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Summary

Introduction
Current day routing systems use predicted travel times to calculate optimal routes. Some routing algorithms even
use predicted traffic lights states to optimize these routes and to improve the expected travel time. But all these
methods optimize the expected travel time and do not take reliability into account. Reliability is a major service
indicator and with non-flexible departure or arrival constraints, the value of reliability can increase up to three
times the value of time (Markovich, Concas, & Kolpakov, 2009).

To use a measure of reliability, not the expected travel time, but the travel time distribution should be known.
Since reliability is not uniquely defined, an algorithm is designed with an individual cost function, that gives users
the freedom to use their own definition of reliability. Since knowing the traffic light states at intersections could
improve the travel time and reliability, this should be used in the algorithm as well. Therefore the main goal of this
research is:
Designing an urban routing algorithm, that incorporates predicted traffic light states, where the routing is based
on the probability distribution of the travel time and an individual cost function that expresses the tradeoff be-
tween travel time and reliability.
For this research only urban areas with traffic lights are considered, other intersections in this network are not taken
into account. The traffic lights are assumed to be traffic lights with a changing cycle time. If this algorithm works for
these traffic lights it will also work for fixed time traffic lights and most other type of traffic lights, since these have
less degrees of freedom.

Routing algorithms
Most routing algorithms used today do not take predicted traffic light states into account. There are different meth-
ods developed in researches, but only a few could work with probabilistically known signal timings or delays. Since
traffic lights with a changing cycle time are considered in this research, the signal timings are probabilistic. The
ARSC method by B. Yang and Miller-Hooks (2004) can route traffic in a time-dependent stochastic network using
discrete time steps and take probabilistically known signal timings or delays into account. Therefore this algorithm
is used as the base of the newly developed algorithm. This algorithm saves the route with the lowest expected travel
time at intermediate nodes and does this by searching for the optimal route backwards, from the destination node
towards the departure node and from the latest timestep in the prediction horizon to the current time. This eases the
calculation of travel times around the traffic light, but waiting times at the traffic lights cannot be taken into account
correctly. But even though the waiting times at the traffic light are not taken into account correctly, the probability
on a traffic light being green is taken into account. And since the probability on a traffic light being green can differ
per arrival time at that traffic light, the optimal route can differ per arrival time at intermediate nodes. Therefore
the optimal route is a set of route choices depending on the arrival time at the intermediate nodes, which is called
a routeplan. These routeplans are calculated pre-trip for all algorithms in this research and can deal with delay
since the next link to take is dependent on the arrival time at that node. In the case a vehicle wants to update their
routeplan the algorithm needs to be run again completely.

But it does not support any form of reliability, which is why the ARSCR (Adaptive Routing with Signal Controls
and Reliability) algorithm is created, which calculates the travel time distribution at intermediate nodes. To take
reliability into account a user dependent objective function is used, which has the travel time distributions as input.
With these travel time distributions and objective function, the optimal routeplan could be determined at every
node in the network and the optimal routeplan according to the objective function can be found. But not every
objective function works with the ARSCR algorithm. Since the optimal routeplan is determined at all intermediate
nodes, the optimal routeplan cannot be dependent on data that will be added at the next node in the calculations.
Since the optimal routeplan is dependent on the objective function, not all objective functions can be used. Some
objective functions cannot have their routeplan calculated at intermediate nodes because the reliability measure
used, need to have the travel time distribution of the entire routeplan before they can be compared. If an optimal
routeplan is selected at intermediate nodes, this might result in sub optimal routeplans for the complete routeplan.
For this situation a new algorithm is created, the Forwards Probability Propagation (FPP) algorithm.
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The FPP algorithm calculates the entire travel time distribution for every routeplan before calculating the ob-
jective function, instead of at intermediate nodes as well. Therefore all objective functions can be used, but the
calculation becomes more complex. Since this algorithm is calculated forwards, from the departure to the destina-
tion node, and from the current time until the destination is reached, waiting times at the traffic lights can be taken
into account correctly.

Traffic light state prediction
To predict the traffic light states, a method was developed that predicts traffic light states a few minutes ahead,
resulting in a probability distribution, has a reasonable complexity and uses only historic or SPaT (Signal Phase
And Timing) data. The most useful method that was found created a list of traffic light states and calculated the
probabilities of transition between these states (Bodenheimer, Brauer, Eckhoff, & German, 2014; Dabiri & Hegyi,
2018). If the current state is known, then the probability on all future states could be calculated.

This method is used in this research as well, and since some traffic lights can have alternative realisations (give
a different direction green if some directions have no traffic), the definition of a state was expanded. A traffic light
state is a combination of all the directions that have green at that moment and not the directions that can be green
at that moment. This will increase the number of states, but also increases the information saved in a state. This is
used to calculate the probability of a traffic light being green for every direction and every timestep in the algorithm.
This is directly used in the ARSCR algorithm, but for the FPP algorithm the data is adjusted to give the waiting time
distribution at the traffic light depending on the arrival time at the traffic light. This uses more calculations, but
offers more realistic predictions of the waiting times at a traffic light.

Link travel time prediction
There are three main models that are used in urban link travel time prediction: the queueing model, the queue
discharge model and the platoon dispersion model. All these models depend on each other and mainly on the
position in the queue. Since the position in the queue is not known in the routing algorithms described before, these
models cannot be used with these algorithms directly. Therefore a link travel time distribution per link will be used,
which is assumed to be independent of the position in the queue or time waited at the traffic light. This distribution
should be made available to the routing algorithm, since current routing algorithms already take (realtime) link
travel times into account, this is usually already known.

Evaluation of the algorithm
Proof of concept
In the evaluation the FPP algorithm is verified with a simulation. This is done to check if the travel time distributions,
predicted by the FPP algorithm, were realized in a simulation and are thus calculated correctly. This is done by first
calculating the optimal distribution with the FPP algorithm on a small network with 2 intersections with traffic
lights and 4 links. This resulted in an optimal routeplan and a travel time distribution of this routeplan. This travel
time distribution, calculated by the FPP algorithm, should also be realized if this routeplan is traveled repeatedly
by vehicles. Therefore this is also simulated on the same network with the optimal routeplan according to the
objective function, resulting in a travel time distribution. Both travel time distributions match and as a result the
FPP algorithm calculates the travel time distributions correctly.

Improvement in objective values
In the second part of the evaluation the FPP algorithm is compared with a standard routing algorithm and differ-
ent objective functions. This is done to calculate the improvements in objective values compared with a standard
algorithm and different objective functions, which shows the effect of the FPP algorithm. Since the user can enter
the objective function themselves, four objective functions are used in this evaluation. The evaluation is done by
calculating the FPP algorithm for a specific network, considering all possible starting traffic light states. This results
in numerous travel time distributions, and with the objective function, in numerous objective values. The mean
of these values is used to compare the results of the different objective functions and compare it with a standard
algorithm that does not take the traffic light state or link travel time distribution into account. This standard algo-
rithm only takes the average delay and average link travel time into account. This part of the evaluation does not
simulate individual vehicles since in the first part of the evaluation it is shown that for enough runs, the travel time
distribution of those runs will become equal to the travel time distribution given by the FPP algorithm.
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Results
The results show an improvement in the expected travel time (if that was used as objective function) of 1.22 seconds
(on an expected travel time of 18.22 seconds expected by the standard algorithm). This is possible since the FPP
algorithm is more flexible, since it has a routeplan dependent on the predicted arrival times at the intermediate
nodes. In the small evaluation network used, the optimal routeplan according to the FPP algorithm had a different
route depending on the predicted arrival times at intermediate nodes in 19-56% of the cases. In all other cases the
routeplan consist of the same route independent on the arrival time at the intermediate nodes. This percentage
is dependent on the objective function and the network, since a very small network is used this might increase
in larger networks. The other objective functions took reliability into account and these mainly showed that they
optimized for their functions, but that they all had different values since they take reliability into account differently.
Sometimes the mean travel time might be low, but the probability to actually arrive on that mean travel time is low
as well since there is high probability of being earlier and a high probability of being later. Thus even when the
algorithm works, finding an optimal function to take reliability into account is hard since people’s preferences differ
and different functions can accommodate different aspects of those preferences.

Complexity
Besides the aforementioned results, the computation time of the algorithm also became clear in the evaluation.
Since a vehicle can choose a different next link at every node, for every timestep it can arrive at that node, the
number of calculations increase quickly. Therefore a simulation resolution can be used that increases the timestep
of the algorithm and therefore decreases the complexity. But since this simultaneously decreases the performance
of the results, further research into alternative methods is needed. For instance an algorithm that preselects which
links to take into consideration, or an optimization that reduces the number of timesteps that have to be calculated
at intermediate nodes. This can be done for instance if it is highly unlikely that one small change in the routeplan
could improve the objective value from bad to good.

Conclusion and discussion
The FPP algorithm has an improved performance compared with standard algorithms. The potential is shown in
this research, but the computation time is the main drawback. Therefore this should be improved before it can be
implemented in real time. Besides the suggestions mentioned before, this could also be done by using this algorithm
for the next one or two traffic lights and a conventional routing algorithm, or average waiting times and link travel
times, for the rest of the network. Larger networks can be used with this method and the performance might not
drop much, since the quality of the prediction decreases over time anyways.

If this algorithm is built into a navigation system, the user interface should be made user friendly with some
suggested objective functions, explanation on how those objective functions take reliability into account and clear
visualization of the route to take. This might seem trivial, but since the routeplan is dependent on the arrival time
at intermediate nodes, it cannot always be displayed a long time in advance. Since switching lanes last moment can
be unsafe, some restrictions or a warning should be build into the system.
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1
Introduction

Finding the best route is something we aim for every time we travel somewhere. Because of new technological de-
velopments like GPS, navigations systems, connected vehicles and smart infrastructure there is more information
available for the road user. Therefore the traffic flow and delay are known more precisely and can be predicted
increasingly more accurate. Also the infrastructure itself is becoming connected with the vehicles, to give them
warnings about traffic jams or road works (Sjoberg, Andres, Buburuzan, & Brakemeier, 2017) and traffic lights are
sending details about the current state or time to green/red (Iglesias, Isasi, Larburu, Martinez, & Molinete, 2008).
The vehicles themselves become more capable to visualize this information or improve this information by sending
data themselves. A research from Bansal and Kockelman (2017) expected that in 2030 98% of the light U.S. con-
sumers vehicles are connected because of U.S. regulation. In a future with all these connected vehicles, connected
traffic lights and more precise predictions, a higher reliability of travel times could be realized. To assist towards this
goal, the current and expected traffic lights state could already be incorporated into a navigation system to improve
travel time reliability.

1.1. Research motivation
While most navigation systems are already using historical and real time data for travel time predictions, for travel
time reliability in urban areas only historical data is commonly used (Kaparias, Bell, & Belzner, 2008; Kaparias &
Bell, 2010; S. Yang & Wu, 2019). But reliability is next to travel time and level of service, a major indicator of service
quality for travelers (S. Yang & Wu, 2019). This is taken into account in the Value of Reliability (VOR). With empirical
estimates of the VOR, varied from 0.55 to 3.22 times the value of time savings (Devarasetty, Burris, & Shaw, 2012),
reliability is an important factor to take into account (H. X. Liu, Recker, & Chen, 2004). The difference in the estima-
tions of the VOR can partly be explained by the type of traveler and trip. If there are non-flexible departure or arrival
constraints, the VOR can increase up to three times that of the travel time (Markovich et al., 2009). Business travelers
in general also have a higher VOR than VOT (Kouwenhoven et al., 2014). For some truckers being on time includes
not being too early, since early deliveries could result in extra holding costs (Urban, 2009), therefore a system that
gives a more reliable route could be more useful than the fastest route.

Traffic light state prediction
In urban areas the travel time reliability is dependent on the speed variation at road segments and the delay vari-
ability at the traffic lights. In the current situation travel times or delays are widely communicated to the drivers but
traffic light states are often not real-time communicated. Especially in urban areas intersections create an uncer-
tain travel time, since encountering multiple red traffic lights on the route might increase the travel time by minutes
(Hong-En Lin, 2005). Waiting times at intersections depend on many factors such as the amount of traffic already
waiting, conflicting traffic and when the traffic light turns green. There has been some research done on predicting
when the traffic light turns green with fixed time traffic lights (Koukoumidis, Peh, & Martonosi, 2011) and actuated
traffic lights (Chai, Zhang, Ghosal, & Chuah, 2017; Protschky, Wiesner, & Feit, 2014; Protschky, Feld, & Wälischmiller,
2015). Some governments are making the current traffic light color available online (Apple et al., 2011) or the ex-
pected time to green (Talking Traffic Gebruikstoepassingen, n.d.). With this information the navigation systems
could be improved to incorporate the real time traffic light states and time to green.

There are three main approaches of predicting future traffic light states (Protschky et al., 2014). The first ap-
proach is by predicting the complete future traffic state. This is based on complete knowledge of the current state
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to create a model of all the traffic and the functioning of the traffic lights. Then the predicted future state can be cal-
culated in a simulation environment. The second approach are statistical prediction models. From historical data
new prediction models can be derived. Compared to the first approach, complete knowledge of the traffic state is
not required, making it more scalable to larger networks. In a approach using a Markov Decision Process by Dabiri
and Hegyi (2018) only the current state of the traffic light and historical data is required to predict the future state.
These first two methods could be combined to create a third, hybrid approach. Statistical methods could be com-
bined with detector information or public transport times. This could create more realistic predictions since some
intersections are dependent on for instance high frequent (prioritized) public transport. For a navigation system
especially the second and third approach are favored since it should be scalable to a network and usually in some
parts of a network complete knowledge is not available.

Reliable routing
In current research traffic light states are already taken into account to improve travel time in the network (Apple et
al., 2011) and this could result in shorter travel times (Protschky et al., 2015), lower delay and a decrease in fluctu-
ations of the speed in the network (Chai et al., 2017). A decrease in fluctuations of the speed in the network might
already be an improvement for reliability since larger fluctuations might result in less reliable routes. But the routing
approach itself can also be optimized to improve the reliability. The future traffic light states can be predicted and
with this information taken into account, a different route might be more reliable. This can happen if a traffic light
has a high expectancy of being green at arrival or being able to facilitate enough green to make sure the vehicle can
pass the first green phase. This could all be incorporated into one routing system that could calculate routes and
their reliability dependent on the current traffic and traffic light state and use a measure of reliability.

The new approach
The main feature of this new approach is that not the route with the lowest expected travel time will be found, but
a trade-off between reliability and travel time can be used. Therefore not the lowest expected travel time will be
optimal, but the reliability of that travel time will have an impact as well. Reliability is not a single formula that
can be used, but a term with different expectations for different people and situations. Some travellers find a route
reliable if they have a high probability of arriving before a certain time at their destination. Other travellers prefer a
reliable route as long as they have a high probability of arriving close to the expected arrival time. While others want
to have a high probability of arriving in a certain time window, since they cannot be late and early. Since these are
just a few examples of how reliability can be taken into account, a general method should be found to take reliability
into account. This will be done by using an individual cost function, in which the user can give a function that will
take reliability into account. Therefore every user can create a personalised function, specific for a certain (type of)
trip. Since the new approach will optimize the route depending on traffic light states, this research will exclusively
uses a network of urban roads with traffic lights and no unsignalized intersections. Some traffic lights do have a
fixed cycle length and structure, which makes predicting easier, but most traffic lights do not. In this research traffic
lights with a changing cycle time are researched, but if this principle works on these traffic lights, it will also work
on traffic lights without changing cycle times or fixed time traffic lights, since these are a special case of traffic lights
with a changing cycle time. If for instance the amount of traffic from each direction is exactly the same for some
time, some traffic lights might have exactly the same cycle time or even the same timing for some cycles.

The data that is assumed to be available is SPaT (Signal Phase And Timing) data from the traffic lights. This gives
information on the current state of the traffic light and sometimes about the future states. The historic SPaT data
should also be available to base the predictions on. The traffic and delay on the links between the traffic lights should
also be taken into account. Data from gps providers like TomTom or loop detectors around the traffic lights can be
used, as well as new methods like the number of vehicles entering or leaving a link based on the connected vehicles
passing by. Even though this information is not available right now, with an increasing amount of connected vehicles
and traffic lights, it is probable that in the future traffic lights can communicate with most of the traffic around the
traffic light and therefore can accurately estimate these numbers. For disruptions in the middle of the link a mobile
phone connection (like LTS) or VANET might be required to share this information (Saiáns-Vázquez et al., 2018). In
this research disruptions are not taken into account since it is still unknown how this could be predicted and how
quickly traffic can react to it. Concluding, a new approach for a route with a trade-off between reliability and travel
time, while taking current traffic lights states into account, will be researched.
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1.2. Research goal and questions
Navigation systems are widely used these days but will not let you select a route based on reliability, instead of the
shortest travel time, while taking the current and expected future states of traffic lights into account. If a driver has
to be at a certain place on-time, or before a specific time, it could be more useful to calculate a reliable route to their
destination instead of the shortest route. Therefore the following research goal is described:

Designing an urban routing algorithm, that incorporates predicted traffic light states, where the routing is
based on the probability distribution of the travel time and an individual cost function that expresses the trade-
off between travel time and reliability.

Research questions
For this research goal multiple research questions should be answered, along with the development of the routing
algorithm.

• What are the existing approaches to predict traffic light states and what is the used input, the accuracy, the
complexity, the type of traffic lights on which it can be used and how can it be incorporated in the routing
algorithm?

• What are the existing approaches to predict travel times on links?

• What are the existing routing algorithms and what is the used input, the complexity and how can it incorporate
a probability distribution of the total travel time and an individual cost function?

• How does the routing algorithm perform in a simulation, compared to a standard algorithm that searches for
the lowest expected travel time?

1.3. Research approach
To clarify how the research questions are connected together, the steps taken in this research are further explained
in this section with a compact scheme showing the main elements afterwards.

Traffic light state prediction
The first step is to do literature research to review the current state of the art of topics close to this research. Current
methods of future traffic light state prediction and their accuracy will be researched. The aim of looking into these
methods is to assess the most relevant ones. The best (parts of) prediction methods will be selected based on
multiple criteria. The prediction method has to work with traffic lights with a changing cycle time since traffic lights
with fixed timing are not common anymore. It should also be able to predict the future traffic light states accurately
and preferably result in a probability distribution. This distribution can be used as input for the routing algorithm,
while other inputs can be used as well, they should be adjusted to have values for multiple arrival moments. The
prediction method should be scalable to multiple traffic lights since it is used on a network and should therefore
not be to complex. Statistical methods are preferred since they require less computational power. How the accuracy
develops over time and if this drops significantly should also be taken into account. Some methods might have a
high accuracy for a time span of a minute but might have a low accuracy for 10 minutes in advance, while short
term predictions are usually better than long term predictions, they should both be sufficient to create an efficient
algorithm. The data that is assumed to be available are the current and historic SPaT data from the traffic lights, this
contains the traffic light state and timing of the traffic light. Data like the current color of all traffic lights is included
as different elements such as the time every direction is already in this state. The structure of the traffic light is not
included in this data and if necessary its availability form the local authorities is assumed.

Travel time prediction
The future travel times between intersections should also be known. If the travel times on those links are calculated
with the local maximum speed this could go wrong when there is some delay on the link. Therefore different predic-
tion methods and their accuracy will be reviewed in this part of the literature research. These methods might have
a lower accuracy in urban areas. The preferred method is also chosen based on the accuracy in short and medium
term prediction, the input used and the complexity, since it should be scalable. Currently available input can be
used like loop detectors at traffic lights and gps data (from for instance TomTom). But also new data sources like
the amount of traffic entering and leaving the link could be used. This data will be more available in the near future,
with the growing number of connected vehicles. Unexpected disruptions like incidents or vehicle breakdowns are
not taken into account in this research.
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Routing algorithms
The future traffic light states and travel times on the links are input for the new routing algorithm. To create this
new routing algorithm the current routing algorithms are researched with specific attention towards time depen-
dent algorithms and algorithms which take intersections or traffic lights into account. This is required since the
predicted delay at the intersection is dependent on the arrival time at the intersection. Also the different directions
at an intersection might have a different delay and this should be taken into account. Routing algorithms that cal-
culate a probability of arriving on time or have a probability distribution should also be researched since the new
routing algorithm should take the reliability into account. After the literature research the new routing algorithm
will be developed which should be able to calculate the probability distributions of different routes while using the
predicted traffic light states and link travel times. Since the travel time itself should be taken into account next to
the reliability, an objective function with the reliability of arriving on time as the travel time itself will be used. There
is no special feature for rerouting in the algorithm. But since the route is based on predicted states of the traffic and
traffic lights, more information is known every time step. Therefore the program should be able to run quickly and
recalculate the entire process on certain key moments or continuously.

Evaluation
The algorithm will be verified to show that it works by simulating the travel time distribution generated by the
algorithm. If multiple runs of a simulation results in the same travel time distribution, the algorithm calculates the
correct travel time distribution and therefore works. The effect of the algorithm will be evaluated as well, which is
done by a simulation in Python. An urban network with traffic lights will be build and input from the traffic light
prediction and travel time prediction modules will be gathered. To check the effectiveness of the algorithm the travel
times and reliability of vehicles with and without the algorithm will be compared. This will be tested for multiple
objective functions.

Figure 1.1: Research approach.

1.4. Thesis outline
Section 2 will start with several definitions to understand the functioning of traffic light controllers. Afterwards the
current literature on traffic light state prediction, travel time prediction and routing algorithms will be reviewed.
In Section 3 the new routing algorithm will be designed and for the input of this algorithm the traffic light state
prediction algorithm will be designed as well. After which the input from the link travel time prediction will be
explained. In Section 4 the algorithm will be evaluated. First the algorithm is validated with a simulation, after
which the effectiveness of the algorithm is evaluated for different objective functions. The last section is Section 5,
with the conclusion and discussion of this thesis.



2
Literature review

For the new routing algorithm three elements should be studied. Firstly, the future traffic light states are taken into
account and therefore traffic light state prediction methods are required. The current literature on this topic will be
discussed in Section 2.2. Secondly, the future travel time between the intersections should be known and therefore
travel time prediction has been researched in Section 2.3. Lastly, Section 2.4 is dedicated to routing algorithms to
find complete algorithms or elements of it that could be used. All these elements will be combined together in the
new routing algorithm which is the topic of Section 3.

2.1. Definitions
To understand the functioning of traffic light controllers several definitions should be known. There are multiple
signalgroups in each traffic light controller. At least one per side of the intersection, but usually more for seperate
directions (eg. from east towards south) and different ones for bicycles, pedestrians or separated public transport.
These signalgroups are combined into phases in which a few non-conflicting signalgroups are given green at the
same time. The (signal)cycle are all these phases after each other until the first phase reoccurs again. The cycle
time is the time from the beginning of the first phase until it’s re-occurrence. For pre-timed traffic lights the cycle
time and duration of green is always the same. But adaptive, actuatued and dynamic traffic lights take the traffic
situation into account and adjust the signal timing (and phasing) accordingly.

The traffic light state could be defined in different ways. First is the most simple way and is the current state
of all the colors of the traffic lights on the intersection. This is exactly the same information you could get by just
looking at the traffic lights and does not give any information on the internal state of the traffic light controller. The
internal state of the traffic light controller is taken into account in the second definition. This information could
contain in which state every signalgroup is, such as fixed green or extension green and information when these
phases started, the earliest possibility to end this phase and the latest possibility to end this phase. Sometimes data
about the next signalgroups that are going to get green is included, but this is not necessarily the case with all type of
traffic light controllers since this is not always known or communicated a few seconds before. Since the algorithm
designed in this thesis needs to be applicable to as much traffic light controllers as possible this information will not
be used. Therefore the definition of "traffic light state" in this research will be: The current colour of the light of all
the signalgroups.

The information of the traffic light state is send by many traffic lights via SPaT (Signal Phase And Timing) data to
traffic control centers or vehicles. SPaT data contains information about the traffic light state. The minimum data
send is the current state of the traffic light signals, but sometimes expected times to green, red or the next signal
group to receive green is also communicated. Since these predictions are short term, the accuracy is unknown and
these predictions are not available for all traffic lights, these will not be used. Often this SPaT data is saved to a
database which can be used to gain historic data of the intersection.

2.2. Current traffic light state prediction methods
There have been some research on predicting future signal states of traffic lights, in short traffic light state predic-
tion. Most methods are statistical approaches sometimes added with detector or public transportation information.
In this section the related work will be reviewed in perspective to this research. The research that focused on the
prediction of the state of fixed time traffic lights cannot be used in this research because they simply follow the same
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timing schedule every cycle and the traffic lights from this research will not. One fixed time method is different since
it is based on busses crossing intersections (Fayazi, Vahidi, Mahler, & Winckler, 2015). This could predict the green
times with sporadically a bus crossing the intersection and updating location approximately every 200 meters. This
did show that even with limited information, some prediction could be done and that public transport can assist in
it.

Koukoumidis et al. (2011) predicted future traffic light states by mounting iPhones on dashboards of various
cars. This predicted the future traffic light states of fixed-time traffic lights and some adaptive traffic lights. The
adapative traffic lights for which it predicted the states used GLIDE which is based on the widespread SCATS system.
Therefore the cycletime and allocation of green to each direction can be changed by the central system, resulting
in a cycletime and green time that should be estimated. This is done by support vector regression which uses prior
signal transition history. This predicts when a traffic controller is going to switch to the next phase, depending on
the length of the previous phases. The regression method allows for larger scale predictions and was in a test in
Singapore able to predict with a mean absolute error of 4.1 seconds four phases ahead (four phases are about 187
seconds in this case). The phaselength (and thus cyclelength as well) in SCATS are set after each cycle and this might
therefore react somewhat different compared to for instance actuated traffic lights that do not have a set green time,
but completely relies on detector data. Therefore the error might increase significantly when the traffic lights have
more freedom compared to the SCATS system. This system also predicts the exact moment of switching and does
not give a probability (distribution) of actually switching at that moment.

Apple et al. (2011) combined routing and traffic light state prediction together for coordinated traffic lights. They
derived stochastic models for each group of traffic lights and calculated a probability distribution on the delay time
to cross the intersection dependent on the arrival time. These models were different for uncoordinated traffic lights
or traffic lights with protected-permissive left turns and used historic information to determine probabilities. Some
phases in these traffic lights have fixed green times but for the phases with varying green times, the level of demand,
the historic green times and historic waiting times are used to create a stochastic model. From this model the
likelihood of arriving during a green period could be calculated and a probability distribution of the delay time if a
vehicle does not arrive during a green period. A more precise description than previously mentioned is not given
since the paper focussed more on routing, but this paper shows that routing using predicted traffic lights states of
actuated traffic lights will actually lead to different routes.

Another method is calculating the average green and red time and knowing the current state of the traffic light
(Mahler & Vahidi, 2012). If this is known for all directions, you can estimate at what time the traffic light will be
green. In this paper the method is also based on the assumption that the cycle time stays the same, which is not the
case for all traffic lights. In an stochastic dynamic programming approach by Dabiri and Hegyi (2018) a comparable
method was introduced. A Descrete-time Markov Chain is used, which uses a probability matrix of the transition
between traffic light phases. This probability matrix can be extracted from historic SPaT data from the traffic light
and contains the chance of switching to the next phase for every second the traffic light is already in that phase. The
benefit of this system is that the next state of the system is only dependent on the current state and independent
of the previous state of the system. The time a direction already is green is part of the state since this is required to
calculate the probability of switching. In the paper from Dabiri and Hegyi (2018) this is done to give speed advice to
cyclist to catch green and adjust their speed. This is a statistical method that has a low complexity and can therefore
run realtime and network wide. This is mainly because the transition probability matrices are created once and
do not have to be calculated every time the routing algorithm is run. These matrices might be updated frequently
but this does not directly interfere with the prediction process. This method can also deal with traffic lights that
do not use a fixed cycle time. The accuracy on the long term might decrease because directions can be skipped if
there is no traffic, which will decrease the cycle time by seconds. Over the course of multiple cycles the effect of this
uncertainty might increase, but this method can at least take this into account by skipping that direction, while the
previous mentioned methods could not. During the rush hours this effect is minimal since traffic is usually coming
from every direction.

In another approach with probability distributions, comparable to the one above, Protschky, Feit, and Linnhoff-
Popien (2014) created a method to work on a realistic network level. The research aimed at a 95% reliability of the
data and if it was not this accurate, the data would not be send out. The used data was limited to historic data of
about an hour with an update every 5 minutes. This was then added to a prediction vector to create a probability
distribution to predict the future traffic light signal states. After five minutes the accuracy was checked for the
previous five minutes and dependent on this result some weighted new data was added to the prediction vector.
With this weighted new data the algorithm tried to keep the reliability at 95%, while having the highest possible
availability. While the feedback loop increased the reliability, the availability of these predictions were around 60%.
This means that for 40% of the time some traffic lights could not be predicted with this method.
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In a different approach by Bodenheimer et al. (2014) the traffic light state is predicted with graphs. The traffic
light controller is visualized by a controller graph that shows every possible signal combination. Therefore each
node is a static state in which certain traffic directions have green. The edges are the transitions between these
states. They contain the clearance and amber times for the specific transition. A prediction graph is then created
with these transitions as nodes and offset times and probabilities of changing towards a different state as edges.
These probabilities are again based on historic data. Therefore this is a very comparable method compared to the
Markov Chain approach by Dabiri and Hegyi (2018). They both list all possible traffic light states and calculate the
probability of it switching to a next one depending on how long it already have been in this state. Unfortunately
Bodenheimer et al. (2014) only looked a maximum of 30 seconds ahead since it was made for a GLOSA system as
well. Therefore they also included the detectors since they give a lot of information for short term. The order of
the transition can be predicted more precisely if it is known how much traffic there is at certain points. For public
transport that passes multiple traffic lights the added value might increase, since it is already known that the bus
will be at the next intersections far ahead. The method that is used for public transport is mainly the same as before,
but the probability of changing to a next state is calculated separately if the detector is triggered and if it is not
triggered. Green could be delayed for a certain direction to give way to a prioritized bus or green could be extended
to ensure that the bus can pas the intersection. This creates another variable but still uses the same method, since
it results in a different prediction graph that is treated the same way. In a follow up research, Bodenheimer, Eckhoff,
and German (2015) revealed that, the assumption that traffic slowly changes and basing the predictions on the last
cycles, does not yield the optimal results. Basing the predictions on historic situations of the same type was better,
eg. a Monday evening peak or Thursday morning during the holiday. Furthermore, basing the predictions on too
much information might create inaccurate predictions since the current situation might have changed. Therefore
they based their predictions on four historic periods (e.g. 4 Monday morning peaks) since the accuracy hardly
increased when taking a higher number of considered periods into account.

2.3. Current link travel time prediction methods
The future travel times on the link between intersections should also be known. If the link travel times are calculated
with the local maximum speed this could go wrong when there is some delay on the link. The vehicles on the link can
experience different delays which should be taken into account. Unexpected delays like traffic accidents or planned
delays like roadworks are not taken into account in this research. Therefore three main elements of link travel time
are researched: a queueing model, a queue discharge model and a platoon dispersion model. The queueing model
will be used for the vehicles that drive towards a red traffic light and have to stop in the queue. When the traffic light
turns green the queue discharge model will explain the departure of the vehicles and their behaviour. The platoon
dispersion model will then be used to determine the amount of dispersion before the traffic arrives at the next traffic
light. These models depend on each other and should be combined to result in one value for the link travel times.
Since those models are dependent on each other a single model that results in the link travel times can be used as
well as long as it takes the urban characteristics into account.

2.3.1. The queueing model
The queueing model calculates how many vehicles there are in the queue for every direction. If a road has multiple
lanes or separate turning lanes, these should be taken into account as well. If the traffic lights are modelled with
separate turning lanes, the model should be able to deal with traffic that cannot reach the turning lanes due to
queues on the main lanes.

There are two main types of queueing models, vertical and horizontal queueing models. Vertical queueing mod-
els stack the vehicles on top of each other at the stop line, creating a vertical queue. When the traffic line turns green
the queue will dissolve one vehicle at a time. Spillback and blocking of access to turning lanes cannot be taken into
account in these models. Horizontal models also take the length of the vehicles and the distance between them into
account. These models can take spillback into account. Cell and link transmission models also take the shockwave
effects of the vehicles braking and accelerating into account (Y. Liu, Guo, & Wang, 2018). The vertical queue and
horizontal queues without shockwave theories in them underestimates the effect of congestion in networks with
spillover. While the more complicated horizontal models might return better results since it can take shockwave
effects and spillback into account, the computational costs increase as well (Agarwal, Lämmel, & Nagel, 2018). And
part of the shockwave effects are also incorporated in the queue discharge model. This model describes namely
how the traffic behaves when the traffic light turns green. Therefore it should be considered if it is worth the added
computational costs compared to the benefits and the possibility of combining it with the queue discharge model
or replace it.
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2.3.2. The queue discharge model
Traffic that is waiting at the traffic light will have to accelerate to their desired speed when the traffic light turns
green. Since this starts slowly, the first cars drive slowely over the stop line while cars further in the queue drive
faster past the stop line. To model this behaviour a queue discharge model is used. In this research this model gets
input from the queueing model and gives input towards the platoon dispersion model.

The queue discharge model has two parts, the queue discharge rate, while traffic is driving past the stop line
at their desired speed, and an acceleration loss part, when traffic is driving over the stop line not at their desired
speed. The queue discharge rate differs depending on many factors like the width of the road, weather, presence
of parked cars, amount of busses and heavy vehicles, the direction traffic is turning, etc. (Wilson, 2006). Therefore
every direction of a traffic light has their own queue discharge rate. Since average values differ from 1800 to about
2100 vehicles per hour these should be measured on the road (Akçelik & Besley, 2002).

The acceleration loss part is harder to determine and parameters for functions to calculate this part can differ
considerably at each intersection (Akçelik & Besley, 2002). A simpler approach is to calculate how many vehicles
pass in the first N seconds and then calculate how many seconds an average vehicle takes to cross the intersection.
After N seconds the queue discharge rate will be used for the remaining vehicles (Wilson, 2006). The question still
remains how many vehicles or seconds should be counted before using the queue discharge rate. It was assumed
that after four vehicles the discharge rate would stabalize but recent research shows that it takes longer than 4 cars
(Dey, Nandal, & Kalyan, 2013; Lin & Thomas, 2005). Even though this value might keep increasing for at least 17 cars
as Lin and Thomas (2005) suggests, the biggest difference is in the first 4 to 6 vehicles.

2.3.3. Platoon dispersion model
A platoon dispersion model is required since not all drivers want to drive at the same speed. Also drivers want
different headways and therefore the platoon will disperse as it moves away from the stop line.

In the 1950s Pacey created a platoon dispersion model based on normally distributed vehicular speeds and
a possibility for all verhicles to overtake (Grace & Potts, 1964). Since drivers have a different speed, the platoon
will slowly disperse. The results from Pacey’s model was a continuous function and to facilitate applications that
required a discrete model, Robertson created one. This model from Robertson is found effective in under-saturated
flow conditions and can therefore be used in traffic signal optimization. This model is used in many applications
that are currently used like: TRANSYT, SCOOT, SATURN and TRAFLO (Paul, Mitra, & Maitra, 2016).

Robertsons platoon dispersion model is writen as follows:

qd
t = Fn ·qt−T + (1−Fn) ·qd

t−n (2.1)

Where qd
t is the arrival rate of traffic at the downstream traffic signal. qt−T is the flow rate at the upstream

traffic signal at time t-T. T is the time lag, the number of seconds that it takes for a vehicle to arrive at the traffic
light downstream after getting green at the upstream traffic light. This is visualized in Figure 2.1. qd

t−n are the
arrivals at the downstream traffic signal during the previous time step. Fn is a smoothing factor that uses a weighted
combination of arrivals during the previous time step and the departures from the upstream intersection T seconds
ago to calculate the downstream arrivals.

Formula 2.2 shows that this smoothing factor is dependent on the average link travel time from the upstream
traffic light to the downstream traffic light (Ta) and a factor α and β. These factors α and β will be explained in the
next section.

Fn = 1

1+Taαβ
(2.2)

In formula 2.3 the factor T is further explained. It extends further than the average link travel time from traffic
light to the next one, since this factor is multiplied with β. Therefore these factors α and β have a significant impact
on the model.

T =βTa (2.3)

Robertsons platoon dispersion model requires two parameters as input: the dispersion factor α and a travel
time factor β. The results of the model are highly dependent on these factors and therefore there is much research
on optimizing these values under different circumstances. Some researches studied specific situations while others
tried to link external factors like width of the road, number of lanes or saturation grade to these parameters. Some
results from these researches are that when the number of lanes increased, the optimal value of α drops (Bie, Liu,
Ma, & Wang, 2013). While if the traffic volume and thus density increases, the value of platoon dispersion factor α
increases up to a maximum at half of the capacity. If the volumes increases more, the amount of dispersion drops
until a minimum at the capacity (Baass & Lefevre, 1987; Manar & Baass, 1996). In a different research Yu (2000)
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Figure 2.1: Visualization of T.

found that the parameters α and β could be determined depending on the link travel time and standard deviation.
Since other factors like the number of lanes and saturation grade influences the link travel time and the standard
deviation, these other factors are taken into account as well. Since the link travel time and standard deviation
change over time these values should be updated over time. This is a realistic situation since the density varies over
time and this is also proven to influence the parameters (Baass & Lefevre, 1987; Manar & Baass, 1996). The link
travel time and standard deviation are needed for this method, but since more and more vehicles are connected, it
will be easier to obtain these values in the future. Travel time information can be collected from navigation systems
like Google maps, Waze and TomTom to calculate the link travel times and standard deviation.

2.4. Current routing algorithms
The last part that needs to be researched are existing routing algorithms. These routing algorithms (or parts of) can
be used as a basis for the new routing algorithm.

Dijkstra et al. (1959) was one of the pioneers of routing problems and created a shortest path algorithm. In
short the Dijkstra algorithm calculates the distance to all adjacent nodes from the start node and saves the total
distance traveled to that node. Then it does the same for the node with the shortest distance travelled. If a node
already has a travel distance (via a different route), the lowest distance will be saved. With a backtracking algorithm
the shortest route can be determined when the final node is reached. This works under the condition that the travel
distance, travel time or costs on the arcs are time-independent and deterministic. Hart, Nilsson, and Raphael (1968)
developed the A* strategy, another approach in solving minimum cost paths. A* uses the estimated cost to complete
the path to select the next node. Therefore A* is considered to be more efficient compared to the Dijkstra or similar
algorithms (Zeng & Church, 2009). Since the estimated costs to complete the path can be estimated by for instance
the euclidean distance to the final node, A* is preferred to the Dijkstra algorithm.

In networks where the travel time are both time-dependent and stochastic, Hall (1986) states that the optimal
route does not only depend on the nodes and links but also on the time a vehicle arrives at these nodes. Therefore
the optimal route is not a simple path, but a set of time-adaptive decision rules, in which the optimal next path is
defined for each node as a function of arrival time at that node. This can give more efficient and reliable results
since the traveller gains knowledge of the network before the next decision. The traveller knows for instance the
experienced travel time on the links it already traversed. The Dijkstra and A* algorithms work on time-independent
stochastic networks as well, but not on networks that are time-dependent (Eiger, Mirchandani, & Soroush, 1985).
But these time-independent shortest path algorithms (like Dijkstra and A*) can be modified for (discrete) time-
dependent shortest path problems as well by using a time-space expansion representation(Chabini, 1997). This
adds an entire dimension to these algorithms and for it to work the link travel times should satisfy the FIFO (first in
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first out) condition. In short this means that there cannot be any overtaking since the first vehicle to enter the link
should leave the link first. But because of this rule some other limitation should be in place as well, such as only
forwards labelling algorithms could be used, it calculates the shortest path for one specific (departure)time instance
and it could only be used for fastest path problems and not minimum costs (Chabini, 1997). A dynamic program-
ming approach to this problem is presented based on the concept of decreasing order of time (DOT) (Chabini, 1998).
This approach calculates the expected times from each node, to the final node, through any successor nodes, per
time instance. This is done for the latest time instance within the time period first and the results are saved as the
adaptive expected times. This is then repeated for every time step until the first time interval and if a faster route
is found the adaptive expected time is adjusted. Since this requires to calculate values for all time steps, a different
approach was presented by E. D. Miller-Hooks and Mahmassani (2000) that used expected travel times and started
from the departure time instead of the other way around. This lowered the complexity and for dense networks, such
as data networks, the calculation time was lowered. But for sparse networks, such as transportation networks, this
approach was outperformed by the DOT approach (E. Miller-Hooks, 2001).

Another search method is AO*, a heuristic search technique that is significantly more efficient compared to
dynamic programming if lower bounds in the network are available (Bander & White, 2002). These lower bounds
could be chosen as the euclidean distance but if these are too low, the extra complexity of the AO* technique might
not improve compared to a more simple dynamic programming approach. Therefore the lower bounds should
be chosen as high as possible. This heuristic approach will always return an optimal solution, if one exists, if the
lower bounds are chosen below the true distance/costs (Gao & Chabini, 2006). But this method does not take time-
dependent situations into account and this should be added before it could be used in this research.

These algorithms do not take the additional delay due to intersections or traffic lights into account. There have
been some adjustments to algorithms to facilitate these delays. One of the approaches is to expand each node to
multiple nodes and arcs to represent every turning movement with an individual delay (Protschky et al., 2015). In
this way simple algorithms can be used but this is not efficient. Ziliaskopoulos and Mahmassani (1996) modified a
label correcting algorithm to calculate the shortest path in a computationally efficient way. They added the waiting
time (or turning delay) at the intersection directly to the link after the intersection. This worked efficient but did
not take any time depended element into consideration. Y.-L. Chen and Yang (2000) added a time constraint to
a shortest path algorithm which was efficient but did not take clearance times or capacity of an intersection into
account and based the algorithm on pre-timed traffic lights. B. Yang and Miller-Hooks (2004) developed the penalty
approach which added traffic light dependent delay to the label correcting algorithm from E. Miller-Hooks (2001).
But they assumed the traffic light timing to be known as well and realised this does not hold for probabilistically
known signal timings or uncertain delays. Therefore they adjusted the algorithm again to the ARSC (Adaptive Rout-
ing with Signal Controls) algorithm. This algorithm creates time steps to make the time discrete. The algorithm
then saves for every node and time step the expected travel time to the destination. It does this from the destination
node towards the departure node. This takes the waiting times for a red light and a link travel time distribution
into account. The expected travel time to the destination node is calculated per arrival time at the current node, by
adding up all the probabilities on the different travel times. For example, there is a 40% chance to have a travel time
of 8 seconds, a 35% chance to travel 6 seconds and a 25% chance on traveling 3 seconds. This leads to an expected
time of (0.4*8+0.35*6+0.25*3=) 6.05 seconds. This is done for all time steps and nodes and leads to the path with the
lowest expected travel time while taking all traffic lights and delays into account. Therefore this does not result in
a probability distribution, but it does take probabilistically known traffic lights into account while other researches
did not. The traffic signal timings are estimated by a two-state continuous time Markov chain. This method is based
on a chance that the state is changed to the other state which is independent from the previous state. For actuated
traffic lights this makes sense since most actuated traffic lights do not adjust their behaviour based on vehicles that
already passed the traffic light. There are only two states in this Markov chain while it is not uncommon that traffic
lights have more states. Therefore a different traffic light prediction model, as presented in Section 2.2, could be
used. They also assume that during a certain period (like weekday evening peek) the chances of transition stay the
same (B. Yang & Miller-Hooks, 2004).

2.5. Summary
The main findings of this chapter are summarized below:

2.2.0 A traffic light state prediction method was researched that could predict traffic lights with a changing cycle
time for a few minutes ahead, results in a probability distribution, has a reasonable complexity and uses only
historic or SPaT data. The methods by Dabiri and Hegyi (2018) and Bodenheimer et al. (2014) seemed usefull
since they were applicable to traffic lights with a changing cycle time, resulted in a probability distribution,
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seemed not too complex and used available data. These methods are based on creating a list of traffic light
states and calculating the probabilities of all transitions between these states (depending on how long they
are already in that state). Both researches only used their method to predict shortly ahead for GLOSA and not
further ahead for routing purposes. These methods both used historic data as well and Bodenheimer et al.
(2015) found that they should use historic data separated per time period and from not too long ago (about
four periods, e.g. weekend mornings). Detectors might be used to increase reliability although this would not
improve longer time ahead prediction.

2.3.0 To make a prediction about the link travel time vehicles are going to encounter in this research, three separate
models can be integrated into one. In urban areas most delays can be calculated by the queueing model,
queue discharge model and the queue dispersion model. Therefore these models, or a model that takes these
urban aspects of delay into account, can be used to predict the link travel times.

2.3.1 There are two main types of queueing models, horizontal and vertical. The vertical queueing models can-
not take spillback into account while the horizontal ones can. Some horizontal queueing models also take
shockwave effects into account. While horizontal models can take spillback into account and some can take
shockwave effects into account they do not underestimate the delay, but the calculation time does increase.

2.3.2 There are two parts in the queue discharge model. The queue discharge rate, how many vehicles per hour
cross the stop line while they drive their desired speed, and the acceleration loss part, how quickly the vehicles
pass the stop line while they are not driving their desired speed. The acceleration loss part stops after about
4 to 6 vehicles since the majority vehicles are already driving their desired speed at that point. Both values
depend on many factors and should therefore be locally optimized or calculated on actual vehicles.

2.3.3 There are different platoon dispersion models but the model from Robertson is often used. This model needs
some parameters to function optimally and there are a lot of factors influencing these parameters. Yu (2000)
found that the parameters could be determined depending on the link travel time and standard deviation.
These factors could be extracted from the simulation model and estimated in real life application of this sys-
tem via navigation systems or other ITS.

2.4.0 There are many different routing algorithms, but just a few that take traffic lights into account. Traffic light
delay can be incorporated in routing algorithms by expanding nodes and using simple algorithms although
this is an inefficient method. Other algorithms were more efficient but they all used pre-timed traffic lights
and did not support probabilistically known signal timings or delays. The ARSC method by B. Yang and Miller-
Hooks (2004) can route traffic in a time-dependent stochastic network using discrete time steps and take
probabilistically known signal timings or delays into account. The traffic light prediction method from this
algorithm can only use 2 states and should therefore be adjusted or replaced by one researched in Section 2.2.





3
Algorithm design

In this section the new routing algorithm will be designed and in Figure 3.1 the different subsections and their
relations are visualized. The goal of the routing algorithm will be to find an optimal route dependent on an objective
function given the travel times and their corresponding probability. Therefore a new routing algorithm has to be
designed to not only find the expected fastest path but also take the individual objective function into account. In
Section 3.1 the design process is explained as well as the objective function which is required for this new routing
algorithm. In Section 3.2 the predicted traffic light states will be calculated and transformed into the correct format
for the routing algorithm. This will result in a probability distribution of possible traffic light states, which can be
used to create a probability of being green and a probability distribution of the waiting time at the traffic light. In
Section 3.3 the predicted link travel times are discussed to feed into the routing algorithm which is the last required
input for the algorithm to function. In this section mulitple formulas are presented with different variables and
therefore a list of variables is added in Appendix A. .

Figure 3.1: Visualization of the algorithm.

3.1. Routing algorithms
In the previous chapter different routing methods are described but the ARSC method (B. Yang & Miller-Hooks,
2004) is the only method that took probabilistically known signal timings into account. This method resulted in a
path with the lowest expected travel time to the destination. This route was dependent on the arrival time of every
node, since the optimal next link could be different if the vehicle arrives at an intermediate node at a different time,
since the predicted traffic lights states could be different. Since this differs from the standard definition of a route,
which is a set of links and nodes that will bring you to your destination, a different term is introduced. A route
in which the next link to take is dependent on the arrival time at the intermediate nodes is from here on called a
routeplan, which is a set of route choices for each node depending on the arrival time at that node. This concept
holds for all algorithms described in this section, it gives the optimal routeplan, which is dependent on the actual
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arrival time at the nodes. This is calculated when the algorithm is run and not updated when a vehicle arrives at
the intermediate nodes. The vehicle simply checks from the result of the algorithm what link to take next when it
arrives at an intermediate node at that time.

The lowest expected travel time to the destination is a single value and cannot be used to determine the proba-
bility of arriving on time or any other objective function that depends on the probability distribution of the arrival
time. Since none of the other researched algorithms could do this as well, this needs to be added to the chosen
method. Therefore the ARSC method is explained first, the objective function secondly and lastly the adjustments
to this algorithm to facilitate a probability distribution are explained.

3.1.1. The ARSC algorithm
The ARSC algorithm tries to minimize the expected travel time by finding the optimal routeplan trough the network
while taking probabilistically known traffic light states into account. The ARSC algorithm is a so-called backwards
label correcting algorithm, and a label is a value that is stored at intermediate steps in the algorithm. In this algo-
rithm the labels are stored at the route choice points in the network since at those points the algorithm picks the
optimal routeplan to follow. Those route choice points are at the stop line of the traffic lights, just before the node.
The probability of a traffic light being green might differ depending on the link a vehicle is approaching the node
from (and the time a vehicle arrives at the node). Therefore a label is not stored at the node, but at the stop line right
before the node and a different label will be used for every node depending on the link that node is approached
from. The values that are saved at the label are the expected travel time to the final destination node. Since link
travel times and probabilities of a green traffic light are dependent on the time vehicles arrive at those points, the
expected travel time from any label to the final destination node varies per arrival time at that label. Therefore the
expected travel time that is saved to the label, is saved for its corresponding arrival time at that label.

Since the algorithm is a backwards label correcting algorithm, the labels are calculated backwards, from the
destination node towards the departure node and also backwards in time, from a set maximum calculation time. An
expected travel time is calculated at the labels and therefore one value should be the result, which is a combination
of the expected travel time if the traffic light is green, and if it is red. If the traffic light is red, the vehicle have to wait
at least one time step, and therefore the expected travel time from the same label, but one time step later, could be
used. This has already been calculated since all labels are calculated backwards from the latest time considered. If
the traffic light is green, the link travel time from the current node to the next node should be used, plus the label
that is stored just before the next node (for the arrival time at that label). This label is also already calculated since
the labels are also calculated backwards from the destination towards the departure node. Then these two values
can be used to calculate the expected travel time to the final destination for the current label and current time. This
shows that for every action in the algorithm, just the part between a label and its successor label is calculated and
then the expected travel time to the destination node is saved to its label. Since the expected travel time to the final
destination is already saved in the successor label, instead of calculating the entire routeplan until the destination
node, just the part between the current label and the succes label needs to be calculated.

The label at the destination node is set to 0 for all time steps since this is the destination. But for the first calcu-
lation there might also be a probability of the traffic light being red. Since this is the first calculation and no other
labels (except at the destination node) are set, this calculation cannot be done, because the label one time step later
is not calculated. To make sure the algorithm can still run, all traffic lights are set to green for a certain time before
the last considered time in the algorithm. This makes sure that the first calculations can be done, but also that all
routeplans that depart from the departure node at the last/lowest time step calculated, lead to an expected travel
time. Otherwise for some small probabilities a travel time to the destination has not been calculated yet, since there
is a probability that some traffic lights are still red.

Finally, the last part of the backwards label correcting algorithm, is the correcting. This means that if a better
value is found for a label, this label is corrected and the new value is saved. This can happen when taking a different
link, results in a lower expected travel time to the final destination node. Since this label only stores the lowest
expected travel time, another label, the pointer label, is used to store the optimal routeplan. In this label the optimal
next link to take is stored so that the routeplan with the lowest expected travel time can be found.

Notation
Now that the general working of the algorithm is explained, it is explained in more detail with the correct notation.
The notation of the label is explained first, and this is denoted as, λh

i (t ). This gives the expected travel time to the
final destination, given that the vehicle is at the stop line before node i at time t and approached node i from node
h, which is the left picture of a vehicle in Figure 3.2. In this figure the notation of the nodes is visualized as well,
with i being the current node, h being the node a vehicle approached node i from and j being the next node. The
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notation for node j is required since a vehicle will drive one node ahead, if the traffic light is green, and the label
saved at that node will be used to calculate the label at the previous node. Therefore this label is denoted as λi

j (t )

since it is one node ahead. Notice that being at node i means being just before the stopline at node i while coming
from node h. Therefore when approaching node i form a different direction, it is saved as a different label.

The link travel time distribution between node i and j should also be known since after crossing the intersection
the vehicle will drive towards the stopline of the next node. The link travel time between node i and j , when getting
a green light at node i at time t , is given in τk

i j (t ). k is an index to denote each possible link travel time from node

i to node j at time t . This also contains acceleration loss at the intersection since the part that takes traffic lights
into account, only account for a probability of being green and not the delay while accelerating or decelerating. In
Figure 3.2 τk

i j (t ) is visualized as the time it takes to drive the length of the arrow.

Figure 3.2: Visualization of the nodes, with λh
i (t ) being the travel time to the destination while at node i , while coming from node h at time t and

τk
i j (t ) being the link travel time from node i to node j while getting a green light at node i at time t . k is an index to denote each possible link

travel time.

The network is searched backwards from the destination node towards the departure node. This is done sys-
tematically and the order is shown in Figure 3.3. For each combination of nodes the expected travel time to the
destination node will be calculated. The exact formula for this calculation is given later in this section. In this figure,
node 1 is the destination node and therefore the labels at this node λ2

1(t ) and λ3
1(t ) will be set to 0 for all t . Then

step 1a can be calculated and this is calculating the expected travel time from node 2, going to the destination node,
while coming from node 4 (λ4

2(t )). Then the other upstream node of node 2 can be picked, node 5, to calculate
step 1b. Then the next node i is picked and the same steps are repeated. Once all upstream nodes of node j are
calculated the first node i becomes node j and this repeats itself until it reaches the departure node. As shown in
the figure, all vehicles drive from left to right in the network and looping back is not allowed. The calculation of the
labels could deal with looping routes, but this will result in the a higher expected travel time and therefore routes
with a complete loop are never optimal for the lowest expected arrival time. But the part of the algorithm that selects
the next node cannot deal with looping routes. This is because it selects the upstream nodes of the current node,
and if for instance node 2, 4, 7 and 5 are upstream nodes of each other, the algorithm will loop forever. Therefore
looping routes cannot be used without adjusting the algorithm.

The label correcting part from the name means that if a lower value is found for the expected travel time (λh
i (t )),

the previous value is overwritten. Therefore every time, the expected travel time from a node to the destination
has been calculated, it is compared with the already known shortest expected travel time from that point to the
destination. If the new value is lower, it is saved to the node, otherwise it is discarded. This can for instance occur
at step 2b and 3a in Figure 3.3. In both these cases the expected travel time is saved towards λh

i = λ7
5. But since the

route differs afterwards (2b goes via 2, and 3a goes via 3) the expected travel time can be different. Therefore only
the shortest expected travel time will be saved. If 2b saved an expected travel time of 7 minutes and in step 3a the
expected travel time is calculated as 6 minutes, route 3a will overwrite route 2b and route 2b will be discarded.

Besides the network being searched backwards from the destination node to the departure node , it is also
searched backwards in time. A time step (t ) is used to make time discrete, which can be chosen by the user. As
a starting point, a maximum time should be given, which is denoted in the maximum number of time steps, S.
Therefore the algorithm calculates backwards from time step S to time step 0. So if the algorithm is run at 8 o’clock
exactly, with time steps of 1 second, t = 0 is at 8 o’clock exactly while t = 120 is at 8:02. The maximum number of
time steps, S, should be picked manually and should be dependent on the size of the network, the waiting times at
the traffic lights and the link travel times. It is important that it is picked high enough that the expected travel times
of most routeplans are calculated completely, while picking it too high will result in unnecessary extra calculations
for the algorithm.
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Figure 3.3: Visualization of the order of searched nodes, note that the vehicles drive in the direction opposite to the arrows.

B. Yang and Miller-Hooks (2004) does not specify how they picked the maximum number of time steps, but they
do specify the need of a maximum number. With some testing an upper boundary can be picked that (almost)
always gives the desired results. This can be for instance the 99.5th percentile of the travel time distribution from
departure to destination node, which will lead to incomplete routeplans in 0.5% of the routeplans that depart from
the departure node at t = 0. The maximum number of time steps could be increased to very large numbers, but
there will always be some routeplans that are not calculated completely yet. This is because the states of the traffic
lights are probabilistic and therefore a certain probability of a red traffic light is (almost) always present. And since
the algorithm does not take a maximum waiting time at a traffic light into account, there is a small probability of
waiting very long for a traffic light. This happens if there is a probability of 0.7 to have a red light. And the next
time step there is again a probability of 0.7 of a red light, so the probability to to wait 2 time steps is (0.7 ·0.7 =) 0.49.
This will lead to ever decreasing probabilities of an ever increasing travel time. To make sure that most routeplans
are complete, the traffic lights are all set to green a specific time before the longest possible travel time considered
(S). Adding up all the maximum link travel times could be a value for this time since this is the only delay left in
the system after setting all traffic lights to green. But since the vehicle is often already somewhere in the system this
value might be too high and a lower value might be more efficient.

The last notation that needs to be introduced is given by Z hi
j (t ), which is a value between 0 and 1. This gives

the probability of the traffic light being green, while coming from the link between node h and i and going towards
node j . This value differs per time step a vehicle arrives at the traffic light and therefore t denotes the arrival time
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at the traffic light. If the traffic light is green there might still be a delay since there could still be traffic waiting for
the traffic light but this is not taken into account with this value. Also extra delay when the traffic light is red (for
instance due to traffic slowly accelerating when turning green) is not taken into account. The delay is calculated
as the number of seconds that the traffic light is not green. If a more elaborate model of local traffic is used, the
traffic light states and link travel time distributions might be dependent on each other which might result in more
precise predictions. But for this research these are not dependent on each other, and therefore the link travel time
distribution and the traffic light probabilities are assumed independent of each other.

The main formula
Now that most variables are defined, the main formula from the ARSC algorithm will be explained. With this formula
the label λh

i (t ) will be calculated. But since it is a label correcting algorithm, the calculated value might be replaced

with a new value. Therefore the main formula will be calculated with a temporary label, ηh
i j (t ), and afterwards the

lowest temporary label will be saved to λh
i (t ). An extra node, node j , is used in defining ηh

i j (t ). This is because η will

be calculated for all different nodes j , which are all nodes you can reach from i , and the lowest expected travel time
will become λ. This is shown in Equation 3.1, with D(i ,h) being the set of downstream nodes of node i , that can
lead to the destination, and can be reached when the vehicle is coming from from node h.

λh
i (t ) = min

j∈D(i ,h)
ηh

i j (t ) (3.1)

For every η the main formula will be calculated to find the expected travel time. In this formula τk
i j (t ) represents

the link travel time with k being an index to denote each possible link travel time from node i to node j at time t .
This formula consists of two parts, one for if the traffic light is green and one for if it is not. Since an expected value
is calculated, both are used and multiplied with Z hi

j (t ) for the part where the traffic light is green or 1− Z hi
j (t ) for

the part where it is red. The first part of the equation that deals with a green traffic light starts with Z hi
j (t ) up to the

plus sign just before 1−Z hi
j (t ), where the second part starts. The first part of this formula takes the link travel time

to the next node, τk
i j (t ), and adds the label at the next node, λi

j (t +τk
i j (t )), which contains the expected travel time

from that point to the destination node. This is taken at the time t +τk
i j (t ) since the link travel time it takes to get to

the next node should be taken into account as well. This is added together and multiplied by the probability of this
link travel time happening, pk

i j (t ), and then added up for all possible link travel times, k. The number of different

link travel times there are on each link is denoted as kmax
i j (t ), this is dependent on the link since each link can

have its own link travel time distribution, and the time the link is entered, since the travel time distribution could
be different from moment to moment. Once this is multiplied with the probability of the traffic light being green,
Z hi

j (t ), it gives the first part of the new expected travel time. The second part is the part when the traffic light is red.

Instead of finding the moment when it turns green, it just takes the current label one time step later and adds a time
step before using it in this calculation. Since queueing effects are not taken into account in the original algorithm it
does not matter when the vehicle arrived at the node since all vehicles will depart at the same time when the traffic
light turns green. This results in the following main formula of the ARSC algorithm:

ηh
i j (t ) =

1︷ ︸︸ ︷
Z hi

j (t )

kmax
i j (t )∑
k=1

{(
τk

i j (t )+λi
j (t +τk

i j (t ))
)
·pk

i j (t )
}
+

2︷ ︸︸ ︷(
1−Z hi

j (t )
)
·
(
λh

i (t +1)+1
)

. (3.2)

This equation will lead to a new calculated value for the expected travel time, ηh
i j (t ), and the lowest ηh

i j (t ) will

be saved as the current label, λh
i (t ). This have to be done for all nodes from to destination node, up to the departure

node, and also for all time steps from the maximum number of time steps, S, to 0. Therefore the order as explained
before, in Figure 3.3, is kept, but for each combination of nodes this is calculated from time step S to time step 0,
before this is calculated for the next combination of nodes. This will result in some values for t being larger than
S. For instance if t = S for a calculation and t +τ(t ) is calculated. These calculations are discarded, since the traffic
lights should be set to green with a probability of 100%, on a specific time, in a way that every routeplan that starts
at t = 0, will reach the destination node before time step S. Those discarded values will therefore not be used in the
final routeplan.

To keep track of the optimal path another label is introduced, the pointer label, πh
i (t ). This label saves for node i

coming from node h, the optimal next node j , for which Equation 3.1 holds. This is therefore the next node to go to
j , while being at node i , coming from node h at time t , with the lowest expected travel time to the destination node.
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The formula for this is given in 3.3. If there are multiple next nodes j for which ηh
i j (t ) is minimal, only the one with

the lowest number for j will be saved to πh
i (t ) since just one node can be saved.

πh
i (t ) = argmin

j
(ηh

i j (t )) | j ∈ D(i ,h) (3.3)

Once the algorithm has calculated trough all the nodes, the optimal next node to travel to is saved to this pointer
label for every label and every time step. Therefore the optimal routeplan can be traced and if a disturbance occurs
the route can be adjusted since the optimal next node is saved for every arrival time at every label. But it does
not give the reliability of arriving on time. The lowest expected travel time might be a 50% chance of arriving in
10 minutes and a 50% chance of arriving in 20 minutes, while some might prefer the option with a 50% chance on
15 minutes and a 50% chance on 16 minutes since this is more reliable but leads to a higher expected travel time.
Therefore the reliability should be taken into account as well, which will be done in Section 3.1.3.

3.1.2. The objective function
The reliability can be taken into account in many different ways and calculated with different formulas (Z. Chen &
Fan, 2019). The exact definition of some of those methods are explained later on in this section but an algorithm
that can be used to calculate the reliability of a routeplan requires in almost all cases a travel time distribution.

Reliability can mean something different for every user, some travellers want a high probability of arriving at
their destination before a certain time, some travellers want a high probability of arriving in a certain time slot
(thus also not too early), some travellers want to arrive close to their predicted arrival time, etc. To deal with all
these different definitions of reliability and the different ways of calculating the reliability, an objective function is
introduced. In this objective function, the user of the algorithm can create their own function to take a reliability
measure into account. This gives the user the freedom to create functions however they like, as long as it is based on
the travel time distribution. The travel time distribution is a good input since it gives all possible arrival times with
their probability of occurring. This can then be used to calculate reliability measures, for instance the percentage
of arrivals before a certain time. This travel time distribution is given by Λh

i (t ) and the probability on a travel time

λ is given by Pr
(
Λh

i (t ) = λ
)
. Λh

i (t ) is the travel time distribution to the destination while being at node i , coming

from node h at time t . Pr
(
Λh

i (t ) =λ
)

gives the probability of a travel time to the desination, λ, happening. With this
distribution most measures of reliability can be calculated.

Conditions for the ARSC algorithm
But if this objective function will be implemented into the original ARSC algorithm, some problems may arise. Since
the original ARSC algorithm is a backwards algorithm that determines and saves the optimal next node from each
node at every timestep, calculation of the optimal next node to take should be possible from every node, before
the entire distribution of the complete routeplan is known. This leads to the condition when an adaptation of the
original ARSC algorithm can be used:

Condition 1 The optimal routeplan from a label to the destination node, at a specific time, should be independent of
data that will be added at every upstream label.

The upstream label is mentioned since the algorithm is calculated backwards and therefore the upstream label
has more information. All functions that fulfil the aforementioned condition are called type 1 functions, while all
functions that do not, are called type 2 functions.

The original ARSC formula, with the lowest expected arrival time, met this condition. But some measures of
reliability do not. An example of this is the standard deviation, as shown in Equation 3.4. Equation 3.5 shows how to
calculate the mean, which is used in Equation 3.4. This gives a good indication of the variance in the travel times and
is therefore often used as a reliability measurement. The main condition does not hold, since the optimal routeplan
of a downstream node can be dependent on data added upstream.

Oh
i (t ) =

√√√√ ∑
λ∈Λh

i (t )

Pr
(
Λh

i (t ) =λ
) · (λ−λ

)2
(3.4)

λ= ∑
λ∈Λh

i (t )

Pr
(
Λh

i (t ) =λ
) ·λ. (3.5)

To show that the main condition does not hold, the following example is given, as visualized in Figure 3.4. Two
different routeplans can be taken, via node B and C to the destination or via node B and D to the destination. But
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when a vehicle is departing from node A, the link travel time to B can be 11 or 12 seconds. This leads to two different
arrival times at node B, which can lead to different travel times to the destination node. In a normal situation there
would be more different travel times but this is kept simple for the example. The probability on a each link travel
time is 50%. On the right side of the figure, the probability on each travel time from node B to the destination node
is given. Multiple values represent the travel time distribution here, since variations in link travel times or waiting
times at the traffic light occur. For simplicity just two values per route are given and the probability on both values
is 50% as well for all routes.

Figure 3.4: Illustration of the network used in the clarification of why the standard deviation is a type 2 function.

At this point the optimal routeplan can be calculated in this network, according to the lowest standard deviation
objective function, given in Equation 3.4. When working backwards, node B to node C and D is calculated before
node A is taken into account. Since the algorithm also calculates backwards in time, node B at time t = 12 is calcu-
lated first. The standard deviation of the travel time to the destination node, while arriving at node B at t = 12 and

taking the route via node C, is
√

(0.5 · (130−130.5)2)+ (0.5 · (131−130.5)2) = 0.5. For the route via node D, while ar-
riving at node B at t = 12, the standard deviation is 1. Therefore the route via node C has a lower standard deviation
and this route is therefore better. If node B is reached at t = 11, the standard deviation, while taking the route via
node C, is 0.5 as well. The standard deviation of the route via node D is 1. Therefore, when arriving at node B at
t = 11, route C is chosen as well.

If this objective function would satisfy the condition given before, the optimal routeplan should not change
when it is calculated from an upstream node with more data available. To check this, the optimal routeplan is
searched from node A. Since the optimal routeplan can be dependent on the arrival time at node B, the optimal
routeplan might be to travel via C when arriving at node B at t = 11 and via D when arriving at node B at t = 12.
Therefore there are four possible combinations. 1: Going via node C, while arriving at node B at t = 11 and going
via node D when arriving at node B at t = 12. 2: Going via node D while at node B at t = 11 and going via node C
while at node B at t = 12. 3: Going via node C both times. 4. Going via node D both times. The standard deviation
of these routeplans is given in Table 3.1. This is calculated by using the objective function, the travel times and the
probability on these travel times. The probability on each travel time is in this case 0.25 since there was a probability
of 0.5 of the link travel time between A and B and a probability of 0.5 of having one of the two travel times from node
B to the destination.

This shows that the optimal routeplan, when calculated from node A, is to go via node D when arriving at B at
t = 11 and going via node D when arriving at node B at t = 12. Therefore the standard deviation does not satisfy the
condition, because when optimizing at node B the optimal route is C, when arriving at node B at t = 11, and node C
as well, when arriving at node B at t = 12. Since this routeplan is different compared to the routeplan when node A
is taken into account, the optimal routeplan does change with data added at an upstream label. Therefore this is an
example of a type 2 function, that does not meet the condition.
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Table 3.1: The standard deviation of the routeplans. Calculated with Equation 3.4 and the data from Figure 3.4.

Routeplan
Travel times from node

A to the destination
STD

At B at t = 11: C
At B at t = 12: C

126, 127, 141, 142 7.52

At B at t = 11: C
At B at t = 12: D

126, 127, 130, 132 2.38

At B at t = 11: D
At B at t = 12: C

130, 132, 141, 142 5.31

At B at t = 11: D
At B at t = 12: D

130, 132, 130, 132 1

The special case for type 1 functions
To clarify when a function is a type 1 function, a special case is found which is always a type 1 function. This is
explained by the following example, which uses the frequency of congestion as the objective function. This is the
frequency of trips that exceeds a threshold (travel time) value (Z. Chen & Fan, 2019). This could be interpreted as
the probability of exceeding a certain travel time. This is common practice for trucks that need to arrive before a
certain time but is also applicable to leisure trips where people do not want to arrive too late. To create an objective
function that facilitates this, a threshold target value is introduced and given in the function asΩ. This target could
be any positive number of time steps. The objective formula that facilitates the calculation of this should add up all
the probabilities of having a travel time higher than the target, since it is determining the probability of exceeding
the target travel time. This results in the following example of an objective function:

Oh
i (t ) = Pr (Λh

i (t ) >Ω). (3.6)

This is a function of type 1, since the condition given before holds. This is because only the probability of arriv-
ing after a target time is passed along upstream. If for example a vehicle has a 30% chance of a green traffic light and
a 70% of a red traffic light. The objective value can be calculated by 0.3 times the objective value if the traffic light
is green, plus 0.7 times the objective value for if the traffic light is red, just as how it is done with the ARSC formula.
Therefore these can just be added up, while being multiplied with their corresponding probability. This is compa-
rable to the lowest expected travel time in the original ARSC formula, but now the expected chance of arriving after
the target number of time steps is passed along. Since the algorithm is a backwards algorithm, the travel times to
the destination could be known from the beginning, but the probabilities on those arrival times cannot. This leads
to a specific case of the condition given before:

Condition 2 If an objective value of an upstream label, can be calculated by adding up the probabilities of arriving
at a downstream label, at a specific time, times the corresponding objective value, than it is a type 1 function.

This can be written down mathematically in the following Equation:

Oh
i (t ) = ∑

j∈D(i ,h)

kmax
i j∑
k

pk
i j (t ) ·Oi

j

(
t +τk

i j (t )
)

(3.7)

All objective values should be able to be calculated with this equation, if the condition of the special case holds.
Therefore if the general, special or both conditions apply to a function, it is a type 1 function.

Mathematical functions in the objective function
To show that also other mathematical functions can be used in the objective function as well, but that a subtle
difference might change the type, the following example is given. Companies try to reduce their costs as much as
possible, and arriving too late (or too early) can lead to additional costs. If for instance the costs of arriving too late
or too early increases quadratic, this can be incorporated in the objective function. In the following equation this is
shown by squaring, the possible arrival times minus the target arrival time (set again asΩ), before multiplying them
with the probability of occurring:
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Oh
i (t ) = ∑

λ∈Λh
i (t )

((
λ−Ω)2 ·Pr

(
Λh

i (t ) =λ
))

. (3.8)

This is a type 1 function since this formula satisfies the main condition to be a type one function, and also
satisfies the condition of the specific case. All values can be passed along with the probability of occurring since it is
based on every travel time separately. From every travel time separately the target travel time will be subtracted and
this will be squared, afterwards this is multiplied with the probability of occurring. If for instance the mean would
be used, instead of every travel time separately, the optimal routeplan would become dependent on data added
upstream and therefore it would become a type 2 function. This might seem unexpected since the mean on its own
is a type 1 function. But this is the case since a lower mean is not always better, the mean will try to become as close
as possible to the target value. Thus a slightly higher travel time than the target, when for instance the traffic light
is red, might be beneficial if a slightly lower travel time is encountered when the traffic light is green. The mean of
those 2 values might be closer to the target compared to a value exactly equal to the target value and a higher value
combined. An example of the formula of this type 2 function is shown hereafter:

Oh
i (t ) =

( ∑
λ∈Λh

i (t )

{
λ ·Pr

(
Λh

i (t ) =λ
)}−Ω)2

(3.9)

This is not a type 1 function since having a higher arrival time might be beneficial if data added upstream also
adds a probability of a lower arrival time. Therefore the optimal routeplan is dependent on data from upstream
labels and this is a type 2 function.

3.1.3. The ARSCR algorithm
Now that the objective function and the 2 types of functions are explained, it is clear that an adjustment of the ARSC
algorithm can only be used in certain cases. If an objective function is type 1, the ARSC algorithm can be expanded
to facilitate the usage of an objective function. This expansion of the ARSC algorithm into the ARSCR (Adaptive
Routing with Signal Controls and Reliability) algorithm, will be explained in this section.

The concept of the algorithm will stay the same as the ARSC algorithm, and therefore this is also a backwards
label correcting algorithm. But to facilitate the usage of reliability in the ARSCR algorithm, a few adjustments have to
be made. First of all, not just the expected travel time should be saved at the labels, but the travel time distribution,
containing multiple travel times and their corresponding probabilities, as well. Secondly, the optimal routeplan
should not be the lowest expected travel time, but the optimal routeplan according to the objective function, that
takes the travel time distribution as input. Lastly the main formula should be adjusted to calculate the probability
distribution instead of the lowest expected travel time.

Adjusting the labels
Since a travel time distribution should be saved at the labels, the original labels should be adjusted. In the original
algorithm the label, λh

i (t ), contains the travel time to the destination node. This is sufficient for the lowest expected

travel time, but a distribution cannot be stored. Therefore the variable is changed into Λh
i (t ) which contains the

travel time distribution to the destination node, while being at node i at time t and coming from node h. But
for the distribution, the probability on that travel time should be stored as well. Therefore, Pr

(
Λh

i (t )
)

is added,
which stores the probability on the travel times. These probabilities, in combination with the travel times, give a
probability distribution of possible travel times to the destination node, while being at node i at time t and coming
from node h. Since η is still used, η, should be adjusted in the same way as the label, λ. This results in H h

i j (t ) and

Pr
(
H h

i j (t )
)

which gives the probability distribution of the temporary labels.

Now that the labels are adjusted, the optimal routeplan can be saved depending on the objective function and
travel time distribution. The ARSC algorithm, as described in Section 3.1.1, calculates the temporary label, ηh

i j (t ),

which is the expected travel time, first and only saves it to the label, λh
i (t ), if the temporary label is lower. But since

this does not take any kind of reliability into account the algorithm is adjusted to use the travel time distribution
instead of the expected travel time. To also facilitate the usage of an individual cost function, as given in the goal
of this research in Section 1.2, the objective functions is used to check if the objective value is improved. This is
done by checking which of the objective values of the different H h

i j (t ), compared with all possible j , is best. j can be

all the downstream nodes of i , so when the optimal j is found for a minimal objective value of H h
i j (t ), the optimal

downstream node to travel to is found. Therefore Equation 3.1 is changed into Equation 3.10, which searches for
the distribution with the lowest objective function. If a higher objective function is better, the maximum should
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be searched for instead of the minimum, or the objective function could be multiplied with −1. Since the objective
function changes from user to user, a general notation is used. In this notation the objective function of node i while
coming from node h at time t , Oh

i (t ), is dependent on the temporary travel time distribution, formed by H h
i j (t ) and

Pr
(
H h

i j (t )
)
.

Λh
i (t ) = H h

i j (t )
∣∣∣ j = argmin

j∈D(i ,h)
Oh

i

(
H h

i j (t ),Pr
(
H h

i j (t )
))

(3.10)

The new main formula
The main formula also needs to be adjusted to work with the travel time distributions. Since the travel time distribu-
tions should be calculated and not the expected travel time, entire distributions should be passed along. Therefore
the probabilities on the different travel times are calculated. The probability on a specific travel time, λ, from the
temporary label, H h

i j (t ), is denoted as Pr
(
H h

i j (t ) = λ
)
. This probability is dependent on multiple variables. First of

all the probability on a specific link travel time, pk
i j (t ). Every link travel time has a probability of occurring and this

should be taken into account. Secondly the probability of a green traffic light, Z hi
j (t ), (or red traffic light, 1−Z hi

j (t ),)

should be known. This is required since the probability of the travel time to the destination is calculated differently
for when the traffic light is green, and when it is red. When it is green, the probability of a green light, the probability
of that specific link travel time and the probability of the travel time from the downstream label to the destination
node, is used. And when it is red, the probability of a red traffic light and the current label, but one time step later,
is used for calculating the travel time to the destination node. This leads to the last part, the probability of having a
travel time to the destination node from the label downstream (if the traffic light is green), Pr

(
Λi

j (t )
)
, or the same

label one time step later (if the traffic light is red), Pr
(
Λh

i (t +1)
)
.

Now that all notations are explained, the formula itself can be explained. In the formula all probabilities on a
certain travel time, Pr

(
H h

i j (t ) = λ
)
, should be calculated. Since λ is the travel time from node i to the destination

node, the link travel time between node i and j and the travel time from node j to the destination should be taken
into account. Therefore different probabilities are added up, since the same travel time from node i to the destina-
tion node can be the result of a combination of different link travel times and travel times to the destination node
at the downstream label j . Therefore, for the case the traffic light is green, the probabilities are added up for all
cases in which the link travel time and travel time at the downstream label added up are equal to this specific travel
time λ. Therefore the probability of a certain link travel time occurring, pk

i j (t ), is multiplied with the probability

that the travel time from the downstream node, to the destination node, is equal to λ minus the link travel time,

Pr
(
Λi

j (t +τk
i j (t )) =λ−τk

i j (t )
)
. If this is added up for all possible link travel times and multiplied with the probability

of the traffic light being green, it results in the first part of equation 3.11.
For a red traffic light the current label, at one time step later, should be equal to the travel time λ minus 1,

since the vehicle will wait one timestep at the traffic light before using the travel time from that label. This should be
multiplied with the probability on a red traffic light to get the second part of the equation. If both those probabilities
are added up the total probability of a specific travel time from the current node to the destination node is known,
and this results in the following formula:

Pr
(
H h

i j (t ) =λ
)
=

1︷ ︸︸ ︷
Z hi

j (t ) ·
kmax

i j∑
k=0

pk
i j (t ) ·Pr

(
Λi

j (t +τk
i j (t )) =λ−τk

i j (t )
)
+

2︷ ︸︸ ︷(
1−Z hi

j (t )
) ·Pr

(
Λh

i (t +1) =λ−1
)

. (3.11)

To get the full travel time probability distribution this equation needs to be calculated for all possible values ofλ.
This can simply be noted asλ ∈ H h

i j (t ), but for clarity the complete set H h
i j (t ) is explained. A range of values between

a minimum and a maximum possible travel time from this label to the destination can be part of H h
i j (t ). These vales

are dependent on the minimum (or maximum, respectively) link travel time and minimum/maximum travel time
from the downstream node to the destination node. Besides this value, the travel time from the node one second
later is used if the traffic light is red, therefore the minimum/maximum of this should also be taken into account as

well. This results in the set of all numbers between min
{

min
k∈kmax

i j

(
τk

i j (t )+minΛi
j (t +τk

i j (t ))
)
,minΛh

i (t +1)+1
}

and
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max
{

max
k∈kmax

i j

(
τk

i j (t )+maxΛi
j (t +τk

i j (t ))
)
,maxΛh

i (t +1)+1
}

.

Once Equation 3.11 is calculated for all λ and for all j that are downstream nodes of i and reachable from node
h, the optimal routeplan for this part can be known. To determine this, the objective function is used to determine
the optimal travel time distribution Pr (Λh

i (t )), which will be equal to the optimal travel time distribution from

all different temporary travel time distributions Pr
(
H h

i j (t ) = λ
)
. For this a formula is introduced, that saves the

temporary travel time probability label to the travel time probability label, if the objective function is better:

Pr (Λh
i (t )) = Pr (H h

i j (t ))
∣∣∣ j = argmin

j∈D(i ,h)
Oh

i

(
H h

i j (t ),Pr
(
H h

i j (t )
))

. (3.12)

If this is repeated for all nodes in the network, as described in 3.1.1, it will result in the optimal, time dependent
routeplan to the destination.

3.1.4. The FPP algorithm
Since the ARSCR algorithm cannot be used with type 2 functions, another algorithm is designed that can be used
with all functions. This new algorithm no longer tries to know the optimal routeplan at every intermediate node,
since the optimal routeplan might not be known at intermediate nodes. Therefore a new algorithm is designed that
calculates the probability distribution for every possible routeplan and compares these with other routeplans, once
those are completely calculated as well. The new algorithm is a forwards algorithm, and therefore only the exact
time steps a vehicle has a probability (greater than 0) of arriving at a next node are taken into account for calculating
the arrival times at the nodes after that node. This skips calculations at some time steps at some nodes. But since
all routeplans are searched completely and the optimal routeplan cannot be known at intermediate nodes, the
algorithm might become slow in a network. Therefore an algorithm that makes a preselection of links that should
be calculated in the network is advised. Since the algorithm is changed from a backwards to a forwards algorithm
and the probability is propagated forwards for all routeplans, the new algorithm is called the Forward Probability
Propagation (FPP) algorithm.

There are three main differences between the ARSCR algorithm and the FPP algorithm. In the first place, the FPP
algorithm can use all functions as objective function and not just the type 1 functions. Secondly, the FPP algorithm
is a forwards algorithm and can therefore incorporate waiting times at the traffic light more accurately, this will be
explained in the next subsection. And lastly, the FPP algorithm calculates all routeplans completely and does not
know optimal routeplans at intermediate nodes. Therefore it calculates all routeplans separately and compares the
objective values of the routeplans once they have been calculated completely.

The required input
The algorithm will use the traffic light prediction module and link travel time prediction module as input. For the
link travel time, τk

i j (t ) and pk
i j are calculated in the same way as in the ARSCR algorithm, but the notation is different

to create a consistent notation in this section. The set of all possible link travel times will be noted as Ki j (t ). The
probability on link travel time k is then: Pr (Ki j (t ) = k). Therefore Ki j (t ) is now the set of all possible link travel
times from node i to node j when departing at time t , the calculation of this is explained in Section 3.3.

For the traffic light prediction model, using a forwards algorithm, allows for an improved inclusion of the pre-
diction of the traffic signal. In the ARSC(R) algorithm the probability of green is calculated for a signal group and
time. This does not take into account how long a vehicle is already waiting for a red traffic light. This is not pos-
sible because it is a backwards algorithm and therefore it is not known, how long the vehicle is already waiting for
a red traffic light. Also the probability of being at that node, is a combined result of arriving at different moments.
With the forward FPP algorithm it is possible to know how long a vehicle is already waiting, since it knows when a
vehicle arrives at the node and can therefore predict waiting times depending on this arrival time. This results in
more precise predictions. Another benefit is that the maximum cycle time can be taken into account correctly and
therefore vehicles cannot wait longer than that time. To incorporate this the traffic light prediction module need
to be adjusted to return a distribution of the waiting time at the traffic light, dependent on the arrival time of the
vehicle at that traffic light. This is explained in Section 3.2 and results in Lhi j (t ) being the set of all possible waiting
times when arriving at time t at the traffic light at node i while coming from node h and going to node j . The prob-
ability on waiting time l is then: Pr (Lhi j (t ) = l ). The waiting times are the number of timesteps the traffic light is
red, before it turns green. Therefore this is dependent on the moment of arrival (t ).
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The concept of the FPP algorithm
The concept of the new algorithm is to calculate the travel time distribution to the destination node, depending on
the routeplan taken. This routeplan is location and time dependent, since a different next link could be taken at a
node if a vehicle arrives at that node at a different time. Since the calculations are done forwards, from the departure
node and departure time to the destination node, some nodes, which have a probability of zero of occurring, can be
skipped. The probability of arriving at a next node at a certain time is dependent on the waiting time at the traffic
light and the link travel time. Since those are given in a distribution, the arrival time at the nodes is a distribution as
well. Therefore, for every node, the travel time distribution at the upstream node, the waiting time distribution at
the upstream traffic light and the link travel time distribution are added up. This will (often) result in a more spread
out distribution. With this method all nodes are calculated from the departure node up to the destination node,
which will result in a travel time distribution at the destination node, on which the objective function can be used.
Once the objective value has been calculated for all routeplans, the optimal routeplan is known.

Since all combinations of possible next links, depending on the arrival time at the node before that link, have to
be calculated, the set of all routeplans is defined as R, with r ∈ R being all possible routeplans. To define the next
node to travel to from any point in the network a new function is created:

j = J r (h, i , t ). (3.13)

This function returns the next node to travel to j , depending on the node the vehicle is, i , at this time t , while
coming from node h. This function is different for every routeplan r and can give a different next link for every
routeplan. If a vehicle will arrive a timestep later, the variable t has changed and therefore the next node to drive
to, j , can be different. Where the number of different options as next nodes is usually limited to a few (3 for a four
way intersection), the number of different arrival times at those nodes, t , can take many different values. But those
values should always be higher than or equal to the minimum travel time to that node, tmi n , and lower than or
equal to the maximum travel time to that node, tmax . These values can be calculated as the minimum (respectively
maximum) waiting time plus the minimum/maximum link travel time of all upstream links. Since the probability
of a vehicle being at a specific node at the minimum or maximum time might be zero, a more elaborate selection
method might be used that only uses the arrival times at that node which have a probability of occurring. But taking
more values into account is not a problem since the algorithm will simply assign them a probability of 0.

Now the routeplans are explained, the new formula can be introduced. For this formula, the new variable X r
i , j is

introduced, which gives the travel time distribution from the departure node to node j and arriving at node j from
node i , while following routeplan r . The r makes sure that this is calculated separately for every routeplan. The
probability on a travel time λ is given by Pr (X r

i , j =λ). This probability is set to 1 for Pr (X r
f ,h = 0), given that h is the

departure node, f is the predecessor node of h (required since the vehicle is on the link before that node and not on
that node exactly) and the vehicle arrived at the departure node at time t = 0.

To calculate the probability on the travel time, Pr (X r
i , j = λ), the probability distribution should be known. To

calculate this distribution the travel time distribution at the upstream node should be known as well, Pr (X r
h,i ). This

can be visualized using the example in Figure 3.5, in which Pr (X r
i1, j1

= λ) can only be calculated if Pr (X r
h,i1

) is

known. The next part that needs to be known is the travel time from i1 to j1 which consists of a waiting time from
the set Lhi1 j1 (t ) and a link travel time from the set Ki1 j1 (t ). This can be a combination of different waiting times and
link travel times, as visualized by the solid lines in the enlargement in Figure 3.5. In this figure, when the vehicle is
at i1 at time t, an arrival at j1 at time t+2 can be reached trough a waiting time of 0 seconds and a link travel time of 2
seconds, and with a waiting time of 1 second and a link travel time of 1 second. Therefore a certain total travel time
from link i1 to link j2 can be a combination of a waiting time and a link travel time. Different combinations can lead
to the same total travel time and they should therefore be added up.

But besides the different combinations of waiting times and link travel times that could lead to the same arrival
time at node j1 in figure 3.5, a different arrival time at the node upstream (i1) could still result in the same arrival
time at node j1. This is shown in the figure with the dotted double lines. These show that a vehicle that arrives at
node i1 at t +1 can arrive at t +2 at j1. Since the solid line shows that a vehicle who arrives at time t can also arrive
at time t +2 at j1, the arrival times at the upstream node should be taken into account as well. Therefore not only
a combination of waiting time and link travel time that leads to a certain travel time is sought, but a combination
with the arrival time at the upstream node, the waiting time and the link travel time.

And this goes even one step further. Since the FPP algorithm is not calculated for a route, but a routeplan, there
could be multiple nodes from which the current node is approached. This is shown in Figure 3.6, which shows that
if node j2 is used to reach the destination node D, node i1 and i2 could both be the predecessor nodes of node j2.
Therefore all travel times should also be calculated via all possible nodes.
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Figure 3.5: An example network with the nodes i1 and j1 enlarged, including the link between these nodes. In the enlargement the solid lines
give possible waiting and link travel times when a vehicle arrives at i1 at t and the dashed lines give the possible waiting and link travel times if a
vehicle arrives at t +1.

Figure 3.6: An example network that shows that if a vehicle is at node h at time t = 0 a different route can be part of the routeplan compared to
when the vehicle is there at t = 1. Since the travel time from node h to the successor nodes can vary, vehicles can arrive at node j2 at the same
time from different nodes, because of a different link used before, as part of the routeplan.

This leads to three main elements of the new formula to calculate the travel time distribution at a node. First
of all the waiting times and link travel times should be combined. Secondly the arrival time at the upstream node
should be taken into account. And lastly all possible upstream nodes should be taken into account.



26 3. Algorithm design

The new formula
Now that the concept of the algorithm is clear, the formula that is used will be explained. The formula can be
used to calculate the probability on a certain travel time λ at a the current node j , Pr (X r

i , j = λ). Since there are

multiple possible travel times, Pr (X r
i , j = λ) should be calculated for multiple values of λ. How to select all possible

values for λ will be discussed after the formula is explained. To calculate this probability the three main elements
described before should be taken into account. Firstly the waiting time and link travel time. The probability on
a combination of the waiting time l and link travel time k can be calculated by Pr (Lhi j (t ) = l ) · Pr (Ki j (t ) = k).
Secondly the probability of being at the upstream node i at time t should be taken into account, Pr (X r

h,i = t ). Now
the probability on a travel time λ can be calculated by multiplying the probability of being at the upstream node
at time t , the probability on waiting time l and the probability on link travel time k. Since the probability on travel
time λ is sought, t , l and k should add up to λ. Therefore the probability on the link travel time is not calculated as
Pr (Ki j (t ) = k), but as Pr (Ki j (t ) =λ− t − l ), since λ− t − l should be equal to k.

The third and last part are all the predecessor nodes that need to be taken into account. The probability on
a travel time to node i is given by Pr (X r

h,i ), thus the predecessor node h should be taken into account as well.
Therefore this should also be added up over all possible nodes h, that are predecessor nodes of node i and from
where node j is reachable (this might not be te case when there are for instance restricted turns). This is given in
Hi j , which is the set of all nodes h which can be used to travel to node i and from node i to node j as well. Now the
nodes h are known, the possible arrival times at node i can be known. Since these times are also used in equation
3.13, this formula can be used to identify the possible arrival times at node i . h, i and j are known and therefore
the equation can be checked for all possible arrival times that satisfy the equation. With this method the set T r

hi is
created that contains all possible arrival times at node i , while coming from node h and following routeplan r .

The calculation of the probability should therefore be added up over three things. The first is the summation
over all possible nodes h, that can be used to travel to node i and then to node j , which is given in Hi j . Secondly it
should be added up over all possible arrival times at node i , while coming from node h, which are given in T r

hi . The
last part is adding up over all possible waiting times l at node i at time t while coming from node h and going to
node j , which is the set Lhi j (t ). The formula does not need to be added up over all possible link travel times k since
they can be calculated as k =λ− t − l . Once this is all calculated the probability on a travel time of λ to node j, while
arriving from node i is known, Pr (X r

i , j =λ).

This is shown mathematically in the following equation:

Pr (X r
i , j =λ) = ∑

h∈Hi j

∑
t∈T r

hi

∑
l∈Lhi j (t )

Pr (X r
h,i = t ) ·Pr (Lhi j (t ) = l ) ·Pr (Ki j (t ) =λ− t − l ) (3.14)

If this equation is repeated for all λ, the travel time distribution is known. This should then be repeated for the
entire network and for every routeplan in this network.

The starting point of the algorithm is known and the probability on a travel time of 0 to the departure node is
1, Pr (X r

f ,h = 0) = 1, for all routeplans r assuming that h is the departure node and f the predecessor node of h.

From this point on the next node to calculate can be found with Equation 3.13. Variables h and i from the departure
node are known and the first t is 0, thus the next j is known. This can be done for λ ∈ Z, with Z being all integer
numbers, since the probabilities will be zero for timesteps that do not occur in the calculation. But a minimum and
maximum value is preferred which could be min

t∈T r
hi

+ min
l∈Lhi j (t )

+ min
k∈Ki j (t )

and max
t∈T r

hi

+ max
l∈Lhi j (t )

+ max
k∈Ki j (t )

respectively. This

is the minimum/maximum travel time from the departure node to node i , while coming from node h, plus the
minimum/maximum waiting time at node i , plus the minimum/maximum link travel time to node j . Since there
might be different nodes h, the minimum of all those nodes should be picked, just as the maximum of all those
nodes for the maximum. Once the probability, Pr (X r

i , j =λ), is calculated for all those different values of λ, the next

node should be picked to be calculated. This can be done again with Equation 3.13, since the node refered to as i
will become node h and j will become node i . Then j can be calculated again, but since there might be multiple
arrival times t at that node, there might be different nodes j . Therefore the first node j is selected to be calculated
and all other nodes j that need to be calculated are added to the search list. Once this calculation is done, the next
node j will be used from the search list to calculate the probability distribution and so on. Once all nodes j have
been calculated, Formula 3.13 can be used to calculate the next nodes j again, and this process can be repeated
until the destination node is reached.

The result will be a probability distribution for every routeplan. When al these distributions are known the
objective value can be calculated by using the distributions as input for the objective function. This result in one
optimal routeplan which should be taken. This routeplan includes the scenarios for specific arrival times at the next
traffic light and which link to take there dependent on the arrival time.
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3.2. Traffic light state prediction algorithm
In the previous section the routing algorithms are explained and a traffic light state prediction method is required
for these algorithms. This traffic light prediction method should result in Z hi

j (t ) for the ARSCR algorithm and in

Pr (Lhi j (t )) for the FPP algorithm. Z hi
j (t ) gives the probability of a green light at node i , coming from node h and

going to node j at time t . Lhi j (t ) is the set of all possible waiting times when arriving at the traffic light at node i at
time t and going to node j while coming from node h. The probability on a waiting time is given in Pr (Lhi j (t ) = l ).
For the traffic light state prediction used by the ARSCR algorithm, the probability on every possible state of the
traffic light in the future is calculated and afterwards the states that result in the requested direction having green
are added up to know the probability of having green for that direction. For the FPP algorithm, the traffic light state
prediction gives the probability on a waiting time, therefore the FPP algorithm should known the predicted traffic
light states in the future as well and then for every state it could be in, at a certain time, the possible waiting times
are calculated. Therefore the method for the ARSCR algorithm is explained first since almost everything of that part
is used by the FPP algorithm as well. Since the complexity is discussed for each algorithm as well, this is discussed
first before the adjustments for the FPP algorithm are explained.

Main part for both algorithms
Literature on traffic light state prediction was reviewed and discussed in Section 2.2. The method that was looked for
could predict traffic lights with a changing cycle time for a few minutes ahead, results in a probability distribution,
has a reasonable complexity and uses only historic or SPaT data. The methods by Bodenheimer et al. (2014) and
Dabiri and Hegyi (2018) are the most useful methods since they are applicable to traffic lights with a changing cycle
time, result in a probability distribution, use available data and are not to complex. These methods are based on
creating a set of traffic light states and calculating the probabilities of all transitions between these states (depending
on how long they are already in that state). Both researches only used their method to predict shortly ahead (e.g.
30 seconds) for GLOSA and not further ahead (e.g. 10 minutes) for routing purposes. These methods both used
historic data and Bodenheimer et al. (2015) found that they should use historic data separated per time period and
from not too long ago (about four periods, e.g. weekend mornings). The method that is explained in this section is
based on these researches.

It is key for both methods to know the probability of transitions between different states of the traffic light.
Therefore the state of the traffic light needs to be defined first. Dabiri and Hegyi (2018) defined a state for their
method as

S = (Bb ,nb
1 ,nb

2 ), (3.15)

in which Bb is the current block, the directions that have green at that moment, with b ∈ 1, ..., N being the current
block selected from N possible blocks. In this case a block is a unique combination of directions that are green at the
same time. While in some other literature blocks are directions that can be green at the same time, the directions
have to be green at the same time for this definition. Therefore if a minor directions can get green, since some other
direction does not have any traffic, a different block will be active since that minor direction is also included in the
block while the direction without traffic (and thus a red light) is excluded. nb

1 is the number of seconds the first
direction from that block already is green and nb

2 is the number of seconds the second direction from that block
already is green. These values are selected from 1 to the maximum number of seconds that direction can be green,
resulting in nb

1 ∈ (0,nb
1,max ) and nb

2 ∈ (0,nb
2,max ).

In the paper of Dabiri and Hegyi (2018) there are only two directions that can have green at the same time. But
on larger intersections with more dedicated turning lanes that number is usually larger. Therefore the state should
contain more values to facilitate a timer for all the directions that can be green at the same time (given by m).

S = (Bb ,nb
1 ,nb

2 , ...,nb
m) (3.16)

Now that the state is defined, the probability of transitioning into a next state should be determined. To do this
Bodenheimer et al. (2014) creates a controller graph which is then reconstructed into a transition graph. This graph
shows all the possible changes in states of the traffic light. Historic data is then used to add the probabilities to each
transition. The time since the transition is also tracked to calculate the probabilities, since the time the signal is in
a certain state influences the probability of changing into the next state. But since it only tracks the time it is in this
exact state previous changes in state are neglected. Normally a traffic light does not consider previous changes but
with actuated traffic lights a minor direction that has no more traffic could turn red and a different direction might
get an extra time green in this cycle. As long as the main direction keeps having traffic and the maximum green time
has not been reached the traffic light will stay in this new state. Therefore it is not only relevant exactly how long
the traffic light is already in this state, but also how long all the separate directions already have green. The method
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from Dabiri and Hegyi (2018) does take this into account by adding a timer for every direction that is green. This is
basically the same method as Bodenheimer et al. (2014) uses, but with more states since the states are dependent
on the timers of all directions that are green and not just one timer. Since the method of Dabiri and Hegyi (2018)
keeps timers for every direction, this method is preferred.

To calculate the future state of the traffic light, some defintions need to be introduced. S is the set of all possible
states for this traffic light, with this set, states that has a longer green time than the maximum green time or a
combination of directions that have green that cannot happen, can be excluded from calculation. P returns the
probability of transitioning from the state St toward St+1. Besides these new notations, the definition of a state
should be made time step dependent. Therefore Equation 3.17 is introduced, that makes the state dependent on
time step t .

St =
(
Bb(t ),nb

1 (t ),nb
2 (t ), ...,nb

m(t )
)

(3.17)

Now the probability on a future state, given the current state, (Pss′ ) can be calculated by the next equation:

Pss′ =P[St+1 = s′|St = s],∀s, s′ ∈S (3.18)

This calculates the probability on a future state s′, given the current state s. To do this, the probability is calcu-
lated on the future state s′ being the state a time step later, St+1, when the current state s is St . This is done for all
states s given that the next state exists (s

′ ∈S ). With this equation the probability on every future state is calculated
and it is independent on the past states of the traffic light. Therefore it displays the Markov property of the process.
The historic data can be gathered from historic SPaT data while selecting on the current state, next state, the timers
for how long the traffic light is green and the active time period (e.g. Friday afternoon peak).

Now that the probability of transition between states is known. The probability on all states for all time steps
can be calculated. Since different states can transition into the same next state, the notation for a state is adjusted
into si , with i ∈ [1,2, ..., I ], instead of writing down the complete state with the block and timers for every state. I
is dependent on the amount of blocks and amount of different combination the timers can have in each block.
Therefore this is different per traffic light. For future state the notation is changed into s′j with j ∈ [1,2, ..., I ].

The probability on different states is given in the matrix Y (t , si ). In this matrix the probability on the state si at
time t is given. For the first time step there is only one value, since the traffic light is 100% certain to be in just one
state. Therefore Y will look like this: Y (0, si ) = [0,0,1,0,0, ...] assuming that the traffic light is in the state s3 now.

For every next time step the probabilities can be calculated by multiplying the probabilities of the previous time
step with the probability of transitioning from that state to a future state (Psi s′j

).

Y (t +1, s′j ) =
I∑

i=1
Y (t , si ) ·Psi s′j

(3.19)

Specific part for the ARSC(R) algorithm
This can be repeated to know the probabilities for all states in the future. But for the ARSC(R) algorithm, the proba-
bility of being green for a certain signalgroup should be known (Z SG (t )). Therefore we need to find all the states that
give green to a certain signalgroup and add up all the probabilities. This is done by checking for every state if the
signalgroup is green, and if so, adding the probability of that state to the probability of being green. This is shown in
Equation 3.20. It states that the probability only should be added up if SG ∈ si , this makes sure that the signalgroup
is in the block of the current state and therefore the correct direction is green.

Z SG (t ) =
I∑

i=1
Y (t , si )|SG ∈ si (3.20)

This results in a probability of being green for signalgroup SG at time t (Z SG (t )). In the ARSCR algorithm Z hi
j (t )

is requested, but since the signalgroup (SG) uniquely matches the corresponding nodes (h, i , j ), this is can be re-
placed. Then Z hi

j (t ) is finally known and can be used in the routing algorithm.

Complexity
These calculations need to be repeated for every state of the traffic light separately for the time steps in the predic-
tion horizon. The last calculation, to calculate the probability for a direction begin green, needs to be done for all
direction within the states separately. But once this is done for all direction this could be saved into matrices and
the results can be retrieved right away. This is because there are a limited set of possible states of the traffic light
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and the probabilities of changing to a new state, do not change since they are based on historic data. Therefore this
could be calculated for all states, so that the routing algorithm can run more quickly since it does not have to do
these calculations every time again. But in addition to time complexity in algorithms, memory requirement is also
relevant. Therefore creating these large matrices might not be the most efficient way after all. This is dependent on
the number of states the traffic light has, which is different for every traffic light since it is dependent on the type
of traffic light, total cycle time, alternative realisations and other flexibility improving measures. Therefore if these
calculations should be done real time or before running the algorithm should be determined for every situation
separately.

There are three points in the algorithm described before, where a matrix could be made from the data processed
up until that point. The first point is when the historic data is processed and Psi s′j

is known, but nothing has been

done with the processed historic data. This matrix is 2 dimensional with a size of the number of states squared
(I 2). This is a relatively small matrix but there are still some computations left before the data can be used in the
algorithm. The second option is after Y (t , si ) is calculated. This gives the probability of a certain state (si ) at a
certain time (t ) given a certain start state at t = 0. Therefore the dimensions of this matrix are larger and three
dimensional. For every state at t = 0, the matrix Y (t , si ) should be stored, which is a matrix with the size of the
number of states (I ) times the prediction horizon (T ), I ·T . Since this has to be stored for every possible (starting)
state, multiple matrices need to be stored which results in the following space complexity: I · I ·T , which is the
number of states squared, times the number of time steps. This matrix is therefore times T larger, which is a large
difference if the prediction time is long or the time steps are small. A third option is to save it to the matrix, after
Z SG (t ) is calculated. Which is the probability of a certain signalgroup being green at time t . Since this is dependent
on the state of the traffic light at t = 0, the size of this matrix is three dimensional as well, the number of states
times the total number of signalgroups (SGmax ) times the prediction horizon, I · SGmax ·T . But the number of
signalgroups is always smaller than the number of states since the state can change every time step. Therefore this
third point in the algorithm is more efficient compared to the second point, since more calculations are done and
there is a smaller table with data. But the first and third point are hard to compare. The third point is more time
efficient, but the space complexity depends on the number of signalgroups, time steps and states. The first point
had a complexity of I 2 and the third point a complexity of I ·SGmax ·T . This leads to the statement that if SGmax ·T is
smaller than I , the third option is better. This is true, but the other way around it does not necessary hold since the
space complexity might be improved, but the time complexity will be decreased. Therefore where the data should
be stored, should be assessed per situation under the local circumstances.

Specific part for the FPP algorithm
Besides this traffic light state prediction algorithm for the ARSCR algorithm, a slightly different one is required for
the FPP algorithm. This is because the FPP algorithm calculates the probability on a waiting time at a traffic light
dependent on the state when a vehicle arrives at the traffic light. This is will lead to Pr (Lhi j (t ) = l ) which is the

probability of having red for l −1 time steps and green for the l th time step for the signalgroup coming from node h
and going to node j . t stands for the time step the vehicle arrives at the node (i ) and l gives the time steps it has to
wait before having a green light. This results in a distribution of the number of time steps l with the corresponding
probability. The beginning of the algorithm is the same as described before, since if a vehicle arrives at a node at
time t , all possible states of the traffic light at that moment and corresponding probability should still be known.
This results in Y (t , si ) which are the probabilities on all states of the traffic lights.

The step afterwards is different since the time until green is predicted and not the total probability on a green
traffic light. Therefore the probability on states in which the signalgroup is green are added up to Pr (Lhi j (t ) = l ),
with the corresponding waiting time l . For the first timestep (when arriving at the traffic light) l will be zero since
the traffic light might already be green. But if a state of the traffic light is not green, it will be checked again one
timestep later if it is green. Since oversaturated conditions are not taken into account, the probability of having
green a second time is not taken into consideration and if a traffic light state gives the direction green, this proba-
bility should not be taken into account in the next calculations since we are not looking for the when it is getting
green again. This is stored in X (t , si ), which is set equal to Y (t , si ) for the arrival time at the traffic light (t ) but is
different for every step thereafter. i in si is an index since there are multiple possible states. j is an index for s′j
which are all possible future states. The next steps are not taken by increasing the time step t but the waiting time
l . But this should only be calculated if the current state is not green, since otherwise the vehicle already drove away
and is no longer waiting. Therefore SG ∉ si is added, so that the probability on future states are only calculated from
directions that are not green for SG . This leads to Equation 3.21
.
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X (t + l +1, s′j ) =
I∑

i=1

(
X (t + l , si ) ·Psi s′j

)∣∣SG ∉ si . (3.21)

This should be calculated for all next possible states j and when this is done for the next possible waiting time l ,
until all states have been green. Now that the probability on all future states are known, while only calculating these
if the traffic light is not green, the probability on a waiting time can be calculated. For this, Equation 3.22 is used,
which adds up all the probabilities on the states that give the signalgroup green. This is almost the same as for the
ARSCR algorithm, only in this equation the time is not dependent on t but on the waiting time l . This is calculated
for all waiting times, and

∑
l∈Lhi j (t ) Pr (Lhi j (t ) = l ) = 1 since the probability of having a waiting time between 0 and

the maximum waiting time should always be 1.

Pr (Lhi j (t ) = l ) =
I∑

i=1
X (t + l , si )

∣∣SG ∈ si (3.22)

This has to be done for every time step a vehicle can arrive at a traffic light separately which increases compu-
tational complexity compared to the ARSCR part of the traffic light prediction module. The space complexity is not
that large since only data is stored for every time step, possible waiting time and signalgroup. Therefore the space
complexity is T ·L ·SGmax . This is a lower space complexity compared to the last part of the ARSCR algorithm, if the
maximum number of waiting times is smaller than the number of states, L < T . Since this is further in the calcula-
tions as well, calculating up to this point is preferred. But this part could run real time as well or just once before
the algorithm is ran, as explained before in the previous subsection. Since calculation complexity is also relevant,
ending the calculations of this algorithm at this point or at a different point should be chosen depending on the
situation and network.

3.3. Link travel time prediction algorithm
Another input for the routing algorithms is the predicted link travel time. This consists of two parts, the estimated
link travel time (distribution), τk

i j (t ), and the probability of that link travel time occurring, pk
i j (t ). In the previous

section, literature research on this topic has been done. In urban areas the link travel time is mainly dependent on
the queueing model, the queue discharge model and the platoon dispersion model. Other delays like road works or
incidents are not taken into account in this research.

The ARSCR algorithm proposed in section 3.1.3 do not use a queueing model and only supports travel time es-
timations via the link travel time distribution, τk

i j (t ). But since this distribution is only dependent on the time the

link is entered, queueing effects cannot easily be incorporated. This is because once a vehicle enters the queue, it’s
position in the queue or how long the vehicle is already in the queue is not longer tracked. Therefore no queueing or
queue discharge model can be used. Some acceleration loss might be incorporated in the link travel time distribu-
tion, but vehicles who can pass the traffic light without stopping might not encounter those delays. Another part of
the link travel time prediction is the platoon dispersion model. For this model it is relevant in what position in the
queue the vehicle is (or at least in what position it enters the next link) and can therefore also not be implemented.
This is a part in the routing algorithm that could be improved since adding those models might improve perfor-
mance of the link travel time prediction. But adding these might also decrease the speed of the routing algorithm
since the complexity will increase.

Waiting time is incorporated in the FPP algorithm but the position in the queue is not known. Only the number
of time steps the vehicle is in front of a red light is known. This information could be used to improve the link travel
time prediction, since if a vehicle did not have to wait at all, it probably does not have to stop and therefore has a
lower acceleration loss and thus queue discharge time. Or if for instance a vehicle had to wait almost the cycle time,
it is probably in front of the queue, since the traffic light was green just before arriving at the stop line. But when
entering the queue somewhere in between it is hard to predict the position in the queue and therefore a link travel
time might not improve. This is because in an urban network, arrivals at a traffic light are usually not uniformly
distributed but somewhat dependent on intersections and traffic lights upstream. And when a platoon arrives it
is hard to determine if the vehicle is in the front or the back of the platoon, while this has influence over the next
link travel time. Therefore the waiting time at the traffic light is not used to influence the link travel time prediction
model. Besides that, the added part of the link travel time prediction model should be evaluated separately to make
sure it works properly and to make sure it does not interfere with the results of the routing algorithms. Since the
routing algorithms are the main research goal, these models are not implemented in this research and alternative
link travel time prediction methods are used.
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On some roads average and actual link travel times are known via loop detectors in the road and made available
by the local authorities. But on many roads this data is not available. Navigation service providers (like TomTom
and Google Maps) do have data on average travel time on every link and sometimes even real time data. These link
travel times indirectly incorporate the before mentioned three models since it gives the travel time experienced by
travellers in those urban areas. If this data is going to be used, a new model should be created to predict the travel
time distribution depending on the time a vehicle enters the link and (for instance) the number of vehicles already
on the link. Since this research designs a new routing algorithm it can be assumed that it will be implemented by
one of those companies who have this data already available. Another method of gaining these data is by connected
vehicles. If these vehicles sent data to the traffic lights, queue and link travel time estimations could be made using
this data. Therefore in the remainder of the research this data is assumed to be available and in the simulation this
data is made available as well.

3.4. Summary
In this chapter two new routing algorithms including the traffic light prediction model were designed and the link
travel time prediction model was further explained.

3.1.1 The ARSC algorithm from B. Yang and Miller-Hooks (2004) is a backwards label correcting algorithm that saves
intermediate steps to labels. These are calculated from the destination node towards the departure node and
from the latest expected travel time until the current time. The label in the original algorithm saves the lowest
expected travel time and can therefore not be used in combination with reliability. But it does save an optimal
route for the lowest expected travel time. This route is dependent on the arrival time at intermediate nodes
since the traffic lights can be in different states when arriving at a different moment and therefore the optimal
next link might be different. For all algorithms described from here on this concept holds, and a route in
which the next link to take is dependent on the arrival time at intermediate nodes, is from here on called a
routeplan.

3.1.2 To use reliability in the new routing algorithm, the label as described in the ARSC algorithm is adjusted into
an distribution that can be used to calculate an objective function. This objective function can be entered
by the user and can be complex, but to work with an adaptation of the ARSC algorithm it has to satisfy the
following condition: The optimal routeplan from a node to the destination node, at a specific time, should be
independent of data that will be added at every upstream node. If the objective function does not satisfy that
condition the new FPP algorithm can be used that can have all functions as objective function.

3.1.3 The ARSCR algorithm uses the method of the original ARSC algorithm but saves a travel time distribution at
the labels instead of the expected travel time. This requires some adaptations since the travel time distribution
have to be passed along. Therefore Pr

(
Λh

i (t ) = λ
)
, is introduced that saves the probability on a travel time

λ. At every label the optimal next node to travel to is determined by using this travel time distribution and
the objective function. The lowest value of the objective function of all possible routeplans to travel to, is the
optimal one. The benefit of this algorithm is that at every node the optimal routeplan to the destination can be
calculated and this algorithm is therefore more suitable for larger networks compared to the FPP algorithm. If
delay is encountered when the vehicle is driving along the routeplan, the algorithm already knows the optimal
routeplan as well since it is saved per label for every time step. Recalculating is therefore not required (but it
might improve the routeplan since prediction less far ahead is more accurate).

3.1.4 The FPP algorithm works forwards, and saves the entire distribution for every single routeplan before calculat-
ing the objective function. This requires more calculation power, but all objective functions can be used. This
algorithm can get slow for larger networks and therefore a separate algorithm can be used to select the im-
portant links for which the distribution should be calculated. Since this algorithm works forwards the waiting
time at the traffic light can be incorporated in this algorithm and therefore vehicles cannot wait longer than
the cycle time. In the ARSCR algorithm a vehicle could wait infinitely long with ever decreasing probabilities.
Therefore the FPP algorithm deals more precisely with the traffic light predictions.

3.2.0 The traffic light model is explained from the historic data until the required input for the new routing algo-
rithms. From the historic data the probabilities of changing from a state to a specific next state are calculated
while keeping track of the time every direction is already green for the best predictions. This is done once,
but the following steps have to be recalculated for every new state. To get the probability of having green for
a specific direction the probabilities on every state of the traffic light are calculated per node and per time
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step. Afterwards all the probabilities of different states in which the requested direction is green, are added
up for the required input for the ARSCR algorithm. For the FPP algorithm the last step also predicts how long
a the vehicle have to wait, after the vehicle is predicted to arrive at the traffic light, and creates a distribution
of when the traffic light becomes green (the waiting time), dependent on the arrival time at that traffic light.

3.3.0 To facilitate the use of queueing models, queue discharge models or platoon dispersion models the position
in the queue should be known. Since the ARSCR algorithm does not keep track of this, these models cannot
easily be implemented without adjusting the algorithm. For the FPP algorithm the waiting time at the traffic
light is taken into account but the position in the queue is not known as well. Besides this waiting time, which
is the time the traffic light is red, the acceleration loss is not taken into account. This could improve the link
travel time prediction, but negative consequences for the routing algorithm might arise and since the routing
algorithm is the main research goal the algorithm is not adjusted. Therefore a link travel time distribution per
link will be used, which should be made available to the routing algorithm.



4
Evaluation of the algorithm

In this section the evaluation of the routing algorithms will be discussed. In Section 4.1 the algorithm will be verified
with a simulation to show that the travel time distribution from the FPP algorithm will be realized when simulated.
This proves that the algorithm works and the calculated travel time distribution represents the possible travel times.
In section 4.2 the improvement in objective value, compared with a standard algorithm, is shown and comparisons
between different objective functions are shown as well. The algorithm is not compared in travel time, since reli-
ability cannot be measured in travel time alone. Therefore the objective functions are used, and an improvement
in objective value is therefore better. This shows that the algorithm minimizes the objective value of other objec-
tive functions and improves the expected travel time (if you use that as objective function). The complexity of the
algorithm with possible solutions and their downsides is discussed as well.

The ARSCR algorithm will not be evaluated, just as the traffic light prediction module. Since the ARSCR and
traffic light prediction module are both similar to the original algorithms it is based on, it is more useful to evaluate
the completely new FPP algorithm.

4.1. Proof of concept
This proof of concept will show that the algorithm is working by verifying it with a simulation. Therefore the FPP
algorithm will be run on a network, with signalized intersections, which will result in the travel time distribution of
the optimal routeplan. To check if this distribution is a good representation of the actual travel times a vehicle could
encounter, the network is also simulated, with a vehicle following the routeplan suggested by the FPP algorithm.
This will result in a travel time for this vehicle, and if this is simulated multiple times, this will result in a travel time
distribution over all simulation runs. The travel time distribution of the simulated vehicles should match the travel
time distribution calculated by the FPP algorithm for the algorithm to work. Because if the simulated travel time
distribution is the same as the FPP travel time distribution, the algorithm calculates the travel times distribution
correctly and the objective function can be used to determine the optimal travel time distribution, and thus the
optimal routeplan.

In this section the network, Section 4.1.1, the link travel time, Section 4.1.2, and the traffic light prediction mod-
ule, Section 4.1.3, will be explained first. Then the calculation of the optimal routeplan and travel time distribution
by the FPP algorithm will be discussed, Section 4.1.4. And finally the simulation and the results will be discussed,
Section 4.1.5 and Section 4.1.6.

4.1.1. The network
The network that is used in this simulation is a simple network with traffic lights at node A and B and two links
between the nodes, 1 and 2, and 3 and 4. This network is shown in Figure 4.1. The vehicle starts at the stop line
before the traffic light at node A. It starts at link 0, which results in going to link 1 is taking a left turn, and going to
link 2 is going straight on. Since these directions have different waiting time distributions at the traffic light, it is
relevant that the vehicle is coming from this direction. The exact waiting time distributions will be explained in the
next subsection. From there it goes to link 1 or 2 and then via node B to link 3 or 4. Looping back is not allowed in
this network. The destination is at node C and there is no traffic light or any delay present at the destination node.
Therefore it does not matter if a vehicle arrives from link 3 or 4, only the link travel time of that link is counted to get
to the destination.

33
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Figure 4.1: Network for the evaluation of the algorithm. Note that all roads have 1 lane in this picture for clarity, but there are three lanes per
approach at the intersections, one for each direction.

4.1.2. The link travel time
The travel time on the links is given in distributions that are based on Gamma distributions. This is a fitting distribu-
tion for local traffic with undersaturated conditions, since most vehicles will have a travel time slightly longer than
the free flow travel time while almost none will have a shorter travel time (Nie, Wu, Dillenburg, & Nelson, 2012). For
saturated conditions a different link travel time distribution would be more fitting, but in this research undersat-
urated conditions were assumed. A minimum travel time on a link is also present, since a vehicle will always take
at least a certain amount of time to cross a link. The exact distributions are given in Figure 4.2. This shows that
a vehicle drives at least 10 seconds on the link and a maximum of 16 seconds. The travel time distribution is the
same for every link in this evaluation. The algorithm works with a different distribution per link and can even have
different distributions per arrival time, but this is not used in this evaluation.

Figure 4.2: The link travel time distribution used in the evaluation.

4.1.3. The traffic light prediction module
The waiting times at the traffic light are calculated based on green time distributions given per phase. In this evalu-
ation both intersections of the network (Figure 4.1) have four roads coming together and each road will have three
possible signalgroups, one for each direction. There are four phases in which non-conflicting signalgroups can re-
ceive green, as shown in Figure 4.3, which are given green in the numerical order (1-2-3-4-1). The signalgroups are
numbered clockwise starting from the direction east. In phase 1 and 3 vehicles that drive straight on or make a
right turn can drive, while in phase 2 and 4 the left turns are facilitated. Since the right turns can get green on those
left turns as well, these are having green in two phases while the other directions only get green in one phase. The
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maximum green time of the phases differs as well with 5 seconds for phases 2 and 4 and 8 seconds for phases 1 and
3. This is a very short maximum green time for a traffic light, but this is done to keep the calculational complexity
low. The calculation complexity and the effects on the performance are discussed in Section 4.2.3. These values can
be used for the proof of concept since the concept does not change.

Figure 4.3: The four phases of the signal control. The phases and directions are shown for traffic light B, but are the same for both traffic lights.

The complete green time distribution is shown in Table 4.1. This shows the probability on a green time when
a phase starts, thus if phase 1 just started there is a 10% chance on a green time of 3 seconds. For both traffic
lights the signalgroups and the timing of the traffic light is the same. If a green time of 0 seconds is realized, the
phase is skipped since no traffic is at those signal groups at that moment. With these probabilities on green times, a
prediction for the waiting time at the traffic light is made with the traffic light prediction module. How this is done
is described in Section 3.2. The starting state (starting phase and time in this phase) of a traffic light will stay the
same for this part of the evaluation. This is necessary since a different starting state of the traffic light will result in
different travel times to the destination and therefore a different travel time distribution. In Section 4.2 the algorithm
is evaluated with changing traffic lights states. The starting state of the first traffic light is 2 seconds in phase 4 and
for the second traffic light 5 seconds in phase 2.

Table 4.1: The probability on a green times of a phase when that phase starts, thus the probability on a green time of 3 seconds is 10% for phase
1 and 3.

Green time (in seconds) 0 1 2 3 4 5 6 7 8

Probability phase 1 & 3 0.1 0.04 0.07 0.1 0.15 0.22 0.15 0.1 0.07
Probability phase 2 & 4 0.1 0.125 0.2 0.25 0.2 0.125 0 0 0

4.1.4. The travel time distribution calculated by the FPP algorithm
Now that the network, link travel time distribution and waiting time distribution are known, the FPP algorithm can
be used to calculate the travel time distribution of all possible routeplans. This will result in a lot of travel time
distributions. To compare one of these distributions with a simulation, one distribution should be selected. This
could be done at random, but since finding an optimal routeplan is the main goal of this research, an optimal
routeplan is used. This is done with the mean plus the standard deviation of the travel time distribution as objective
function and this takes the travel time and reliability into account. This function is explained in the next section as
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Equation 4.5, since it is used there as well. For this part it is only relevant which routeplan is taken, which is to take
link 1, and when arriving at the second node between 10 and 16 seconds, to take link 4, and when arriving between
17 and 20 seconds, to take link 3. This is shown in Table 4.2. For arrivals before 10 and after 20 seconds no next link
is given, since these travel times are not possible given the input distributions. The switch after 16 seconds makes
sense, since the traffic light at node B has a high probability of being in phase 1 when arriving at the traffic light
before 16 seconds. After phase one is over, the next green light will be in phase 4, which contains the left turn to take
link 3. Therefore the optimal routeplan switches to link 3 when arriving after 16 seconds.

Table 4.2: The routeplan that is being evaluated.

Travel time to node B (in seconds) 10 11 12 13 14 15 16 17 18 19 20

Chosen next link 4 4 4 4 4 4 4 3 3 3 3

The travel time distribution, as predicted by the calculation of the FPP algorithm, is shown in Figure 4.4. This
shows a lower probability of arriving at 31 seconds, which can be explained at the higher probability of waiting for
a red traffic light at the second intersection when node B is reached at 17 seconds or later. If the link travel time of
the link after node B (in this case link 3) is added as well, vehicles will have a lower probability of arriving after (17 +
10 =) 27 seconds to (17 + 20 =) 37 seconds. After some time the probability of the traffic light being green increases
again and the probability of arrival times around 37 seconds is slightly higher.

Figure 4.4: The probability on the total travel times to the destination.

4.1.5. The simulation
To check if this travel time distribution is correct, a vehicle is simulated trough this network with the above men-
tioned link travel time distribution and green time distribution and starting states for the traffic lights. With these
distributions as input, one value for the link travel time on the first link can be picked, and one for the second, while
taking the corresponding probabilities into account. The routeplan that is followed is described before as well, and
is link 1, followed by link 4, when arriving at node B between 10 and 16 seconds, and link 3, when arriving between
17 and 20 seconds. For the traffic lights, the green times will be randomly picked (while taking the probabilities into
account) and this will be repeated until the traffic light is simulated long enough for the vehicle to pass. So, for the
second traffic light the first state is that the traffic light is in phase 2 for already 5 seconds (this is given, as stated
before). Therefore there is a 100% chance of going to a next phase at the next timestep, since the maximum green
time was 5 seconds. Then for phase 3 a value is picked, for instance a green time of 5 seconds, and then for phase 4
a green time is picked, for instance 4 seconds, and then for phase 1, 7 seconds, etc. If a link travel time of 14 seconds
is realized, the vehicle arrives at the second node after 14 seconds because it will take link 1 and the first traffic light
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is green for that direction. After 14 seconds the second traffic light is in phase 1, since the traffic light is in phase 1
from (1+5+4+1=)11 seconds until (1+5+4+7=)17 seconds. Since link 4 is the next link when arriving after 14 seconds,
and this directions gets green in phase 1, the vehicle can drive trough and there is no delay at the traffic light. If there
is delay more phases are simulated until the vehicle gets a green light. This is simulated 1000 times to check if the
distributions match.

4.1.6. The results
The simulation is run as described above and this resulted in a travel time distribution. This distribution together
with the distribution that was calculated by the FPP algorithm is shown in Figure 4.5.

Figure 4.5: The probability on the total travel times to the destination.

This figure shows that the distributions match. There are some small differences but those are inevitable while
simulating. Therefore the travel time distribution from the FPP algorithm is the same as from the simulated dis-
tribution and the FPP algorithm calculated the correct travel time distribution. This shows that the FPP algorithm
works.

4.2. The improvement in objective values
To check the effectiveness of the FPP algorithm, the same scenario as in the previous section will be used, but with
four different objective functions which are used to determine the optimal routeplan. Next to these four objective
functions for the FPP algorithm, an optimal routeplan is also determined with average waiting times at the traffic
light and average link travel times instead of a distribution. This is done to compare the FPP algorithm with standard
algorithms that do not take reliability, current traffic light states or link travel times into account. This were most
of the algorithms described in Section 2.4. This evaluation will show the change in objective value when using the
FPP algorithm compared to the standard algorithm and between the different objective functions used with the FPP
algorithm.

Since the previous section shows that the FPP algorithm calculates the correct travel time distribution, there is
no need to simulate actual vehicles, since with many simulations the simulated travel time distribution will even-
tually turn into the distribution calculated by the FPP algorithm. But those distributions do change depending on
the starting state (starting phase and number of timesteps in this phase) of the traffic lights, since this will result in
different waiting times at the traffic light and might result in a different optimal routeplan. But for every starting
state of the traffic light there is just one optimal routeplan (for every objective function) with one travel time distri-
bution. Therefore these distributions can be calculated for every starting state of the traffic light and combined with
the probability of that starting state occurring, the mean objective values can be determined. These mean objective
values gives the mean of all objective values possible in this specific network. If these values are compared to, for
instance the standard algorithm, the mean effect of the algorithm in this network can be known. The change in
objective value will give the complete effect on that objective function for this specific network and situation.
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4.2.1. Evaluation setup
The network that is used is the same as in Section 4.1, with the same links and nodes, the same link travel times and
the same traffic lights. The only difference is that the algorithm will be calculated for all starting traffic light state
states and that multiple objective functions are evaluated. Four different objective functions are used and these are
explained and shown with the notation given before in Section 3.1.2 of which an overview of the notation can be
found in Appendix A.2. The first objective function is the expected travel time (ETT):

Oh
i (t ) = ∑

λ∈Λh
i (t )

Pr
(
Λh

i (t ) =λ
) ·λ. (4.1)

This is commonly used in standard algorithms and do not take reliability into account. The second objective func-
tion is the 95th percentile travel time, which will give the travel time the vehicle is 95% guaranteed to arrive before:

Oh
i (t ) =λ |{Pr

(
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i (t ) ≤λ
)≥ 0.95}. (4.2)

The objective function will therefore look for the lowest travel time that can be realised with a 95% certainty. There
are probably multiple travel times λ that satisfy the above equation, in that case the lowest λ should be picked. The
third objective function is the standard deviation (STD), which uses the probabilities on the travel times as weights,
and for which a lower deviation is better. This makes sure that travel times with a low probability of occurring have
a small impact on the total deviation. The formula for this is given by:
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with the mean noted as λ and calculated by:
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The last function is the mean plus the standard deviation (mean + STD), in which the mean is used as given in
Formula 4.4:
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This is added since most users would want to keep their travel time low while having a certain (also as low as possi-
ble) deviation of the mean travel time. Note that the mean is equal to the expected travel time.

Next to these four objective functions for the FPP algorithm there is also one routeplan calculated without the
FPP algorithm for comparison. This is done by using the average waiting time at the traffic light (per direction) and
the average link travel time. The current state of the traffic light is not known with this standard algorithm and the
preferred routeplan is therefore the same for all starting states of the traffic light. But the actual total travel time
distribution, experienced when driving or simulating, is different per state of the traffic light, since the delay at the
traffic light is different. Since this is not taken into account in the standard algorithm, the FPP algorithm is expected
to result in an improved routeplan. The goal of this standard algorithm is to minimize the expected travel time, as
shown in Formula 4.1.

Now that the network and the objective functions are known, the algorithm can be calculated for all possible
starting states of the traffic light. This will result in different objective values depending on the objective function
and starting state of the traffic light. Since not every starting state of the traffic light has the same probability of
occurring, these probabilities should be calculated. Once these are calculated, these can be multiplied with the
objective values to create a mean objective value for each objective function for this network.

This can be calculated with the green time distributions given in Table 4.1. This is done in two steps, first
the probability on a specific phase should be calculated and secondly the probability of being green for already
a specific number of seconds should be calculated. The probability of being in a specific phase can be calcu-
lated by calculating how long the green time of every phase on average is. This is the green time, times the prob-
ability on that green time, added up for all green times. This leads to an expected green time of 2.7 seconds
(=0.1*0+0.125*1+0.2*2+0.25*3+0.2*4+0.125*5) for phase 2 and 4 and 4.34 for phase 1 and 3. Now the probabil-
ity on being in a certain phase can be calculated since on average phase 2 or 4 is 2.7 seconds green in a cycle of
(2.7+2.7+4.34+4.34=)14.08 seconds. Therefore in 19.18% of the cases phase 2 is active, in 19.18% of the cases phase
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4 is active, in 30.82% of the cases phase 1 is active and in 30.82% of the cases phase 3 is active. For calculating the
probability of being a certain number of seconds green, the probabilities given in Table 4.1 cannot be used directly.
This is because if the green time is 2 seconds, the state that the traffic light has been green 1 second did also occur.
Therefore the probabilities should be accumulated and corrected accordingly. This is shown in Table 4.3 for phase
2 and 4. In this table the probabilities of green times are given just as in Table 4.1, but the accumulated probabilities
are given as well. This is calculated by adding up all probabilities for green times in which the current green time
already had green. In the last row these accumulated probabilities are divided by the sum of these accumulated
probabilities to get the corrected probabilities. This are the actual probabilities of a certain green time occuring.
If these corrected probabilities are multiplied with the probability of the phase occuring, the probability of a state
occuring is kown. Thus for the state 3 seconds in phase 2, this is: 0.1918∗0.1554 = 0.0298.

Table 4.3: The probability on a state occurring of phase 2 en 4.

Green time (in seconds) 0 1 2 3 4 5 Total

Probability of occurring 0.1 0.125 0.2 0.25 0.2 0.125 1
Accumulated probabilities 1 0.9 0.775 0.575 0.325 0.125 3.7

Corrected probabilities (1/3.7=0.2703) 0.2432 0.2095 0.1554 0.0878 0.0338 1

4.2.2. Results
Once the afore mentioned calculations are done, the mean objective values can be calculated. This gives a repre-
sentation on the performance of the algorithm in this network. The calculations are done with a resolution of 2
seconds per timestep, this means that every calculation in the algorithm is done per 2 seconds and not per second.
This will be more elaborately explained in Section 4.2.3, which also discusses the effects on the simulation and the
algorithm performance.

The results of these calculations are given in Table 4.4. This shows the different objective values for each ob-
jective function. It also shows the objective values for the other objective functions, for each optimal routeplan
according to an objective function, given in the first column. So the first row contains the objective values for dif-
ferent objective functions, when the routeplan is the optimal routeplan according to the standard algorithm (which
optimizes for lowest expected travel time). The second row are the objective values for the different objective func-
tions when the routeplan is optimal according to the ETT objective function, used with the FPP algorithm, etc.
The standard algorithm does not have values when optimizing for the other objective functions, since the standard
algorithm picks one route independent on the arrival time at intermediate nodes. Therefore a routeplan with a dif-
ferent link taken, depending on the arrival time at that node, cannot be calculated with the standard algorithm. The
other way around is possible, since for the other objective functions the same next link for all arrival times at that
intermediate node can be used.

Table 4.4: Results of the simulation with in the first colomn the objective function that row is optimized for. Every colomn gives the objective
value of the objective function given in the first row. Standard is the standard algorithm evaluated, ETT is the expected travel time objective
function (Formula 4.1), 95th is the 95th percentile travel time objective function (Formula 4.2), STD is the standard deviation objective function
(Formula 4.3) and Mean + STD is the objective function for the mean plus standard deviation (Formula 4.5).

Optimized for
Evaluated for

Standard ETT 95th percentile STD Mean + STD

Standard 18.22 18.22 23.48 2.43 20.65
ETT n/a 17.00 23.08 2.61 19.61

95th percentile n/a 17.68 22.23 2.15 19.83
STD n/a 18.32 22.66 2.03 20.36

Mean + STD n/a 17.13 22.49 2.32 19.45

In the diagonal line the lowest values can be found for each column. This is because it is optimized for that
specific objective function. The standard and ETT values are the same, when optimized for the standard algorithm.
This makes sense since they are both calculated the same way, and for the same routeplan this value should be the
same. When the routeplan is optimized for the ETT objective function, there is an improvement of 1.22 seconds in
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expected travel time. This shows that even when the same objective function is used, the algorithm improves the
objective value, since a lower value is better, and that taking the states of the traffic lights into account is useful.
This is because the state of the traffic light when running the algorithm is taken into account and therefore not the
expected waiting times, but the recently predicted waiting times are used. This is more precise and therefore a better
routeplan can be found. The routeplan is also dependent on the arrival time at the traffic light and therefore there
are more possible combinations compared to the standard algorithm. In 44% of the cases the routeplan differs per
arrival time at the traffic light. In those 56% of the cases that the routeplan is the same for all arrival times at the
second node, the second link that is taken is always 4. Since in most of these instances the first link taken was 2, this
makes sense since link 4 gets green earlier. For the part when link 1 is chosen, traffic light B has a high probability of
being in Phase 1 and thus a high probability of being green for link 4.

But the improvement in objective function shows that even for the same objective function, improvements can
be expected with this algorithm. And even the standard deviation over all the objective values is improved (and thus
lower) for the ETT objective function with the FPP algorithm (2.59) compared to the standard algorithm (3.13). For
the other objective functions, it differed per objective function how much the routeplans were dependent on the
arrival time at the intermediate nodes. Some objective functions almost always chose the same next link, indepen-
dent of the arrival time. For the 95th percentile 16% of the cases had different routeplans dependent on the arrival
time at the node, 56% for the std and 44% for the mean+std. Even though the 95th percentile uses the freedom of
changing routes depending on the arrival time in 16% of the cases, the improvement is still more than a second com-
pared to the standard algorithm, but this algorithm does not optimize for the 95th percentile travel time. Therefore
if the standard algorithm did optimize for the 95th percentile travel time, this might change. If the network would
be larger, with more options, this might also change, but then the calculation complexity would become a larger
issue. All other objective functions, except the standard deviation, also have a better expected travel time compared
to the standard algorithm. This might be the case because all these objective functions have a part in them that
takes the travel time into account, which they try to lower. And with more options to chose from (since they can
vary the route depending on the arrival time at intermediate nodes), the expected travel time can be improved. But
this might also happen just in this specific network with these specific green time and link travel time distributions,
since the objective functions are different and an improvement is not guaranteed.

To clarify the results and the differences between objective functions, some travel time distributions are shown
that are calculated for a specific starting traffic light state for both traffic lights. The standard deviation does not
take a low travel time into account, and the expected travel time (ETT) does not take reliability or deviations into
account. Therefore the objective function of the STD scores worse when optimized for the ETT and the ETT scores
worse when optimizing for the STD. The travel time distribution shown in Figure 4.6 clarifies this. The standard
deviation picks a routeplan with a higher mean travel time but with a lower standard deviation compared to all
other objective functions. All other objective functions prefer a routeplan with a lower mean travel time in this case.
This was expected to happen since the goal of the STD objective function is only to lower the standard deviation,
therefore it does not matter if the travel time increases, as long as the deviation in this travel time decreases. For
the ETT this is exactly the other way around, the deviation does not matter, only the expected travel time matters.
And since only reliability is not taken into account by the ETT objective function, some travel time distribution have
multiple tops. This is shown in Figure 4.7. The expected travel time might be lower for the ETT objective function in
this distribution, but the probability of having a travel time around the expected travel time is lower compared to the
other objective functions in this example. And you are more likely to arrive before or after the expected time, people
might think the routeplan was not optimal. In some cases this also happens for the standard algorithm as shown
in Figure 4.8. This is due to the fact that traffic lights have a higher probability of being red on certain times and
routes and therefore there is a lower probability of arriving at the destination some time later. Adding reliability into
the objective function could accommodate the users preference in a certain travel time distribution. If for instance
the mean plus standard deviation is used as objective function, the probability of having a travel time around the
expected travel time is increased in these two examples. But in Figure 4.9 the 95th percentile travel time has a higher
probability of arriving around the expected time, but has a higher expected travel time. This shows that reliability
is something that is taken into account in the objective function, but finding a function that weighs the reliability
and travel time to a representation of the users preference, could be hard since there are many different situations.
Therefore such a system should be flexible enough to accommodate the user’s objectives that may change from trip
to trip.

4.2.3. Complexity and resolution
The complexity of the FPP algorithm can increase quickly since it will try to find the optimal routeplan, depen-
dent on every possible arrival time at all intermediate nodes. Therefore the complexity will increase with every
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Figure 4.6: The travel time distribution when the routeplans are
optimized for the corresponding objective function. The stan-
dard deviation is the line with the top on the right side, all other
objective functions follow the other line. The start states of the
traffic lights were 1 second in phase 1 for the first traffic light and
1 second in phase 2 for the second traffic light.

test

Figure 4.7: The travel time distribution when the routeplans are
optimized for the corresponding objective function. The ex-
pected travel time is the line with two tops, all other objective
functions follow the other line. The start states of the traffic lights
were 3 seconds in phase 2 for the first traffic light and 1 second in
phase 2 for the second traffic light.

Figure 4.8: The travel time distribution when the routeplans are
optimized for the corresponding objective function. The stan-
dard algorithm is the line with two tops, all other objective func-
tions follow the other line. The start states of the traffic lights
were 3 seconds in phase 4 for the first traffic light and 1 second in
phase 2 for the second traffic light.
.

test

Figure 4.9: The travel time distribution when the routeplans are
optimized for the corresponding objective function. The ex-
pected travel time and the mean + std are the lines with the top
on the left, all other objective functions follow the other line. The
start states of the traffic lights were 3 seconds in phase 2 for the
first traffic light and 3 seconds in phase 1 for the second traffic
light.

researched time step, and at a node with two possible next links, it will increase with 2t , with t being the number of
time steps a vehicle can choose between the next links. Naturally every extra node also increases the complexity and
therefore, besides a preselection of nodes, the resolution of simulation is critical for its complexity. The resolution
is the ratio between the timestep from the input data (traffic light prediction module and link travel time prediction
module) and the timestep that the algorithm uses. This resolution can be used to reduce the calculational complex-
ity. In this case the input data has a timestep of 1 second and the algorithm will be run with a timestep of 2 seconds,
thus a resolution of 2.

Increasing the resolution from one simulation step per 2 seconds, to one simulation step per second, will in-
crease the calculation complexity of this part. If there are for instance 16 seconds in which the vehicle can arrive at
the intermediate node and decide between the two possible next links, this will lead to 216 = 65,536 calculations,
while with a resolution of two seconds this are just 28 = 256 calculations. If there are 32 timesteps in which a vehicle
can arrive at intermediate node, the number of calculations would be more than 4 billion. During the calculations
done before, the cpu-time was measured, which is the time the cpu is doing actual calculations and not occupied
with other tasks. In a situation with 216 calculations, the cpu time was 1540 cpu seconds, while in a situation with 28

calculations, the cpu time was just 12 cpu seconds. Therefore the calculational complexity of the algorithm should
be kept in mind when selecting the resolution of the simulation.

In this part of the evaluation a resolution of 2 is used. Thus the FPP algorithm uses timesteps of 2 seconds, while
the input uses timesteps of 1 second. The FPP algorithm makes this work by taking the link travel time and waiting
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time at the traffic lights per 2 timesteps instead of one. Thus two link travel times or waiting times are taken as one
and their probabilities added up. Normally the average of both values will be used as new travel time or waiting time,
but since the input from the link travel time and traffic light prediction module is in seconds and not 0.5 seconds,
this cannot be done. Therefore this value is rounded up and the travel times might be overestimated. This seemed
better than forcing it to round down, with underestimations as result. Of course this is not an ideal situations, but
very large calculation times are also not ideal.

Besides the resolution, the complexity is also dependent on the number of timesteps a vehicle can arrive at the
intermediate nodes, which is dependent on multiple factors. If the travel time on the links can vary a lot, there are
more arrival times at the next node. And for the traffic light, the maximum waiting time is relevant, since a larger
maximum waiting time might result in a larger set of possible waiting times. The maximum waiting time can be
calculated as the cycletime minus the green time for the phase the direction gets green (assuming every direction
gets green once in a cycle). Therefore traffic lights with long cycletimes can have more travel times (including the
waiting time) to the next node. But besides the maximum waiting time, a minimum waiting time is relevant as well.
For some traffic lights this is 0 since phases can be skipped and thus for some probability a vehicle can always have
green. This happens if there is a probability on having no traffic on a certain link, and thus a probability on that
phase being skipped. If there is a probability of skipping the phase, for all phases, there is always a small probability
of the traffic light turning green straight away when a vehicle approaches it. But for other traffic lights, like fixed time
traffic lights or network coordinated traffic lights, a minimum waiting time might be present. Since this minimum
waiting time reduces the amount of possible travel times to the next traffic light, this reduces the calculational
complexity also for the next traffic light.

When the calculational complexity is reduced by increasing the size of the timesteps, the performance of the
FPP algorithm in finding the optimal routeplan might decrease. If for instance the timestep is set on 2 seconds,
and the traffic light changes after one second, the FPP algorithm can only react to this by a suggested routeplan
for both seconds. Another aspect to consider is that if the objective function tries to optimize the probability of
arriving before a certain moment, it might not even be possible to arrive exactly at that moment. If the resolution
is 2 seconds, and it is tried to arrive before 55 seconds, the algorithm will determine 56 seconds as too late and 54
seconds as on time, but exactly 55 seconds can never occur, which decreases the performance. If the resolution
is increased to multiple timesteps, the expected travel time calculated with the FPP algorithm might become less
accurate and at some point, using a standard algorithm (with a better resolution) might result in a better route.
The amount of decrease in performance and the effect on the results is dependent on the objective function and
network. Therefore increasing the resolution of the simualation is something that should be done carefully and not
without considering the specific situation, benefits and downsides.

4.3. Summary
In this section the FPP algorithm is evaluated by showing that the algorithm is working with a verification by simula-
tion. The algorithm is also calculated for a specific case for all possible starting states of the traffic light to calculate
the improvements it could make.

4.1 In this subsection it is shown that the algorithm is working, by verifying it with a simulation. The FPP algo-
rithm has been calculated, with an objective function, for a network, which resulted in a travel time distri-
bution, for that specific routeplan and starting state of the traffic lights. A simulation with vehicles driving
trough the network has been done as well, which resulted in a travel time for every vehicle, and thus a travel
time distribution for all vehicles. These vehicles drove the routeplan, calculated by the FPP algorithm before,
to check if the distributions match. These distributions matched and therefore the algorithm calculated the
correct distribution. The network that was used had two traffic lights, with 2 links between each traffic light.
The link travel time distribution was given, just as the probability on green times for each phase of the traffic
lights. Then with the algorithm described in Section 3.2 the waiting time distributions were calculated. Which
is all the input required for the algorithm.

4.2 For this part of the evaluation the objective values for four objective functions and a standard algorithm,
that only takes the expected values for link travel times and waiting times at the traffic light into account,
are calculated with the FPP algorithm. This is done for every starting state of the traffic lights. This standard
algorithm allows for comparison of the same objective function, with and without the FPP algorithm. The four
objective functions that are calculated with the FPP algorithm are the expected travel time, 95th percentile
travel time, the standard deviation and the mean + the standard deviation.

For this analysis individual vehicles do not need to be simulated, since in the section before it is shown that
the travel time distribution calculated by the FPP algorithm represents the actual travel time distribution
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when simulating. Therefore the FPP algorithm is calculated for every starting state of the traffic lights and for
every objective function. Since the mean objective values of all runs are used, these objective value should be
multiplied with the probability on the starting states of the traffic lights happening. This results in the mean
objective value for this entire network. These values can then be compared to the other objective values.

The results from this calculation showed that the FPP algorithm improved the expected travel time trough
the network with 1.22 seconds (on an expected travel time of 18.22 seconds). Therefore even when the same
objective function is used, the FPP algorithm will improve the routeplan. This is possible since it makes the
route time dependent and thus a different next link could be selected per arrival time at the intermediate
nodes. The ETT does this in 44% of all cases. The improvement could be dependent on the network and
resolution. For the other objective functions the FPP algorithm optimized the objective function as well and
the objective function uses the flexibility in 16% of the cases for the 95th percentile objective function, 56%
for the std and 44% for the mean+std. Besides the results of the calculation, it is also important to note that
finding an ideal objective function is difficult. The travel time distributions can take different shapes and
creating one function that gives the optimal distribution for the preferences of different users is not trivial
since there are many ways to take reliability into account.

The complexity of the FPP algorithm can increase quickly and depends on the number of timesteps a vehicle
can choose between different links at intermediate nodes. At this point the number of calculations are nt

with n being the number of next possible links at that node and t being the number of timesteps a vehicle
can make the choice. This increases quickly with a larger number of timesteps and therefore these can be
reduced by using a simulation resolution. This resolution is the difference in timesteps used in the input of
the algorithm (link travel times and traffic light data) and the timestep used in the FPP algorithm. If the FPP
algorithm uses a timestep of 2 seconds, while the input data uses 1 second, the resolution is 2. This decreases
the calculational complexity, but also has influence on the optimal routeplan and thus the performance of the
algorithm.





5
Conclusions and discussion

In the first section of this thesis the research goal and questions were formulated. In Section 5.1 the conclusions
of the research are given by answering these research questions and explaining how the research goal has been
fulfilled. In Section 5.2 improvements to this research and recommendations on further research are given.

5.1. Conclusions
In this research two new algorithms are proposed for routing vehicles trough an urban network with traffic lights
while taking reliability into account. While developing these algorithms four research questions were answered
which are presented in this section. Afterwards the research goal is repeated and explained why this goal has been
met.

What are the existing approaches to predict traffic light states and what is the used input, the accuracy, the
complexity, the type of traffic lights on which it can be used and how can it be incorporated in the routing algorithm?

There are many approaches to predict traffic light states, but since traffic lights with a changing cycle time in a
larger network were researched, methods that predict the complete actual traffic state could not be used because of
calculational complexity. Most of the current approaches in predicting the traffic light state were limited to usages
with GLOSA and would therefore only predict for about 30 seconds ahead. Because the predictions will be done for
a routing system, 30 seconds is not enough and a method is searched that can be expanded to work for minutes
ahead. Two researches used historic data to create transition probabilities between different states of the traffic
light. With these transition probabilities, the probability of being in a future state could be calculated once the
current state was known. This method was picked as the basis of the traffic light prediction module because it could
be expanded to predict further ahead, used available data, was not to calculational complex and could be used on
traffic lights with a changing cycle time.

To incorporate this into the algorithm, the probability of a direction being green in the future should be calcu-
lated. This is done with the methods from the paper above and resulted in the probability of being green for every
direction at every time in the prediction horizon. All of this calculations can be done once before running the al-
gorithm, but since the memory requirement might become too large, some parts of it can also be calculated when
running the algorithm. If the routing algorithm is calculated forwards, the waiting time at the traffic light could be
calculated instead of the probability on a green traffic light. This results in more precise predictions and makes sure
that a vehicle can never wait longer then the cycle time.

What are the existing approaches to predict travel times on links?

Since this research is focused on routing in urban areas, travel times of the links should be known. But the travel
times on those links fluctuate because of the interaction between vehicles and the presence of intersections. Three
models are relevant to predict the link travel time, namely the queueing model, queue discharge model and platoon
dispersion model. For the queueing model it is relevant if a horizontal or vertical queueing model is used, since
waiting traffic could block entrance to a turning lane with the horizontal queueing model. With the vertical queue-
ing model vehicles are stacked on top of each other and spillback effects are therefore not taken into account. The
queue discharge model is dependent on two factors. The queue discharge rate, which is how many vehicles per
hour are crossing the stop line, while driving their desired speed. And the acceleration loss, which is how quickly
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vehicles are crossing the stop line just after the traffic light turned green and while they are not driving their desired
speed. Those values are best locally measured since these are dependent on a lot of factors that influence driver
behaviour. The last model is the platoon dispersion model, this model determines how quickly a platoon disperses
after driving away at a green light. Robertsons model is often used (Paul et al., 2016) and has two parameters, which
are both influenced by many factors. But most of these factors also have effect on the link travel time and standard
deviation and therefore these parameters can be calculated from the link travel time and standard deviation. The
position in the queue should be known to use the aforementioned models, because if the position in the queue is
not known, the speed and location of the vehicle when driving out of the queue is not known and these are required
for the queue discharge model and platoon dispersion model. But since the algorithm that will be used does not
support exact positions in the queues, these models cannot be used. Adding these could be an improvement to
the algorithms. In this research a link travel time distribution will be used that can be dependent on the time the
vehicle enters the link, but the position in the queue is not known and when the traffic lights turns green the vehicle
is assumed to be driving to the next link directly.

What are the existing routing algorithms and what is the used input, the complexity and how can it incorporate a
probability distribution of the travel time and an individual cost function?

There are just a few algorithms that take traffic lights into account and even less that can deal with probabilisti-
cally known traffic light states. The ARSC method by B. Yang and Miller-Hooks (2004) was best suited since it could
route traffic in a time dependent stochastic network, take probabilistically known traffic light states into account
and stored optimal routes at intermediate nodes, to reduce its calculational complexity. It determines the optimal
route while taking the travel time on the links and the probability of the traffic lights being green into account. This
probability is dependent on the arrival time at each node, and therefore an optimal route is a set of route choices
depending on the arrival time at the node, which is called a routeplan.

Since it only gives the lowest expected travel time, the method should be adjusted to save the travel time distri-
bution and use an individual cost function. Since the ARSC algorithm is a label correcting algorithm that saves the
optimal routeplan at intermediate labels, these labels should be changed to include a distribution. Next to that, the
optimal routeplan should be determined dependent on the individual cost function. This is done at every interme-
diate label which results, once all labels are calculated, in an optimal routeplan.

This new algorithm, the ARSCR algorithm, does not work for all objective functions. Since it saves the optimal
routeplan at intermediate nodes and works backwards from the destination node towards the departure node, the
optimal routeplan should be independent of data that will be added at every upstream node. If this condition is not
met, the result might be a suboptimal routeplan, because the new data added at a node upstream, might result in
a different optimal routeplan downstream, while this part has already been calculated. Since reliability might be
dependent on the entire distribution, another algorithm is created.

This algorithm propagates the probability of having a certain travel time forward, and is therefore called the
Forward Probability Propagation (FPP) algorithm. This algorithm calculates the probability distribution of the travel
time to the destination, while taking a certain routeplan. A routeplan is not just a series of links which should be
used after each other, but also the time at which a vehicle arrives at the intermediate nodes. The time a vehicle
arrives at all intermediate nodes is relevant, since the probabilities on the states of the traffic light are dependent on
the arrival time at that node. This is done from the departure node towards the destination node and from time t=0
until the complete routeplan is calculated. Every routeplan will result in a different distribution and from all those
distributions the optimal routeplan could be determined with the objective function. Since this is calculational
complex, a different algorithm that selects certain links to take into consideration might be required. The input for
both algorithms is the link travel time prediction and the traffic light prediction model. But for the FPP algorithm,
the traffic light prediction model gives the probability on a certain waiting time at the traffic light, instead of the
probability of being green. This gives a more precise prediction, but also requires more calculation power. For the
ARSCR algorithm this is not possible since it is a backwards algorithm and therefore it is not known at what time the
vehicle arrives at the traffic light.

How does the routing algorithm perform in a simulation, compared to a standard algorithm
that searches for the lowest expected travel time?

First it is proven that the algorithm is working, by verifying it with a simulation. The FPP algorithm has been run
on a network, with an objective function, which resulted in a travel time distribution, for that specific routeplan
and starting state of the traffic lights. A simulation with vehicles driving trough the network has been done as well,
which resulted in a travel time for every vehicle, and thus a travel time distribution for all vehicles. These vehicles
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take the routeplan, calculated by the FPP algorithm before, to check if the distributions match. These distributions
matched and therefore the algorithm calculated the correct distribution.

To show the change in performance of the algorithms, the network does not need to be simulated, since in the
section before it is proven that the calculated travel time distribution becomes the actual travel time distribution,
when simulating. Therefore the FPP algorithm is calculated for every starting state of the traffic lights with every
objective function. Since this is done for all traffic light states to create all possible situations, the objective value
should be multiplied with the probability on the starting traffic light state, to calculate the mean objective value for
this entire network. These values can then be compared to the other objective values.

The results from this calculation showed that the FPP algorithm improved the expected travel time trough the
network with 1.22 seconds (on an expected travel time of the standard algorithm of 18.22 seconds). Therefore even
when the same objective function is used, the FPP algorithm will improve the routeplan. This is possible since it
makes the route time dependent and thus a different next link could be selected per arrival time at the intermediate
nodes. The expected travel time objective function does this in 44% of all cases, which might increase with larger
networks since there are more possible different routeplans to follow. But these numbers could also be dependent
on the network and resolution. Besides the results of the calculation, it is also important to note that finding an
ideal objective function is hard. The travel time distributions can take different shapes and creating one function
that gives the optimal routeplan for an individual user in all situations is not trivial since there are many ways to
take reliability into account.

The complexity of the FPP algorithm can increase quickly and depends on the number of timesteps a vehicle can
choose between different possible next links at intermediate nodes. At this point the number of calculations are nt

with n being the number of possible next links at that node and t being the number of timesteps a vehicle can make
a choice between those next links. This increases quickly with a larger number of timesteps and therefore these can
be reduced by using a simulation resolution. This resolution is the difference in timesteps used in the input of the
algorithm (link travel times and traffic light data) and the timestep used in the FPP algorithm. If the FPP algorithm
uses a timestep of 2 seconds, while the input data uses 1 second, the resolution is 2. This decreases the calculational
complexity, but also has influence on the optimal routeplan and thus the performance of the algorithm.

Now that the research questions are answered the research goal can be reviewed.

Designing an urban routing algorithm, that incorporates predicted traffic light states, where the routing is based on
the probability distribution of the travel time and an individual cost function that expresses the tradeoff between

travel time and reliability.

By designing the ARSCR and FPP algorithm together with the traffic light prediction module, the research goal is
met. The individual cost function is introduced and all cost functions can be used for the FPP algorithm, while only
some can be used together with the ARSCR algorithm. But since the ARSCR algorithm is more efficient, using this
algorithm might be preferred, if possible. The trade-off between travel time and reliability can be made by every in-
dividual user since all functions can be entered as the cost function. This algorithm can even improve performance
if the same objective function is used as in other navigation systems, since it is routing vehicles depending on the
arrival time at each node.

5.2. Discussion
The performance of the developed ARSCR and FPP algorithms could be improved and computation times reduced.
This section elaborates on the enhancements for the algorithms and other further research.

5.2.1. Improving the link travel time prediction
Taking the link travel time correctly into account is one of the aspects of the algorithms that could be improved.
Even though these link travel times are assumed to be available, not all aspects are taken into account correctly.

Queueing model
There is no queueing model incorporated into the algorithm and therefore the delay at the traffic light is indepen-
dent of the queue at the traffic light. This does not only affect the waiting time at the traffic light, a vehicle could
also miss the green phase entirely if there is too much traffic. While in this research undersaturated conditions were
assumed, on the street there might always occur a situation which leads to oversaturated conditions. And even in
an undersaturated condition, spillback can still occur. For instance if enough traffic is waiting to go straight on and
just a few vehicles are turning right. If the dedicated turning lane is short, the vehicles might not be able to reach
this turning lane. An extensive horizontal model would be best, but a simple vertical model could be expanded with
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a maximum number of vehicles going straight on, before the next vehicles cannot turn right anymore. This might
not be accurate enough but might be better than not having a queueing model at all. Adding this model requires
values for expected arrivals, which might be dependent on the network and other traffic lights in the area. Therefore
adding these features might improve the prediction accuracy but could increase computational time as well.

Queue discharge and platoon dispersion model
Since the queueing model is not taken into account in this method, the queue discharge and platoon dispersion
model cannot be used. Both models need to have knowledge of the position in the queue, which is not known
because no queueing model is used. But if a queueing model is added, as described in the paragraph before, these
models can be implemented. This could increase the accuracy of the link travel time prediction but could increase
computational times as well.

Combining the link travel time prediction and the traffic light prediction model
If the link travel time prediction model is improved, it could improve the traffic light predictions, since the length
of the queue has a direct impact on the green time and thus the state of the traffic light. Therefore, if these models
are used, these could be integrated with the traffic light prediction model as well to get the most accuracy out of
the increased complexity. This can be done by adding for instance a (bandwidth of) queue length to the state of the
traffic light. The method can stay the same since only the definition of a state is changed, but the calculation time
for the traffic light prediction model increases. If this is done on a network level for multiple vehicles, part of this
could be done system wide to reduce the number of calculations for each vehicle.

5.2.2. Traffic light state prediction
Predicting traffic lights for minutes ahead is a complicated task that can be done in different ways. In this research
two different methods are explained, one for the ARSCR algorithm and one for the FPP algorithm. Firstly, it is
discussed if and how the traffic light state prediction method for the FPP algorithm could be implemented into the
ARSCR algorithm. Secondly, some methods that might reduce the computation time are given.

Improving the traffic light prediction for the ARSCR algorithm
The FPP algorithm is developed to facilitate the usage of all objective functions, and since it was changed to a
forwards algorithm it also facilitates an improved traffic light prediction model. The computation of the traffic light
prediction model is somewhat more complex compared to the ARSCR counterpart. This is because the waiting time
is calculated instead of the probability of being green. But this will increase prediction accuracy since waiting longer
than the cycletime has become impossible. If this feature is added to the ARSCR algorithm, this algorithm has to
change to a forwards model (or at least for certain parts). This could be done by saving the optimal previous node
instead of the optimal next node, but requires quite a change to the algorithm. In the end it might be worth it, since
at the moment there is always a small part of the traffic, that is waiting longer than the cycle time. An even smaller
part does not reach the destination, if the traffic lights are not turned to green with a probability of 1. Therefore
adding a better traffic light prediction model would at least remove these problems. If the algorithm is changed to
a forwards model, it might also decrease the amount of paths to calculate, since at every node only the travel time
to the next node has to be calculated if there is a probability (greater than zero) of a vehicle being at that moment at
that node. With the current algorithm all paths are calculated for all time steps within a certain range.

Predictions converging to averages
The accuracy of predictions will decrease when predicting further ahead and this might converge to the average
waiting time at the traffic light during that time period. Therefore it might be relevant to research how long ahead
the predictions still add value to the routing program or when averages can be used for quicker calculations. This
might result in two parts in the routing algorithm, one that uses the real time traffic light predictions, and one that
does not and routes the vehicle trough the end of the network. After crossing a (few) intersection(s) the algorithm
might be run again, to use the first algorithm for the oncoming traffic lights as well. This might decrease calculation
time while keeping a good accuracy. This should be done before the FPP algorithm could be implemented in the real
world, since otherwise it is calculationally too complex. This large calculation complexity is mainly an issue with the
FPP algorithm. The ARSCR algorithm does not have to calculate all routeplans completely, since it can determines
the optimal routeplan at intermediate nodes and calculates the optimal routeplan therefore much faster in larger
networks.
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Reducing the number of states
Another way of improving calculation time is by changing the definition of a state to decrease the number of states
a traffic light could be in. The states could be made less dependent on timers of minor directions. If for instance
a right turn is always able to get green with the traffic going straight on, but has almost no traffic, the timer of this
direction might not be relevant for when the next phase starts. But if there is traffic and it turns green, it is noted
as a different state compared to when there is no traffic, even though the next phase only starts when the queue on
the main direction is dissolved. Another way of reducing the number of states is by assigning certain directions as
alternative directions in the state of the traffic light. These directions could receive green when there is less traffic
on certain main directions. By doing this, the number of states is reduced since a state is now just a phase, one timer
and for instance a percentage that a certain alternative direction can get green. Since the percentage of being green
for smaller directions is no longer a timer as well, this single value (percentage that direction can get green) reduces
the number of states. All these methods could decrease complexity and might even improve performance, but the
effects will be different for most traffic lights.

5.2.3. Routing algorithms
There are two algorithms developed in this research, the ARSCR algorithm and the FPP algorithm. Both have its
benefits and downsides and some improvements to both are discussed here.

Limiting the number of routeplans
Another improvement might be to select the set of routeplans to take into consideration more efficiently. Since the
calculational complexity is high, methods of reducing this should be searched. Since all routeplans are searched for,
smart methods of reducing this number of routeplans could be used. Besides methods that limits the number of
links to take into account, methods that limits the number of routeplans that need to be calculated completely can
also be used. As described in the paragraph "Predictions converging to averages" before, only using this algorithm
for a few traffic lights and using a standard algorithm or averages for the rest reduces the number of routeplans. But
sometimes some routeplans do not need to be calculated since an almost identical routeplan is already calculated
with a high objective value (assuming a low value is better). The probability that a tiny change improves this from
a routeplan with a high objective value to the best routeplan (with the lowest objective value) is very small. If for
instance it is known that taking link 4 for all arrival times up until 20 seconds and link 3 afterwards returns a certain
objective value and taking link 4 for all arrival times up until 21 seconds and link 3 afterwards returns a higher
objective value, it might not be required to calculate taking link 4 for all arrival times up until 22 seconds since this
probably increases the objective value again (assuming a lower objective value is better). This should be checked
for every few (e.g. 5) timesteps if this still holds, but this could reduce the total number of searched routeplans.
Methods like this could be used to decrease calculation time and allow lower resolutions and thus might improve
the performance.

Introducing a minimum probability
Since the number of routeplans to calculate is dependent on the number of timesteps a vehicle can arrive at inter-
mediate nodes, this number should be kept as low as possible. This can be done by using a simulation resolution
and thus using larger timesteps in the simulation. However, other methods can be used as well. Sometimes there is a
very small probability on a certain travel time to that intersection but for this very small travel time all possible com-
bination of routeplans have to be calculated as well. Therefore removing very small probabilities (or adding them
to the closest other travel time) might reduce calculation time while minimizing the effects on the performance.

Updating the routeplan when arriving at the traffic light
An improvement for both algorithms might be to incorporate the option to change your routeplan when the states
of all traffic lights are known, when the vehicle is at a route decision point. A vehicle does not change its routeplan
depending on the actual state of the traffic light once it arrives at that traffic light and still follows the predictions.
Doing this might improve performance, although it should be taken into account that a person cannot see the state
of the traffic light, just the color of the traffic light, but their navigation system could. An update from the traffic
light via SPaT data could be received since some traffic lights are sending them real time, but then the algorithm
have to be run again with this data. Since running the algorithm takes some time, the latest update should be a few
moments before a vehicle arrives at the decision point. It should also be taken into account that redirecting a route
at the last moment might be unsafe, since the persons will have a short time to change lanes.
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5.2.4. Algorithm evaluation
The FPP algorithm is evaluated, which might be improved with a better resolution, a longer network and more
possible routes to take. But the simple network used, already had a high calculation time and therefore complexity
might be reduced first. The evaluation itself could also be extended with a microscopic simulation or using real
world data.

Microscopic simulation
Another way of improving the evaluation is by simulating it in a microscopic simulation model since this will sim-
ulate other vehicles as well. Therefore effects on the network could be measured, as well as the effect of the other
vehicles on the routing program. Even though the evaluation chapter shows an improvement in the objective value,
in reality this improvement might be less, since there are more influences than variables used in this algorithm.
For instance the link travel time is an uncertainty that could be incorporated more thoroughly and the dynamics
between vehicles are not taken into account. In a microscopic simulation the situation that multiple vehicles are
using this system can also be simulated. Multiple vehicles could then take the same suggested route which might
increase the travel time on that route.

Simulating the ARSCR algorithm
The ARSCR algorithm is not evaluated at all. Since a different traffic light prediction model is used, the effects on
the objective function could be different. Therefore it is interesting to see what the effect of the different traffic
light prediction module is before adding the more complicated traffic light prediction module (used by the FPP
algorithm) to the ARSCR algorithm, as suggested before. The complexity of the algorithm is less since the optimal
routeplan can be saved at intermediate nodes. Therefore it might also be interesting to see what the actual difference
in calculation time is. With the effects on the objective function and change in calculation time, a trade-off between
using the ARSCR and FPP algorithm can be made more substantiated.

Using real world data
Real world data can be used to verify the effects of the algorithm. The traffic light prediction algorithm can be
validated by using real world data. Using sensitivity analyses a large dataset can be used to check if a smaller part
of that dataset still represents the larger dataset in some way. This also helps to check if the traffic does not change
considerably in one time period since this will make predictions less accurate.

Some vehicles could also be equipped with a pilot version of the algorithms and it could be checked how much
the benefits are on the road. Of course the system should be quick and accurate enough for this to work and it
should show the routeplan to the user in a clear way. Since the complexity should be reduced and a method of
dealing with larger networks is required as well, these problems have to be tackled first. Besides these points, the
difficulties on implementing these algorithms in practice should be solved as well. These are explained in the next
subsection.

5.2.5. Implementation in practice
In this research two new algorithms are designed that calculate the optimal routeplan to the destination. They both
give a routeplan, which gives a next link dependent on the arrival time at that node. The algorithm also allows the
user to use an objective function to optimize their route so that they can take reliability into account. These two
points are the main contributions of this paper and are both not commonly used in routing systems these days.
Therefore users need to be informed clearly on this system and the routing system should be designed with an user
friendly interface.

Informing the driver
Before one of the algorithms can be used by individual road users, a good way of informing the driver about the
system should be created as well. Since the routing is dependent on the arrival time at nodes, the exact route might
change if a vehicle arrives slightly later at the node than expected. Therefore this should be communicated clearly
to the drives so that they know that the route shown is not definitive, but dependent on the arrival time. It might
also be useful to not show a more optimal route if the vehicle is very close to the intersection, since the driver should
keep his attention on the road and intersection. If a driver wants to change lanes quickly because the optimal route
has changed, dangerous situations might arise.
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Objective functions
A few suggested, most used, objective functions should also be set in the system, so that not every user needs to
create their own function. But these objective functions are not easy to create or to communicate what it exactly
does, since weighing reliability with travel time is still a matter of personal preference depending on the situation.
The preferred route can be different depending on a lot of factors, such as: the person, the type of trip, the time of
the day and maybe even the mood of the user. Therefore researching what function best represents reliability for
certain group of users might be worthwhile but also complicated.

Conclusion
In short, the calculation time of the FPP algorithm needs to be reduced before it can be used in real routing systems.
For both algorithms there is further research needed to check if they can be used for just a few traffic lights and use
average values for the rest of the network. A clear system of informing the driver about the routeplan and using the
objective functions should be researched as well before it can be implemented in routing systems.





References

Agarwal, A., Lämmel, G., & Nagel, K. (2018). Incorporating within link dynamics in an agent-based computationally
faster and scalable queue model. Transportmetrica A: Transport Science, 14(5-6), 520-541.

Akçelik, R., & Besley, M. (2002). Queue discharge flow and speed models for signalised intersections. Transportation
and Traffic Theory in the 21st Century, proceedings of the 15th International Symposium on Transportation and
Traffic Theory, 99-118.

Apple, J., Chang, P., Clauson, A., Dixon, H., Fakhoury, H., Ginsberg, M., Keenan, E., Leighton, A., Scavezze, K., &
Smith, B. (2011). Green driver: AI in a microcosm. , 1311–1316.

Baass, K. G., & Lefevre, S. (1987). Analysis of platoon dispersion with respect to traffic volume.
Bander, J., & White, C. (2002). A heuristic search approach for a nonstationary stochastic shortest path problem

with terminal cost. Transportation Science, 36, 218-230.
Bansal, P., & Kockelman, K. M. (2017). Forecasting americans’ long-term adoption of connected and autonomous

vehicle technologies. Transportation Research Part A: Policy and Practice, 95, 49 - 63.
Bie, Y., Liu, Z., Ma, D., & Wang, D. (2013). Calibration of platoon dispersion parameter considering the impact of the

number of lanes. Journal of Transportation Engineering, 139(2), 200-207.
Bodenheimer, R., Brauer, A., Eckhoff, D., & German, R. (2014). Enabling GLOSA for adaptive traffic lights. In 2014

ieee vehicular networking conference (p. 167-174).
Bodenheimer, R., Eckhoff, D., & German, R. (2015). GLOSA for adaptive traffic lights: Methods and evaluation. In

2015 7th international workshop on reliable networks design and modeling (p. 320-328).
Chabini, I. (1997). A new algorithm for shortest paths in discrete dynamic networks. IFAC Proceedings Volumes,

30(8), 537 - 542.
Chabini, I. (1998). Discrete dynamic shortest path problems in transportation applications: Complexity and algo-

rithms with optimal run time. Transportation research record, 1645(1), 170–175.
Chai, H., Zhang, H., Ghosal, D., & Chuah, C.-N. (2017). Dynamic traffic routing in a network with adaptive signal

control. Transportation Research Part C: Emerging Technologies, 85, 64 - 85.
Chen, Y.-L., & Yang, H.-H. (2000). Shortest paths in traffic-light networks. Transportation Research Part B: Method-

ological, 34(4), 241 - 253.
Chen, Z., & Fan, W. (2019). Data analytics approach for travel time reliability pattern analysis and prediction. Journal

of Modern Transportation, 27.
Dabiri, A., & Hegyi, A. (2018). Personalised optimal speed advice to cyclists approaching an intersection with un-

certain green time. In 2018 european control conference (p. 1666-1671).
Devarasetty, P. C., Burris, M., & Shaw, W. D. (2012). The value of travel time and reliability-evidence from a stated

preference survey and actual usage. Transportation Research Part A: Policy and Practice, 46(8), 1227 - 1240.
Dey, P. P., Nandal, S., & Kalyan, R. (2013). Queue discharge characteristics at signalised intersections under mixed

traffic conditions. European Transport, 55(7), 1–12.
Dijkstra, E. W., et al. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1),

269–271.
Eiger, A., Mirchandani, P. B., & Soroush, H. (1985). Path preferences and optimal paths in probabilistic networks.

Transportation Science, 19(1), 75-84.
Fayazi, S. A., Vahidi, A., Mahler, G., & Winckler, A. (2015). Traffic signal phase and timing estimation from low-

frequency transit bus data. IEEE Transactions on Intelligent Transportation Systems, 16(1), 19-28.
Gao, S., & Chabini, I. (2006). Optimal routing policy problems in stochastic time-dependent networks. Transporta-

tion Research Part B: Methodological, 40(2), 93 - 122.
Grace, M. J., & Potts, R. B. (1964). A theory of the diffusion of traffic platoons. Operations Research, 12(2), 255-275.
Hall, R. W. (1986). The fastest path through a network with random time-dependent travel times. Transportation

Science, 20(3), 182-188.
Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost

paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107.
Hong-En Lin, M. A. P. T., Rocco Zito. (2005). A review of travel-time prediction in transport and logistics. Proceedings

of the Eastern Asia Society for Transportation Studies, 5, 1433-1448.

53



54 5. Conclusions and discussion

Iglesias, I., Isasi, L., Larburu, M., Martinez, V., & Molinete, B. (2008). I2V Communication Driving Assistance System:
On-Board Traffic Light Assistant. In 2008 ieee 68th vehicular technology conference (p. 1-5).

Kaparias, I., Bell, M. G., & Belzner, H. (2008). A new measure of travel time reliability for in-vehicle navigation
systems. Journal of Intelligent Transportation Systems, 12(4), 202-211.

Kaparias, I., & Bell, M. G. H. (2010). A reliability-based dynamic re-routing algorithm for in-vehicle navigation. In
13th international ieee conference on intelligent transportation systems (p. 974-979).

Koukoumidis, E., Peh, L.-S., & Martonosi, M. (2011). Signalguru: Leveraging mobile phones for collaborative traffic
signal schedule advisory. , 127-140.

Kouwenhoven, M., de Jong, G. C., Koster, P., van den Berg, V. A., Verhoef, E. T., Bates, J., & Warffemius, P. M. (2014).
New values of time and reliability in passenger transport in The Netherlands. Research in Transportation Eco-
nomics, 47, 37 - 49.

Lin, F.-B., & Thomas, D. R. (2005). Headway compression during queue discharge at signalized intersections. Trans-
portation Research Record, 1920(1), 81-85.

Liu, H. X., Recker, W., & Chen, A. (2004). Uncovering the contribution of travel time reliability to dynamic route
choice using real-time loop data. Transportation Research Part A: Policy and Practice, 38(6), 435 - 453.

Liu, Y., Guo, J., & Wang, Y. (2018). Vertical and horizontal queue models for oversaturated signal intersections
with quasi-real-time reconstruction of deterministic and shockwave queueing profiles using limited mobile
sensing data. Journal of Advanced Transportation.

Mahler, G., & Vahidi, A. (2012). Reducing idling at red lights based on probabilistic prediction of traffic signal
timings. In (p. 6557-6562).

Manar, A., & Baass, K. G. (1996). Traffic platoon dispersion modeling on arterial streets. Transportation Research
Record, 1566(1), 49-53.

Markovich, M., Concas, S., & Kolpakov, A. (2009). Synthesis of research on value of time and value of reliability.
National Center for Transit Research, Center for Urban Transportation Research.

Miller-Hooks, E. (2001). Adaptive least-expected time paths in stochastic, time-varying transportation and data
networks. Networks, 37(1), 35-52.

Miller-Hooks, E. D., & Mahmassani, H. S. (2000). Least expected time paths in stochastic, time-varying transporta-
tion networks. Transportation Science, 34(2), 198-215.

Nie, Y. M., Wu, X., Dillenburg, J. F., & Nelson, P. C. (2012). Reliable route guidance: A case study from chicago.
Transportation Research Part A: Policy and Practice, 46(2), 403 - 419.

Paul, B., Mitra, S., & Maitra, B. (2016, 01). Calibration of robertson’s platoon dispersion model in non-lane based
mixed traffic operation. Transportation in Developing Economies, 2(2), 11.

Protschky, V., Feit, S., & Linnhoff-Popien, C. (2014). Extensive traffic light prediction under real-world conditions.
In 2014 ieee 80th vehicular technology conference (p. 1-5).

Protschky, V., Feld, S., & Wälischmiller, M. (2015). Traffic signal adaptive routing. In 2015 ieee 18th international
conference on intelligent transportation systems (pp. 450–456).

Protschky, V., Wiesner, K., & Feit, S. (2014). Adaptive traffic light prediction via kalman filtering. IEEE Intelligent
Vehicles Symposium, Proceedings, 151-157.

Saiáns-Vázquez, J. V., Ordóñez-Morales, E. F., López-Nores, M., Blanco-Fernández, Y., Bravo-Torres, J. F., Pazos-
Arias, J. J., Gil-Solla, A., & Ramos-Cabrer, M. (2018). Intersection intelligence: Supporting urban platooning
with virtual traffic lights over virtualized intersection-based routing. Sensors, 18(11).

Sjoberg, K., Andres, P., Buburuzan, T., & Brakemeier, A. (2017). Cooperative intelligent transport systems in europe:
Current deployment status and outlook. IEEE Vehicular Technology Magazine, 12(2), 89-97.

Talking traffic gebruikstoepassingen. (n.d.). Retrieved 2019-06-19, from https://www.talking-traffic.com/

nl/thema-s/data-beschikbaar/download/16_673aecd36c485e47fe222a14fc22d8a7

Urban, T. L. (2009). Establishing delivery guarantee policies. European Journal of Operational Research, 196(3), 959
- 967.

Wilson, A. (2006). Handboek verkeerslichtenregelingen. CROW.
Yang, B., & Miller-Hooks, E. (2004). Adaptive routing considering delays due to signal operations. Transportation

Research Part B: Methodological, 38(5), 385 - 413.
Yang, S., & Wu, Y.-J. (2019). Chapter 4 - data-driven approaches for estimating travel time reliability. In Y. Wang &

Z. Zeng (Eds.), Data-driven solutions to transportation problems (p. 81 - 110). Elsevier.
Yu, L. (2000). Calibration of platoon dispersion parameters on the basis of link travel time statistics. Transportation

Research Record, 1727(1), 89-94.
Zeng, W., & Church, R. L. (2009). Finding shortest paths on real road networks: the case for A*. International journal

of geographical information science, 23(4), 531–543.

https://www.talking-traffic.com/nl/thema-s/data-beschikbaar/download/16_673aecd36c485e47fe222a14fc22d8a7
https://www.talking-traffic.com/nl/thema-s/data-beschikbaar/download/16_673aecd36c485e47fe222a14fc22d8a7


References 55

Ziliaskopoulos, A. K., & Mahmassani, H. S. (1996). A note on least time path computation considering delays and
prohibitions for intersection movements. Transportation Research Part B: Methodological, 30(5), 359 - 367.





A
Variables

A.1. ARSC Algorithm
A list of variables, their domains and their descriptions for the ARSC algorithm.

Variable Domain Description

ηh
i (t ) [0,S]

Temporary label that temporarily saves the expected travel time to the destination
node. This is the label at node i coming from node h at time t

λh
i (t ) [0,S]

Label that saves the expected travel time to the destination. This is the label at node
i coming from node h at time t

πh
i (t ) [0,S] Pointer label that saves the optimal next node

τk
i j (t ) [0,S]

The predicted link travel time between nodes i and j at time t . k represents an
index for the different link travel times possible

d The destination node
D(i ,h) The set of downstream nodes of node i while coming from node h

A.2. ARSCR Algorithm
A list of variables, their domains and their descriptions for the ARSCR algorithm. Duplicate variables with the ARSC
algorithm are shown in Appendix A.1.

Variable Domain Description

Oh
i (t ) [0,S]

The objective value calculated by the objective function using the travel time dis-
tributionΛh

i (t ) and Pr
(
Λh

i (t )
)

or H h
i j (t ) and Pr

(
H h

i j (t )
)
.

Pr
(
H h

i j (t ) =λ
)

[0,S]
The probability on the travel time λ which is part of the set of all travel times to the
destination, while departing from node i at time t and coming from node h and
going to node j , H h

i j (t ).

Pr
(
Λh

i (t ) =λ
)

[0,S]
The probability on the travel time λ which is part of the set of all travel times to the
destination, while departing from node i at time t and coming from node h,Λh

i (t ).
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A.3. FPP Algorithm
A list of variables, their domains and their descriptions for the FPP algorithm. Duplicate variables from the ARSC(R)
algorithm are listed in Appendix A.1 and Appendix A.2.

Variable Domain Description

Hi j All possible nodes h, that can be used to travel to node i and then to node j .

Ki j (t )
The set of all possible link travel times k when departing from node i at time t and
going to node j .

l
Number of time steps the vehicle has to wait for a red traffic light before it turns
green.

Lhi j (t )
The set of all possible waiting times l when arriving at the traffic light at node i at
time t while coming from node h and going to node j .

Pr (Ki j (t ) = k) [0,S]
Probability on the link travel time k while departing from node i at time t and going
towards node j .

Pr (Lhi j (t ) = l ) [0,S]
Probability of the traffic light at node i being green when arriving from node h and
going towards node j at l time steps after the time t .

R The set of all possible routeplans r .

X r
i , j

The travel time distribution from the departure node to node j while arriving at
node j from node i and following routeplan r .

A.4. Traffic light prediction module
A list of variables, their domains and their descriptions for the traffic light prediction module.

Variable Domain Description

Bb(t ) [0,S] The block that is green, which contains all the signalgroups that are green.
nb

m(t ) [0,S] Number of time steps direction m of block b is green.
I Maximum number of states saved at a time.

l
Number of time steps the vehicle has to wait for a red traffic light before it turns
green.

Lhi j (t ) [0,S]
The set of all possible waiting times l when arriving at the traffic light at node i at
time t while coming from node h and going to node j .

m Total number of directions in each block.
Psi s′j

The probability of transfering from state si into s j .

Pr (Lhi j (t ) = l ) [0,S]
Probability of the traffic light at node i being green when arriving from node h and
going towards node j at l time steps after the time t .

P The probability of transitioning from the state St toward St+1.
si [0, I ] The state of the traffic light with index i .
s′j [0, I ] The next state of the traffic light with index j .

SG [0,SGmax ] The signalgroup that is currently being calculated for.
SGmax The number of signalgroups in this intersection.
t Current time step that the algorithm is calculating the values for.
T The prediction horizon in time steps.

Y (t , si )
t ∈ [0,T ]
i ∈ [0, I ]

The probability of state si happening at time step t .

X (t , si )
t ∈ [0,T ]
i ∈ [0, I ]

The probability of state si happening at time step t , different from Y since this does
not take a red traffic light into account once it got green once.

Z hi
j (t ) [0,T ]

Probability of the traffic light at node i being green when arriving from node h and
going towards node j at time t , sometimes the h, i and j are replaced by SG .

Z l
hi j (t ) [0,T ]

Probability of the traffic light at node i being green when arriving from node h and
going towards node j at l time steps after the time t , sometimes the h, i and j are
replaced by SG .
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