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Randomized Entity-wise Factorization for
Multi-Agent Reinforcement Learning

Shariq Iqbal 1 Christian A. Schroeder de Witt 2 Bei Peng 2 Wendelin Böhmer 3 Shimon Whiteson 2 Fei Sha 1 4

Abstract
Multi-agent settings in the real world often in-
volve tasks with varying types and quantities
of agents and non-agent entities; however, com-
mon patterns of behavior often emerge among
these agents/entities. Our method aims to lever-
age these commonalities by asking the ques-
tion: “What is the expected utility of each agent
when only considering a randomly selected sub-
group of its observed entities?” By posing this
counterfactual question, we can recognize state-
action trajectories within sub-groups of entities
that we may have encountered in another task
and use what we learned in that task to inform
our prediction in the current one. We then re-
construct a prediction of the full returns as a
combination of factors considering these disjoint
groups of entities and train this “randomly fac-
torized” value function as an auxiliary objective
for value-based multi-agent reinforcement learn-
ing. By doing so, our model can recognize and
leverage similarities across tasks to improve learn-
ing efficiency in a multi-task setting. Our ap-
proach, Randomized Entity-wise Factorization
for Imagined Learning (R E F I L), outperforms
all strong baselines by a significant margin in
challenging multi-task StarCraft micromanage-
ment settings.

1. Introduction
Multi-agent reinforcement learning techniques often focus
on learning in settings with fixed groups of agents and enti-
ties; however, many real-world multi-agent settings contain
tasks across which an agent must deal with varying quan-
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Figure 1: Breakaway sub-scenario in soccer. Agents in the yel-
low square can generalize this experience to similar subsequent
experiences, regardless of the state of agents outside the square.

tities and types of cooperative agents, antagonists, or other
entities. This variability in type and quantity of entities re-
sults in a combinatorial growth in the number of possible
configurations, aggravating the challenge of learning con-
trol policies that generalize. For example, the sport of soccer
exists in many forms, from casual 5 vs. 5 to full scale 11 vs.
11 matches, with varying formations within each consisting
of different quantities of player types (defenders, midfield-
ers, forwards, etc.). Within these varied tasks, however, ex-
ist common patterns. For instance, a “breakaway” occurs
in soccer when an attacker with the ball passes the defense
and only needs to beat the goalkeeper in order to score (Fig-
ure 1). The goalkeeper and attacker can apply what they
have learned in a breakaway to the next one, regardless of
the task (e.g., 5 vs. 5). If players can disentangle their under-
standing of common patterns from their surroundings, they
should be able to learn more efficiently as well as share
their experiences across all forms of soccer. These repeated
patterns within sub-groups of entities can, in fact, be found
in a wide variety of multi-agent tasks (e.g., heterogeneous
swarm control (Prorok et al., 2017) and StarCraft unit mi-
cromanagement (Samvelyan et al., 2019)). Our work1 aims
to develop a methodology for artificial agents to incorporate
knowledge of these shared patterns to accelerate learning in
a multi-task setting.

One way to leverage structural independence among agents,
as in our soccer example, is to represent value functions as
a combination of factors that depend on disjunct subsets of
the state and action spaces (Koller & Parr, 1999). These sub-
sets are typically fixed in advance using domain knowledge
and thus do not scale to complex domains where depen-
dencies are unknown and may shift over time. Recent ap-

1Code available at: https://github.com/shariqiqbal2810/REFIL

https://github.com/shariqiqbal2810/REFIL
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proaches (e.g. VDN (Sunehag et al., 2018), QMIX (Rashid
et al., 2018)) in cooperative deep multi-agent reinforcement
learning (MARL) factor value functions into separate com-
ponents for each agent’s action and observation space in
order to enable decentralized execution. These approaches
learn a utility function for each agent that depends on the
agent’s own action and observations, resulting in a unique
observation space for each task and exacerbating the chal-
lenge of learning in a multi-task setting.

How can we teach agents to be “situationally aware” of
common patterns that are not pre-specified, such that they
can share knowledge across tasks? Our main idea is as
follows: Given observed trajectories in a real task, we ran-
domly partition entities into sub-groups to “imagine” that
agents only observe a (random) subset of the entities they
actually observe. Then, in addition to estimating utility of
their actions given the full observations, we use the same
model to predict utilities in the imagined scenario, providing
an opportunity to discover sub-group patterns that appear
across tasks. For example, we might sample a breakaway
(or a superset of the breakaway entities) in both 5v5 soccer
and 11v11, allowing our model to share value function fac-
tors across tasks. We can then use these factors to construct
a prediction of the full returns.

Of course, the possibility of sampling sub-groups that do
not contain independent behavior exists. Imagine a sub-
group that looks like a breakaway, but in reality a defender
is closing in on the attacker’s left. In such cases, we must
include factors that account for the effect interactions out-
side of sampled sub-groups on each agent’s utility. Cru-
cially however, the estimated utility derived from imagining
a breakaway often provides at least some information as to
the agent’s utility given the full observation (i.e., the agent
knows there is value in dribbling toward the goal). Imagined
sub-group factors are combined with interaction factors to
produce an estimate of the value function that we train as
an auxiliary objective on top of a standard value function
loss. As such, our approach allows models to exploit shared
inter-task patterns via factorization without losing any ex-
pressivity. We emphasize that this approach does not rely
on sampling an “optimal” sub-group. In other words, there
is no requirement to sample sub-groups that are indepen-
dent from one another (c.f. Section 4.1). In fact, it is useful
to learn a utility function for any sub-group state that may
appear in another task.

Our approach: Randomized Entity-wise Factorization for
Imagined Learning (R E F I L) can be implemented easily
in practice by using masks in attention-based models. We
evaluate our approach on complex StarCraft Multi-Agent
Challenge (SMAC) (Samvelyan et al., 2019) multi-task set-
tings with varying agent teams, finding R E F I L attains
improved performance over state-of-the-art methods.

2. Background and Preliminaries
In this work, we consider the decentralized partially observ-
able Markov decision process (Dec-POMDP) (Oliehoek
et al., 2016) with entities (Schroeder de Witt et al., 2019),
which describes fully cooperative multi-agent tasks.

Dec-POMDPs with Entities are described as tuples:
(S,U,O,P , r , E ,A,Φ, µ). E is the set of entities in the
environment. Each entity e has a state representation se,
and the global state is the set s = {se|e ∈ E} ∈ S. Some
entities can be agents a ∈ A ⊆ E . Non-agent entities are
parts of the environment that are not controlled by learn-
ing policies (e.g., landmarks, obstacles, agents with fixed
behavior). The state features of each entity consist of two
parts: se = [fe, φe] where fe represents the description of
an entity’s current state (e.g., position, orientation, velocity,
etc.) while φe ∈ Φ represents the entity’s type (e.g., out-
field player, goalkeeper, etc.), of which there is a discrete
set. An entity’s type affects the state dynamics as well as
the reward function and, importantly, it remains fixed for
the duration of the entity’s existence. Not all entities may
be visible to each agent, so we define a binary observability
mask: µ(sa, se) ∈ {1, 0}, where agents can always observe
themselves µ(sa, sa) = 1,∀a ∈ A. Thus, an agent’s obser-
vation is defined as oa = {se|µ(sa, se) = 1, e ∈ E} ∈ O.
Each agent a can execute actions ua, and the joint action of
all agents is denoted u = {ua|a ∈ A} ∈ U. P is the state
transition function which defines the probability P(s′|s,u)
and r(s,u) is the reward function that maps the global state
and joint actions to a single scalar reward.

Entities cannot be added during an episode, but they may be-
come inactive (e.g., a unit dying in StarCraft) and no longer
affect transitions and rewards. Since s and u are sets, their
ordering does not matter, and our modeling construct should
account for this (e.g., by modeling with permutation invari-
ant/equivariant attention models (Lee et al., 2019)). In many
domains, the set of entity types present {φe|e ∈ E} is fixed.
We are particularly interested in a multi-task setting where
the quantity and types of entities are varied between tasks,
as identifying patterns within sub-groups of entities is cru-
cial to generalizing experience effectively in these cases.

Learning We aim to learn a set of policies that maximize
expected discounted reward (returns). Q-learning is specifi-
cally concerned with learning an accurate action-value func-
tion Qtot (defined below), and using this function to select
the actions that maximize expected returns. The optimal
Q-function for our setting is defined as:

Qtot(s,u) :=

E
[∑∞

t=0γ
t r(st,ut)

∣∣∣ s0=s, u0=u, st+1∼P (·|st,ut)

ut+1=arg maxQtot(st+1,·)

]
(1)

= r(s,u) + γ E
[

maxQtot(s′, ·) | s′∼P (·|s,u)

]
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Partial observability is typically handled by using the his-
tory of actions and observations as a proxy for state, of-
ten processed by a recurrent neural network (Hausknecht
& Stone, 2015): Qtot

θ (τt,ut) ≈ Qtot(st,ut) where the tra-
jectory is τat := (oa0 , u

a
0 , . . . , o

a
t ) and τt := {τat }a∈A. To

learn the Q-function, deep reinforcement learning uses neu-
ral networks as function approximators trained to minimize
the loss function:

LQ(θ) :=E
[(
ytot
t −Qtot

θ (τt,ut)
)2∣∣∣(τt,ut, rt, τt+1) ∼ D

]
ytot
t := rt + γQtot

θ̄

(
τt+1, arg maxQtot

θ (τt+1, · )
)

(2)

where θ̄ are the parameters of a target network that is copied
from θ periodically to improve stability (Mnih et al., 2015)
and D is a replay buffer (Lin, 1992) that stores transitions
collected by an exploratory policy (typically ε-greedy). Dou-
ble deep Q-learning (van Hasselt et al., 2016) mitigates
overestimation of the learned values by using actions that
maximize Qtot

θ as inputs for the target network Qtot
θ̄

.

Value Function Factorization Centralized training for de-
centralized execution (CTDE) has been a major focus in
recent efforts in deep multi-agent RL (Lowe et al., 2017; Fo-
erster et al., 2018; Sunehag et al., 2018; Rashid et al., 2018;
Iqbal & Sha, 2019). Some methods achieve CTDE through
factoring Q-functions into monotonic combinations of per-
agent utilities, with each depending only on a single agent’s
history of actions and observations Qa(τa, ua). This fac-
torization allows agents to independently maximize their
local utility functions in a decentralized manner with their
selected actions combining to form the optimal joint action.
While factored value functions can only represent a lim-
ited subset of all possible value functions (Böhmer et al.,
2020), they tend to perform better empirically than those
that learn unfactored joint action value functions (Oliehoek
et al., 2008).

QMIX (Rashid et al., 2018) improves over value decompo-
sition networks (VDN) (Sunehag et al., 2018) by using a
more expressive factorization than a summation of factors:

Qtot = g
(
Q1(τ1, u1; θQ), . . . , Q|A|(τ |A|, u|A|; θQ); θg

)
The parameters of the monotonic mixing function θg are
generated by a hyper-network (Ha et al., 2017) condition-
ing on the global state s: θg = h(s; θh). Every state can
therefore have a different mixing function; however, the
mixing functions’s monotonicity maintains decentralizabil-
ity, as agents can greedily maximize Qtot without commu-
nication. All parameters θ = {θQ, θh} are trained with the
DQN loss of Equation 2.

Attention Mechanisms for MARL Attention models have
recently generated intense interest due to their ability to in-
corporate information across large contexts, including in
MARL (Jiang & Lu, 2018; Iqbal & Sha, 2019; Long et al.,

2020). Importantly for our purposes, they can process vari-
able sized sets of fixed length vectors (in our case entities).
At the core of these models is a parameterized transforma-
tion known as multi-head attention (Vaswani et al., 2017)
that allows entities to selectively extract information from
other entities based on their local context.

We define X as a matrix where each row corresponds to
the state representation (or its transformation) of an en-
tity. The global state s is represented in matrix form as
XE where Xe,∗ = se. Our models consist of entity-wise
feedforward layers eFF(X), which apply an identical lin-
ear transformation to all input entities and multi-head atten-
tion layers MHA (A,X,M), which integrate information
across entities. The latter take three arguments: the set of
agents A for which to compute an output vector, the ma-
trixX ∈ R|E|×d where d is the dimensionality of the input
representations, and a mask M ∈ R|A|×|E|. The layer out-
puts a matrix H ∈ R|A|×h where h is the hidden dimen-
sion of the layer. The rowHa,∗ corresponds to a weighted
sum of linearly transformed representations from all entities
selected by agent a. Importantly, if the entry of the mask
Ma,e = 0, then entity e’s representation is not included in
Ha,∗. Masking enables 1) decentralized execution by pro-
viding the mask Mµ

a,e = µ(sa, se), such that agents can
only see entities observable by them in the environment,
and 2) “imagination” of the returns among sub-groups of
entities. We integrate entity-wise feedforward layers and
multi-head attention into QMIX in order to share a model
across tasks where the number of agents and entities is vari-
able and build our approach from there. The exact process
of computing attention layers, as well as the specifics of
our attention-augmented version of QMIX are described in
detail in the Supplement.

3. R E F I L
We now propose Randomized Entity-wise Factorization for
Imagined Learning (R E F I L). We observe that common
patterns often emerge in sub-groups of entities within com-
plex multi-agent tasks (cf. soccer breakaway example in
§1) and hypothesize that learning to predict agents’ utilities
within sub-groups of entities is a strong inductive bias that
allows models to share information more freely across tasks.
We instantiate our approach by constructing an estimate of
the value function from factors based on randomized sub-
groups, sharing parameters with the full value function, and
training this factorized version of the value function as an
auxiliary objective.

3.1. Main Idea

Random Partitioning Given an episode sampled from a re-
play buffer, we first randomly partition all entities in E into
two disjunct groups, held fixed for the episode. We denote
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Figure 2: Schematic for R E F I L . Values colored orange or blue are used for computingQtot andQtot
aux respectively. (left) Agent-specific

utility networks. These are decentralizable due to the use of an observability mask (Mµ). We include Gated Recurrent Units (Chung
et al., 2014) to retain information across timesteps in order to handle partial observability. (top center) Hypernetworks used to generate
weights for the mixing network. We use a softmax function on the weights across the hidden dimension to enforce non-negativity, which
we find empirically to be more stable than the standard absolute value function. Hypernetworks are not restricted by partial observability
since they are only required during training and not execution. (top right) The mixing network used to calculate Qtot. (bottom right)
Procedure for performing randomized entity-wise factorization. For masks MI and MO , colored spaces indicate a value of 1 (i.e., the
agent designated by the row will be able to see the entity designated by the column), while white spaces indicate a value of 0. The color
indicates which group the entity belongs to, so agents in the red group see red entities in MI and blue entities in MO . Agents are split
into sub-groups and their utilities are calculated for both interactions within their group, as well as to account for the interactions outside
of their group, then monotonically mixed to predict Qtot

aux.

the partition by a random binary2 vectorm ∈ {0, 1}|E|. me

indicates whether entity e is in the first group. The negation
¬me represents whether e is in the second group. The sub-
set of all agents is denoted mA := [ma]a∈A. With these
vectors, we construct binary attention masksMI andMO:

MI := mAm
> ∨ ¬mA¬m>,MO := ¬MI . (3)

whereMµ
I [a, e] indicates whether agent a and entity e are

in the same group, and Mµ
O[a, e] indicates the opposite.

They are further combined with a partial observability mask
Mµ, which is provided by the environment, to generate the
final attention masks

Mµ
I := Mµ ∧MI ,M

µ
O := Mµ ∧MO (4)

These matrices are of size |A| × |E| and will be used by the
multi-head attention layers to constrain which entities can
be observed by agents.

Counterfactual Reasoning Given an imagined partition
m, an agent a can examine its history of observations and
actions and reason counterfactually what its utility would be
had it solely observed the entities in its group. We call this
quantity in-group utility and denote it by QaI (τaI , u

a; θQ).
In order to account for the potential interactions with enti-
ties outside of the agents group, we calculate an out-group

2We first draw p ∈ (0, 1) uniformly, followed by |E| indepen-
dent draws from a Bernoulli(p) distribution. Partitioning into two
groups induces a uniform distribution over all possible sub-groups.

utility: QaO(τaO, u
a; θQ). Note that the real and imagined

utilities share the same parameters θQ, allowing us to lever-
age imagined experience to improve utility prediction in
real scenarios and vice versa. Breaking the fully observed
utilities Qa into these randomized sub-group factors is akin
to breaking an image into cut-outs of the comprising enti-
ties. While the “images” (i.e. states) from each task are a
unique set, its likely that the pieces comprising them share
similarities.

Since we do not know the returns within the imagined sub-
groups, we must ground our predictions in the observed
returns. Just as QMIX learns a value function with n factors
(Qa for each agent), we learn an imagined value function
with 2n factors (QaI and QaO for each agent) that estimates
the same value:

Qtot = g
(
Q1, . . . , Q|A|;h(s; θh,M)

)
≈ Qtot

aux = g
(
Q1
I , . . . , Q

|A|
I , Q1

O, . . . , Q
|A|
O ;

h(s; θh,MI), h(s; θh,MO)
)

(5)

Where g(·) are mixing networks whose parameters are gen-
erated by hypernetworks h(s; θh,M). This network’s first
layer typically takes n inputs, one for each agent. Since
we have 2n factors, we simply concatenate two generated
versions of the input layer (using MI and MO). We then
apply the network to the concatenated utilities QaI (τaI , u

a)
and QaO(τaO, u

a) of all agents a, to compute the predicted
value Qtot

aux. This procedure is visualized in Figure 2 and
described in more detail in the Supplement.
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Figure 3: Group Matching Game. We use the values na = 8, nc = 6, and ng = 2 in our experiments. Shaded region is a 95% confidence
interval across 24 runs.

Importantly, since the mixing network is generated by the
full state context, our model can weight factors contextually.
For example, if the agent a’s sampled sub-group contains all
relevant information to compute its utility such that QaI ≈
Qa, then the mixing networks can weight QaI more heavily
than QaO. Otherwise, the networks learn to balance QaI and
QaO for each agent, in order to estimate Qtot. In this way, we
can share knowledge in similar sub-group states across tasks
while accounting for the differences in utility that result
from the out-of-group context.

Learning We now describe the overall learning objective of
R E F I L. To enforce Equation 5, we replace Qtot in Equa-
tion 2 with Qtot

aux, resulting a new loss Laux. We combine the
standard QMIX loss (Eq. 2) LQ with this auxiliary loss to
form:

L = (1− λ)LQ + λEmLaux (6)

where λ controls the tradeoff between the two losses. Note
that we randomly partition in each episode, hence the ex-
pectation with respect to the partition vectorm. We empha-
size that the sub-groups are imagined. While we compute
Qtot

aux and its related quantities, we do not use them to se-
lect actions in Equation 2. Action selection is performed
by each agent maximizing Qa given their local observa-
tions. This greedy local action selection is guaranteed to
maximize Qtot due to the monotonic structure of the mix-
ing network (Rashid et al., 2018). Moreover, our auxiliary
objective is only used in training, and execution in the en-
vironment does not use random factorization. Treating ran-
dom factorization as an auxiliary task, rather than as a rep-
resentational constraint, allows us to retain the expressivity
of QMIX value functions (without sub-group factorization)
while exploiting the existence of shared sub-group states
across tasks.

3.2. Implementation Details

The model architecture is shown in Figure 2, with more
details described in the supplement. “Imagination” can be
implemented efficiently using attention masks. Specifically
two additional passes through the network are needed, with

Mµ
O and Mµ

I as masks instead of Mµ, per training step.
These additional passes can be parallelized by computing
all necessary quantities in one batch on GPU. It is feasi-
ble to split entities into an arbitrary number i of random
sub-groups without using more computation by sampling
several disjunct vectors mi and combining them them in
the same way as we combine m and ¬m in Equation 3 to
formMI andMO. Doing so could potentially bias agents
towards considering patterns within smaller subsets of enti-
ties.

4. Experimental Results
In our experiments, we aim to answer the following ques-
tions: 1) Are randomized counterfactuals an efficient means
for leveraging common patterns? 2) Does our approach im-
prove generalization in a multi-task setting? 3) Is training as
an auxiliary objective justified? We begin with experiments
in a simple domain we construct such that agents’ decisions
rely only on a known subset of all entities, so we can com-
pare our approach to those that use this domain knowledge.
Then, we move on to testing on complex StarCraft micro-
management tasks to demonstrate our method’s ability to
scale to complex domains.

4.1. Group Matching Game

In order to answer our first question, we construct a group
matching game, pictured in Figure 3a, where each agent
only needs to consider a subset of other agents to act ef-
fectively and we know that subset as ground truth (unlike
in more complex domains such as StarCraft). Agents (of
which there are na) are randomly placed in one of nc cells
and assigned to one of ng groups (represented by the dif-
ferent colors) at the start of each episode. Each unique
group assignment corresponds to a task. Agents can choose
from three actions: move clockwise, stay, and move counter-
clockwise. Their ultimate goal is to be located in the same
cell as the rest of their group members, at which point an
episode ends. There is no restriction on which cell agents
form a group in (e.g., both groups can form in the same
cell). All agents share a reward of 2.5 when any group is
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completed (and an equivalent penalty for a formed group
breaking) as well as a penalty of -0.1 for each time step in
order to encourage agents to solve the task as quickly as pos-
sible. Agents’ entity-state descriptions se include the cell
that the agent is currently occupying as well as the group
it belongs to (both one-hot encoded), and the task is fully-
observable. Notably, agents can act optimally while only
considering a subset of observed entities.

Ground-truth knowledge of relevant entities enables us to
disentangle two aspects of our approach: the use of entity-
wise factorization in general and specifically using ran-
domly selected factors. We would like to answer the ques-
tion: does our method rely on sampling the “right” groups of
entities (i.e., those with no interactions between them), or is
the randomness of our method a feature that promotes gener-
alization? We construct two approaches that use this knowl-
edge to build factoring masks MI and MO that are used
in place of randomly sampled groups (otherwise the meth-
ods are identical to R E F I L). R E F I L (Fixed Oracle) di-
rectly uses the ground truth group assignments (different for
each task) to build masks. R E F I L (Randomized Oracle)
randomly samples sub-groups from the ground truth groups
only, rather than from all possible entities. We additionally
train R E F I L and QMIX (Attention) (i.e., R E F I L with
no auxiliary loss).

Figure 3b shows that using domain knowledge does not sig-
nificantly improve performance in this domain (QMIX (At-
tention) vs. R E F I L (Fixed Oracle)). In fact our random-
ized factorization approach outperforms the use of domain
knowledge. The randomization in R E F I L therefore ap-
pears to be crucial. Our hypothesis is that randomization of
sub-group factors enables better knowledge sharing across
tasks. For example, the situation where two agents from the
same group are located in adjacent cells occurs within all
possible group assignments. When sampling randomly, our
approach occasionally samples these two agents alone in
their own group. Even if the rest of the context in a given
episode has never been seen before, as long as this sub-
scenario has been seen, the model has some indication of
the value associated with each action. Even when restrict-
ing the set of entities to form sub-groups with those that we
know can be relevant to each agent (R E F I L (Randomized
Oracle)) we find that performance does not significantly
improve. These results suggest that randomized sub-group
formation for R E F I L is a viable strategy, and the main
benefit of our approach is to promote generalization across
tasks by breaking value function predictions into reusable
components, even when the sampled sub-groups are not
completely independent.

4.2. S TA R C R A F T
We next test on the StarCraft multi-agent challenge (SMAC)
(Samvelyan et al., 2019). The tasks in SMAC involve mi-

Table 1: Comparison of tested methods.

Name Imagined Model Base
Learning Algorithm

R E F I L X MHA1 QMIX2

QMIX (Attention) MHA QMIX
R E F I L (VDN) X MHA VDN3

VDN (Attention) MHA VDN
QMIX (Max Pooling) Max-Pool QMIX

QMIX (EMP) EMP4 QMIX
ROMA (Attention) MHA ROMA5

Qatten (Attention) MHA Qatten6

QTRAN (Attention) MHA QTRAN7

R E F I L (UPDeT) X UPDeT8 QMIX
QMIX (UPDeT) UPDeT QMIX

1: Vaswani et al. (2017) 2: Rashid et al. (2018) 3: Sunehag et al. (2018)
4: Agarwal et al. (2019) 5: Wang et al. (2020a) 6: Yang et al. (2020)

7: Son et al. (2019) 8: Hu et al. (2021)

cromanagement of units in order to defeat a set of enemy
units in battle. Specifically, we consider a multi-task setting
where we train our models simultaneously on tasks with
variable types and quantities of agents. We hypothesize that
our approach is especially beneficial in this setting, as it
should encourage models to learn utilities for common pat-
terns and generalize to more diverse settings as a result. The
dynamic setting involves minor modifications to SMAC but
we change the environment as little as possible to maintain
the challenging nature of the tasks. In the standard version
of SMAC, both state and action spaces depend on a fixed
number of agents and enemies, so our modifications, dis-
cussed in detail in the supplement, alleviate these problems.

In our tests we evaluate on three settings we call 3-8sz, 3-
8csz, and 3-8MMM. 3-8sz pits symmetrical teams of be-
tween 3 and 8 agents against each other where the agents
are a combination of Zealots and Stalkers (inspired by the
2s3z and 3s5z tasks in the original SMAC), resulting in 39
unique tasks. 3-8csz pits symmetrical teams of between 0
and 2 Colossi and 3 to 6 Stalkers/Zealots against each other
(inspired by 1c3s5z), resulting in 66 tasks. 3-8MMM pits
symmetrical teams of between 0 and 2 Medics and 3 to 6
Marines/Marauders against each other (inspired by MMM
and MMM2, again resulting in 66 tasks).

Ablations and Baselines We introduce several ablations of
our method, as well as adaptations of existing methods to
handle variable sized inputs. These comparisons are sum-
marized in Table 1. QMIX (Attention) is our method without
the auxiliary loss. R E F I L (VDN) is our approach using
summation to combine all factors as in VDN rather than
a non-linear monotonic mixing network. VDN (Attention)
does not include the auxiliary loss and uses summation for
factor mixing. QMIX (Mean Pooling) is QMIX (Attention)
with attention layers replaced by mean pooling. We also
test max pooling but find the performance to be marginally
worse than mean pooling. Importantly, for pooling layers
we add entity-wise linear transformations prior to the pool-
ing operations such that the total number of parameters is
comparable to attention layers.
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Figure 4: Test win rate over time on multi-task S TA R C R A F T environments. Tasks are sampled uniformly at each episode. Shaded
region is a 95% confidence interval across 5 runs. (top row) Ablations of our method. (bottom row) Baseline methods.

For baselines we consider some follow-up works to
QMIX that improve the mixing network’s expressivity:
QTRAN (Son et al., 2019) and Qatten (Yang et al., 2020).
We also compare to a method that builds on QMIX by at-
tempting to learn dynamic roles that depend on the context
each agent observes: ROMA (Wang et al., 2020a). We addi-
tionally consider an alternative mechanism for aggregating
information across variable sets of entities, known as Entity
Message Passing (EMP) (Agarwal et al., 2019). We specifi-
cally use the restricted communication setting where agents
can only communicate with agents they observe, and we set
the number of message passing steps to three. Finally, we
consider the UPDeT architecture (Hu et al., 2021), a recent
work that also targets the multi-task MARL setting. UPDeT
utilizes domain knowledge of the environment to map enti-
ties to the specific actions that they correspond to. We train
UPDeT with QMIX as well as R E F I L . For all approaches
designed for the standard single-task SMAC setting, we ex-
tend them with the same multi-head attention architecture
that our approach uses.

Ablation Results Our results on challenges in multi-task
S TA R C R A F T settings can be found in Figure 4. Tasks
are sampled uniformly at each episode, so the curves repre-
sent average win rate across all tasks. We find that R E F I L
outperforms all ablations consistently in these settings. R E -
F I L (VDN) performs much worse than our approach and
VDN (Attention), highlighting the importance of the mixing
network handling contextual dependencies between entity
partitions. Since the trajectory of a subset of entities can
play out differently based on the surrounding context, it is

important for our factorization approach to recognize and
adjust for these situations. The use of mean-pooling in place
of attention also performs poorly, indicating that attention is
valuable for aggregating information from variable length
sets of entities.

Baseline Results We find that algorithms designed to im-
prove on QMIX for the single task MARL setting (ROMA,
Qatten, QTRAN), naively applied to the multi-task setting,
do not see the same improvements. R E F I L, on the other
hand, consistently outperforms other methods, highlighting
the unique challenge of learning in multi-task settings. In
Fig. 5 (top right) we investigate the performance of R E -
F I L compared to the two next best methods in the 3-8sz
setting on a task-by-task basis. We evaluate each method on
each task individually and rank the tasks by performance,
plotting from left to right. We find that the performance gain
of R E F I L comes from generalizing performance across
a wider range of tasks, hence the reduced rate of decay in
task performance from best to worst.

The entity aggregation method of EMP underperforms rel-
ative to the MHA module that we use. UPDeT is a related
work that focuses on designing an architecture compatible
with multiple tasks and variable entities and action spaces
by utilizing domain knowledge to map entities to their cor-
responding actions. Despite adding this domain knowledge,
QMIX (UPDeT) surprisingly underperforms in 2 of 3 set-
tings, while performing similarly to R E F I L on 3-8MMM;
however, since UPDeT is an attention-based architecture, it
is amenable to our proposed auxiliary training scheme. We
find applying random factorization to QMIX (UPDeT) im-
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Figure 5: (left) Simplified rendering of a common pattern that emerges across tasks in the 3-8csz SMAC setting, highlighted at t = 15.
R E F I L enables learning from each task to inform behavior in the others. (top right) Task-by-task performance on 3-8sz. R E F I L
generalizes better across a wider range of tasks. (bottom right) Varying λ for R E F I L in 3-8sz.

proves its performance further in 3-8MMM as well as in
3-8sz. In the case of 3-8MMM, where the asmyptotic win
rate of R E F I L (UPDeT) and QMIX (UPDeT) are similar,
we find that R E F I L (UPDeT) wins on average in 22%
fewer time steps by targeting enemy Medivacs, a unit ca-
pable of healing its teammates. Targeting of Medivacs is
an example of a common pattern that emerges across tasks
which R E F I L is able to leverage.

Role of Auxiliary Objective In order to understand the
role of training as an auxiliary objective (rather than entirely
replacing the objective) we vary the value of λ to interpo-
late between two modes: λ = 0 is simply QMIX (Attention),
while λ = 1 trains exclusively with random factorization.
Our results on 3-8sz (Figure 5 (bottom right)) show that,
similar to regularization methods such as Dropout (Srivas-
tava et al., 2014), there is a sweet spot where performance is
maximized before collapsing catastrophically. Training ex-
clusively with random factorization does not learn anything
significant. This failure is likely due to the fact that we use
the full context in our targets for learning with imagined
scenarios as well as when executing our policies, so we still
need to learn with it in training.

Qualitative Example of Common Pattern Finally, we vi-
sualize an example of the sort of common patterns that R E -
F I L is able to leverage (Fig. 5 (left)). Zealots (the only
melee unit present) are weak to Colossi, so they learn to
hang back and let other units engage first. Then, they jump
in and intercept the enemy Zealots while all other enemy
units are preoccupied, leading to a common pattern of a
Zealot vs. Zealot skirmish (highlighted at t=15). R E F I L
enables behaviors learned in these types of sub-groups to
be applied more effectively across all tasks. By sampling
groups from all entities randomly, we will occasionally end
up with sub-groups that include only Zealots, and the value
function predictions learned in these sub-groups can be ap-
plied not only to the task at hand, but to any task where a
similar pattern emerges.

5. Related Work
Multi-agent reinforcement learning (MARL) is a broad field
encompassing cooperative (Foerster et al., 2018; Rashid
et al., 2018; Sunehag et al., 2018), competitive (Bansal et al.,
2018; Lanctot et al., 2017), and mixed (Lowe et al., 2017;
Iqbal & Sha, 2019) settings. This paper focuses on coopera-
tive MARL with centralized training and decentralized exe-
cution (Oliehoek et al., 2016, CTDE). Our approach utilizes
value function factorization, an approach aiming to simul-
taneously overcome limitations of both joint (Hausknecht,
2016) and independent learning (Claus & Boutilier, 1998)
paradigms. Early attempts at value function factorisation re-
quire apriori knowledge of suitable per-agent team reward
decompositions or interaction dependencies. These include
optimising over local compositions of individual Q-value
functions learnt from individual reward functions (Schnei-
der et al., 1999), as well as summing individualQ-functions
with individual rewards before greedy joint action selection
(Russell & Zimdars, 2003). Recent approaches from coop-
erative deep multi-agent RL learn value factorisations from
a single team reward function by treating all agents as in-
dependent factors, requiring no domain knowledge and en-
abling decentralized execution. Value-Decomposition Net-
works (VDN) (Sunehag et al., 2018) decompose the jointQ-
value function into a sum of local utility functions used for
greedy action selection. QMIX (Rashid et al., 2018; 2020)
extends such additive decompositions to general monotonic
functions. Some works extend QMIX to improve the ex-
pressivity of mixing functions (Son et al., 2019; Yang et al.,
2020), learn latent embeddings to help exploration (Maha-
jan et al., 2019) or learn dynamic roles (Wang et al., 2020a),
and encode knowledge of action semantics into network
architectures (Wang et al., 2020b).

Several recent works have addressed the topic of general-
ization and transfer across related tasks with varying agent
quantities, though the learning paradigms considered and
assumptions made differ from our approach. Carion et al.
(2019) devise an approach for assigning agents to tasks, as-
suming the existence of low-level controllers to carry out the
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tasks, and show that it can scale to much larger tasks than
those seen in training. Burden (2020) propose a transfer
learning approach using convolutional neural networks and
grid-based state representations to scale to tasks of arbitrary
size. Wang et al. (2021) introduce a method to decompose
action spaces into roles, which they show can transfer to
tasks with larger numbers of agents by grouping new actions
into existing clusters. They do not propose a model to han-
dle the larger observation sizes, instead using a euclidean
distance heuristic to observe a fixed number of agents. Sev-
eral approaches devise attention or graph-neural-network
based models for handling variable sized inputs and focus
on learning curricula to progress on increasingly large/chal-
lenging settings (Long et al., 2020; Baker et al., 2019; Wang
et al., 2020c; Agarwal et al., 2019). Most recently, Hu et al.
(2021) introduce a method for handling variable-size inputs
and action spaces and evaluate their model on single-task
to single-task transfer. In contrast to these curriculum and
transfer learning approaches, we focus on training simulta-
neously on multiple tasks and specifically develop a training
paradigm for improving knowledge sharing across tasks.

6. Conclusion
In this paper we considered a multi-task MARL setting
where we aim to learn control policies for variable-sized
teams of agents. We proposed R E F I L, an approach that
regularizes value functions to share factors comprised of
sub-groups of entities, in turn promoting generalization and
knowledge transfer within and across complex cooperative
multi-agent tasks. Our results showed that our contributions
yield significant average performance improvements across
these tasks when training on them concurrently, specifically
through improving generalization across a wider variety of
tasks.
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