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A Novel Deep Learning-Based Spatio-Temporal
Model for Prediction of Pose Residual Errors in

Optical Processing Hybrid Robot
Jun Li , Gang Cheng , and Yusong Pang

Abstract—The accuracy of high-precision optical pro-
cessing robots is influenced by various factors, including
static error factors and dynamic error factors. These factors
pose significant challenges to the deterministic processing
of precision optics. This article proposes a pose resid-
ual prediction model for optical processing hybrid robots
based on deep spatio-temporal graph convolutional neu-
ral networks. In this study, we establish a geometric error
model for hybrid robots and calibrate the geometric er-
ror parameters using an extended Kalman filter to obtain
the pose residuals component. To address the complex
spatio-temporal interactions between multiple sensor vari-
ables in joint space during robot motion, we introduce the
non-Euclidean spatio-temporal graph convolutional neural
network. This model effectively extracts advanced spatio-
temporal interaction features based on a spatio-temporal
attention mechanism. Finally, the performance of the pro-
posed method in pose residual prediction was validated
through real experiments, and the results demonstrated its
advantages over other state-of-the-art methods.

Index Terms—Optical processing hybrid robot, residual
error prediction, spatio-temporal graph neural network.

I. INTRODUCTION

ROBOT systems play a pivotal role in advancing machining
efficiency and cost-effectiveness within manufacturing

processes, particularly through the substitution of expensive
and cumbersome computer numerical control (CNC) machines.
As sophisticated spatial mechanisms characterized by multi-
ple degrees of freedom, hybrid robots seamlessly integrate the
advantages inherent in both serial and parallel mechanisms.
This integration endows these robots with flexible degrees of
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Fig. 1. Uncertain optical machining induced by robot pose residuals.

freedom in the workspace, excelling in critical aspects such
as load-bearing capacity, stiffness, and precision. The potential
of hybrid robots in the domain of high-precision machining,
especially for complex surfaces such as large optical freeform
surfaces, is substantial [1], [2], [3]. However, challenges arise
from assembly errors, linkage deformation, and temporal vari-
ations in robot behavior, significantly constraining the absolute
positioning accuracy of robot end effectors. This limitation poses
a considerable obstacle to achieving the requisite quality and sta-
bility in optical processing, particularly for traditional industrial
robots faced with the demands of high-precision processing.
The intricacies become particularly apparent when dealing with
large optical primary mirrors, where pose errors may fluctuate
due to the influence of polishing postures. The refinement of
large optical surfaces typically entails multiple iterations. The
presence of pose errors within the polishing trajectory not only
introduces uncertainty in the dwell time but also amplifies the
number of iterations and prolongs the overall processing time,
as illustrated in Fig. 1. Consequently, these factors adversely
impact processing efficiency [4], [5]. Enhancing the motion
accuracy of polishing robots has become an urgent goal to
improve the performance of optical components and pursue
high-precision optical processing.

A. Literature Review

Two primary approaches are employed for addressing pose
error and suppression compensation, namely, the model-based
method and the zero-model method [6]. The model-based
method involves the establishment of an error model, such as
the spiral theory [7], vector discretization method, or kinematic
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equivalent limb [8], to delineate the mapping between geometric
parameter errors and pose errors. Chen et al. [9] contributed
to this field by devising a rigid-flexible coupled error model
for the nonkinematic calibration of robots. In addition, an en-
hanced method for full pose measurement and identification
optimization was proposed, resulting in the identification of
36 error parameters within the model, consequently enhancing
accuracy and stability. Sun et al. [10], [11] introduced a calibra-
tion method grounded in finite and instantaneous spiral theory.
This method involves transforming instantaneous spiral errors
identified during calibration into joint actuation errors, which
are then rectified by adjusting the inputs. Li et al. [12] and
Luo et al. [13], utilizing the improved Levenberg–Marquardt
algorithm and the unscented Kalman filter (UKF) algorithm
for industrial robot calibration, demonstrated the commend-
able performance of the proposed calibration algorithm. While
these methods contribute to enhancing robot pose accuracy,
it is noteworthy that model-based robot pose error calibration
methods often neglect nongeometric errors, such as transmission
errors associated with gear backlash. Furthermore, in practical
applications, the intricate structure of hybrid robots poses chal-
lenges in comprehensively addressing error sources. Developing
a comprehensive mathematical error model for hybrid robots
is a time-consuming and labor-intensive undertaking, thereby
constraining their practical applications.

In recent years, researchers have shown significant interest
in zero model-the data-driven prediction of robot pose errors.
These approaches eliminate the need for establishing a com-
plex mathematical model, opting instead to directly measure
robot pose errors using external pose measuring instruments.
Subsequently, they establish the mapping relationship between
pose errors and robot pose through mathematical tools such as
Feedforward Neural Network [14], [15], [16], [17], Deep Belief
Network [18], and Residual Neural Network [19]. Although
these works utilize deep learning methods to construct a variety
of mapping relationships for the pose and the corresponding
residual errors, it is clear that these methods remain ambiguous
in their principles for the distribution of the pose residuals, leav-
ing the prediction accuracy of the pose residuals in a bottleneck.

B. Research Challenges and Motivation

The methods described above take into consideration the error
distribution in the overall state and implement compensation for
corresponding pose errors. However, they partially overlook dy-
namic influences on pose errors arising from time-varying non-
geometric factors like motion pair wear and gear backlash. The
presence of these time-varying factors can lead to dynamically
unstable pose errors for the same pose [20], posing challenges
to the accuracy and generalization capability of the prediction
model, as the pose error for the same pose can be influenced
by time-varying factors. Since the trajectory error distribution
is impacted not only by the current frame input but also by
historical state accumulation, the influence of each joint variable
on the error distribution introduces a high coupling in both
spatio-temporal relationships and spatio-temporal convolution
characteristics.

Meanwhile, the aforementioned data-driven robot pose error
prediction models overlook the non-Euclidean nature of poten-
tial spatial coupling relationships between process variables,
failing to offer an advanced representation for these spatio-
temporal coupling patterns. Consequently, there is a need to con-
sider the spatio-temporal coupling characteristics between joint
space input and pose errors. Through the effective utilization
of intricate nonlinear spatio-temporal data and the revelation of
complex spatio-temporal characteristics in residuals, a notable
enhancement in the accuracy and reliability of robot pose error
prediction is anticipated.

Nowadays, graph neural networks have garnered significant
attention across various domains, particularly in the realm of
industrial information. Scholars have delved into research on
deep learning methods grounded in graph convolutional neu-
ral networks, with a focus on articulating the intricate spatio-
temporal coupling relationships between complex variables. Liu
et al. [21] addressed the challenge of predicting complex ship
motion trajectories by employing spatio-temporal multigraph
convolutional layers. This approach effectively models the dy-
namic interaction between adjacent ships, seamlessly integrating
ship trajectory features into the prediction framework. Simi-
larly, Jiang et al. [22] introduced an electrical spatio-temporal
graph convolutional network (GCN) for intelligent prediction
and maintenance. This model concurrently considers attribute
interaction and temporal correlation, with its effectiveness val-
idated through practical examples. In addition, the temporal
GCN model utilizes GCNs to capture road network topology
and spatial correlations [23]. These advancements showcase the
utility of graph neural networks in tackling complex spatio-
temporal problems across diverse industrial applications. Tra-
ditional deep learning methods struggle with such complex
problems, making graph neural network-based deep learning
methods an innovative solution. In summary, the key to ad-
dressing the challenges is accurately describing the correlations
between variables. Deep learning methods, particularly those
grounded in spatio-temporal graph learning techniques, prove
effective in capturing complex correlations and evolutions. This
capability enables them to surpass the limitations of traditional
methodologies, serving as powerful tools for addressing intricate
spatio-temporal problems.

C. Contributions and Organization

To tackle the aforementioned challenge, this study introduces
an innovative deep learning model explicitly crafted for predict-
ing residual errors in machining trajectory poses. To the best
of our knowledge, this marks the inaugural attempt to harness
deep spatio-temporal graph neural networks for predicting robot
pose residual errors. The principal contributions of this article
are outlined as follows.

1) To address the complex spatio-temporal interaction be-
tween multiple sensor variables during robot motion, and
drawing inspiration from non-Euclidean learning and soft
sensors, we introduced a groundbreaking method—the
non-Euclidean spatio-temporal graph convolutional neu-
ral network for robot residuals prediction.
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TABLE I
DEFINITION OF GEOMETRIC ERROR SOURCES

2) To ensure the enduring prediction capability of pose
residuals, a model refinement strategy was implemented,
integrating sample ensemble and model warm start. This
strategic approach effectively guarantees the long-term
predictive performance of the model.

3) The effectiveness of the proposed method was validated
through comparisons with various state-of-the art spatio-
temporal models across multiple scenarios, whose per-
formance was further affirmed through real-world exper-
iments.

The rest of this article is organized as follows. In Section II,
the extended Kalman filter algorithm is utilized to calibrate
the geometric parameter errors of the hybrid optical machining
robot, leading to the determination of residual error components.
Section III presents the proposed theoretical framework for
trajectory residual error prediction based on deep learning. The
training of the model and experimental testing carried out in a
real environment are expounded upon in Section IV. Finally,
Section V concludes this article.

II. DYNAMIC ERROR DECOMPOSITION AND TRACING

The optical polishing robot comprises a 3-UPS/UP parallel
mechanism, a 2R serial rotating head, and a computer con-
trolled optical surface (CCOS) polishing system, as illustrated
in Fig. 2(a). Here, U, P, R, and S symbols denote the uni-
versal joint, prismatic joint, revolute joint, and spherical joint,
respectively. The underlined symbol indicates an active joint,
while the absence of underlining denotes a passive joint. The
three-degrees-of-freedom (3-DoF) parallel mechanism consists
of a fixed platform, three identical UPS limbs, and one UP limb.
The UPS limbs are actuated by an integrated ball screw, and
the passive prismatic joint of the UP limb is achieved through a
pair of linear sliding rails. To enhance the load-bearing capacity
and operational accuracy of the hybrid mechanism and simplify
the implementation of spherical joints, each passive spherical
joint at the end of the driving limbs is optimized as a composite
spherical joint, comprising a 2-DoF universal joint and a pair
of angular contact roller bearings. The end effector, the CCOS
optical grinding system, primarily consists of a grinding tool,
a revolution servo motor, a rotation servo motor, and a pneu-
matic loading system. Two servo motors drive the grinding tool,

Fig. 2. Architecture of the hybrid robot. (a) Configuration of the hy-
brid robot for optical processing. (b) Representation of geometric error
source in coordinate system.

enabling pressure grinding and polishing of optical mirror sur-
faces through a pneumatic loading system.

A. Geometric Error Model

As shown in Fig. 2(b), according to the above coordinate sys-
tem and the related geometric error definition, the closed-chain
O −Bi −Ni − Si − Ti −Mi −Ai −A− o vector equation
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in the ideal condition can be expressed as

rA +O
A R a0i − δi O

AR
A
Ai
RRAi

RMi
e

= bi + li
O
Bi
RRBi

RNi
e. (1)

Considering the geometric parameter errors in Table I, the
closed chain vector equation can be expressed as

rA +ΔrA +
[
E + θ̂A

]
O
AR (a0i +Δa0i)

+
[
E + θ̂A

]
O
AR

A
Ai
R

[
E + θ̂Ai

]
RAi{

Δmi +
[
E + θ̂Mi

]
RMi

[− (δi +Δδi) e+ΔSi]
}

= bi +Δbi +
O
B R

[
E + θ̂Bi

]
RBi{

Δni +
[
E + θ̂Ni

]
RNi

(li +Δli) e
}

(2)

where e is the unit direction vector, denoted as [0 0 1]T in the
global coordinate system O −XY Z; E is the third-order unit
matrix; θ̂ is the antisymmetric matrix of attitude error vector θ,
and j

iR is the attitude matrix in coordinate system iwith respect
to reference coordinate system j. Neglecting the higher order
terms of the error parameters yields

ΔrA +O
A RΔa0i + θ̂A

O
AR a0i +

O
Ai
RRAi

Δmi

−O
Ai
RRAi

RMi
Δδie+

O
Ai
RRAi

RMi
ΔSi

−O
Ai
RRAi

θ̂Mi
RMi

δie−O
Ai
Rθ̂Ai

RAi
RMi

δie

− θ̂A O
Ai
RRAi

RMi
δie

= Δbi +
O
B RRBi

Δni +
O
B RRBi

RNi
Δlie

+O
B RRBi

θ̂Ni
RNi

lie+
O
B Rθ̂Bi

RBi
RNi

lie. (3)

Left multiply unit vector e at both ends, and approximate

eTΔrA + (ai × e)T θA −
[
δi
(
O
Ai
RRAi

RMi
e× e)]T θA

= eTΔbi + e
T O

BRRBi
Δni +

(
eT O

BRRBi
RNi

e
)
Δli

−eTΔai−
(
eT O

Ai
RRAi

)
Δmi+

(
eT O

Ai
RRAi

RMi
e
)
Δδi

− (
eT O

Ai
RRAi

RMi

)
ΔSi

+
[
δi (RMi

e)× (
eT O

Ai
RRAi

)T]T
θMi

+
[
δi (RAi

RMi
e)× (

eT O
Ai
R
)T]T

θAi
. (4)

Separating the geometric error variables ΔrA, θA yields

ε = Jεδ =

[
ΔrA

θA

]
(5)

where

Jε = Jε1Jε2 =

⎡⎢⎣e
T α1

eT α2

eT α3

⎤⎥⎦
−1 ⎡⎢⎣β1

β2

β3

⎤⎥⎦

δ =

[
Δbi Δni Δli ΔSi Δδi . . .

Δmi θmi
θAi

Δa0i

]T

αi =
(
O
AR a0i × e

)T − [
δi
(
O
Ai
RRAi

RMi
e× e)]T

βi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT

eT O
Bi
RRBi

eT O
Bi
RRBi

RNi
e

−eT O
Ai
RRAi

RMi

eT O
Ai
RRAi

RMi
e

−eT O
Ai
RRAi[

δ (RMi
e)× (

eT O
Ai
RRAi

)T]T[
δ (RAi

RMi
e)× (

eT O
Ai
R
)T]T

−eT O
AR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (6)

For serial modules, the modified Denavit–Hartenberg model
is used. The homogeneous pose matrix of adjacent joints can be
expressed as

i−1
i T = R (x, αi−1)T (x, ai−1)R (z, θi)T (z, di) (7)

where the link length, joint twist angle, link deflection, and
rotation angle are kinematic parameters of the ith joint. The
pose deviation matrix ΔT represents the disparity between the
actual transformation matrix T real and the nominal pose matrix
T no relative to base coordinates

ΔT = T real T
−1
no = T (q +Δq)T (q)−1 (8)

where q and Δq are the nominal kinematic parameters and the
actual kinematic parameter errors, respectively.

Full differentiation of the pose errors leads to

ΔT =
∂T

∂αi
Δαi +

∂T

∂ai
Δai +

∂T

∂θi
Δθi +

∂T

∂di
Δdi = JsΔq

(9)

where Js is the serial module error Jacobi matrix.

B. EKF-Based Geometric Calibration

Considering the impact of measurement noise, the extended
Kalman filter (EKF) is considered an effective method for
parameter identification in the presence of noise in nonlinear
systems. The geometric parameter error and the robot end pose
error vector are defined as state and observed variables in the
filtering algorithm. The linear differential equation governing
the constant process can be expressed as

Xk =Xk−1 + μk−1 (10)

whereXk is the vector of the robot geometric errors at measure-
ment configuration k. μk−1 denotes a vector of a sequence of
white noise with E(μk−1) = 0 and Qk−1 = Cov(μk−1) repre-
senting the expection and covariance matrix of μk−1. The mea-
surement equation for the kinematic parameter identification can
then be expressed as

P k = JkXk + ξk (11)
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Fig. 3. Architecture of the proposed spatio-temporal framework for prediction.

where ξk is the observation noise satisfying the Gauss-Markov
process. The covariance matrix of the vector ξk is Rk =
Cov(ξk). The equations of the EKF process for geometric errors
identification are formulated thus

X̂k|k−1 = X̂k−1|k−1 (12)

P k|k−1 = P k−1|k−1 +Qk−1 (13)

where the vector X̂k|k−1 represents the robot geometric errors at
the measurement configurationkwithout considering pose error,
the vector X̂k|k is an update of the vector X̂k|k−1 considering
the pose error vector P k. Thus, the optimal Kalman gain Kk

can be expressed as

Kk = P k|k−1J
T
k

(
JkP k|k−1J

T
k +Rk

)−1
. (14)

The recursive identification equation is expressed by

X̂k|k = X̂k|k−1 +Kk

(
P k − JkX̂k|k−1

)
. (15)

The covariance estimate is update by the Riccati equation

P k|k = (I −KkJk)P k|k−1. (16)

Consequently, the criterion for the terminal of the identifica-
tion process is expressed as

Γ =
∥∥∥X̂k|k − X̂k−1|k−1

∥∥∥ (17)

where Γ ≤ 10−4 is used in the paremeter calibration process.
After obtaining the error of the optimal robot kinematic param-
eters, then the real kinematic parameters yield

XReal =XNom + δX. (18)

Even though the robot has undergone calibration to address
geometric errors, the accuracy of the robot can still be affected by
nongeometric errors arising from other factors. The contribution
of residual errors to the pose error of the robot can be determined
as

δT ng = TM T−1
cg (19)

Fig. 4. Construction of spatio-temporal graphs.

where T ng , TM , T cg denote the pose error factors caused by
residual errors, the actual measured values of the end effector
pose, and the calibrated kinematic positive pose, respectively.

III. POSE RESIDUAL ERRORS PREDICTION FRAMEWORK

In this section, we propose an integrated attention mechanism
spatio-temporal graph wavelet convolutional network (IAST-
GCN) to capture the spatio-temporal dependencies in robot
processing pose residual errors. The framework for trajectory
residual prediction is illustrated in Fig. 3. Importantly, this study
incorporates the robot’s structural information to construct a
non-Euclidean spatial graph for the sensor data. An evolving
non-Euclidean structural graph is established to unveil the inter-
play between robot motion and trajectory residual errors.

A. Prior Knowledge-Based Graph Construction

We have constructed a representation of intricate interaction
processes in joint space based on sensor variables through
the established graph, as illustrated in Fig. 4 and Table II.
In this graphical representation, sensors are represented as
nodes, and the edges connecting them symbolize information
exchange between sensors. It is noteworthy that while the error
transmission process in traditional robot modeling is typically
unidirectional, real-world scenarios involve complex joint cou-
pling effects. Hence, errors will not propagate strictly in a

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2024 at 06:40:01 UTC from IEEE Xplore.  Restrictions apply. 



8754 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 6, JUNE 2024

TABLE II
DEFINITION OF NODES IN GRAPHS

one-way manner. Subsequent joint movements or close-range
movements can affect each other, leading to bidirectional prop-
agation in local areas. Consequently, we represent the rela-
tionship between sensors as an undirected graph. To capture
the spatio-temporal interaction process of complex spatial error
transmission within a specific time period, we characterized it
through continuous spatio-temporal graphs.

B. Differential Entropy Feature Extraction

For discrete variables, let r(n) denote the filtered time-series
signal. To effectively capture the information during mutation
of signals, the differential entropy is defined as

D(n) = r (n+ 1)− r(n) (20)

p(n) =
|D(n)|∑n−1
1 |D(i)| (21)

H(n) = −
N−1∑

1

p(i) log2 p(i). (22)

The change amplitude of each signal point is determined by
the difference calculation of D(n), while the change in weight
of each point relative to the overall signal is computed using
p(n). The numerical quantification of the change degree for
each discrete signal point is achieved by performing entropy
summation of the change weights usingH(n), which facilitates
the identification of signal mutation features.

C. Spatio-Temporal Interaction Modeling

To capture the spatio-temporal correlation between the joint
space variables’ spatio-temporal sequence and the residual er-
ror in the robot end trajectory poses, a deep spatio-temporal
graph convolutional neural network is employed. This network
comprises a graph wavelet convolutional neural network with a
spatial attention mechanism and a 1-D temporal dilated causal
convolutional neural network with a temporal attention mech-
anism. Spatial features and temporal features are extracted by
aggregating information from nodes in adjacent and neighboring
phases.

1) Wavelet Convolution of Spatial Graph: An undirected
weighted graph is generally defined as G = (V ,E,A), where
V ,E,A denote the set of nodes, the set of connected edges, and
the adjacency matrix of the graph G, respectively. The number
of node elements and edge set elements in the graphG are n,m.
The graph adjacency matrixA satisfies

Aij =

{
1, if eij ∈ E
0, if eij /∈ E., A ∈ �

n×n . (23)

Then the normalized Laplacian matrix of the undirected graph
is represented as

L = In −D− 1
2AD

1
2 , L ∈ �n×n (24)

where diagonal graph degree matrixD ∈ �n×n and In is a unit
matrix of order n. Since L is real symmetric, there exists an
eigenvector matrix U and a set of eigenvalues Λ

U = (u1, u2, . . . , un) ∈ �n×n (25)

Λ = diag (λ1, λ2, . . . , λn) . (26)

The graph method uses the graph Fourier transform and standard
convolution to define the graph convolution operation, and the
graph convolution layer is defined as

gθ ∗GX = U
(
UTgθ

)� (
UTX

)
= UgθU

TX (27)

where gθ is the convolution kernel, gθ = diag(θ) ∈ �n×n. θ
is the graph Fourier coefficient vector, θ ∈ �n. � denotes the
matrix Hadamard product.

Similar to the graph Fourier transform, another method of
transforming a signal from the nodal domain to the spectral
domain is defined using the wavelet transform

gθ ∗GX = ψs

(
ψ−1

s gθ
)� (

ψ−1
s X

)
= ψsgθψ

−1
s X (28)

where the wavelet transform spectral space base is ψs =
UGSU

T = {ψs1 , ψs2 , . . . , ψsn} and the heat kernel function
scale matrix is GS = diag(esλi |i=1:n) ∈ �n×n. ψs and ψ−1

s

are solved by the spectral graph wavelet transform (SGWT) for
fast approximation with a computational complexity ofO(mK).
In contrast to the graph Fourier transform, the graph convolution
operation defined on the basis of the graph wavelet transform
is obviously more computationally efficient. Thus, the graph
wavelet convolution is defined as

Z = ψsΘψ
−1
s XW = ψ̃XW (29)

where the parameter matrix to be learned isW ∈ �d×q and the
diagonal matrix of the graph convolution kernel is Θ ∈ �n×n.

2) Temporal Convolution: In modeling the temporal corre-
lation of spatio-temporal graphs of trajectory residual errors,
dilated causal convolution (DCC) is employed as a temporal
dimensional convolution layer for temporal information fusion.
This approach effectively reduces the number of network layers
required when processing long sequence inputs. In a DCC net-
work, the receptive field expands exponentially with the depth
of the network layers. This exponential growth allows for a
larger receptive field to be achieved by stacking fewer network
layers. Compared to RNN-based methods, DCC processes long
time-series data in a nonrecursive manner, effectively avoiding
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the issue of gradient explosion. Assuming a 1-D time series
x ∈ �T and a filter kernel k ∈ �K at graph node vi, the DCC
is defined as

x ∗DCC k =

K−1∑
s=0

k [s]x [t− d ∗ s] . (30)

where ∗DCC denotes the DCC operation symbol. K and d are
the convolution kernel size and the extension factor size, re-
spectively.

To effectively characterize correlations in the time dimension,
a gating mechanism is introduced and a gated time convolution
layer is defined

Z i = δ
(
θ1 ∗DCC Z i−1 + b

)� σ (θ2 ∗DCC Z i−1 + c
)

(31)

where δ and σ are the tanh and sigmod activation functions,
respectively. θ1 and θ2 are the convolution parameters in the
gate convolution and dilation convolution.

D. Spatio-Temporal Attention Module

In a non-Euclidean spatio-temporal graph data space involv-
ing multiple sensor variables, the transmission of node informa-
tion within a single time step and its evolution across different
time steps contribute to the intricate spatio-temporal interaction
characteristics of robot motion processes. Diverse node inputs
within a single time step exert varying degrees of influence on
interaction features, and different time steps manifest distinct
dynamic impacts on the outcomes. To elevate the representation
of advanced features in the robot motion, we introduce a spatio-
temporal attention mechanism. This enhancement facilitates a
more effective modeling of complex spatio-temporal features
at higher levels, adjusting spatial and temporal correlations be-
tween adjacent nodes based on input data. A detailed elucidation
of the adaptive aggregation process of spatio-temporal evolution
information follows.

1) Spatial Attention Mechanism: To effectively extract the
dynamic spatial correlation between nodes of different input
variables, attention mechanisms are defined in the spatial di-
mension. As depicted in Fig. 5(a), given the local feature
χ ∈ �N×C×T , we perform elementwise multiplication with
learnable weights W 1 ∈ �T and W 3 ∈ �C . This series of
weight adjustments enables the model to make more fine-grained
adjustments to different channel and time step inputs in the
spatio-temporal dimension, capturing dynamic correlations. We
multiply the learnable weightW 2 ∈ �C×T by it and activate it
as S ∈ �N×N

S = V s σ
(
(W 1 � χ)W 2 (W 3 � χ)T + bs

)
. (32)

Here, V s and bs denote the weights to be learned. σ and �
represent the sigmoid function activation and the elementwise
multiplication operation. Finally, the Softmax function is applied
to normalize it, yielding the standard spatial dimension attention
matrix S′ ∈ �N×N

S′i,j = softmax (Si,j) =
exp (Si,j)∑N
j=1 exp (Si,j)

. (33)

Fig. 5. Spatio-temporal attention module. (a) Spatial attention mecha-
nism module. (b) Temporal attention mechanism module.

During graph convolution, the standard spatial attention ma-
trix S′ dynamically adjusts the importance of adjacent nodes
when aggregating information in input-based graph convolution,
which can be expressed mathematically as

χ(l) = (S′ +E)χ(l−1). (34)

Here, χ(l) represents the node features at the lth layer of the
graph convolution, and χ(l−1) represents the node features at
the previous layer (l − 1). The operation S′χ(l−1) involves
multiplying the standard spatial attention matrix S′ with the
node features from the previous layer, adjusting the features
based on the spatial attention information.

2) Temporal Attention Mechanism: Simultaneously, the non-
Euclidean contextual information within each time step is inter-
connected. Leveraging the interdependence between contextual
information allows us to emphasize the size of interdependent
feature maps, improving feature representation. Consequently,
we constructed a time dimension attention module to explicitly
model the interaction between time dimensions.

Similarly, as depicted in Fig. 5(b), given a local feature χ ∈
�N×C×T , we perform elementwise multiplication with learn-
able weights M 1 ∈ �N and M 3 ∈ �C , enabling the model to
make more fine-grained adjustments to different node and chan-
nel inputs in the spatio-temporal dimension, capturing dynamic
correlations. We multiply the learnable weightM 2 ∈ �C×N by
it and activate it asQ ∈ �T×T

Q = V t σ
((

(M 1 � χ)T
)
M 2 (M 3 � χ) + bt

)
. (35)

Here, V t and bt denote the weights to be learned. σ and �
represent the sigmoid function activation and the elementwise
multiplication operation. Finally, the Softmax function is used to
normalize it, resulting in the standard time dimension attention
matrixQ′ ∈ �T×T

Q′m,n = softmax (Qm,n) =
exp (Qm,n)∑T
n=1 exp (Qm,n)

. (36)
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Fig. 6. Details of the experimental setup. (a) Experimental setup
based on the CCOS hybrid robot. (b) Hardware structure of the experi-
mental data acquisition process.

We directly apply the normalized temporal attention matrix to
the input in order to dynamically adjusts the contribution level
of each time step when aggregating information

χ(l) = χ(l−1) (Q′ +E) . (37)

IV. EXPERIMENTS AND DISCUSSION

To evaluate the performance of the proposed framework for
residual error prediction in optical machining hybrid robots,
a parametric calibration of the robot geometric errors is con-
ducted followed by residual error prediction. The experimen-
tal setup, as depicted in Fig. 6, includes a hybrid robot
equipped with a CCOS grinding system, an IMAC motion
control system, a pneumatic grinding pressure loading plat-
form, a hydraulic flexible supporting platform, and the ex-
ternal sensors. The calibration and prediction processes were
executed on a server with an i7-12700F CPU and a RTX
3060 GPU, utilizing the MATLAB and PyTorch libraries,
respectively.

A. Identification Process

The parameter calibration is conducted in a graded manner
based on the robot configuration. The error parameters of the
serial mechanism are calibrated first, followed by the calibration
of the error parameters of the parallel mechanism. This approach
enhances the efficiency and robustness of the entire identification

Fig. 7. Data acquisition process. (a) Layout of geometric parameters
calibration process. (b) Laser tracker-based measurement process of
pose residuals.

Fig. 8. Characterization of pose residual errors after calibration.

process. The total positional error twist, denoted as ξ, can be
expressed as the superposition of the error twists of the two
parts of the mechanism, ξp and ξs

ξ =

[
I3 T̂ o

0 I3

]
ξp +

[
TRo 0

0 TRo

]
ξs. (38)

The experimental setup for the identification process is illus-
trated in Fig. 7. Consequently, the kinematic of the mechanism
were revised to accurately represent the real conditions. To
assess the effects of calibration, a comparison was made between
motion accuracy before and after calibration, employing metrics
such as absolute position error and absolute attitude error. The
results demonstrate that solely compensating for geometric pa-
rameter errors in the robot leads to residual errors in the robot end
poses, primarily attributed to dynamic nongeometric parameter
errors, as illustrated in Fig. 8.
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B. Data Acquisition and Description

The servo encoder values for three active chains and two
rotating joints in the hybrid mechanism were obtained. The
joint variables of the three active chains were acquired utilizing
tension wire displacement sensors. Furthermore, force sensors
and attitude sensor were employed to measure the pneumatic
polishing force and the three-axis tilt angle of the CCOS grinding
system, respectively. The collected sensor data necessitate pre-
processing to address inherent noise and inconsistent sampling
frequencies. Subsequently, noise reduction techniques were ap-
plied to sensor signals, and the raw data were normalized to
facilitate feature extraction.

To predict the pose error changes within specific time in-
tervals, the sensor sequence obtained from the laser tracker and
sensors are partitioned using a fixed-length sliding time window.
Each sliding window consists of 100 time steps and a step size
of 20 time steps between consecutive windows, resulting in
approximately 60 000 training examples. The input data for the
model consisted of multidimensional time series sensor data,
where each time step encompassed 20 sensor measurements.
Each time window is assigned a prediction label based on the
residual error calculated using (19). By utilizing the sensor data
within each window, the magnitude of the pose error variation
can be labeled.

C. Implementation Details

1) Model Training: Training samples were extracted from
each time window using a sliding window approach, and a
random sampling method was utilized to select these time win-
dows. In the training process, 70% of the original samples were
allocated to the training set, while 20% and 10% were assigned
to the validation and test sets, respectively. The ASTGCN model
employed a stacking block size of 5 and a temporal kernel
size of 3 in the temporal convolutional layer. An inverse time
decay variable learning rate strategy with an initial value of
1E-3 was implemented and a mini-batch size of 64 is used. The
model implements early stopping according to the validation
loss and the maximum training epoch is configured to be 150. In
addition, dropout regularization with a rate of 0.2 was employed
to mitigate the risk of overfitting. The loss function of the model
is defined as

L =
1
N

N∑
i=1

⎡⎣ ∑3
m=1

(
Ŷi,m − Yi,m

)2

+P∑6
m=4

(
Ŷi,m − Yi,m

)2

⎤⎦+ λ ‖W‖2 (39)

whereN , Y , and Ŷ represent the number of samples, the actual
label, and the predicted value of the pose residual error variation,
respectively. P and λ‖W‖2 denote the attitude error penalty
factor for resolving label imbalance and L2 regularization loss
to the model parameters.

2) Refining Strategy: Despite the extensive training of the
local model on multisensor sequences with an ample sample
size, various confounding factors, such as truncation errors and
measurement errors in the sliding time windows, continue to

(a)

(b)

Fig. 9. Model refining strategy. (a) Warm start-based model refining
strategy. (b) Cumulative errors with and without refinement.

persist. These factors, in conjunction with data sample charac-
teristics and biases, contribute to the unsatisfactory performance
of the trained local model in accurately predicting long-term
pose residual errors. To enhance the overall performance of
the global model, a further refinement of the parameters of
the finalized local model is proposed by incorporating pose
errors accumulated over a specific time interval as labels. Sub-
sequently, after training on samples obtained from individual
time windows, multiple time windows are combined to generate
new sample data for secondary training of the model. The initial
algorithm, referred to as the single-sample algorithm, is outlined
in Algorithm 1. It serves as the foundation for the subsequent
fine-tuning procedure, depicted in Algorithm 2, which leverages
the integrated samples to enhance the predictive capabilities
of the model. By employing this refined approach, it is antic-
ipated that the global model will exhibit improved performance,
thereby addressing the limitations of long-term pose residual
error predictions in the local model.

The schematic representation of the refinement strategy for
the IASTGCN model, based on sample ensemble reconstruction,
is depicted in Fig. 9(a). In addition, Fig. 9(b) offers a visualiza-
tion of accumulated long-term pose residual prediction errors.
After the warm start training of the local model, IASTGCN
exhibits significant advantages in the long-term prediction of
pose residuals compared to the ASTGCN model prior to the
warm start. Following the second stage of training, the model
effectively enhances the predictive accuracy of long-term pose
residuals, rendering it suitable for extended-term prediction and
aiding the model in better adapting to the global features of
the target task. This approach simultaneously alleviates training
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Algorithm 1: Training Procedure of Model: Core Stage.
1: Input: The defined graph structure, preprocessed

training set with supervision labels, hyperparameters of
model, e.g., mini-batch size, maximum epoch, number
of ASTGCN stack blocks, learning rate schedule, size of
kernel, the initialization strategy of weights, the size of
sliding window.

2: Output: Trained ASTGCN model for pose residuals
prediction

3: procedure ASTGCN
4: Construct spatio-temporal graph G using sensor data X
5: Initialize layers, e.g., L, A using He Uniform

initialization [24].
6: while not converged do
7: Propagate data through graph convolutional layers
8: H ← G
9: for l in L do

10: Applying spatial & temporal attention mechanism
11: Applying stacked spatio-temporal graph

convolution blocks
12: end for
13: Applying the FC Layer
14: Compute loss function using (39)
15: Update model parameters using backpropagation
16: end while
17: end procedure

Algorithm 2: Refining Strategy: Warm Start Stage.
1: Input: Trained ASTGCN networks, newly integrated

training set with new labels, hyperparameters of model,
e.g., batch size, maximum epoch.

2: Output: Improved IASTGCN model
3: procedure IASTGCN
4: Conduct training set sample reconstruction

(Magnification = 10)
5: while 2 rd model not converged do
6: Compute loss function
7: Update model parameters using backpropagation
8: end while
9: Update the training samples (Magnification = 5)

10: while 3 rd model not converged do
11: Compute loss function
12: Update model parameters using backpropagation
13: end while
14: return Predicted the pose residual error Ŷ
15: end procedure

complexities and assists the model in overcoming initial local
minima, thereby bolstering overall robustness.

D. Comparison With State-of-the-Art ST-Model

An extensive comparison between the proposed method and
state-of-the-art spatio-temporal models has been undertaken. In

this comparative experiment, the evaluation encompasses the
following representative models.

1) Literature [25]: ConvLSTM model, the architecture of
which is built on 2-D Euclidean convolution and long
short-term memory (LSTM) networks.

2) Literature [23]: T-GCN, the temporal GCN model, which
is combined with the GCN and the gated recurrent unit
(GRU).

3) Literature [26]: EAT-GCN, using Chebyshev GCN to
extract spatial features and introducing evolutionary at-
tention to improve the GRU to pay varying degrees of
attention to window features across multiple time steps.

4) Literature [27]: ST-GAT, a hybrid spatio-temporal graph
attention module, which consists of a multihead graph
attention network (GAT) for extracting time-varying spa-
tial features and a gated dilated convolutional network for
temporal features.

1) Accuracy Performance Index: For performance evalua-
tion, three widely utilized optical processing trajectories were
employed, namely, grid trajectories, Fermat spiral trajectories,
and Hilbert trajectories. A comprehensive evaluation of the
models was conducted, and accuracy metrics, including mean
absolute error (MAE), root-mean-square error (RMSE), and
mean absolute percentage error (MAPE) for position residual
bias as well as attitude residual bias, were reported across various
datasets. Furthermore, within each dataset generated using the
same trajectory, a horizontal comparison of the prediction accu-
racy for each model was conducted, as illustrated in Tables III
and IV. The results indicate that IASTGCN demonstrated sig-
nificantly higher prediction accuracy across all three datasets,
comparable to the performance of ST-GAT. This superiority can
be attributed to the simultaneous consideration of spatial and
temporal correlations in these two models, whereas traditional
2-D convolution-based spatial feature extraction methods ex-
hibited unimpressive accuracy. These findings underscore the
viability and effectiveness of the proposed IASTGCN model,
which adeptly captures the spatio-temporal coupling interaction
characteristics among sensor data variables while considering
their coupling relationships. The outcomes affirm the IASTGCN
model’s superiority in extracting advanced spatial interaction
features using non-Euclidean graphs, validating its capacity to
leverage spatio-temporal information and interactions between
variables in sensor data.

2) Ablation Experiments: To evaluate the impact of individ-
ual components within IASTGCN on enhancing model perfor-
mance, three modified versions were generated by removing or
substituting the attention mechanism module, the gated dila-
tion convolution module, and the spatial convolution module
in IASTGCN. These modified versions were designated as
IASTGCN-A, IASTGCN-T, and IASTGCN-S. The prediction
results for IASTGCN and its three variants are presented in
Table III. The results consistently demonstrate that IASTGCN
outperforms the other models, highlighting the effectiveness of
the excluded modules in capturing spatio-temporal correlations.

3) Computational Costs: In this study, we systematically
quantified the computational costs of all models, including
state-of-the-art spatio-temporal models and the variants. These
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TABLE III
ACCURACY PERFORMANCE COMPARISON WITH OTHER STATE-OF-THE-ART BASELINE AND ABLATION MODELS

TABLE IV
EVALUATION METRICS AND FORMULA DEFINITION

Fig. 10. Comparison of training time and inference time of the pro-
posed method and variants with the baseline model.

computations were conducted within controlled hardware exper-
imental environments on the PyTorch framework V2.1. Com-
putational costs during training were taken into consideration
by evaluating the average time required for a single epoch of
model training. In addition, information on the inference time
of the trained model is provided, as depicted in Fig. 10. In
the training time costs for baseline models, it is evident that
removing the spatio-temporal attention mechanism is a crucial
factor in reducing training time. The ConvLSTM model, based
on 2-D conventional Euclidean graph convolution, exhibits the
shortest training time. However, it is worth noting that the
spatio-temporal attention mechanism stands out as the compo-
nent that most effectively enhances model accuracy, as indicated
in Table III. Conversely, the ST-GAT model incurs the longest
training time, surpassing the proposed IASTGCN model by
18.07%, because of its complex multihead attention mechanism.
Nevertheless, the spatial convolution/temporal convolution ab-
lation model of IASTGCN experiences an extension of more
than 8.57% and 3.92%, respectively, due to the substitution
of conventional Chebyshev graph convolution and spatial 1-D
convolution. Examining the accuracy of multiple ablation mod-
els, the graph wavelet convolution and gated DCC components
consistently outperform conventional graph convolution and
time convolution in terms of both model prediction accuracy

TABLE V
ACCURACY PERFORMANCE COMPARISON WITH OTHER BASELINE ON

RESIDUAL ERRORS PREDICTION

and computational cost. Concerning the inference time of the
baseline model, it is noteworthy that IASTGCN has struck a
balance between the baseline model with no or shallow attention
mechanism and the ST-GAT model with a complex multihead
attention mechanism. This balance has been achieved without
compromising accuracy, resulting in a satisfactory performance
for IASTGCN.

E. Exploration Study

1) Comparison With Offline Prediction Strategies: As men-
tioned earlier, the distribution of trajectory errors is influenced
not only by the current frame input but also by the accumulation
of historical states, indicating a spatio-temporal relationship and
high coupling in the spatio-temporal convolution characteristics
of each joint variable’s impact on the end pose residual. Conse-
quently, it is essential to compare the proposed online prediction
method for robot pose residuals with other offline methods. We
selected three other offline prediction methods for pose residuals
as baseline models and evaluated tracking metrics on three
optical processing trajectories. In optical mirror processing, the
processing effect is particularly sensitive to the residual pose of
the robot in the directionsX andY , given the pneumatic floating
and constancy of the CCOS processing system at the robot’s
end and the main mirror surface in the direction Z. To illustrate,
we conducted projection visualization of the pose residual in
the spatial plane for the Hilbert processing trajectory, which
exhibited the most significant spatial pose changes, as depicted
in Fig. 11. Simultaneously, we compared the compensated pose
accuracy of the baseline model, as detailed in Table V. The
results indicate that, in comparison with other trajectory residual
prediction models, the online pose residual prediction method
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Fig. 11. Three typical CCOS optical machining trajectories and the
error projection view under Hilbert machining trajectory real experiment.

Fig. 12. Processing and testing of optical primary mirrors.

based on multivariate spatio-temporal interaction in joint space
exhibits substantial improvements in both position error and
attitude error. In contrast to the optimal value in the baseline
model, the average position error is reduced by 44.92%, and the
attitude error is reduced by 17.19%.

2) Real Experimental Verification: The processing of large
aperture optical mirrors not only imposes stringent demands
on the workspace of the processing robot but also establishes
exceptionally strict criteria for processing accuracy. A com-
parative analysis of the optical processing performance was
performed after we compensated for the pose residuals using the
robotic compensation method in [28]. Subsequently, experimen-
tal mirrors were ground under two distinct working conditions
following pose residual compensation, with meticulous control
over the processing conditions, as illustrated in Fig. 12. In the
grinding stage, a 510 mm optical primary mirror was utilized,
and Fig. 13 illustrates the convergence curves of the machining
surface under the aforementioned working conditions. The sur-
face shape accuracy indicators at different stages are presented in
Table VI. In the above grinding and polishing processes, we use
a ZEISS three coordinate optical detector to detect the machined
mirror surface during the grinding and rough polishing stages,
and a Zygo interferometer to detect the machined mirror surface
during fine polishing stage. Eventually, the peak to valley (PV)

Fig. 13. Comparison of the convergence ability of the primary mirror
manufacturing error between the two conditions.

Fig. 14. Surface error of the two experimental primary mirrors after
same iterations as measured by the Zygo interferometer. (a) Initial sur-
face error before machining. (b) Final surface error after machining.

TABLE VI
MACHINING PROCESS AND PRODUCTION DETAILS OF THE 510 MM

DIAMETER OPTICAL PRIMARY MIRROR

ratio and root mean square (RMS) of the mirror were obtained

PV = Max(ΔW )−Min(ΔW ) (40)

RMS =

√
1
π

∫ 2π

0

∫ 1

0
[ΔW (ρ, θ)−ΔW ]ρdρdθ (41)
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where ΔW , ρ, θ represent the discrete surface error, the radius
of the circular primary mirror, and the angle, respectively.

Fig. 14 depicts the individual processing of surface error under
two conditions of pose residual during the continuous polishing
stage. Prior to processing, the mirror detection results using our
proposed method were PV = 277.429 nm, RMS = 13.414 nm,
and for the uncompensated case, PV = 245.845 nm, RMS =
15.683 nm. However, after the same iterations for processing,
the mirror detection results for our proposed method were PV
= 72.459 nm, RMS = 7.361 nm, and for the uncompensated
case, PV = 143.498 nm, RMS = 13.925 nm. This represented a
decrease in PV values by 73.88% and 41.63%, and a decrease in
RMS values by 45.12% and 11.21%, respectively, compared to
preprocessing values. A comparison of interferometer surface
error detection results before and after processing revealed that
our proposed method improved the convergence performance
of the surface by approximately 30% and further confirmed
the effective improvement of optical processing certainty under
accurate compensation of pose residuals.

V. CONCLUSION

This research presented a deep learning-based approach for
predicting residual errors in the machining trajectory of an
optical processing hybrid robot. Following the establishment
of a geometric error model and the calibration of kinematics
using the EKF algorithm, the IASTGCN model was employed to
predict residual pose errors. Complex dynamic spatio-temporal
interactions between sensor variables and pose residuals were
addressed by the method. The efficacy of the proposed method
was validated through real experiments, demonstrating its ad-
vanced performance. We validate the efficacy of the proposed
method through real experiments, which demonstrated its ad-
vanced performance. In future investigations, we plan to tackle
the following issues: 1) conduct an in-depth exploration of
the dynamic accuracy of this optical processing robot when
integrating multiple physical fields; and 2) enhance prediction
stability by incorporating data fusion and reinforcement learning
into the pose residual deep learning modeling method inspired
by soft sensors, thus improving its performance.
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