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Abstract

The wide adoption of composite structures in the aerospace industry asks for reliable nu-
merical methods to account for the effects of damage, among which delamination. Cohesive
elements (CEs) are a versatile and physically representative way of reproducing delamination,
but, using their standard form, at least 3 elements are required in the narrow cohesive zone,
hindering the applicability in practical scenarios. This limitation is due to the inability of
current models to capture the deformation of the delaminating substrates. The present work
focuses on the implementation and testing of triangular thin plate substrate elements and
compatible cohesive elements, which satisfy C1-continuity at their boundary. The improved
regularity meets the continuity requirement coming from the Kirchhoff Plate Theory and the
triangular shape allows for conformity to complex geometries. After verification of plate and
cohesive element singularly, the overall model is validated for mode I delamination. Very
accurate predictions of the limit load and crack propagation phase are found, using CEs as
large as 11 times the cohesive zone.
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Chapter 1

Introduction

Context and Motivation

Composite materials constitute the current paradigm for efficient structural solutions. Their
anisotropic architecture can guarantee an optimal distribution of strength and stiffness prop-
erties, while ensuring low weight of the final product. The laminated layout of composite
structures allows for versatility in tuning the mechanical properties, but inevitably introduces
weak interfaces between adjacent layers or plies, known as resin rich regions. Whenever the
out-of-plane or transverse shear stresses exceed the material strength at these locations, a
delamination forms, which can grow upon further loading and eventually lead to structural
failure. Delamination is only one of the possible damage mechanisms in composite laminates,
but it manifests in a large number of circumstances (Figure 1.1), indicating the need for
reliable techniques to predict this failure mode.

Figure 1.1: Examples of delamination-critical regions [1].



2 Introduction

Although analytical solutions can be used during preliminary design when it is customary
to make simplifying assumptions, numerical methods become necessary for accurately cap-
turing the structural deformation. The dominant practice in computational mechanics is to
perform a Finite Element (FE) analysis to study complex structural behaviours. In this
context, cohesive elements (CEs) can be used in the numerical model to study the interface
degradation.
The ability of cohesive elements to predict crack onset and propagation for both ductile and
brittle materials has made them an appealing tool in delamination analysis. However this
technology is prevented from the adoption in the industrial practice due to a stringent mesh
density requirement. A minimum number of elements, ranging in literature from 3 to 10 [2–6]
is in fact needed in the so-called cohesive zone, which generally extends ahead of the crack
tip for few millimeters, if not tenths of millimeters. This requirement, known as the mesh
density constraint (MDC), arises from the inability of standard CEs to reproduce the steep
stress gradients in the cohesive zone, except when extremely small elements are used.

Research Objective and Questions

Damage and stresses at the interface are determined by its opening during delamination.
A finite element model must then be able to reproduce accurately the deformation of the
sublaminates if fracture onset and progression are to be predicted. The delaminating parts
of a composite usually show small ratios between thickness and planar dimensions, thus the
Kirchhoff Plate Theory can provide a meaningful description of their deformation. The aim
of the present research is to implement a thin plate element, satisfying the C1-continuity
requirement proper of the Kirchhoff model, along with a compatible cohesive element. Their
use in delamination FE analyses will show if the mesh density constraint has in fact been
alleviated. Also, the two elements will be required to have triangular support, since this can
conform to complex geometries, object of possible future studies.
The research objective for this work can be formally stated as follows:

The objective of the research is to assess the mesh density constraint, as well as the accuracy
and computational performances proper of a C1 triangular plate element and its compatible
cohesive element, by implementing them as user subroutines for a commercial FE platform
and by testing them in delamination FE analyses

To achieve this goal, a set of research questions is formulated, which will find their answers
at different stages of the report.

1. What is a suitable triangular thin plate element which ensures a C1 displacement field?

2. What is the formulation of a cohesive element compatible with the plate element devel-
oped and able to capture pure-mode delamination?

3. Is the implementation of the above elements correct and what series of tests can assess
this?

4. Is the final model accurate and does it improve in terms of mesh size and CPU times,
when compared to the current standard in delamination modeling?



3

Report Structure

The contents of this report are organized as follows. Chapter 2 presents the formulation of the
standard CE, discusses the mesh density constraint and the state-of-the-art in terms of strate-
gies adopted to overcome it. Chapter 3 goes through the implementation of the C1 triangular
plate element and associated cohesive element, which are both verified in Chapter 4. Chapter
5 means to answer to the core research question, validating the proposed model against a
benchmark delamination problem. Finally, Chapter 6 summarizes the work performed, draws
conclusions based on the results obtained and discusses possible future developments.
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Chapter 2

Cohesive Elements and the Mesh
Density Constraint

The present chapter provides the theoretical background to correctly frame and understand
the novelty of this research. Following a general-to-detail approach, the two main theories in
fracture mechanics to model delamination are presented, along with the numerical methods
that derive from them. Afterwards, the cohesive element is introduced by description of its
kinematics and constitutive law, followed by a discussion on the essence and the origins of
the mesh density constraint. Finally, the state-of-the-art solutions to the MDC are outlined
and classified based on the regularity of the proposed solution field, which is the discriminant
investigated in this work.

2.1 LEFM and CZM

The two main groups of numerical methods in fracture mechanics are based on the theories
of Linear Elastic Fracture Mechanics (LEFM) and Cohesive Zone Modelling (CZM).

2.1.1 Linear Elastic Fracture Mechanics and VCCT

Linear Elastic Fracture Mechanics is based on the theory developed by Griffith in the 1920’s [7]
to predict fracture in brittle media. The central idea of LEFM is that crack propagation occurs
as soon as the energy release rate, namely the elastic energy required to extend the crack of
a unit area, reaches the fracture toughness of the material in one of the three failure modes
(Figure 2.1). The propagation condition for LEFM is then

G = Gc (2.1)
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Figure 2.1: Fracture opening modes.
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Figure 2.2: Forces and openings in 2D VCCT.

According to pure LEFM, a solid is in its linear elastic field until the crack propagates. Irwin
[8] extended the theory to account for the presence of a plastic region ahead of the crack tip.
In all cases where the plastic region is much smaller than the structural dimensions and crack
length, the plastic energy dissipation can be added to the energy balance in Equation (2.1)
and LEFM would still accurately predict the crack propagation.

Whenever LEFM is applicable, it is reasonable to assume that the work required to extend the
crack of a given area is the same as that needed to close it by the same area. The latter is the
pivotal assumption of the Virtual Crack Closure Technique (VCCT), that is the finite element
implementation of LEFM. In the form suggested by Rybicki and Kanninen [9], VCCT makes
the additional assumption that the crack propagates in a self-similar manner. Therefore at
each increment of a FE analysis, the energy release rate is computed by multiplying the
separations of the nodes immediately ahead of the crack tip and the nodal forces at the crack
tip, as shown in Figure 2.2. It follows that the crack advances of an element length, as soon
as, for openings in mode I and II respectively,

GI = 1
2bdaF

1−2
z ∆1′−2′

I = GI,c

GII = 1
2bdaF

1−2
x ∆1′−2′

II = GII,c

(2.2)
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Figure 2.3: Separated-to-intact transition for delaminated composite specimen [10]. Fibers
bridging opposite surfaces are observed approaching the crack tip.

where da is the crack increment, b is the width of the plate, F 1−2 is the force exchanged either
in the x or z direction between nodes 1 and 2, which still have to separate. ∆1′−2′ refers to
the opening between the nodes ahead of the crack tip.

2.1.2 Cohesive Zone Modelling and CEs

LEFM is a straightforward model of fracture but it comes with the physical paradox of infinite
stresses at the crack tip. Introducing a plastic region, where the material is under yield stress,
Irwin’s theory managed to remove this inconsistency. A different theory, known as Cohesive
Zone Modelling, was proposed by Dugdale and Barenblatt [11,12] still with the intention to re-
move the stress singularity at the crack tip. These authors suggested that the stresses are null
at the crack tip and that they progressively develop in a region of partially damaged material,

τ

Δ

𝐺𝑐

Figure 2.4: Generic cohesive law.

known as the cohesive zone. A physical man-
ifestation of this transition region can be seen
when fibers of delaminating plies bridge op-
posite crack surfaces, such as in Figure 2.3.
Fiber bridging is a complex phenomenon,
that has not been modelled in this work,
however it is illustrative of the cohesive zone
concept.

Cohesive zone modeling is traditionally im-
plemented in a FE context through elements
placed along the fracture path, known as co-
hesive elements, that will be the focus of Sec-
tion 2.2. The characterization of a cohesive
element consists of its kinematics, which describes the openings and to esabilish a constitutive
relation, which links openings and stresses in the three loading modes. The shape of the con-
stitutive relation is given by a cohesive law (CL), generically represented in Figure 2.4, while
a damage onset and a damage evolution criteria determine the limit and failure opening.
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2.1.3 Differences between VCCT and CEs

Although VCCT has been lately extended to allow for multiple nodal releases and to model
crack onset (Enhanced VCCT in [13]), CEs still remain a more general and physically rep-
resentative approach to crack propagation modeling. This is understood, considering the
following differences between these two techniques.

1. VCCT requires an a-priori knowledge of the crack path, whereas cohesive elements can
be placed at all the required element interfaces to allow for crack branching in generic
directions.

2. Crack propagation in VCCT occurs through one or multiple nodal releases. In case
of relevant mesh sizes, the overall stiffness loss per-release can be large, leading to
numerical oscillations around the equilibrium path.

3. VCCT is based on the assumption of self-similar crack propagation. In a 3D space, where
the interface is represented by a surface, this assumption constraints the crack front to
be straight throughout the entire propagation. Self-similarity of crack propagation does
not usually occur in practice and it is not a fundamental assumption of CE models.

4. VCCT is based on pure LEFM and therefore can predict fracture accurately only for
brittle materials. On the other hand, CZM introduces the presence of a process zone
and allows CEs to model also large degrees of ductility during cracking.

5. If the constitutive relation of CEs is defined by a stress-strain tensor, instead of a
traction-separation law, this technique can also model adhesives of finite thickness.
This is not the case for VCCT, since this method does not account for the deformation
of the interface.

2.2 Cohesive Elements

As any other finite element, a cohesive element is defined by its stiffness matrix and residual
vector. The expressions of these arrays are derived directly from the the element’s kinematics
and constitutive relation.

The following discussion introduces the standard cohesive element as devised by Camanho et
al. [3, 4], represented in Figure 2.5 with its nodes and connectivity. The matrices expressing
the kinematics and constitutive law are outlined and finally built into the element’s stiffness
matrix and residual vector. The same process is followed in Chapter 3 to characterize the CE
proposed in this work.

2.2.1 Kinematics

The kinematics of a cohesive element is the relation between the openings ∆ and the nodal
degrees of freedom (DOFs) U . To express the CE openings, the displacements of the element’s
bottom and top surfaces (respectively nodes 1 to 4 and 5 to 8 in Figure 2.5) have to be
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Figure 2.6: Standard 3D CE: parent do-
main.

Figure 2.7: Bilinear shape functions in the parent domain Ξ.

defined. The components of ∆ along the three loading modes are defined for every point
x = (x(ξ, η), y(ξ, η)) of the mid-surface A (grey-coloured in figure) and read

∆ =

∆II

∆III

∆I

 =

−ubtm(x(ξ, η)) + utop(x(ξ, η))
−vbtm(x(ξ, η)) + vtop(x(ξ, η))
−wbtm(x(ξ, η)) + wtop(x(ξ, η))

 (2.3)

The mid-surface of a cohesive element in the Cartesian space is generally mapped to a reference
domain of coordinates ξ and η, also called the parent domain, taken as the unit square
(Figure 2.6):

Ξ = {(ξ, η) ∈ [−1, 1]× [−1, 1]
}

(2.4)

In its standard version, the initially overlapping upper and lower faces of the CE displace
compatibly with continuum elements that are interpolated linearly. The shape functions are
then bilinear in the 2D parent domain, as shown in Figure 2.7 and read

N1(ξ, η) = 1
4(1− ξ)(1− η) (2.5)

N2(ξ, η) = 1
4(1 + ξ)(1− η) (2.6)

N3(ξ, η) = 1
4(1 + ξ)(1 + η) (2.7)

N4(ξ, η) = 1
4(1− ξ)(1 + η) (2.8)
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The displacements of both faces of the CE can be written isolating the degrees of freedom as

u(ξ, η) =
[
N1(ξ, η) N2(ξ, η) N3(ξ, η) N4(ξ, η)

]
u = NTu (2.9)

v(ξ, η) =
[
N1(ξ, η) N2(ξ, η) N3(ξ, η) N4(ξ, η)

]
v = NTv (2.10)

w(ξ, η) =
[
N1(ξ, η) N2(ξ, η) N3(ξ, η) N4(ξ, η)

]
w = NTw (2.11)

where u, v, w are the nodal displacements in respectively the x, y and z directions:

uT =
[
u1 u2 u3 u4

]
(2.12)

vT =
[
v1 v2 v3 v4

]
(2.13)

wT =
[
w1 w2 w3 w4

]
(2.14)

From Equations (2.12) to (2.14) the DOFs vector of the cohesive element can be built as

UT =
[
− ubtm1 − vbtm1 − wbtm1 . . . − ubtm4 − vbtm4 − wbtm4 utop1 vtop1 wtop1 . . . utop4 vtop4 wtop4

]
The degrees of freedom with the ‘btm’ superscript refer to nodes 1 to 4 in Figure 2.5, while
the ‘top’ DOFs belong to nodes 5 to 8.

The above definitions can be used to finally express the openings in terms of the CE’s nodal
displacements as

∆ = BTU (2.15)

where the B matrix is

BT =

−N1 0 0 . . .−N4 0 0 N1 0 0 . . . N4 0 0
0 −N1 0 . . . 0 −N4 0 0 N1 0 . . . 0 N4 0
0 0 −N1 . . . 0 0 −N4 0 0 N1 . . . 0 0 N4


The above is the final expression of the CE’s B-matrix only if geometrical non-linearities are
neglected, hence when no changes in configuration are accounted for.

2.2.2 Constitutive relation

The constitutive relation of a cohesive element, or, equivalently, its cohesive law, links stresses
τ and openings ∆ for each of the three fracture modes. In finite element terms, this relation
is what defines the constitutive matrix D, such that

τ = D∆

The literature abounds of cohesive law models, each requiring a different number of param-
eters. Two-parameters cohesive relations are, for example, those of Xu-Needleman [14] and
Camacho-Ortiz [15], who proposed respectively an exponential and linear CL. Tvergaard et
al. [16] formulated instead a 5-parameter trapezodial CL, from degeneration of which, the
well-known 3-parameters bilinear model is derived, as discussed in [17].

Different studies investigated the effect of the CL shape on various quantities, such as the
crack initiation load, the shape of the crack front and the extent of the cohesive and plastic



2.2 Cohesive Elements 11

τI

Δ𝐼Δ𝐼
0 ΔI

𝑓

τ𝐼
0

1 − d K

Figure 2.8: Bilinear CL, mode I.
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Figure 2.9: Bilinear CL, shear modes.

regions. In particular, Shet and Chandra [18] compared the three mostly used models, mean-
ing the exponential, bilinear and trapezoidal ones and noticed that the parameters shaping
the different CL curves indeed affect how the energy is redistributed between plastic and co-
hesive fracture dissipation. However, Yang and Cox [5], among others, confirmed that when
the process zone is small compared to the crack size, LEFM accurately describes the fracture
process, regardless of the CL shape.

The bilinear cohesive law (Figures 2.8 and 2.9) was used in the work at hand to model the
CE’s constitutive response. This choice was made to keep the same constitutive law used in
Abaqus CZM implementations, which were taken as the standard during validation of the
proposed method. A sensitivity study on the CL shape was not in the scope of this research,
since for the test-case considered in Chapter 5 and generally for composite panels with large
initial cracks, the effect of the process zone can be overlooked.

Linear response

The first trait of the cohesive law is linear and its slope is given by the so-called penalty
stiffness K. This parameter has no direct physical meaning and it is introduced to avoid
sudden material damaging for extremely small openings. The value of K has to be high
enough not to introduce a large compliance in the system before material degradation, but
also small enough to avoid sudden stiffness drops at every extension of the crack front.

In compliance with the above requirements, Turòn et al. [19] suggested the following relation

K = 50 E3
t

(2.16)

where E3 is the out-of-plane material modulus of the lamina and t is the thickness of the
laminate.

The same research group also noticed in [20] that differentiating between the penalty stiff-
nesses in mode I and shear modes could ensure the thermodynamical validity of the consti-
tutive model. In particular, they demonstrated that a positive energy dissipation is granted,
if

Ksh

KI
= GI,c
GII,c

(
τ0
sh

τ0
I

)2

(2.17)
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where Ksh and KI indicate the shear and mode I penalty stiffnesses and KI can be taken
equal to K in Equation (2.16). τ0

sh = τ0
II = τ0

III is the material shear strength, while τ0
I is

the strength in mode I.

Also, instead of keeping two separate penalty stiffnesses, Turòn et al. [21] recently suggested
a unique mode-dependent expression of K. Defining the mode-mixity ratio B as

B = GII +GIII
GI +GII +GIII

(2.18)

where GI , GII and GIII are the energy release rates in the three modal directions, the overall
K can be given as a weighted average of KI and Ksh, hence

K = KI (1−B) +BKsh (2.19)

Damage

In case of isotropic damage, where the same degradation is applied in all directions, reduction
of the material pristine stiffness is defined by a scalar, known as the damage variable.

In [22], Turòn et al. proposed a damage model accounting for mixed-mode loading and able
to ensure a monotonically increasing damage variable. This constitutive model represents a
standard in the computational CZM literature and it is briefly outlined here to derive the
expression of the damage variable for the bilinear cohesive law.

Firstly, a general definition of the interface opening is necessary. In mixed mode loading, the
opening is defined as the vector norm of its pure mode components, such that

∆m =
√
〈∆2

I〉+ ∆2
shear (2.20)

where 〈−〉 are the MacAulay brackets, defined as

〈x〉 =
{
x if x > 0
0 if x ≤ 0

(2.21)

The shear opening ∆shear accounts for the both modes II and III separations and it is ex-
pressed as

∆shear =
√

∆2
II + ∆2

III (2.22)

A constitutive damage model needs to include the conditions for damage propagation and
onset. Propagation, hence an increase in crack surface, occurs as soon as

G = Gc (2.23)

In mixed-mode delamination, the energy release rate G is obtained from its contributions in
the three modal directions, thus

G = GI +GII = GIII = GI +Gshear (2.24)
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The critical energy release rate Gc also depends on the mode mixity and can be defined by
means of the Benzeggagh-Kenane criterion (B-K) [23] as

Gc = GI,c + (GII,c −GI,c)
(
Gshear
G

)η
(2.25)

where η is a material parameter found by curve-fitting of experimental data.

If GI and Gshear are expressed using the the bilinear cohesive law, Equations (2.23) to (2.25)
allow to write the failure opening as

∆f = ∆0
I∆

f
I + (∆0

shear∆
f
shear −∆0

I∆
f
I )Bη

∆0 (2.26)

where B was defined in Equation (2.18) The terms ∆0
I , ∆f

I in Equation (2.26) are the onset
and failure opening for pure mode I and ∆0

shear, ∆f
shear are the shear modes equivalents.

These quantities are found from the bilinear cohesive law in the pure mode directions as

∆0
I = τ0

I
K (2.27)

∆f
I = 2GI,c

τ0
I

(2.28)

∆0
shear = τ0

II
K (2.29)

∆f
shear = 2GII,c

τ0
II

(2.30)

Still to be determined is the mixed-mode limit opening ∆0, found choosing a damage onset
criterion. Usually, this has been proposed in literature as separated from the propagation
condition. However, Turòn et al. noticed that a change in mode-mixity during delamination
may lead to a spurious recovery of the intact damage state, if the two criteria for damage
propagation and onset are inconsistent with each other. Therefore the authors defined damage
initiation starting from the B-K equation in the limit case of d = 0, obtaining

(∆0)2 = (∆0
I)2 +

[
(∆0

shear)2 − (∆0
I)2
]
Bη (2.31)

Using the quantities just outlined, the damage variable for the bilinear cohesive law is finally

d =


0 if ∆m < ∆0

∆f (∆m−∆0)
∆m(∆f−∆0) if ∆0 ≤ ∆m < ∆f

1 if ∆m ≥ ∆f

(2.32)

where the three conditions of intact, partially damaged and failed material are distinguished,
depending on the mixed-mode opening.

At every iteration of a non-linear FE analysis, ∆m, ∆f and ∆0 are computed depending on
B and d is updated only if the value obtained with Equation (2.32) is higher than the one at
the previous load increment.



14 Cohesive Elements and the Mesh Density Constraint

2.2.3 Constitutive matrix

The updated damage variable is used to compute the D-matrix of the CE as follows

D =

(1− dI)K 0 0
0 (1− d)K 0
0 0 (1− d)K

 (2.33)

The constitutive matrix in Equation (2.33) is diagonal, thus no cross-sensitivities between
openings and stresses along different modes are taken into account. The damage variable in
mode I is distinguished from d, in order to avoid interpenetration of opposite crack surfaces{

dI = d if ∆I > 0
dI = 0 if ∆I ≤ 0

(2.34)

In all locations where the mode I opening is negative, the penalty stiffness is restored along
this direction, so that only minimal interpenetration is allowed.

2.2.4 Stiffness matrix and residual vector

The stiffness matrix of the cohesive element can be written in the classic form as

K =
∫∫

A
BDBTdA (2.35)

where A is mid-surface of the CE.
The integral in Equation (2.35) is mostly computed numerically. The quadrature scheme
and the number of integration points (IPs) used depend on the element type. Generally,
Gaussian schemes are preferred to Newton-Cotes ones, as the former ensure higher degrees of
accuracy (order of the polynomial integrated exactly) for the same amount of IPs. However,
for cohesive elements, the integrand sampled with Gaussian IPs can show fictitious material
interpenetration, when the element is in an intermediate damage state. Despite this should
favour Newton-Cotes quadrature for CEs integration, the debate is still open on which scheme
is better suited for this application [3, 24–27].
An incremental-iterative analysis is usually employed to solve the non-linear system of equa-
tions of the finite element model. Depending on the solution technique adopted, K can be
re-computed at each iteration (Full/Quasi Newton-Raphson methods), once at the each in-
crement (Modified Newton-Raphson method) or only at the beginning of the first increment
(Linear Elastic Stiffness method). The choice of the method also affects the magnitude of
the residual vector, which represent the unbalance between external and internal forces for
each degree of freedom of the FE model. The general form of the residual vector f for a
surface-defined element is

f = fext − fint =
∫∫

A
Nt dA−

∫∫
A
Bτ dA (2.36)

The first integral in Equation (2.36) expresses the nodal forces due to the external applied
loads, while the second term includes the internal reactions at each node. Making the as-
sumption that external loads are not directly applied on interface elements, only the internal
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Figure 2.10: Load displacement curves for a DCB specimen, obtained with Abaqus CC analyses
for different element sizes in the fracture region. The CBT solution is used as analytical reference.

force term contributes to the residual. Recalling Equation (2.15), f can be expressed as

f = −
∫∫

A
BDBT dA U = −KU (2.37)

Thus, as long as K and U are updated for the current iteration, the residual vector f is
obtained by simple matrix multiplication.

2.3 The Mesh Density Constraint

Figure 2.10 shows different numerical load displacement curves for a double cantilever beam
(DCB) unidirectional composite specimen. The analytical solution obtained with the Cor-
rected Beam Theory (CBT, Appendix E) is also plotted for reference. All the numerical curves
derive from Abaqus Cohesive Contact (CC) analyses, where CC is a CZM-based contact re-
lation between a master and a slave surface. If the same cohesive law, onset and propagation
criteria are used, results obtained with CEs and CC usually show little difference, especially
for very small interface thicknesses.

Different curves in Figure 2.10 correspond to different element sizes in the region involved by
fracture. The chart clearly represents the essence of the mesh density constraint. Only the
model with a 0.25 mm element size complies to the requirement of having at least 3 elements
in the 0.875 mm cohesive zone length, hence the corresponding curve is the sole matching
the analytical solution. Meshes of 1 mm, 2 mm and 5 mm overshoot the limit load by 15%,
88% and 163% respectively. Also they show a fictitious unstable crack growth after the limit
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Figure 2.11: Stress and damage profiles in the CZL of a 2D DCB specimen, obtained with
Abaqus CC analysis. The element length is 0.0125 mm in the propagation region.

point and for the 2 and 5 mm cases the propagation branch is completely missed. Considering
that the length of the specimen is 150 mm, one can easily figure how the need of a 0.25 mm
element size translates in excessive computational costs.

The mesh density constraint arises from the limited interpolation power of linear bulk and
cohesive elements. If the displacements of the separating specimen’s arms are not captured
accurately, neither are the damage and traction gradients present in the short cohesive zone
(Figure 2.11) and the structural response can greatly differ from the true one.

2.3.1 Cohesive Zone Length

Knowledge of the length of the cohesive zone, abbreviated as CZL, is necessary whenever
working with CZM-based methods. With linear CEs/CC, this dimension dictates the maxi-
mum element size for accurate predictions, but, more in general, the CZL is a characteristic
dimension of nearly every fracturing continuum (exceptions are the purely brittle materials,
where the process zone is smaller than the continuum scale). Therefore, every numerical
method that is not based on pure linear elastic fracture mechanics must take the CZL into
account in its implementation.

The size of the cohesive zone in a fracturing structure shows several sensitivities. Material
properties, geometry and opening mode are all physical factors which influence the CZL and
to these adds the shape of the cohesive law.

The first attempts in literature to estimate the CZL made the assumption of an infinite body,
in order to exclude the effects of the geometry. The general expression for the CZL in this
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case is [19]

l∞cz,i = M∞i
EiGi,c
(τ0
i )2 , i=1, 2, m (2.38)

with
Em = EI(1−B) + EII (2.39)

Ei is the Young modulus along the ith mode, while Gi,c and τ0
i are respectively the critical

energy release rate and the strength of the material for the same mode. As observed by
Soto [28], M∞i is a factor that, for a given mixity ratio, solely depends on the cohesive law
of choice. A set of values for M∞i in pure mode I loading are given in Table 2.1. The CZL
for this opening mode is usually smaller than for any other mode-mixity, making this loading
case the most critical in terms of MDC.

Reference M∞
I

Hui et al. [29] 2
3π

Irwin [8] 1
π

Dugdale [11] π
8

Rice [30], Falk et al. [31] 9
32π

Hillerborg et al. [32] 1.0

Table 2.1: MI values in literature.

Later models for the CZL also accounted for the problem’s geometry, particularly considering
thin structures. Two relevant solutions from Smith [33] for pure mode I and Massabò-Cox [34]
for mode II, are respectively

l0cz,I = M0
I (l∞cz,I)

1
4 t

3
4
a (2.40)

l0cz,II = M0
II

√
l∞cz,II ta (2.41)

where ta is the thickness of the delaminating arm and l∞cz,i is the CZL for an infinite body
taking M∞i =1. As in the case of an infinite body, the coefficients M0

I and M0
II depend

exclusively on the cohesive law used.

Authors such as Turòn et al. [35] and Harper et al. [2] demonstrated that Equations (2.40)
and (2.41) overestimate the length of the cohesive zone and some researchers proposed their
own models. In particular Turòn and co-workers suggested a formulation that also covers
mixed-mode openings, while Soto et al. [28] proposed to use a weighted average between the
CZL for infinite bodies and that for thin structures. Though both of these formulations can
achieve accurate predictions of the CZL, they are only semi-analytical, since some of their
parameters are found by curve-fitting of experimental data.

2.3.2 Solutions to the MDC

The mesh density constraint imposes a minimum number of CEs in the cohesive zone length.
However, the models developed so far to estimate this dimension are either inaccurate or of
limited applicability. Without confidence in the CZL measure, two choices are left to the
analyst for having precise delamination predictions. The first one is using an extremely fine
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mesh, so to comply doubtlessly with the MDC. The second alternative requires to follow
a coarse-to-fine approach to mesh sensitivity, until convergence of the sought-for results.
Clearly, both methods are inefficient and would generate a bottleneck during structural design.

If the time between the creation of the first FE delamination model and the achievement
of converged results is to be minimized, the mesh density constraint must be alleviated, if
not completely removed. In agreement with the theme of this research, the next sections
discuss some remarkable methods for MDC reduction, dividing them in two categories. The
first group gathers all the works where the FE solution is globally C0-continuous, while the
remaining strategies use approximations with higher regularity.

C0 solutions

Material strength reduction The expression of the CZL in Equation (2.38) is inversely
proportional to the square of the material strength. This relation was exploited by Turòn et
al. [19] to adopt a somehow counter-inuitive approch to the MDC problem, that is to allow
for larger CE dimensions by extension of the CZL itself.

Choosing a-priori the length of the CEs (lel) in the CZL and prescribing the number of
elements Nel that this has to contain, the strength of the material is uniquely determined by
Equation (2.38). For pure mode I loading, using M∞I = 9

32π (see Table 2.1)

τ0
I =

√
9πEIGc
32Nellel

(2.42)

Keeping 5 elements in the cohesive zone and allowing τ0
I to decrease, the authors of the study

showed DCB test results with limited error on the peak load, using up to 2.5 mm element
lengths. Although local stresses and damage distributions obtained with this expedient are
not realistic, the method well captures the global response for mode I delamination, ensuring
limited CPU times.

The strength reduction strategy is not as powerful when applied in mode II delamination. This
was noticed by Harper and Hallet [2], who showed how in a pure mode II End-Notched-Flexure
(ENF) test, reducing the material strength resulted in lower peak loads and flattening of the
load-displacement curve (Figure 2.12). In fact, large mode II strength reductions can greatly
increase the extent of the process zone, causing global softening and a plastic-like behaviour.
Also, the authors showed that increasing the CE length always altered the load-displacement
curves, except for low values of the interface strength, which anyway give inaccurate results.

Enriched displacement field Another class of methods dealing with the mesh density re-
quirement is based on enriching the solution’s space of both bulk and cohesive elements.
The idea is to add new shape functions or to modify the existing ones, using the analytical
solutions of simplified fracture models.

Guiamatsia et al. used the beam on elastic foundation solution as enrichment function. They
initially tested their element implementation only in mode I [36] and then presented examples
also for mixed mode delamination [37]. The expression of the out-of-plane displacement was
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Figure 2.12: Effect of strength reduction for a ENF test [2].

Figure 2.13: Enriched shape functions space proposed by Samimi et al. in [39].

based on the partition of unity method [38], in order to maintain an interpolative approxi-
mation. This reads, for a 2D element

w(x) = Ni(x)(wi + wijφj(x)), i=1:M , j=1:J(i) (2.43)

where terms with repeated indices are summed together. A total of J(i) degrees of freedom
wij and enrichment functions φj(x) are added for each node i. M is the total number of
nodes. None of the articles mentions the CZL, nor they provide data to derive it. However
the authors give indications about the minimum element length. For the DCB specimen
in [36], the linear CEs solution requires a 0.5 mm CE size to obtain converged results, whereas
enriched elements as long as 5 mm can correctly predict the delamination length. In case of
a 2 mm mesh, also the load-displacement curve is reproduced accurately. Using this element
size, a 37% CPU time reduction is achieved with respect to the 0.5 mm linear CE solution.
However in [37], the authors mention that for elements larger than 3 mm, the enrichment could
lead to inaccuracies in interpolating the degrees of freedom. Also, despite MDC alleviation
is also reported for mixed mode, improvements for pure mode II are not discussed and they
are likely not achievable, since the beam on elastic foundation problem only models mode I
fracture.
A different approach to element enrichment was proposed by Samimi et al. [39–41]. These
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authors augmented the solution space of both substrate and cohesive elements in a hierarchical
manner, by adding a bilinear function, solution of a peel-off problem. The complete set of
shape functions for a univariate interface element is represented in Figure 2.13 and reads

N1(ξ) = ξ (2.44)
N2(ξ) = 1− ξ (2.45)

φ(ξ) = 1
a
ξ − 1

a(1− a)R(ξ − a) (2.46)

where φ(ξ) is the enrichment function, a is the unknown position of the opening peak and R
simply reads

R(ξ − a) =
{

0 if ξ ≤ a
ξ − a if ξ > a

The hierarchical enrichment with the bilinear shape function in Equation (2.46) adds three
degrees of freedom for each cohesive element, the peak position a and two scaling factors
for top and bottom sides of the interface. The method was tested for both a 2D and 3D
version of the peel-off problem. The numerical solution was compared with the analytical
one, but no considerations on the ratio between element size and cohesive zone length were
done. However the results showed that the enrichment permitted a partially damaged state of
the element. This translated in limited numerical oscillations of the load-displacement curve
upon propagation, using mesh sizes which are prohibitive for linear CEs.

Sub-domain integration and level set Recalling Figure 2.11, if a cohesive elements is larger
than the cohesive zone, thus has to contain it, stress and damage distributions in the non-
separated portion of its domain will be strongly non-linear. The research groups of Yang [26]
and Do [42] demonstrated that larger element dimensions can be achieved, provided that
enough integration points are placed in the moving cohesive zone.

These authors used a mixed integration scheme, combining Gaussian Integration (GI) and
Sub-Domain Integration (SDI). Intact cohesive elements are integrated with the standard
Gaussian quadrature and failed CEs do not require any integration of the stresses. However,
for partially bonded CEs containing the cohesive zone, the crack front has to be fist identified,
using a level-set and while the failed part is not integrated, a Gaussian scheme is used for the
partially damaged one. Thus, quadrature in the last case is performed only on the non-failed
sub-domain. Figure 2.14 illustrates the differences between a full-GI and a GI-SDI scheme
and how the crack front is located in the latter case.

Simulating fracture in a Double Cantilever Beam (DCB) specimen, the method accurately
predicted peak load and propagation phase for CE dimensions up to 1.43 times the estimated
CZL, and achieved convergence for a ratio of 2.14. Even larger meshes meant however in-
creasingly severe oscillations during crack propagation and an over-prediction of the limit
load.

Quadratic CEs and IPs density A different approach towards relaxing the MDC is to in-
crease the order of interpolation of the displacement fields of bulk and cohesive elements. This
idea was pursued by Álvarez et al. [43], who developed a quadratic CE and also added the
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Figure 2.14: Sub-domain integration with crack front tracking [26].

possibility to increase the number of integration points used. A quadratic interpolation can
more precisely reproduce small curvature radii due to bending, hence it better captures the
interface opening. More IPs mean less damage accumulation and release at each increment,
thus smaller fluctuations of the solution during propagation.

The results achieved with this method for a 2D DCB test with an adhesive interface are
visible in Figure 2.17. Convergence, accuracy on the peak load values and limited oscillations
were obtained with CEs twice as long (20 mm) the CZL (10 mm), which translated in CPU
time savings of 69.5% with respect to the standard linear CE solution.

Despite the remarkable performances of the method, it is doubtful whether this is actually
an ultimate solution to the MDC. In fact, looking at the thinnest DCB specimen geometry
analyzed by Álvarez and co-workers (Figure 2.15), it is noticed how the pre-cracked portion
has a thickness-to-length ratio larger than 1

10 . Also, the load is not applied in a concentrated
manner, but through a lug. Such a configuration does not have the bending compliance of
a thin beam, meaning that the FE approximation of it does not have to fulfill the stringent
C1-continuity requirement proper of thin models. Given that the order of this method is C0,
it is likely that the improvements observed in this study would not hold for slender geometries
with concentrated loads.

The previous considerations on geometry and loading are credible when looking at the re-
sults obtained by Russo [44]. Quadratic cohesive elements were also used to model the thin
specimen shown in Figure 2.16, for which a CZL of 0.825 mm was computed. The load-
displacement curves for different mesh sizes, reported in Figure 2.18, indicate a threshold for
the CE size of 1 mm, meaning a CE length to CZL ratio of 1.21, before unacceptable accuracy
loss. Such observations demonstrate how quadratic interpolation without higher continuity
is an improvement although not a solution to the MDC.

Thick level set Several authors investigating delamination chose to describe either the crack
front or the damage zone with level sets. A pioneering work in this sense, although not based
on CZM, is that of van der Meer et al. [46], who used LEFM to describe the motion of the
crack front. The method achieved accurate matching of the analytical solutions in a number
of benchmark tests, but it is limited to single delamination scenarios.
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Figure 2.15: DCB specimen geome-
try studied by Álvarez [43].
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Figure 2.16: DCB specimen geome-
try studied by of Russo [44].

Figure 2.17: DCB Load-displacement
curves obtained by Álvarez [43].

Figure 2.18: DCB Load-displacement
curves obtained by Russo [44].

Figure 2.19: Level set field and damage function [45].
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Figure 2.20: The adaptive floating node element in its three versions [47].

Working with some of the same authors, Latifi [45] generalized the approach, introducing
the cohesive zone and modelling it through a thick level set φ(x, y) (Figure 2.19). Damage
is described as a given function of φ and the damage zone is delimited by two lines where
the level set field is constant. The openings and stresses are computed at the beginning of
the increment, allowing to determine the energy release rate. Up until reaching the critical
energy release rate, the expansion of the damage region is dictated by damage mechanics.
When G = Gc and the length of the cohesive zone becomes fully developed, propagation
develops as described by fracture mechanics.

As the method allows for the choice of the cohesive zone length lc, this can be extended to
fit the minimum number of CEs for stable and accurate simulations. However, no sensitivity
study on the CE size is presented in the article and the simulations are all conducted with
fine meshes, preventing from drawing conclusions about the MDC.

Adaptive floating node method Recently, Lu et al. [47] proposed a version of the Floating
Node Method (FNM) [48] capable of adaptivity (A-FNM) and tested it in terms of minimum
CE size. Thanks to the essence of FNM, the method avoids global remeshing and mapping
of nodal/element variables required to adaptive mesh refinement schemes.

Each original element is attributed a set of real nodes, which define the initial mesh and
floating nodes for their edges and area. Before any damage occurring, the floating nodes are
inactive and the element is in its master configuration, as shown in Figure 2.20. A refinement
zone of three times the length of the cohesive zone is located ahead of the crack tip. As soon
as one element enters the refinement region, the floating nodes are activated to form a grid,
such that three sub-elements cover the cohesive zone (refined configuration). Sub-cohesive
elements are inserted in between the bulk ones just defined. If one master element is fully
separated, a check on its strain energy is done to see if the grid can be coarsened by leaving
only the floating nodes defining the crack (coarsened configuration).

The benchmark problems analyzed proved the superiority of this method as compared to the
standard CEs schemes. For instance, for the 2D DCB specimen case, an initial coarse mesh
of 3 mm could be used, against a mesh of 0.2 mm element size needed for the standard FEM
model. The method succeeded to achieve CPU time savings up to 47% in DCB simulations.
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Figure 2.21: DCB in [53]: load-
displacement curve.

Figure 2.22: DCB in [53]: transverse
stress profile.

Higher regularity solutions

Isogeometric Analysis Mid-way during the last decade, Hughes et al. [49,50] developed the
concept of Isogeometric Analysis (IgA). The original aim was to remove the lengthy step
of creating the FE mesh, by using the anyway necessary geometrical mesh modelled in a
Computer Aided Design (CAD) platform.

All the different functions available in CAD modelling offer a large flexibility on their conti-
nuity. Regularity can be tuned both by changing the order of interpolation and by adding or
removing knots, the IgA equivalents of the FE nodes. These processes are known respectively
as p-refinement and knot-insertion.

The applicability of IgA to fracture mechanics has been investigated thoroughly over the
present decade. In particular, not only IgA grants the appealing features of modelling the
structure’s geometry exactly and the possibility of having regular solutions, but it also allows
to create discontinuities through knot-insertion. Moreover, since the studies of Borden, Scott
et al. [51, 52] IgA implementations could be made compatible with the available FE codes,
thanks to the process of Bézier Extraction.

Examples of delamination analyses with isogeometric shape functions are given in the works of
Irzal [53], Nguyen [54] and Hosseini [55] either for two or three-dimensional problems. None of
these studies though examines on purpose the element density in the cohesive zone. However,
considering the DCB example in [53] and using the data provided, the element length for the
coarser mesh is found equal to 0.625 mm and Equation (2.40) gives a CZL value of 0.63 mm.
Despite the element length-to-CZL ratio being greater than the recommended 1

3 to 1
10 values,

the simulations show convergence and smoothness, as it can be observed in Figures 2.21
and 2.22.

3rd order CEs and adaptive integration In his work, Russo [44,56] adopted C1-continuous
substrates and cohesive elements to study 2D delamination. The faces of the CE share the
nodes of the Euler-Bernoulli beam elements used for modeling the sublaminates. Figure 2.23
shows however that the actual upper and lower sides of the CE have an offset of half the
substrate thickness from the neutral axes of the beams. The presence of the beam’s thickness
also affects the displacement field of the CE faces, written as, respectively for horizontal and
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0

Figure 2.23: Configuration of the CE implemented by Russo [44].

vertical components and for bottom and top face{
uCEb

(ξ) = uBb
(ξ) + t

2 sin θBb
(ξ)

wCEb
(ξ) = vBb

(ξ)− t
2(1− cos θBb

(ξ))
(2.47)

{
uCEt(ξ) = uBt(ξ)− t

2 sin θBt(ξ)
wCEt(ξ) = vBt(ξ) + t

2(1− cos θBt(ξ))
(2.48)

The CE and B subscripts in Equations (2.47) and (2.48) refer to quantites of the beam and of
the cohesive element respectively, t is the substrate’s thickness and θB is the beam’s rotation
for a given value of the parent coordinate ξ.
Russo also implemented a co-rotational formulation for his CE model, so to account for
large displacements and rotations in computing the openings. In addition, these CEs can
be adaptively integrated. Simlarly, to Yang’s SDI scheme [26], but refining over the entire
element domain, partially debonded elements are given a large number of integration points,
while the fully intact or failed ones are integrated with just 3 IPs.
The DCB load displacement curves obtained by Russo are compared with different references
in Figure 2.24. Different mesh sizes are shown both for the high order adaptively integrated
CEs and the linear ones. The CZL was predicted to be 0.825 mm. For a 2.5 mmmesh, meaning
an element size-to-CZL ratio of 3, the Abaqus solution with linear CEs over-predicted the
limit load by 85% the experimental value, while Russo’s cohesive elements were accurate up
to a 4% deviation. Using a 5 mm mesh, the novel method missed the limit load by only
8%, whereas linear CEs did not predict delamination in the displacement range examined.
Spurious oscillations were kept low in magnitude thanks to the high number of IPs in the
moving cohesive zone. The CPU time required by the new cohesive element models with a
2.5 mm mesh was of 47 seconds, against the 43 minutes and 24 seconds needed by the Abaqus
standard, meaning a 98% saving.
The captivating performances of this method are motivated by the use of Euler-Bernoulli
beam elements together with C1 CEs. High order and regularity of this scheme ensure that
the bending deformation of the specimen’s arms, hence the interface opening, is accurately re-
produced even with few elements. Since damage and stresses depend on the openings through
the cohesive law, also these quantities are well predicted, as are the onset and progression of
the interface failure.
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Figure 2.24: DCB load-displacement curves obtained with Russo’s method [44]. Standard CE
results, analytical solution and experimental data are also reported.

The binomial of accuracy and minimal CPU times obtained by Russo expresses the importance
of basing a numerical model on the mechanics of the physical problem. This idea is what
motivated the present research to test thin structural theories for reproducing delamination
in three-dimentional analyses.



Chapter 3

Proposed Solution

The results from IgA and the 3rd order C1 cohesive elements show that not only the order,
but also the regularity of the numerical solution is key for accurate and efficient delamination
analyses. The reason for this is that the separating arms of a delaminating composite are
slender elements that, under the applied load, deform either as Euler-Bernoulli beams in two
dimensions or as Kirchhoff plate/shells in a 3D space. As it will be soon discussed, these
structural theories require the solution to be at least C1-continuous over the entire problem’s
domain.

The present chapter is structured as follows. First, the strong and weak forms of the Kirchhoff
equation for plates in bending are derived, from which the C1-continuity requirement will be
expressed in formulas. Following, the triangular thin-plate element, known as TUBA3 or Bell’s
triangle [57] is discussed and its stiffness matrix and residual vector are built. Finally, the
same fundamental arrays are derived for the TUBA3-compatible cohesive element (TUBA3-
CE).

Both plate element and compatible CE were implemented as Abaqus user-element subroutines
[13] and written in the FORTRAN95 programming language.

3.1 C1-continuity in the thin plate model

The regularity condition for thin plates is better understood starting from the more general
Reissner-Mindlin (R-M) theory. In this model, two main assumptions are done regarding the
plate’s deformation. First, sections that are straight in the reference configuration remain
straight in the deformed one. Moreover, out-of-plane stresses and strains are neglected, thus

σz = εz = 0 (3.1)

In agreement with the previous assumptions, the displacement of each point is described only
by the out-of-plane deflection w and by the θx and θy rotations of the plate’s mid-plane. No in-
plane deformations are considered and all displacements are assumed to be small. Figure 3.2
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Figure 3.1: First order shear plate model. Out-of-plane load and internal forces and moments
are evidenced.

shows the plate’s kinematics in the xz-plane. Deformations in the yz-plane are equivalent, if
θy is considered in place of θx. Altogether, the displacements in bending are expressed as

u(x, y, z) = zθx(x, y)
v(x, y, z) = zθy(x, y)
w(x, y, z) = w(x, y)

(3.2)

Following the derivations and part of the notation in [58], the in-plane strains follow from
Equation (3.2) and are written in vector notation as

ε =

 εxεy
γxy

 =


∂u
∂x
∂v
∂y

∂v
∂x + ∂u

∂y

 = z


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

[θx
θy

]
= zSθ (3.3)

Similarly, the transverse shear strains read

γ =
[
γxz
γyz

]
=
[
∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y

]zθxzθy
w

 =
[
θx + ∂w

∂x

θy + ∂w
∂y

]
= θ +∇w (3.4)

Imposing zero out-of-plane strains and stresses implies that each layer of the plate is in a
plane stress condition, even though τxz and τyz are generally non-zero. In case of an isotropic
material, the plane stress constitutive relation links stresses and strains asσxσy

τxy

 = E

1− ν2

 1 −ν 0
−ν 1 0
0 0 1−ν

2


 εxεy
γxy

 = Cε (3.5)
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Figure 3.2: R-M plate kinematics in the xz-plane.

In Equation (3.5), the expression of the shear modulus in terms of Young’s modulus and
Poisson’s ratio was used

G = E

2(1 + ν)

The transverse shear stresses also need to be determined in the R-M theory. These are
obtained multiplying γxz and γyz by the shear modulus G, hence[

τxz
τyz

]
= G

[
γxz
γyz

]
(3.6)

Integrating the stresses along the plate’s thickness allows to find the moments and shear forces
per unit length as

M =

Mx

My

Mxy

 =
∫ t/2

−t/2

σxσy
τxy

 z dz = DSθ (3.7)

Q =
[
Qx
Qy

]
=
∫ t/2

−t/2

[
τxz
τyz

]
dz = k G t (θ +∇w) (3.8)

The matrix D is the bending stiffness matrix of the isotropic plate and reads

D = Et3

12(1− ν2)

1 ν 0
ν 1 0
0 0 1−ν

2

 (3.9)

The factor k in Equation (3.8) is the so-called shear correction factor and compensates for
assumption of constant shear stresses along the thickness. For an assumed parabolic distri-
bution of τxz and τyz, k=5/6.
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With the above assumptions and definitions, the equilibrium equations for a generic con-
tinuum can be integrated along the thickness to obtain the plate’s differential equations of
equilibrium with respect to vertical translations and x, y-rotations. These are, ultimately[

∂
∂x

∂
∂y

] [Qx
Qy

]
+ q(x, y) = 0 (3.10)

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]Mx

My

Mxy

− [Qx
Qy

]
= 0 (3.11)

where q(x, y) is an out-of-plane load per unit surface, acting on the top of the plate (Fig-
ure 3.1). Using the differential operators ∇ and S Equations (3.10) and (3.11) can be re-
written as

∇TQ+ q(x, y) = 0 (3.12)
STM −Q = 0 (3.13)

In case the plate’s thickness is smaller than the in-plane dimensions of at least an order of
magnitude, the Kirchhoff assumption applies to the kinematics. This establishes that every
cross section normal to the mid-plane in the reference configuration is still normal to the
mid-plane after the deformation. In first order approximation, the rotations are then related
to the displacement gradient as follows

θx = −∂w
∂x

(3.14)

θy = −∂w
∂y

(3.15)

or in vector form
θ = −∇w (3.16)

Substitution of Equation (3.16) in (3.4) turns the transverse shear strains to zero. The in-
plane strains can instead be written as

ε = zSθ = −zS∇w = −z


∂2w
∂x2
∂2w
∂y2

2 ∂2w
∂x∂y

 = −zLw (3.17)

with
L = S∇ =

[
∂2

∂x2
∂2

∂y2 2 ∂2

∂x∂y

]T
In case of a thin plate, the distributed bending moments become

M = DSθ = −DLw (3.18)

The two equilibrium conditions in Equations (3.12) and (3.13) can be combined by multi-
plying (3.13) by ∇T and using Equation (3.18). This allows to write the strong form of the
equilibrium equation for thin plates as

−LTDLw + q = 0 (3.19)
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Equation (3.19) requires the existence of the 4th derivatives of w, which is a strong regularity
condition for the solution. However the FE discretization of a partial differential equation is
derived by first obtaining its weak form, which, in mechanics, is equivalent to imposing the
principle of virtual work. Starting from Equation (3.19), written as

LTM + q = 0 (3.20)

the weak form is obtained by multiplying (3.20) by a virtual variation of the unknown w and
integrating over the mid-plane A, thus∫∫

A
δw (LTM + q) dA = 0 (3.21)

Integrating twice by parts, the weak form becomes∫∫
A
δw qdA+

∫∫
A

(Lδw)TM dA+
∫

Γn

δθn M̄ndΓ+
∫

Γs

δθs M̄nsdΓ+
∫

Γq

δw Q̄ndΓ = 0 (3.22)

The indices n and s indicate respectively the normal and tangent directions to a plate’s
edge. Γn ∪ Γs ∪ Γq is the part of the boundary where the natural boundary conditions are
imposed and M̄n, M̄ns, Q̄n are the prescribed forces and moments in the respective portions
of the boundary. Since the rotations θn and θs are related to the gradient of w, through
Equation (3.16), the weak form can still be reduced. Integrating by parts once more, the last
two terms in Equation (3.22) can be re-written as∫

Γs

δθs M̄ns dΓ +
∫

Γq

δw Q̄n dΓ =
∫

Γq

δw V̄n dΓ +
∑
i

δwRi (3.23)

with V̄n = Q̄n + ∂M̄ns
∂s representing an overall pseudo-shear boundary term and Ri being the

concentrated forces at the plate’s corners.

Substituting Equation (3.18) into (3.23), the irreducible weak form of the thin plate bending
equation is finally∫∫

A
(L δw)TDLw dA+

∫
Γn

∂δw

∂n
M̄n dΓ +

∫
Γq

δw V̄n dΓ +
∑
i

δ wRi = 0 (3.24)

The first term in Equation (3.24) indicates that the second derivative of w must be square-
integrable over the mid-plane of the plate. This is possible only if ∇w(x, y) is continuous over
A or, equivalently, if w(x, y) is C1-continuous.

3.2 Plate and shell elements in commercial FE codes

All the major FE programs offer several plate and shell elements for the sake of modeling
thin or thick shell structures. The documentations of four widely adopted finite element codes
were considered with the aim to find a pre-implemented triangular C1 plate element.

The software NASTRAN, in its several versions, proposes four shell elements, two of which
are triangular, namely CTRIA3 (linear) and CTRIA6 (quadratic) [59]. Both these elements
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are isoparametric (same interpolation for the geometry and the unknown fields) and based on
the Reissner-Mindlin plate theory. Because of this, the fields w, θx and θy are interpolated
separately and they are not related by the Kirchhoff assumption (Equation (3.16)). For this
reason, CTRIA3 and CTRIA6 are both C0.
The elements SHELL181 and SHELL281 offered by Ansys Mechanical [60] are the equivalents
of the NASTRAN ones just presented. The nomenclature refers to both quadrilateral and
triangular shapes. The triangular version is obtained from degeneration of the quadrilateral
one, so they share the same geometrical parametrization. Again, these elements are based on
the Reissner-Mindlin theory and are both C0-continuous.
Abaqus implements a plethora of plate and shell elements, each one also defined on a triangular
support [13]. Most of the alternatives are based on the Reissner-Mindlin model, thus they
don’t enforce the Kirchhoff assumption. However, this software also offers a plate element,
named STRI3, inspired by the work of Batoz et al. [61], which is not strictly based on
the R-M theory. In particular, STRI3 implements the Discrete Kirchhoff Theory (DKT),
which imposes the Kirchhoff assumption between the nodal degrees of freedom. Despite
DKT elements proved to converge quadratically to the Kirchhoff solution, STRI3 is still C0-
continuos.
Finally, the element library of LS-Dyna also presents a wide selection of plates and shells [62].
Again, for most cases the solution fields are interpolated separately, agreeing with the R-M
model. However, the Type 17 and Type 18 shells are exceptions, as they implement the
DKT. Remarkably, LS-Dyna recently also added isogeometric shell elements [63], which, as
discussed in Section 2.3.2, can deliver high orders of regularity.
This brief outline showed that, except for the isogeometric alternative in LS-Dyna, no FE
software offers plate or shell elements with continuity higher than C0. However, the IgA shells
of LS-Dyna are based on non-uniform rational B-splines (NURBS), which are defined over
a quadrilateral domain. It follows that no C1 triangular plate element is currently available
‘off-the-shelf’, choosing from the main FE codes. Thus, an element of such features had to be
searched in literature and implemented as a user-defined subroutine compatible with a given
software. For this research, Abaqus was chosen as the FE platform of use.

3.3 The C1 TUBA3 plate element

A notorious class of triangular plate bending elements is the so-called TUBAn family, first
proposed by Argyris et al. [64]. Each TUBAn element has n nodes and presents the following
features

1. The out-of-plane displacement w and its gradient are continuous inside the element and
at its boundary. In other words, all the TUBAn elements are of class C1.

2. Among the DOFs of these elements are the bending and twisting curvatures at the
corner nodes

ki =
[
∂2w
∂x2 |i ∂2w

∂y2 |i 2 ∂2w
∂x∂y |i

]T
i = 1,2,3 (3.25)

The second point translates in another interesting property of TUBAn elements, besides their
C1-continuity. Having the curvatures defined at the nodes, at these points, they are continuous
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Figure 3.3: Area coordinates of a point in the generic triangle.

between neighbouring elements. It follows that stresses and strains are also continuous at the
nodes, since

ε = −zk
σ = Cε

3.3.1 TUBA3: DOFs and shape functions

The TUBAn element chosen for this work is the three-noded TUBA3, also known as Bell’s
triangle [57]. This element will be presented by deriveing it from the renown TUBA6, or
Argyris triangle.
The interpolation of the geometry and displacement field for a triangular element is often
done in terms of area coordinates (Figure 3.3). These relate to the Cartesian ones in the
following way 

x = L1x1 + L2x2 + L3x3

y = L1y1 + L2y2 + L3y3

1 = L1 + L2 + L3

(3.26)

where (x1, y1), (x2, y2) and (x3, y3) are the triangle’s corners in the Cartesian reference. The
mapping in Equation (3.26) can be inverted to obtain the area coordinates as

L1 = 1
2A(a1 + b1x+ c1y)

L2 = 1
2A(a2 + b2x+ c2y)

L3 = 1− L1 − L2

(3.27)

The coefficients ai, bi and ci read
ai =xjyk − xkyj
bi =yj − yk
ci =xk − xj

(3.28)
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Figure 3.4: Argyris triangle (TUBA6).
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Figure 3.5: Bell triangle (TUBA3).

where the indices i,j and k are cyclic permutations of 1, 2 and 3. The term A in Equa-
tion (3.27) is the triangle’s area, computed from the corners coordinates as

A = 1
2

∣∣∣∣∣∣∣det
1 x1 y1

1 x2 y2
1 x3 y3


∣∣∣∣∣∣∣ (3.29)

The Argyris triangle or TUBA6, exactly interpolates a 5th order polynomial in area coordi-
nates, which contains all the Lα1L

β
2L

γ
3 products, such that α + β + γ = 5. The out-of-plane

displacement is then [65]

w =α1L
5
1 + α2L

5
2 + α3L

5
3 + α4L

4
1L2 + α5L

4
1L3

+ α6L
4
2L1 + α7L

4
2L3 + α8L

4
3L1 + α9L

4
3L2

+ α10L
3
1L

2
2 + α11L

3
1L

2
3 + α12L

3
2L

2
1 + α13L

3
2L

2
3

+ α14L
3
3L

2
1 + α15L

3
3L

2
2 + α16L

3
1L2L3 + α17L

3
2L1L3

+ α18L
3
3L1L2 + α19L1L

2
2L

2
3 + α20L2L

2
1L

2
3 + α21L3L

2
1L

2
2

(3.30)

As represented in Figure 3.4, the Argyris triangle has 6 nodes and 21 degrees of freedom, so
all the coefficients in (3.30) can be determined uniquely.

The Bell triangle is obtained by removing the mid-edge nodes in TUBA6, which greatly
enlarge the dimension of the global stiffness matrix [57], and by imposing a cubic variation
of ∂w/∂n along each edge, such that

∂w

∂nij
∈ P3(sij) i, j = 1,2,3; i 6= j (3.31)

In Equation (3.31), sij is the ijth edge’s coordinate (Figures 3.4 and 3.5) and P3(sij) is the
space of the cubic polynomials along sij . Three of the coefficients in Equation (3.30) can
thus be expressed in terms of the other 18, by enforcing Equation (3.31) for each edge. The
remaining coefficients are found by imposing the expression of w or one of its derivatives equal
to the nodal quantities

UT
i =

[
w|i ∂w

∂x |i
∂w
∂y |i

∂2w
∂x2 |i ∂2w

∂x∂y |i
∂2w
∂y2 |i

]
i = 1,2,3 (3.32)
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The components in Equation (3.32) represent the degrees of freedom of the Bell triangle,
which can be grouped in the overall DOFs vector as

UT =
[
UT

1 UT
2 UT

3

]
1×18

(3.33)

The out-of-plane displacement can then be written, highlighting the DOFs vector, as

w =
[
N1 N2 N3 . . . N18

]
U = NTU (3.34)

In Equation (3.34), N1 toN18 are the TUBA3 shape functions, reported explicitly in Appendix
A.

3.3.2 TUBA3: stiffness matrix and residuals vector

Also in the case of TUBA3, the derivation of stiffness matrix and residual vector first requires
to determine the B and D matrices.

Aligning to the finite element terminology, the strain vector is redefined for a plate as

εT =
[
∂2w
∂x2

∂2w
∂y2 2 ∂2w

∂x∂y

]
(3.35)

Since
ε = BTU (3.36)

theB-matrix contains the derivatives of the shape functions with respect to x and y. Following
the procedure carried out by Dasgupta and Sengupta [65], B can be expressed as the matrix
product of other two matrices F and Q, such that

[B]T3×18 = 1
4A2 [F ]3×30[Q]30×18 (3.37)

The matrix F only contains terms in the area coordinates and reads

[F ]3x30 =

 [L]T [0]1×10 [0]1×10
[0]1×10 [L]T [0]1×10
[0]1×10 [0]1×10 [L]T

 (3.38)

with

[L]T =
[
L3

1 L3
2 L3

3 L2
1L2 L2

1L3 L2
2L1 L2

2L3 L2
3L2 L2

3L2 L1L2L3
]

(3.39)

Q is a matrix which ultimately contains the corners coordinates multiplied together. It can
be expressed in terms of three sub-matrices, relatively to the x, y and mixed curvatures as

Q =

[Qxx]10×18
[Qyy]10×18
[Qxy]10×18

 (3.40)

The FORTRAN95 code used for deriving the components of Q is reported in Appendix B.
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If the stress vector is also redefined as

σT =
[
Mx My Mxy

]
(3.41)

then the D matrix relates the generalized stresses and strains as

σ = Dε (3.42)

It is clear that, in this case, D corresponds to the plate bending stiffness matrix. For an
isotropic material,

D = Et3

12(1− ν2)

1 ν 0
ν 1 0
0 0 1−ν

2


As indicated in Figure 3.6, the configuration of a TUBA element in the physical space is
parametrized in the parent domain of the area coordinates. The mapping is expressed by
Equation (3.26) and its Jacobian JL is the gradient of the physical coordinates with respect
to the parent ones. Integration of the element’s stiffness matrix requires the existence of the
Jacobian’s determinant, which is only possible if JL is a square matrix. For this sake, the
area coordinates are reduced from 3 to 2, to match the number of physical coordinates. This
is easily achieved, since

L3 = 1− L1 − L2 (3.43)

Substituting Equation (3.43) in the first two equations of (3.26), allows to have x and y as
functions of the sole L1 and L2. The Jacobian is then

JL =
[
∂x
∂L1

∂x
∂L2

∂y
∂L1

∂y
∂L2

]
=
[
x1 − x3 x2 − x3
y1 − y3 y2 − y3

]
(3.44)

and the determinant follows as

det(JL) = (x1 − x3)(y2 − y3)− (y1 − y3)(x2 − x3) = 2A (3.45)

Equations (3.9) and (3.37) define the TUBA3 stiffness matrix, written as

K =
∫∫

A
BDBT dA (3.46)

However, B contains the shape functions and their derivatives written in area coordinates,
therefore the integral over the generic triangle T is performed instead on the parent triangle
TL. Since

dA = dx dy = det(JL) dL1 dL2 (3.47)

the integral in Equation (3.46) becomes

K =
∫ 1

0

∫ 1−L1

0
BDBT det(JL) dL1 dL2 (3.48)

If Equation (3.37) is substituted in the expression of B, the integration restricts to the term
FF T , which is a banded matrix, built repeating the following sub-matrix

R =
∫∫

A
LLTdA (3.49)
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Figure 3.6: Mapping between a triangle in the physical domain and in the parent triangle.

three times along the main diagonal.

K can be finally written as

K = 1
8A3

[
D11Q

T
xxRQxx +D12Q

T
xxRQyy +D12Q

T
yyRQxx+

D22Q
T
yyRQyy +D33Q

T
xyRQxy

]
(3.50)

Numerical integration ofR can be avoided, by noticing that every integrand inR has the form
La1L

b
2L

c
3. These terms can be integrated in closed form by means of the Eisenberg-Malvern

formula [66], which reads ∫∫
A
La1L

b
2L

c
3 dA = a!b!c!

(a+ b+ c+ 2)!2A (3.51)

Analytical integration of the stiffness matrix greatly reduces the CPU time required per-
element, making TUBA3 appealing not only due to its regularity but also from an efficiency
point of view.

The residual vector is again expressed as the difference between the external and internal
nodal forces, therefore

f = fext − fint =
∫∫

A
Nt dA−

∫∫
A
Bτ dA

A plate element can be subject to distributed surface loads, for which fext 6= 0. As an
example, Dasgupta and Sengupta derived this vector for a constant applied load [65]. The
internal force vector has the usual form

fint = KU

and it is computed by matrix multiplication at each FE iteration.
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Figure 3.7: TUBA3 plates and TUBA3-CE: initial configuration.

3.4 The TUBA3-compatible cohesive element

Having described TUBA3 in terms of its degrees of freedom and characteristic arrays, the
same is done here for the compatible cohesive element (TUBA3-CE).

3.4.1 TUBA3-CE: DOFs and kinematics

The undeformed configuration of TUBA3-CE is illustrated in Figure 3.7. It must be clarified
that this representation gives just a physical idea of how two plates and their interface are
disposed. The FE arrangement differs in the following aspects

1. The initial opening of the CE is zero

2. The nodes of the CE are exactly those of the mid-planes of the plates

The second point also implies that the CE DOFs vector is obtained stacking those of the
bottom and top plates. The ordering of the nodes goes from bottom to top, following the
right hand rule with respect to the element’s normal, that in Figure 3.7 is parallel to z and
directed upwards. Referring to Equations (3.32) and (3.33), the DOFs vector U for TUBA3-
CE can be written as

UT =
[
U1 U2 . . . U18 U19 . . . U36

]
=
[
w|1 ∂w

∂x |1 . . . ∂2w
∂y2 |3 w|4 ∂w

∂x |4 . . . ∂2w
∂y2 |6

]
(3.52)

The B-matrix is found from the expression of the openings in the three modes. These have
first to be written in terms of the vertical displacements and rotations of top and bottom
plates. Normal and shearing modes will be treated separately.
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A point of coordinates (x, y), or, equivalently, (L1, L2, L3) is considered. Figure 3.8 shows
that a rotation θx = −∂w/∂x contributes to the vertical displacement of the faces of the
CE. However, in a 3D space, also a rotation along y influences w, therefore both angles have
to be considered as components of a vector θ. The magnitude of θ is obtained with the
Pythagorean theorem

θ =
√
θ2
x + θ2

y =

√√√√(∂w
∂x

)2
+
(
∂w

∂y

)2
(3.53)

In the following passages, the indices CEb, CEt, pb, pt refer to quantities relative respectively
to bottom and top CE faces and to the mid-planes of bottom and top plate. The terms tb
and tt indicate the thicknesses of bottom and top plate. The mode I opening is, by definition

∆I = −wCEb + wCEt (3.54)

where

wCEb = wpb − tb

2 (1− cos(θ)) (3.55)

wCEt = wpt + tt

2 (1− cos(θ)) (3.56)

Geometrical non-linearities are not accounted for, thus displacements and rotations are as-
sumed to be small. Approximating at the first order

1− cos(θ) ≈ 0

The mode I opening is then generated only by the displacement of the substrates mid-planes,
hence

∆I = −wpb + wpt (3.57)

Figure 3.9 shows the deformation of TUBA3-CE in pure mode II. Since the TUBA3 plate
element only deforms in bending and does not have stretching degrees of freedom, opening in
mode II is caused only by the rotations of bottom and top plates. Therefore

∆II = −uCEb + uCEt (3.58)

where

uCEb = − tb

2 sin
(
∂w

pb

∂x

)
(3.59)

uCEt = tt

2 sin
(
∂wpt

∂x

)
(3.60)

Assuming small rotations, the sines can be approximated at the first order as

sin
(
∂w

pb

∂x

)
≈

∂w
pb

∂x

sin
(
∂wpt

∂x

)
≈ ∂wpt

∂x

It follows that ∆II is expressed as

∆II = tb

2
∂wpb

∂x
+ tt

2
∂wpt

∂x
(3.61)
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The mode III opening is found from analogous kinematics in the yz-plane. Hence

∆III = tb

2
∂wpb

∂y
+ tt

2
∂wpt

∂y
(3.62)

Equations (3.57), (3.61) and (3.62) can be expressed in terms of the element DOFs. The
vector of the degrees of freedom can be written in the form

UT =
[
U bT U tT

]
1×36

(3.63)

which highlights the degrees of freedom belonging respectively to upper and lower face. Re-
calling Equations (3.34) and (3.57), the mode I opening becomes

∆I = −NTU b +NTU t =
[
−[N ]T1×18 [N ]T1×18

]
U = BT

I U (3.64)

The opening in mode II requires the x-derivatives of the shape functions, since

∂w

∂x
=
[
∂N

∂x

]T
U (3.65)

The shape functions are expressed in the area coordinates L1,L2,L3, thus the x and y deriva-
tives are computed using the chain rule of differentiation. Recalling Equation (3.27),

[
∂N

∂x

]T
1×18

= 1
2A

[
b1 b2 b3

]

[
∂N
∂L1

]T
1×18[

∂N
∂L2

]T
1×18[

∂N
∂L3

]T
1×18

 (3.66)

Once the derivatives in Equation (3.66) are obtained, it is possible to express the mode II
opening in terms of the degrees of freedom, as

∆II =
[
tb

2

[
∂N
∂x

]T
tt

2

[
∂N
∂x

]T ]
U = BT

IIU (3.67)

Starting from eq. (3.62) and deriving with respect to y, the opening in mode III can be written
as

∆III =
[
tb

2

[
∂N
∂y

]T
tt

2

[
∂N
∂y

]T ]
U = BT

IIIU (3.68)

where, this time

[
∂N

∂y

]T
1×18

= 1
2A

[
c1 c2 c3

]

[
∂N
∂L1

]T
1×18[

∂N
∂L2

]T
1×18[

∂N
∂L3

]T
1×18

 (3.69)

Equations (3.64), (3.67) and (3.68) can be finally assembled together to form the B-matrix
of TUBA3-CE ∆1

∆2
∆3

 =

 BT
I

BT
II

BT
III


3×36

U = BTU (3.70)
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3.4.2 TUBA3-CE: constitutive relation

The constitutive matrix of TUBA3-CE is based on of Turòn’s model [22], described in Section
2.2.2, restricted, at present, only to mode I loading.

In pure mode I, no separation due to shear occurs between opposite faces of the CE, therefore

∆sh = 0 (3.71)
GII = GIII = 0 (3.72)

from which follows that the mode-mixity ratio B, as defined in Equation (2.18), is also equal
to zero. Referring to Equation (2.19), the penalty stiffness K becomes simply

K = KI = 50E3
t

(3.73)

In mode I loading, the material damages only due to out-of-plane opening of the faces. Thus,
using a bilinear cohesive law and the definitions in Equations (2.27) and (2.28), the damage
variable simply is

d =


0 if ∆I < ∆0

I
∆f

I (∆I−∆0
I)

∆I(∆f
I−∆0

I)
if ∆0

I ≤ ∆I < ∆f
I

1 if ∆I ≥ ∆f
I

(3.74)

Upon substitution in Equation (2.33), Equations (3.73) and (3.74) fully define the constitutive
matrix D for TUBA3-CE.

Damage update scheme

A few words are worth to be spent on the damage variable update during the FE analysis.
At each call from the solver, user defined elements in Abaqus receive as input an array of
state variables (defined as SVARS in the subroutine terminology), which has to be updated
throughout the execution of the subroutine and returned as output. In the case of TUBA3-
CE, the SVARS array contains the damage values of each integration point both at the
last converged increment (LCI) and at the current iteration. In order to avoid a fictitious
healing effect, the iterating damage is updated only if higher than the LCI damage. Whenever
convergence of the increment is reached for a chosen tolerance, the increment changes and
the damage at the last iteration of the previous increment becomes the LCI damage for the
new one. Figure 3.10 summarizes the damage update scheme in a flowchart.

3.4.3 TUBA3-CE: stiffness matrix and residuals vector

The element stiffness matrix has the usual form seen in Equations (2.35) and (3.46). The
parent domain of TUBA3-CE is the same flat triangle used for TUBA3, thus the two elements
share the same coordinates mapping and Jacobian. Referring to the B and D matrices just
derived, the matrix K for TUBA3-CE reads

K =
∫ 1

0

∫ 1−L1

0
BDBT det(JL) dL1 dL2 (3.75)
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Figure 3.10: Flowchart of the damage update scheme. The index i refers to the iteration number,
while t is the time at the current increment.
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where
det(JL) = 2A

As seen in Section 2.2.4, if no external loads are considered, the residual vector at every
iteration is simply

f = −KU (3.76)

For the TUBA3 plate element, the integral in Equation (3.75) could be solved analytically,
using the Eisenberg-Malvern formula. The same does not always hold for TUBA3-CE. Since
the damage variable can change throughout the element’s domain, the cohesive element in-
tegration does not necessarily reduce to terms such as those in Equation (3.51). Although
K could be integrated analytically when the damage is homogeneous, this would require to
rewrite B in a form similar to Equation (3.37) and to isolate the Eisenberg-Malvern terms.
This operation is error-prone and the final formulation hard to verify, therefore numerical
integration was adopted for all TUBA3-CEs, regardless of their damage state. Gaussian
quadrature was chosen over the Newton-Cotes scheme, as the former achieves equal degrees
of accuracy with fewer integration points.

Numerical integration over triangular domains

Gaussian integration points and weights for 1D integrals can be found in large numbers by
extracting the roots of the Legendre polynomial. These same values can be combined in a
tensor-product fashion to obtain the IPs coordinates in a quadrilateral domain, where the
integration limits for the two parent dimensions do not depend on each other.
Oppositely to lines and quadrilaterals, there is not, at present, an algorithm for determining
coordinates and weights for Gaussian IPs over triangles. All the variables required for nu-
merical integration on triangular domains are found on a case-by-case basis, depending on
the degree of accuracy required.
The integral of a generic function g(L1, L2), defined over the parent triangle TL, is approxi-
mated as [67,68] ∫∫

TL

g(L1, L2) dL1 dL2 ≈
1
2

NIP∑
i=1

wi g(L1,i, L2,i) (3.77)

where NIP is the overall number of integration points and wi, L1,i, L2,i are respectively the
weight and area coordinates of the ith integration point. If g(L1, L2) is a polynomial of degree
N and the equal sign holds for Equation (3.77), N is then the degree of accuracy of the
quadrature formula. Weights and integration points are found imposing (3.77) exactly for
each term of the basis of the polynomial space PN , defined as

PN = span{Lp1 L
q
2; p, q ≥ 0, p+ q ≤ N} (3.78)

Since
dim(PN ) = (N + 1)(N + 2)

2
the number of (coupled) equations to be solved rapidly increases for increasing degrees of
accuracy.
In literature, several works focused on finding precise estimates of wi, L1,i, L2,i for Gaussian
quadrature of degrees up to 20 [68–72]. The values used in this research were taken from the
paper of Cowper [68].
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Figure 3.11: Different mappings between physical and parent domains. A function over each
sub-triangle in the L-domain can be integrated through Gaussian quadrature in the r-domain.
Generic IPs in the r-domain are highlighted.

Sub-domain integration

Large cohesive elements show highly non-linear stress and damage distributions, when crossed
by the cohesive zone. If these elements are given an insufficient number of integration points,
the FE solution can be sensitive to instabilities and the Newton-Raphson procedure may
diverge.

An easy way to increase the density of IPs, that does not require the knowledge of formulas
for high degrees of quadrature accuracy, is to use a sub-domain integration scheme. The idea
is to split the integral over the parent domain of coordinates L1, L2, L3 (from now on called
the L-domain) in multiple integrals over Nsd sub-triangles. Each of these sub-triangles or
sub-domains is then integrated with Gaussian quadrature over a third domain of coordinates
r,s,t, named the r-domain. Figure 3.11 shows the three different domains (physical, L-
domain, r-domain), the partition in sub-triangles and the location of three Gaussian IPs in
the r-domain.

The additive property allows to write the integral over TL as the sum of the integrals over a
set of sub-triangles Tj as follows

∫∫
TL

g(L1, L2) dL1 dL2 =
Nsd∑
j=1

∫∫
Tj

g(Lj1, L
j
2) dL1 dL2 (3.79)

The mapping between Tj and TL is defined as
Lj1 = r Lj1,1 + sLj1,2 + t Lj1,3
Lj2 = r Lj2,1 + sLj2,2 + t Lj2,3
1 = r + s+ t

(3.80)
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In Equation (3.80), the notation Ljm,n indicates the mth area coordinate of the nth vertex
of the jth sub-triangle in the L-domain. By comparison of Equations (3.26) and (3.80) it is
evident how the above mapping is again a linear transformation in area coordinates, just like
the one between the physical domain and the L-domain. It follows that the Jacobian for the
L− r mapping is

Jjr =

∂Lj
1

∂r
∂Lj

1
∂s

∂Lj
2

∂r
∂Lj

2
∂s

 =
[
Lj1,1 − L

j
1,3 Lj1,2 − L

j
1,3

Lj2,1 − L
j
2,3 Lj2,2 − L

j
2,3

]
(3.81)

The determinant of Jjr is then

det(Jjr ) = (Lj1,1 − L
j
1,3)(Lj2,2 − L

j
2,3)− (Lj2,1 − L

j
2,3)(Lj1,2 − L

j
1,3) = 2ATj (3.82)

The integral over the triangle Tj can now be performed in the r-domain as∫∫
Tj

g(Lj1, L
j
2) dL1 dL2 =

∫∫
Tr

g(Lj1(r, s), Lj2(r, s))det(Jjr ) ds dr (3.83)

Equation (3.83) can be integrated numerically via Gaussian quadrature with NIP integration
points, hence

∫∫
Tr

g(Lj1(r, s), Lj2(r, s))detJjr ds dr = 1
2

NIP∑
i=1

wi g(Lj1(ri, si), Lj2(ri, si)) det(Jjr ) (3.84)

The integral over the entire parent triangle TL is given by the contribution of all the sub-
triangles Tj and reads

∫∫
TL

g(L1, L2) dL1 dL2 = 1
2

Nsd∑
j=1

NIP∑
i=1

wi g(Lj1(ri, si), Lj2(ri, si))det(Jjr ) (3.85)

It must be remembered that, although each sub-triangle is integrated with a Gaussian scheme
over the r-domain, the overall set of Nsd × NIP integration points over the L-domain is
not Gaussian. Also, the above integration method must not be confused with the namesake
devised by Yang et al. and presented in Section 2.3.2. Here, the domain is divided into a fixed
number of sub-domains and the IPs weights and coordinates are fixed, while in Yang’s scheme,
the motion of the level set during the increments constantly redefines all these quantities.



Chapter 4

Verification

Before using the implemented elements in delamination analyses, these were verified with
benchmark problems of known analytical solutions.

The TUBA3 plate was tested for some simple plate bending examples, keeping small dis-
placements and rotations (linear kinematics). At first, a square plate of isotropic material
was considered, constrained with different edge conditions and subject either to a uniform
pressure or a point load. These verification examples were taken by the founding paper of
Bell [57]. The analytical deflections and moments, used as references, were either derived or
taken from the book of Timoshenko and Woinowsky-Krieger [73]. Afterwards, the TUBA3
element was assigned a unidirectional (UD) composite section and UD plates in cantilever
and three-point-bending configurations were considered. Both these examples have geome-
tries with large aspect ratios, so that, for verification purposes, the plate’s deflection could
be approximated with that of an Euler-Bernoulli beam, having the same composite section.

A cohesive element is generally verified by including it in models for pure and mixed mode
loading conditions. This was done for mode I and the results are given in Chapter 5, discussing
the method’s validation. The present chapter discusses instead a simple uniaxial traction test
of a single CE. The aim in this case was to check if the resulting stress-opening curve would
match the bilinear cohesive law.

The contents of this chapter are organized as follows. First the TUBA3 plate verification
is discussed, starting from the square isotropic plate examples and proceeding with the UD
composite problems. A second section covers the testing of TUBA3-CE.

4.1 Plate element verification

Before digging into the verification cases proposed, a comment is necessary on the use of
TUBA3 in finite element models. A sensitive aspect of all TUBA meshes is the enforcement
of the boundary conditions (BCs). In contrast to conventional FE shells in fact, TUBA
elements possess the second derivatives of w among their degrees of freedom, which may or
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Material
Young’s modulus E 71.7 GPa
Poisson’s ratio ν 0.3
Geometry
Edge length L 150 mm
Thickness t 10 mm

Table 4.1: Material and geometry data for the isotropic plate examples.

may not be constrained for edge nodes. For instance, in case of free edges, the moments acting
along the axes of these edges have to be zero. In thin plate theory, the second derivatives of the
displacement field correspond to the plate curvatures, on which the moments directly depend.
It follows that appropriate relations between the ∂2w/∂x2, ∂2w/∂y2 and ∂2w/∂x ∂y degrees
of freedom have to be imposed to enforce conditions such as the free edge one. Appendix
C discusses the problem in more detail and reports the DOFs constrained for every TUBA3
example in this chapter.

4.1.1 Isotropic plate

For this set of analyses, a square plate with the geometrical and material properties reported
in Table 4.1 was considered. All the cases discussed, shown in Figure 4.1, are symmetric in
loading, geometry and boundary conditions (BCs). Therefore, the analyses could be restricted
to only a quarter of the plate, provided that the symmetric BCs had been correctly imposed.
Also, each problem was studied for a series of increasingly refined meshes (A1 to A4 and B),
illustrated in Appendix C.

Simply supported plate with uniform pressure load

The transverse displacement w of a simply-supported plate subject to a uniform pressure
load can be obtained with the Navier method. The idea is to write both w(x, y) and the load
q(x, y) as eigenfunction series having the same basis terms, but different coefficients. Using
the orthogonality of the sine and cosine functions, the load coefficients are obtained, which
can be substituted in the equilibrium equation to solve for the coefficients of w. The bending
and twisting moments are found by means of Equations (3.17) and (3.18).

Mesh convergence is studied monitoring the errors relative to the analytical solution for
displacement, bending and twisting moments. The first two are probed at the center point of
the plate, while the twisting moment is considered at the origin. The series expressions for
the above quantities, in case of a square plate, are given by the followings

w

(
L

2 ,
L

2

)
= 16q
π6D

M∑
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N∑
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1

mn
(
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L2

)2 sin
(
m
π

2

)
sin
(
n
π

2

)
(4.1)

Mxx

(
L

2 ,
L

2

)
= Myy

(
L

2 ,
L

2

)
= 16q

π4

M∑
m=1

N∑
n=1

(
m2+νn2

L2

)
mn

(
m2+n2

L2

)2 sin
(
m
π

2

)
sin
(
n
π

2

)
(4.2)



4.1 Plate element verification 49

𝑥

𝑦

𝑞

𝐿/2

symm

(a) Simply supported, uniform pressure load.

𝑥

𝑦

𝐿/2

symm

𝑃

(b) Simply supported, point load.

𝑥

𝑦

𝐿/2

symm

𝑞

(c) Clamped, uniform pressure load.

Figure 4.1: Isotropic plate: loads and boundary conditions.
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Mesh w
(
L
2 ,

L
2

)
err% Mxx

(
L
2 ,

L
2

)
err% Mxy (0,0) err%

(mm) (Nmm/mm) (Nmm/mm)

A1 -1.5776 0.74 -5.500E+03 2.09 3.467E+03 5.06
A2 -1.5663 0.01 -5.390E+03 0.04 3.604E+03 1.31
A3 -1.5661 0.00 -5.388E+03 0.00 3.631E+03 0.57
A4 -1.5661 0.00 -5.387E+03 0.00 3.641E+03 0.30

Analytical
sol. -1.5661 -5.388E+03 3.652E+03

Table 4.2: Results and relative errors for the simply supported isotropic plate with uniform
pressure load.

Mxy (0, 0) = −16(1− ν)q
π4L2

M∑
m=1

N∑
n=1

1(
m2+n2

L2

)2 (4.3)

where q = -5 N/mm2 is the load magnitude, m and n are the eigenfrequency indices and D
is the plate’s bending stiffness, expressed as

D = Et3

12(1− ν2)

The analytical values for this benchmark case are presented in the last row of Table 4.2 and
were found implementing Equations (4.1) to (4.3) as Matlab scripts and summing the first 15
terms of the series in both directions (M = N = 15).

Table 4.2 also reports the results for the four meshes considered. The relative percent error
indicate good agreement with the analytical solution already from the two element mesh
(A1). Moreover, the error in the center displacement monotonically decreases upon mesh
refinement. It is interesting to notice how the twisting moment at the origin converges more
slowly than the other quantities. Indicative in this sense is the comparison between TUBA3
and TUBA6 made by Bell in [57], where the same problem and meshes are studied. The
convergence of Mxy for TUBA3 is not as rapid as for TUBA6 and this is likely due to the
TUBA3 requirement of a cubic normal derivative along the edges. Because of this constraint
the TUBA3 edges can deflect less than the inner region, thus coarse meshes can steer the
displacement away from the mesh lines, causing spurious twisting stiffness or compliance.

Simply supported plate with center load

A simply supported plate is considered again, this time with a concentrated force applied at
its center. The analytical center displacement can be found in [73] and reads

w

(
L

2 ,
L

2

)
= α

PL2

D
(4.4)

where α = 0.0116 for a square plate and P = -30 kN is the applied load. According to
the thin plate theory, in case a point load is applied, the moments become singular at the
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Mesh w
(
L
2 ,

L
2

)
err% Mxy (0,0) Mxy (0,0) in [57] err%

(mm) (Nmm/mm) (Nmm/mm)

A1 -1.15966 2.76 1.94726E+03 1.94730E+03 0.0021
A2 -1.18559 0.58 1.84546E+03 1.84560E+03 0.0076
A3 -1.18949 0.25 1.83105E+03 1.83120E+03 0.0082
A4 -1.19085 0.14 1.82930E+03 1.82910E+03 0.0109
B -1.19212 0.03 1.82444E+03 1.82430E+03 0.0077

Analytical sol. -1.19252

Table 4.3: Results and relative errors for the simply supported isotropic plate with center load.

center of the plate and analytical expressions can be found only redistributing the load over a
surrounding circular region. Due to the arbitrariness of such an approach, the center moments
convergence was not studied. The origin twisting moments were instead computed for each
mesh and compared with the values in [57].

Table 4.3 contains the TUBA3 results and analytical references for the two quantities ana-
lyzed. The center deflection converges again monotonically to the analytical value. In case
the mesh is refined towards the plate’s center, as with mesh B, the percent error becomes
minimal. Close agreement is also reached between the Mxy values obtained and the reference
ones. The small differences between the two sets of results are numerical and likely related
to the fact that Bell’s formulation of TUBA3 requires matrix inversion. This introduces a
numerical error that does not affect the element implementation of this work.

Clamped plate with uniform pressure load

The isotropic rectangular clamped plate with uniform loading is discussed in [73], considering
several aspect ratios. In case of edges of equal lengths, the expressions of the center deflec-
tion, bending moments at the plate’s center and bending moments the edges midpoints are,
respectively

w

(
L

2 ,
L

2

)
= 0.00126qL

4

D
(4.5)
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2

)
= Myy
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L

2 ,
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2

)
= 0.0231qL4 (4.6)

Mxx

(
0, L2

)
= Myy

(
L

2 , 0
)

= −0.0513qL4 (4.7)

where q = -5 N/mm2.

The analytical values from Equations (4.5) to (4.7) are compared with the TUBA3 results in
Table 4.4. Considering the center displacement, the error is kept under 2% in all cases, except
for the 2 element mesh (A1). The TUBA6 elements used in [57] for the same problem and
mesh score a deviation of just 1.1%. This indicates again the TUBA3 requirement of a cubic
normal derivative along the edges visibly affects the global deflection, if coarse meshes are
used. Such an observation also explains why the edge bending moments are largely inaccurate
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for the A1 mesh case. The bending moment at the plate’s center seem to deviate from the
‘correct’ value, when more elements are added. However, the analytical solutions in Table 4.4
derives from the truncation of a series expression and the authors of [73], from which these
references are taken, state that they are up to 1% inaccurate, compared to a series expansion
with more terms. It is then questionable whether the analytical solution considered can be
used as reference below this threshold . Finally, for meshes A2 to A4, edge moments are all
predicted with less than 2% deviation from the reference.

4.1.2 Unidirectional composite plate

Given that a DCB unidirectional composite specimen is studied for the model validation, it
made sense to test a UD version of TUBA3 in a cantilever plate configuration. Moreover,
inspired by the ENF test, a three point bending UD plate was also considered for verification
purposes. Material properties and geometry for both examples were taken from [74] and, for
the DCB case, they are the same as used in Chapter 5.

Changing the plate section from isotropic to UD composite required to modify the D-matrix
of TUBA3. In case of a unidirectional stacking sequence, the constitutive relation of each ply
in laminate axes is the same regardless of the out-of-plane coordinate. This allows to write
D as

DUD = 1
12 t

3Cply (4.8)

where Cply is the stiffness matrix of a ply in a fibre-oriented reference frame and reads

Cply = 1
1− νxy νyx

 Ex νxy Ey 0
νyxEx Ey 0

0 0 Gxy

 (4.9)

In Equation (4.9), Ex and Ey are the Young’s moduli parallel and perpendicular to the fibers
and νxy is the Poisson’s ratio expressing the strain in the y-direction due to a load in the
x-direction. The coefficient νyx has opposite meaning than νxy and the two can be related by
the Maxwell relation

νxy Ey = νyxEx (4.10)

from which follows the symmetry of Cply. Gxy is the in-plane shear modulus.

Mesh w
(
L
2 ,

L
2

)
err% Mxx

(
L
2 ,

L
2

)
err% Mxx

(
0, L2

)
err%

(mm) (Nmm/mm) (Nmm/mm)

A1 -4.5226E-01 6.893 -2.575E+03 0.897 4.546E+03 21.226
A2 -4.9312E-01 1.518 -2.599E+03 0.003 5.677E+03 1.631
A3 -4.9022E-01 0.921 -2.585E+03 0.530 5.880E+03 1.881
A4 -4.8891E-01 0.651 -2.580E+03 0.712 5.8462E+03 1.299

Analytical
sol. -4.86E-01 -2.599E+03 5.771E+03

Table 4.4: Results and relative errors for the clamped isotropic plate with uniform pressure load.
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Figure 4.2: Cantilever UD composite plate with imposed displacement at the tip.

Material T300/1076
Young’s modulus, x-direction Exx 139.4 GPa
Young’s modulus, y-direction Eyy 10.16 GPa

Poisson’s ratio νxy 0.3
In-plane shear modulus Gxy 4.6 GPa

Geometry
Length a 150 mm
Width b 10 mm

Thickness t 3 mm

Table 4.5: Material and geometry data for the cantilever UD plate example.

The reference values for these tests were obtained by approximating the deflection of the UD
plate with that of an Euler-Bernoulli beam. This simplification was justified by the geometry
of the specimens considered, which show an order of magnitude difference between length
and width. Plate’s thickness and width were used as beam section dimensions and Ex as the
longitudinal modulus.

Cantilever plate

A representation of the problem is given in Figure 4.2, while the material and geometrical
properties are reported in Table 4.5. The specimen is symmetric with respect to the x axis,
so only half of it is considered for the numerical model. Loading is performed in displacement
control.

The reference solution for this problem is obtained considering a cantilever beam of length a
and moment of inertia

Ib = 1
12b t

3

and bending modulus
Eb = Exx
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Mesh Total force at x = a err%
(N)

A1 12.540 0.323
A2 12.531 0.250
A3 12.527 0.216
A4 12.528 0.227

Analytical sol. 12.500

Table 4.6: Results and relative errors for the cantilever UD plate example.

𝑥

𝑦

ഥ𝑤

𝑏

𝑎/2

𝑎/2

Figure 4.3: UD composite plate in three point bending loading with imposed displacement.

Given an imposed displacement w = 3.587 mm at the free tip, the beam’s reaction force at
the same location is

Fb = 3Eb Ib
a3 w = 25 N (4.11)

Table 4.6 contains the tip reaction forces obtained with meshes of increasing elements density.
Both numerical results and analytical reference are reported as half of the total values, since
only half of the problem is considered. Looking at the percent relative deviations, it is evident
that all the meshes examined provide results in close agreement with the analytical solution.

Three point bending plate

The three point bending setup is shown in Figure 4.3, while Table 4.7 presents the material
and geometrical data. The problem presents two symmetries, with respect to the x-axis and
to a plane orthogonal to x, cutting the plate at half of its length. This allows to consider
only a quarter of the specimen. Also in this case, the structure is loaded by an imposed
displacement (w).
The Euler-Bernoulli beam theory provides again the analytical reference. Considering the
expressions for Ib and Eb used in the previous example and an applied deflection w = -0.179
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Material IM7/8852
Young’s modulus, x-direction Exx 161.0 GPa
Young’s modulus, y-direction Eyy 11.38 GPa

Poisson’s ratio νxy 0.32
In-plane shear modulus Gxy 5.2 GPa

Geometry
Length a 101.6 mm
Width b 25.4 mm

Thickness t 4.5 mm

Table 4.7: Material and geometry data for the three point bending UD plate example.

Mesh Total force at x = a
2 err%

(N)

A1 -63.640 0.220
A2 -63.558 0.091
A3 -63.522 0.035
A4 -63.847 0.547

Analytical sol. -63.500

Table 4.8: Results for the three point bending UD plate example.

mm, the reaction force at x = a/2 is

Fb = 48Eb Ib
a3 w = -254 N (4.12)

The total reaction forces obtained with TUBA3 elements are reported in Table 4.8, together
with the reference solution and the relative deviations. All the force values are 1

4 of the actual
ones, as the double symmetry of the problem allowed to analyze only the reduced model. Also
for the three point bending case, the errors relative to the analytical value are all less than 1%.
Interesting is, however, the increase in percent deviation in the last refinement step. Whereas
going from mesh A1 to A3, elements were increased only along the longitudinal direction,
A4 was built adding a nodal line along the width. This allowed the TUBA3 mesh to deform
more like a plate than in the other cases, increasing the discrepancy with respect to the beam
idealization.

4.2 Cohesive element verification

Testing of TUBA3-CE was done performing a simple analysis, involving just one element.
The boundary conditions and loading are schematized in Figure 4.4. The cohesive element
was loaded uniaxially and all the degrees of freedom were constrained, except for the out-of-
plane displacement w of nodes 4,5 and 6. A velocity of 0.0113 mm/s was applied for a total
step time of 1 s, resulting in an overall displacement w̄ = 0.0113 mm. This value corresponds
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Figure 4.4: TUBA3-CE subject to uniaxial loading along z.

Material T300/1076
Young’s modulus, z-direction Ezz 139.4 GPa

Fracture toughness GI,c 0.170 kJ/m2

Material strength τ0
I 30 MPa

Penalty stiffness K 169333 MPa/mm

Table 4.9: Material data for the cohesive element under uniaxial loading.

to the failure opening for an interface loaded in pure mode I, as found by using the bilinear
law relation

w̄ = ∆f
I = 2GI,c

τ0
I

The incremental-iterative analysis was performed using the Full Newton-Raphson method.
Stiffness, strength and fracture toughness of the material are reported in Table 4.9, along with
the penalty stiffness used. Observing Figure 4.5, it is noticed how the stress distribution
from the analysis correctly reproduces the cohesive law. Figure 4.6 shows instead the damage
values for an increasing opening ∆I . From the TUBA3-CE analysis, the value of the opening
at damage onset (∆0

I) was found to be between 1.60 ·10-4 mm and 2.46 ·10-4 mm, in agreement
with the analytical value of 1.77 · 10-4 mm, given by Equation (2.27).
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Figure 4.5: Out-of-plane stress vs. mode I opening for the TUBA3-CE uniaxial test.
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Figure 4.6: Damage vs. mode I opening for the TUBA3-CE uniaxial test.
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Chapter 5

Validation

In order to assess the accuracy and performance of the proposed method, the assembly of
TUBA3 and TUBA3-CE was tested in a classical fracture mechanics experiment. This was
chosen to be the mode I DCB specimen suggested by Kreuger in [74]. The benchmark solution
provided in this work and the analytical curve obtained with the Corrected Beam Theory were
used as references for the numerical results in this chapter.

Up to present, the TUBA3 framework for delamination modelling has been tested for mode
I fracture only. The reason for this is twofold. First, mode I loading usually introduces
cohesive zones smaller than those of other mode mixities. Consequently, this scenario is the
most critical in terms of limit element size. Also, the TUBA3 method has yet to be extended
to mode II and mixed mode. The reason for this will be given in more detail in Chapter 6.
For now it suffices to say that an extension beyond mode I requires the implementation of
geometrical non-linear kinematics for the CE and the introduction of membrane DOFs for
both TUBA3 and TUBA3-CE.

This chapter provides the results of the validation tests and comments them in detail. Initially,
the benchmark DCB specimen is described and its geometrical and material data are given.
Afterwards, the Abaqus model used for comparison is detailed and its output shown and
discussed, emphasizing the element size required to achieve the converged reference solution.
Finally the results of the TUBA3 simulations in terms of load-displacement curves, stress and
damage distributions are presented and compared with the reference.

5.1 Benchmark problem

The DCB specimen is portrayed in Figure 5.1 in its undeformed configuration. The dimensions
of the specimen and the initial crack size are shown, as well as the boundary conditions and
applied loading velocity of the numerical model. The laminate is unidirectional with 24 plies
of T300/1076 graphite-epoxy prepreg. Table 5.1 summarizes the values of geometrical and
material quantities.
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Figure 5.1: DCB specimen: geometry, loading and boundary conditions.

Material T300/1076
Exx 139.4 GPa

Young’s moduli Eyy 10.16 GPa
Ezz 10.16 GPa
νxy 0.3

Poisson’s ratios νxz 0.3
νyz 0.436
Gxy 4.6 GPa

Shear moduli Gxz 4.6 GPa
Gyz 3.54 GPa

Fracture GI,c 0.170 kJ/m2

toughnesses GII,c 0.494 kJ/m2

Material τ0
I 30 MPa

strengths τ0
II 50 MPa

B-K coefficient η 1.62
Geometry
Length L 150 mm
Width b 25 mm

Thickness t 3 mm
Precrack length a0 30.5 mm

Table 5.1: DCB specimen: geometry and material data.
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Knowing thickness and material parameters, it is possible to use Equations (2.38) and (2.40)
to estimate the cohesive zone length. In the assumption of an infinite and slender body
respectively, the analytical CZL values are

l∞cz,I = Ezz GI,c
(τ0
I )2 = 1.92 mm (5.1)

l0cz,I = (l∞cz,I)
1
4

(
t

2

) 3
4

= 1.60 mm (5.2)

where M∞I and M0
I are taken equal to one.

A more accurate estimate of the CZL was found from an Abaqus analysis using standard
cohesive contact and a very fine mesh in the crack propagation region. For this sake, a
2D model could be extracted as the middle section of the specimen along the x-direction,
as the fibers are all oriented along this axis. 2D incompatible mode plane strain elements
(Abaqus CPE4I) were used for the substrates. The stress and damage profiles obtained from
the simulation have been shown in Figure 2.11, when discussing the mesh density constraint.
In particular, identification of the x-coordinates bounding the values of the damage variable
between 0 and 1 allowed to obtain the following CZL estimate:

lnumcz,I = 0.875 mm (5.3)

This value will be referred to as the numerical cohesive zone length in the discussion to follow.

5.2 Reference solution

The creation of a reference for validation purposes required two distinct phases. The first one,
common to all FE procedures, was to create the numerical model or preprocessing, setting all
the analysis parameters. After that, a mesh sensitivity study was performed, until convergence
of the load-displacement curve. The results obtained with the converged mesh were used as
reference for validating the proposed mehtod.

5.2.1 Description of the numerical model

The following gives an overview of the main modeling choices and features adopted in building
the Abaqus reference model. This description does not mean to be complete and the full set
of parameters used is given in Appendix D.

The entire preprocessing phase was carried out in Abaqus CAE. The model consists of two
parts, corresponding to the two sublaminates. Only the bottom part/sublaminate was mod-
elled directly, while the top one was created as an exact copy. The two parts were then
stacked together at the assembly level. A partition as shown in Figure 5.1 was done to isolate
the crack propagation region, which required a mesh finer than for the rest of the specimen.
The substrates were assigned a composite layup property with the material data provided in
Table 5.1. Since the laminate is unidirectional, a single ply with half the laminate’s thickness
could be assigned to be the layup of each part. The element type was chosen as the linearly
interpolated brick element with incompatible modes or C3D8I, in Abaqus nomenclature.
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Figure 5.2: Four meshes of different element sizes in the crack propagation region. The lengths
are, from top to bottom: 5mm, 1 mm, 0.5 mm and 0.25 mm.

The cohesive interface was modeled by defining cohesive contact between the two adjacent
substrate surfaces, that extend from the end of the precrack to the end of the specimen.
If the interface is thin and can be defined in terms only of a traction-separation law, CC
can be used in place of CEs and it usually offers improved computational performances [75].
The quadratic criterion [76] was used for damage initiation and the B-K relation as crack
propagation condition. In order to avoid numerical instabilities during the fracture process, a
viscosity coefficient ηv was determined and set equal to 10-5 s. This value was found sufficient
for a stable solution and small enough not to pollute it with spurious damping.

All the analyses were run with a Full Newton Raphson method for a total time of 2 s. The
boundary conditions for the reference analyses constrained the translations in all directions
for the bottom left edge of the specimen and in the x and y directions for the top left one, as
presented in Figure 5.1. Loading of the specimen was done imposing a velocity of 2mm/s on
the top left edge.

5.2.2 Mesh convergence study

Using the model just detailed, four different mesh sizes were studied. These are represented
in Figure 5.2 for a section view in the xz-plane. In all three cases, 1 element was used along
the thickness direction and 25 elements covered the width. The meshes differed only for the
elements size used in the fracture region, respectively of 5, 1, 0.5 and 0.25 mm.

Figure 5.3 shows the load-displacement curves for the four meshes discussed. These are
plotted together with the analytical solution derived from the Corrected Beam Theory (CBT),
summarized in Appendix E. The coarsest mesh of 5 mm misses the limit point completely, as
no material damage occurs before reaching a load of 160 N. When the element size is reduced
to 1 mm, the peak force is still overpredicted by 15% the CBT value. The overshoot reduces
to 2.6% when the 0.5 mm case is considered, although this mesh is not yet converged, as
seen from the spurious unstable crack growth phase after the limit load. The finest mesh
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Figure 5.3: DCB test results obtained using the Abaqus reference model for four different mesh
sizes. The Corrected Beam Theory solution is also plotted.

of 0.25 mm does not show any fictitious load release at the critical point and practically
overlaps the analytical curve. The critical load and displacement for this element size are
respectively 60.5 N and 1.59 mm and are in close agreement with the values presented in [74]
for the same DCB specimen. Therefore the 0.25 mm mesh for the Abaqus CC model can be
considered converged, reason why it was taken as the reference solution for the subsequent
model validation.

5.3 Comparison with proposed method

The TUBA3 models were generated following a different approach with respect to the Abaqus
CC ones. First, a planar shell in a 3D space, corresponding to the bottom arm of the specimen,
was created in Abaqus CAE and meshed for the required element size. An incomplete input
file was produced and read from a Matlab program implemented by the author, that would
write nodal coordinates and connectivity for both top arm and cohesive elements.
The scripts for computing the stiffness matrix and residuals vector for both TUBA3 and
TUBA3-CE had to be included in a single element subroutine, which could execute the code
for the correct element based on a key passed by the Abaqus processor. The user element
properties for each of the elements included the material data, thickness, and, in case of
TUBA3-CE a binary flag variable, indicating whether the cohesive element had been placed
or not in the precracked region. In the former case, the pertaining damage variable was set
equal to one, else equal to zero.
Referring to Figure 5.4, the left edge of the bottom plate was simply supported, thus the
out-of-plane displacement and the derivative along the edge were constrained. The latter



64 Validation

𝑀𝑦 = 0

𝑀𝑦 = 0

𝑤 = 0

𝜕𝑤

𝜕𝑦
= 0

Figure 5.4: TUBA3 mesh and boundary conditions of the DCB bottom substrate.

variable was set to zero also for the left edge of the top plate, so to keep the edge straight
during deformation. Also, the free edge condition (My = 0) was enforced on the nodes of
both longitudinal edges for bottom and top plate.

As did in the CC models, the analyses were carried out with the Full Newton-Raphson method
for a total time of 2 s, during which a velocity of 2 mm/s was kept on the top left edge of the
specimen.

5.3.1 Load-displacement curves

Figure 5.5 shows the DCB load-displacement curves obtained from the TUBA3 simulations.
Results for four different element lengths are plotted together with the Abaqus reference
solution. The simulations for mesh dimensions of 1, 2 and 5 mm achieved convergence and
produced results in close agreement with the reference ones throughout the entire loading.
Moreover, despite the quite severe oscillations during propagation, also the 10 mm mesh
predicted the critical load and displacement with reasonable accuracy.

To assess the presence of the mesh density constraint, the ratio between element size and
cohesive zone length is considered. In case of a 10 mm mesh, the elements in the crack
propagation region are more than 5 times larger than the analytical CZL values in Section 5.1
and the ratio increases to 11 upon comparison with the numerical CZL. This suggests an
almost insensitivity of the TUBA3 elements to the MDC, as they can accurately reproduce
the curvatures of the thin sublaminates even with lengths much higher than the CZL.

More quantitative measures of the accuracy reached with the new elements are given in Table
5.2. The 1, 2 and 5 mm meshes all managed to predict the critical load with at most 3%
error and the coarsest mesh model did not go over a 5.47% deviation. Slightly worse precision
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Figure 5.5: DCB load-displacement curves obtained with TUBA3 elements. Results for four
different mesh sizes are plotted.

Model Fc err% wc err%
(N) (mm)

1 mm, 13 IPs 62.13 2.73 1.48 6.62
2 mm, 13 IPs 62.31 3.02 1.52 4.10
5 mm, 52 IPs 61.97 2.47 1.46 7.89
10 mm, 52 IPs 63.78 5.47 1.52 4.10

Abaqus ref. 60.48 1.59

Table 5.2: Critical loads and displacements for TUBA3 DCB models of different mesh sizes.
Abaqus reference solution and relative deviations are also reported.
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Figure 5.6: DCB load-displacement curves obtained with 5 mm TUBA3 elements. Curves for
two different numbers of integration points are plotted.

was obtained on the critical displacements, whose error ranges from 4% to almost 8%. This
discrepancy is linked to the difference in the initial stiffness between the TUBA3 and reference
models, observed in Figure 5.5. It must be remembered in fact, that TUBA3 elements can
only work in bending, whereas the C3D8I elements used for the reference can also shear in
the xz, yz-planes and deform out of plane. Therefore during elastic loading, before opening
of the cohesive interface, the TUBA3 solution is stiffer than the C3D8I model, as the latter
displaces further due to transverse shearing of the substrates. Also, the lack of out-of-plane
straining for plates translates in a premature opening of the CE, since all the bending stresses
transmitted through the interface work to open it, without any stretching of the sublaminates.
This means that the limit opening will be reached prior than when continuum elements (s.a.
C3D8I) are used.

The discrepancies just described would likely become more evident for larger substrate thick-
nesses. In this case the linear stiffness mismatch would increase since the Kirchhoff assumption
neglects the even bigger transverse shear deformations. Also, the limit point would shift, as
thicker substrates would mean higher out-of-plane elongations, still not captured by a plate
model.

A further point of attention concerns the number of integration points necessary to avoid
instabilities or loss of convergence after damage. Figure 5.6 compares the load-displacement
curves for two meshes of 5 mm element length in the fracture region. The CEs were given 13
integration points in one case and 52 in the other one. The subdomain integration procedure
described in Section 3.4.3 easily allowed to increase the number of IPs for each TUBA3-
CE. Most noticeably, the curve corresponding to the lower IPs density results in spurious
oscillations when the crack front is propagating. In fact, at every iteration of the analysis
some of the integration points transition from an intact to a debonded state, removing part
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of the total stiffness. If few integration points are present, the failure of one of them causes a
large stiffness loss, explaining the staggered profile in Figure 5.6. Moreover, if the first line of
integration points is too distant from the precrack front, these reach the failure opening ∆f

I

at a higher applied load than that found using more IPs. As observed in Figure 5.6, the limit
force is in fact higher in the 13 IPs case than when 52 IPs are used. In quantitative terms,
the 52 IPs solution overpredicts the critical load by 2.47% its reference value, while the 13
IPs one misses it by more than 8%.

It could be argued that reducing the number of cohesive elements at the cost of adding inte-
gration points would hinder the efficiency of the method. However, an increase in elements
ultimately enlarges the dimensions of the FE linear system of equations and the global stiff-
ness matrix requires more processing time to be inverted. On the opposite, using more IPs
only results in a higher number of iterations of the code portions that build the element stiff-
ness matrix and residual vector. This phase of the analysis can be made less computationally
involved through a lean programming practice and seldom requires the processing effort intro-
duced by large models. A more quantitative discussion on the computational performances
is offered in Section 5.3.4, which compares the CPU times of TUBA3 and reference models.

5.3.2 Stress and damage profiles

The out-of-plane stresses and damage for the DCB specimen obtained with the 2 mm and 1
mm TUBA3 meshes are reported in Figures 5.7 and 5.8. Both these variables were computed
for the CEs in the cohesive zone length at 4 mm opening of the specimen arms. The plots were
produced with a Python program that would read the values of τI and d at the barycentric
integration point of a line of triangles. In particular the elements were chosen as equidistant
from the specimen’s longitudinal sides, in order to avoid edge effects.

Both graphs show the characteristic trends observed in the crack front region of a DCB
specimen. From left to right, the interface is initially fully separated, hence no tractions
are present and d = 1. Proceeding further, the stresses increase and the damage variable
decreases, identifying the beginning of the cohesive zone. The value of the material strength
(30 MPa) is reached at the crack tip, where the material is intact. Immediately ahead of this
region, negative stresses first arise to restore the interface equilibrium and then further assess
to a zero plateau, where both arms of the specimen are still undeformed.

Figures 5.9 and 5.10 compare stresses and damage in three different cases. Two of the curves
plotted were obtained with 2D and 3D Abaqus CC models, respectively with 0.0125 and
0.25 mm element lengths, while the third one refers to the 1 mm TUBA3 model. Again, in
order to avoid the edges influence, damage and stresses in Abaqus CC case were sampled in
a succession of nodes equidistant from the longitudinal sides of the specimen.

It is evident that the 0.25 mm Abaqus solution can be considered converged also in terms
of stresses and damage, since the two fields match almost entirely the ones from the 2D
analysis. The same does not hold for the TUBA3 models, which show visible deviations from
the Abaqus CC results. As previously discussed, in fact, when plate elements are used as
substrates, the out-of-plane stresses at the interface can only deform the cohesive elements,
which will open more than if they were included between solid elements. This explains why
stress and damage start departing sooner from their plateau in the TUBA3 case than for the
CC models, when going from an entirely damaged state to an intact one. As a consequence,
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Figure 5.7: Stress and damage profiles in the cohesive zone of the DCB specimen. TUBA3 and
TUBA3-CEs are used with a 2 mm size in the crack region and 13 integration points per element.
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Figure 5.8: Stress and damage profiles in the cohesive zone of the DCB specimen. TUBA3 and
TUBA3-CEs are used with 1 mm size in the crack region and 13 integration points per element.
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the length of the cohesive zone predicted in case of plate substrates is larger than the reference
numerical value in Equation (5.3). In the 1 mm TUBA3 case, the CZL value is found to be

lTUBA3
cz,I = 1.96 mm (5.4)

Although the value in Equation (5.4) would probably change using a finer mesh or sampling
the damage variable in more integration points, it is likely that big variations from this
measure would not be observed. In fact, stress and damage profiles of TUBA3-CEs are
affected by the systematic error introduced by the kinematics of the plate substrates. The
relative insensitivity of the CZL estimate to the element’s size can be observed comparing
Figure 5.7 for the 2 mm mesh case and Figure 5.8 for 1 mm. The region in which the damage
variable ranges between 0 and 1 has nearly the same length for both meshes.

Again looking at Figure 5.9, another relevant difference between Abaqus CC and TUBA3 is
the extent of the compression region and the stress magnitudes therein. Also in this case
the discrepancy is due to the impossibility of plate elements to deform along their thickness.
As soon as the crack is closed and the material is intact, the mid-planes of the plates come
in contact and try to interpenetrate. This is almost entirely prevented by the large penalty
stiffness, at the cost of generating high negative stresses. No alleviation of this effect comes
from the compression of the substrates along their thickness, oppositely to what happens
with solid elements. The reduced length of the compressive region in the TUBA3 model, as
well as the mild positive stresses generating afterwards are necessary to maintain the overall
equilibrium of the interface to vertical translation and rotation.

Despite the differences in stress and damage profiles between solid and plate-compatible CEs,
even very fine meshes of solid elements cannot reproduce the real stress distribution. The
numerical stresses depend in fact on the choice of the cohesive law that, although being shaped
by experimental material parameters and physical considerations, is ultimately a choice of
the analyst.

5.3.3 Damage maps

The 2D interface damage distribution at final separation of the specimen’s arms is shown
in Figure 5.11. This plot was obtained from the Abaqus CC model with 0.25 mm mesh.
Looking at the cohesive zone (green to white coloured) it is clear how small this is with
respect to the structural dimensions. It can be noticed how the crack front, represented by
the transition between the failed material (red) and the intact one (blue) appears straight for
almost the entire width of the specimen, except at its edges. This characteristic shape, known
as ‘thumb nail’, is a well-known feature of pure mode I fracture observed both experimentally
and numerically. During bending, the bonded surfaces of the substrates are both under
tension, thus the Poisson’s effect induces their compression in the direction orthogonal to the
propagation one. This induces opposite curvatures for the two surfaces, closing the interface
at the edges and delaying damage in these regions.

The damage maps for the TUBA3 models could also be produced by postprocessing the
FE results with a Python program. The results are shown in Figures 5.12 to 5.15 for the
same element sizes and number of IPs previously discussed. It is evident how finer meshes
and higher number of integration points can smooth the damage distribution. The thumb-
nail shape becomes evident in the 1 mm and 2 mm cases and it can be compared with
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Figure 5.11: Damage distribution for the Abaqus CC model with 0.25 mm mesh at 4.0 mm
opening of the DCB loaded edge.

the reference in Figure 5.11. Moreover, besides differences in graphical interpolations, the
damage distributions for standard CEs or CC appear staggered in the cohesive zone. In
this case in fact, the elements cannot be partially debonded, since they are integrated with
four Newton-Cotes nodes at the corners of their parent domain [13]. TUBA3-CEs do not
suffer from this limitation, since they can completely contain the cohesive zone, hence be only
partially damaged. This feature allows for more continuous transition regions between intact
and debonded material.

A numerical anomaly is noticed in the 10 mm case. The damage map for this mesh shows
‘damage spots’ ahead of the crack front, where instead the material should be intact. A
possible explanation is found observing the crack fronts for the meshes presented. All the
damage maps show some ‘crests’ in the variation of d along y. The repetition of these crests
seems periodic, with the period depending on the element’s y-dimension. As previously
discussed, the TUBA3 plate is allowed less deflection at its edges than in the rest of its
domain (see Section 3.3.1). In case of large elements, this feature alters the stiffness of
the structure depending on the directionality of the mesh. However, coarse meshes can still
provide accurate damage maps if a large number of integration points is used. In this case the
damage would still be sampled finely, reducing the magnitude of the crests. This is confirmed
by comparison of the damage map for 5 mm and 52 IPs (Figure 5.13) and that for the same
mesh size and 13 IPs (Figure 5.16).

5.3.4 Computational performances

The final comparison between the TUBA3 models and the Abaqus CC solution concerns the
performance parameters for the DCB simulations, reported in Table 5.3. It is evident how
even the most involved TUBA3 simulation manages to cut the CPU times of Abaqus CC of
by an order of magnitude. Particularly impressive from a computational effort perspective is
the saving obtained by running the 5 mm, 52 IPs simulation, still 97% accurate on the limit
load, as compared to the Abaqus CC, 0.25 mm case. The TUBA3 model achieves a 94.3%
reduction of the CPU time, an improvement similar to that scored by Russo in [44,56] for the
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Figure 5.12: TUBA3 model: damage distribution at 4.0 mm opening. Mesh size: 10 mm, 52
integration points.
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Figure 5.13: TUBA3 model: damage distribution at 4.0 mm opening. Mesh size: 5 mm, 52
integration points.
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Figure 5.14: TUBA3 model: damage distribution at 4.0 mm opening. Mesh size: 2 mm, 13
integration points.
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Figure 5.15: TUBA3 model: damage distribution at 4.0 mm opening. Mesh size: 1 mm, 13
integration points.
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Figure 5.16: TUBA3 model: damage distribution at 4.0 mm opening. Mesh size: 5 mm, 13
integration points.

2D case. This figure should anyway be considered with a margin, since this TUBA3 model
was built with a 5 mm nodal distance also along the width of the specimen, against the 1 mm
separation used for Abaqus CC. No sensitivity study with respect to the number of nodes
along the width was performed in this research. Anyway, even considering the TUBA3, 1
mm case, with 1 mm nodal separation also along the width, there is an 87.5 % CPU time
reduction compared to Abaqus CC, remarking the potential of a C1 FE model.

Still mainly indicative are the amounts of degrees of freedom and elements required by the
different models, which anyway point out that less degrees of freedom are needed with TUBA3
discretizations. More interesting however, is that all TUBA3 simulations show an higher iter-
ations count than the Abaqus CC one. This difference makes sense considering that viscous
regularization is used only for Abaqus CC analyses. Allowing for small time increments,
damage increase at an integration point can be slowed down by tuning a damage stabilization
parameter. If this parameter is chosen appropriately, the material tangent stiffness matrix
becomes positive definite and equilibrium is found after few iterations. However if viscous
regularization is removed, Abaqus CC simulations do not converge, as demonstrated by Fig-
ure 5.17. Here the analysis stops before the specimen reaches the 4 mm opening. On the
contrary, TUBA3 models do not require viscous regularization to reach convergence. Although
the tangent stiffness matrix remains negative definite during degradation, the relatively high
number of Gaussian integration points still ensures a gradual interface degradation.
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Figure 5.17: DCB load-displacement curve for the Abaqus CC, 0.25 mm mesh model with zero
damage stabilization.

Abaqus CC TUBA3 TUBA3 TUBA3 TUBA3
0.25 mm 1 mm, 13 IPs 2 mm, 13 IPs 5 mm, 52 IPs 10 mm, 52 IPs

CPU time 12582 s 1577.9 s 1470.6 s 718.24 s 216.05 s
No. DoFs 181728 14664 4200 1656 480

No. elements 21496 6900 1872 660 144
No. iterations 2040 2249 7722 11091 5522

Table 5.3: Computational performance parameters of the DCB specimen simulations for both
Abaqus CC and TUBA3 models.
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Chapter 6

Conclusions and Future Work

The research work discussed had the driving objective of studying a novel approach to delam-
ination numerical analysis, by developing C1 thin plate and compatible cohesive elements and
by testing them for the most limiting aspect of cohesive elements, namely the mesh density
constraint

The approach developed confirmed the potential of modeling a delaminating composite through
thin, highly regular structural elements. The key aspects and achievements of the method
developed are evident when going through the set of fundamental questions asked in this
research, hereby restated and answered.

1. What is a suitable triangular thin plate element which ensures a C1 displacement field?

A very interesting candidate in this sense is the TUBA3 thin plate element or Bell triangle,
described in Chapter 3. This element ensures the C1 continuity of its shape functions, object
of investigation of this work and has a triangular support, which is optimal to model complex
geometrical features. Also, unlike many elements of the TUBA family, TUBA3 only has nodes
at its corners, which allow to retain the banded structure of the global FE stiffness matrix.
The complete formulation of the Bell triangle was outlined, going from the description of
its degrees of freedom and shape functions to the step-by-step construction of the element’s
fundamental arrays.

2. What is the formulation of a cohesive element compatible with the plate element developed
and able to capture pure-mode delamination?

A cohesive element is compatible with the substrate ones, if they share the same shape
functions and have equal degrees of freedom at the common nodes. Starting from this consid-
eration, TUBA3-CE was detailed in Chapter 3. The openings in the three modal directions
were derived, while stating the adopted assumption and the peculiarities of a plate-compatible
CE. In particular, oppositely to standard cohesive elements, the openings of TUBA3-CE have
to include the plates’ rotations and their thickness. The description of the stiffness matrix
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was completed with both the constitutive relation for mode I damage and the discussion of
the sub-domain integration scheme developed.

3. Is the implementation of the above elements correct and what series of tests can assess
this?

Both TUBA3 and TUBA3-CE required an answer to this question. For this purpose, a
series of simple verification tests of known analytical solutions was considered. The plate
element showed relative errors below 1% on the quantities examined and this for almost all
the problems analyzed and both in its isotropic and UD composite version. The cohesive
element did not undergo an actual verification until the model validation, but it was shown
how it could exactly replicate the mode I cohesive law.

4. Is the final model accurate and does it improve in terms of mesh size and CPU times,
when compared to the current standard in delamination modeling?

This is rightfully the pivotal research question of this work and its answer delivers the ulti-
mate conclusions of the present research. A classic benchmark case for mode-I delamination
analysis was chosen and described. The reference for this validation process was obtained
by performing analyses for different mesh sizes of the delaminating region until mesh conver-
gence was reached. Afterwards, the analyses with TUBA3 and TUBA3-CE were carried out
and the raw data post-processed to obtained load-displacement curves, stress and damage
profiles, cohesive zone lengths and damage maps. Impressively, the load displacement curves
showed errors below 6% of the limit load, using elements 11 times larger than the numerical
CZL. In terms of computational performance, models of the same mesh density achieved a
94% CPU time saving. However, despite the global behaviour of the structure was captured
in a precise and efficient way, this came at the cost of less realistic predictions at the local
level. In fact, due to the kinematic assumptions made by the classical plate theory, the out
of plane straining of the substrates could not be reproduced. This led to inaccuracies in the
stress and damage profiles and to an overprediction of the cohesive zone length.

Since the correct estimate of damage follows by accurately capturing the openings of the co-
hesive elements, a C1-continuous plate model is optimally suited for predicting the structural
limit load and loss of load carrying capability, using low element densities. However, in its
current form, the work delivers only a proof of concept and not yet a tool usable in the FE
industrial practice. The steps necessary to make the proposed C1-continuous model a valid
alternative to the current standard define the future work suggested for this project.

The indications for further development can be classified in terms of priority of the milestones
to be achieved.

Pure shear mode loading Attempts at the end of the project to use TUBA3 and TUBA3-
CE in a pure mode II ENF specimen showed that the onset of damage and the limit load
were reached erroneously at the first increment, regardless of its magnitude. It was deduced
that the model is very sensitive to mode-II openings and that small errors in their estimation
could completely change the damage state of an integration point. The origin of this error
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likely has two origins: the impossibility for TUBA3 to deform as a membrane and the linear
formulation of the kinematics of TUBA3-CE. The first limitation could be overcome by doing
an extension of TUBA3 from plate to flat shell element, obtained by superimposing a plane
stress element to the current TUBA3 formulation. For each node, the in-plane degrees of
freedom could be added and interpolated with trilinear shape functions in area coordinates.
The openings of TUBA3-CE should be then modified accordingly. Although C1-continuity
would not hold for membrane displacements, the extension suggested could already improve
the mode II behaviour, as observed in the work of Russo [44], who used beam elements, which
are linearly interpolated for the axial deformation.

Moreover, neglecting the geometrical non-linearities in the kinematics of TUBA3-CE could
result in spurious damaging of this element. In fact, even though the small displacement
range would justify to consider the deformed configuration as coincident to the initial one,
the variations in ∆II or ∆III due to the change in configuration could make the difference
between intact and damaged states. A meaningful way to account for geometrical non-linear
effects would be to describe the deformation with a co-rotational scheme. This formulation
could be applied to a 3D cohesive element in the following way. Each integration point of
the CE mid-surface is given a triad of orthogonal vectors, two in the tangent plane and one
normal to it, defining the co-rotated system. The openings in the initial configuration can
be rotated by the local orientation of the co-rotated axes, in order to obtain the openings in
the co-rotated reference. These can be used to write the principle of virtual work in the last
converged configuration, from which the CE stiffness matrix and residual vector are found.

Mixed mode loading Once the elements will be able to deform in mode II, the constitutive
relation of TUBA3-CE should be enhanced to account for the generic mode mixity of fracture.
This improvement would be of simple implementation, as it only requires to change the
expressions for the critical and failure openings, respectively ∆0 and ∆f . The formula for the
damage variable and the constitutive matrix would remain unchanged and the same damage
update mechanism could be kept. A useful reference at this stage would be the model of
Turòn [22], summarized in Chapter 2.

Adaptive sub-domain integration As seen from the delamination results in Chapter 5, the
CE integration is critical, especially when using large elements. The strategy adopted in
this work was to increase the number of integration points for all the cohesive elements in the
mesh, regardless of their proximity or not to the moving cohesive zone. This method stabilizes
the analysis, but it is not efficient, since only the elements which are partially damaged show
strongly non-linear integrands of their stiffness matrix. A smart turnaround to a global
increase in the IPs number was proposed in two dimensions by Russo [44]. The method
consists in an adaptive integration procedure, meaning that large numbers of integration
points are used only for the elements in the cohesive zone or close to it. All the remaining
CEs were integrated with much less integration points.

An adaptive integration technique technique could be adopted also with TUBA3-CEs, mon-
itoring the damage state of the cohesive elements per iteration and increasing the number
of IPs only in the partially damaged elements. However, when moving to 3D problems the
options for adaptivity increase. Having big elements, it makes sense to use more IPs not on
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Figure 6.1: Adaptive sub-domain integration technique.
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the entire element domain but only on the portions that contain the damage/stress gradi-
ents. Yang’s scheme seen in Section 2.3.2 would fit the purpose, but has the inconvenience of
recomputing the level set and IPs coordinates at each iteration. The subdomain integration
scheme developed in this work offers an easier alternative. Suppose that the cohesive zone is
moving from left to right in the plate in Figure 6.1. Initially, elements where the delamination
is expected to grow should have enough IPs to detect the debonding as soon they are reached
from the crack. Far field elements can instead be given few IPs. Upon cracking, the damage
at the last converged increment is probed. The elements which are only partially damaged
can be divided in subdomains and the IPs are increased only in those subdomains that are in
or close to the cohesve zone. Once an element is totally failed, it no longer needs integration
and all the IPs are removed. In this way, the amount of integration points used is optimized,
without having a to find the moving subdomain and the IPs coordinates at each iteration.

Geometrically exact shell A complete framework for geometrically exact models will require
to extend the TUBA3 flat shell to its curved version. The generalization of the TUBA family
to 3D solid shells was carried out by Ivannikov, Tiago and Pimenta [77]. Implementing this
modification in TUBA3 and TUBA3-CE could allow their use for modeling delaminations in
actual engineering structures. However, some configurations will inevitably bring an increased
complexity of the boundaries and careful should be used in translating them in the correct
DOFs constraints. This task may be non-trivial, considering the unconventional degrees of
freedom proper of TUBA elements (i.e. the nodal curvatures)

Combined matrix cracks and delaminations Composites laminates are seldom unidirec-
tional in practical applications and their fracture often propagates through both delamina-
tions and matrix cracks, among others. A cohesive element for plate bending, as the one
presented, is not suitable for modelling in-plane types of damage. After implementing the
membrane kinematics of the TUBA3 shell, matrix cracks could be reproduced by including
CEs between elements of the same ply. Cohesive elements should be placed in all those mesh
regions where the matrix cracks are expected to occur. However, this method could lead to
very large dimensions of the FE problem. In fact, unless the crack path is known a priori,
prediction of complex crack networks would require CEs to be inserted at all interfaces of the
bulk elements.

A more meaningful way of extending TUBA3/TUBA3-CE to complex crack networks would
be to enrich their set of degrees of freedom either using the Extended Finite Element Method
(XFEM) [6], the Phantom Node Method (PNM) [78] or the Floating Node Method (FNM)
[48]. In particular, FNM revealed to be an extremely versatile tool in representing complex
structural entities and in predicting intricate damage patterns with the use of simple meshes.
Also FNM has the additional advantage over XFEM and PNM of not requiring integration
on parts of the domain described by the crack path.

An interesting concept, based on [79], would be the implementation of a TUBA3 floating-
node laminate element. Figure 6.2 illustrates the idea for a stack of two plies. The composite
panel can be represented by a 2D mesh of triangular elements, which is the element set
seen by the solver during the analysis. Each triangle has associated a set of master nodes
(blue circles in figure), defined during preprocessing and a set of floating nodes (triangles).
Some of the floating nodes (blue triangles) are activated at the beginning of the analysis and
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Figure 6.2: TUBA3 floating-node laminate element.

are used in triples to define additional TUBA3 plies stacked on top of the ‘master TUBA3’.
The remaining floating nodes (green triangles) remain inactive until a planar crack splits the
element. TUBA3-CEs can then be inserted between master and floating nodes of different
TUBA3 plies to open in case of delamination. When a matrix crack crosses the element, the
floating nodes belonging to the edges involved are activated to form new laminate elements
for each crack side. Two configurations can be conceived after planar cracking of the original
element, as seen in Figure 6.3. If only TUBA3 elements are used (right case in figure), three
triangular laminate elements would result, one separated by a strong discontinuity (crack)
and other two still assembled together. However a 2 element configuration is also possible by
using a floating node quadrilateral laminate element (left case). Also this element should be
at least C1 to maintain the advantages of high regularity in delamination. No on-the-shelf
implementation is available for such an element in commercial FE software. However, the
Bogner-Fox-Schmit quadrilateral [80] is a good candidate for a C1 rectangular plate and could
be brought to the TUBA3/TUBA3-CE current stage by following the same steps done in this
work.
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Appendix A

TUBA3 shape functions

A planar triangle is considered, of vertices (x1, y1), (x2, y2) and (x3, y3). The following quan-
tities can be defined 

ai = xjyk − xkyj
bi = yj − yk
ci = xk − xj

(A.1)

rij = −bibj + cicj
b2i + c2

i

(A.2)

where i,j,k are cyclic permutations of 1,2,3.

Using the definitions in Equations (A.1) and (A.2), the first six shape functions of the TUBA3
triangle, as reported in [65], are

N1(L1, L2, L3) =L5
1 + 5L4

1L2 + 5L4
1L3 + 10L3

1L
2
2 + 10L3

1L
2
3 + 20L3

1L2L3

+ 30r21L
2
1L2L

2
3 + 30r31L

2
1L

2
2L3

N2(L1, L2, L3) =c3L
4
1L2 − c2L

4
1L3 + 4c3L

3
1L

2
2 − 4c2L

3
1L

2
3 + 4(c3 − c2)L3

1L2L3

− (3c1 + 15r21c2)L2
1L2L

2
3 + (3c1 + 15r31c3)L2

1L
2
2L3

N3(L1, L2, L3) =− b3L4
1L2 + b2L

4
1L3 − 4b3L3

1L
2
2 + 4b2L3

1L
2
3 + 4(b2 − b3)L3

1L2L3

+ (3b1 + 15r21b2)L2
1L2L

2
3 − (3b1 + 15r31b3)L2

1L
2
2L3

N4(L1, L2, L3) =c2
3
2 L

3
1L

2
2 + c2

2
2 L

3
1L

2
3 − c2c3L

3
1L2L3 +

(
c1c2 + 5

2r21c
2
2

)
L2

1L2L
2
3

+
(
c1c3 + 5

2r31c
2
3

)
L2

1L
2
2L3

N5(L1, L2, L3) =− b3c3L
3
1L

2
2 − b2c2L

3
1L

2
3 + (b2c3 + b3c2)L3

1L2L3

− (b1c2 + b2c1 + 5r21b2c2)L2
1L2L

2
3 − (b1c3 + b3c1 + 5r31b3c3)L2

1L
2
2L3



92 TUBA3 shape functions

N6(L1, L2, L3) =b23
2 L

3
1L

2
2 + b22

2 L
3
1L

2
3 − b2b3L3

1L2L3 +
(
b1b2 + 5

2r21b
2
2

)
L2

1L2L
2
3

+
(
b1b3 + 5

2r31b
2
3

)
L2

1L
2
2L3

where L1,L2 and L3 are the triangle’s area coordinates.

The remaining shape functions (N7 to N18) are defined in sets of six, by cyclically permuting
the indices 1,2 and 3.



Appendix B

FORTRAN95 code for [Q]

The source code to follow is the FORTRAN95 adaptation of the FORTRAN77 code in the
paper by Dasgupta and Sengupta [65].

1 i n c lude ’ g l o b a l s /parameter_module . f90 ’
2 ! Module f o r double p r e c i s i o n numbers , l o g i c a l parameters and s t r i n g s f o r
3 ! e r r o r messages
4 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5

6 module Qform_env
7

8 use parameter_module , only : DP , ZERO , HALF , STAT_SUCCESS , STAT_FAILURE , MSGLENGTH
9 ! DP: parameter used to d e f i n e double p r e c i s i o n kind numbers

10 ! ZERO,HALF: double p r e c i s i o n numbers
11 ! STAT_SUCCESS, STAT_FAILURE: i n t e g e r f o r s u c c e s s f u l / f a i l e d s t a t u s va lue
12 ! MSGLENGTH: i n t e g e r f o r l ength o f e r r o r message s t r i n g
13

14 i m p l i c i t none
15

16 ! L i s t o f element−dependent parameters
17 i n t ege r , parameter , pub l i c : : NDIM=3
18 i n t ege r , parameter , pub l i c : : NNODE=3
19 i n t ege r , parameter , pub l i c : : NDOF=18
20

21

22

23 conta in s
24

25

26

27 subrout ine Qform ( coord_nod , area , QXX , QYY , QXY , istat , emsg )
28 ! Purpose :
29 ! Forms the matr i ce s Qxx , Qyy , Qxy f o r TUBA3 element , as from appendix
30 ! o f the a r t i c l e ’A h igher order t r i a n g u l a r p l a t e bending element
31 ! r e v i s i t e d ’ by S . Dasgupta and D. Sengupta
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32 !
33 ! Record o f r e v i s i o n :
34 ! Date Programmer Desc r ip t i on o f change
35 ! ======== ==================== ========================================
36 ! 28/11/18 G. Tost i Balducc i Conversion o r i g i n a l . f −>.f90
37

38

39 ! Dec la ra t i on
40 ! I /O
41 r e a l ( DP ) , i n t e n t ( in ) : : coord_nod ( NDIM , NNODE )
42 r e a l ( DP ) , i n t e n t ( out ) : : area
43 r e a l ( DP ) , i n t e n t ( out ) : : QXX (30 , NDOF ) , QYY (30 , NDOF ) , QXY (30 , NDOF )
44 i n t ege r , i n t e n t ( out ) : : istat
45 cha rac t e r ( l en=MSGLENGTH ) , i n t e n t ( out ) : : emsg
46 ! LOCAL v a r i a b l e s
47 i n t ege r , parameter : : NDEST ( NDOF )=(/4 ,5 ,6 ,8 ,7 ,9 ,7 ,6 ,9 ,4 ,8 ,5 ,8 ,9 ,&
48 &5 ,7 ,4 ,6/)
49 r e a l ( DP ) : : XT ( NNODE ) , YT ( NNODE )
50 r e a l ( DP ) : : B ( NNODE ) , C ( NNODE )
51 r e a l ( DP ) : : TWOD , AR
52 r e a l ( DP ) : : P ( NNODE )
53 r e a l ( DP ) : : R ( NNODE , NNODE )
54 ! counter s
55 i n t e g e r : : I , J , M , IND , JC , JJ , MM , K , IPER , NR
56

57 ! I n i t i a l i z a t i o n
58 area=ZERO
59 QXX=ZERO
60 QYY=ZERO
61 QXY=ZERO
62 istat=STAT_SUCCESS
63 emsg=’ ’
64 XT=coord_nod ( 1 , : )
65 YT=coord_nod ( 2 , : )
66 B=ZERO
67 C=ZERO
68 TWOD=ZERO
69 AR=ZERO
70 P=ZERO
71 R=ZERO
72

73 ! P r e l i m i n a r i e s
74 B(1)=YT (2)−YT (3 )
75 B(2)=YT (3)−YT (1 )
76 B(3)=YT (1)−YT (2 )
77 C(1)=XT (3)−XT (2 )
78 C(2)=XT (1)−XT (3 )
79 C(3)=XT (2)−XT (1 )
80 TWOD=B (1)∗ C(2)−B (2)∗ C (1 )
81 AR=HALF∗TWOD
82 P(1)=B (2)∗ C(3)+B (3)∗ C (2 )
83 P(2)=B (3)∗ C(1)+B (1)∗ C (3 )
84 P(3)=B (1)∗ C(2)+B (2)∗ C (1 )
85 do I=1,NNODE
86 do J=1,NNODE
87 R (I , J)=−(B ( I )∗ B ( J)+C ( I )∗ C ( J ) ) / ( B ( I )∗ B ( I)+C ( I )∗ C ( I ) )
88 end do
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89 end do
90 IND=0
91

92 ! Main c a l c u l a t i o n s
93 main_loop : do I=1,NNODE
94 JC=(I−1)∗6
95 QXX (I , JC+4)=TWOD ∗∗2
96 QYY (I , JC+6)=TWOD ∗∗2
97 QXY (I , JC+5)=2._DP∗TWOD ∗∗2
98 J=I+1
99 IF (J>3) J=J−3

100 M=J+1
101 IF (M>3) M=M−3
102 JJ=J
103 MM=M
104 QXX (10 , JC+1)=120._DP ∗( B ( I )∗ B ( I )+2. _DP∗B ( I )∗ ( R (J , I )∗ B ( M)+R (M , I )∗ B ( J ) ) )
105 QXX (10 , JC+2)=−48._DP∗B ( I )∗ TWOD −120. _DP∗B ( I )∗ ( R (J , I )∗ B ( M )∗ C ( J)−R (M , I)∗&
106 &B ( J )∗ C ( M ) )
107 QXX (10 , JC+3)=120._DP∗B ( I )∗ B ( J )∗ B ( M )∗ ( R (J , I)−R (M , I ) )
108 QXX (10 , JC+4)=−6._DP∗B ( I )∗ B ( I )∗ C ( J )∗ C ( M )+8. _DP∗B ( I )∗ C ( I )∗ P ( I )+20. _DP∗&
109 &B ( I )∗ ( R (J , I )∗ B ( M )∗ C ( J )∗ C ( J)+R (M , I )∗ B ( J )∗ C ( M )∗ C ( M ) )
110 QXX (10 , JC+5)=−2._DP∗B ( I )∗ B ( I )∗ P ( I)−B ( I )∗ B ( J )∗ B ( M ) ∗ ( 1 6 . _DP∗C ( I)+&
111 &40._DP ∗( R (J , I )∗ C ( J)+R (M , I )∗ C ( M ) ) )
112 QXX (10 , JC+6)=10._DP∗B ( I )∗ B ( I )∗ B ( J )∗ B ( M )+20. _DP∗B ( I )∗ B ( M )∗ B ( J)∗&
113 &(R (J , I )∗ B ( J)+R (M , I )∗ B ( M ) )
114 !
115 !
116 QYY (10 , JC+1)=120._DP ∗( C ( I )∗ C ( I )+2. _DP∗C ( I )∗ ( R (J , I )∗ C ( M)+R (M , I )∗ C ( J ) ) )
117 QYY (10 , JC+2)=120._DP∗C ( I )∗ C ( J )∗ C ( M )∗ ( R (M , I)−R (J , I ) )
118 QYY (10 , JC+3)=−48._DP∗C ( I )∗ TWOD +120. _DP∗C ( I )∗ ( R (J , I )∗ C ( M )∗ B ( J)−&
119 &R (M , I )∗ C ( J )∗ B ( M ) )
120 QYY (10 , JC+4)=10._DP∗C ( I )∗ C ( I )∗ C ( J )∗ C ( M )+20. _DP∗C ( I )∗ C ( J )∗ C ( M)∗&
121 &(R (J , I )∗ C ( J)+R (M , I )∗ C ( M ) )
122 QYY (10 , JC+5)=−2._DP∗C ( I )∗ C ( I )∗ P ( I)−C ( I )∗ C ( J )∗ C ( M ) ∗ ( 1 6 . _DP∗B ( I )+40. _DP∗&
123 &(R (J , I )∗ B ( J)+R (M , I )∗ B ( M ) ) )
124 QYY (10 , JC+6)=−6._DP∗C ( I )∗ C ( I )∗ B ( J )∗ B ( M )+8. _DP∗C ( I )∗ B ( I )∗ P ( I)+&
125 &20._DP∗C ( I )∗ ( R (J , I )∗ C ( M )∗ B ( J)∗∗2+R (M , I )∗ C ( J )∗ B ( M )∗∗2)
126 !
127 !
128 QXY (10 , JC+1)=240._DP ∗( B ( I )∗ C ( I)+R (J , I )∗ P ( J)+R (M , I )∗ P ( M ) )
129 QXY (10 , JC+2)=−48._DP∗C ( I )∗ TWOD −120. _DP ∗( R (J , I )∗ C ( J )∗ P ( J)−R (M , I)∗&
130 &C ( M )∗ P ( M ) )
131 QXY (10 , JC+3)=−48._DP∗B ( I )∗ TWOD +120. _DP ∗( R (J , I )∗ B ( J )∗ P ( J)−&
132 &R (M , I )∗ B ( M )∗ P ( M ) )
133 QXY (10 , JC+4)=4._DP∗B ( I )∗ C ( I )∗ C ( J )∗ C ( M )+8. _DP∗C ( I )∗ C ( I )∗ P ( I)+&
134 &20._DP ∗( R (J , I )∗ C ( J )∗ C ( J )∗ P ( J)+R (M , I )∗ C ( M )∗ C ( M )∗ P ( M ) )
135 QXY (10 , JC+5)=12._DP∗B ( I )∗ C ( I )∗ P ( I ) −16. _DP∗P ( J )∗ P ( M ) −40. _DP ∗( R (J , I)∗&
136 &B ( J )∗ C ( J )∗ P ( J)+R (M , I )∗ B ( M )∗ C ( M )∗ P ( M ) )
137 QXY (10 , JC+6)=4._DP∗C ( I )∗ B ( I )∗ B ( J )∗ B ( M )+8. _DP∗B ( I )∗ B ( I )∗ P ( I )+20. _DP∗&
138 &(R (J , I )∗ B ( J )∗ B ( J )∗ P ( J)+R (M , I )∗ B ( M )∗ B ( M )∗ P ( M ) )
139

140 !
141 !
142 row_selec_loop : do K=1,3
143 iper_loop : do IPER=1,2
144 s e l e c t case ( IPER )
145 case (1 )
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146 J=JJ
147 M=MM
148 case (2 )
149 J=MM
150 M=JJ
151 case d e f a u l t
152 istat=STAT_FAILURE
153 emsg=’IPER i s d i f f . from 1 or 2 , Qform , &
154 & element_module ’
155 QXX=ZERO ; QYY=ZERO ; QXY=ZERO
156 re turn
157 end s e l e c t
158 IND=IND+1
159 NR=NDEST ( IND )
160 s e l e c t case ( K )
161 case (1 )
162 QXX ( NR , JC+1)=60._DP∗(−B ( I )∗ B ( I)+R (J , I )∗ B ( M )∗ B ( M )+2. _DP∗R (M , I )∗ B ( J)∗&
163 &B ( M ) )
164 QXX ( NR , JC+2)=12._DP∗B ( I )∗ TWOD+(−1._DP )∗∗ IPER ∗ ( 2 4 . _DP∗B ( I )∗ B ( I )∗ C ( M )+18. _DP∗&
165 &B ( M )∗ B ( M )∗ C ( I )+30. _DP∗R (J , I )∗ B ( M )∗ B ( M )∗ C ( J ) −60. _DP∗R (M , I )∗ B ( J )∗ B ( M)∗&
166 &C ( M ) )
167 QXX ( NR , JC+3)=−(−1._DP )∗∗ IPER ∗ ( 2 4 . _DP∗B ( I )∗ B ( I )∗ B ( M )+18. _DP∗B ( M )∗ B ( M )∗ B ( I)&
168 &+30._DP∗R (J , I )∗ B ( M )∗ B ( M )∗ B ( J ) −60. _DP∗R (M , I )∗ B ( M )∗ B ( M )∗ B ( J ) )
169 QXX ( NR , JC+4)=−(−1._DP )∗∗ IPER ∗6 . _DP∗B ( I )∗ C ( M )∗ TWOD+2._DP∗B ( M )∗ B ( M )∗ C ( I)∗&
170 &C ( J )+4. _DP∗B ( J )∗ B ( M )∗ C ( M )∗ C ( I )+5. _DP∗R (J , I )∗ B ( M )∗ B ( M )∗ C ( J )∗ C ( J)+&
171 &10._DP∗R (M , I )∗ B ( J )∗ B ( M )∗ C ( M )∗ C ( M )
172 QXX ( NR , JC+5)=(−1._DP )∗∗ IPER ∗10 . _DP∗B ( I )∗ B ( M )∗ TWOD −6._DP∗B ( M )∗ B ( M )∗ P ( M)−&
173 &10._DP∗R (J , I )∗ B ( M )∗ B ( M )∗ B ( J )∗ C ( J ) −20. _DP∗R (M , I )∗ B ( M )∗ B ( M )∗ B ( J )∗ C ( M )
174 QXX ( NR , JC+6)=6._DP∗B ( I )∗ B ( J )∗ B ( M )∗ B ( M )+5. _DP∗R (J , I )∗ B ( J )∗ B ( J )∗ B ( M)∗&
175 &B ( M )+10. _DP∗R (M , I )∗ B ( J )∗ B ( M )∗ B ( M )∗ B ( M )
176 !
177 !
178 QYY ( NR , JC+1)=60._DP∗(−C ( I )∗ C ( I)+R (J , I )∗ C ( M )∗ C ( M )+2. _DP∗R (M , I )∗ C ( J)∗&
179 &C ( M ) )
180 QYY ( NR , JC+2)=(−1._DP )∗∗ IPER ∗ ( 2 4 . _DP∗C ( I )∗ C ( I )∗ C ( M )+18. _DP∗C ( M )∗ C ( M )∗ C ( I)&
181 &+30._DP∗R (J , I )∗ C ( M )∗ C ( M )∗ C ( J ) −60. _DP∗R (M , I )∗ C ( M )∗ C ( M )∗ C ( J ) )
182 QYY ( NR , JC+3)=12._DP∗C ( I )∗ TWOD −(−1._DP )∗∗ IPER ∗ ( 2 4 . _DP∗C ( I )∗ C ( I )∗ B ( M)+&
183 &18._DP∗C ( M )∗ C ( M )∗ B ( I )+30. _DP∗R (J , I )∗ C ( M )∗ C ( M )∗ B ( J ) −60. _DP∗R (M , I )∗ C ( J)∗&
184 &C ( M )∗ B ( M ) )
185 QYY ( NR , JC+4)=6._DP∗C ( I )∗ C ( J )∗ C ( M )∗ C ( M )+5. _DP∗R (J , I )∗ C ( J )∗ C ( J )∗ C ( M)∗&
186 &C ( M )+10. _DP∗R (M , I )∗ C ( J )∗ C ( M )∗∗3
187 QYY ( NR , JC+5)=−(−1._DP )∗∗ IPER ∗10 . _DP∗C ( I )∗ C ( M )∗ TWOD −6._DP∗C ( M )∗ C ( M)∗&
188 &P ( M ) −10. _DP∗R (J , I )∗ C ( M )∗ C ( M )∗ C ( J )∗ B ( J ) −20. _DP∗R (M , I )∗ C ( M )∗ C ( M)∗&
189 &C ( J )∗ B ( M )
190 QYY ( NR , JC+6)=(−1._DP )∗∗ IPER ∗6 . _DP∗C ( I )∗ B ( M )∗ TWOD+2._DP∗C ( M )∗ C ( M )∗ B ( I)∗&
191 &B ( J )+4. _DP∗C ( J )∗ C ( M )∗ B ( M )∗ B ( I )+5. _DP∗R (J , I )∗ C ( M )∗ C ( M )∗ B ( J )∗ B ( J)+&
192 &10._DP∗R (M , I )∗ C ( J )∗ C ( M )∗ B ( M )∗ B ( M )
193 !
194 !
195 QXY ( NR , JC+1)=120._DP∗(−B ( I )∗ C ( I)+R (J , I )∗ B ( M )∗ C ( M)+R (M , I )∗ P ( I ) )
196 QXY ( NR , JC+2)=12._DP∗C ( I )∗ TWOD+(−1._DP )∗∗ IPER ∗ ( 4 8 . _DP∗B ( I )∗ C ( I )∗ C ( M)+&
197 &36._DP∗B ( M )∗ C ( M )∗ C ( I )+60. _DP∗R (J , I )∗ B ( M )∗ C ( M )∗ C ( J ) −60. _DP∗R (M , I)∗&
198 &C ( M )∗ P ( I ) )
199 QXY ( NR , JC+3)=12._DP∗B ( I )∗ TWOD −(−1._DP )∗∗ IPER ∗ ( 4 8 . _DP∗C ( I )∗ B ( I )∗ B ( M)+&
200 &36._DP∗C ( M )∗ B ( M )∗ B ( I )+60. _DP∗R (J , I )∗ C ( M )∗ B ( M )∗ B ( J ) −60. _DP∗R (M , I)∗&
201 &B ( M )∗ P ( I ) )
202 QXY ( NR , JC+4)=10._DP∗C ( I )∗ B ( J )∗ C ( M )∗ C ( M )+2. _DP∗C ( I )∗ C ( J )∗ B ( M )∗ C ( M)+&
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203 &10._DP∗R (J , I )∗ C ( J )∗ C ( J )∗ B ( M )∗ C ( M )+10. _DP∗R (M , I )∗ C ( M )∗ C ( M )∗ P ( I )
204 QXY ( NR , JC+5)=−16._DP∗B ( M )∗ C ( M )∗ P ( M )+2. _DP∗P ( I )∗ P ( J ) −20. _DP∗R (J , I )∗ B ( J)∗&
205 &C ( J )∗ B ( M )∗ C ( M ) −20. _DP∗R (M , I )∗ B ( M )∗ C ( M )∗ P ( I )
206 QXY ( NR , JC+6)=10._DP∗B ( I )∗ C ( J )∗ B ( M )∗ B ( M )+2. _DP∗B ( I )∗ B ( J )∗ C ( M )∗ B ( M)+&
207 &10._DP∗R (J , I )∗ B ( J )∗ B ( J )∗ C ( M )∗ B ( M )+10. _DP∗R (M , I )∗ B ( M )∗ B ( M )∗ P ( I )
208 !
209 !
210 case (2 )
211 QXX ( NR , JC+1)=60._DP ∗( B ( I )∗ B ( I )+2. _DP∗R (M , I )∗ B ( M )∗ B ( I ) )
212 QXX ( NR , JC+2)=12._DP∗B ( I )∗ TWOD −(−1._DP )∗∗ IPER ∗ ( 3 6 . _DP∗B ( I )∗ B ( I )∗ C ( M)+&
213 &60._DP∗R (M , I )∗ B ( M )∗ B ( I )∗ C ( M ) )
214 QXX ( NR , JC+3)=(−1._DP )∗∗ IPER ∗ ( 3 6 . _DP∗B ( I )∗ B ( I )∗ B ( M )+60. _DP∗R (M , I)∗&
215 &B ( M )∗ B ( M )∗ B ( I ) )
216 QXX ( NR , JC+4)=3._DP∗B ( I )∗ B ( I )∗ C ( M )∗ C ( M )+4. _DP∗B ( I )∗ B ( M )∗ C ( I )∗ C ( M)+&
217 &10._DP∗R (M , I )∗ B ( I )∗ B ( M )∗ C ( M )∗ C ( M )
218 QXX ( NR , JC+5)=−10._DP∗B ( I )∗ B ( I )∗ C ( M )∗ B ( M ) −4. _DP∗B ( M )∗ B ( M )∗ C ( I )∗ B ( I)&
219 &−20._DP∗R (M , I )∗ B ( M )∗ B ( M )∗ B ( I )∗ C ( M )
220 QXX ( NR , JC+6)=7._DP∗B ( I )∗ B ( I )∗ B ( M )∗ B ( M )+10. _DP∗R (M , I )∗ B ( I )∗ B ( M )∗∗3
221 !
222 !
223 QYY ( NR , JC+1)=60._DP ∗( C ( I )∗ C ( I )+2. _DP∗R (M , I )∗ C ( M )∗ C ( I ) )
224 QYY ( NR , JC+2)=−(−1._DP )∗∗ IPER ∗ ( 3 6 . _DP∗C ( I )∗ C ( I )∗ C ( M )+60. _DP∗R (M , I)∗&
225 &C ( M )∗ C ( M )∗ C ( I ) )
226 QYY ( NR , JC+3)=12._DP∗C ( I )∗ TWOD+(−1._DP )∗∗ IPER ∗ ( 3 6 . _DP∗C ( I )∗ C ( I )∗ B ( M )+60. _DP&
227 &∗R (M , I )∗ C ( M )∗ C ( I )∗ B ( M ) )
228 QYY ( NR , JC+4)=7._DP∗C ( I )∗ C ( I )∗ C ( M )∗ C ( M )+10. _DP∗R (M , I )∗ C ( I )∗ C ( M )∗∗3
229 QYY ( NR , JC+5)=−10._DP∗C ( I )∗ C ( I )∗ B ( M )∗ C ( M ) −4. _DP∗C ( M )∗ C ( M )∗ B ( I )∗ C ( I)−&
230 &20._DP∗R (M , I )∗ C ( M )∗ C ( M )∗ C ( I )∗ B ( M )
231 QYY ( NR , JC+6)=3._DP∗C ( I )∗ C ( I )∗ B ( M )∗ B ( M )+4. _DP∗C ( I )∗ C ( M )∗ B ( I )∗ B ( M)+&
232 &10._DP∗R (M , I )∗ C ( I )∗ C ( M )∗ B ( M )∗ B ( M )
233 !
234 !
235 QXY ( NR , JC+1)=120._DP ∗( B ( I )∗ C ( I)+R (M , I )∗ P ( J ) )
236 QXY ( NR , JC+2)=12._DP∗C ( I )∗ TWOD −(−1._DP )∗∗ IPER ∗ ( 7 2 . _DP∗B ( I )∗ C ( I )∗ C ( M)+&
237 &60._DP∗R (M , I )∗ C ( M )∗ P ( J ) )
238 QXY ( NR , JC+3)=12._DP∗B ( I )∗ TWOD+(−1._DP )∗∗ IPER ∗ ( 7 2 . _DP∗C ( I )∗ B ( I )∗ B ( M )+60. _DP∗&
239 &R (M , I )∗ B ( M )∗ P ( J ) )
240 QXY ( NR , JC+4)=10._DP∗C ( I )∗ B ( I )∗ C ( M )∗ C ( M )+4. _DP∗C ( I )∗ C ( I )∗ B ( M )∗ C ( M)+&
241 &10._DP∗R (M , I )∗ C ( M )∗ C ( M )∗ P ( J )
242 QXY ( NR , JC+5)=−12._DP∗B ( I )∗ C ( I )∗ B ( M )∗ C ( M ) −4. _DP∗P ( J )∗ P ( J ) −20. _DP∗R (M , I)∗&
243 &B ( M )∗ C ( M )∗ P ( J )
244 QXY ( NR , JC+6)=10._DP∗B ( I )∗ C ( I )∗ B ( M )∗ B ( M )+4. _DP∗B ( I )∗ B ( I )∗ C ( M )∗ B ( M)+&
245 &10._DP∗R (M , I )∗ B ( M )∗ B ( M )∗ P ( J )
246 !
247 !
248 case (3 )
249 QXX ( NR , JC+1)=60._DP∗R (M , I )∗ B ( I )∗ B ( I )
250 QXX ( NR , JC+2)=−(−1._DP )∗∗ IPER ∗ ( 6 . _DP∗B ( I )∗ B ( I )∗ C ( I )+30. _DP∗R (M , I )∗ B ( I)∗&
251 &B ( I )∗ C ( M ) )
252 QXX ( NR , JC+3)=(−1._DP )∗∗ IPER ∗ ( 6 . _DP∗B ( I )∗ B ( I )∗ B ( I )+30. _DP∗R (M , I )∗ B ( I)∗&
253 &B ( I )∗ B ( M ) )
254 QXX ( NR , JC+4)=2._DP∗B ( I )∗ B ( I )∗ C ( I )∗ C ( M )+5. _DP∗R (M , I )∗ B ( I )∗ B ( I)∗&
255 &C ( M )∗ C ( M )
256 QXX ( NR , JC+5)=−2._DP∗B ( I )∗ B ( I )∗ ( P ( J )+5. _DP∗R (M , I )∗ B ( M )∗ C ( M ) )
257 QXX ( NR , JC+6)=2._DP∗B ( I )∗ B ( I )∗ B ( I )∗ B ( M )+5. _DP∗R (M , I )∗ B ( I )∗ B ( I )∗ B ( M )∗ B ( M )
258 !
259 !
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260 QYY ( NR , JC+1)=60._DP∗R (M , I )∗ C ( I )∗ C ( I )
261 QYY ( NR , JC+2)=−(−1._DP )∗∗ IPER ∗ ( 6 . _DP∗C ( I )∗∗3+30. _DP∗R (M , I )∗ C ( I )∗ C ( I )∗ C ( M ) )
262 QYY ( NR , JC+3)=(−1._DP )∗∗ IPER ∗ ( 6 . _DP∗C ( I )∗ C ( I )∗ B ( I )+30. _DP∗R (M , I )∗ C ( I)∗&
263 &C ( I )∗ B ( M ) )
264 QYY ( NR , JC+4)=2._DP∗C ( I )∗ C ( I )∗ C ( I )∗ C ( M )+5. _DP∗R (M , I )∗ C ( I )∗ C ( I )∗ C ( M)∗&
265 &C ( M )
266 QYY ( NR , JC+5)=−2._DP∗C ( I )∗ C ( I )∗ ( P ( J )+5. _DP∗R (M , I )∗ C ( M )∗ B ( M ) )
267 QYY ( NR , JC+6)=2._DP∗C ( I )∗ C ( I )∗ B ( I )∗ B ( M )+5. _DP∗R (M , I )∗ C ( I )∗ C ( I )∗ B ( M)∗&
268 &B ( M )
269 !
270 !
271 QXY ( NR , JC+1)=120._DP∗R (M , I )∗ B ( I )∗ C ( I )
272 QXY ( NR , JC+2)=−(−1._DP )∗∗ IPER ∗ ( 1 2 . _DP∗B ( I )∗ C ( I )∗ C ( I )+60. _DP∗R (M , I )∗ B ( I)∗&
273 &C ( I )∗ C ( M ) )
274 QXY ( NR , JC+3)=(−1._DP )∗∗ IPER ∗ ( 1 2 . _DP∗C ( I )∗ B ( I )∗ B ( I )+60. _DP∗R (M , I )∗ C ( I)∗&
275 &B ( I )∗ B ( M ) )
276 QXY ( NR , JC+4)=4._DP∗C ( I )∗ C ( I )∗ B ( I )∗ C ( M )+10. _DP∗R (M , I )∗ C ( M )∗ C ( M )∗ B ( I)∗&
277 &C ( I )
278 QXY ( NR , JC+5)=−4._DP∗B ( I )∗ C ( I )∗ P ( J ) −20. _DP∗R (M , I )∗ B ( I )∗ C ( I )∗ B ( M )∗ C ( M )
279 QXY ( NR , JC+6)=4._DP∗B ( I )∗ B ( I )∗ C ( I )∗ B ( M )+10. _DP∗R (M , I )∗ B ( M )∗ B ( M )∗ C ( I)∗&
280 &B ( I )
281 case d e f a u l t
282 istat=STAT_FAILURE
283 emsg=’K i s d i f f . from 1 ,2 or 3 , Qform , &
284 & element_module ’
285 QXX=ZERO ; QYY=ZERO ; QXY=ZERO
286 re turn
287 end s e l e c t
288 end do iper_loop
289 end do row_selec_loop
290

291 end do main_loop
292

293

294

295 end subrout ine Qform
296

297 end module Qform_env



Appendix C

TUBA3 verification: meshes and
boundary conditions

The plate analyses were performed using either some or all the meshes shown in Figures
C.1, C.2 and C.3. Edge numbers are used in Tables C.1, C.2, C.3 and C.4 to specify the
constrained degrees of freedom.

In case of a free or simply supported edge, no moments work for rotations around the edge
axis. If this is oriented respectively in the x and y directions and the plate is isotropic, the
followings must hold

My = E t3

12(1− ν2)

(
ν
∂2w

∂x2 + ∂2w

∂y2

)
= 0 (C.1)

Mx = E t3

12(1− ν2)

(
∂2w

∂x2 + ν
∂2w

∂y2

)
= 0 (C.2)

which reduce to

ν
∂2w

∂x2 + ∂2w

∂y2 = 0 (C.3)

∂2w

∂x2 + ν
∂2w

∂y2 = 0 (C.4)

For a UD composite plate, the analogous conditions are

νxy
∂2w

∂x2 + ∂2w

∂y2 = 0 (C.5)

∂2w

∂x2 + νyx
∂2w

∂y2 = 0 (C.6)
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Figure C.1: Isotropic plate: meshes.
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Edge Type Boundary conditions

1 simply supported w = 0, ∂w∂y = 0
∂2w
∂x2 + ν ∂2w

∂y2 = 0

2 simply supported w = 0, ∂w∂x = 0
ν ∂2w
∂x2 + ∂2w

∂y2 = 0

3 y-symmetry ∂w
∂x = 0, ∂2w

∂x∂y = 0

4 x-symmetry ∂w
∂y = 0, ∂2w

∂x∂y = 0

Table C.1: Boundary conditions for the simply supported isotropic plate.

Edge Type Boundary conditions

1 clamped w = 0, ∂w∂y = 0, ∂w∂x = 0

2 clamped w = 0, ∂w∂x = 0, ∂w∂y = 0

3 y-symmetry ∂w
∂x = 0, ∂2w

∂x∂y = 0

4 x-symmetry ∂w
∂y = 0, ∂2w

∂x∂y = 0

Table C.2: Boundary conditions for the clamped isotropic plate.
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Figure C.2: Cantilever UD composite plate: meshes.
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Figure C.3: 3-point-bending UD composite plate: meshes.
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Edge Type Boundary conditions

1 clamped w = 0, ∂w∂y = 0, ∂w∂y = 0

2 x-symmetry ∂w
∂y = 0, ∂2w

∂x∂y = 0

3 free ∂2w
∂x2 + νyx

∂2w
∂y2 = 0

4 free νxy
∂2w
∂x2 + ∂2w

∂y2 = 0

Table C.3: Boundary conditions for the cantilever UD composite plate.

Edge Type Boundary conditions

1 simply supported w = 0, ∂w∂y = 0
∂2w
∂x2 + νyx

∂2w
∂y2 = 0

2 x-symmetry ∂w
∂y = 0, ∂2w

∂x∂y = 0

3 y-symmetry ∂w
∂x = 0, ∂2w

∂x∂y = 0

4 free νxy
∂2w
∂x2 + ∂2w

∂y2 = 0

Table C.4: Boundary conditions for the 3-point-bending UD composite plate.



Appendix D

Abaqus input file parameters for DCB
reference analyses

Following, an excerpt of an Abaqus input file is reported, used for reference analyses with
C3D8I elements and cohesive contact. Parameters for the definition of material, interaction,
step and solution control are made available.

*Heading
** Job name: BenchmarkDCB_JOB_M3 Model name: BenchmarkDCB
** Generated by: Abaqus/CAE 2017
*Preprint, echo=NO, model=NO, history=NO, contact=NO
**
** PARTS
**
*Part, name=BottomPart
...
...
...
**
** MATERIALS
**
*Material, name=CompositeUD
*Elastic, type=ENGINEERING CONSTANTS
139400.,10160.,10160., 0.3, 0.3, 0.436, 4600., 4600.
3540.,

**
** INTERACTION PROPERTIES
**
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*Surface Interaction, name=CohesiveContact
1.,
*Cohesive Behavior
169333., 76666.7, 76666.7
*Damage Initiation, criterion=QUADS
30.,50.,50.
*Damage Evolution, type=ENERGY, mixed mode behavior=BK, power=1.62
0.17, 0.494, 0.494

*Damage Stabilization
1.772e-05
**
** BOUNDARY CONDITIONS
**
** Name: Fixed_BottomLeftCorner Type: Symmetry/Antisymmetry/Encastre
*Boundary
BottomLeftCorner, PINNED
** Name: XYPlanar_TopLeftCorner Type: Displacement/Rotation
*Boundary
Set-2, 1, 1
Set-2, 2, 2
**
** INTERACTIONS
**
** Interaction: Contact
*Contact
*Contact Inclusions
BottomPart-1.BottomPart_TopSurf , TopPart-1.TopPart_BottomSurf
*Contact Property Assignment
, , CohesiveContact

** ----------------------------------------------------------------
**
** STEP: Loading
**
*Step, name=Loading, nlgeom=NO, extrapolation=NO, inc=1000
*Static
1e-2, 2., 1e-07, 1e-2
**
** BOUNDARY CONDITIONS
**
** Name: UpwVelocity_TopLeft Type: Velocity/Angular velocity
*Boundary, type=VELOCITY
_PickedSet8, 3, 3, 2.
**
** CONTROLS
**
*Controls, reset
*Controls, parameters=time incrementation
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, , , , , , , 10, , ,
**
** OUTPUT REQUESTS
**
*Restart, write, frequency=0
...
...
...
*End Step
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Appendix E

Analytical solution for mode I
delamination

𝑃

𝑃
𝑎

ℎ

𝑏

Figure E.1: Double cantilever beam with precrack length a

The analytical solution for DCB delamination is composed of two distinguished curves cor-
responding to initial linear loading and crack propagation. In both cases a system of two
cantilever beams is considered, having length equal to the crack extension a, width b and
thickness h (Figure E.1).

The first branch of the curve considers a = a0, hence the beams are as long as the precrack.
The tip separation ∆I can be described by the Corrected Beam Theory (CBT) [81], which is
an extension of the Euler-Bernoulli model that accounts for transverse shearing and rotations
at the crack tip.

∆I = 2P (a+ χh)3

3ExxI
(E.1)
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where P is the tip force, Exx the longitudinal modulus and I the section’s moment of inertia.
The correction parameter χ reads

χ =

√√√√√ Exx
11Gxz

[
3− 2

(
Γ

1 + Γ

)2]
(E.2)

with Gxz the transverse shear modulus and

Γ = 1.18
√
ExxEyy
Gxz

(E.3)

Propagation occurs when the energy release rate reaches the mode I fracture toughness, hence
when

GI = GI,c (E.4)

Following [82], the mode I energy release rate is expressed as

GI = P

2b
∂∆I

∂a

∣∣∣∣
P=const

(E.5)

Thus, differentiating Equation (E.1) by a and combining Equations (E.4) and (E.5), the crack
length can be expressed as function of the applied load P as

a =
√
bExxI GI,c

P
− χh (E.6)

Substituting Equation (E.6) into Equation (E.1), the mode I opening during crack propagation
is found as

∆I =
2
√
b3ExxI G3

I,c

3P 2 (E.7)

Equations (E.1) and (E.7) are ultimately the analytical solutions for the DCB specimen
loading and fracture.
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