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Abstract—A fuzzy logic based online energy management
system (FLEMS) is designed in this paper to achieve the optimal
electricity cost in a residential Microgrid (MG). The proposed
FLEMS is combined by a local energy price model (LEPM) and
a fuzzy-logic strategy. The LEPM will preprocess the sampling
data to estimate the electricity market and local MG status. The
fuzzy-logic mimics the artificial intelligent assessment to economic
issues and make decision for the charging and discharging
operation for energy storage system (ESS). In the FLEMS,
not only electricity price and supply-demand balance, but also
ESS state of charge are considered for the efficient and stable
operations. The proposed method does not relay on the accurate
prediction of renewable energy source and local loads. Historical
experience of the system is involved by the LEPM and guides
the ESS operation in the fuzzy-logic. A real-world data based
household-level residential MG model is established to validate
the performance of the FLEMS. A hourly-resolution-Particle
swarm optimization (PSO) with perfect day-ahead prediction
is implemented as the baseline to verify the superiority of the
proposed method.

Index Terms—EMS, energy storage, electricity cost, fuzzy logic,
microgrid

I. INTRODUCTION

The renewable energy develops rapidly during last decade
due to the raising desire of environmental-friendly energy
structure [1]. The wind energy and solar energy, superior for
the extreme low greenhouse gas emission, bring intermittence
and uncertainty to power system as well as flexible energy
price to energy market. Energy management system is a widely
accepted solution to Microgrids (MGs) with high proportion
of renewable energy sources (RES) [2].

In residential MGs, EMS is regarded as an optimization
problem in plenty of research works. To decrease the elec-
tricity cost and improve the energy efficiency, numerous
optimization methods are designed to appropriately plan the
working schedule of local loads [3] and energy storage system
(ESS). Particle swarm optimization (PSO) is one of the typical
look-ahead optimization strategies [4]. The operation mode of
building MG could be optimized to achieve minimum electric-
ity cost and maximum stability [S]. PSO could also collaborate
with other methods, for instance, artificial neural network, to
increase the reliability and energy efficiency [6]. However, the
description of PSO problems meets more challenges as the
development of controllable loads due to the nonlinear factors
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introduced by them. Mix-integer linear programming (MILP)
is usually deployed to schedule the flexible loads, energy
source [7] or electrical vehicles in MGs [8]. Besides, MILP is
a effective solution to environment uncertainty in look-ahead
optimization tasks [9]. In MGs with high proportion of RESs,
the EMS has to optimize the operation of ESS against uncer-
tainty caused by wind, solar irradiation, temperature, etc [10].
Given the impact of uncertainty, there is a growing interest in
conducting additional research on real-time optimization as a
means of reducing its influence [11].

The online optimization could be regarded as a decision
problem in EMS. The efficacy of look-ahead optimization is
hindered by real-time uncertainty in MG implementation [12].
The online EMS take real-time data into account to schedule
the ESS against the uncertainty [13]. The short-term prediction
results and the uncertainty model are utilized for the online
parts, hence, the model predictive control (MPC) could be
deployed for EMS [14]. Reinforcement learning (RL)-based
methods also receive more attentions when considering MGs
with multi RESs or ESSs [15]. Agents, including DQN [16],
DDPG [17], SAC [18], PPO [19], are verified effective in
various applications. However, the model of MPC and training
of RL also bring cost of data acquisition and computation
resource.

This paper proposes a fuzzy-logic-based online EMS
(FLEMS) for household-level residential MGs (HRMGs).
Fuzzy logic (FL) is good at nonlinear system compensa-
tion [20]. In residential MGs, the operation of ESS [21]
and the coordinator of the energy sources [22] is a typical
application for FL. To achieve the optimal electricity cost,
a local energy price model (LEPM) is designed to involve
the historical experience, and FL is built to make decision
for ESS operation. The contribution of the proposed method
includes, 1) the proposed FLEMS works within a minute
resolution and without the requirement additional prediction
method, increases the optimization precision and computation
efficiency; 2) the online FLEMS considers the uncertainty
from not only the energy supply and demand side, but also the
flexible energy price of the market; 3) the proposed economical
LEPM involves the essential historical information of the MG
system as the experience of the EMS, the proposed FL strategy
make the global decision accordingly.

The remainder of the paper is organized as follows. The
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Fig. 1. Architecture of the household-level residential Microgrid.

structures of the HRMG and the LEPM are presented in
Section II; Section III expounds the structure of the FL-based
EMS; The case study using real-world data for Internet of
Things Laboratory from AAU CROM is shared in Section IV;
The conclusion is drawn in Section V.

II. LocAL ENERGY PRICE MODEL FOR
HOUSEHOLD-LEVEL RESIDENTIAL MICROGRIDS

The architecture of the proposed HRMG is established
according to the Internent of Things (IoT) Laboratory of AAU
CROM. The statistical models of the devices in the HRMG
are built using real-world data. The LEPM is embedded in the
EMS as a data preprocessing and information mining method.

A. Architecture of the household-level residential Microgrid

The HRMG works on grid-connected mode, and the energy
shortage and excess are compensated by the utility grid.
The energy price is decided by energy supply company, the
hourly electricity price of the coming day is updated at 1
p-m everyday. Hence, the electricity price prediction could be
solved by reading the price data from website. The primary
energy supply is a roof-top PV system, and the intermittence
is mitigated by a battery ESS. The total load data is monitored
by smart meter. The architecture of the HRMG is shown in
Fig.1. The nominal power of the PV system is 3 kW. The
capacity of the ESS is 5 kWh and the nominal charging and
discharging power is 2.5 kW.

The loads of the HRMG include fridge, oven, coffee
machine, TV, microwave oven and all the office stuffs like
laptops, servers, etc. The total power is sampled by a smart
meter and uploaded to IoT network. The power times series
is stored in local database, the energy consumption is figured
out through the integration of power data. The PV system,
the ESS and the utility grid power are sampled and uploaded
using wireless sensors.

The statistical models of the devices are established with
10-day time series, the EMS collects the energy price, device
power data. The input signals are preprocessed by the LEPM
and the power reference of the ESS is generated through the
proposed FL strategy.

B. Real-time local energy price model

The proposed HRMG records the origin of local energy
stored in ESS, and the State of Charge (SoC) of ESS are
considered for future operation. The HRMG is superposed by
an SoC estimation function and an local energy worth (LEW)
function.

The SoC estimation function describes the status of ESS,
which is shown as

Esoc(t) = A(SoC(1)

the £s,¢c donates the SoC estimation component of the LEPM,
the A affects the amplitude of SoC estimation function, and
the 7 decides the slope. The A\ and 7 are defined according to
the electricity price. If the SoC is either extremely low or high,
the SoC estimation function will have a significant impact on
the LEPM. However, when the SoC is within the appropriate
range, the SoC estimation function will have minimal effect
on the LEPM. The function will promote charging when the
SoC is low and facilitate discharging when the SoC is high to
avoid excessive charging and discharging of the ESS.

The LEW function records the total value of the energy
stored in local ESS. The energy value is defined by the
electricity price at the mean time.

During the charging process, the total LEW is grown and
the LEW component of the LEPM could be calculated by

SOO(t)fLEw(t) + ASoC - Pr
SoC(t+1)
where the ASoC represents the SoC change during the time

interval, and the Pr donates the electricity price at the mean
time. The equation (2) could be simplified as

ASOC(PT‘ — gLEW(t))
SoC(t+1)

If the ESS was discharging, the &;pw should remain
constant as

—0.5)% ! (1)

Erew(t+1) = 2

Alpew = 3)

(SOC(t) + ASOC) . £LEW(t) (4)
SoC(t+1)
Aérgw =0 (%)

In summary the 1 gy could be described by the combina-
tion of equation (3) and (5),

gLEW(t + 1) =

érpw(t+1) =&oew(t) + AlLew (6)
ASOO(PT‘ — §LEW(t))
ALEw = SoC(t+1) » 0 <ASeC, (7)
0, ASoC <0.

The LEPM is the sum of the two components, not only the
ESS status, but also the historical trading data are estimated.

§(t) = Esoc(t) + ELw (1) (®)
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Fig. 2. MFs and decision rules of the FL strategy

In the proposed FLEMS, the LEPM preprocess the input
signals and pass the judgement to the FL. The FL strategy is
elaborated in Section III.

III. Fuzzy LOGIC-BASED ONLINE DECISION STRATEGY

The decision-making process based on FL emulates artificial
intelligent assessment of economic issues. The decision is
made according to the situations of local MG and electricity
market. The condition of electricity market is represented by
the comparison between electricity price and &7, gy, including
the price of purchasing electricity and selling electricity. The
purchasing price is the flexible hourly price and the selling
price is set to zero. The status of local MG is estimated by
the local supply-demand balance, which is defined by

Psp(t) = Proad(t) — Pres(t) )

in which, the Pr,.q donates the power demand, and the
Prgg is the local power supply. Psp > 0 indicates supply
shortage, and Psp < 0 manifests oversupply. The ESS has
three operational modes: charging, discharging, and holding.
The membership functions (MFs) and the decision rules are
presented in Fig. 2. The input MFs decide the charging or
discharging operations according to Psp, &, Prg and Pr.
After the essential parameters figured out, the market price and
MG status are analyzed. If € is lower than Prg, the ESS injects
power to the utility grid and local loads, and if £ is higher than
Pr, the ESS is set to charging. In other cases, the operation
depends on the supply-demand balance, the energy shortage is
compensated, and the energy exceeding is absorbed by ESS.
The charging or discharging power is calculated through the
output MF.

P Load (kW)

Pr(DKK) Pgrs (kW)

144 192

Time (h)

Fig. 4. Time sequence features of the HEMG scenario

The correlations of Pggs, Psp and the prices are shown in
Fig. 3. The FLEMS updates the ESS output power reference
every minute, and the LEPM is a real-time data preprocess
method.

IV. CASE STUDY

The proposed FLEMS is an online EMS and validated
through the HEMG introduced in Section II. The scenario is
based on the real-world data, including the PV output power,
total load and electricity price over a period of 10 days.
The time sequence features are presented in Fig. 4. The load
power sequence records the total power consumption of IoT
laboratory in AAU CROM, the appliances include an oven,
two fridges, a microwave oven, several TVs, and office stuffs
like laptops, lights, etc. The PV output power data contains
different weathers. The power data updates every minute, the
electricity price is in hourly resolution and the price of selling
electricity is set to zero according to common situations in
HRMG. A PSO-based hourly day-ahead EMS is designed as
the baseline, in which perfect RES and load predictions are
implemented. The results of the proposed FLEMS is presented
in Fig. 5. If the £ is higher than Pr, the ESS will compulsively
set to charging mode, the HRMG will purchase energy from
the utility grid. If the ¢ is lower, the ESS will discharge to
support the load demand. Benefit from the characteristic of
the LEPM, the SoC of ESS could be detected. If the ESS is
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Fig. 5. The LEPM output and the ESS power time sequence for the HRMG with FLEMS
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Fig. 6. The energy cost of FLEMS, PSO and traditional topology

either over charged or discharged, the output of LEPM will
respond accordingly. From the figure, it is obvious than the
SoC of ESS floats within appropriate range. The ¢ reflects the
overall trend of the electricity price and shows higher inertia,
the effect of market price oscillation to the EMS is avoided.

The results of the proposed FLEMS and benchmarks are
presented in Fig. 6. The energy cost of HRMG without
compensation of ESS is 121 DKK. With the hourly day-ahead
PSO, the cost is reduced to 104 DKK, saving 14% of expense.
The proposed FLEMS decreases the cost to 93.2 DKK, with
a 23% optimization.

In summary, the proposed FLEMS achieve best performance
among the three methods. The PSO-based EMS could also
provide good benefits to HRMG, but the performance is
limited by the optimal resolution and the prediction precision.

V. CONCLUSION

This paper designed a FLEMS for residential MG to achieve
efficient operation of ESS. Two main strategies are established
for the minimum energy cost, LEPM and FL-based decision
strategy. The main works of the paper are summarized into
three aspects. 1) The FLEMS considers the flexible electricity
price, the supply-demand balance and the SoC of ESS. The
proposed LEPM involves the historical experience into the
judgement for global decision. 2) The proposed FLEMS does
not depend on prediction methods, the decision process simu-
lates the artificial intelligent assignment to economical issues.
3) A real-world data-based HRMG platform is built to validate
the performance of the proposed method, the superiority of
the proposed method is verified through the comparison with
tradition MG topology and PSO-based EMS.
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