

Carrascosa, C., Bajo, J., Julian, V., Corchado, J. M., & Botti, V. (2008). Hybrid multi-agent
architecture as a real-time problem-solving model. Expert Systems with Applications,
34(1), 2-17.

Corchado, J. M., Bajo, J., de Paz, Y., & Tapia, D. I. (2008). Intelligent environment for
monitoring Alzheimer patients, agent technology for health care. Decision Support
Systems, 44(2), 382-396.

Date, H., & Matsuo, T. (2008). Effects of At-Home Nursing Service Scheduling in
Multiagent Systems. In N. Nguyen & R. Katarzyniak (Eds.), New Challenges in Applied
Intelligence Technologies (Vol. 134, pp. 245-254-254): Springer Berlin / Heidelberg.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and
rostering: A review of applications, methods and models. European Journal of
Operational Research, 153(1), 3-27.

60

Eveborn, P., Flisberg, P., & Rönnqvist, M. (2006). Laps Care--an operational system for
staff planning of home care. European Journal of Operational Research, 171(3), 962-976.

Fraile, J., Bajo, J., Lancho, B., & Sanz, E. (2009). HoCa Home Care Multi-agent Architecture
International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI
2008) (pp. 52-61).

Frankovič, B., Budinská, I., & Tung, D. T. (2002). Creation of Ontology for Planning and
Scheduling. Paper presented at the 3 International Symposium on Computational
Intelligence.

Graham, J. R. (2001). Real-time scheduling in distributed multi agent systems. University
of Delaware.

Guo, Q.-l., & Zhang, M. (2009). Multiagent-based scheduling optimization for Intelligent
Manufacturing System. The International Journal of Advanced Manufacturing
Technology, 44(5), 595-605-605.

Hadzilacos, T., & Hadzilacos, V. (1991). Transaction synchronisation in object bases.
Journal of Computer and System Sciences, 43(1), 2-24.

Haritsa, J. R., Livny, M., & Carey, M. J. (1991, 4-6 Dec 1991). Earliest deadline scheduling
for real-time database systems. Paper presented at the Real-Time Systems Symposium,
1991. Proceedings., Twelfth.

Huang, J., Jennings, N. R. and Fox, J. (1994). Cooperation in Distributed Medical Care. 2nd
Int. Conf. on Cooperative Information Systems (CoopIS-94), Toronto, Canada.

Huang, J., Jennings, N. R. and Fox, J. (1995). An Agent-based Approach to Health Care
Management. Int. Journal of Applied Artificial Intelligence, 9(4), 401-420.

Hutzschenreuter, A. K., Bosman, P. A. N., Blonk-Altena, I., van Aarle, J., & La Poutre, H.
(2008). Agent-based patient admission scheduling in hospitals. Paper presented at the
7th international joint conference on Autonomous agents and multiagent systems,
Estoril, Portugal.

Isern, D., Sanchez, D., & Moreno, A. (2010). Agents applied in health care: A review.
International journal of medical informatics, 79(3), 145-166.

Israel, Z. B.-S., & George, T. H. (1996). A three-level atomicity model for decentralized
workflow management systems. Distributed Systems Engineering 3(4), 239.

Itabashi, G., Chiba, M., Takahashi, K., & Kato, Y. (2005). A Support System for Home Care
Service Based on Multi-agent System. Paper presented at the Information,
Communications and Signal Processing, 2005 Fifth International Conference on.

Julian, V., & Botti, V. (2004). Developing real-time multi-agent systems. Integrated
Computer-Aided Engineering, 11(2), 135-149.

Koutkias VG, Chouvarda I, & N., M. (2005). A multiagent system enhancing home-care
health services for chronic disease management. IEEE Trans Inf Technol Biomed, 9(4),
528-537.

Kruchten, P. (2004). The Rational Unified Process and Introduction (3 ed.).

61

Li, Y., Huang, B. Q., Liu, W. H., Gou, H. M., & Wu, C. (2002). Ontology and multi-agent
based decision support for enterprise bidding. 2001 Ieee International Conference on
Systems, Man, and Cybernetics, Vols 1-5, 2947-2951

3494.

Liu, W., Flood, I., & Issa, R. R. A. (2006). A structured micro-level planning and scheduling
method. Proceedings of 2006 International Conference on Construction & Real Estate
Management, Vols 1 and 2, 1-5

1692.

Liu, Z., Zheng, H. R., Yan, R. Y., & Gao, J. (2001). Studies on agent-based cooperation for
virtual enterprises. Computer Science and Technology in New Century, 285-289

630.

Mackworth, A. K., & Zhang, Y. (2003). A Formal Approach to Agent Design: An Overview
of Constraint-Based Agents. Constraints, 8(3), 229-242.

Merdan, M., Koppensteiner, G., Zoitl, A., & Favre-Bulle, B. (2007). Distributed Agents
Architecture Applied in Assembly Domain. Paper presented at the International
Symposium on Knowledge and Systems Sciences.

Moreno, A., Valls, and Riano, D (2004). Medical applications of multi-agent systems.
presented at ECAI Workshop on Agents Applied in Health Care, Valencia, Spain.

Motta, E., Rajpathak, D., Zdrahal, Z., & Roy, R. (2002). The Epistemology of Scheduling
Problems. Paper presented at the Os the 15 European Conference on Artificial
Intelligence.

Nealon, J., & Moreno, A. (2003). Agent-Based Applications in Health Care: Verlag.

Neelamkavil, J., Diaz, A., & Graefe, U. (1992). Investigation of rule-based, object-oriented
and blackboard systems for scheduling. Paper presented at the Flexible Automation
1992.

Pinelle, D., & Gutwin, C. (2001). Collaboration Requirements for Home Care. Research
Report, University of Saskatchewan.

Pinelle, D. a. G., C. (2001, 2003). Awareness-Based Scheduling in a Home Care Clinical
Information System. Paper presented at the AMIA Annu Symp Proc.

Rajpathak, D., Motta, E., & Rajkumar, R. (2001). A Generic Task Ontology for Scheduling
Applications. Paper presented at the Artificial Intelligence (IC-AI'2001).

Ramamritham, K. (1993). Real-time databases. Distributed and Parallel Databases, 1(2),
199-226-226.

Begur, S. D. M. a. J. W. (1997). An integrated spatial DSS for scheduling and routing
home-health-care nurses. Interfaces, 27(4), 35-48.

Santos, R., Lipari, G., & Santos, J. (2008). Improving the schedulability of soft real-time
open dynamic systems: The inheritor is actually a debtor. Journal of Systems and
Software, 81(7), 1093-1104.

62

Ulusoy, Ö., & Belford, G. G. (1993). Real-time transaction scheduling in database systems.
Information Systems, 18(8), 559-580.

Wang, L. (2010). A Novel Collaborative Planning Approach for Digital Manufacturing. In G.
Huang, K. Mak & P. Maropoulos (Eds.), Proceedings of the 6th CIRP-Sponsored
International Conference on Digital Enterprise Technology (Vol. 66, pp. 939-955-955):
Springer Berlin / Heidelberg.

Weikum, G. (1991). Principles and realization strategies of multilevel transaction
management. ACM Trans. Database Syst., 16(1), 132-180.

Weikum, G., & Hasse, C. (1993). Multi-level transaction management for complex
objects: implementation, performance, parallelism. The VLDB Journal, 2(4), 407-454.

Weikum, G., & Schek, H.-J. (1992). Concepts and applications of multilevel transactions
and open nested transactions Database transaction models for advanced applications
(pp. 515-553): Morgan Kaufmann Publishers Inc.

63

12. Appendix 1: Use cases

This chapter will define the use cases that are relevant for this case. The use cases
defined below will be used for both operational planning and dispatching.

 Use Case 1: Schedule operation

Primary Actor: Planner

Goal in context: Planner assigns a task to an employee

Scope: Scheduling system

Level: Summary

Stakeholders and

Interests:

A. Planner wants to assigns a task to an employee and check
validity of the assignment as fast as possible.

B. Planner wants to update statistics and counters like
remaining capacity, remaining operations to be planned, etc.
automatically.

C. Related planners want to be informed about the changes.

D. Management of the company wants to satisfy the demand
with minimum resource usage.

E. Government wants to spend as less as possible but also
satisfy the clients.(mainly governments are paying for the
services)

Precondition: I. The planner is logged to the scheduling system.

II. There is task to be planned.

III. There is employee to be planned.

IV. The planner is authorized to assign the task to the employee.

Minimal guarantee: Assignment of a task to an employee takes less than 2 seconds

Success guarantee: The task is assigned to the employee. Statistics and counters are

updated accordingly. Transaction is recorded to the database. All

related planner's views are refreshed automatically.

64

Main success

scenario:

1. The planner sets the inputs: the employee who will perform the

task, the task to be planned, start time of the task and end time of

the task.

2. The system assigns the task to the employee at requested start

and end time.

3. The system recalculates the statistics and counters (See

“Appendix 2: Statistics and Counters” for details).

4. The system notifies the related planners about the change.

Extensions: 1a. The planner enters invalid inputs(employee or client cannot

be found, start and end time are not applicable for the selected

task)

1a1. System notifies the user and requests the inputs again.

2a. The system fails to validate one or more hard constraints.

2a1. The system notifies the planner about the violation and

returns to step 1

2b. The system fails to validate one or more soft constraints and

planner accepts the violation.

2b1. The system continues with step 3.

2c. The system fails to validate one or more soft constraints and

planner rejects the violation.

2c1. The system terminates the use case.

65

 Use Case 2: Un-schedule operation

Primary Actor: Planner

Goal in context: Planner removes a previously assigned task from an employee

Scope: Scheduling system

Level: Summary

Stakeholders and

Interests:

A. Planner wants to remove previously assigned task from the
employee.

B. Planner wants to update statistics and counters like remaining
capacity, remaining operations to be planned, etc.
automatically.

C. Related planners want to be informed about the changes.

D. Management of the company wants to satisfy the demand with
minimum resource usage.

E. Government wants to spend as less as possible but also satisfy
the clients.(mainly governments are paying for the services)

Precondition: V. The planner already has the scheduling system open.

VI. There is task that is planned on the selected employee.

VII. The planner is authorized to remove the task from the
employee.

Minimal guarantee: Removing of a task from an employee takes less than 2 seconds

Success guarantee: The task is removed from the employee’s tasks to be performed.

Statistics and counters are updated accordingly. Transaction is

recorded to the database. All related planners are notified about

the change.

Main success scenario: 1. The planner selects the task to be removed.

2. The system removes the task from the employee’s agenda.

3. The system recalculates the statistics and counters (See
“Appendix 2: Statistics and Counters” for details).

4. The system notifies the related planners about the change.

Extensions:

66

 Use Case 3: Schedule all operations

Primary Actor: Planner

Goal in context: Planner assigns set of tasks to an employee

Scope: Scheduling system

Level: Summary

Stakeholders and

Interests:

A. Planner wants to assigns a task to an employee and check
validity of the assignment as fast as possible.

B. Planner wants to update statistics and counters like
remaining capacity, remaining operations to be planned, etc.
automatically.

C. Related planners want to be informed about the changes.

D. Management of the company wants to satisfy the demand
with minimum resource usage.

E. Government wants to spend as less as possible but also
satisfy the clients.(mainly governments are paying for the
services)

Precondition: I. The planner is logged to the scheduling system.

II. There is task to be planned.

III. There is employee to be planned.

IV. The planner is authorized to assign the task to the employee.

Minimal guarantee: -

Success guarantee: As much as possible fixed tasks are planned. Statistics and

counters are updated accordingly. Transaction is recorded to the

database. All related planner's views are refreshed automatically.

Main success scenario: 1. The planner sets the inputs: choose the Area to be planned,

start time of the period to be scheduled and end time of the

period to be scheduled.

2. The system determines the most suitable(based on the rules

defined by the organization) employee for each task and assigns

the tasks to the employee.

3. The system recalculates the statistics and counters (See

“Appendix 2: Statistics and Counters” for details).

4. The system notifies the planner with the number of planned

67

tasks, not planned tasks and the reasons for not planned tasks.

5. The system notifies the related planners about the change.

Extensions: 1a. The planner enters invalid inputs(Area cannot be found, start

and end time are not applicable)

1a1. System notifies the user and requests the inputs again.

68

 Use Case 4: Plan holiday / absence

Primary Actor: Planner

Goal in context: Planner creates and approves the holiday request of an

employee

Scope: Scheduling system

Level: Summary

Stakeholders and

Interests:

A. Planner wants to create a holiday for an employee and
check validity of the assignment as fast as possible.

B. Planner wants to update statistics and counters like
remaining capacity, violated operations, Area continuity,
etc. automatically.

C. Related planners want to be informed about the changes.

D. Management of the company wants to have enough
capacity to satisfy the demand.

Precondition: I. The planner is logged to the scheduling system.

II. There is employee is allowed to have a holiday.

III. The planner is authorized to approve the holiday of the
employee.

Minimal guarantee: -

Success guarantee: The holiday request is created and approved. Statistics and

counters are updated accordingly. Transaction is recorded to the

database. All related planner's views are refreshed

automatically.

Main success scenario: 1. The planner sets the inputs: the employee, the holiday type to

be requested, start time of the holiday and end time of the

holiday.

2. The system creates the holiday request.

3. The system recalculates the statistics and counters (See

“Appendix 2: Statistics and Counters” for details).

5. The system notifies the related planners about the change.

69

Extensions: 1a. The planner enters invalid inputs(Area cannot be found,

start and end time are not applicable)

1a1. System notifies the user and requests the inputs again.

2a. The system fails to validate one or more hard constraints.

2a1. The system notifies the planner about the violation and

returns to step 1

2b. The system fails to validate one or more soft constraints and

planner accepts the violation.

2b1. The system continues with step 3.

2c. The system fails to validate one or more soft constraints and

planner rejects the violation.

2c1. The system terminates the use case.

70

 Use Case 5: Loan employee to another region(area)

Primary Actor: Planner

Goal in context: Planner of one Area loans an employee to another Area

Scope: Scheduling system

Level: Summary

Stakeholders and

Interests:

A. Planner wants to create a holiday for an employee and check
validity of the assignment as fast as possible.

B. Planner wants to update statistics and counters like
remaining capacity, violated operations, Area continuity, etc.
automatically.

C. The planner of the borrowing Area wants extra capacity to
satisfy the demand on her Area.

D. Related planners want to be informed about the changes.

E. Management of the company wants to have enough capacity
at each location to satisfy the demand.

Precondition: I. The planner is logged to the scheduling system.

II. There is employee has an empty space in her schedule.

Minimal guarantee: -

Success guarantee: The employee is loaned to the holiday request is created and

approved. Statistics and counters are updated accordingly.

Transaction is recorded to the database. All related planner's

views are refreshed automatically.

Main success

scenario:

1. The planner sets the inputs: the employee, the Area to be

loaned, start time of the loaning period and end time of the

loaning period.

2. The system creates the loaned capacity object. (See “Shared

resource classes” section for details)

3. The system recalculates the available capacity for the two

Area’s.

4. The system recalculates the statistics and counters (See

“Appendix 2: Statistics and Counters” for details).

5. The system notifies the related planners about the change.

71

Extensions: 1a. The planner enters invalid inputs(Area cannot be found, start

and end time are not applicable)

1a1. System notifies the user and requests the inputs again.

2a. The system fails to validate one or more hard constraints.

2a1. The system notifies the planner about the violation and

returns to step 1

2b. The system fails to validate one or more soft constraints and

planner accepts the violation.

2b1. The system continues with step 3.

2c. The system fails to validate one or more soft constraints and

planner rejects the violation.

2c1. The system terminates the use case.

72

13. Appendix 2: Statistics and Counters
Statistics is the general name for aggregate values calculated based on the schedule

outputs. The statistics that are relevant for this case are:

 Capacity utilization: per employee, per Area, Per city, per province

 Continuity: per Area, per city. It is calculated by dividing the total hours of
absences and holidays by contracted hours of the employees.

 Remaining hours: Remaining available hours per employee, per Area

 Overtime hours: Per employee, per Area, per week and possible combinations

Counters are the values which are counted based on the scheduling process output. The
counters that are relevant for this case are:

 Number of visits: The number of times an employee visited a client.

 The number of violated weekly rests: the number of times the weekly rest of the
employee is violated.

 The number of violated daily rests: the number of times the daily rest of the
employee is violated.

 The number of violated characteristics: the number of times the characteristic
rules are for the employee/client

 The number of planned task: of client, to the employee

73

14. Appendix 3: Constraints
This section will first describe the main constraints in scheduling homecare tasks from

the perspective of the employee, the client and the organization (LHO). An example schedule
will be used to illustrate the main set of constraints that a planner must consider during the
scheduling process. At the end of the chapter, we will summarize the scheduling difficulties
of LHO.

An example schedule
Table 7 shows an imaginary schedule output for Taner Chakar. Taner Chakar is an

employee of Company A at location Area 1.

The scheduling process of LHO is expected to provide an output which is similar to Table
7. The scheduling process matches the employees of the organization with the work that
needs to be performed. The schedule of the LHO is obtained by assigning the tasks to the
employees.

However, the assignment of tasks to employees is not a trivial process because each
actor involved has different constraints. The following sections will describe the different
constraints from the stakeholders’ perspective.

Table 7: Example schedule for one employee Taner Chakar

Employee Date Client Start Finish

Duration

(hrs.) Priority Location

Taner Chakar 26/04/2010 Client 1 08:00 12:00 04:00 Normal Area 1

Taner Chakar 26/04/2010 Client 1 12:20 16:20 04:00 Normal Area 1

Taner Chakar 27/04/2010 Client 1 12:20 16:20 04:00 Normal Area 1

Taner Chakar 28/04/2010 Client 2 08:00 12:00 04:00 Normal Area 1

Taner Chakar 28/04/2010 Client 3 12:20 14:20 02:00 Normal Area 1

Taner Chakar 29/04/2010 Client 1 14:20 16:20 02:00 Normal Area 1

Taner Chakar 06/05/2010 Client 4 12:20 16:20 04:00 Normal Area 1

Taner Chakar 17/05/2010 Client 1 08:00 12:00 04:00 High Area 1

Taner Chakar 17/05/2010 Client 1 12:20 16:20 04:00 Normal Area 1

Taner Chakar 18/05/2010 Client 1 12:20 16:20 04:00 Normal Area 1

Taner Chakar 20/05/2010 Client 1 08:00 12:00 04:00 Normal Area 1

Taner Chakar 20/05/2010 Client 1 12:20 16:20 04:00 Normal Area 1

Taner Chakar 25/05/2010 Client 1 08:00 12:00 04:00 Normal Area 1

Taner Chakar 25/05/2010 Client 1 12:20 16:20 04:00 Normal Area 1

Taner Chakar 26/05/2010 Client 1 12:20 16:20 04:00 Normal Area 1

74

Schedule from the employee perspective
From an employee perspective, a schedule is not simply a list which contains the tasks to

be performed. A schedule also contains meetings, holiday plans, absenteeism, etc. Figure 24
demonstrates the schedule of Taner Chakar in a GANNT form.

In addition to planned tasks, the GANTT chart of Taner Chakar also shows work patterns,
holiday requests, absences and loaned periods (a period of time in which the employee
works at different location than his contractor) of the employee.

When creating this schedule, a planner must consider large number of constraints of the
employee like the number of contracted hours, preferences of employee, absenteeism,
labour union rules, etc. For instance, when making the two day schedule of Taner Chakar, the
planner considers the following scheduling constraints:

Employee Constraint 1 (EC1): An employee cannot be planned outside her work pattern.

In the example GANTT chart, Taner Chakar is only allowed to be planned at white zones.

Employee Constraint 2 (EC2): A task cannot overlap with a holiday.

Employee Constraint 3 (EC3): A task cannot overlap with an absence.

Employee Constraint 4 (EC4): A task cannot overlap with another task.

Employee Constraint 5 (EC5): An employee needs TR hours of rest every day.

TR differs for every country. A common number is 8.

Employee Constraint 6 (EC6): An employee needs continuous TW hours break within
every TD days.

TW andTD differs for every country. Often TW is set to 48 and TD is set to 7.

Employee Constraint 7 (EC7): The total travel time within one day cannot be longer than
TT hours.

TT differs for every country. A common number is 2.

Employee Constraint 8 (EC8): Employee's special conditions must be considered when
assigning her to a task.

Employees can have special conditions which need to be considered before assigning her
to tasks. For instance, an employee with allergy for pets shouldn’t be assigned to a client
with pet at home. Or a pregnant employee cannot be assigned to a task which involves
heavy physical activities.

Employee Constraint 8: An employee’s personal preference must be considered when
assigning her to a task.

Employees have different type of preferences varying from the time they want to work
to the clients they want to work, etc. Mostly, these preferences are soft constraints. It is
very important that the planning takes them into account to increase employee
satisfaction. For instance, consider an employee who doesn’t want to work very early in
the morning because her child leaves to school at 09:00(AM). Therefore, it would be
disastrous to assign her a task which starts at 07:00(AM). In such a case the employee

75

has to make sure that her child gets the necessary support to wake up, go to school, etc.
This could be a very hectic task which may reduce her energy to work.

Schedule from the client perspective
Figure 25 demonstrates the schedule of Client 1, Client 2 and Client 3 in a GANNT form.

The chart shows the same schedule as Figure 25 and Table 7 but from client perspective.

In addition to planned tasks, the client GANTT chart also shows the earliest start time and
latest finish time of a task, and client absences.

When making the schedule given in Figure 25, a planner must consider the following
constraints:

Client Constraint 1 (CC1): All tasks needs to be planned.

Client Constraint 2 (CC2): A task can only be planned between the earliest start and the
latest finish time.

Client Constraint 3 (CC3): The tasks of a client mustn’t overlap.

Client Constraint 4 (CC4): A task cannot overlap with client absence.

The client is not always at home. Sometimes they may go to the hospital or holiday. It is
not desired to plan a task at a time where the client is not at her home.

Client Constraint 5 (CC5): Client's personal preference must be considered when
assigning her tasks to employees.

The client may have personal preferences about the employee who delivers the service
or about the time the help is delivered. For instance a client may prefer non-smoking
employee.

Timeline

Yellow boxes represent the

tasks that are assigned to

Taner Chakar.

Pink boxes represent the

time where Taner Chakar is

absent for personal reasons

like holiday.

 Employee

Name

White areas represent the

contractual working times

of Taner Chakar.

Grey area represent the

non-working times of Taner

Chakar.

 Purple boxes represent the

time where Taner Chakar is

absent because of meeting

or sickness.

White box with blue lines

represent the time where

Taner Chakar is loaned to

another Area Team.

Figure 24 GANTT chart for Taner Chakar

76

Figure 25: GANTT chart for the Client 1, Client2 and Client 3

Schedule from the organizational/administration perspective
When making a planning, a planner must also consider organizational objectives, rules

and policies. LHO need to consider the organizational constraints in order to increase
customer satisfaction at minimal cost.

When making the planning represented in Table 7, the planner must consider the
following constraints:

Organizational constraint 1: Tasks cannot be skipped.

All tasks needs to be planned to increase customer satisfaction and to obey
governmental laws.

Organizational Constraint 2: An employee cannot be allowed to have more holidays than
her contracted balance.

Organizational Constraint 3: An employee with low mobility can only be assigned to
clients who are living in the same region.

The clients of the LHO are distributed over wide regions. It is not cost effective to assign
an employee without a car to a client in a different city.

Organizational Constraint 4: The available capacity should not decrease below the
minimum demand requirement.

Employees cannot be allowed to go on holiday in a period where the available capacity
cannot satisfy the minimum demand requirement. The minimum demand requirement is
determined in different ways. Some organizations define it as the sum of all urgent tasks;
other organizations define it as the percentage of the total available capacity, etc.

Each row

represents

a client

 Orange boxes represent

the planned tasks of the

client.

 Light pink boxes

represent the earliest

start and latest finish time

of a task.

Yellow boxes represent

the non-planned tasks

of the client

Blue boxes represent

the time where the client

is absent (not at home).

77

15. Appendix 4: Test results

This appendix contains the measurements which were taken during the tests of LHO.

RPDS Scenario
User ratings

STP1 STP2 STP3 STP4 STP5 LTP1 LTP2 LTP3 LTP4 LTP5 LTP6 LTP7 LTP8 LTP9 LTP10 LTP11 LTP12 LTP13 LTP14 LTP15 Avg

Acceptable Good
Very
Good

Very
Good Good Good Good

Very
Good Good Good Good

Very
Good Good Good

Very
Good Good Good

Very
Good Good Good Good

Opening Charts

 Run STP1 STP2 STP3 STP4 STP5 LTP1 LTP2 LTP3 LTP4 LTP5 LTP6 LTP7 LTP8 LTP9 LTP10 LTP11 LTP12 LTP13 LTP14 LTP15 Avg Max

1 2.2 2.7 1.4 1.2 1.7 2.8 1.6 1.5 1.4 1.3 1 1 1.6 1.2 1.6 1.4 1.9 1.8 1.5 1.4 1.6 2.8

2 1.5 1.7 1.5 1.3 1.9 1.6 2.2 1.1 2.2 2.4 2.2 1.6 1.9 1.6 2.5 1.6 1.4 1.3 1.9 2.3 1.8 2.5

3 4.1 2.4 2 1.3 1.1 1.9 1.7 1.9 3.1 2.5 1.3 1.3 1.5 2.7 1.9 1.1 1.7 2.6 3 1.1 2 4.1

4 1.4 1.7 3.2 1.2 1.3 1.3 1.9 1.1 1.9 2.5 1.4 1.3 2.9 1.8 3.1 2.2 2.6 1.2 1.3 1.7 1.9 3.2

5 2.5 2.5 1.3 2.2 2 1.3 1.6 1.6 2 1.2 2.4 0.9 1.1 1.8 1.3 2.8 1.5 1.3 1.8 1.8 1.7 2.8

6 1.5 1.8 1.1 1.6 1.9 1.8 2.3 1.5 1.5 1.3 1.7 1.3 1.7 1.5 1.9 1.6 1.1 2.1 2 2.4 1.7 2.4

7 1.2 1.8 1.1 2.5 1.8 2.5 2.9 1.3 2 1.5 2.2 1.1 1.5 1.8 1.4 2.5 2 0.9 1.2 1.1 1.7 2.9

8 1.6 3.2 1.1 1.4 1.9 1.9 2.2 2.9 2 1.9 2.5 2 2.5 3 1.4 1.9 1.9 1.6 2.7 2.5 2.1 3.2

Avg 2 2.2 1.6 1.6 1.7 1.9 2.1 1.6 2 1.8 1.8 1.3 1.8 1.9 1.9 1.9 1.8 1.6 1.9 1.8 1.8

Max 4.1 3.2 3.2 2.5 2 2.8 2.9 2.9 3.1 2.5 2.5 2 2.9 3 3.1 2.8 2.6 2.6 3 2.5 4.1

78

UC 01

Run STP1 STP2 STP3 STP4 STP5 LTP1 LTP2 LTP3 LTP4 LTP5 LTP6 LTP7 LTP8 LTP9 LTP10 LTP11 LTP12 LTP13 LTP14 LTP15 Avg Max

1 2 1.2 1.1 1 1.6 0.9 2.1 1.7 1 1.6 1.7 1.3 1.3 1.5 1.8 1.3 1.7 1.8 1.2 1.4 1.5 2.1

2 1.7 1.7 2.3 1.3 1.2 1.1 1.5 1.7 1.4 1 1.2 1.6 1.6 1.6 1 2 1.8 1.6 1.7 1.2 1.5 2.3

3 1.4 1.8 1.7 1.7 1 1.8 2.2 2.2 1.5 2.3 1.3 1.5 1.1 2.5 1.2 1.5 1.6 1.6 1.6 1.4 1.6 2.5

4 1.3 1.6 1.4 1.4 1.7 2.2 1.4 1.5 1.2 1.5 1.7 2 1.2 1 1.9 1.6 1.3 1.5 1.5 1.6 1.5 2.2

5 1.6 1.3 1.3 1.4 2.3 1.3 1.3 1.1 1.2 1.3 1.2 1.6 1.2 1.5 1.3 1.1 1.3 1.2 1.1 1.2 1.3 2.3

6 1.6 1.5 1.8 1.5 1.4 1.8 1.2 2.1 1.5 2 1.9 1.3 1.3 1.6 1.3 1.8 1.7 1.3 1.3 1.5 1.6 2.1

7 1.8 2 1.4 2.3 0.8 1.3 1.1 1.5 1.2 1.3 1 1.6 1.6 1.5 1.4 1.2 0.8 1 1.6 1 1.4 2.3

8 1.6 1.7 1.4 1.3 2.2 1.3 1.6 1.3 1.4 1.1 1.9 1.3 1.9 1 1.4 1.1 2.1 1.9 1.6 1.4 1.5 2.2

Avg 1.6 1.6 1.6 1.5 1.5 1.5 1.6 1.6 1.3 1.5 1.5 1.5 1.4 1.5 1.4 1.5 1.5 1.5 1.5 1.3 1.5

Max 2 2 2.3 2.3 2.3 2.2 2.2 2.2 1.5 2.3 1.9 2 1.9 2.5 1.9 2 2.1 1.9 1.7 1.6 2.5

 UC 04

 Run STP1 STP2 STP3 STP4 STP5 LTP1 LTP2 LTP3 LTP4 LTP5 LTP6 LTP7 LTP8 LTP9 LTP10 LTP11 LTP12 LTP13 LTP14 LTP15 Avg Max

1 4 2.8 3.1 1.9 5.6 4 3.3 4.4 2.9 3.3 2.6 3.2 3.7 3.2 2.6 3.9 7.1 3.4 3.1 3.1 3.6 7.1

2 2.2 7.2 2.7 3.3 2.5 2.9 3.9 4.1 3.7 3.2 3.2 3.1 2.2 2.3 2.3 2.9 2.9 2.3 2.4 5.1 3.2 7.2

3 1.8 4 2.7 2.8 2.7 4.6 4.8 4 2.6 4.1 2 3.2 3.4 2.4 4.6 6 2.3 2.9 2.9 1.7 3.3 6

4 2.4 2.6 2.4 4.5 2.3 2.9 2.8 3.2 3.2 6.8 2.8 3.8 2.2 2.1 2.4 4.1 4 3.4 4.7 2.2 3.2 6.8

5 2.1 2.7 3.7 2.7 2.5 3.9 1.5 5.3 1 3.4 4.5 2.7 3.6 2.9 1.8 4 3.8 2.1 6.3 1.6 3.1 6.3

6 3.8 4.2 2.2 2.9 2.1 2.2 3 3.1 5.1 2.1 2.1 1.9 1.7 3 3.3 2.6 2 7.2 2.5 4 3.1 7.2

7 3 3.9 2.4 4 3.8 2.2 4.7 2.8 1.4 2.4 3.9 4.1 5.7 2 2.2 2.6 3.3 2.7 2.5 2 3.1 5.7

8 2.4 5.1 1.9 3.2 1.9 2.2 5.2 3.1 2.5 2.7 4.3 2.9 2.1 3.1 5.4 3.4 2.1 3.5 2.9 2.3 3.1 5.4

Avg 2.7 4.1 2.6 3.2 2.9 3.1 3.7 3.8 2.8 3.5 3.2 3.1 3.1 2.6 3.1 3.7 3.4 3.4 3.4 2.8 3.2

Max 4 7.2 3.7 4.5 5.6 4.6 5.2 5.3 5.1 6.8 4.5 4.1 5.7 3.2 5.4 6 7.1 7.2 6.3 5.1 7.2

BDS Scenario
User ratings

STP1 STP2 STP3 STP4 STP5 STP6 STP7 STP8 STP9 STP10 LTP1 LTP2 LTP3 LTP4 LTP5 LTP6 LTP7 LTP8 LTP9 LTP10

Good Acceptable Acceptable
Very
Good Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable Bad

Very
Good Acceptable Good Acceptable Good Bad

79

Opening Charts

Run STP1 STP2 STP3 STP4 STP5 STP6 STP7 STP8 STP9 STP10 LTP1 LTP2 LTP3 LTP4 LTP5 LTP6 LTP7 LTP8 LTP9 LTP10 Avg Max

1 1.7 1.8 1.5 2.1 2.6 1.8 2.2 2.4 1.5 2.1 2.8 2.3 3.8 2.7 2.5 1.2 1.5 1.6 1.7 2.3 2.1 3.8

2 2.8 2.9 1.9 3.8 1.3 1.1 1.3 2.1 1.8 1.1 1.8 2.3 2.3 1.8 1.6 1.2 1.9 1.5 1.6 2.9 2 3.8

3 1.7 2.8 2.6 2.8 2.1 2.8 3 2.5 2.3 2.1 3.5 2.5 1.6 2.7 2.1 2.2 1.2 1.3 2.3 2.1 2.3 3.5

4 1.5 1.5 2.9 1.8 1.8 1.5 1.7 2.7 2.7 2.2 2.2 1.8 1.1 2.9 2.1 2.5 2.1 2.4 2.9 2.7 2.2 2.9

5 2.8 2.9 2 1.3 2.4 1.4 2 2 1.2 3.2 1.3 4.1 3.4 3.1 2.8 1.8 2.5 1.7 1.5 3.2 2.3 4.1

6 2.1 3.2 2 2.1 2.6 2.4 2.5 2.2 2.9 2.5 1.6 2.3 2.6 2.7 2.9 1.5 3 1.8 2.2 2.4 2.4 3.2

7 2.7 2.2 1.8 2.8 2.6 1.9 1.4 3 2.7 1 2.3 1.4 1.3 1.9 2 2.9 1.3 2 2.8 1.8 2.1 3

8 1.5 3.3 2.1 1.8 3.6 1.2 1.2 1.2 1.9 2.4 2 2.1 2.2 2.4 2.6 2 3.8 2.2 2.5 3 2.3 3.8

Avg 2.1 2.6 2.1 2.3 2.4 1.8 1.9 2.3 2.1 2.1 2.2 2.4 2.3 2.5 2.3 1.9 2.2 1.8 2.2 2.6 2.2

Max 2.8 3.3 2.9 3.8 3.6 2.8 3 3 2.9 3.2 3.5 4.1 3.8 3.1 2.9 2.9 3.8 2.4 2.9 3.2

4.1

UC 01

Run

User
1

User
2

User
3

User
4

User
5

User
6

User
7

User
8

User
9

User
10

User
11

User
12

User
13

User
14

User
15

User
16

User
17

User
18

User
19

User
20 Avg Max

1 2 4.3 2.5 1.3 3 1.4 1.2 2.3 1.8 2.5 2.1 3.7 2.4 1 1.5 2 2.3 2.5 2.9 2.4 2.3 4.3

2 1.9 1.6 1.7 3.6 2.3 2.8 1.8 2.6 2.7 2.1 2.8 2.1 1.9 2.2 2.3 2 2.5 1.2 2.9 2.8 2.3 3.6

3 2.4 1.8 2.2 2.3 4.4 2.5 2.1 1.7 2 2.1 2.2 2.2 2.7 1.3 1.6 2.5 2.1 2.7 2.6 1.3 2.2 4.4

4 1.1 2.8 3.3 1.9 2 1 2.5 4.2 2.9 4.1 2.1 2.3 2.2 2.8 3.2 2 1.2 1.1 2.4 1.9 2.4 4.2

5 2.9 2.1 2.1 1.3 1.6 1 2.7 1.4 1.1 1.6 2.9 2.7 2.7 1.9 1.6 2 2.6 2.6 2.1 5 2.2 5

6 1.3 2.3 1.8 1.7 2.3 2 1.4 1.5 1.6 2.6 2.4 2 2.7 2.5 1.4 2 1.5 1.9 2.4 4.5 2.1 4.5

7 2.2 2 4.5 1.8 1.2 3.4 2.9 1.6 2.3 3.9 2.1 2.3 2 2 1.5 4.2 2.3 3.1 1.3 1.7 2.4 4.5

8 2.7 2 2.3 2.9 2.2 2.3 1.6 2.2 2.4 2.4 1.5 3.1 2.9 2.8 2.2 2 1.3 2.7 1.1 1 2.2 3.1

Avg 2.1 2.4 2.6 2.1 2.4 2.1 2 2.2 2.1 2.7 2.3 2.6 2.4 2.1 1.9 2.3 2 2.2 2.2 2.6 2.3

Max 2.9 4.3 4.5 3.6 4.4 3.4 2.9 4.2 2.9 4.1 2.9 3.7 2.9 2.8 3.2 4.2 2.6 3.1 2.9 5

5

80

UC 04

Run

User
1

User
2

User
3

User
4

User
5

User
6

User
7

User
8

User
9

User
10

User
11

User
12

User
13

User
14

User
15

User
16

User
17

User
18

User
19

User
20 Avg Max

1 2.7 3.8 4.5 5.2 2.8 3.1 4.5 4.9 4.3 3.4 4.5 4 7.2 2.7 6.5 3.4 4.1 4.3 3.4 4.5 4.2 7.2

2 9.9 2.9 2.3 3.3 5.9 2.3 4.2 8.3 3.7 4.9 3.7 5.7 5.8 4.4 2.1 3.9 3.9 3.8 4.5 5.3 4.5 9.9

3 2.7 3.2 6.5 2 9.3 5.6 4.8 2.6 6.6 3.8 7.3 3.1 3.1 4.5 4.6 5.3 4 2.6 8.1 3.9 4.7 9.3

4 4.3 7.2 7 7 2.8 4.2 3 3.7 3.9 3.5 3.2 4.2 3.5 8 8.4 3.5 5.2 4.9 8.1 2.7 4.9 8.4

5 3.2 3 4 4.4 6.7 3.2 9 4.6 3.5 4.5 2.8 8.8 3.1 4.9 4.2 3.8 3.5 9.8 3.2 6.2 4.8 9.8

6 2.1 4.3 2.4 8 3.8 3.3 3 6.4 3.4 3.3 9.2 4.7 7.2 2.1 6.6 8.2 6.1 2.9 6 6 5 9.2

7 3.9 3.2 4.1 3.9 6.8 3.2 2.4 4.9 3.6 3.8 6.9 3.1 3.1 7.9 3 9.3 4.6 5.1 4.3 4.2 4.6 9.3

8 2.3 5.8 3.7 4.7 3.1 6.7 2.6 4.3 4 3 3.5 3.2 4.3 3.4 6.2 4.8 5.1 2.1 8 4.9 4.3 8

Avg 3.9 4.2 4.3 4.8 5.2 4 4.2 5 4.1 3.8 5.1 4.6 4.7 4.7 5.2 5.3 4.6 4.4 5.7 4.7 4.6

Max 9.9 7.2 7 8 9.3 6.7 9 8.3 6.6 4.9 9.2 8.8 7.2 8 8.4 9.3 6.1 9.8 8.1 6.2

9.9

GLS Scenario
User ratings

LTP1 LTP2 LTP3 LTP4 LTP5 LTP6 LTP7 LTP8 LTP9 LTP10

Good Acceptable Bad Bad Very Good Good Acceptable Acceptable Acceptable Bad

81

Opening Charts

Run LTP1 LTP2 LTP3 LTP4 LTP5 LTP6 LTP7 LTP8 LTP9 LTP10 Avg Max

1 1.8 2.2 1.3 3.8 1.9 1.1 2.3 2 1.5 1.4 1.9 3.8

2 1.2 2.2 2.6 2.1 1.3 2.5 1.8 3.2 2.7 2.4 2.2 3.2

3 1.3 3.8 1.8 1.2 1 2.6 4.6 1.3 2.3 5.2 2.5 5.2

4 1.5 3.3 3.3 1.7 2.3 1.4 3 1.2 1.2 3.3 2.2 3.3

5 1.3 1.8 2.6 2.2 1.3 1.8 1.8 1.4 4.9 1 2 4.9

6 2 2.9 2.7 3 1.4 3.6 1.8 3.6 3.3 1.8 2.6 3.6

7 1.4 1.7 1.2 1.4 2 1 1.9 1.8 2.6 4.2 1.9 4.2

8 4.3 1.6 4.3 3.3 1.6 1.4 2.9 2.2 4.2 1.3 2.7 4.3

Avg 1.9 2.4 2.5 2.3 1.6 1.9 2.5 2.1 2.8 2.6 2.3

Max 4.3 3.8 4.3 3.8 2.3 3.6 4.6 3.6 4.9 5.2

5.2

UC 01

Run LTP1 LTP2 LTP3 LTP4 LTP5 LTP6 LTP7 LTP8 LTP9 LTP10 Avg Max

1 1.8 1.9 3.5 1.3 4.2 1.6 1.6 2.9 2.6 1.6 2.3 4.2

2 3.4 1.5 4.3 2.2 1.1 2.7 1.2 3.9 2 1.6 2.4 4.3

3 1.7 3.3 2 1.1 1.2 2.4 3.4 2.6 1 4 2.3 4

4 1.7 1.3 3.6 2.9 1.3 1.7 2.4 1 2.8 3.6 2.2 3.6

5 1.9 2.1 1.7 1.3 2.3 2.6 1.2 4.6 1.4 2 2.1 4.6

6 1.5 1.6 1.8 3.4 3.1 2.7 4 1.5 2.4 1.5 2.4 4

7 2 2 1.7 4.3 1.8 4.1 2.5 3.3 1.6 1.6 2.5 4.3

8 1.6 1.3 4.2 3.9 4.2 1.1 3.2 4 3.8 2.6 3 4.2

Avg 2 1.9 2.9 2.6 2.4 2.4 2.4 3 2.2 2.3 2.4

Max 3.4 3.3 4.3 4.3 4.2 4.1 4 4.6 3.8 4

4.6

82

UC 04

Run LTP1 LTP2 LTP3 LTP4 LTP5 LTP6 LTP7 LTP8 LTP9 LTP10 Avg Max

1 4 1.8 6.2 5.7 4 2.8 4.5 4.8 4.6 3.6 4.2 6.2

2 2.9 1.2 2.3 6.3 2.5 7.7 5.1 3.1 5.2 5.1 4.1 7.7

3 3.1 5.6 6 5.7 3.8 5.7 2.4 5.4 5.5 5.5 4.9 6

4 5.2 2.5 1.9 2.8 4.6 5.5 2.9 5.5 2.3 3.1 3.6 5.5

5 7.6 6.3 3.2 6.5 4 1.2 5.4 5.3 1.8 1 4.2 7.6

6 5.1 6.7 2.6 1.8 4.5 8.4 2.3 7.1 4.2 4 4.7 8.4

7 7.9 2.4 2.4 4.1 3.3 6.9 1.2 1.8 5.6 1.9 3.8 7.9

8 3.7 2.6 6.1 5.9 3 6 6.4 2.3 1.5 2.7 4 6.4

Avg 4.9 3.6 3.8 4.9 3.7 5.5 3.8 4.4 3.8 3.4 4.2

Max 7.9 6.7 6.2 6.5 4.6 8.4 6.4 7.1 5.6 5.5

8.4

