
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Ontology Integration for Biomedical Data

Author:
Ana OPREA

Supervisor:
Dr. Christoph LOFI

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

June 24, 2023

http://www.tudelft.nl
https://www.tudelft.nl/staff/c.lofi/?cHash=24f8e408a215424d1ffc842928a9bf0a
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/


ii

“I was born not knowing and have had only had a little time to change that here and there.”

Richard Feynman
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Gene similarity has been an area of great interest in numerous fields for decades,
as it can provide insights into the evolutionary relationships among different species.
This knowledge is particularly useful for advancing biotechnologies, discovering
new drugs and treatments for various issues and improving the characteristics in
breed crops or animals. DNA sequencing enables gene annotation, which facilitates
the identification of similarities between genes. Similar genes from different species
are interesting candidates for studying gene functional similarity. Gene ontology
(GO) provides a standardized vocabulary for gene annotation, which is considered
to be the ground truth when describing their properties. Nevertheless, an interest-
ing source for gathering additional information about genes can be the plethora of
biomedical articles accessible online. These are the pillars on which is foundered the
incentive of this paper - an endeavor to investigate how using graph theory could
benefit scientists in transferring knowledge about gene functionalities between dif-
ferent plants. We present an overview of the methodology and the design of the sys-
tem we used in order to convey to what extent using subgraphs similarity based on
annotated data proves to yield results similar to those already established as ground
truth for the model plant Arabidopsis Thaliana and its counterpart, Solanum Ly-
copersicum, as well as our conclusions and discussions regarding the quality of the
datasets used throughout this research.
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Chapter 1

Introduction

1.1 Context presentation

The study of genetics and genomics is currently one of the most dynamic and
rapidly progressing fields in science. Positioned at the intersection of biology and
informatics, it generates vast amounts of data that require expert analysis and in-
terpretation. In this context, gene similarity emerges as a highly captivating and
worthy area of investigation, serving as a fundamental component for numerous
core researches such as: comparative genomics, biomedical data integration and
transfer knowledge from one biomedical entity to another [Bayat, 2002]. Gene sim-
ilarity refers to the degree of similarity between a pair of genes at their nucleotide
level, by comparing their nucleotide sequences.

Studying gene similarity across species offers numerous advantageous applica-
tions in domains such as evolutionary biology, pharmaceuticals or agriculture. With
respect to evolutionary relationships between different organisms, gene similarity is
employed to investigate the likelihood of two distinct genes sharing a common an-
cestor [Altenhoff and Dessimoz, 2012]. In essence, the higher the level of similarity
between two different genes, the less likely they are to have developed indepen-
dently and to have arrived at similar DNA sequences by mere coincidence.

Furthermore, gene similarity serves as a valuable avenue in the realm of drug
discovery by enabling us to target those genes responsible in diseases and to under-
stand how they span across different organism [Spreafico et al., 2020, Schlicker et al.,
2006]. In addition, gene similarity plays a crucial role in our understanding of viral
evolution, of the mechanisms beneath pathogens adapting to different hosts and of
the development of antiviral strategies.[Shackelton and Holmes, 2004].

Lastly, gene similarity plays a significant role in agriculture. For instance, it of-
fers insights to breeders seeking to enhance desirable characteristics in their crops
or livestock, such as disease resistance, stress tolerance or nutritional content [Den-
nis et al., 2008]. Moreover, by delving into the similarities or differences between
genes, researches can gain more knowledge into the processes and mechanisms of
the domestication of livestock or crops [Hufford et al., 2012].

We have decided to align our efforts with Genetwister by talking to a represen-
tative and understanding a potential avenue to explore in relation to an issue which
could also render valuable insights for their work. Genetwister is a Dutch company
in the field of biotechnology that focuses on bioinformatics of agricultural, horti-
cultural and ornamental plants, which serves its customers by examining ways to
modify their crops accordingly to their requests. [Genetwister n.d.]

Two topics that gained our interest were the concept of transfer knowledge of
functional similarity between plant species through orthology relationships and the
application of Natural Language Processing (NLP) to augment biomedical datasets.
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For numerous genes in model plants, scientists have a clear understanding of
their role in different organisms or cells. They can employ the functional similarity
between different genes in order to transfer knowledge about their functions. This
proves to be a relevant aspect as this can empower researchers to leverage insights
about genes roles in different biological processes and molecular functions.

The similarity of genes is determined through DNA sequencing. However, it is
important to note that genes undergo evolutionary changes, which entail that their
DNA sequences also change over time. The transfer of knowledge from a model
plant species to another crop species in terms of their gene functionalities is based
upon the gene orthology relationships: genes that posses similar DNA sequences
have higher chances to perform similar functions in the two species they belong
to. Therefore, scientists have gathered information about the sequences of numer-
ous plant species in publicly available datasets of annotations. Additionally, there
are datasets that provide information on the orthology relationships between genes
across different species. These are the datasets which served as the foundation for
our research efforts.

1.2 Dataset augmentation using NLP techniques

The importance and the benefits of using of Natural language processing (NLP) tech-
niques cannot be emphasized enough in today’s various disciplines. NLP, a subdis-
ciplinary field of Artificial Intelligence, is tightly related to linguistics and it focuses
on integrating knowledge, algorithms and techniques from computer science in or-
der to enable systems to interact in a similar fashion that humans do with natural
language. Whether it involves tasks such as text mining scientific literature to extract
relevant information, curating biomedical ontologies or assisting machine learning
models in analyzing biomedical data, NLP is the foundational pillar in all instances.

In our endeavour, we considered turning to an approach which tackles text min-
ing scientific articles because, despite being a core feature in order to assess the
similarity between various genomes, gene annotation can be time-consuming and
resource-intensive. Typically, one approach to perform text mining is to use named
entity recognition (NER) algorithms to identify genes and proteins mentioned in
text, followed by the extraction of interactions between them through the applica-
tion of additional NLP algorithms. Our goal was to enhance the existing database,
which initially comprised only datasets of annotations for two plant species (Ara-
bidopsis Thaliana and Solanum Lycopersicum), and asses the extent to which this
strategy could support us in creating a framework for investigating orthologous re-
lationships between their genomes.

1.3 Research Questions

The research questions we answered in this paper are:

1. How faithfully can we reproduce the similarity of orthologous genes, as es-
tablished as the ground truth knowledge bases belonging to InParanoid [In-
ParanoiDB n.d.], using only datasets publicly available for the plant species
Arabidopsis Thaliana, respectively Solanum Lycopersicum, consisting of data
such as genes, transcripts and annotations describing the properties and par-
ticularities of those genes and transcripts?
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2. Does including information extracted from text mining biomedical papers be
of use for enriching datasets related to ortholog genes?

3. How much does including provenance knowledge of the extracted informa-
tion from the previously mentioned mined biomedical papers be of use for
enriching datasets related to ortholog genes in such a way that the similarity
scores improve?

1.4 Contributions

We summarize our contributions as follows:

1. Creating a methodology for computing similarity scores based on subgraph
similarities for transcripts belonging to two different plant species.

2. Defining a system for amassing the descriptive annotations and the transcripts
together and creating links and relationships between them.

3. Leveraging insights about the quality of the knowledge bases involved in the
study.

4. Providing an evaluation of our system and discussing the limitations of this
study with emphasis on the influences of aggregating text-mined entities to
our database.

1.5 Thesis Structure

This paper is organized as follows: in Chapter 2 we explain the elementary notions
in the land of genetics and genomics for a clearer depiction of the theory behind
our research questions; in Chapter 3 we present related work in the field of using
graph theory in order to study the relationships between genes, respectively related
work in the field of using NLP techniques for dataset augmentation and the lat-
est advances in the field of AI for discovering protein structures; in Chapter 4 we
talk about the knowledge bases involved in our study; in Chapter 5 we unravel the
methodology we envisioned, the steps we followed and the design choices we ap-
proved in order to achieve the desideratum; in Chapter 6 we account for the insights
leveraged about the quality of the datasets; in Chapter 7 we discuss the evaluation
of our results outputted by our methodology, and, lastly, we dedicate Chapter 8 for
our conclusions and final remarks.
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Chapter 2

Gene Fundamentals

This chapter is dedicated to familiarize the reader with the elementary notions that
are necessary in order to understand the biology stance behind our study. We pro-
vide definitions for the core concepts, followed by an overview which highlights
how each of these concepts are tied to one another.

2.1 Vocabulary

Definition 2.1.1 (Model Plant) Model plants are plant species on which extensive studies
have been made due to the fact that significant advances about plant growth and development
are made by focusing on their characteristics.

[Meinke et al., 1998]

Definition 2.1.2 (Arabidopsis Thaliana) Arabidopsis thaliana is a small flowering plant
that is widely used as a model organism in plant biology. Arabidopsis is a member of the
mustard (Brassicaceae) family, which includes cultivated species such as cabbage and radish.
Arabidopsis is not of major agronomic significance, but it offers important advantages for
basic research in genetics and molecular biology.

[Tair - About Arabidopsis n.d.]

Definition 2.1.3 (Solanum Lycopersicum) Solanum Lycopersicum is the plant species
widely known as tomato.

Definition 2.1.4 (Homology) Homology is a relation between a pair of genes that share a
common ancestor. All pairs of genes in the figure above are homologous to each other.

[Altenhoff and Dessimoz, 2012]

Definition 2.1.5 (Ortholog genes) Two ortholog genes are two genes from two different
species that derive from a single gene in the last common ancestor of the species.

[Sonnhammer and Koonin, 2002]

Definition 2.1.6 (Paralog genes) Two paralog genes are two genes from two different species
that derive from a single gene which was duplicated within the genome.

[Sonnhammer and Koonin, 2002]

Definition 2.1.7 (Comparative genomics) Comparative genomics is the direct compar-
ison of complete genetic material of one organism against that of another to gain a better
understanding of how species evolved and to determine the function of genes and non-coding
regions in genomes.
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[Sivashankari and Shanmughavel, 2007]

Definition 2.1.8 (DNA sequencing) DNA sequencing refers to the general laboratory
technique for determining the exact sequence of nucleotides, or bases, in a DNA molecule.

[National Human Genome Institute n.d.(a)]

Definition 2.1.9 (DNA annotation) Genome annotation is the process of deriving the struc-
tural and functional information of a protein or gene from a raw data set using different anal-
ysis, comparison, estimation, precision, and other mining techniques. Genome annotation
is essential because the sequencing of the genome or DNA generates sequence information
without its functional role. After the genome is sequenced, it must be annotated to bring
more logical information about its structural features and functional roles.

[Harbola et al., 2022]

Definition 2.1.10 (Transcription) Transcription, as related to genomics, is the process of
making an RNA copy of a gene’s DNA sequence. This copy, called messenger RNA (mRNA),
carries the gene’s protein information encoded in DNA.

[National Human Genome Institute n.d.(b)]

Definition 2.1.11 (Genome Duplication) Duplication, as related to genomics, refers to
a type of mutation in which one or more copies of a DNA segment (which can be as small as
a few bases or as large as a major chromosomal region) is produced. Duplicates occur in all
organisms.

[National Human Genome Institute n.d.(c)]

Definition 2.1.12 (Gene Product) A protein molecule that is the product of the expression
of a gene, through which the gene influences development or metabolism.

[Mouse Genome Informatics n.d.]

2.2 Overview

In the field of plant biology, certain model species have been extensively studied,
an example which would precisely highlight this fact being the infamous species
Arabidopsis Thaliana, often called Arabidopsis, and popularly known as the thale
cress or the mouse-ear cress. Arabidopsis belongs to the mustard family and shares
its plant group with species such as cabbage, broccoli, and radish. Model plants
are especially valuable due to the elaborate research conducted on them which can
be of immense use in the field of comparative genomics. Research in this domain
often involves the annotation of various genes, which entails identifying the features
and functions of genes within their respective organisms. Gene annotation plays a
pivotal role in understanding the genetic basis of any organism.

What will be considered the corner stone in this study will be the notion of orthol-
ogous genes. These are genes that can be traced back to having a common ancestor
which diverged subsequently at a moment in time. By means of knowledge transfer
via orthology relationships from one (plant) species to another, researchers can make
predictions about the functionality of the latter species based on the functionality of
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the former. Sometimes, it can be the case that one gene from a species can have mul-
tiple orthologous genes in another species, which is a result of a genome duplication
over time, as explained in the paper of Altenhoff and Dessimoz, 2012.

Furthermore, an essential observation is that genes can have several different
transcripts. In our study, we will look at the similarity of genes through their tran-
scripts.
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Chapter 3

Related Work

In this chapter, we outline comprehensive literature reviews of the research con-
ducted in the field of discovering orthologous genes using graph theory, along with
notable studies that focus on the utilization of Natural Language Processing tech-
niques for gene dataset augmentation.

3.1 Graph theory for gene similarity

The information presented by Altenhoff and Dessimoz, 2012 in their research study
about inferring the relation of orthology or paralogy between genes creates an ap-
propriate context for the discussion of the methods employed by scientists within
the domain of comparative genomics. Most orthology inference techniques are di-
vided into two prevalent groups:

• graph-based methods

• tree-based methods

Techniques belonging to the former category usually consider graphs where genes
or proteins are nodes and evolutionary relationships between them are depicted as
edges. On the other hand, techniques belonging to the latter category are based
upon gene/species tree reconciliation, which is the process of annotating all splits
of a particular gene tree either as duplication or speciation with respect to its phy-
logeny.

The graph-based methods tackle the graph-construction phase by considering
pairs of genomes at a time. Typically, similarity scores of different sequences are
used as an indicator for gene closeness on the phylogenetic scale, therefore the infer-
ence of orthology between genome pairs can be computed efficiently using dynamic
programming [Smith, Waterman, et al., 1981] or heuristics, such as BLAST [Altschul
et al., 1997]. An interesting remark addressed in the paper is that pairwise compar-
isons between genes is not as robust as comparisons between multiple organisms.
This strategy often helps researches in correcting and identifying misleading pre-
dictions. Henceforth, clustering of genes into orthologous groups can yield better
results. The paper covers several grouping techniques, as shown in Table 3.1 from
the original paper, of which we briefly summarize the main ones below:

• Tatusov, Koonin, and Lipman, 1997 coined the concept of cluster orthologous
groups (COGs) which are triangles computed on triplets of connected genes
which are subsequently merged together if they share a common face until
every possible merging has been completed.
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• Li, Stoeckert, and Roos, 2003 identified the groups of orthologs using Markov
Clustering by simulating a random walk on the orthology graph with edges
being weighted with respect to their similarity scores, therefore the grouping
stage outputting probabilities for two genes to be part of the same group. The
orthology graph is partitioned according to these probabilities so that genes
arriving at the same partition are belonging to the same orthologous group.

• Dessimoz et al., 2005 proposed a different grouping approach by isolating
cliques (the fully connected graphs) in their graph. This is computationally
expensive as it is an NP-complete problem, nevertheless it has the advantage
of leveraging a sound outcome due to the high consistency required to form a
graph where all genes are orthologous to one another.

Method In-Paralogs Based on Grouping Strategy Database Extra Avaiable Algo/DB Reference

COG Yes BLAST Scores
Merged adjacent

triangles of BeTs
COG/KOG X/X Tatusov, Koonin, and Lipman, 1997

BBH No BLAST Scores n.a. n.a. -/- Overbeek et al., 1999

Inparanoid Yes BLAST Scores
Only between pairs

of species
Inparanoid X/X

Remm, Storm, and Sonnhammer, 2001

Östlund et al., 2010

RSD No
ML distance

estimates
n.a. RoundUp X/X

DeLuca et al., 2006

Wall, Fraser, and Hirsh, 2003

OMA Yes
ML distance

estimates
Every pair is ortholog OMA Browser

Detects

differential

gene loss

-/X
Dessimoz et al., 2005

Altenhoff et al., 2010

OrthoMCL Yes BLAST Scores MLC clusters OrthoMCL-DB X/X
Li, Stoeckert, and Roos, 2003

Chen et al., 2006

EggNOG Yes BLAST Scores
Merged adjacent

triangles of BeTs
EggNOG

Computed at several

levels of taxonomic tree
-/X

Muller et al., 2010

Jensen et al., 2007

OrthoDB Yes
Smith Waterman

Scores

Merged adjacent

triangles of BeTs
OrthoDB

Computed at any level

of taxonomic level
-/X Kriventseva et al., 2007

COCO-CL Yes
MSA-induced

scores
Hierarchical clusters n.a. X/- Jothi et al., 2006

OrthoInspector Yes BLAST Scores
Only between pairs

of species
OrthoInspector X/X Linard et al., 2011

TABLE 3.1: Table presents the main graph-based strategies involved
in orthology inference as presented by Altenhoff and Dessimoz, 2012

The tree-based methods assume tree reconciliation once it is known that all the
branchings of a gene tree over time have been resolved as either events of speciation
or duplication, therefore it becomes very simple to deduct if a pair of genes can be
orthologous or paralogous.

Figure 3.1 provides a sound example. It is considered that the most likely tree
reconciliation involves the least number of gene duplication or losses. However
straightforward the initial premise is, there are several issues put forward. A first
problem was the uncertainty often associate with different species. A second prob-
lem would be the requirement of rooting both the gene and the species trees, whereas
most of the models of sequence evolution do not allow to infer the rooting of the re-
constructed gene tree.
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FIGURE 3.1: Figure presents schematic tree/species reconciliation as
exemplified in the original paper

Another comprehensive study which provides an overview of various methods
for computing semantic similarity between different biological concepts, including
genes based on their annotations, is the one presented by Pesquita et al., 2009. Ac-
cording to the authors, ontologies have become a common schema for describing
entities in the biomedical field, possibly the most noteworthy one for our discussion
being The Gene Ontology (GO) [Consortium, 2004].

Despite the fact that genes can be directly compared via their sequence align-
ment, the same is not valid for their functional aspects. The semantic similarity
applied on the GO annotations of gene products is a venture point for describing
their functional similarity. The schema described by GO for representing the gene
products has three independent direct acyclic graphs (DAGs) that correspond to:
molecular function, biological process and cellular component. The nodes in the
graphs signify terms that describe components of gene products, while the edges
associate terms between one another, most frequently by relationships such as "is a"
or "part of", an example which would clarify this point being illustrated in Figure
3.2.

FIGURE 3.2: Figure presents GO graph showing the molecular func-
tion, biological process and cellular component aspects, as presented

in the paper Pesquita et al., 2009
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The paper explains the methods to quantify the semantic similarity based on
GO DAGs: by comparing terms or by comparing gene products. The former type
is further divided into two groups: by considering edges as data sources, or the
nodes. The edge-based approach rely on counting the number of edges in the graph
path between two terms. The measure employed in order to quantify the similarity
is the distance between two terms, by either looking at the shortest path or at the
average between all possible path between the two respective terms, if there are
more than one. However, several issues emerge using this strategy. In contrast,
the node-based approach rely on the information encoded in the terms themselves,
either investigating the number of common annotations or by the relevance of the
information content.

The latter type, comparing gene products, has multiple sub-categories, as pre-
sented in Figure 3.3. Due to the fact that gene product functions are described by
molecular function terms, participate in various biological processes within multi-
ple cellular components, it is required that sets of terms are compared in order to
assess the semantic similarity.

The pairwise method computes similarity between the annotations of two genes,
in some cases considering all pairwise combinations of terms, while in other cases
reckoning only the best pairs. Conversely, the groupwise method can be regarded
as using only direct annotations via set similarity techniques, using subgraph sim-
ilarities for gene products depicted as subgraphs of GO corresponding to all their
annotations, or using vector similarity measures for gene products represented in
vector spaces.

The study mentions the use of gene coexpression data in the studies conducted
by Sevilla et al., 2005 and by Wang et al., 2004 in order to test similarity measure-
ments.

FIGURE 3.3: Figure presents the principal methods for comparing
gene products, as presented in the paper Pesquita et al., 2009

3.2 NLP for biomedical datasets augmentation

This section provides an extensive literature review of the use of NLP algorithms
and methods in order to mine for gene-related entities in biomedical scientific pa-
pers, which are an exceedingly rich source of information. The challenge of dataset
augmentation has long been a critical concern, particularly in instances where data
acquisition is prohibitively costly or infeasible. As human curation is not a sustain-
able option to extract information from scientific literature due to the large number
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of papers to examine, [Singhal et al., 2016], machine learning approaches have of-
ten been used to circumvent this issue by creating synthetic data. In addition to
conventional methods, NLP presents a promising avenue for gathering and label-
ing supplementary observations from the biomedical literature. Abstracts can be an
acceptable target for mining, as the advantage they posses in the detriment of full-
text paper is reducing computational time while preserving in a concise form the
prevalent data.

One study presenting stimulating work in this area was the one of Rindflesch
et al., 1999. The NLP system described in the paper, EDGAR (Extraction of Drugs,
Gene and Relations) is tailored to carry out these extractions for these entities related
to cancer from the biomedical literature, while the authors state that their technology
could be easily employed to many other areas of biomedicine.

In comparison to previous work done in automated understanding of biomedi-
cal literature, EDGAR focuses on extracting factual assertions, a problem more com-
plex than the discovery of descriptive terms in a paper. The factual assertions are
composed of genes, cells and drugs, as they are in a relationship to one another, an
example which would precisely highlight this fact being the example extracted from
the original paper from Figure 3.4:

FIGURE 3.4: Figure presents the entities and relationships involved,
as presented in the original paper

The connections between genes, cells and drugs can be inferred from their rela-
tionships to other drugs, cells and genes. The first in the entire extraction pipeline
is the semantic interpretation: identifying terms in the text of MEDLINE abstracts,
followed by the identification of relationships with respect to the interaction of gene
expression and drug sensitivity in particular cell types. The processing of each sen-
tence from the abstract begins with a stochastic tagger responsible with resolving
part-of-speech ambiguities.

A real application of the EDGAR system is explained in the paper as following:
a PubMed query to generate 383 abstracts related to anti-tumor drug resistance was
used in order to feed these abstracts to EDGAR in batches. The outputs of EDGAR
were further processed in order to create document vectors of the entities depicted,
which were later on used to perform hierarchical clustering. By inspecting the den-
drogram obtained over the 383 abstracts, hypothesis with regard to the relationships
between terms were raised without reading one single abstract, and yet these were
validated after scrutinizing the abstracts. The authors mention that such conclusions
would have not been supported only by the examination of titles.
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Another paper addressing this topic is the review literature study of Conceição
and Couto, 2021. The study is centered around researches done on the construction
of biological networks using text-mined information related to cancer.

As there is a plethora of clinical reports with respect to cancer, a category which
encompasses many different types of cancer with their own particularities to exam-
ine, an evident challenge arises regarding investigating unstructured data.

The authors mention Jurca et al., 2016 for their large scale analysis performed on
PubMed abstracts for the named entity extraction, followed by the relation extrac-
tion using the co-occurrence method. The study aimed to form a hypothesis with
respect to cancer biomarkers and to identify those genes which were the most in-
tensely studied across countries. In order to identify and select the relations with
high frequency among abstracts, they considered genes and nodes and their rela-
tions as edges and further obtained a connected component based on ten or more
abstracts. By evaluating the closeness and betweenness of the present genes, ten of
them were selected as the most important.

In this study of Kawashima, Bai, and Quan, 2017 unsupervised learning, text
mining, and pattern mining techniques were applied to extract relationships be-
tween breast cancer and the associated genes from PubMed. The extracted genes
were then utilized as data vectors for a clustering approach. These gene vectors
were combined with a pre-existing list of genes associated with breast cancer. How-
ever, the clustering technique employed yielded a low F1 score, specifically below
0.14.

Although some studies have confirmed the feasibility of constructing accurate
gene-gene networks using relations extracted from literature [Jurca et al., 2016], the
paper covers essential limitations of text mining to consider:

1. informational bias due to the focus on specific terms

2. inclusion of errors resulted from the automatic extraction

3. the difficulty associated with entity extraction due to the variety of synonyms,
abbreviations or acronyms they may appear under in textual data

4. the ambiguity associated with including homonyms when different entities
have the same label

3.3 AI for protein structures

Metagenomics is a a field tightly coupled to comparative genomics and to the issue
of finding orthologous genes. It is a scientific field dedicated to the exploration of
proteins in various samples across the planet through the application of gene se-
quencing techniques. This field showcases a remarkable breadth and diversity of
proteins, introducing billions of novel protein structures into databases for the first
time. The latest advances in the field can be attributed to DeepMind in 2021, respec-
tively to Meta AI in 2022.

Lin et al., 2023 presents in their research paper ESM Metagenomic Atlas by Meta
AI, an atlas of more than 772 million metagenomic protein structures predicted by
leveraging the power of language models.
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According to the study, the utilization of language models in the creation of com-
prehensive protein structure views has the potential to accelerate atomic-level three-
dimensional prediction by up to 60 times compared to existing state-of-the-art ap-
proaches. Protein sequences encode information not only about the chemical struc-
ture of the molecules, but also about how they fold into a three-dimensional shape
according to the laws of physics. Scientists established that the study of these struc-
tures is intertwined with understanding the arrangement of amino acid building
blocks within proteins. Consequently, structures can be inferred from the patterns
observed in protein sequences.

To investigate these patterns, Meta employs evolutionary scale modelling (ESM),
a methodology that harnesses artificial intelligence which is based upon a self su-
pervised learning model, referred to as a masked language model, which has been
trained on millions of protein sequences. It functions by predicting the missing parts
of a protein sequence, akin to filling in the gaps in a sentence with the appropriate
words.

The speed at which such predictions can be made is a crucial aspect as, com-
pared to previous strategies, predicting hundreds of millions of protein structures
was computationally expensive in terms of the used resources, sometimes spanning
over many years.

The researches from DeepMind proposed AlphaFold, another AI system special-
ized in predicting the structure of proteins, as it is presented in their article [Jumper
et al., 2021]. According to the paper, AlphaFold is a neural-network model capable
to predict the three-dimensional structure of proteins based solely on their amino-
acid sequences, even in cases where no similar structure is available, with almost
experimental accuracy. It combines novel neural networks architectures and train-
ing procedures based on evolutionary, physical and geometrical constraints of pro-
tein structures. The algorithm architecture is using only supervised learning on the
structures deposited in the Protein Data Bank. The principal features of the study
are as follow:

• the principal component of the network, names Evoform, which views the pre-
diction of the three-dimensional structure as a graph inference problem in 3D

• multiple sequence alignments (MSAs) that capture evolutionary relationships
and correlations between them

• attention-based mechanisms that learn interactions between non-neighbouring
nodes in a graph representations of the amino-acids involved
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Chapter 4

Datasets

This chapter presents a detailed introduction of the datasets involved in our study.
Essentially, we gathered our data from three sources:

• online portals - Phytozome’s Biomart tool [JGI Phytozome n.d.]

• online repositories - i.e Ensemble Plants [Ensembl n.d.]

• Narrative Service, a text mining platform for biomedical entities presented in
the paper of Kroll et al., 2023

4.1 Datasets of annotations

The most important components in our study, which will reveal to also for the most
relevant limitations, were the datasets for the annotations for two different plant
species. We employed public datasets containing the annotations for the model
plant, Arabidopsis Thaliana, and Solanum Lycopersicum. These datasets were pre-
sented in the form of text files, with each row providing information about a specific
transcript of a particular gene. The columns of the files represented different types
of annotations, describing the properties and features of the genes and transcripts.

# of genes # of annotations # of used annotations
Arabidopsis

Thaliana
48457 12 7

Solanum
Lycopersicum

34725 12 7

TABLE 4.1: Table summarizes the number of genes and the number
of useful columns representing annotations, collected from the two

datasets for the plant species

As presented in table 4.1, we worked with more than 48k transcripts of genes for
Arabidopsis Thaliana and more than 34k transcripts of genes for Solanum Lycoper-
sicum. Out of 12 columns with annotations for genes, in both cases, we used seven
common columns and discarded the ones which did not did not appear in both files
or which did not represent any significant information, such as row id.

Two relevant mentions on the nature of these datasets are:

• as it will be later described in Chapter 6, the datasets have numerous missing
values
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• every column represented a type of annotation and transcripts usually have
several distinct values for an entry for the corresponding column

4.2 Dataset of ortholog genes

In addition to the two datasets for the annotations, we employed a public dataset
containing information about the orthology relationships between the transcripts of
the two different plant species. This dataset had more than 12k row entries depict-
ing one or multiple transcripts and numerical values from the two different plants
species. As we previously established that one gene from one species can have mul-
tiple orthologous genes from another plant species, we inferred that each row entry
was linking several genes from one plant to their orthologous genes from the coun-
terpart plant.

4.3 BioMart Datasets

The datasets for the synonyms of transcripts, whose purpose will be detailed thor-
oughly in Chapter 5, were obtained by using the Phytozome’s tool - BioMart. With
the use of Biomart we obtained two datasets, one for Arabidopsis Thaliana, and an-
other one for Solanum Lycopersicum, under the form of text files. Each file contained
three columns, one with transcripts, one with corresponding gene and one with the
synonyms. A highly important remark, which will be extrapolated in Chapter 6, is
that the synonym file for the Solanum Lycopersicum species was completely lacking
any synonyms, accounting for an important impediment in our research which will
be tackled in 7.3.

4.4 Dataset of text mined entities

The dataset obtained through the use of the text mining platform we employed in
our research served as a tipping point in our study. It played an important role in
determining the extent to which our model could benefit from newly aggregated in-
formation, as the quality and the integrity of data dictate the outcomes of the model.

The dataset was built upon the use of the BioMart datasets previously mentioned
by scraping PubMed [National Library of Medicine n.d.]. PubMed is a free search
engine which can be used in order to access more then 35 millions of publications
for biomedical literature. The whole PubMed was scraped with this tool using the
synonym vocabulary for the genes.

The scraping process involved in this task entails the extraction of terms from
the titles and abstracts of all biomedical documents available on PubMed, followed
by the identification of their synonymous expressions that the tool was previously
provided with, as well as the relationships and predicates present in the sentences
they are mentioned in. The end goal is to construct small-scale knowledge graphs
by linking the various biomedical elements based on their relationship with one
another as presented in the abstracts and titles.

The dataset, foundered on using our vocabulary, with the synonyms and names
of all transcripts as they might appear in the scientific literature, structured under the
form of JSON lines, proved to be a large one, having 16GB of data and containing
around 500k PubMed documents. These are all the documents which contain at
least one entry from the gene vocabulary. Figure 4.1 shows a snippet of our dataset.
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FIGURE 4.1: Figure presents the information contained in one JSON
line with respect to the PubMed documents with id 1496227

Each JSON line consisted of:

• a document id

• document title and abstract (if present)

• a section dedicated to the tags - the mined entities, with information such as
their id, their type and where in the text they were discovered

• a section dedicated to the statements (if present) - an object entity and a sub-
ject entity, their types, the sentence id where they occur, the type of relation
between them and the exact used predicate in the paper

• a section dedicated to sentences (if present) that incorporated relationships be-
tween tags with their id

• a section dedicated to metadata belonging to the document such as its publica-
tion year and month, its authors, the journal where it was featured and a link
towards it
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Chapter 5

Approach

In this chapter, we aim to provide the readers with a comprehensive and thorough
account of the path we have undertaken to address our research questions. We delve
into the methodology steps and details, thoroughly outlining the course we have fol-
lowed, along with the various design choices and thresholds we encountered along
the way.

5.1 Preliminaries

To alleviate potential confusion, we considered to be necessary to introduce two dis-
tinct terms that refer to the same concept, with the specific term utilized depending
on its contextual usage. Hence, we hereby introduce the following terms:

1. established gene similarity - similarity between a pair of genes belonging to
two different species, which is promulgated in the biological community to be
the ground truth.

2. computed gene similarity - similarity between a pair of genes belonging to
two different species as indicated by the results obtained through our compu-
tations.

As previously mentioned, the experiments were conducted and the implementa-
tion was carried out using two distinct plant species: Arabidopsis Thaliana, a well-
annotated model plant, and Solanum Lycopersicum. It is important to note that
the selection of these two plants was not within our discretion, but rather it was
Genetwister who provided us with the necessary data to initiate our investigations
or who pointed out which are the necessary tools in order to gather the data re-
quired. Furthermore, the format of the datasets was predetermined and we worked
with them as they were presented to us: text files for the datasets discussed in 4.1 and
4.2, respectively JSON line files for the dataset of the text-mined literature presented
in 4.4.

5.2 Datasets cleanup

The initial step involved preprocessing the data present in the gene annotations
datasets and the orthology dataset. For the annotations datasets, the cleanup con-
sisted of removing symbols such as "." from the entities names as they did not adhere
to the conventions used in Neo4j for naming entities.

Regarding the orthology dataset, its original format was not suitable since it
contained multiple transcripts from both Solanum Lycopersicum and Arabidopsis
Thaliana genes on the same line. To address this, we extracted all possible pairs of
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transcripts between the two species. In the end, we obtained a total of 25,441 pairs
of orthologous genes.

5.3 System Design

The design choices of the system were primarily influenced by the characteristics
of the datasets and the nature of the problem at hand. However, it is important to
note that the initial level of flexibility incorporated into the system can have signif-
icant implications on the outcomes. These implications will be further discussed in
Chapter 7.

Figure 5.1 reflects the initial stage of our work . Having two annotations datasets
for the two plant species, each containing transcripts of genes and their correspond-
ing annotations, our task was to determine the similarity of annotations between
pairs of genes. To address this challenge, we opted to construct a comprehensive
graph that encompasses all genes and annotations as interconnected nodes. By com-
puting subgraph similarities, we aimed to identify common sets of annotations be-
tween genes, as depicted by the highlighted nodes in red in Figure 5.1: if the nodes
they are linked two, representing corresponding annotations, would indeed repre-
sent the same entities.

Therefore, the desideratum was to use existing tools to incorporate the data pro-
vided by Genetwister and to leverage insights about the extent to which using the
annotations could imply relations of orthology between different genes from differ-
ent species.

FIGURE 5.1: Figure presents two different annotation datasets for the
two different place species

5.3.1 Graph Database

The first design choice we made was to employ a graph database as we considered
the high degree of connectivity between transcripts of genes and their correspond-
ing annotations. Given that the establishment of orthology relationships between
genes relies on the assumption of similar annotations, a graph database proved to
be an effective solution for handling subgraph similarities between nodes. Thus, this
decision further reinforced the usefulness of having a graph database as a starting
point in our endeavours.
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Our selection of Neo4j as the database management system was not driven by
any specific bias. However, the user-friendly nature of Neo4j and its visually ap-
pealing interface, which allowed us to easily explore subsets of nodes and their re-
lationships, were significant factors that influenced our decision-making process.

In our graph database, each transcript and each annotation describing a tran-
script are created as nodes. In Neo4j, each node has a label and different properties.
In our case, each transcript from both species is stored under the label called Gene,
while all the other annotations appearing in the same column are assigned labels
corresponding to the column name.

Transcripts are connected to their annotations through up to seven different types
of relationships, with each relationship type determined by the type of node it con-
nects to the transcript. We want to emphasize the aspect that not all transcripts
have all seven types of annotations present in the graph database, an observation
discussed in Chapter 8.

Moreover, each relationship can be customized to have different properties which
can later account for influencing the properties of a subgraph containing those rela-
tionships. This brings us to our second design choice - assigning each relationship
a property called strength, with a default value of one. By modifying this property
during the calculation of subgraph similarities, we can implement a weighted simi-
larity function.

5.3.2 Similarity Scores

As previously mentioned, the strategy we used in order to compute similarity sim-
ilarity scores between transcripts of genes using their annotations was to compute
subgraph similarities of those transcripts. One could observe that our graph is a bi-
partite graph because relationships exists only between a node of type Gene and a
node of another type.

The third design choice was to use the Neo4j inbuilt node similarity algorithm
on the Jaccard metric. For two sets U and V, the Jaccard similarity is computed as
follows:

J(U, V) =
|U ∩ V|
|U ∪ V|

a
In order to work with any algorithm from the Neo4j library, a projection of the

graph has to be stored under a user-defined name. The projection specifies which
nodes and which relationships from the database have to be included in the projec-
tion. Our projection included all nodes from all labels and all relationships between
transcripts of genes and the nodes corresponding to their annotations, as it can be
depicted in Figure 5.2.

The node similarity algorithm used was the gds.nodeSimilarity.stream() function
which takes as an arguments the projection of the graph in question. The query is
shown in Figure 5.3. The node similarity function compares each node that has out-
going relationships with each another such node. In our case, only nodes describing
transcripts of genes are considered for similarity. The algorithm computes pair-wise
similarities between a node and all the other nodes, but outputs only a fraction of
the results. This is due to memory bounds. Hence, our query had to be modified in
order to include a very important parameter - topK. This specifies that only the first
topK best values for similarities between a transcript of gene and its counterparts
will be displayed.
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CALL gds.graph.project(
’myProjection’,
[’Gene’, ’Pfam’,’Panther’, ’Ko’, ’Go’, ’Ec’, ’Kog’, ’Locus’],
{

GO: {
properties: {

strength: {
property: ’strength’,
defaultValue: 1.0

}
}

},
.........

}
);

FIGURE 5.2: Neo4j query for building a graph projection considering
a subset of nodes and relationships from the graph database

CALL gds.nodeSimilarity.stream(’myProjection’, {topK: 800})
YIELD node1, node2, similarity WHERE
gds.util.asNode(node1).name starts with "S" AND
gds.util.asNode(node2).name starts with "A"
RETURN gds.util.asNode(node1).name AS Gene1,
gds.util.asNode(node2).name AS Gene2, similarity
ORDER BY similarity DESCENDING, Gene1, Gene2

FIGURE 5.3: Neo4j query for computing node similarities

As a result, in order to avoid duplicated outputs, our query is designed to com-
pare every Solanum Lycopersicum transcript with any other Arabidopsis Thaliana
transcript based on the projection of our graph, looking at the first 800 best results
for each transcript.

The value for parameter topK was used after empiric observations: many of the
pairs from the ortholog files did not have any computer similarity score outputted,
therefore we chose this value because:

• with higher values, the memory resources would not be sufficient on our ma-
chine with following specs:

OS Windows Edition 11 Pro 64-bit
RAM 32.0 GB (31.8 GB usable)

Processor Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59 GHz

TABLE 5.1: Table presents specifications for the machine

• using topK: 800, we remain with only 600 transcripts with no outputted values,
transcripts with very little scores nonetheless, for which we simply chose to
give a computed similarity of zero.
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5.4 Text mining

To enhance the richness of our datasets, we turned our attention to a cutting-edge
platform that employs a unique approach to construct small-scale knowledge graphs.
This platform harnesses the power of annotation to identify and classify various
biomedical entities found within the titles and abstracts of biomedical papers pub-
lished on PubMed. By leveraging this innovative text-mining platform, we aimed to
augment our datasets with valuable information extracted from scientific literature
that can potentially be related to the genes we were interested in. The platform is
meticulously presented by Kroll et al., 2023 their paper.

To expand our exploration and uncover potential new insights, we employed the
dataset introduced in Section 4.4. This dataset served as a valuable resource for our
quest to identify the most frequently occurring elements within the vast expanse of
PubMed.

By mining the entirety of PubMed, we aimed to extract valuable information
embedded within the tiny knowledge graphs generated by the text-mining platform:
new elements tied to genes from the two plant species of interest can create new
bounds between them after being integrated into our initial graph database. For
illustrative purposes, we included the figure below:

(A) (B)

FIGURE 5.4: Figure presents the changed subgraphs of the two differ-
ent transcripts when a new common entity node is being added

This strategy is employed in order to answer the second research question -
whether this form of dataset augmentation can increase the performance of the sys-
tem when computing the similarity scores based on subgraph similarities or how do
they influence the computed similarity scores based only on the annotations estab-
lished de facto true.

The initial step was to narrow down the large dataset. This step was required
in order to filter out unnecessary documents whose tiny knowledge graphs would
not render any valuable information, such as documents lacking any relationships
between discovered entities in their titles and abstracts.

Consequently, we extracted from the remaining dataset the entities from the
statements which appeared to be in a relationships with transcripts of genes that
we were interested in. Therefore, we used two different dictionaries to retain:

• keys as entities describing transcripts for our plant species

• values as the entities they were recorded to be in a relationships with in the
statement sections
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The third step consisted of embedding the newly discovered entities and their
relationships into the graph database. For this, we extracted the entities which were
common for both entities tied to transcripts from Arabidopsis Thaliana and to tran-
scripts from Solanum Lycopersicum. We obtained 51 common entities. However,
after another essential filtering we arrived at 47 entities. Retrieving the relationships
between mined entities and the transcripts from the database involved several ac-
tions:

1. We firstly used the dictionaries to establish relationships between entities and
the vocabulary describing our genes of interest. Each item was treated as being
written with lowercase letters in order to avoid duplicates.

2. We used the vocabulary dataset to make correspondences between a synonym
and genes from both species that were described by it.

3. We established relationships between the transcripts present in the database
and the entity it was linked to.

Given the limitations of the synonym dataset, which only contained synonyms
for genes (loci) rather than transcripts specific to Arabidopsis Thaliana, it was evi-
dent that the available information was insufficient for our intended purposes. In
order to overcome this constraint and expand the scope of our analysis, we decided
to extrapolate the established relationships between genes and entities to encompass
all transcripts associated with each respective gene. In a manner consistent with
the original scenario, all newly established relationships were assigned a "strength"
property, which defaulted to a value of one. This property served as a measure of
significance, reflecting the strength of the relationship between the entities involved.

On the whole, the system was augmented as such: 47 new nodes of type Entity,
89 new relationships for transcripts of Solanum Lycopersicum, 15050 new relation-
ships for transcripts of Arabidopsis Thaliana. All relationships were of the same
type called MINED.

Similarly to the first attempt, the similarity scores were computed using the
query presented in Figure 5.3. However, this time the projection of the graph on
which the gds.nodeSimilarity.stream() function was called had to be modified in order
to capture the newly integrated nodes and relationships.

Introducing provenance weight

In order to fully answer the third research question, we thought about introducing
into our model considerations about the provenance of information. Once again,
the system designed in the basic scenario employed pieces of information which are
regarded as the groud truth with respect to the genes of the two species.

In the subsequent scenario, when incorporating text-mined documents from a
collection of scientific papers, we confront the challenge of dealing with potentially
inconsistent and unreliable new information introduced to the model. This raises
an important question: How should we address this issue to accurately depict the
disparities between the two knowledge bases?

When evaluating each step from our model that lead to different design choices,
a primordial possible tweak is to change accordingly the graph projection. It is re-
quired in such a scenario to make a distinction between knowledge bases - this could
be easily depicted by choosing different strengths for the different types of relation-
ships in our graph: giving a higher weight for the relationships established to be
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of ground truth from the first scenario and lower weights for connections between
transcripts and the mined entities. This strategy conveys the goal of reinforcing the
idea that the newly added nodes to the graph can inflict unreliable, even misleading
influences on the networks.

Therefore, for this case we chose to keep the property strength of all relationships
linking transcripts to their annotations and to halve the property strength for the
relationships between transcripts and mined entities. This enabled us to use the
Neo4j Weighted Jaccard Similarity:

JW(A, B) = ∑i min(ai, bi)

∑i max(ai, bi)

where A = (ai, ...., an) and B = (bi, ...., bn)
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Chapter 6

Qualitative Research

In this chapter, we aim to examine the impact of dataset quality on the resulting
outcomes and identify areas where modifications to the datasets could have been
made in order to possibly yield improved results for the computed similarity scores.
Accordingly, we have decided two split up the discussion into two parts:

1. discussing the the datasets containing annotations and synonyms presented in
4.1 and 4.2

2. discussing the dataset containing text-mined entities presented in 4.4

When evaluating the quality of datasets, we typically assess several factors, includ-
ing the degree to which they possess a coherent structure, the level of information
contained within the data, and the presence of missing values. While the issue of
handling incorrect values is important, it is generally not considered a primary con-
cern in evaluating the quality of biomedical datasets, given that they are typically
publicly available and have been curated by the scientific community. As such, the
focus tends to be on assessing the overall structure and content of the dataset, as
well as identifying any potential gaps or limitations that could impact its utility for
research purposes.

6.1 Quality of the annotation datasets

In terms of the annotation datasets, the primary aspects we were interested in were
to handle datasets from which we can derive robust, complex graphs, with numer-
ous nodes and edges between them. Therefore, it was chief to inspect how many
genes and transcripts were present, how many types of annotations are presented
and how connected were transcripts to the other entities. However, upon initial
inspection, it was observed that 8687 out of the total number of transcripts were en-
tirely devoid of annotations, representing a significant limitation of our study. This
finding underscores the need for caution and thoroughness in data collection and cu-
ration efforts, as incomplete or missing data can compromise the validity and utility
of the resulting dataset, as stated in 7.3.

Furthermore, Figure 6.1 puts into perspective how connected the transcripts were
to other nodes in the graph. It can be understood that the most connected nodes have
at most 20 relationships.

6.2 Quality of the synonym datasets

We consider the quality of the synonym datasets to be characterized by the availabil-
ity of comprehensive, current, and accurate information for each transcript. Unfor-
tunately, we encountered another significant limitation in our implementation due
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FIGURE 6.1: Number of relationships to number of nodes

to the lack of any synonyms for the entire collection of genes from the synonym
dataset for Solanum Lycopersicum.

Additionally, it is noteworthy that the synonym dataset for Arabidopsis Thaliana,
as exported from BioMart, had numerous duplicate values for different genes, which
had to be aggregated. Nevertheless, this dataset also recorded a substantial number
of missing values: out of 27654 transcripts, 21385 were not presenting any synonyms.

Therefore, we assess that the synonym datasets were hardly adequate for our
task and we want to emphasize the requirement of having sufficiently large and
comprehensive sets of synonyms for efficient text-mining.

6.3 Quality of dataset resulted after text-mining

Given the myriad of JSON lines in the dataset, we encountered the challenge of
managing large quantities of data and in order to efficiently achieve our research
goals. As such, filtering down our data was an impelling necessity.

A first step was to inspect how frequent the terms "Arabidopsis" and "Solanum"
occur in our mined documents, represented each on a new JSON line. This was
envisioned as a good indicator for the documents with high probability of clearly
mentioning genes and transcripts belonging to the two plant species, and, moreover,
for the documents in whose knowledge graphs these genes and transcripts might be
in a relation to each other directly.

We were interested, for statistical purposes, to check both for the documents
which would provided statements between entities or without any statements at
all.
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# of occurrences in
documents with statements

# of occurrences in
documents without statements

"Arabidopsis" 464148 40099
"Solanum" 1076 32

TABLE 6.1: Table presents the number of occurrences of words
"Solanum" and "Arabidopsis" in the dataset’s documents

It is evident from the table 6.1, that a higher number of documents mentioned the
model plant’s name more frequently, which is not surprising due to the extensive
research conducted on Arabidopsis Thaliana.

For a better understanding of how the entities are linked, we looked for the most
common predicates and for the most common relationships types from the docu-
ments with present statements. These are not related to statements regarding the
plant species vocabulary, but to all statements. Therefore, Table 6.2 presents all types
of recognized relationships in documents’ statements and the frequency of their oc-
currence in the mined dataset. With respect to used predicates, there were almost
eleven thousands different predicates extracted.

relationship type count
"associated" 33915747
"compared 2644928
"induces" 396870

"treats" 291107
"decreases" 177580
"method" 5205151
"inhibits" 622823

"administered" 450442
"metabolises" 127910

"interacts" 2637199

TABLE 6.2: Table presents the relationship types recognized by the
mining platform

One potential weakness of this dataset is the large number of papers (over 40k)
which did not contain any statements and were therefore useless for constructing
knowledge graphs between existing entities. This issue may arise due to the fact that
statements are only extracted if at least two entities are mentioned within the same
sentences, being therefore connected via a grammatical structure. Upon further in-
spection, it was discovered that more than 13k papers out of all scraped PubMed
documents were missing abstracts.

However, the most salient weakness is the introduction of ambiguous connec-
tions, which is rather a consequence resulted from the use of a weak vocabulary, as
presented in 6.2. Ambivalent terms can be a cause of confusion in different scenarios,
either representing different concepts or not being representative at all for the tran-
scripts appearing in different abstracts or titles. To be more specific, synonyms such
as "mutant", "polar", "mania", "grounded", "circadian rhythms", "circadian rhythm",
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"woody", "ball", "scream", "family 77" and many more are misleading, while syn-
onyms such as "thiamine", "superoxide dismutase" may point to other biomedical
entities such as enzymes, vitamins etcetera.
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Chapter 7

Evaluation

The evaluation chapters reflects our results and our considerations with respect to
the methodology and to the final system. We address two cases:

1. the first study case - experiment 1 - which involved computing the similar-
ity scores between genes which are considered orthologous by the scientific
community using only the annotation datasets presented in 4.1

2. the follow-up case - experiment 2 - which entailed using PubMed text-mined
information, presented in 4.4, related to our genes and transcripts in order to
extend the previously used knowledge base with novel pieces of data, there-
fore changing the topology of the graph on which the similarity scores are
computed and introducing potentially unreliable information

The objective of the evaluation process is not limited to providing a straight-
forward responses in terms of the accuracy of annotations in representing orthology
relationships, but rather we aim to quantify the degree to which the selected method-
ology, design decisions, and overall framework are capable of replicating the given
orthology relationships. The evaluation process seeks to provide numerical values
that indicate the likelihood of success in reproducing the orthology relationships,
considering the specific approaches we adopted.

7.1 Results for experiment 1

The results for the original experiment are emphasized in table 7.1. With respect
to figure 7.1, it is clearly that the most pairs of ortholog genes tend to have a high
computed similarity score based only on the annotations.

ranges of similarity scores count
0 623

0.1 - 0.19 261
0.2 - 0.29 565
0.3 - 0.39 588
0.4 - 0.49 608
0.5 - 0.59 2037
0.6 - 0.69 2767
0.7 - 0.79 2170
0.8 - 0.89 2815
0.9 - 1.0 13007

TABLE 7.1: Table summarizes the number of transcripts’ pairs having
a computed similarity score in a particular range of values
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FIGURE 7.1: The distribution of transcript pairs having a computed
similarity score between a range of values

The analysis revealed that 12,652 pairs of transcripts obtained a similarity score
of 1.0, which means that the subgraphs comprising their nodes and their annota-
tions, along with edges between them, were identical. Nearly half of the entire
dataset of ortholog pairs were correctly depicted using the subgraph similarities
with perfect accuracy.

Nevertheless, is it evident that the number of orthologous pairs with low com-
puted similarities is not negligible: 10% of the total number of orthologous pairs
obtained similarity scores below 50%.

7.2 Results for experiments 2

Figure 7.2 depicts the number of transcript pairs which had the similarity scores
between different ranges.

Our analysis involved comparing the computed similarities derived from the ini-
tial experiment with those obtained in the subsequent experiment, utilizing the aug-
mented graph and employing the same query. The results of our investigation re-
veal unfortunate findings. Specifically, approximately 87% of the orthologous pairs
(amounting to 22,090 pairs) yielded identical outcomes, suggesting that the aug-
mented graph did not significantly impact their computed similarity scores. How-
ever, we observed that 13% of the pairs, an equivalent to 3,351 pairs, exhibited lower
computed similarity scores subsequent to the incorporation of the new scraped en-
tities into the graph database. Remarkably, none of the pairs demonstrated an im-
provement in their similarity scores, highlighting the absence of positive impact re-
sulting from the augmentation.

When looking at the numerical difference between the two computed similari-
ties, we concluded that the declines in similarity scores fell mostly within specific
ranges:
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FIGURE 7.2: The distribution of transcript pairs having a computed
similarity score after introducing mined entities in the graph database

between a range of values

ranges of similarity scores count
0 - 0.1 690

0.1 - 0.2 1162
0.2 - 0.3 682
0.3 - 0.4 438
0.4 - 0.5 249
0.5 - 0.6 51
0.6 - 0.7 51
0.7 - 0.8 18
0.8 - 0.9 3
0.9 - 1 0
1 - 2 7

TABLE 7.2: Table summarizes the number of transcript pairs having
the difference between the computed similarity scores in a particular

range of values

The most striking observation is that three pairs of transcripts recorded a dif-
ference between the computed similarity scores equal to 2. These instances are of
particular interest, as they indicate a transition from a perfect similarity score of 1
in the initial scenario to being completely unrelated, as evidenced by an assigned
similarity score of -1."

When inspecting the pairs in the Neo4j graph, it was easily recognizable that the
transcript belonging to the Arabidopsis Thaliana species was now linked to many
more nodes of type Entity, therefore downgrading the similarity score obtained us-
ing the Jaccard metric.

The fruit of this discussion germinates from the biomedical entities mined which
were common for both species. It is essential to look which were these entities, as
far as they are represented in the vast vocabulary of the mining tool. The curated
items are presented in Figure 7.3 . As mentioned in Section 5.4, everything entity
was treated as lowercase, narrowing down from 51 entities to 47.
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’protein’, ’kinase’, ’superoxide dismutase’, ’peroxidase’, ’tobacco’, ’parents’, ’death’,
’ethylene’, ’shock’, arabidopsis’, ’Arabidopsis’, ’cloning’, ’beta-glucuronidase’, ’rice’,
’hydrogen peroxide’, ’shape’, ’tomato’, ’magnesium’, ’gus’, ’fusarium’, ’pod’, ’acyl-
transferase’, ’gene expression analysis’, ’leucine’, ’EIN2’, ’transmembrane pro-
tein’, ’Fusarium’, ’exome sequencing’, ’dioxygenases’, ’circadian rhythms’, ’heat-
shock proteins’, ’qpcr’, ’sequence analyses’, ’solanum’, ’mamps’, ’NAC’, ’steril-
ity’, ’male sterility’, ’solanum lycopersicum’, ’NBS’, ’Tomato’, ’lyase’, ’engase’,
’sHSP’, ’ERECTA’, ’Solanum habrochaites’, ’P. aegyptiaca’, ’S. lycopersicum’, ’shsp’,
’solyc09g075080’, ’solyc01g068560’

FIGURE 7.3: Common entities for transcripts from Arabidopsis
Thaliana and Solanum Lycopersicum

It is obvious that terms such as "arabidopsis", "tomato", "solanum lycoperiscum",
"solanum", "S. lycopersicum" are terms which can inflict a lot of confusion in our
experiments as they

7.2.1 Tackling provenance

The results obtained while keeping the strength property of the relationships of type
MINED at half of the initial value are presented as following:

1. only 3,345 pairs recorded different values between the two cases

2. overall, 3,269 pairs had better similarity scores when all relationships were
treated equally in contrast to when the the newly embedded relationships’
strength property was halved.

7.3 Limitations

In this section we address the limitations of our study and whether we are capable
to suggest, summarizing all our observations, any possible solutions or steps for
improvement for future researches.

7.3.1 Quality of datasets

Chapter 6 depicted an encompassing view of how the quality of the datasets influ-
enced the results and our design decisions. In general, our study could have poten-
tially generated further insights and achieved higher scores for a greater number of
pairs between transcripts of the two plant species if the following conditions were
met:

• The annotation datasets contained fewer instances of missing values, ensuring
more complete and reliable information.

• The dataset outlined in Section 4.4 possessed a more robust underlying vocab-
ulary, thereby minimizing the presence of ambiguous terms and enhancing the
accuracy of the results.

• A Solanum Lycopersicum synonym dataset could have been available, en-
abling more comprehensive analysis and improving the accuracy of cross-species
comparisons.
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7.3.2 Neo4j inbuilt functions

Using pre-existing inbuilt functions by Neo4j can offer an immediate and convenient
solution for calculating the similarity scores. However, this can also account for
a source of limitation in terms of available similarity metrics and their potential to
capture unique characteristics of the datasets and the relationships among nodes. As
introduces in 5.3.2, we relied on the Jaccard metric for the node similarity function,
even though there was another option delivered by Neo4j to use the Overlap metric.

Moreover, for similar projects, it might be required that custom made similarity
functions have to be developed, taking into considerations the particularities of the
problem itself and of the underlying datasets it is modelled after. Even though Neo4j
offers flexibility with respect to which are the parts of the database considered for a
projection in-memory, respectively, to the properties allocated for relationships, one
has to considered whether stepping away from the platform’s functions can better
capture the problem.

An alternative approach would be the use of node embeddings or subgraph em-
beddings. Node embeddings are low-dimensional vector representations of nodes
in a graph, frequently employed in machine learning problems. Graph embeddings
have the considerable advantage of retaining rich information about the network
and the property of nodes and relationships within a graph.

Neo4j GDS library has several node embedding algorithms: the FastRP tech-
nique is used especially to preserve the similarity between nodes and their neigh-
bours. Embeddings are calculated in iterations by using random walks in the graph,
and the number of iteration is a tunable hyperparameter which can highly influence
the final embeddings assigned to each node. Only one iteration will consider the
direct neighbouring nodes (i.e. in our case - the annotations for each transcripts),
while more iterations will include information containing neighbours which are fur-
ther away. Additionally, FastRP is supposed to work with undirected graphs, but
choosing orientation for relationships (outgoing vs. incoming) can also affect the
embeddings tremendously and yield unexpected results.

7.3.3 Insufficient Memory

As discussed in 5.3.2, memory bounds can be a dire limitation once the graph database
increases in size considerably. For our particular experiments, the number of pair-
wise computed similarity scores which were outputted by Neo4j were constrained
by the memory available for it. Notwithstanding the memory constraints, there
could be four straightforward solutions for alike experiments where one could:

• employ machines with increased memory capacities

• use alternative graph projections

• compute similarities for a smaller subset of nodes

• employing a threshold for displaying similarity scores

7.3.4 Graph properties

We saw in Section 5.4 that the newly established relationships between transcripts
from both plants species and the mined, common entities had all been embedded
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into the graph database under the same label: MINED. However, with better un-
derstanding of the biological underlines of each term, different items could be ag-
gregated under different types of nodes, instead of a general type Entity, and with
different types of relationships to the corresponding transcript nodes. This could
benefit the system by allowing multiple and disjoint properties per type of relation-
ship.

7.3.5 Provenance management

Lastly, an evident area for improvement lies in the design choice of dealing with
provenance management. We conceived that creating different types of relationships
and with a better understanding of the connections between subsets of transcripts
to subsets of entities, different weights can be attributed to them. For instance, one
modality of tackling provenance could be using the metadata contained per docu-
ment from the dataset deployed by the text-mining platform service presented in 4.4
in order to track the authority of the journals and/or conferences where the papers
amassed in PubMed were presented. Needless to say, one could consider that top A
conferences and journal could instantiate more accurate and complete information.
The statements extracted from papers with higher recognition would be assigned a
higher weight as well in our model.
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Chapter 8

Conclusions

At the beginning of our this study, we set out to learn more about Arabidopsis
Thaliana, about gene similarity and about key concepts in the real of comparative
genomics. The main goal was to design a framework which could encapsulate large
datasets containing annotations of two different plant species, which could yield
valuable information about orthologous genes.

However, throughout the course of our research, we inevitably encountered a
common challenge prevalent in various research domains: the issue of having an
insufficient number of observations in our data, thereby hindering the generation
of meaningful estimates. Notwithstanding this fact, we firmly consider that such
problems account for worthwhile lessons.

We believe that this research presents a valuable methodology for studying gene
similarity using graph-based techniques, offering several advantages. Firstly, it pro-
vides contextual information by leveraging subgraph similarities, which take into
account the relationships and interdependencies between nodes, thereby capturing
the complexity inherent in biological networks. Secondly, this methodology allows
for the integration of multiple data sources, enabling a more comprehensive under-
standing of gene relationships and functions. Lastly, it addresses the issue of anno-
tation incompleteness by identifying similar subgraph structures, bridging gaps in
knowledge regarding gene functions, even when annotations for two genes may be
incomplete or divergent.

On the other hand, despite our efforts, the results of this study were not entirely
satisfactory, primarily due to several factors. The prevalent conclusion we draw
was that data quality is a major factor when determining the outcomes of such ex-
periments. We cannot overstate the significance of data integrity in research of this
nature. When computing the similarity scores between Arabidopsis Thaliana and
Solanum Lycopersicum, we encountered ambiguity regarding whether the results
unveiled intriguing cases of orthology between genes or if we were simply dealing
with incomplete data, as both annotation datasets contained a considerable number
of unannotated transcripts.

Additionally, our exploration of using Natural Language Processing (NLP) tech-
niques to enrich the annotation datasets yielded uninformative results. Once again,
we attribute this outcome primarily to data quality issues. It is imperative to empha-
size the importance of employing clean vocabulary datasets specifically tailored for
extracting biomedical entities from scientific papers. Furthermore, the integration of
mined entities should only occur after a comprehensive and thorough analysis to en-
sure that the additional information genuinely pertains to other biomedical entities,
as opposed to mere general words such as "shape" or "parent."

In summary, this study provides valuable lessons into gene similarity through
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the application of graph-based methods. It highlights the significance of data qual-
ity, underlining the need for comprehensive and accurate annotation datasets. Fur-
thermore, it outlines challenges associated with integrating text-mined information,
emphasizing the requirement for meticulous analysis and the utilization of reliable
sources. By addressing these considerations, future research endeavors in this field
can enhance the reliability and effectiveness of similar methodologies.
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