
S TO R I N G M A S S I V E T I N S I N A D B M S
A comparison and a prototype implementation of the multistar approach

by
Maarten Pronk

S TO R I N G M A S S I V E T I N S I N A D B M S
A comparison and a prototype implementation of the multistar approach

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics

by

Maarten Pronk

June 2015

Maarten Pronk: Storing Massive TINs in a DBMS: A comparison and a prototype
implementation of the multistar approach (2015)
cb This work is licensed under a Creative Commons Attribution 4.0 Inter-
national License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was made in the:

TU Delft MSc Geomatics
Department of Urbanism
Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Prof. Dr. Jantien Stoter
Dr. Hugo Ledoux

Co-reader: Dr. Ir. Martijn Meijers

http://creativecommons.org/licenses/by/4.0/

‘We live in a society exquisitely dependent on science and
technology, in which hardly anyone knows anything about

science and technology.’

- Carl Sagan

A B S T R A C T

Solutions have been introduced to handle massive point clouds in Database
Management Systems (DBMS), namely by Oracle in 2011 and postgreSQL
in 2013. Many common operations on these massive point clouds require
knowledge about the original surface in order to analyse them. A possible
method to recreate a representation of the original surface is reducing a
point cloud to a 2.5D structure such as a Triangular Irregular Network (TIN).
This thesis explores the possibilities to store such massive TINs in a DBMS
and presents criteria to define an efficient approach. The term ‘efficient’
is defined by the size of the data structure and the performance of spatial
queries.

Criteria for an efficient approach are developed by reviewing existing liter-
ature and comparisons of existing implementations. These criteria include:
(1) the explicit storage of nodes of TIN, preventing duplicate information
and resulting in small data structures. (2) the use of atomic functions such
as slope, aspect and degree in order to enable analysis of the TIN inside the
database. (3) the storage of topological relationships of the TIN, which is
used for both atomic functions and spatial access to the TIN. (4) the use of
buckets to split the TIN into non-massive sections that can be processed one
at a time. A very large spatial index on each element of a TIN is therefore
not needed. An index is only applied on the extents of the bucket. The
TIN inside the bucket can be traversed using the topological relationships
stored.

The main problem encountered is to combine solutions for massive data-
sets with a TIN data structure, such as the use of buckets with a topological
data structure. These problems are overcome by a novel data structure to
store TINs in a DBMS called the Multistar. This data structure implements
the aforementioned criteria for an efficient approach.

The Multistar is compared in practice with the two existing database struc-
tures: the SDO_TIN by Oracle and the Simple Feature TIN type implemen-
ted in the PostGIS extension of PostgreSQL. This thesis shows that current
implementations are not usable for both storing and accessing a massive
TIN of 370M points. The Multistar is one of the smallest structures available
and outperforms the other data structures significantly on massive TINs.

vii

A C K N O W L E D G E M E N T S

First of all many thanks to Hugo Ledoux, my supervisor for this thesis, for
his comments and guidance. Thanks as well to the other mentors Jantien
Stoter and Martijn Meijers, for their insight and questions.

Thanks to Tamara, who survived my graduation. Another Hugo helped
me with useful insights into computer science and Joyce helped me with
proofreading my thesis.

Finally, thanks to André Miede, for his ClassicThesis style, from which
Lorenzo Pantieri, derived the ArsClassica template used in this thesis.

ix

C O N T E N T S

Acronyms . xix

1 introduction . 1

1.1 Problem statement . 1

1.2 Research question and objectives 3

1.3 Methodology . 4

1.4 Use case . 5

1.5 Scope . 5

1.6 Outline . 7

2 theory and background information 9

2.1 Fields and tessellations . 9

2.2 Representing terrain as a TIN 9

2.3 Construction of TINs . 10

2.4 Applications and operations of TINs 11

2.5 Graphs . 13

2.5.1 Topology . 13

2.5.2 Convexity . 16

2.6 Data structure of triangulations 17

2.6.1 Node based . 17

2.6.2 Edge based . 18

2.6.3 Face based . 20

2.7 Storing attributes . 21

2.8 Efficient access to a TIN . 21

2.9 Validity and integrity . 22

2.10 Criteria for TIN structures . 23

3 related work . 25

3.1 Construction of massive TINs 25

3.1.1 Reducing size . 25

3.1.2 External memory algorithms 26

3.2 Existing TIN structures in DBMS 27

3.2.1 OGC TIN . 28

3.2.2 Oracle SDO_TIN . 30

3.2.3 Postgis Topology . 32

3.2.4 Academic implementations 33

3.3 Subdivision using buckets . 34

3.3.1 Pairing functions . 34

3.4 Efficient access to TINs . 35

3.4.1 Using topology . 35

3.4.2 Auxiliary spatial indexes 36

3.4.3 Compression . 37

3.5 Summary of related work . 37

4 storing tins with the multistar approach 39

4.1 Motivation . 39

4.2 Outline of the Multistar structure 39

4.2.1 Included metadata . 40

4.3 Buckets . 41

xi

4.3.1 Referencing other buckets 41

4.3.2 Pairing functions and space filling curves 44

4.3.3 Parallel SQL queries . 46

4.3.4 Height information . 47

4.4 Indexing and sorting . 47

4.5 Storage size optimizations . 48

4.6 Integrity and validity checks 50

4.7 Atomic TIN functions . 50

4.7.1 Thinning and simplification using the implicit TIN . . 51

4.8 Storing extra attributes . 51

4.9 Drawbacks . 51

5 implementation, experiments and comparison 53

5.1 Workflow . 53

5.2 Multistar implementation . 55

5.3 Alternative implementation . 55

5.4 Construction and loading performance 56

5.5 Storage sizes . 60

5.5.1 Different bucket sizes 60

5.6 PostgreSQL specifics . 61

5.6.1 PostgreSQL row overhead 61

5.6.2 Compression by TOAST 61

5.7 Query performance . 63

5.8 Atomic functions . 67

5.9 Summary . 68

6 conclusion and discussion . 69

6.1 Conclusion . 69

6.2 Discussion . 71

6.3 Future work . 72

6.3.1 In a month . 72

6.3.2 In a year . 73

6.3.3 With a team of developers 75

bibliography . 81

a reflection . 83

b construction and loading tools 85

c multistar . 87

d triangle array . 91

e queries . 93

e.1 Loading time . 93

e.2 Database storage size . 93

e.3 Spatial queries . 94

xii

L I S T O F F I G U R E S

Figure 1 Pointcloud and derived TIN 2

Figure 2 Conceptual scheme. 3

Figure 3 Methodology. 5

Figure 4 Extents of datasets used. 6

Figure 5 Two different triangulations of the same points. . . . 10

Figure 6 Circumscribed circles on the two triangulations of
Figure 5. 11

Figure 7 Delaunay Triangulation 12

Figure 8 DTM visualization . 14

Figure 9 TIN used as a DEM for watershed modeling. 15

Figure 10 The star and link of a vertex 15

Figure 11 Convexity . 16

Figure 12 Stages of a star based TIN 17

Figure 13 TIN example for Table 3. 18

Figure 14 Winged edge . 19

Figure 15 DCEL . 19

Figure 16 Rtree and quadtree . 22

Figure 17 Morton curve . 23

Figure 18 Buckets splitting a pointcloud and a TIN 26

Figure 19 OGC PolyhedralSurface 28

Figure 20 PostGIS TIN structure [PostGIS 2015] 29

Figure 21 Oracle storage model of a TIN [Oracle, 2015] 30

Figure 22 Walking in a TIN by orientation tests [by Ledoux H]. 36

Figure 23 The PM2T quadtree. 36

Figure 24 Brute force versus walking. 37

Figure 25 Multistar structure as a database row. 42

Figure 26 Quadtree used for buckets 43

Figure 27 Using buckets to store a TIN 45

Figure 28 Bucket division line redefined 46

Figure 29 Line intersection with starting point outside the TIN. 49

Figure 30 Workflow scheme single types. 54

Figure 31 Workflow scheme bucketed types. 54

Figure 32 Buckets of the SDO TIN type in Oracle. 58

Figure 33 Buckets of the multistar and TINz. 59

Figure 34 Graph showing the size of different data structures. . 62

Figure 35 Thinned datasets. 73

xiii

http://postgis.net/docs/doxygen/2.1/d2/d36/structLWTIN__coll__graph.png

L I S T O F TA B L E S

Table 2 Star based storage by Blandford et al. [2005] 18

Table 3 TIN node data structure of Figure 13 based on Bur-
rough and McDonnell [1998]. 18

Table 4 Node and triangle table of the triangle array structure. 20

Table 5 The extended Triangle Array structure of Table 4 . . . 20

Table 6 Size of different theoretical data structures for storing
TINs. 24

Table 7 WKB TINZ structure. 28

Table 8 WKB TriangleZ structure. 29

Table 9 Point in array of points in the oracle points blob. . . . 31

Table 10 Triangle array used in the Oracle data structure. . . . 31

Table 11 PostGIS Topology edge table. 32

Table 12 PostGIS Topology face table. 32

Table 13 PostGIS Topology node table. 32

Table 14 pgTIN row structure in PostgreSQL. 34

Table 15 Triangle nodes in bucket 154 of the multistar 35

Table 16 Pairing using binary shifts of 4bit numbers. 35

Table 17 Comparison of current implementations. 38

Table 18 Star based structure. 40

Table 19 Referencing other buckets by a marker. 44

Table 20 Storing direct references to buckets (a and b) and
node ids. 44

Table 21 Comparison of performance in creating a DT. 57

Table 22 omparison of performance in converting the output
of lastools to database for demo.las. 58

Table 23 Comparison of performance in converting the output
of lastools to database for g37en2.laz 60

Table 24 Comparison of storage size of MultiPolygonZ. 60

Table 25 Comparison of storage size of the terrain of a demo.las. 61

Table 26 Size of datasets for the g37en2.laz dataset. Size in MB. 61

Table 27 Comparison of storage size with and without compres-
sion. 63

Table 28 Comparison of storage size using floats or doubles. . 63

Table 29 Comparison of query performance of MultiPolygonZ
using different buckets 64

Table 30 Comparison of point location by bucket size. 64

Table 31 Comparison of query performance for each bucketlevel. 65

Table 32 Comparison of query performance for each bucket-
level using a horizontal query. 65

Table 33 Bucket edge statistics 66

Table 34 Comparison of query performance on massive dataset. 66

Table 35 Performance of atomic functions. 67

Table 36 Average degree. 67

xv

L I S T O F A LG O R I T H M S

4.1 The convex_hull_intersection algorithm. 48

xvii

A C R O N Y M S

AHN2 Actual elevation information of the Netherlands 1, 10, 53, 71

blob Binary Large Object . 31

CDT Conforming Delaunay Triangulation 11, 33, 51

DBMS Database Management Systems . . . vii, 3, 9, 13, 22, 25, 69

DEM Digital Elevation Model 11, 13, 15

DT Delaunay Triangulation 1, 2, 10–13, 16, 26, 57, 74

DTM Digital Terrain Model 1, 3, 5, 11, 13, 69

GIS Geographic Information System 1

SF Simple Feature (Access) 28, 43, 60, 66, 68, 70–72

srid Spatial Reference IDentifier 32

TIN Triangular Irregular Network vii, 1, 9, 15, 23, 69, 83

WKB Well Known Binary 28, 56, 92

WKT Well Known Text . 28

xix

1 I N T R O D U C T I O N

Many practical applications of massive point cloud data require easy access
and analysis of such point clouds. These operations often require an inter-
mediary TIN. While massive datasets are already hard to acquire because
of their sheer size, their derived TINs are even less likely to be used and dis-
tributed. Accessible database storage of such massive TINs enables easier
access, analysis and distribution for those who work with point cloud data.
Overall the use of TINs can be considered irrelevant to the general public.
However, when used in a scientific setting such as in flood modelling, it can
suddenly become relevant for the general public in the Netherlands.

The scientific relevance of this subject is made clear by the fact that a
PhD position is available on this specific topic, which was made possible
by a grant. This research is related to the open questions of how to handle
massive datasets as well as the ongoing research in creating a data structure
for a 3D Geographic Information System (GIS) in a database.

1.1 problem statement
In March 2014 the elevation data set of the Netherlands (AHN2) was made
publicly available. The AHN2 contains around ∼640 billion points and is
an example of a massive point cloud dataset. Both the AHN2 and similar
massive1 pointclouds need to be stored and analysed. Database solutions
have been introduced to handle these large amounts of data, including a
pointcloud storage type produced by Oracle in 2011 and postgreSQL which
has been extended in 2013.

In a point cloud as seen in Figure 1a, the elevation and thus surface
between the collected sample of points is unknown. Many common op-
erations on a point cloud require knowledge about the original surface in
order to analyse it. Such operations include the creation of a grid [Isenburg
et al., 2006b], viewshed analysis, watershed analysis [Lyon, 2003], volume
calculations, slope and aspect calculations, among other analyses [Wilson
and Gallant, 2000]. The original surface can never be reconstructed from a
sample of elevation points such as a point cloud. However, there are several
methods available to recreate the best possible representation of the original
surface through spatial interpolation.

A common method of recreating a representation of the original surface
is reducing a point cloud to a 2.5D structure such as a triangulation. This
is called a Triangulated Irregular Network [Peucker et al., 1978] and if ap-
plicable is often used as a Digital Terrain Model (DTM). A DT (formally
defined in Chapter 2) is often used for this purpose. The result can be seen
in Figure 1b. In this figure the space between the original elevation points is
defined by triangles. The elevation or other properties of the surface at that

1 I define massive as: ‘multiple times larger than the amount of random access memory in a
conventional computer’

1

2 introduction

(a)

(b)

Figure 1: Point cloud and derived TIN. (a) A point cloud demo.las with a clear lack
of information between the elevation points. (b) The derived TIN using
a Delaunay Triangulation (DT) providing a reconstruction of the original
surface.

1.2 research question and objectives 3

INPUT DATABASE OUTPUTgeneration access

Data structure
Buckets

Topology
Index

Storage size

Atomic functions

Query performance

Massive dataset
Buckets

Figure 2: Conceptual scheme.

point can be derived through interpolation on these triangles. Triangula-
tion is one of two principal methods of representing a network of elevation
data. [Moore et al., 1991], the other being a grid or a Regular Network, and
both methods have their advantages and disadvantages [Kumler, 1994].

Normally the triangulation is done on the fly from a pointcloud or stored
as files on disk instead of a database. However, since point clouds are now
often stored in databases 2 [van Oosterom et al., 2015], it could be more
convenient to store the TIN in a database. This would save time and com-
puting power and offer database advantages, such as security, scalability,
versioning, integrity, constraints etc. [Elmasri and Navathe, 2006].

However, storing a TIN in a DBMS is much more complicated than stor-
ing points in a database. Both the storage of the TIN needs to be addressed,
as well as the handling of massive datasets. A DTM in a database requires
both topology and geometry [Fritsch, 1996] linked in a DBMS which is an
open area of research [Zlatanova et al., 2004]. While the massive size of
pointclouds is already a problem on its own [Vitter, 2001], storing the de-
rived TIN in a database increases the storage size even more, since there are
roughly two times more triangles than there are points in a Delaunay Trian-
gulation [Berg de et al., 2000]. Solutions that solve the problem of massive
datasets, such as tiling the point cloud, present problems for the TIN data
structure: While point clouds can be arbitrarily divided into smaller buckets,
this breaks the topology of a TIN.

1.2 research question and objectives
Massive TIN storage in a DBMS thus presents several problems to which
solutions should be compatible with as well. In Figure 2 these problems are
divided in three distinct steps: the input of the database, the data structure
in the database itself and its output. Problems such as the data structure,
functions needed and the generation of a massive TIN are all part of an
approach that stores massive TINs in a DBMS. The research question that
follows is:

What are efficient approaches to store massive TINs in a DBMS?

Efficient approaches are defined by a decrease in storage size and an in-
crease in performance compared to other, existing solutions. The following
aspects cover the input, output and the data structure itself and are used to
compare efficient approaches.

• Storage size of data structure

• Storage size of index

2 see https://github.com/pgpointcloud/pointcloud

https://github.com/pgpointcloud/pointcloud

4 introduction

• Performance of spatial queries

• Availability of atomic functions

• Loading time of the TIN, including construction

The following subquestions that need to be answered in order to create
a comprehensive overview of approaches. These questions all relate to the
problems touched upon in Section 1.1 and stated in Figure 2.

• What are reasons for creating buckets in a DBMS and what are the
trade offs?

• Which spatial index is the most efficient?

• Which atomic functions are needed for a TIN in a DBMS?

• How can the topological relationships of a TIN be exploited in these
functions?

The main objective of this thesis is to compare different approaches to
store massive TINs in a DBMS, both theoretically and practically. Theoretic-
ally in their data structure and practically in their usage and performance.
A prototype will be built to combine the best approaches found.

1.3 methodology
The methodology used in order to answer the research questions can be
seen in Figure 3. A literature study will be conducted to create an overview
of the uses of a TIN and TIN data structures, from which the requirements
for an hypothetically efficient approach in theory are derived. Also, an
overview of current approaches to store TINs in a database will be made and
compared theoretically with the requirements found in the literature study.
To compare current implementations practically, one or more prototype(s)
will be designed and implemented, based on the hypothetically efficient
approach. Finally these prototypes will then be tested and compared with
existing solutions. The data gathered from these tests and comparisons will
give more insight into how efficient current implementations are and if these
implementations are found lacking, as well as a direction for new research,
based on the extent in which the efficient approach and prototype are either
validated or invalidated.

The following tasks are planned in order to answer the aforementioned
research questions.

• Study TIN, its topology and its usages.

• Study the loading/storage of data with sorting and splitting.

• Study spatial indexes.

• Design and implement an extension prototype for a TIN in postgr-
eSQL.

• Implement prototype(s) with buckets based storage such as postgr-
eSQL/Oracle.

1.4 use case 5

LITERATURE STUDY

DATABASE STUDY

EFFICIENT APPROACH

CURRENT IMPLEMENTATIONS

THEORETICAL
COMPARISON

PRACTICAL
COMPARISON

PROTOTYPE

THEORY PRACTICE

Figure 3: Methodology.

• Compare the results of these prototypes with other implementations
in theory and in practice, based on the real-world datasets provided
in section Section 1.4

1.4 use case

The following use case is considered: A massive static TIN, computed from
a tile of the AHN2 dataset,is stored in a database. In the database the TIN
will be used as a DTM, with possible usages as the construction of rasters
or calculating aspect and slope [Wilson and Gallant, 2000].

Some of the AHN2 data has been downloaded for processing. The follow-
ing files, g37en1.laz and g37en2.laz are used for creating a TIN. These tiles
cover the area around Delft with an area of 10 by 6.25 km, containing a total
of 770 million points. Two smaller datasets are used for testing, demo.las
and rijswijk.las, the extents of which are shown in Figure 4. Demo.las con-
tains 5 million points and rijswijk.las contains 320 thousand points. Both
datasets are used for smaller experiments. Lastools with the blast exten-
sion3 is used to create a TIN.

1.5 scope

An efficient storage method as defined in the research question has to be
quantifiable, at least in the following standard ways: Data loading, storage
size and query times, These standards will be compared to other existing
solutions. Nonetheless, non database solutions do also exist and can some-
times be faster [van Oosterom et al., 2015]. Yet database solutions are prefer-
able due to their inherent properties, such as multi user support, data integ-
rity, spatial indexes and spatial operations with other geometries [Elmasri
and Navathe, 2006], as well as a standard tool for every GIS framework and
users. Non database solutions will therefore not be taken into account. The
scope is limited by the following items:

3 see http://www.cs.unc.edu/~isenburg/lastools/

http://www.cs.unc.edu/~isenburg/lastools/

6 introduction

(a)

(b)

Figure 4: Extents of datasets used (a) Showing three tile extents. 37en1 and 37en2 are
used for the filtered AHN2 dataset (7GB each), the area around Delft. (b)
Extents for the smaller datasets using the filtered AHN2 dataset. demo.las
is a park area at 105MB, rijswijk.las is 6.4MB.

1.6 outline 7

• DBMS used for prototyping will be limited to PostgreSQL, as it is open
source and well known and used for GIS operations.

• TIN is considered as a given, i.e. not constructed in DBMS.

• TIN is a Delaunay triangulation.

• Data is static, no updates are done within the database.

1.6 outline
The necessary background information is provided in Chapter 2 in which
the TIN and its usages will be described, from which criteria for TIN struc-
tures in a DBMS follow. The hypothesis is that these criteria form an ef-
ficient approach. In Chapter 3 a comparison is made between the current
existing solutions in theory, compared against the criteria found in the pre-
vious chapter. The related work on the input and output of massive TINs is
also discussed in this chapter. Chapter 4 describes the proposed Multistar
approach based on the hypothetically efficient approach found in the previ-
ous Chapter 3. Possible solutions to problems such as tiling a TIN will be
discussed in depth, with motivation as to which approach is chosen. The
implementation of this approach in the PostgreSQL database is found in
Chapter 5 in which it is also benchmarked and compared to the other struc-
tures in practice. Conclusions with a discussion can be found in Chapter 6,
as well as open research to be done in the future. The first Appendix A is
a personal reflection on the thesis as a project in relation to the Master of
Geomatics. Documentation (Appendix B) and code (Appendices C and D)
of the implemented programs can be found in the other appendices, as well
as the exact queries used for experimenting in Appendix E.

2 T H E O R Y A N D B A C KG R O U N D
I N F O R M AT I O N

This chapter explores the definitions, uses and data structures of TINs, in or-
der to formulate criteria for massive TIN storage. The hypothesis is that with
these criteria, massive TIN storage in DBMS is feasible and more efficient
than current database solutions.

2.1 fields and tessellations

When storing and thus describing geographic information (in a DBMS), the
question arises how to describe this information. Two main classes exists,
the fieldbased model and the object based model [Worboys and Duckham,
2004]. The field model treats geographic information as space (a set of
locations) with attributes, such as elevation. The object model, on the other
hand, reverses this concept and treats the attribute as a set of discrete entities
with a specific location, such as a house.

This dichotomy becomes blurred when the density (field) of houses (ob-
ject) is described, or when elevation (field) is assigned a category as below
sea-level (object) [Worboys and Duckham, 2004]. Examples of such cases are
encountered in Chapter 4.

In order to describe a field in computers, a finite part of it is often dis-
cretized into cells, a set of basic units, called a tessellation [Burrough and
McDonnell, 1998]. Such a tessellation can be regular or irregular, based on
the fact if the partition of the plane is done by the exact same object (regular)
or not (irregular). The most well known regular tessellation is the grid, or a
raster, based on a simple square, seen in everyday life as pixels. Only two
other regular tessellations exist, those of triangles and hexagons [Worboys
and Duckham, 2004].

Irregular tessellations consist of non regular polygons, of which the most
known example is a TIN, consisting of irregular triangles.

2.2 representing terrain as a tin

A terrain is a model of a part of the surface of the earth, a two dimensional
approximation in three dimensional space, because every point on the ter-
rain is assigned a height [Berg de et al., 2000]. In reality, however, we only
have a finite set of sample points at which the height was measured. The
height of the other unsampled points on the terrain thus have to be estim-
ated through spatial interpolation.

Spatial interpolation is often done linearly based on a regular or irregular
tessellation. To find the value of an unsampled point the polygon in which
it lies is found, from which linear function the interpolated value can be
established.

There are many
other methods
for fitting
elevation
surfaces to
point data, see
Moore et al.
[1991].

9

10 theory and background information

(a) (b)

Figure 5: Two different triangulations of the same points. (a) Triangulation creating
a valley (b) Triangulation creating a ridge.

There are two major ways of representing terrains in this way, TINs and
grids Kumler [1994]. It will suffice to list a limited number of advantages
for elevation modeling based on the AHN2 data. A TIN structure keeps the
original sample of points, whereas a grid has to be interpolated. The major
advantage stated by Burrough and McDonnell [1998] is because a TIN is
irregular, the local density of the points in a TIN can adjust to degree of
variety in height of the original terrain e.g. flat surfaces use fewer points
than surfaces that vary greatly in height.

A TIN is a model of the surface using triangular facets [Peucker et al.,
1978] where the height is a function of the coordinates: H(x,y). Since a
TIN is a 2D representation, points in a TIN cannot overlap, which means
that perfectly vertical walls and overhangs are not represented. Because
of this property, storing a third dimension (height) is often called a 2.5D
representation.

2.3 construction of tins
The question is: given a set of sample points, how to triangulate these ver-
tices into an irregular tessellation of triangles? When representing a terrain,
some triangulations give better results i.e. approximate the original terrain
better. In Figure 5 two different triangulations are visible, which represent
very different terrains from the same seven sample points.

With the assumption that for a terrain, points closer together are more
similar in height than points farther away 1 (called spatial autocorrelation),
long and skinny triangles are bad representations of terrains. For a good
representation of terrains, triangles should be fat, or more formally stated, a
triangulation that has the smallest collection of small angles in its triangles.

A common approach is the DT, of which it is said that its triangles are as
equilateral as possible [Worboys and Duckham, 2004]. Two main properties
of the DT are as follows [Worboys and Duckham, 2004]:

For a given set of points P, of which no sets of three points are collinear and no
four points are co-circular:

1. The DT is unique.

2. The circumcircle of each triangle contains no points of P.

1 Tobler’s first law of geography

2.4 applications and operations of tins 11

(a) (b)

Figure 6: Circumscribed circles on the two triangulations of Figure 5. (a) Circum-
scribed circles show non DT (b) Circumscribed circles showing an DT.

The second property is seen in Figure 6, which shows the circumcircles
on top of the triangles seen in Figure 5. It thus follows that Figure 6b is a
DT.

Occasionally, even with a DT the terrain is not adequately approximated
due to a bad sample of points, or a coarse resolution. Especially steep ver-
tical drops are hard to represent in a TIN without having sample points
directly below and above the slope. Therefore a constrained DT can be used,
in which some edges are predetermined (as seen in Figure 7c, resulting in a
better representation of the predetermined edge, but possibly a worse rep-
resentation around it, since the triangulation is not a true DT anymore. By
adding extra vertices along the predetermined edge, so-called Steiner points,
a Conforming Delaunay Triangulation (CDT) can be created (as seen in Fig-
ure 7d, in which both the predetermined edge and the Delaunay property
is preserved.

2.4 applications and operations of tins

The application of DTMs and Digital Elevation Model (DEM)s is common
in many fields, mainly civil engineering, earth sciences, surveying and pho-
togrammetry and resource management [Weibel and Heller, 1993; Li et al.,
2010]. In these fields, many different application exists e.g. visualization,
watershed modeling [Lyon, 2003], view shed analyses [van Kreveld, 1997].
TINs can even be used in modeling propagation of radio waves for a terrain
[Djinevski et al., 2014] among many other applications [Moore et al., 1991].
TINs can be used for visualization as a basis for planning and management
Oude Elberink et al. [2013]. It can also be used in civil engineering, for
inspecting terrains [Li et al., 2010].

Visualization of terrains is often done by shading the polygons of the
tessellation. These can be shaded by aspect, called hillshading or by slope

12 theory and background information

(a) (b)

(c) (d)

Figure 7: DT (a) A set of points P (b) DT of P. (c) Constrained DT of P (d) Conform-
ing DT by adding extra points.

2.5 graphs 13

(or other user defined attributes such as height as in Figure 8a). Slope is
the steepness of a plane seen in Figure 8b, while the aspect is the direction
in which the slope faces, often visualized by simulating shade as seen in
Figure 8c.

Contouring is
the most
popular way of
visualizing a
DTM, an
overview for
creating
contour lines
from TINs is
given in van
Kreveld [1997].

The filtered AHN2 dataset provides a DEM and can be used for many
purposes, most notably hydrology related applications in the Netherlands.
In Figure 9 a watershed model is shown. By knowing the aspect and slope
of triangles, for each triangle the direction the water will runoff to can be
determined. All triangles from which the water reaches the same local min-
imum (shown in the Figure 9 as a dot) is called a watershed [Lyon, 2003].

Drainage networks often require DTMs with specific properties e.g. no
flat planes (triangles in TINs) [Yu et al., 1996], as well as clear definitions
for drainage itself i.e. water follows the steepest descent and the steepest
descent is unique [Agarwal et al., 1996]. For such analysis purposes, two
types of points are often classified on a surface: regular and singular points
[Peckham and Gyozo, 2007], where regular points have one direction of flow,
while singular points have an undefined direction. This, for example, occurs
in points that are lower than all the other points around it, a local minimum
(pit) or the inverse, a local maximum (peak).

2.5 graphs

2.5.1 Topology

For an
overview of
topological
frameworks,
see Zlatanova
et al. [2004]
and see van
Oosterom et al.
[2002] for their
implementa-
tion in
DBMS.

Topology is the study of topological transformations and the properties
that are preserved by topological transformations, such as the simple point
in polygon property. This is contrasted with non topological properties such
as the distance between two points, which changes during topological trans-
formations. Thus topology is about relationships between geometries and
for the scope of this thesis, about neighbours. Several frameworks describ-
ing topological relationships exist Egenhofer and Franzosa [1991], but for
TINs the important field is combinatorial topology where topology is applied
to spatial data modeling [Worboys and Duckham, 2004].

The fundamental tool to model geometric shapes and spaces with uses the
notion of simplicial complexes [Worboys and Duckham, 2004]. A 0-simplex is
a point, a 1-simplex is a line and a 2-simplex is a triangle. A simplex is thus
the simplest element in a dimension. Higher dimensionality simplexes can
be constructed from those simplexes of lower dimensionality i.e. the triangle
(2-simplex) can be build from edges (1-simplex) which can again be build
from vertices (0-simplex).

A simplicial complex is a finite set of simplexes with special properties.
Each two simplexes are either disjoint or intersects in a simplex that is also
part of the simplicial complex [Worboys and Duckham, 2004]. A triangula-
tion such as the DT is such a simplicial complex. When embedded in the
plane, it forms a planar graph [Edelsbrunner, 2001] in which the following
relationships can be defined between simplicial complexes:

• incidence Two simplexes that are a part of each other are incident to
each other e.g. a vertex a is incident to an edge ab.

• adjacency Two simplexes are adjacent when they share a incident sim-
plex e.g. when two triangles share a common edge.

14 theory and background information

(a)

(b)

(c)

Figure 8: DTM visualization of demo.las (a) by elevation (black to white height) (b)
by slope (black to white intensity) (c) by aspect (shadows cast from light
source in the south east.)

2.5 graphs 15

Figure 9: TIN used as a DEM for watershed modeling [XMS 2008].

(a) (b)

Figure 10: The star and link of a vertex (a) The black edges and gray triangles belong
to the star of the black vertex (b) The black vertices and edges belong to
the link of the gray vertex.

Functions discussed in Section 2.4 often require knowledge about the
neighbours of a given point or triangle e.g. the local minimum function
requires knowledge of the points surrounding it in the triangulation. This
can now be described as the number of adjacent vertices, or the number of
edges with which the point is incident. This number is called the degree of a
point (node) [Worboys and Duckham, 2004].

Two more important subsets of simplicial complexes are the star (seen in
Figure 10a) and the link (seen in Figure 10b) used to describe data structures
in the following section Section 2.6.1. Formally described, a star of a simplex
p are all simplexes incident to p, while the link contains all simplices in the
star not incident to p [Edelsbrunner, 2001].

One other property of two-dimensional triangulations is important, which
is derived from Euler’s formula:
Given a set P of n points in a plane, not all collinear and where k is the number of
points on the convex hull, for any triangulation of P:

• the number of triangles is 2n− 2− k

• the number of edges is 3n− 3− k

http://www.xmswiki.com/wiki/File:GSDAImage081.png

16 theory and background information

(a) (b)

(c) (d)

Figure 11: Convexity (a) Non convex polygon (b) Convex polygon. (c) Convex hull
(d) Convex hull of a DT, which is the same as (c).

Together with the fact that in a given DT the average degree of each vertex
is six [Okabe et al., 2009] it is now possible to estimate the size of TIN data
structures in Section 2.6 for TINs computed by a DT.

2.5.2 Convexity

Convexity is a concept in euclidean geometry defined by Worboys and
Duckham [2004] as: A set of points S is convex when every point in S is
visible from every other points in S. The intersection of all these sets is
called the convex hull. This concept is seen in Figure 11. A more intuitive
approach of this concept is the idea that the convex hull is a string strung
around a set of nails representing points. All nails will be either touching
the string or will be inside the loop it forms. The use of the convex hull
becomes clear when its applied to triangulations such as a TIN, where the
boundary of the triangulation of a set of points P (the outer edge) is the
same as the convex hull of P.

2.6 data structure of triangulations 17

2.6 data structure of triangulations
Data structures for TINs can be node-edge or triangle-based, the only pos-
sible simplexes of a two-dimensional triangulation. These simplexes, and
combinations of them, can result in very different properties for each data
structure. In order to compare the sizes of these data structures, which is
relevant for massive datasets, the following sizes are defined:

• Each node is stored as three (x, y and z) doubles (of 8 bytes) requiring
24 bytes.

• Each id and pointer to one is stored as an integer, requiring 4 bytes.

2.6.1 Node based

For a node based structure all the points would be stored explicitly, includ-
ing possible attributes, which actually resembles a point cloud. A separate
structure is needed to describe the triangles, by either referencing to incid-
ent edges or triangles. The combination of storing triangles and nodes is
discussed in section 2.6.3.

star based Such an approach is the star based data structure described
by Blandford et al. [2005] seen in Table 2. The construction of the star is
explained in Figure 12, in which each point stores the id of the points in the
link of p. This list is stored clockwise or counter-clockwise, forming a loop.
p thus has [a,b, c,d, e, f,g]. Every combination of two subsequent elements
in the array is an edge in the link of p. Triangles are formed by combining p

with two ordered points from the array. A triangle is thus formed with pab

but also with pbc etc. The star circles around, thus the last triangle is pga.
Blandford et al. uses difference encoding, not storing the absolute reference
in the link, but the relatively to the node itself, thereby saving some space.

Figure 12: Six stages of storing a star based TIN, starting with the point cloud, end-
ing with the star.

18 theory and background information

id x y z link

1 1.0 1.0 1.0 [1,2,3]

Table 2: Star based storage by Blandford et al.. The link is by difference encoding,
each item should be added to the node id.

1

2

4

3

T1

T2

Figure 13: TIN example for Table 3.

A somewhat larger version of this structure is described by Burrough and
McDonnell [1998], in which not only the nodes in link are stored, but also
the triangles in the link of each node (fig. 10). The degree of each node
is also stored. The -3200 in the link is indicative of the convex hull of the
triangulation, which prevents the non existing triangle 1, 4, 2. The same
occurs in the triangle list, where the 0 refers to such a non existing triangle.

Node based data structures are inherently quite small compared to struc-
tures which store either edges or triangles, since these structures have at
least thrice of twice the number of simplexes. The star based structure that
only stores the link is the smallest thus far, requiring 1 id, 3 coordinates,
and on average six references in the link, which sums to a size of 52n bytes,
where n is the number of nodes in a TIN.

2.6.2 Edge based

A comparison
of edge data
structures is

found in
Kettner [1999]

Many edge based structures exist to represent topological structures. They
require the definition of a directed graph in which each edge is assigned a dir-
ection [Worboys and Duckham, 2004]. The edge ab can now be represented
twice, as the directed edge ab and ba. This enables referencing to elements
to either the right or left of edges.

winged edge is an edge based data structure; first proposed by Baumgart
[1975] it is shown in Figure 14. It stores eight references for each edge,
the two vertices (PVT,NVT) incident to the edge, four incident edges with

id x y z degree link triange list

1 1.0 1.0 1.0 4 [2,3,4,-3200] [T1,T2,0,0]
2 1.0 0 1.0 3 [-3200,3,1] [0,T1,0]
3 0 0 1.0 4 [1,2,-3200,4] [T1,0,0,T2]
4 0 1.0 1.0 3 [-3200,1,3] [0,T2,0]

Table 3: TIN node data structure of Figure 13 based on Burrough and McDonnell
[1998]. The combinations of the node id with the linked simplexes in link
form edges, and to the right of each edge is the triangle described in the
triangle list.

2.6 data structure of triangulations 19

Figure 14: Winged edge data structure: for each edge eight references are stored
[Kettner, 1999].

e

next(e)
prev(e)

twin(e)

(a)

F

outerComponent(F)
innerComponent(F)

innerComponent(F)

(b)

Figure 15: DCEL (a) DCEL information for each edge [Wikimedia, 2015] (b) DCEL
information about incident faces. [Wikimedia,2015]

common faces, the so called wings (PCW, PCCW, NCW and NCCW) and
two faces (PFACE, NFACE).

dcel 2 is an edge based structure that stores directed edges (shown in
Figure 15a, thus twice the amount of edges. Hence it only stores only in-
formation on one side of each directed edge, namely the incident face on
its side (shown in Figure 15b, as well its opposite half edge, the vertices
incident to its edge and two references to the edges adjacent to it that are
also incident to the reference face (the NCW and NCCW in the winged edge
structure) [Berg de et al., 2000].

The quad edge data structure by Guibas and Stolfi [1985] is similar, but
stores four quad-edges for each edge. However it will not be discussed here,
because it is inherently larger than other edge based solutions. All the edge
based structures are very verbose, by storing many incident and adjacent
simplexes, increasing the required storage space, but probably becoming
faster as a result.

When calculating the required space we assume common database prac-
tices and create a node table, with n rows, containing an id and the coordin-
ates, taking 25n bytes. The winged edge is the smallest edge based solution
discussed here and requires an id of 4 bytes and 8 references of 4 bytes, with
the assumption that faces are only implicitly stored. This would result in a
size of 25n+ 3 ∗ 36n = 133n bytes.

2 This refers to the structure commonly called half edge

https://commons.wikimedia.org/wiki/File:Dcel-halfedge-connectivity.svg
https://commons.wikimedia.org/wiki/File:Dcel-components.svg

20 theory and background information

n_id x y z

1 1.0 1.0 3.0
2 1.0 0.0 3.0
3 0.0 0.0 3.0
4 0.0 1.0 3.0

t_id a b c

1 1 2 3

2 3 4 1

Table 4: Node and triangle table of the triangle array structure.

t_id a b c I II III

1 1 2 3 0 0 2

2 3 4 1 0 0 1

Table 5: The Triangle Array structure of Table 4 extended by adding references to
three adjacent triangles. 0 is no triangle (convex hull)

2.6.3 Face based

Face based structures are among the most simple, because they store the
highest dimensional simplex (the triangle) and need no further elements.
These are also the first structures not explicitly designed for graphs.

simple features uses rings to store polygons, thus a triangle abc is ac-
tually stored as abca. It also stores the number of rings and the type. Im-
plementations of simple features are further discussed in Section 3.2.1. The
size of such a structure is very large, because the coordinates of each node
are stored four times for each triangle. This results in a 96 bytes for every tri-
angle, thus 288n bytes only considering storing coordinates. With a unique
id for each triangle, the size becomes 300n bytes.

A more normalized approach would be to store the nodes in a separate
table and to let the triangles only refer to these nodes, instead of storing
them for each triangle as seen in Table 4 as described by Li et al. [2010].
This is a very common approach (from now on called the triangle array)
and is quite small.

The size of this data structure 28n bytes for the node table and 2 ∗ 16n
for the triangle table, resulting in a data structure of 60n bytes. The face
based structures described do not explicitly store topological relationships.
In order to find the star of a node in this structure all the triangles have
to be scanned, a costly operation, whereas in the the half-edge structure, by
repeatedly finding the adjacent nodes and opposite half edges, it only needs
a few lookups in the data structure.

For many operations described in Section 2.4 a topological data structure
is thus highly recommended. In this manner, the triangle array structure
previously described can be easily adapted. When for each triangle not
only its three nodes are stored, but also the triangles incident to its edges,
and thus adjacent to the triangle are stored, the structure has become verb-
ose enough to describe topological relationships (see Table 5). Operations
like the degree of a node do not require a complete scan of the table any-
more. However, this does increase the size considerably. which now be-
comes 28n+ 2 ∗ 28n = 84n bytes.

2.7 storing attributes 21

2.7 storing attributes

Pointclouds often have extra attributes such as colours and intensities. These
attributes can easily be stored in the described data structures since all the
data structures, except for the Simple Features, store nodes. The AHN2

dataset however, does not have extra attributes. Attributes for edges are
not so common in TINs. Derived products from TINs such as drainage
networks can store attributes for the edges, but are not common in TIN data
structures itself. Lastly, attributes on triangles are common for cadastral
datasets where TINs represent objects, but for a dataset like the AHN2 they
are not.

2.8 efficient access to a tin

As discussed in the scope of the research (Section 1.5), the data structure
needs to be efficient, meaning that the computational processes required to
perform an operation (called an algorithm) such as computation of the slope
of a triangle needs to be efficient. The efficiency of an algorithm is called
algorithmic complexity, which can be further subdivided into time and space
complexity [Worboys and Duckham, 2004] e.g. the time and storage space
an algorithms needs to run.

The time an algorithm takes to run is often dependent on the size of the
input. This is often denoted in the so called “big-oh" notation i.e. O(n)

where n is the size of the input data linearly related to the time it takes for
the algorithm to run. It thus expresses the relation between the input size n
and the time taken by the algorithm. Sometimes the size of the input does
not matter, while at other times, each extra item in the input increases the
time exponentially.

This has led to the notations of O(1) (constant time) where the time taken
is not related to the input size, O(logn) (logarithmic time) where the time
taken is logarithmically related to the input size and so on in order from
fast to slow ,O(1),O(logn),O(n),O(nlogn),O(nk),O(kn).

access methods Complexity is also relevant to data access. In a database
with n rows, it will take an average of (n + 1)/2 rows to find the row of
interest [Worboys and Duckham, 2004]. In such a case the rows are read
sequentially and the complexity is O(n). When the rows are ordered by
the attribute of our interest (e.g. height, from low to high) binary searches
become possible. Instead of iterating sequentially, a binary search starts at
the middle row and determines whether our value of interest is higher or
lower and repeats this, effectively cutting the number of possible rows in
half. This yields a performance of O(log(n)), which is much faster than the
sequential scan.

For more complex data structures however, indexes are used, much like
the index of a book. These auxiliary data structures are ordered lists of at-
tributes with references (called pointers) to the unordered sequence of rows,
enabling strategies like binary search with the cost of increased storage size.

Until now these examples were one dimensional, the attributes were lists,
a long sequence of values which can be ordered. For spatial objects however,
queries for locations can be both in x direction as the y direction, requiring

22 theory and background information

(a) (b)

Figure 16: a) A rtree, bottom up index. [Wikimedia,2015] (b) A quadtree, top down
index. [Wikimedia,2015]

two dimensional indexes or k-dimensional for k dimensions when adding
more dimensions such as the height.

Two types of spatial indexes can be distinguished: object and space based
indexes. The first is most usable for objects , such as multiple polygons,
while the latter is better for indexing fields [Samet, 2006]. A well known
object based index is an R-Tree (seen in Figure 16a, while the field based
index can be a Quadtree (seen in Figure 16b.

There is
myriad of

spatial indexes
and variants

for each type of
geometry
discussed

extensively in
[Samet, 2006].

An Rtree indexes the bounding boxes of objects; the smallest rectangle still
encompassing the object. Each bounding box has a pointer to the actual
object. Only when spatial queries intersect with the bounding box, the more
complex object is retrieved and also tested. A quadtree subdivides a field
in four repeatedly, until a criteria is met, such as a number of objects in the
region.

Ordering is also possible in two dimensions, which is often done by space
filling curves. In Figure 17 the Morton curve is visualized, often called the
Z-order curve, because on each level the same Z order is used for iteration.
The coordinates for each node in the curve can be interleaved, resulting
in the Morton code (which is how it is constructed). For more details see
Section 4.3.2 and Sagan [1994].

Although a TIN is also a collection of triangles and other objects, an index
for each single triangle uses a lot of storage space, storing two coordinates
(bounding box) for each three coordinates (triangle). This effect only in-
creases when indexing lower dimensional objects, such as lines and points.

2.9 validity and integrity

One of the advantages of using DBMS is data integrity managed by the
database [Elmasri and Navathe, 2006]. In order to keep the same integrity
om a geometric level in the database, it is important that there are tests to
validate geometry, based on the data structure defined for it. Operations
on invalid geometry will otherwise yield incorrect results without the user
being aware of it and data transfer of such geometry will lead to data loss
[van Oosterom et al., 2005].

https://commons.wikimedia.org/wiki/File:RTree_2D.svg
https://commons.wikimedia.org/wiki/File:Point_quadtree.svg

2.10 criteria for tin structures 23

(a)

y: 0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

000000 000001

000010 000011

000100 000101

000110 000111

001000 001001

001010 001011

001100 001101

001110 001111

010000 010001

010010 010011

010100 010101

010110 010111

011000 011001

011010 011011

011100 011101

011110 011111

100000 100001

100010 100011

100100 100101

100110 100111

101000 101001

101010 101011

101100 101101

101110 101111

110000 110001

110010 110011

110100 110101

110110 110111

111000 111001

111010 111011

111100 111101

111110

x:
0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

111111

(b)

Figure 17: a) The Z-order space filling curve. Notice how all points are traversed
by one curve. [Wikimedia,2015] (b) If the coordinates of a node in the
Z-order curve are interleaved, we get a Morton code, an unique key. Co-
ordinate 0,0 becomes 0, while coordinate 4,4 becomes 15, for a total of 16

items. [Wikimedia,2015]

If the link in the star based structure is stored clockwise instead of counter-
clockwise as expected by the algorithm, while all the parts of data structure
are present, queries returning the triangle to the right of an edge will actu-
ally give the triangle to the left of the edge.

Thus, the implemented prototype in this thesis should have a clear defin-
ition of its data structure and should provide several validation functions,
capable of both validating the required elements of the data structure and
the more complex cases such as the clockwise ordering of lists if applicable.

2.10 criteria for tin structures
Some criteria that can be used to judge TIN implementations, both theoret-
ically and practically, can now be established, providing an hypothetically
efficient approach. An efficient approach:

• Stores nodes explicitly

• Stores topological relationships explicitly

• Does not index each individual object

• Provides several atomic TIN functions e.g. degree, slope, aspect, height,
local minimum and maximum

For specific TIN operations and analysis, using topological relationships
is a must in order to quickly find neighbouring simplexes. Spatial indexes
should not be used to index every simplex (be it node, edge or triangle)
in a TIN. The same operations require access to specific nodes, giving data
structures storing nodes an advantage. Finally we can say that using the
star based approach seems to be the smallest structure in theory and the
simple features approach the least small, as seen in Table 6. The star based
structure also stores topological relationships explicitly, while the simple
features approach does not. Table 6 shows that only the star based approach

https://commons.wikimedia.org/wiki/File:Four-level_Z.svg
https://commons.wikimedia.org/wiki/File:Z-curve.svg

24 theory and background information

data structure star winged edge SF triangle array triangle array+

size 52n 136n 300n 60n 84n

nodes stored • • • •
topological • • •
relationships

Table 6: Size of different theoretical data structures for storing TINs. n is the number
of points in the TIN, size is in bytes. Triangle array+ is the triangle array
that also stores topological relationships.

and the triangle array+ satisfy these three criteria, making them the ideal
candidates for an efficient approach for storing massive TINs.

3 R E L AT E D W O R K

This chapter presents the related work on handling massive TINs, the prob-
lem they present and methods of constructing them. The existing database
solutions to store TINs are described and theoretically compared by the cri-
teria found in the previous chapter. A summary of existing approaches is
presented at the end of the chapter.

3.1 construction of massive tins
In order to to discuss the construction of massive TINs, the term massive
needs to be defined, as well as the problems that occur when handling
massive datasets and solutions to these problems.

Analysis and processing of datasets takes place in the main memory of
the computer, which is therefore the deciding factor in the maximum size
of the dataset that can be processed. With datasets that exceed the actual
amount of RAM1, the computer starts swapping data from disk to memory
and back. This process takes up large amounts of CPU time, effectively
bringing the actual process to a standstill. To prevent this so called trashing
one can increase the RAM size. This, however, does not solve the problem.
There are two main methods to address this issue: either decreasing the
dataset size or using external memory algorithms.

The issue here
is more
complex than
the
simplification
presented here.
For a more
detailed
explanation
(virtual
memory) see
Vitter [2001].

These are problems for both the construction of massive TINs from massive
point dataset and in loading the data into the database itself, as well as re-
questing the complete data from the database. Thus the problem occurs on
all levels of the usage of Massive TINs in DBMS and should be solved on all
levels.

3.1.1 Reducing size

splitting datasets. The simplest way of reducing the size of the dataset
is by cutting it into smaller pieces, so as to create subdivisions. This is
what happens when loading massive point data, the AHN2 is available as
a tiled dataset for the whole of the Netherlands. Even these tiles are too
big for practical use (see Table 21 in Chapter 5) and should be tiled into
smaller pieces. However this assumes a dataset that can be cut in two. When
working with a TIN, the dataset is connected i.e. there will be triangles at
the cut (see Figure 18), which either results in overlapping triangles, gaps
or requires complex construction with specific rules to address this issue.

Some loaders try to split the data automatically, such as the PDAL2 loader
which uses an adaptive kd-tree to divide the data in order for each subdivi-
sion or bucket to have the same number of points. However, this requires
the data to be sorted, which results again in trashing. Loaders that use field

1 Random Access Memory
2 Point Data Abstraction Library see http://www.pdal.io/stages/writers.pgpointcloud.html

25

http://www.pdal.io/stages/writers.pgpointcloud.html

26 related work

(a) (b)

Figure 18: Buckets splitting a point cloud and a TIN (a) A point cloud can be sub-
divided using buckets. (b) Splitting a TIN in the same way presents
problems, what happens to the triangles on the intersection of two buck-
ets?

based indexes such as a quadtree, can establish in which region a point falls
without having to wait for all the points.

The split dataset problem (Figure 18) can be overcome by merging one or
multiple triangulations e.g. those created by splitting a massive pointcloud
using a quadtree. Such a method is presented by Chen et al. [2006], using
a parallel divide and conquer algorithm, which stitches split regions back
together.

thinning datasets. Another method is to thin the dataset, by only using
a selection of the available data or points in the case of a TIN.An extensive

overview of
surface

simplification
algorithms is

found in
Heckbert and

Garland [1997].

Thinning
is often implemented by a random selection, which can discard significant
points of a TIN. With the assumption that all points are significant, this is not
a viable solution at all. Non random methods for thinning datasets require
an analysis on the complete dataset in order to reconstruction the terrain,
which is again the problem it is trying to solve. Thinning a dataset is closely
related to the simplification algorithms, which reduces the dataset, but keeps
relevant points. Significant points can be found by a simple moving window
and an arbitrary criteria [Heckbert and Garland, 1997] never needing to load
a complete dataset. From this selection a DT can then be created. Yet this
assumes that dataset itself is ordered, otherwise the moving window will
never find all the points. Ordering is again an operation that requires to
load a complete dataset.

3.1.2 External memory algorithms

As mentioned before, reducing size or increasing the RAM available does
not solve the inherent problem -the uncontrolled swapping of data between
memory and disk. Algorithms that specifically control the flow of data
(swapping) from disk (external memory) to the RAM (internal memory) are
called external memory algorithms. These algorithms exploit locality, the
fact that some data is used repeatedly by a program for a certain time and
then moves on to other data [Vitter, 2001]. These programs decide when
and where to swap data by exploiting knowledge about locality.

3.2 existing tin structures in dbms 27

These algorithms exist for creating massive TINs or DEMs, most notably
by Agarwal et al. [2006], which divides the construction of the DEM in three
distinct phases: a segmentation phase, a neighbour finding phase and the
final interpolation phase. The first phase creates a quadtree for all the points,
writing data to disk when memory becomes full. The second phase finds
all the neighbours for a given cell in the quadtree, which when combined
can be processed one at a time by the interpolation phase. The key here
is the incremental method, the quadtree can be created incrementally and
the other phases run only on small parts of the data at a time. Similar
external memory algorithms can be applied for the creation of massive TINs
[Agarwal et al., 2005] or other analyses and operations on massive datasets
[Vitter, 2001].

streaming of data. Streaming algorithms are akin to external memory
algorithms but do no swap at all in the meantime as they only use the disk
(external memory) for input and output [Isenburg et al., 2006a]. Instead of
keeping all the data in the working memory or swapping parts to external
memory, only a part of the dataset is read from disk and processed at a time
and when that part is no longer needed it is removed from the memory and
written to disk. This requires knowledge that this part will never be needed
again, which is implemented in streaming of geometries by Isenburg et al.
[2006a] as finalization tags on topological objects. If an object is tagged, it
will not be referenced anymore by the remaining program and it can be
written to disk.

This knowledge is possible because of a scan of the complete dataset, col-
lecting statistics about small pieces of the dataset, not unlike the quadtree
phase of Agarwal et al. [2006] and combining this with the concept of
locality. Geometric datasets express locality which can be expressed as
spatial coherence i.e. vertices close together in the stream are also close in
space. Streaming algorithms aims to document this property [Isenburg et al.,
2006b] because, for local operations such as interpolation and triangulation,
the higher the spatial coherence of a dataset, the faster is a point finalized,
thus keeping the memory footprint small. These algorithms3 can also be
used to calculate grids [Isenburg et al., 2006a].

Isenburg et al. [2006b] also demonstrate that the spatial coherence of
LIDAR datasets (such as the AHN) is high and are thus fit for streaming
algorithms.

3.2 existing tin structures in dbms

Some of the theoretical structures of a TIN seen in 2.6 have been implemen-
ted in spatial databases. Only two TIN datatypes are known to have been
implemented by common spatial database providers. One is the SDO_TIN
type by Oracle, the other the OGC Simple Features specification in use by
several databases.

Another way to store TINs is either by using more general geometry solu-
tions, such as the storage of multiple Polygons, or by using topology solu-
tions available in some spatial databases.

3 blast extension at http://www.cs.unc.edu/~isenburg/lastools/

http://www.cs.unc.edu/~isenburg/lastools/

28 related work

Figure 19: OGC PolyhedralSurface

endianness type #triangles wkb trianglez * num

type bit integer integer Table 8

value 1 1016 2 Table 8

Table 7: WKB TINZ structure.

3.2.1 OGC TIN

A face based approach is Simple Feature (Access) (SF) a standard (by OGC
and ISO4) [OGC, 2006] to store geographical data. It has become well
known since it was integrated in many of the spatial databases. Part 2

of the standard describes SQL implementations of these Simple Features.
Several drafts and iterations of these standards exist and not all databases
have implemented the latest version.

Since 2009 the draft specification (v1.2.1), based partly on the ISO SQL/MM
draft, contains a specific Triangle and TIN type, which are subclasses of the
Polygon and PolyhedralSurface respectively as seen in Figure 19.

A Triangle is defined as surface with one exterior ring with three different
points, with no points being colinear and no interior rings (holes). It can
have multiple dimensions: from 2 up to 4. A TIN is a patch of Triangles
with the same orientation. A TIN can be defined as a collection of triangles
that are connected by their edges. Types with multiple dimensions have
different names and here TINZ and TriangleZ are used to denote that each
coordinate also has an height attribute.

Although SF is implemented by most database providers e.g. PostgreSQL,
IBM, Ingres, MonetDB, the latest version with support for 3D and TINs is
only implemented by PostgreSQL PostGIS (v2) and Ingres (v10.2).

When using SF the geometry should be stored with a unique id, its bound-
ing box and the geometry represented in Well Known Binary (WKB) format.
PostGIS uses its own storage format 5 as seen in Figure 20 but it is very
similar to the WKB format, which will be described for a TIN.

Table 7 describes the WKB format for the OGC SF TIN type, containing
multiple TriangleZ data structures, as shown in Table 8. The Well Known
Text (WKT) for the represented TIN is:
TINZ (((0 0 0, 0 1 1, 1 0 1, 0 0 0)), ((0 1 1, 1 1 2, 1 0 1, 0 1 1))).

Although not stated specifically, the TIN as a patch of triangles is a bucket
in its own right, as well as all Multi geometries in the OGC SF. However,

4 ISO 19125

5 https://trac.osgeo.org/postgis/browser/trunk/postgis/README

https://trac.osgeo.org/postgis/browser/trunk/postgis/README

3.2 existing tin structures in dbms 29

Figure 20: PostGIS TIN structure [PostGIS 2015]

endianness type #rings #points coordinates

type bit integer integer integer 4 * num. points * double
value 1 1017 1 4 0 0 0 0 1 1 1 0 1 0 0 0 etc.

Table 8: WKB TriangleZ structure.

http://postgis.net/docs/doxygen/2.1/d2/d36/structLWTIN__coll__graph.png

30 related work

Figure 21: Oracle storage model of a TIN [Oracle, 2015]

these buckets do not come from subdividing a field as a regular tesselation.
Instead, they are created bottom up by the geometries themselves. They are
indexed by a GiST using an Rtree.

The OGC specifies many functions to be used, but none specific for TINs.
TIN operations, such as slope and aspect, only exist in the raster implement-
ation of PostGIS. PostGIS does implement the specific ST_DelaunayTriangles
to generate a TIN from point geometry. Topological relationships are not
stored, but PostGIS does have a seperate extension in PostgreSQL called
postgis_topology. Nonetheless intersections on TINZs and other 3d geo-
metries require a different backend than the normal used 2d GEOS library,
requiring the CGAL backend which can be exposed via SFCGAL67. Al-
though a TINZ can be forced in 2D form by ST_FORCE2D the type is not
recognized and usable with the standard 2D functions.

3.2.2 Oracle SDO_TIN

Oracle uses a node and face based approach. It stores the nodes and a
triangle table. The triangles are three references pointing back to the node
table. This structure is the same as explained in Chapter 2. Oracle stores
the nodes as the SDO_PC type, while the triangles are simply stored as
several ids to the nodes [Oracle, 2015]. Hence, it is very similar to existing
pointcloud solutions; only the triangle column is added.

Oracle Spatial uses three objects to store a TIN: a SDO_TIN object, which
stores the metadata about the TIN, such as its id; the total extent of the data-
set; and the table storing the actual data itself. Such a table is called a TIN
block table, which represents blocks of the TIN. The TIN is thus subdivided
into these blocks, which are now referred to as buckets. This enables a max-
imum 418 points to be stored, which is several orders of magnitude larger
than what fits in main memory [Ravada et al., 2009]. Each row in this table
repesents a bucket. An overview can be seen in Figure 21.

6 Which defaults to first checking the validity of the geometry before other operations, making
comparisons difficult

7 Obtained by recompiling PostGIS or using latest 2.2 experimental binaries

3.2 existing tin structures in dbms 31

d1 d2 d3 block_id point_id

type float float float integer integer
value 45112.0 1245.0 1.05 1 1

Table 9: Point in array of points in the oracle points blob.

v1 b_id v1 p_id v2 b_id v2 p_id v3 b_id v3 p_id

type integer integer integer integer integer integer
value 1 1 1 2 2 1

Table 10: Triangle array used in the Oracle data structure. Array is a blob, b_id
stands for bucket id, p_id for point id.

A row in the block table has multiple fields which store the metadata
about the bucket. The number of points and triangles are stored, the spatial
extent, a unique id for identifying the block, the total number of dimensions,
the resolution and two objects: A points Binary Large Object (blob) and a
triangle blob.

The points blob is an array of points, storing the coordinates as doubles,
together with the block_id and a point_id for every point as seen in Table 9.
Although three dimensions (d1, d2 and d3) are displayed, the number itself
can be defined in each bucket. It is possible for the points to be sorted,
which can be deduced from available fields in the database object, such as
num_unsorted_points, pt_sort_dim and tr_sort_dim, but this feature is
not documented.

The triangle blob is an array of triangles, containing three vertices for each
triangle. Each vertex is a pair of the block_id and point_id, thus referring
back a point specified by the point_id in the points array of the block spe-
cified by the bucket_id. This structure is seen in Table 10. Take note on how
each vertex of the triangle refers to a bucket and point in that bucket. The
problem of splitting a TIN by buckets as seen in Chapter 1 is solved here by
explicitly storing the reference to each bucket.

The SDO_TIN type is an expansion of the SDO_PC type or point cloud type,
which has almost the exact same structure, but is missing the triangles blob.
Only two operations on the TIN are available: the SDO_TIN_PKG.TO_GEOMETRY
operation and the SDO_TIN_PKG.CLIP_TIN operation. The last operation clips
a TIN and returns a clipped SDO_TIN object, based on either clipping geo-
metry and / or resolution. Resolution filtering is based on a attribute stored
on creation, no multiresolution TIN is stored. An optional filter is available
to only clip certain buckets. The other operation casts the TIN to geometry
normally used in Oracle. This geometry contains all the points and triangles
stored in the TIN given as input. Only now can other spatial operations be
applied on the TIN. It is not possible to do an intersection or other spatial
operation directly on the TIN, it has to be decoded first to normal geometry.

The Oracle SDO_TIN type does not store topological relationships for
triangles or points, although each bucket forms a complete and connected
patch. Updating the data structure locally is not possible.

32 related work

edge_id start_node end_node

type integer integer integer
value 1 1 2

abs_next_left_edge next_right_edge abs_next_right_edge

integer integer integer
2 3 3

next_left_edge right_face left_face geom

integer integer integer geometry
2 1 2 LINESTRING

Table 11: PostGIS Topology edge table.

face_id geom

type integer geometry
value 1 POLYGON

Table 12: PostGIS Topology face table.

3.2.3 Postgis Topology

Since version 2.0 PostGIS has officially8 implemented topology types that
contain topological objects such as nodes, edges and faces. Although this is
not a specific TIN type, it does store topology based geometry. A new object
TopoGeometry is introduced, which stores references to a specific defined
topology with an Spatial Reference IDentifier (srid), the layer id, the id in
the layer and the type of geometry.

This information is stored in a topology schema, in which layer is stored,
referring to the topology table, which refers to a unique schema for each
layer. This is the metadata structure for PostGIS topology. The actual topo-
logy is distributed over four tables: An edge_data (Table 11), face(Table 12),
node (Table 13) and relation table.

PostGIS uses the winged edge (see Section 2.6.2) structure to store topo-
logy. The fourth relation table relates the topology to defined layers, but is
not of importance for this structure.

Although a main advantage of topology should be a decrease in storage
size (as intended for PostGIS Santilli [2011]), because no overlapping edges
and points are stored multiple times, this is oddly enough not visible in the
PostGIS data structure. Each table contains a normal geometry type, mean-
ing that the edge and faces are not (only) stored as references to nodes. Each

8 Topology existed in prior version but was not documented.

node_id containing_face geom

type integer integer geometry
value 1 1 POINT

Table 13: PostGIS Topology node table.

3.2 existing tin structures in dbms 33

face contains a Polygon geometry and each edge a LineString geometry, stor-
ing many duplicate node coordinates. These geometries are indexed as well,
creating more overhead. Each topological object is indexed by an Rtree and
most ids are indexed by a binary tree, which leads to very large indexes.

Most functions are prescribed by the ISO SQL/MM standard, but Post-
GIS has many extra functions for accessing and creating topology objects.
However, to spatially query the topology, it has to be converted back to geo-
metry. This topological structure is often used for networks such as roads
and rivers. Indeed the TIGER dataset9 has a special loader in PostGIS. The
structure is not primarily used for storing geometry, more often used as a
in between step for simplifying geometry by simplifying the edges.

Other databases such as Oracle also support topology, either by imple-
menting it manually in version 9i [Quak et al., 2003], while from version
10g a topology model not unlike the winged edge structure has been imple-
mented Penninga [2004].

3.2.4 Academic implementations

implicit tin As discussed in Chapter 2 for a given finite point set with
some constraints the DT is unique. Thus only the point set can be used to
model a TIN. This is the approach taken by Jones et al. [1994], which stores
only a point set, together with optional constraining edges. A quadtree on
both the points and the edges is used to efficiently find the right points and
edges needed for an on the fly CDT.

This approach is very small and also fast on small queries. However, the
larger the query window is, the more points that need to be triangulated,
the longer such a query will take. The assumption of the model is that a
complete detailed TIN is a (too) big load on memory and therefore only
small portions should be triangulated at a time. However, Jones et al. [1994]
states: “How long it is worth retaining [TIN] ... depends on the time taken
to create it." and examples for big datasets that are too large to store are de-
scribed as a few million Kidner et al. [2000]. This big dataset as a maximum
(be it in 2000) is a not even a minimum for parts of the massive datasets
currently used. Indeed, the time it takes to triangulate a massive dataset is
one of the main reasons to store a TIN in a DBMS.

The Implict TIN can also be used in multiscale terrains. These multiscale
of different level of detail terrains are often used for visualization, but can
speed up operations where a detailed triangulation is not needed, or when it
is used as a first pass over a dataset [Kidner et al., 2000]. By using a quadtree
with points stored on each level, a multiscale terrain can be generated by
incrementally generating a new DT for every level.

pgtin The pgTIN extension for postgreSQL is a prototype by Ledoux
[2013], for storing a TIN with a star based structure in postgreSQL, based
on the approach by Blandford et al. [2005] and seen in 2.6. A 3D version
have been implemented as well by Ledoux and Meijers [2013]. It only uses
one nodes table, which means the database storage can also be very similar
to existing point cloud solutions and will be compact. Nevertheless, since
each point will be indexed, although only with a binary tree, the index will
be large.

The structure in the database contains a basic id, the point coordinates and
an array of references to vertices in the star of the node as seen in Table 14. A

9 https://www.census.gov/geo/maps-data/data/tiger.html

https://www.census.gov/geo/maps-data/data/tiger.html

34 related work

id x y z star[] constraints[]

1 23.0 63.2 1.2 [0,2,3] [False,False,True]

Table 14: pgTIN row structure in PostgreSQL.

separate table is used with references to points, which are regularly placed
on the dataset, creating virtual buckets, each which stores one pointer to a
node.

Speed is gained by the ability to walk through a dataset (see Figure 22

and Section 3.4). The jump and walk algorithm by Mücke et al. [1999] has
been implemented, which uses the virtual buckets. Triangles have to be
calculated on the fly, based on the topological relationships explicitly stored.
Compared to the OGC Polygon, the structure is much smaller and as fast in
basic queries such as point location (Section 3.4.1). However, comparisons to
the OGC TIN type or the MultiPolygon type have not been done. I perform
these comparisons in Section 5.5 and Section 5.7.

The star structure lacks attributes for triangles, but these can be implemen-
ted in an extra table. It can store information about edges e.g. constraints in
a CDT by creating another link array as seen in Table 14.

3.3 subdivision using buckets
In order to keep massive datasets usable, points are partitioned into non-
overlapping regions, also called tiling as seen in the beginning of this chapter.
The same can be done for databases, which stores multiple objects not in
rows but in a region, enabling a smaller number of rows. For massive data-
set the blocks storage model is more efficient than storing them in a flat

table van Oosterom et al. [2015]. This also solves the memory problems that
massive datasets represent by implementing tiling at the database level.

Both Oracle and the point cloud extension in postgreSQL use such a
method to handle point cloud datasets. If the dataset is split into multiple
patches or buckets10 problems occur with the connectedness of the TIN seen
in Figure 18b. Point clouds can be easily subdivided this way, see Figure 18a,
but in a TIN all these nodes are connected. When a triangle consists of nodes
between different patches, the triangle is broken, unless pointers to the cor-
rect patch are also stored. This is actually what Oracle does in the SDO_TIN
type, which not only refers to nodes in the nodes table, but also the correct
patch in which the nodes are stored. For other implementations of the TIN
structure this is a problem that has yet to be solved.

3.3.1 Pairing functions

When using references to other buckets we can store these explicitly as sep-
arate fields. To do this, however, means that all points are pairs, while only
the triangles on the borders of the buckets use those pairs. For a given n

points in a gridlike pattern, roughly 4 ∗
√
n− 4 are on the convex hull and

need specific bucket ids. When using relative ids there is an even clearer
waste of space as seen in Table 15. Enter pairing functions which encode
two natural numbers into one unique natural number, reversibly mapping

10 Terms are interchangeably used by Oracle and other database extensions.

3.4 efficient access to tins 35

patch point patch point patch point

absolute 154 1 154 2 155 1

relative 0 1 0 2 1 1

paired 2323 2324 3224

Table 15: Triangle nodes in bucket 154 of the multistar. Storing patch ids is overhead,
with pairing this is prevented.

patch point paired unpaired

number 1 2 6 (1,2)
binary 0001 0010 0110 0001,0010

Table 16: Pairing using binary shifts of 4bit numbers.

Z6=0 ×Z6=0ontoZ6=0. This can be used to reversibly fold a vector into one
number i.e. storing the bucketid and pointid as one unique number, which
can be unpaired later into the bucketid and pointid.

Pairing functions are closely related to space filling curves, which con-
tinuously map an interval [0, 1] in the space [0, 1]2 Sagan [1994]. The morton
key shown in Figure 17 is such a pairing function closely connected to the
space filling curve, which interleaves the bits of the two natural numbers.
Variants of interleaving the binary representation have been described by
Pigeon [2001]. Other pairing functions exist, yet these are much more costly
in pairing and unpairing and often require multiple exponential operations.

Based on the bit interleaving, a more simple one would be adding two
binary representations together by bit shifting the first value by the length
of the second e.g. placing them next to each other, doubling the storage as
seen in Table 16. This is by no means a space filling curve anymore, but it
is a very simple pairing function that is very fast to pair and to unpair.

A variation on the interleaved Morton key is the spatial location code by
van Oosterom and Vijlbrief [1996], which not only stores the location of the
id, but also stores the size of its bounding box, creating not only a spatial
index for points, but for objects as well.

3.4 efficient access to tins
Many indexes exist for efficient access to the elements of a TIN. However,
with massive point clouds, most tree access structures need disk access to
follow pointers stored in for example a quadtree. A solution is to use bucket
methods [Samet, 2006], which either aggregates data in the underlying space
(bottom up) or decompositions the underlying space. This is thus another
argument to use buckets.

3.4.1 Using topology

A interactive
demo of point
location
strategies is
available here
by de Castro, C
and Devillers
O. [2009]

Point location is the problem in which region of a subdivision a given
point is contained [van Kreveld, 1997] e.g. the ability to find a point in a
TIN. If the TIN is created by a DT and the spatial extent is thus convex, a
point can be found by walking through a TIN as seen in Figure 22 based on
orientation tests with stored topological relationships. With random starting

http://www-sop.inria.fr/geometrica/demo/point_location_strategies/

36 related work

Figure 22: Walking in a TIN by orientation tests [by Ledoux H].

Figure 23: The PM2T quadtree. Notice the smallest subdivision. [De Floriani et al.,
2008].

points in a Delaunay Triangulation a considerable speed can be achieved by
jumping and walking [Mücke et al., 1999]. Many other methods exist for find-
ing starting points and walking by a line Devroye et al. [2004]. A summary
is given by Soukal et al. [2012].

3.4.2 Auxiliary spatial indexes

When not using topological relationships, an spatial index is needed on the
points, edges or triangles of the TIN. An index especially for triangle meshes
is the PM2T quadtree by De Floriani et al. [2008] as seen in Figure 23. It
enables effective point location - for queries - instead of randomly choosing
a starting point and then walking. The index does not use buckets and may
grow very large on a a massive dataset. The maximum number of vertices
used was 500.000, still far removed from massive datasets.

Another method similar to using Morton keys is the GeoHash tree by
Sabo et al. [2014], which can be used in the point cloud extension in Postgr-
eSQL.

There can be hybrid indexes, using the combination of two indexes: one
for buckets and the second for the points in those buckets e.g. a combination
of a quadtree with a local Rtree in 3d demonstrated by Yang and Huang
[2014]. However, in the previous chapter it has been established that using
spatial indexes on individual elements of a massive TIN will result in very
large indexes, unfit for storing massive TINs.

3.5 summary of related work 37

(a) (b)

.

Figure 24: Brute force versus walking (a) A TIN is iterated over until the right tri-
angle is found, resulting on average on iterating over half the dataset
(O(n)) (b) Walking from a random point to the right triangle, requiring
considerably less iterating since the complexity is O(

√
n) [Mücke et al.,

1999]

Thus the alternative is using brute force, iterating through a complete
bucket or subset until the specified criteria is met as seen in Figure 24a.
Walking in a TIN is much more time efficient as seen in Figure 24b.

3.4.3 Compression

In order to make the data structures for TINs more compact compression
can be used. Compression can be applied in the data structure itself, in the
represented entities in the data structure and in the binary storage on disk.
Compression can be either lossy or lossless i.e. with loss or without loss
of the original data on decompressing. The pairing functions described in
Section 4.3.2 can be seen as lossless compression of two numbers. Here only
the data structure and entities are considered, since these can be influenced
on loading the data, while the storage itself is handled by the database.

Taubin and Rossignac [1998] provides an overview of compression of tri-
angular meshes using topology. The implicit TIN is another way of com-
pression by [Kim et al., 1999].

Examples in the previous section Section 3.4.2 such as the GeoHashTree
are in many ways also compression techniques. The Morton key can be
used as a compression technique by pairing the x and y coordinate, storing
one value for two (or even three) coordinates.

3.5 summary of related work

Generating massive TINs present a problem which is most elegantly solved
by using streaming algorithms. Making use of a quadtree, the problem is
solved by regular subdivision. This can also be used in database, as seen
by Oracle. Access to a massive dataset is better achieved by using topology,
to walk a triangulation, than to brute force the geometry. While an index

38 related work

Implementation Nodes Topological relationships Buckets Atomic functions

OGC SF TINZ •
PostGIS Topology • •
Oracle SDO_TIN • •
pgTIN • •

Table 17: Comparison of current implementations. A bullet indicates the imple-
mentation satisfies the criteria.

on each simplex in a TIN is not feasible, an index on each bucket might be,
combining a normal spatial index on the bucket level with walking using
explicitly stored topological relationships inside the bucket. The following
additional criteria for storing massive TINs are thus defined:

• Buckets must be used

• Spatial index only on the bucket level

• Topology is used to solve point location

An overview of the current implementations and the criteria, together
with the criteria found in Chapter 2 is presented in Table 17. Of only two
spatial TIN types existing in commercial DBMS the Oracle implementation
is mature, but it lacks topological relationships. The OGC Simple Features
also lacks topology and is less suited to store massive TINs because it does
not use a node table, resulting in a large storage size. These existing solu-
tions also do not have atomic functions. PostGIS topology does store topo-
logy explicitly but requires several large tables and indexes and does not
use buckets, nor does it have atomic functions. PostGIS topology is large in
size and has to be converted to geometry before it can be used for spatial
queries, making it unfit for storing TINs. The pgTIN prototype also does
not use buckets, but is very small and requires only two tables.

4 S TO R I N G T I N S W I T H T H E
M U LT I S TA R A P P R OA C H

Based on the criteria and the examples in the previous chapter, I can define
what I refer to as a multistar structure. This structure takes from Blandford
et al. [2005] and the database implementation of it by Ledoux [2013]. I use a

streaming
approach for
construction
and a tiling
approach
within the
database to
solve the
problem
massive TINs
represent.

For
massive datasets, however, we need a secondary structure to find our buck-
ets as used by Oracle [2015] and the point cloud extension of PostgreSQL as
shown in 3.

4.1 motivation
Based on the criteria in Chapter 2 and the research in Chapter 3 an efficient
TIN structure has the following properties:

• Stores nodes explicitly

• Uses atomic functions

• Uses buckets for subdivision

– to solve the massive data problem

– with spatial index on the extent of the bucket

• Stores topological relationships

– for specific TIN functions/queries

– for traversing inside the bucket

Two possibilities stand out: the triangle array as used by Oracle in section
Section 3.2.2 and the star based structure used by pgTIN, see section Sec-
tion 3.2.4. The first structure lacks topological relationships and the second
lacks buckets. I have chosen the star structure as the best option due to its
smallest size and the fact that I can work with a prototype, while the Oracle
technology is closed source.

The star structure has certain drawbacks that should be fixed, such as the
large number of rows, which I hope to fix with buckets. Some drawbacks
that are inherent to the structure are the inefficient storage of attributes for
triangles, which can be mitigated by storing attributes on the bucket level.

4.2 outline of the multistar structure
The required elements in the star structure are a point identifier or id, co-
ordinates describing the point itself and an array of neighbours, referring
to other other neighbouring points as described in the star structure Sec-
tion 2.6.1 and seen in the table Table 18.

By using buckets, multiple rows and thus points are stored in one field,
which will therefore be a binary value that has to be packed and unpacked

39

40 storing tins with the multistar approach

id x y z link[]

1 123.0 456.0 78.0 [2,3,4,5]

Table 18: Star based structure.

according to certain rules. Using buckets also requires a method to find the
right bucket, thus the bounding box of the bucket is also stored.

If we pack all the coordinates into a structure, using the order as an id,
unpacking them is straightforward. Using the id and the size of the x,y
and z coordinates together, the right offset is found and the next values
will be the requested coordinates. This logic is based on the fact that the
coordinates are always represented as x, y and z with a fixed size.Coordinates

are often stored
as double or

float taking 8 or
4 bytes. One

point thus
takes 3 * 8 = 24

bytes in storing
x,y,z

coordinates.

However, the array of neighbors has no fixed size, although it is on aver-
age six [Okabe et al., 2009]. Instead it can be as high as 50 or as low as 2 (see
section Section 5.8). If we pack them all together they cannot be retrieved
as point coordinates can. Therefore, a structure is needed that somehow
defines the end or starting point of the array. This can be done in several
ways:

• Stating the length of the array at the beginning of every array.

• A special marker at the beginning or end of an array.

• An auxiliary array with offsets.

I have chosen for the external array, because it offers two distinct advant-
ages:

1. The external array can be accessed directly in O(1), while the internal
methods require looping over every item in O(n).

2. Using an external array offers some extra fields and attributes, such as
storing the total number of points.

The points and the stars are stored separately to enable fast access to point
coordinates, without the request being slowed down by skipping over stars.

This completes our structure. We have a bucket as a row in a database
with an id, a bounding box (using the PostGIS box type), an array describing
the offset of the stars, a packed points binary value and a packed stars binary
value.

4.2.1 Included metadata

This structure alone is not enough to actually retrieve all the points and
stars. For example, while the offset of the last star is known, its length is
not. The total number of pointers is the star is unknown, as well as the
number or id of points lying either on the convex hull or referring to other
buckets. Therefore, some metadata is included in the data structure.

An example of this data structure, including a small TIN for demonstra-
tion is presented in Figure 25. The example is split into two buckets in order
to demonstrate the method to reference other buckets. The bounding box is
omitted from this example.

Because 0 is a reserved number for identifying the convex hull in a star
(see also pgtin in Section 3.2.4) and negative numbers are reserved if we use
difference encoding (see Section 4.3.2), the point ids start with 1. Since the

4.3 buckets 41

array positions (starting with zero) should conform with the point ids, the
first array item is free and can be the number of points stored in the bucket.

Using another small hack, some numbers in the offset array are negative.
This is done to mark either this bucket or certain ids. When parsing these
numbers, the absolute value should be used.

• If the first item in the offset array, thus the total number of points, is
negative, the bucket has points that lie on the convex hull.

• If other offsets are negative, the referenced star contains either a refer-
ence to another bucket or is zero.

In this way the points on the convex hull or those connected to other
patches are quickly found for use in certain queries (see Section 4.4). Buckets
containing such points can also quickly be found in the same manner.

4.3 buckets
For the creation of a massive TIN from the AHN2 dataset, I use lastools as
discussed in Section 3.1.2, which uses a quadtree. Hence, the buckets of
the multistar structure use quadtree cells as seen in Figure 26. Since the
implementation in Section 5.2 it has become theoretically possible to create
other buckets forms and sizes, but here I will discuss the multistar using
quadtree cells.

The level of the quadtree used is user input when using lastools and one
can expect an average number of points for each bucket based on the total
number of points ie:
average number of points per buckets = total number of points /4(level).
The number is an average because the filtered AHN2 is a irregular dataset
and the quadtree divides the bounding box into even regions.

As seen in Figure 26 the buckets can have varying size. The user input
level is taken as the deepest level, but when a bucket contains less than the
average expected number of points divided by four, the bucket is merged
with its three neighbours. If the merged buckets together still contain less
points than the previously defined threshold, they will be merged again
with its three neighbours, creating a bucket 16 times as large as the original
bucket on the lowest level.

The buckets are numbered with a Morton key, but with the addition of
all possible ids from the lower levels e.g. the upper right corner on level 2 is
normally assigned the Morton code of 15, but 4 is added four the number
of ids used on level 1. Since the buckets are bounding boxes, they can be
easily indexed by the available spatial index, such as an Rtree.

4.3.1 Referencing other buckets

In the original implementation by Ledoux [2013], the only special attribute
in a star is the handling of the convex hull of the TIN. With buckets however,
points can have neighbors that lie in the other bucket. This depends on the
dataset used. I distinguish between three options of using buckets.

islands When using buckets, they can be islands, not referring at all to
other buckets (Figure 27a). Each bucket becomes an object on its own. Stor-
ing buckets without references is the fastest, but also the most destructive

42 storing tins with the multistar approach

bucket 1

bucket 2

id 1 bucket 1
star [0,(2,1),(2,2),3,2]

id 2 bucket 1
star [0,1,3]

id 3 bucket 1
star [0,2,1,(2,2),4]

id 4 bucket 1
star [0,3,(2,2),(2,4)]

id 1 bucket 2
star [0,3,2,(1,1)]

id 2 bucket 2
star [3,4,(1,4),(1,3),(1,1),1]

id 3 bucket 2
star [0,4,3,1]

id 4 bucket 2
star [0,(1,4),2,3]

id
int
1
2

offsets
int[]
[-4,-5,-8,-13,-17]
[-4,-4,10,-14,-18]

stars
bytea
[0,(2,1),(2,2),3,2,0,1,3,0,2,1(2,2),4,0,3,(2,2),(2,4)]
[0,3,2,(1,1),3,4,(1,4),(1,3),(1,1),1,0,4,3,1,0,(1,4),2,3]

bytea[]
xyzxyzxyzxyz
xyzxyzxyzxyz
1 2 3 4

#

1 2 3 4

points

Figure 25: Multistar structure as a database row.

4.3 buckets 43

Figure 26: Quadtree used for buckets. Colored by number of points from yellow to
blue. Dataset demo.las

method, in the sense that the information which connected all the buckets
together in one big field is lost. A dataset such as the AHN2 thus does lose
valuable information, where buckets need to be stitched together in order to
do specific TIN operations on them such as watershed modelling. On data
structures that cannot or do not store topological relationships, such as the
SF, this is the only option.

If buckets are islands, the original question of what happens with a TIN
when split appears again. Discarding all the triangles on the intersection
with the boundary of a bucket will create gaps, so specific rules are neces-
sary. I have chosen the following simple rule:

• When a triangle intersects the boundary of a bucket, it is assigned to
the bucket with the lowest id.

Because the ids of the bucket are assigned Morton keys, most buckets
will “eat" to the right and upper edge as seen in Figure 27a. This can also be
seen in the implementation of the MultiPolygonZ in Chapter 5, Figure 32b.
It also shifts the bounding box of each bucket as seen in Figure 28 because
of now overlapping points, which makes queries on the edges of buckets
slower.

loose buckets If buckets do refer to each other, the nodes need to store
some information when referring to another bucket, such as a flag. This
would create a sort of dangling reference, which only indicates a node has to
be searched in a different bucket, which has to be searched for (Figure 27b).
Only marking a reference to another bucket needs a spatial search for the
bucket, which would be slow.

• Mark the id without referring to an actual patch. For example, by
making the id negative as seen in Table 19.

44 storing tins with the multistar approach

node id link[]

1 [2,3,4,5,-1]

Table 19: Referencing other buckets by a marker: storing only the node id and a flag
(negative sign) if the node is in another bucket than the current bucket.

node id link[]

1 [(a,2),(a,3),(a,4),(a,5),(b,12)]

Table 20: Storing direct references to buckets (a and b) and node ids.

direct references The last option is directly referring to other buckets,
resulting in storing bucket ids for every point as well (Figure 27c).

Referencing to a point id in another bucket thus needs a special attribute,
in order to locate the right point in another bucket and not in its own. In
3 pairing functions are discussed as is the approach taken by Oracle [2015].
Some options that are thus available for referencing to other buckets:

• Pair the bucket id and the point id together using a pairing function.

• Store the bucket id and point id separately.

• Store absolute bucket ids or relative to the current bucket

Pairing each point with its bucket id is one option (as seen in Table 20), but
requires an unpairing function on access. Marking the points which need
unpacking requires a check on access. Depending on the pairing function,
these options can be both fast, but, depending which algorithm is used, the
pairing function is normally slower.

When only references to other buckets are paired with the bucket id, the
pairing function should then produce a number that is higher than the num-
ber of points (and thus pointids) in the bucket in order to avoid collisions.

I have chosen to store references directly by pairing every node with its
bucket id. In the next section (Section 4.3.2) it becomes clear that storing
absolute references or relative references does not matter. The example of
the data structure in Figure 25 shows the abstract pairing of the bucket with
the point when needed.

4.3.2 Pairing functions and space filling curves

The pairing function used, is simply packing two small integers of 2 bytes
together to create one integer of 4 bytes.Interleaving

these bits
would be a real

pairing
function.

A consequence is that pointids
in a patch cannot exceed the smallint size, which is defined by database
as a signed small integer, thus 32767 points. Since the size of the buck-
ets can be controlled, this should pose no problems. Using C as program-
ming language however we can use unsigned small integers, resulting in
65365 points. The bucket ids also cannot exceed this value if we store
the absolute value, resulting in a multistar with a maximum capacity of
32, 767× 32, 767 = 1, 073, 676, 289, which is slightly less than half of the max-
imum number stored in a integer. A billion points is a good size, but will
fit at most around four tiles of the AHN2 dataset. On datasets with small
multistars the limit of 32767 bucket ids will be reached quickly and the

4.3 buckets 45

(a)

patchid, pointid

?, pointid

(b)

patchid, pointid

patchid + 1, pointid

(c)

Figure 27: a) Not referring to other buckets by dividing triangles, resulting in over-
lapping points. The black triangulation and the gray triangulation on top
are two different objects now. (b) Storing a flag for each neighbour in
another bucket. (c) Storing explicit patch ids, relatively or absolutely to
another patch.

46 storing tins with the multistar approach

Figure 28: Bucket division line redefined by triangles with the new overlapping
bounding boxes.

storage should switch to bigint, allowing for far greater ranges, but also in-
creasing storing size by roughly 50%. The absolute maximum in database is
the current bytea limit at 1GB [Douglas and Douglas, 2003] but this would
require tens of millions of points in a bucket.

It is also possible to only store the id relatively to the current bucket, in-
creasing the maximum number of ids. This is called difference encoding,
used by Blandford et al. [2005] in their star based data structure. How-
ever, since I use a Morton key (explained in Chapter 3) on my buckets the
expected advantage of the relative bucket id disappears. The maximum
difference between bucket ids happens in the middle of an iteration of the z-
order curve. The maximum difference, with the assumption that references
to other buckets happen only to each buckets 8 neighbors (thus assuming
that triangles are never greater than their buckets), is n

2 + 1. This means
that a relative storing of bucket ids from a quadtree using morton keys will
never be (a bit) smaller. Other methods for ordering ids, such as simpler
space filling curves as the row ordering will have a maximum id difference
of one row+ 1, or in a quadtree

√
n + 1. Other more complex space filling

curves will have a much greater maximum distance.

The possibility of any advantage using difference encoding by row order-
ing however dissapears with using a quadtree. Buckets are now variable
in size as seen in Figure 26, thus making the maximum difference between
bucket ids, whatever the ordering used, unknown with a maximum limit of
n− 1. In that case there is no difference with storing absolute bucket ids.
Therefore the multistar implementation uses absolute references to other
buckets.

4.3.3 Parallel SQL queries

The multistar can be queried from a starting bucket, from which the al-
gorithm finds its own way by walking through the dataset and hence through
other buckets. Another method is selecting all the buckets in our zone of
interest by using the spatial index and running an algorithm confined to
each bucket on each of these buckets. The latter works from the index on
the buckets, while the first uses the stored topological relationships of the
TIN itself to traverse the buckets. Both methods work, but only the latter
is easily used in parallel processing. By using parallel queries each bucket

4.4 indexing and sorting 47

is seen as a separate object, which also solves eventual memory problems
with the walking approach. Two options can be chosen:

• Subdivide the query to the buckets and introduce a ruleset to fix edge
cases.

• Let the buckets be islands, not stitched together.

Both options create extra overhead and problems. Subdividing range
queries into buckets create walking problems, but these are solved in Al-
gorithm 4.1, instead of using the convex hull of a bucket, the items referring
to are buckets are used. The ruleset then needs to adapt for the gaps in the
range query i.e. walking backwards on the edge of buckets.

Buckets as islands can only work when the buckets are convex. This is
only the case when using regular tessellations and even then the border is
not convex. Only when there is overlap i.e. each bucket has a triangulation
exceeding the size of the bucket, can the area inside the bucket be considered
convex. This creates always overlapping triangles on bucket edges, which
require a new ruleset to fix.

4.3.4 Height information

Two dimensional spatial queries do not require the minimum and maximum
height of points in a bucket to be stored. However, viewshed operations on
a TIN require queries based on height information. Therefore, the bounding
boxes of the buckets are defined by their x, y and z coordinates (stored as the
PostGIS type BOX3D). This enables specific height based queries e.g. selecting
all buckets lower than 0m for quick visualisation of flood modeling.

4.4 indexing and sorting
Indexing is, just as it is done with the star based structure not done by a
spatial tree, but by using the explicit stored topology. Several algorithms
are used from the prototype developed by Ledoux [2013], but are adapted
to work with the new bucket structure. Although indexing is also used to
store items closer together on disk, the internal use of the multistar will
load the complete bucket in memory, negating sorting advantages. These
algorithms include:

• jump and walk by Mücke et al. [1999]

• straight walk

• window query by Zhu [2000]

It is important to note here that all the spatial functions implemented here
start with the same simple algorithm, the random jump and walk by Mücke
et al. [1999] for point location. For a straight walk, the first point of the
query line is used in the point location algorithm. The triangle returned
is then used as the starting triangle for a straight walk. This also applies
to window queries, as well as other atomic operations, such as degree and
slope, which build upon these spatial functions.

With a line intersection query, the first point of the line could be outside
the TIN (see Figure 29a), which means that walking algorithms will fail to

48 storing tins with the multistar approach

find a starting triangle. A relative simple intersection algorithm is proposed
to find the starting points, shown in Algorithm 4.1. The two returned points
are part of the starting triangle where the line enters the TIN. The algorithm
selects a random point on the convex hull, easily found because this inform-
ation is stored in the offset array. An orientation test is done for the starting
point from which is decided in which direction the next point on the convex
hull is going to be checked. Looping over points on the convex hull until
our orientation test flips the output, which means the current and the pre-
vious point form the last edge of our starting triangle as demonstrated in
Figure 29b.

Algorithm 4.1: The convex_hull_intersection algorithm.
Input: a line a,b and a star based data structure s.
Output: if an intersection is found, two starting points

1 find_random_point_on_convex returns a random point on the convex hull of s.
2 startingid = find_random_point_on_convex(s)

3 orient returns line orientation: 1 for left or 0 for right of line
4 orientation = orient(startingid,a,b)

5 if orientation == 1 then
6 startingid left of the line, looping counter-clockwise
7 while true do
8 get_next_in_star returns next point on convex hull
9 i← get_next_in_star(startingid)

10 o← orient(i,a,b)
11 if o 6= orientation then
12 return i, startingid

13 startingid← i

14 else
15 startingid right of the line, looping clockwise
16 while true do
17 get_previous_in_star returns previous point on convex hull
18 i← get_previous_in_star(startingid)
19 o← orient(i,a,b)
20 if o 6= orientation then
21 return startingid, i

22 startingid← i

Another problem is the fact that a constrained Delaunay Triangulations
can cause a walking algorithm to loop indefinitely around the same point
Devillers et al. [2002]. To combat this problem, instead of the same edge
being chosen for an orientation test in walking, a random choice has been
introduced, to be able to break free from such a loop.

4.5 storage size optimizations

There are many ways to further optimize the storage size of this structure as
seen in Section 3.4.3. Those compression techniques are only applied in the

4.5 storage size optimizations 49

A

B

(a)

A

B

(b)

Figure 29: Line intersection with starting point outside the TIN. (a) The line AB

intersects the TIN, but A lies outside, preventing the jump and walk al-
gorithm from completing. (b) The convex hull intersection algorithm
(Algorithm 4.1) returns two starting points (green point and the previous
point) which are part of the triangle in which the line AB enters the TIN.
The algorithm traverses the convex hull until an intersection is found.

50 storing tins with the multistar approach

data structure, as described previously. This includes relative referencing
and pairing of numbers.

A simple way to optimize the coordinates storage size would be to scale
and cast them to integers, e.g. used by van Oosterom et al. [2015]. This is
possible because of the limited decimal places of the AHN2 dataset (up to
two). 448512.49 (double precision) would become 44851249 (integer), which
halves the storage space requirement.

Although this would be possible and probably advantageous, this has
not been implemented. Coordinates are the only entity shared across all
the different implementations and thus enable a fair comparison in storage
size, because only then the data structure itself can be compared. Although
the comparison is done on total storage size for each data structure, scaling
coordinates can be done for every structure, meaning it is not an advantage
for any specific data structure.

4.6 integrity and validity checks
It is not easy to check for errors in the multistar data structure since triangles
are implicitly stored and the data itself is hidden in binary form. Methods
to check the validity and integrity automatically are therefore needed.

Several simple checks have been written in Python, see appendix A. These
are mainly focused on the topological structure and thus the validity. These
tools check for every node if its star is ordered counter-clockwise and if all
the pointers in its star results in nodes with stars that also point back to the
node. This ensures a data structure that is both connected is usable by the
implemented algorithms.

There are also simple integrity checks to make sure that all the neces-
sary fields and tables are there with the correct attributes, as explained in
Figure 25. Such integrity checks consist of checking every star for the min-
imum of two pointers and if a zero occurs in a star if it is put in front.

4.7 atomic tin functions
In order to make a TIN structure useful, several atomic functions should be
implemented. In Chapter 2 these have been defined as:

• Slope

• Aspect

• Local minimum

• Local maximum

• Degree

All these functions have been implemented in the Multistar. Local min-
imum and local maximum are boolean functions comparing the height of
the requested point to the height of the vertices in its star. Slope and as-
pect are standard functions for planes in a DTM, adapted from Moore et al.
[1991]. The degree is the number of vertices in the star of a given point,
giving information on the complexity of the triangulation at that point.

4.8 storing extra attributes 51

4.7.1 Thinning and simplification using the implicit TIN

A simple thinning function has also been implemented, that for every point,
takes the sum of difference in height with the vertices in its star and com-
pares this sum to a user defined threshold. This is by no means a very
intelligent filter, but it enables to filter distinct points from less relevant
(flat) points. Similar methods are applied by the drop heuristic method by
Lee [1989], which also determines the relevance of a node by its neighbours.
The relevance is determined by the difference in height of the node and the
triangulated terrain without the node.

With this non-random sample much of the terrain is still represented by
generating a DT from it on the fly, which is not unlike the pyramid used in
the Multiscale Implicit TIN of Kidner et al. [2000].

An array such as the offsets now stored can be used in the same way to
represent levels of detail, storing an extra attribute of significance for each
point. Items of special significance, such as those present in the constraints
of a CDT can always be requested at each LoD. However, the CDT should
be a conforming DT.

For each bucket a different level of detail can be requested and triangu-
lated on the fly, enabling visualization purposes.

4.8 storing extra attributes

Using the Multistar only permits storing of attributes at the bucket. A data-
base table using multistars requires the fields as described in Section 4.2.
The user is free, however, to add extra fields and hence extra attributes.
This could be done for the TOP10NL3D dataset, which has multiple attrib-
utes connected to each bucket.

Storing attributes at point level is more difficult in the multistar. It would
require adding these attributes to the binary points field. The binary field
would then consist of n× xyzabc, where a b and c are attributes instead
of n× xyz. These attributes must have a fixed size for this to work. The
algorithm used should dynamically determine the number of attributes and
thus the size of each point. The point cloud extension in PostgreSQL uses a
separate table with point cloud schemas to do determine this exact thing.

At an edge or triangle level no attributes can be easily stored using this
structure. Edges and triangles are implicit in this structure, which is an
advantage in storage size, but disadvantageous for storing attributes at such
levels. Edge attributes can be stored twice (one for each point of the edge),
using a structure such as pgTIN e.g. to specify the constraints of a CDT.

4.9 drawbacks

Each data structure has its disadvantages, which should be known in ad-
vance in order to decide whether it should be used or not. The disadvant-
ages follow from the star based structure, which stores triangles indirectly
by using a variable length star. The indirect storage of triangles makes
a complete reconstruction of all triangles slower than explicitly stored tri-
angles and it makes it difficult to store attributes for each individual tri-
angle.

52 storing tins with the multistar approach

The variable size length of each star results in the need for an offset array
in order to lookup the right star in the multistar data structure, mainly
increasing the size of the data structure. Although updates are out of scope,
replacing a star within the multistar data structure is a costly operation,
because a complete multistar has to be re allocated and a part of all the
offsets replaced.

• Triangles stored indirectly, resulting in slower reconstruction.

• Variable length, making updates slower.

• Needs offsets array, increasing the storage size.

5 I M P L E M E N TAT I O N , E X P E R I M E N T S
A N D C O M PA R I S O N

The main research question asks for an efficient approach to storing massive
TINs. Efficient is defined by the performance of the following items and
these will be compared in this chapter for the different existing approaches.

• Loading time of the TIN, including construction

• Storage size of data structure

• Storage size of index

• Time of spatial queries

• Time of atomic functions

In Chapter 2 criteria for efficient approaches were defined, by which cur-
rent implementations were compared in theory in Chapter 3. A prototype
based on these criteria was proposed in Chapter 4. This chapter will de-
scribe the workflow for setting up the practical comparison, the implement-
ation of the developed prototype and a practical comparison of approaches
for storing massive TINs in a DBMS.

The hypothesis that the criteria found in Chapter 2 and implemented
in the multistar prototype are both faster in spatial queries and smaller in
storage size than existing solutions.

5.1 workflow
Several extracts from the AHN2 filtered dataset, ranging in size and number
of points, are used. All datasets are publicly available for download, with
hyperlinks in the Appendix B. For retrieving the region of interest from the
Actual elevation information of the Netherlands (AHN2) one must lookup
the tiled datasets and find the required tiles and if necessary, merge them1.
The following subsections are used:

• demo.las A small point cloud dataset of around 5.2 million points

• rijswijk.las A very small point cloud dataset of around 320 thou-
sand points

• g37en2.laz A massive point cloud dataset of 367 million points, only
the filtered ground points.

With a subsection of the AHN2 dataset, lastools is used to create a TIN.
Most of the data structures and its variants have been created using cus-
tom Python code, which uses the output of lastools. These workflows can
be seen in Figure 30 for single type data structures and in Figure 31 for
multitype data structures, such as the multistar.

1 A web tool to automate this tedious process is available at MATAHN

53

http://3dsm.bk.tudelft.nl/matahn

54 implementation, experiments and comparison

*.las spfinalize spdelaunay pgtin.py

simplefeatures.py

po
st

gr
es

ql
 d

b

AHN2 lastools own work

Figure 30: Workflow scheme for single type.

*.las spfinalize

spfinalize

spdelaunay

spdelaunay

qtfin.py

multistar.py

simplefeatures.py

trianglearray.py po
st

gr
es

ql
 d

b

AHN2 lastools own work

1

2

Figure 31: Workflow scheme for bucketed types.

For every TIN structure, a spatial index was created on the spatial field,
or if not applicable, on the bounding box field. The exact structures can
be found in the Appendix E. The following TIN structures are available for
testing, where single type indicate a simplex per row in a database e.g. a
Triangle in each row and multi type indicates several simplexes per row e.g.
a MultiPolygon in each row.

single type
• OGC PolygonZ

• OGC Triangle

• pgTIN, as implemented by [Ledoux, 2013]

multi type
• OGC MultiPolygonZ

• OGC TINZ

• Triangle array, my own implementation discussed in Section 5.3

• Multistar, my own implementation discussed in Section 5.2

The PostGIS topology is not used for experiments as it is not fit for storing
TINs (Section 3.2.3) and the construction never completed (see Section 5.4).
Both of the implementations done as part of this thesis are discussed in Sec-
tion 5.2 for the Multistar and Section 5.3 for the triangle array. The Triangle
Array has been implemented to mimick the SDO_TIN type by Oracle.

The experiments are run on a workstation with an Intel i7 2600K, 16GB
of main memory running Ubuntu Linux 15.04 and PostgreSQL 9.3 with
the database on a 7200 RPM SATA hard disk. Complete specifications for
running the experiments in the PostgreSQL database can be found in Ap-
pendices B to D.

5.2 multistar implementation 55

5.2 multistar implementation
The multistar has been implemented through two programs developed in C.
One program can decode the multistar to multiple rows with points and
stars. The second program is based on the pgtin prototype by Ledoux
[2013], which has been adapted to work with the first program and the
nature of the multistar. Main functionality added or changed is described
in Chapter 4. Other functions are adapted to work with multiple buckets
and are described in Appendix B.

The multistar structure uses a spatial index on the bucketlevel and for
spatial queries a starting bucket has to be found first. Within the starting
bucket topology can then be used by the implemented code. A typical sql
query in PostgreSQL for creating a profile by line intersection is as follows:

/* Line is defined as l(a,b) with a{12.0,34.0} and b{56.0,78.0}

*/

SELECT profile(12.0,34.0,56.0,78.0,id)

FROM multistar

WHERE bbox && ST_Point(12.0,34.0);

The function profile takes in the coordinates of the line, as well as the id
of the bucket in which the first point of the line lies. This id of the bucket
is the result of the intersection of the bucket’s bounding box with the first
point of the line.

Integers (32 byte) are used for the offset array and the star. Thus, stitching
functions use two small integers (16 byte). Before big integers are needed,
it would be optimal if both small integers are used to their capacity, thus
having as many buckets as there are points in each bucket on average.

Two buckets at are cached in memory as a queue, as soon as a bucket is
requested that is not cached, the requested bucket will replace the oldest
cached bucket. When only caching one bucket at a time, a worst case scen-
ario requests bucket a, then b, then a again and then b again, which hap-
pens when crossing buckets. This is prevented when caching two buckets
at a time. At the intersection of three or four buckets, caching two buckets
might not be enough, but these cases are much rarer (four occurences at the
corners for each bucket).

5.3 alternative implementation
Practical comparisons are limited to PostgreSQL in this thesis, thus the tri-
angle array type used by Oracle in Section 3.2.2 is not available. Comparing
two different data structures in two different databases cannot be precise.
Also, the loading of data into Oracle presented problems (see Section 5.4).
Therefore a similar data structure, here called triangle array, has been imple-
mented in PostgreSQL, which is presented in detail in Appendix C.

Compared with the multistar data structure seen in Figure 25 instead of
storing an array of stars, the triangle array stores an array of triangles, where
each triangle consists of three pointers to points. Since the triangle always
has three vertices, each triangle in the array has a fixed size, hence an offset
array used by the multistar structure is not needed. Just like the points, the
id of the triangles is derived from their respective index in the array.

The pairing function used by the multistar structure is used here as well,
stitching the bucket id and the point id together when a triangle points to

56 implementation, experiments and comparison

a point in another bucket. The placement of triangles is the same used as
by the construction of the TINZ and MultiPolygonZ structures, placing each
triangle in the bucket with the lowest id. When one bucket is reconstructed,
the output is exactly the same as the MultiPolygonZ or TINZ types stored
by PostGIS.

The only functions currently available return a trianglez or TINZ in WKB,
not unlike the Oracle SDO_TIN, which only casts back to geometry. However,
the Oracle approach also indexes the triangles inside each bucket, thus en-
abling clipping inside each bucket, whereas the triangle array prototype
implemented here only clips on the bucket level, by using a spatial index on
the box3d field. The same line intersection query used in Section 5.2 is as
follows:

/* Line is defined as l(a,b) with a{12.0,34.0} and b{56.0,78.0}

*/

SELECT ST_Intersection(tinz_bytea(numt,points,triangles,id)::

geometry,

ST_MakeLine(ST_Point(12.0,34.0),ST_Point(56.0,78.0))

FROM trianglearray

WHERE bbox && ST_MakeLine(ST_Point(12.0,34.0),ST_Point(56.0,78.0)

);

In this query, all the buckets intersecting with the bounding box of the line
are selected and each bucket is decoded to WKB cast to PostGIS geometry,
which is intersected with the line. In this example tinz_bytea returns a
MultiPolygonZ in order to use the standard PostGIS functions.

The triangle array can be expected to be much smaller than the OGC
Simple Feature types, and because it does not store topology nor requires
an offset table, the structure should also be smaller than the multistar pro-
totype. Nevertheless, the performance of spatial queries can be expected to
be a bit slower than the OGC Simple Features, since the geometry used is
exactly the same, but has to be constructed first.

The Oracle implementation, although not benchmarked here, is expected
to be larger in storage size, since it also stores an index, and faster because it
can use the same index to return a smaller geometry, which takes less time
to operate on.

5.4 construction and loading performance
For constructing a TIN from a point cloud internal algorithms in the data-
base and external algorithms outside the database can be used. The upside
of using internal construction is that no tools are needed anymore to con-
struct the TIN outside the database and then load it into the database. How-
ever, many internal are actually external TIN constructors, using external
libraries. This is the case of PostgreSQL, which uses GEOS as its back end
to do such calculations.

internal construction
• Oracle SDO TIN

• PostgreSQL

external construction
• Lastools

5.4 construction and loading performance 57

software rijswijk.las 50K demo.las 5M g37 en2.laz 367M
PostgreSQL 15 3600 -
Oracle 5 ! -
Lastools 0.67 10 888

Triangle 1.8 31 !

Table 21: Comparison of performance in creating a DT. Time in seconds. ! did not
complete, - did not test.

• Triangle

• CGAL

• many others. . .

Four programs for constructing TINs are tested: two internal algorithms
and two external. Many more programs have been researched in Chapter 3

but only lastools can do the computation streaming. Having Triangle

[Shewchuk, 1996] here is mainly for a speed comparison. The results are
shown in Table 21.

The external algorithms work very well on smaller datasets. The database
implementations start out promising as well, but their performance drops
considerably on a relatively small dataset with 5 million points. Oracle
did not complete on 5 million points and was killed after more than 24

hours. PostgreSQL, on the other hand, did run the same dataset in an hour.
However, extrapolating this to a dataset of 367 million points - even when
assuming linear increase in runtime - would result in a construction of 72

hours. Thus database constructors do not scale very well and are not fit
for massive TINs. The construction has to be achieved with an external
algorithm.

The external algorithms perform better, reporting very fast times. How-
ever, when running the 367 million dataset through Triangle, it cannot run
because of out of memory errors. Lastools is the only software which runs
on massive datasets. Internal algorithms will also run out of memory, which
is a problem for full scale terrains used by the implicit TIN Kidner et al.
[2000].

The output of these internal constructors has been discussed in Chapter 3.
Nonetheless, the results Oracle produced were unexpected. Where Post-
greSQL outputs everything in one TIN geometry, Oracle creates buckets,
which is great on paper. The results as seen in Figure 32 are the normal
output of a point cloud that is roughly twice as wide as it is high. The
buckets created, however, are completely vertical and each bucket vertical
is separated by a very small bucket with the width of only one triangle. As
explained in Chapter 2 buckets should be close to a square in order to equal-
ize performance for all queries. It is unknown what causes this but at the
time the triangulation inside Oracle has to be considered broken - both in
terms of running time as in its output.

The TINs are transferred into the database with the Python scripts seen in
Figure 31 and described in detail in Appendix B. These scripts convert the
output of lastools into the appropiate data structure and transfer it to the
database. The buckets created by the Python scripts are shown in Figure 33.
In Figure 33a the bucket extents for the Multistar data structure are shown
when run on demo.las. By using the same quadtree, the MultiPolygonZ
buckets are presented in Figure 33b.

58 implementation, experiments and comparison

(a) (b)

Figure 32: Buckets of the SDO TIN type in Oracle. (a) Zoomed out. Skinny vertical
buckets. (b) Zoomed in. Close up of vertical buckets.

Data structure Generation and conversion Creating indexes Total

Multistar 171 7 178

TINZ* 209 4 213

Triangle Array 160 4 164

pgTIN 73 11 84

TriangleZ* 119 172 291

Table 22: Comparison of performance in converting the output of lastools to data-
base, using different Python scripts. Dataset demo.las. Times in seconds,
generation and conversion includes generation of TIN. *TINZ and Multi-
PolygonZ, Trianglez and PolygonZ have identical performance, differing
only in a few bytes.

The various data structures are quite different in complexity, e.g. the
multistar requires both buckets and stars to be calculated, while the pgTIN

requires no conversion at all. So, different data structures result in differ-
ent loading times, as seen in Table 22. Single types are faster in generation
and conversion than multi types, but they do take a longer time to create
indexes. Note that the creation of an index on every TriangleZ takes a long
time, while the creation of a binary tree on the same number of features as
used by pgTIN takes only eleven seconds. PostGIS topology took several
hours to process only a handful of MultiPolgyonZ geometries, projected to
take weeks. It is therefore omitted from this thesis.

When using a massive dataset, the time it takes to convert the TIN into the
database amounts to several hours as seen in Table 23. The TriangleZ type
has not been used, since the expected size would exceed 100GB. The TINZ
type conversion did not complete because the database consistently ran out
of memory during vacuuming2, which is probably caused by large size of
the data structure. The other data structures did convert completely and
without errors. Although these data structures take a long time to load, it
should be noted that this step is only done once. The creation of an index on
the pgTIN data structure, which does not use buckets took up a significant
part of the total construction time.

2 Even with autovacuum off, the database became unresponsive after several thousand rows

5.4 construction and loading performance 59

(a)

(b)

Figure 33: Buckets of the multistar and TINz. (a) Demo.las subdivided using
quadtree using the Multistar. (b) Zoomed in demo.las. TINz divided in
the same way with randomly colored buckets. Original quadtree levels
are still there but more fuzzy. On water there are much less return points,
creating bigger triangles.

60 implementation, experiments and comparison

Data structure Generation and conversion Creating indexes Total

Multistar 265 0 265

Triangle Array 243 0 243

pgTIN 95 21 116

Table 23: Comparison of performance in converting the output of lastools to data-
base, using different Python scripts. Dataset g37en2.laz. Times in minutes,
generation and conversion includes generation of TIN. Simplefeatures did
not complete loading because of the database running out of memory.

Polygons Table size TOAST size Indexes size Total size

10240 0 14.0 0.02 14.02

2560 0.02 13.6 0.02 13.64

640 0.46 13.0 0.10 13.56

160 14.4 0.064 0.34 14.82

40 15.5 0.01 1.26 16.94

10 67.1 0.01 4.90 71.91

Table 24: Comparison of storage size of MultiPolygonZ using different numbers of
polygons in each bucket. Dataset rijswijk.las. Size in MB.

5.5 storage sizes

The size of the different data structures and their indexes are compared in
this section. In theory (Chapter 2) the SF TINZ is expected to be largest
structure, while both the Multistar and Triangle array are expected to be
small. Data structures using buckets are also expected to have an smaller
index than data structures that do not use buckets.

5.5.1 Different bucket sizes

Different bucket sizes have been tested by splitting the dataset into different
bucket levels. Each bucket size has an average number of Polygons stored.
In Table 24 it becomes clear that using small bucket sizes is not preferable
at all, as the size increases significantly for smaller buckets. Around the 500

polygons in a MultiPolygon we see the transition from normal table space
to TOAST (Section 5.6.2). A stable region seems to be between 50 and 500

polygons, where the storage space stays relatively stable and it is not using
TOAST yet.

The comparison in storage size for each TIN data structure can be seen
in Table 25 and Figure 34a. There is a clear distinction between single and
multi data types. Multi-type structure (when stored in TOAST) are roughly
5 to 6 times smaller. The smallest dataset is the Triangle array, followed by
the Multistar structure. The increased storage size of the single type data
structures is in part due to the large indexes. These indexes are ten to
hundred times larger than the indexes on the multi type data structures,
confirming the notion that not every element of a TIN should be indexed.
The spatial indexes on the single type geometries such as PolygonZ are two
to three times as large as the Triangle Array of Multistar data structure.

When looking at the size of the data structures when used for a massive
dataset in Table 26 and Figure 34b, the same patterns are visible. The

5.6 postgresql specifics 61

Structure Table size TOAST size Indexes size Total size

PolygonZ 1744 0.08 534 2278

TriangleZ 1673 0.08 534 2207

pgTIN 555 0 112 667

OGC MultiPolygonZ 0.98 209 0.31 210.30

OGC TINZ 1.0 203 0.288 204.29

Triangle array 0.82 101 0.30 102.11

Multistar 1.08 130 0.31 131.39

Table 25: Comparison of storage size of the terrain of a demo.las sample with a
quadtree of level 6. Size in MB.

Structure Table size TOAST size Indexes size Total size

Multistar 12 9390 5 9407

pgTIN 38303 0 7841 48841

Triangle array 52 7396 18 7466

Table 26: Size of datasets for the g37en2.laz dataset. Size in MB.

triangle array is again the smallest data structure, followed closely by the
Multistar data structure. The single type pgTIN is five to six times larger,
in part due to the very large index. Although a binary tree is used, which
is smaller than spatial indexes, the size of the index alone is larger than the
complete Triangle array structure.

5.6 postgresql specifics
The storage sizes of the single type structures seem excessive compared to
the multi type structures, two specific PostgreSQL properties are respons-
ible: the first is row overhead and the second is compression by TOAST.

5.6.1 PostgreSQL row overhead

The main explanation for large single types is overhead. For every row in the
database, PostgreSQL stores some information about it, so called meta-data,
in a object called a HeapTupleHeader. The size of this object is 23bytes. With
padding, in order to align values to 8 bytes, this becomes 24 bytes.

Now it is clear why single type structures are large. For every x, y and z
coordinate that is stored in a row, totaling 24 bytes, the total size is doubled
by the HeapTupleHeader.

5.6.2 Compression by TOAST

The page size (see Chapter 3) in PostgreSQL is fixed at 8kb3 Douglas and
Douglas [2003]. When large geometries are stored e.g. MultiPolygons or
Multistars, these can grow larger than the fixed page size. PostgreSQL
does not allow tuples (database rows) to span multiple pages. This prob-
lem is solved internally by first compressing the data and if the data is still

3 Changing this requires recompiling PostgreSQL

62 implementation, experiments and comparison

P
o
ly

g
o
n

Z

T
ri

a
n

g
le

Z

p
g

T
IN

M
u

lt
iP

o
ly

g
o
n

Z

T
IN

Z

T
ri

a
n

g
le

 a
rr

a
y

M
u

lt
is

ta
r

Dat a s t ruct u res

0.0

379.68

759.36

1139.04

1518.72

1898.4

2278.08

S
iz

e
 i
n

 [
M

B
]

Table size

TOAST size

Index size

(a)

p
g

T
IN

T
ri

a
n

g
le

 a
rr

a
y

M
u

lt
is

ta
r

Dat a s t ruct u res

0.0

9228.8

18457.6

27686.4

36915.2

46144.0

S
iz

e
 i
n

 [
M

B
]

Table size

TOAST size

Index size

(b)

Figure 34: Graph showing the size of different data structures (a) Size of data
structures for the demo.las dataset. (b) Size of data structures for the
g37en2.laz dataset.

5.7 query performance 63

Structure Compressed size Uncompressed size Increase

Multistar 131 206 57%
OGC MultiPolygonZ 205 1164 567%

Table 27: Comparison of storage size with and without compression of the terrain of
a demo.las sample with a quadtree of level 6. Size in MB.

float double difference

Triangle array 182 187 3%
Multistar 130 135 4%

Table 28: Comparison of storage size using floats or doubles. Dataset demo.las. Size
in MB.

larger than the defined threshold (normally 2kb) it is split over multiple
pages. This process takes place completely invisible from the user and can-
not be disabled completely. The compression, however, can be disabled on
columns with the command ALTER TABLE SET STORAGE EXTERNAL, but only
on creation. This results in a significant increase in the disk space required
for data structures that repeat data, such as the MultiPolygonZ as seen in
Table 27. The Multistar also increases in size, but less so, demonstrating a
more efficient data structure.

TOAST becomes obvious when comparing Triangle arrays and Multistars
with either float or double storage of coordinates. Theoretically, we should
see an increase around 50 percent, yet the picture is different as we see in
Table 28. Compression amounts to a difference of only a few percent. The
tables that were tested were completely stored in TOAST.

This is the reason why optimizations described in Chapter 4 are hard to
detect and only make the storage size results more opaque. The main reason
why multistar works with floats is the output of lastools and AHN2, which
do not require more precision.

5.7 query performance

Using different bucketsizes has an effect on the storage size, and it is expec-
ted to also have an effect on the query times. The main question to resolve
is how algorithms scale with smaller and larger buckets. Larger buckets
require less processing because there are less buckets to process in total, but
point location performance decreases with larger buckets. Larger buckets
will cover more points for a region of interest than smaller ones on diagonal
queries. Smaller buckets, however, have a larger proportion of points on
the edge of the bucket. Thus they often require more processing of stitched
pointers and requests of new buckets. It is expected that the solutions using
topology, such as the multistar, are faster than solutions using brute force,
such as Simple Features as discussed in Section 3.4.2 and in Chapter 3. Be-
cause of the ability to walk it is expected that for data structures using
topological relationships the bucket sizes only influence the initial point loc-
ation.

64 implementation, experiments and comparison

Bucketsize Query performance

10240 15484

2560 7505

640 4017

160 2957

40 2502

10 2058

Table 29: Comparison of query performance of MultiPolygonZ using different buck-
ets. Dataset rijswijk.las. Time in ms.

type l4 l5 l6 l7
cold hot cold hot cold hot cold hot

MultiPolygonZ 37303 36482 5150 4142 526 428 123 76

Triangle array 86762 84418 6649 4696 574 476 345 92

Multistar 123 12 33 12 52 32 52 21

TINZ 327 256 63 52 33 22 14 13

pgTIN 44 43 45 43 43 42 53 43

PolygonZ* 50 12

Trianglez* 53 12

Table 30: Comparison of point location by bucket size. Time in ms. Dataset
demo.las. * indicates single type, levels do not apply.

Queries are run multiple times, once after a database restart as the cold
query and then once more, called a hot query, since the previous query is
probably cached by the database, resulting in better performance.

In Table 29 it becomes clear that using bigger buckets on the MultiPoly-
gonZ type slows down the query. This is expected, since the results are
brute forced, the bigger the bucket, the longer the intersection takes. An-
other thing to notice is the lack of a clear performance hit around the buck-
etsize of 500. In Table 24 there was a change in storage size when TOAST
set in, but this does not seem to have an affect to the performance, if any
effect at all.

Take note that with larger bucketsizes, the PostgreSQL query planner can
decide to stop using the spatial index, instead using a slower sequential scan.
By using the EXPLAIN SQL command this can be checked. It is prevented by
using the following SQL: SET enable_seqscan TO off;.

Bucketsize is defined by the depth of the quadtree, level 5 represents 45

buckets thus a bucketsize of around 5000 in the demo.las dataset which
holds five million points. pgTIN does not use the same construction al-
gorithm. Instead it uses the same number of virtual buckets, to make the
comparison as fair as possible.

Table 30 shows that the bucketsize clearly influences the performance of
the query for point location queries, most clearly demonstrated by the Mul-
tiPolygonZ which becomes unusable on larger bucketsizes and the speed
of single types. The point location function finds a triangle in which the
requested point lies.

The performance of the TINZ data structure is remarkable, being the fast-
est on small buckets and scaling well on larger bucket sizes. The backend
SFCGAL is expected to be responsible, making use of fact that the TINZ

5.7 query performance 65

l4 l5 l6 l7
cold hot cold hot cold hot cold hot

MultiPolygonZ 91988 92130 16409 16409 4642 4489 2212 2072

Triangle array 131444 108356 20981 20813 6062 5849 3253 2887

Multistar 113 82 114 85 114 87 113 80

TINZ 1119 1110 612 580 387 397 336 335

pgTIN 283 60 55 43 42 42 42 42

PolygonZ* 450 366

TriangleZ* 346 325

Table 31: Comparison of query performance for each bucketlevel. Dataset demo.las.
In ms. Horizontal query with 1358 intersections. * indicates single type
where levels do not apply.

l4 l5 l6 l7
cold hot cold hot cold hot cold hot

MultiPolygonZ 273543 265546 43965 43771 21486 21382 7002 6275

Multistar 163 153 185 141 143 122 233 125

Table 32: Comparison of query performance for each bucketlevel. Dataset demo.las.
In ms. Horizontal query on edges of buckets with 2043 intersections. *
indicates single type where levels do not apply.

type is a connected patch. Once a triangle is found, no other triangles will
match, while the normal MultiPolygonZ could have overlapping triangles,
requiring checking all triangles. This does not explain the complete per-
formance gain shown here, which requires further research. The queries
used are described in Appendix E. For intersecting a 2D line with a TINZ
or MULTIPOLYGONZ, both ST_Intersection and ST_3DIntersection return
2 dimensional results, without heights. SFCGAL is able to intersect 3D geo-
metry, but that would require the intersection of a plane with the TIN.

The performance of the star based structures show that the size of the
bucket does not influence the performance of walking much. Especially the
pgTIN prototype is not influenced by the virtual bucketsize, which could
be due to well placed virtual buckets. The multistar prototype shows the
same pattern, but has a peak at the largest bucketlevel. The performance of
the multistar and the pgTIN prototypes is comparable, but pgTIN is often
faster.

The hot queries are faster than the cold queries overall, as the hot queries
have the most effect on smaller bucketsizes and single type geometries, since
they have the smallest sizes and thus fit most easily in cache.

The same pattern observer for point location holds true for a line intersec-
tion query. The bigger the buckets, the slower the queries become, as seen
in Table 31. The star based structures that use walking instead of brute for-
cing outperform the other data structures for each bucketlevel. The pgTIN
prototype is marginally faster than the Multistar prototype.

A diagonal intersection is a very optimal way of crossing buckets, as is
a horizontal or vertical one on buckets which are mostly square since each
bucket can be expected to be traversed only once. An almost horizontal
intersection, exactly on the edge of buckets is a worse case scenario, altern-
ately requesting points from two buckets.

66 implementation, experiments and comparison

l4 l5 l6 l7 l8

avg points 20490 6113 1319 338 88

avg edgepoints 544 314 142 71 34

% points 2.7 5.1 10.8 21.0 39.2

Table 33: Bucket edge statistics: average number of points in buckets and average
number of of points that have a pointer to another bucket in its star in
a bucket, for different levels. Dataset demo.las with a total of 5245548

points.

type l8
cold hot

Multistar 5916 460

pgTIN 23878 313

Triangle array 1 8min 8min
Triangle array 2 8min 8min

Table 34: Comparison of query performance for bucketlevel 8 on 367M points. Data-
set g37en2.laz. In ms. Diagonal intersection with 41291 intersections. 1

Uses MultiPolygonZ geometry, 2 uses TINZ geometry.

This is demonstrated in Table 32 for the multistar and simple feature
types. The intersection crosses 50% more points, but the performance of the
MultiPolygonZ type is more than halved in both hot and cold queries. The
bounding boxes for each bucket of the MultiPolygonZ types overlap slightly
at the edges, which doubles the number of buckets that need to be checked
at those edges. The performance of the multistar prototype does not suffer,
since the bounding boxes of points do not overlap, and multiple buckets are
cached once used.

The performance gain for smaller buckets is not linear for each level. In-
deed, the performance gain noticed becomes smaller with each increasing
level. It is expected that this is caused by the overhead of processing points
on the edge of buckets and the overhead of requests for new buckets. The
increase of points on the edge of each bucket can be seen in Table 33. On
smaller levels, even caching complete buckets becomes less useful, because
new buckets are requested more often, and more points in proportion are
on the edge of the bucket, adding to the requests for other buckets.

In Table 34 the performance of a diagonal query is presented on the
massive g37en2.laz dataset. As discussed in Section 5.4, none of the SF
data structures are available. Nevertheless, the triangle array can cast to
such geometry, yet it is unusable as the intersection takes several minutes.
The star based data structures are the only structures that still perform well
on larger queries. The multistar prototype is for the first time noticeably
faster on cold queries, but is slightly slower on hot queries. The ability to
cache complete buckets during queries of the Multistar prototype is likely
responsible for this, but PostgreSQL is not able to cache these buckets as
efficiently as the stars in the pgTIN prototype for hot queries.

Larger queries with massive extents cannot not be benchmarked, because
window queries for example request massive amounts of data from the data-
base. Point location returns one triangle and range queries will return a line
or a collection of triangles, roughly up to

√
n points (the diagonal of the

dataset), but only a window query can cover the complete dataset.

5.8 atomic functions 67

query none slope aspect local min local max degree

point location 52 52 52 53 53 52

Table 35: Performance of atomic functions. None is the timing of the basic query.
Time in ms.

rijswijk.las demo.las g37_en2.laz

degree 5.9996 5.99993 5.999997

Table 36: Average degree.

In such a case we encounter the problem of massive datasets again, as the
database will run out of memory. PostgreSQL will report it is unable to alloc-
ate memory for the output buffer. This is a problem that cannot be solved
from the inside, such as by the multistar extension, because PostgreSQL
waits for all operations to complete before returning a result. Although the
database response can be limited and offsetted, skipped rows are still com-
puted. Instead the client should be aware of memory constraints and split
up queries based on those constraints, but at the moment this is an open
problem.

5.8 atomic functions
None of the existing approaches have specific atomic functions for TINs.
As implementation of the theoretical efficient approach, the Multistar data
structure does have atomic functions implemented. If atomic TIN functions
can be used inside the database, there is no need for extracting large subsec-
tions from the database and running those functions outside the database,
saving both time and bandwidth. In Chapter 2 the following atomic func-
tions were defined:

• Slope, the level of steepness of a triangle.

• Aspect, the direction of the slope of the triangle.

• Local minimum, whether a node is lower than its surrounding nodes.

• Local maximum, whether a node is higher than its surrounding nodes.

• Degree, the number of neighbours of node.

These functions are benchmarked to give an impression of the complexity
of the operation, as well as the time it would take on top of a point location
e.g. the slope of the triangle of the query point. The results in Table 35 show
that the cost of calculating these atomic functions is a fraction of the spatial
query used, often even undetectable.

The average degree of each node in a DT is expected to be 6 [Okabe et al.,
2009], on which the theoretical sizes of TIN data structures are based in
Chapter 2. This is confirmed by the degree function run on three different
datasets as seen in Table 36. As the datasets increase in number of points,
the average degree converges on the number 6.

68 implementation, experiments and comparison

5.9 summary
This chapter discussed the practical comparison of TIN data structures,
based on the definition of an efficient approach. The performance of items
that define an efficient approach are summarized here for the different data
structures:

• Loading time of the TIN, including construction is defined by the com-
plexity of the data structure. Bucketed data structures take longer to
construct and load into the database than data structures that do not
use buckets. On massive datasets the database fails to load the SF geo-
metries, such as the TINZ. The SF TriangleZ would exceed the 100GB
when loaded into a database, making it unfit for massive datasets.
The performance of loading the data structure is of lesser importance
as this step is only ran once.

• Storage size of data structures present a clear distinction between data
structures using buckets and those that do not, data structure using
buckets being on average several times smaller. The Triangle Array
is the smallest data structure in these experiments, followed by the
Multistar data structure. Results are influenced by PostgreSQL TOAST
compression and row overhead. The SF geometries are the largest data
structures.

• Storage size of index is defined by the use of buckets. A large proportion
of the storage space taken by non bucketed data structure is used by
the (spatial) index. These indexes are often bigger than a complete
data structure that does use buckets. On massive datasets the same
pattern is visible, where the index of the pgTIN data structure alone
is larger than the Triangle array data structure.

• Time of spatial queries is influenced by the size of buckets for data struc-
tures using brute force methods. These data structures, such as the
Triangle Array and SF TINZ become unusable when larger buckets
are used, while the performance of data structures that use walking
are largely unaffected. On massive datasets the use of buckets in the
Multistar results in faster cold queries, but in slower hot queries com-
pared to the non bucketed approach of pgTIN.

• Time of atomic functions is negligible when applied during spatial quer-
ies. The operations required are small and fast, often able to use the
cached data structure that is used for the spatial query itself.

The experiments validate the criteria for an efficient approach for stor-
ing massive TINs in a DBMS. The Multistar prototype performs well each
item tested, except for the construction and loading. On massive datasets
only the pgTIN and Multistar prototype perform well in spatial queries,
demonstrating the need for topological relationships. The need for buckets
is demonstrated by the size of the pgTIN index, which is almost as large as
the complete Multistar structure.

6 C O N C L U S I O N A N D D I S C U S S I O N

This thesis dealt with finding an efficient approach to store massive TINs
in a DBMS. The criteria found in theory for such an efficient approach has
been realized in the Multistar data structure, which has been implemented
in a database prototype. Conclusions on the efficient approach for storing
massive TINs are presented in Section 6.1. A discussion on both the criteria
as well as the prototype is given in Section 6.2. Finally, in Section 6.3 recom-
mendations for future work are given on storing massive TINs in DBMS.

6.1 conclusion
The main objective of this thesis was to compare different approaches to
store massive TINs in a DBMS - both theoretically and practically - thereby
answering the question: What are efficient approaches to store massive TINs in
a DBMS?. The main problem is to combine a TIN data structure with solu-
tions for massive datasets. By both theoretical and practical comparisons
this thesis has shown that an efficient approach for storing massive TINs in
a DBMS includes the following criteria.

• Nodes of a TIN are explicitly stored only once, preventing duplicate
coordinates. TIN data structures using nodes are also the smallest
data structures possible. Node storage thus minimizes the disk space
required to store TINs. This improves the handling of massive datasets.
By storing nodes a pointcloud is stored as well, using the disk space
more efficiently.

• Atomic functions such as those that calculate slope and aspect are imple-
mented. Other functions include the degree of a node, local minimum
and maximum as well as interpolation algorithms. Many applications
of TINs, such as a DTM, drainage network, analysis of pointclouds
are enabled by these functions. By implementing atomic functions in-
side the database, the transfer of massive amounts of data between
database and client is prevented, saving both time and bandwith.

• Topological relationships of a TIN are explicitly stored. Although this
increases the size of the data structure, topology can be used for spa-
tial operations as well as to access a TIN. Atomic functions such as
local minimum require knowledge about neighbours of node, which
can be accessed in direct time if topological relationships are stored.
Topology can also be used for walking. This solves point location in
O(
√
n) time by traversing the TIN instead of brute forcing in O(n)

time. Similar algorithms such as marching are used to solve other spa-
tial queries. Spatial indexes on simplexes of a TIN are not required for
these algorithms.

• Buckets are used to split the TIN into non-massive sections, which can
be processed and analysed one at a time. Topological relationships

69

70 conclusion and discussion

should be able to point to neighbours in other buckets, making it still
possible to traverse across buckets. A spatial index is only used on the
spatial extent of the bucket, as a spatial index on each individual node,
edge or triangle would become too large on massive datasets. This en-
ables quick selections of buckets in a region of interest. These buckets
can be traversed by topological algorithms, since these algorithms only
require a starting point.

At the moment only two TIN data structures are implemented in spatial
databases. One is the SDO_TIN type used in the Oracle Spatial and Graph
component of the Oracle Database. The other is the SF TIN type described
in the latest SF standard by OGC, implemented by databases such as Post-
greSQL with the PostGIS extension.

• SDO_TIN encodes the TIN in a data structure that can be spatially
clipped and cast to Oracle Geometry. The data structure is similar to
the triangle array structure, storing nodes and triangles pointing to
those nodes. The data structure also uses buckets, which results in
triangles that store pointers to points in specific buckets. However,
atomic functions are not available, nor are topological relationships
stored or used. A SDO_TIN object can be generated from a pointcloud
stored in the same Oracle Database, but this only works on small data-
sets. The buckets generated are thin vertical sections of the complete
datasets, resulting in inefficient access.

• Simple Feature (Access) (SF) encodes the TIN as a patch of triangles -
in which each triangle is stored as a ring of four coordinates. Thus
the coordinates of one node are duplicated. Further duplications ex-
ist because each node is present in almost six triangles on average,
each triangle storing the coordinates of the node. Buckets can be
used, but each bucket exists on its own. Topological relationships
are not stored. In the PostGIS implementation of the SF TIN type,
the SFCGAL backend is required to spatially operate on the TIN, but
atomic functions described are lacking.

A practical comparison between TIN types is done in PostgreSQL. In or-
der to compare these types in the same database, a data structure, named
Triangle Array, similar to the Oracle SDO_TIN structure has been imple-
mented in PostgreSQL. The pgTIN prototype by Ledoux [2013] using a
star based data structure has also been used. A data structure called the
Multistar, based on the criteria discussed, is one of the main works in this
thesis. It has been developed and implemented in PostgreSQL as to validate
the criteria for an efficient approach of storing massive TINs in DBMS.

• pgTIN is a prototype by Ledoux [2013] storing massive TINs with a
star based approach, using topological relationships to solve spatial
queries. By storing only nodes and pointers to its neighbouring nodes
the storage size is very small. Several atomic functions are implemen-
ted, but the data structure does not use buckets. Individual nodes are
indexed with a binary tree.

• Multistar builds upon the pgTIN prototype by implementing buckets
in both the data structure as the topological functions as walking and
marching. Several more atomic functions are implemented. Multiple
nodes and stars are stored in each database row, omitting identifiers

6.2 discussion 71

for each node, but requiring an offset array. An index is only used on
the spatial extent of each bucket.

The construction of the TIN from one tile of the AHN2 dataset is done by
the streaming algorithm of lastools. Several Python scripts have been imple-
mented to transform the lastools output into the different data structures.
Existing approaches and the prototypes have been compared on require-
ments for an efficient approach, which is the performance of the following
items:

• Loading time of the TIN. The time taken to construct a TIN from a
pointcloud and transfer the data structure into the database is very
much dependent on the complexity of the data structure. The Multistar
together with the Triangle Array takes the longest time to load, while
the pgTIN structure and single SF types are much faster. However, on
a massive datasets the SF fail to load, leaving only the three prototypes
of which the pgTIN is the fastest.

• Storage size of data structure. Of all the data structures the Triangle
Array is the smallest, followed closely by the Multistar data structure.
The SF TIN type is twice as big as the Triangle Array. However, this
is the compressed size, uncompressed it would be five times as large.
Row overhead in PostgreSQL causes the pgTIN type to be the largest
data structure, but the data structure itself is as large as the Multistar.

• Storage size of index. Indexes on individual nodes, edges or triangles
become very large on massive datasets. Even non spatial indexes such
as a binary tree become several gigabytes on massive datasets. Thus,
buckets are required for keeping the spatial index small.

• Performance of spatial queries. The performance of spatial queries is
dependent on the size of buckets used, where smaller buckets yield
better performance. The prototypes using topological relationships
scale much better with the size of the buckets and outperform any
brute forcing method. Indeed, spatial queries using PostGIS functions
ran for hours on massive datasets, compared to the seconds needed by
the pgTIN and Multistar prototype.

The pgTIN and Multistar prototypes outperform other data structures
in both size and query performance. When the data structures are bench-
marked on massive datasets these are the only two data structures that re-
main viable. However, the index of pgTIN is almost as large as the com-
plete Multistar data structure, showing the need for buckets. The criteria
presented for an efficient approach for storing massive TINs in a database
are validated in the Multistar prototype. Currently implemented data struc-
tures for TINs such as the SF TIN type and the SDO_TIN type are unfit for
storing massive TINs in a DBMS.

6.2 discussion
An efficient approach to storing massive TINs has been presented in theory
as well as in practice. However, one should not conclude that the criteria
or the implementation of those criteria in the Multistar prototype are the
only ways to an efficient approach. Indeed, many prototypes can be build

72 conclusion and discussion

on the criteria presented and the Multistar prototype is not without draw-
backs. The criteria presented are valid for the scope of this thesis, but can
be changed for other applications. Several other points should be made in
the context of this thesis:

PostgreSQL specifics such as TOAST and the overhead for each row ob-
fuscated the storage sizes. Since TOAST compression is on by default and
seems to have little to no performance impact, the results include TOASTed
data structures. Yet, this does exaggerate differences between data struc-
tures. The difference between the Multistar and pgTIN prototypes is com-
pletely due to row overhead and the size of the indexes used. The data
structure itself is identical.

One of the criteria for data structures has been defined as having atomic
TIN functions, which were lacking in all existing approaches. One could
argue that these functions are so specific they do not belong at the data-
base level, but in the middle ware or client. Nevertheless, for an efficient
approach, such atomic functions should be able to make use of the topolo-
gical data structure inside the database. Although simple analysis such as
aspect and slope are lacking for SF, they are available for rasters in PostGIS,
showing that these functions are common.

The multistar prototype is a method for constructing, loading, storing
and accessing massive TINs in a DBMS, solving the problem of the massive
dataset in each aspect. However, requesting a massive section of the dataset
in the database for output will still result in the database being unable to
locate enough memory to comply with the request, as stated in Section 5.7.
This is an open problem, which cannot be solved inside the database - and
is thereby out of reach for the multistar prototype.

6.3 future work
The Multistar prototype, as well as the Triangle Array prototype are prom-
ising. More research should be done on this topic, which expands the scope
set for the research in this thesis. Future work would include updates to the
TIN data structures and implementing the triangle array+ data structure in
a prototype. These topics and other future work are presented here, split in
sections of the expected time and effort it will take to research them.

6.3.1 In a month

• Thinning. Explicitly stored topological relationships lend itself for thin-
ning in more ways than thinning every nth point or random thinning.
A prototype function (see Appendix E) has been implemented that
uses the ST_DelaunayTriangles to retriangulate a thinned subset of the
multistar prototype, not unlike the Implicit TIN (Section 4.7.1). The se-
lection criteria is the sum of the height differences of a point with its
neighbours. Two examples can be seen in Figure 35.

• Multiresolution TIN. Thinning of the multistar data structure results in
new stars for selected relevant points. Instead of only retriangulating
on the fly, the result could be decomposed into a star based structure
and stored. Thus, several columns holding these stars could be added
to the data structure, one for each level. This would also require mul-
tiple offset arrays, mostly empty, but would reuse the node coordinates

6.3 future work 73

(a) (b)

Figure 35: Thinned datasets of demo.las (a) A thinned and retriangulated dataset us-
ing a filter of 5m total difference (b) A thinned and retriangulated dataset
using a filter of 3m total difference.

stored. The offset arrays required for the multistar prototype are not
required for the triangle array with explicit topological relationships
stored.

• Dynamic tables. The current implementations of the multistar and tri-
angle array prototypes have hardcoded tablenames in their source
code, for looking up data outside the requested bucket. To make
benchmarking and using multiple tables easier, the table name should
be used as an SQL input. Care should be taken to prevent SQL injec-
tion, as the input code is executed again.

6.3.2 In a year

• 3D Ledoux and Meijers [2013] have shown that it is possible to store
3D topography in database with the star based approach. When even-
tually moving to 3D instead of 2.5D the buckets can be defined not by
a 2D regular tessellation, but a 3D one, effectively storing buckets as
voxels in an octree. Both thinning and multiresolution that have been
proposed in the previous section also apply to 3D. However, the walk-
ing algorithms used in the multistar prototype will not work anymore,
as they are based on 2D orientation or intersection tests.

• Compression PostgreSQL uses TOAST to compress large rows, but it
applies a generic compression algorithm. By using specific compres-
sion algorithms for point coordinates, the size of the massive TIN will
be reduced, touching upon the main problem these massive datasets
present. Other tricks, such as discussed in Section 4.5 are also possible.
This research would not need to start from scratch as the open source
pointcloud extension for PostgreSQL already uses several compression

74 conclusion and discussion

techniques 1. One of these techniques is dimensional compression,
which compresses at between 3:1 and 5:1 efficiency on samples with a
high spatial coherence, as buckets have.

• Updates Updating the TIN in the database is outside the scope of this
thesis, but is expected of (spatial) database structures. As discussed
in Section 4.9 because of the variable length of stars and thus of the
multistar, updating becomes slower. Indeed, the advantage of an inser-
tion of one point requiring only three updates to stars Ledoux [2013] is
somewhat negated by the multistar. For an insertion of a point, the ex-
pensive operation is to update the offset array, since every offset from
the inserted point is shifted. On edges of buckets, this can become
more expensive, updating several buckets at a time.

Local updates not violating the Delaunay criteria should also be re-
searched, which requires a function to compute a DT inside the data-
base. For PostgreSQL such a function is present, but it should be
adapted in such a way that each update results in incrementally up-
dating the TIN until the TIN is a valid DT again. This would result in
several recalculations of the offset array in a bucket. The triangle ar-
ray with topological relationships is a better alternative in this respect,
since the sizes of this data structure are fixed, not requiring an offset
arrays.

• Parallelization. Some operations can be run in parallel at the same
time, thereby increasing performance. It is, for example, possible to
process independent subsections of dataset several at a time, instead
of processing them one by one. The simple features approach, which
cannot refer to other buckets (islands as discussed in Section 4.3.1) is
fit for such an approach. A parallel client is used in a paper by van
Oosterom et al. [2015] for accessing pointclouds.

The multistar algorithm is not very fit for parallelized queries as dis-
cussed in Section 4.3.3. Indeed, its speed is derived from not having
to calculate a starting point for each bucket, since it is referenced from
the previous processed bucket. However, a combination would be pos-
sible by dividing a line intersection into two lines, starting two walk-
ing algorithms to the common center of the line from the endpoints
of the line. It is only expected to be efficient when the time taken
for the main function, such as marching for a line intersection greatly
outweighs the time required to find a starting point for marching.

• Bucket shapes. Currently a quadtree is used to determine the shape of
buckets, resulting in differently sized rectangular buckets. Especially
on very thin or very wide datasets, this could decrease performance,
which could be solved by implementing square buckets. Other regular
tessellations are possible, but it is unknown how hexagonal buckets
would influence performance.

• Hierarchies Future work such as thinning, multiresolution TINs and
bucket shapes can be combined with concepts as hierarchical sub-
divided TINs [De Floriani and Puppo, 1995; Bertolotto et al., 1995].
An overview of such simplification methods is given by Heckbert and
Garland [1997], but research is needed for discovering possibilities of
applying these methods in a database.

1 explained at its github site

https://github.com/pgpointcloud/pointcloud#compressions

6.3 future work 75

6.3.3 With a team of developers

• Loader performance The current construction and loading algorithms are
written in Python. By implementing these algorithms in a program-
ming language such as C, loading and construction times can be sped
up. It would also lower the memory footprint on these algorithms.
The code by lastools 2 could be used to implement a more elegant
solution to combine the output of the streaming algorithm. It would
also be preferable to implement an open source streaming algorithm
or similar construction methods that are able to handle massive TINs,
as the streaming solution used in this thesis is neither open source nor
free.

• Mature prototype Although the current prototype works and is publicly
available, it can be become more mature in its functioning an program-
ming. Future works includes the handling of dynamic tablenames i.e.
not hardcoding them in the prototype. However, this shows a flaw in
accessing the multistar prototype in a relational database. Other prob-
lems are the many fields needed for each function in the multistar pro-
totype. A solution would be storing the table name in each multistar,
but this would be a non normalized approach. Oracle has solved this
exact problem by implementing the SDO_TIN object, with all the relev-
ant metadata stored as discussed in Section 3.2.2. When implemented
in PostgreSQL, Multistar buckets are only accessed and retrieved by
interfacing with this object stored in another table.

• Triangle array+ Although the Multistar prototype has been shown to
work and to be both fast and small, it has certain drawbacks. A good
alternative, based on the same criteria for an efficient approach de-
scribed in this thesis, would be storing the triangle array data struc-
ture with explicitly stored topological relationships. It is expected to
have a larger size on disk, but would improve upon aspects such as
updating and accessing.

2 found at https://github.com/LAStools/LAStools/

https://github.com/LAStools/LAStools/

B I B L I O G R A P H Y

Agarwal, P., Arge, L., and Danner, A. (2006). From point cloud to grid
DEM: A scalable approach. In Riedl, A., Kainz, W., and Elmes, G.,
editors, Progress in Spatial Data Handling, pages 771–788. Springer Berlin
Heidelberg.

Agarwal, P., De Berg, M., Bose, P., Dobrint, K., Van Kreveld, M., Overmars,
M., De Groot, M., Roos, T., Snoeyink, J., and Yu, S. (1996). The com-
plexity of rivers in triangulated terrains. In Proceedings of the Canadian
Conference on Computational Geometry 8th, CCCG’96, August 12-15, Car-
leton University, Ottawa, pages 325–330. Citeseer.

Agarwal, P. K., Arge, L., and Yi, K. (2005). I/o-efficient construction of
constrained delaunay triangulations. In Algorithms–ESA 2005, pages
355–366. Springer.

Baumgart, B. G. (1975). A polyhedron representation for computer vision.
In Proceedings of the May 19-22, 1975, national computer conference and
exposition, pages 589–596. ACM.

Berg de, M., Van Kreveld, M., Overmars, M., and Schwarzkopf, O. C. (2000).
Computational geometry. Springer.

Bertolotto, M., De Floriani, L., and Marzano, P. (1995). Pyramidal simplicial
complexes. In Proceedings of the Third ACM Symposium on Solid Modeling
and Applications, SMA ’95, pages 153–162, New York, NY, USA. ACM.

Blandford, D. K., Blelloch, G. E., Cardoze, D. E., and Kadow, C. (2005). Com-
pact representations of simplicial meshes in two and three dimensions.
International journal of computational geometry & applications, 15(01):3–24.

Burrough, P. A. and McDonnell, R. (1998). Principles of geographical informa-
tion systems, volume 333. Oxford university press Oxford.

Chen, M.-B., Chuang, T.-R., and Wu, J.-J. (2006). Parallel divide-and-conquer
scheme for 2d delaunay triangulation. Concurrency and Computation:
Practice and Experience, 18(12):1595–1612.

De Floriani, L., Facinoli, M., Magillo, P., and Dimitri, D. (2008). A hierarch-
ical spatial index for triangulated surfaces. In GRAPP, pages 86–91.

De Floriani, L. and Puppo, E. (1995). Hierarchical triangulation for mul-
tiresolution surface description. ACM Trans. Graph., 14(4):363–411.

Devillers, O., Pion, S., and Teillaud, M. (2002). Walking in a triangulation.
International Journal of Foundations of Computer Science, 13(02):181–199.

Devroye, L., Lemaire, C., and Moreau, J.-M. (2004). Expected time analysis
for delaunay point location. Computational Geometry, 29(2):61 – 89.

Djinevski, L., Stojanova, S., and Trajanov, D. (2014). Optimizing durkins
propagation model based on TIN terrain structures. In Trajkovik, V. and
Anastas, M., editors, ICT Innovations 2013, volume 231 of Advances in
Intelligent Systems and Computing, pages 263–272. Springer International
Publishing.

77

78 bibliography

Douglas, K. and Douglas, S. (2003). PostgreSQL: a comprehensive guide to build-
ing, programming, and administering PostgreSQL databases. SAMS publish-
ing.

Edelsbrunner, H. (2001). Geometry and topology for mesh generation. Cam-
bridge University Press.

Egenhofer, M. J. and Franzosa, R. D. (1991). Point-set topological spatial re-
lations. International Journal of Geographical Information System, 5(2):161–
174.

Elmasri, R. and Navathe, S. B. (2006). Fundamentals of Database Systems (5th
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Fritsch, D. (1996). Three-dimensional geographic information systems-
status and prospects. International Archives of Photogrammetry and Remote
Sensing, 31:215–221.

Guibas, L. and Stolfi, J. (1985). Primitives for the manipulation of gen-
eral subdivisions and the computation of voronoi. ACM Transactions
on Graphics (TOG), 4(2):74–123.

Heckbert, P. S. and Garland, M. (1997). Survey of polygonal surface simpli-
fication algorithms. Technical report, DTIC Document.

Isenburg, M., Liu, Y., Shewchuk, J. R., and Snoeyink, J. (2006a). Streaming
computation of delaunay triangulations. ACM Transactions on Graphics,
25(3):1049–1056.

Isenburg, M., Liu, Y., Shewchuk, J. R., Snoeyink, J., and Thirion, T. (2006b).
Generating raster DEM from mass points via TIN streaming. In Geo-
graphic Information Science—GIScience 2006, volume 4197 of Lecture Notes
in Computer Science, pages 186–198, Münster, Germany.

Jones, C. B., Kidner, D. B., and Ware, J. M. (1994). The implicit triangu-
lated irregular network and multiscale spatial databases. The Computer
Journal, 37(1):43–57.

Kettner, L. (1999). Using generic programming for designing a data struc-
ture for polyhedral surfaces. Computational Geometry, 13(1):65–90.

Kidner, D. B., Ware, J. M., Sparkes, A. J., and Jones, C. B. (2000). Multiscale
terrain and topographic modelling with the implicit TIN. Transactions
in GIS, 4(4):361–378.

Kim, S., Cho, M., and Cho, H.-g. (1999). A geometric compression algorithm
for massive terrain data using delaunay triangulation. In Proc. of WSCG
’99, pages 124–131. WSCG.

Kumler, M. P. (1994). An intensive comparison of triangulated irregular net-
works (tins) and digital elevation models (dems). Cartographica: The In-
ternational Journal for Geographic Information and Geovisualization, 31(2):1–
99.

Ledoux, H. (2013). Storing and analysing massive tins in a DBMS with a
star-based data structure. Unpublished report.

bibliography 79

Ledoux, H. and Meijers, M. (2013). A star-based data structure to store
efficiently 3d topography in a database. Geo-spatial Information Science,
16(4):256–266.

Lee, J. (1989). A drop heuristic conversion method for extracting irregular
networks for digital elevation models. In Proceedings GIS/LIS ’89, pages
30–39, Orlando, USA.

Li, Z., Zhu, C., and Gold, C. (2010). Digital terrain modeling: principles and
methodology. CRC press.

Lyon, J. G. (2003). GIS for Water Resource and Watershed Management. CRC
Press.

Moore, I. D., Grayson, R., and Ladson, A. (1991). Digital terrain modelling: a
review of hydrological, geomorphological, and biological applications.
Hydrological processes, 5(1):3–30.

Mücke, E. P., Saias, I., and Zhu, B. (1999). Fast randomized point location
without preprocessing in two-and three-dimensional delaunay triangu-
lations. Computational Geometry, 12(1):63–83.

OGC (2006). Opengis implementation specification for geographic inform-
ation - simple feature access - part 1: Common architecture. Technical
report, OGC. version 06-103r4.

Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2009). Spatial tessellations:
concepts and applications of Voronoi diagrams, volume 501. John Wiley &
Sons.

Oracle (2015). Sdo_TIN_pkg package (tins). https://docs.oracle.com/cd/
Accessed on 22 December 2014.

Oude Elberink, S., Stoter, J., Ledoux, H., and Commandeur, T. (2013). Gen-
eration and dissemination of a national virtual 3D city and landscape
model for the Netherlands. Photogrammetric Engineering and Remote Sens-
ing, 79(2):147–158.

Peckham, R. J. and Gyozo, J. (2007). Digital terrain modelling, Development
and Applications in a Policy Support Environment. Lecture Notes in Geoin-
formation and Cartography. Springer.

Penninga, F. (2004). Oracle 10g topology. Technical report, TU Delft.

Peucker, T. K., Fowler, R. J., Little, J. J., and Mark, D. M. (1978). The tri-
angulated irregular network. In Amer. Soc. Photogrammetry Proc. Digital
Terrain Models Symposium, volume 516, page 532.

Pigeon, S. (2001). Contributionsa la compression de données. PhD thesis, Ph. d.
thesis, Université de Montréal, Montréal.

Quak, W., Stoter, J., and Tijssen, T. (2003). Topology in spatial dbmss. In The
3rd international symposium on digital earth, Brno, September, 2003.

Ravada, S., Kazar, B., and Kothuri, R. (2009). Query processing in 3d spatial
databases: Experiences with oracle spatial 11g. In Lee, J. and Zlatanova,
S., editors, 3D Geo-Information Sciences, Lecture Notes in Geoinforma-
tion and Cartography, pages 153–173. Springer Berlin Heidelberg.

80 bibliography

Sabo, N., Beaulieu, A; Bélanger, D., Belzile, Y., and Piché, B. (2014). The
geohashtree: a multi-resolution data structure for the management of
point clouds. serial Technical Note 4E, Geomatics Canada.

Sagan, H. (1994). Space-filling curves, volume 18. Springer-Verlag New York.

Samet, H. (2006). Foundations of multidimensional and metric data structures.
Morgan Kaufmann.

Santilli, S. (2011). Topology with postgis 2.0. Presentation.

Shewchuk, J. R. (1996). Triangle: Engineering a 2d quality mesh generator
and delaunay triangulator. In Applied computational geometry towards
geometric engineering, pages 203–222. Springer.

Soukal, R., Málková, M., and Kolingerová, I. (2012). Walking algorithms for
point location in TIN models. Computational Geosciences, 16(4):853–869.

Taubin, G. and Rossignac, J. (1998). Geometric compression through topolo-
gical surgery. ACM Transactions on Graphics (TOG), 17(2):84–115.

van Kreveld, M. (1997). Digital elevation models and TIN algorithms. In
Algorithmic foundations of geographic information systems, pages 37–78.
Springer.

van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer, M.,
Geringer, D., Ravada, S., Tijssen, T., Kodde, M., and Gonçalves, R.
(2015). Massive point cloud data management: Design, implementa-
tion and execution of a point cloud benchmark. Computers & Graphics,
49(0):92 – 125.

van Oosterom, P., Quak, W., and Tijssen, T. (2005). About invalid, valid and
clean polygons. In Developments In Spatial Data Handling, pages 1–16.
Springer.

van Oosterom, P., Stoter, J., Quak, W., and Zlatanova, S. (2002). The balance
between geometry and topology. In Advances in Spatial Data Handling,
pages 209–224. Springer.

van Oosterom, P. and Vijlbrief, T. (1996). The spatial location code. In
Proceedings of the 7th International Symposium on Spatial Data Handling,
Delft, The Netherlands.

Vitter, J. S. (2001). External memory algorithms and data structures: Dealing
with massive data. ACM Computing surveys (CsUR), 33(2):209–271.

Weibel, R. and Heller, M. (1993). Digital terrain modelling. Oxford University
Press.

Wilson, J. P. and Gallant, J. C. (2000). Terrain analysis: principles and applica-
tions. John Wiley & Sons.

Worboys, M. F. and Duckham, M. (2004). GIS: a computing perspective. CRC
press.

Yang, J. and Huang, X. (2014). A hybrid spatial index for massive point
cloud data management and visualization. Transactions in GIS, 18:97–
108.

bibliography 81

Yu, S., Van Kreveld, M., and Snoeyink, J. (1996). Drainage queries in TINs:
from local to global and back again. In Proc. 7th Int. Symp. on Spatial
Data Handling, pages A, volume 13. Citeseer.

Zhu, B. (2000). Fast range searching with delaunay triangulations. GeoIn-
formatica, 4(3):317–334.

Zlatanova, S., Rahman, A. A., and Shi, W. (2004). Topological models and
frameworks for 3d spatial objects. Computers & Geosciences, 30(4):419–
428.

A R E F L E C T I O N

An efficient approach for storing massive TINs in a DBMS is proposed in
this thesis. The process took 8 months, as initially planned. The planning
proposed included learning the programming language C, as required for
implementing a fast extensions in PostgreSQL. However, extending Postgr-
eSQL and in general code by others such as the prototype by Ledoux [2013]
is not easily done with a newly acquired language. Indeed, this required
several more weeks, in order to understand the structure and logic behind
database extensions. This resulted in a tight schedule at the end of the thesis.
I am however quite happy with the result, learning a new programming lan-
guage was one of my main motivations and I would gladly do it again.
Indeed, the long list of future work show my interest in this topic. This has
been a disadvantage at times as well, when research is done outside of the
scope of the thesis.

The research initially was focused on expanding the PostgreSQL pointcloud
extension with a star based structure, but this proved to be difficult as the
pointcloud extension uses fixed size. Storing variable length stars would
require rewriting most of the existing code, which is why stand alone proto-
types has been developed. This led to a change in focus on a general efficient
approach in theory, of which the multistar approach is a possible implement-
ation, but certainly not the only one. The results show the validity of the
requirements for an efficient approach proposed in this thesis, as well as
the shortcomings of current approaches. However, this does certainly not
exclude other requirements and implementations from being valid as well.

The field of Geomatics is concerned with the analysis, acquisition, man-
agement and visualisastion of geographic data. Storing geographic data
such as TINs in databases as well as analysing TINs is a clear part of the
research undertaken within the field of Geomatics. Indeed, much of the
knowledge applied was gained in the core courses of the Master of Geomat-
ics.

The methodology used in this thesis is well known in the Master Geomat-
ics. The approach proposed in this thesis, as well as the prototype imple-
mented, requires both topology and geometry linked in a DBMS which is
an open area of research in the field of Geomatics [Zlatanova et al., 2004].
TINs have many applications, one being terrain modeling as in the TOP10

NL 3D dataset [Oude Elberink et al., 2013]. Practical comparisons on spatial
performance in databases, called benchmarking is done often, most recently
during this thesis [van Oosterom et al., 2015]. The prototype developed re-
uses elements from the implementation by [Ledoux, 2013], which has also
been implemented in 3D by Ledoux and Meijers [2013], showing the relation
between this thesis and the other research undertaken in the Geomatics.

Many practical applications of the massive point cloud data require easy
access and analysis of such point clouds. These operations often require an
intermediary TIN. Accessible database storage of such massive TINs enables
easier access, analysis and distribution for those who work with point cloud
data. Pointcloud and TIN analysis used in a scientific setting is very relevant

83

84 A reflection

when used for flood modeling. Indeed, flood prevention is relevant for the
general public in the Netherlands.

The prototypes developed can still be improved, which is why the code
can be found on GitHub, as it is explained in detail in the other appendices.
It is expected that a Geomatics PhD research is undertaken on the same
topic, using my thesis and prototypes as a starting point. This again under-
lines the scientific relevance of this topic and thesis as well as the relation of
this thesis with the research undertaken in the field of Geomatics.

B C O N S T R U C T I O N A N D LOA D I N G
TO O L S

Construction and loading of TIN structures into the database is done by
lastools which is piped to custom Python tools as described in Section 5.1.
A distinction is made between single type loaders, which output only one
triangle or star at the time, while multi type loaders output collections of
geometries in buckets, such as MultiPolygons. All these loaders are avail-
able and further document at https://github.com/evetion/thesis_tools.

A typical way of constructing the the multistar data structure and loading
it into the database is demonstrated in Listing 1. Both the spfinalize and
spdelaunay2d are lastools programs that use streaming algorithms. The first
run uses a Python script qtfin.py that collects statistics about the number
of points for each bucket. This information is reused by all the multi type
data structures to create the buckets in the database. The second step uses
a Python postgresql client to load the data into the database. These script
could be sped up by using COPY instead of INSERT statements.

Listing 1: Loading of multistar type.

/* Construct quadtree buckets information */

spfinalize -i rijswijk.laz -ilas -o -v -level 5 -ospb |

spdelaunay2d -ispb -osmb | python qtfin.py 5

/* Create data structure based on the previous run */

spfinalize -i rijswijk.laz -ilas -o -v -level 5 -ospb |

spdelaunay2d -ispb -osmb | python multistar.py 5

Single type geometries such as TriangleZ but also pgTIN, do not require
the construction step of a quadtree and output their information to a named
pipe as seen in Listing 2.

Listing 2: Loading of single type.

/* Create pgTIN data structure */

spfinalize -i rijswijk.laz -ilas -o -v -level 5 -ospb |

spdelaunay2d -ispb -osmb | python pgtin.py > pipe

/* Create TriangleZ data structure */

spfinalize -i rijswijk.laz -ilas -o -v -level 5 -ospb |

spdelaunay2d -ispb -osmb | python simplefeatures.py > pipe

From this named pipe the data can be imported in the database after
creating the relevant table as seen in Listing 3 and Listing 4.

Listing 3: pgTIN table creation and loading.

CREATE TABLE points (id int, x double precision, y double

precision, z double precision, star integer[]);

COPY points from 'pipe ';
ALTER table points add primary key (id);

85

https://github.com/evetion/thesis_tools

86 B construction and loading tools

Listing 4: TriangleZ table creation and loading.

CREATE TABLE trianglez();

SELECT AddGeometryColumn(' public ', ' trianglez ', 'geom', -1, '
TRIANGLEZ', 3);

COPY trianglez FROM 'pipe ';
CREATE INDEX idx_trianglez USING gist (geom);

When constructing and loading massive datasets or using a large number
of buckets, the bucket id and point id cannot be paired into an unsigned
32bit integer anymore. In order to switch to unsigned 64 bit integers, three
statements should be changed in typical loader scripts:

• The SQL statements for creating the table should state bigint

• The writebin function should use the ‘Q’ structure instead of ‘I’

• The stitch function needs to be changed to 64bit integers.

Relevant comments on changing these things are present in the python
files.

C M U LT I S TA R

The Multistar data structure is described extensively in Chapter 4 and in
Section 5.3. In here the different functions are described. The source code
can be found in the Github repository at https://github.com/evetion/

multistar. The prototype is currently divided into two C source files, one
which decodes the data structure and one which contains the spatial func-
tions. At the moment the tablename is hardcoded in the source code, the
prototype thus requires recompiling in order to use different tables.

The Listing 5 the table structure and the relevant indexes and views are
created. This is normally done by the Python script in the construction
procedure as seen in Listing 6. An index is created on both the unique id as
the geometry. A view is created for use in QGIS to show the extents of the
buckets.

Listing 5: Multistar table creation.

CREATE TABLE multistar (id int, bbox box3d, offsets int[], points

bytea, stars bytea);

ALTER TABLE multistar ADD PRIMARY KEY (id);

CREATE INDEX idx_multistar ON {} using GIST(ST_FORCE_3DZ(bbox));

CREATE OR REPLACE VIEW multistar_all AS SELECT id,

st_force_3dz(bbox::geometry) AS st_force_3dz

FROM multistar;

Listing 6: Loading of multi type.

/* Construct quadtree buckets information */

spfinalize -i rijswijk.laz -ilas -o -v -level 5 -ospb |

spdelaunay2d -ispb -osmb | python qtfin.py 5

/* Create data structure based on the previous run */

spfinalize -i rijswijk.laz -ilas -o -v -level 5 -ospb |

spdelaunay2d -ispb -osmb | python multistar.py 5

Three spatial queries are adapted from the pgTIN prototype to work with
the multistar data structure as seen in Listing 7

Listing 7: Spatial queries.

/* Point location, returning TriangleZ */

CREATE OR REPLACE FUNCTION pl(double precision, double precision,

integer)

RETURNS bytea AS

'/usr/lib/postgresql/9.3/lib/multistar . so ', ' pl '
LANGUAGE c IMMUTABLE STRICT

/* Profile, returning LineStringZ */

87

https://github.com/evetion/multistar
https://github.com/evetion/multistar

88 C multistar

CREATE OR REPLACE FUNCTION public.profile(double precision,

double precision, double precision, double precision, integer

)

RETURNS bytea AS

'/usr/lib/postgresql/9.3/lib/multistar . so ', '
profile_count_intersections '

LANGUAGE c IMMUTABLE STRICT

/* Range query returning true if all points are found */

CREATE OR REPLACE FUNCTION range_query(double precision, double

precision, double precision, double precision, integer,

integer)

RETURNS boolean

AS '/usr/lib/postgresql/9.3/lib/multistar . so ', ' range_query '
LANGUAGE C STRICT IMMUTABLE;

Spatial functions cache database rows, which can be requested internally
in PostgreSQL, calling one of the functions in Listing 8. The gettin_convex
is for example used in Algorithm 4.1.

Listing 8: Explode Multistar to stars.

/* Dump one multistar row as a set with all the points stored.

Input is offsets, points and stars */

CREATE OR REPLACE FUNCTION gettin(IN integer[], IN bytea, IN

bytea,

OUT id integer, OUT x double precision, OUT y double

precision, OUT z double precision, OUT star integer

[])

RETURNS SETOF record

AS '/usr/lib/postgresql/9.3/lib/multistar . so ', ' gettin '
LANGUAGE c IMMUTABLE STRICT ;

/* Dump for one multistar row only the points on the convex hull,

does return NULL rows. Input is offsets, points and stars */

CREATE OR REPLACE FUNCTION gettin_convex(IN integer[], IN bytea

, IN bytea,

OUT id integer, OUT x double precision, OUT y double

precision, OUT z double precision, OUT star integer

[])

RETURNS SETOF record

AS '/usr/lib/postgresql/9.3/lib/multistar . so ', ' gettin_convex '
LANGUAGE c IMMUTABLE STRICT ;

The decoder functions are exposed to PostgreSQL and can be used to
create a view on the pointcloud stored as seen in Listing 9. A simple simpli-
fying algorithm has been implemented, as discussed in Section 4.7.1, which
returns significant points. These points can again be triangulated into a TIN
as seen in Listing 10. Other useful functions such as stating the complete
number of points stored, or the selection of buckets on the convex hull do
not require an extensions, but are retrieved in pure SQL as seen in Listing 11.

Listing 9: View creation for PostGIS point geometry.

/* A view on all the points in one bucket from the gettin

function */

89

CREATE OR REPLACE VIEW points AS SELECT id, ST_MakePoint(x,y,z

,28992) FROM (SELECT (gettin(tree,points,stars)).* FROM

multistar_l6 WHERE id =117) as f

Listing 10: Simplify as shown in the future work (Section 6.3).

SELECT ST_DELAUNAYTRIANGLES(ST_UNION(geom),0)

FROM (SELECT ST_MAKEPOINT(x,y,z) as geom FROM

(SELECT (simplify(tree,points,stars)).* FROM

multistar_l6_adaptive) as f

WHERE @dif > 5) as x

Listing 11: Meta functions not requiring the PostgreSQL extension.

/* Total number of points in table */

SELECT SUM(@tree[1]) FROM multistar_l4

/* Bucket ids that contain points that are on the convex hull */

SELECT id FROM multistar_l4 WHERE tree[1] < 0

D T R I A N G L E A R R AY

The Triangle Array implementation is described in Section 5.3 to mimic the
Oracle SDO_TIN structure. In here the different functions are described.
The source code can be found in the Github repository at https://github.
com/evetion/trianglearray.

The Listing 12 the table structure and the relevant indexes and views are
created. This is normally done by the Python script in the construction
procedere as seen in Listing 15.

Listing 12: Triangle array creation.

CREATE TABLE triangle_array (id int, bbox box3d, nump int, numt

int, points bytea, triangles bytea);

ALTER TABLE triangle_array ADD PRIMARY KEY (id);

CREATE INDEX idx_triangle_array ON {} using GIST(ST_FORCE_3DZ(

bbox));

CREATE OR REPLACE VIEW triangle_array_all AS SELECT id,

st_force_3dz(bbox::geometry) AS st_force_3dz

FROM triangle_array;

Only three functions are exposed to PostgreSQL, the tinz_bytea function
and the trianglez_bytea function, as well as a helper function used intern-
ally. After compiling the triangle_array.c file with the provided Makefile,
these functions can be loaded into PostgreSQL as seen in Listing 13.

Listing 13: Triangle array SQL function loading.

/* Returns one bytea trianglez for given triangle id */

CREATE OR REPLACE FUNCTION trianglez_bytea(IN integer, IN bytea,

IN bytea, IN integer,

OUT geom bytea)

RETURNS bytea

AS ' triangle_array . so ', ' trianglez_bytea '
LANGUAGE c IMMUTABLE STRICT;

/* Returns bytea tinz for bucket id */

CREATE OR REPLACE FUNCTION tinz_bytea(IN integer, IN bytea, IN

bytea, IN integer,

OUT geom bytea)

RETURNS bytea

AS ' triangle_array . so ', ' tinz_bytea '
LANGUAGE c IMMUTABLE STRICT;

/* Helper function. Returns one point, used if outside of bucket

*/

CREATE OR REPLACE FUNCTION trianglexyz(IN integer, IN bytea,

OUT x double precision, OUT y double precision, OUT z double

precision)

91

https://github.com/evetion/trianglearray
https://github.com/evetion/trianglearray

92 D triangle array

RETURNS SETOF record

AS ' triangle_array . so ', ' trianglexyz '
LANGUAGE c IMMUTABLE STRICT;

Afterwards the two main functions can be called as seen in Listing 14.
The output is WKB which can be cast into PostGIS geometry.

Listing 14: Triangle array SQL function calling.

/* 91 is the bucket id for each row */

SELECT ST_AsTEXT(tinz_bytea(numt,points,triangles,91)::geometry)

FROM triangle_array WHERE id = 91

/* 500 is the number of a triangle requested */

SELECT ST_AsTEXT(trianglez_bytea(500,points,triangles,91)::

geometry) FROM triangle_array WHERE id = 91

At the moment the tablename is hardcoded once in the source code. As
shown in Chapter 5 the TINZ en TriangleZ types in PostGIS are not very
usable yet, but their close neighbours MultiPolygonZ and TriangleZ types
are. By changing two lines in the source code (seen in Listing 15), this can
be accomplished, demonstrating the difference between MultiPolygonZ and
TINZ, PolygonZ and TriangleZ is only one integer.

Listing 15: Changing WKB output.

/* in tinz_bytea */

uint32_t wkbtype = 1006; /* MULTIPOLYGONZ | WKB TINZ is code

1016 */

/* in trianglez_to_geometry_wkb */

uint32_t wkbtype = 1003; /* POLYGONZ | WKB TRIANGLEZ is code 1017

*/

E Q U E R I E S

The results presented in Chapter 5 should be reproducable. In the previous
appendices, the data structures and PostgreSQL extensions are described.
This appendix is divided into three sections: The commands used for timing
the construction, commands used for retrieving the size of database tables
and the SQL queries used in benchmarking.

e.1 loading time
To measure actual construction and loading time, the utility time on Linux
is used in the shell.

Listing 16: Timing function.

time spfinalize -i rijswijk.laz -ilas -o -v -level 5 -ospb |

spdelaunay2d -ispb -osmb | python ~/streamingstars/qtfin.py 5

/* output */

real 0m2.170s

user 0m2.584s

sys 0m0.048s

The real time is used, because waiting for databases and disk should be
included in the performance. In python the time.time() module and function
is used, for measuring the creation of indexes.

e.2 database storage size
For measuring the storage size of the various data structures the statistics
page for each table in pgAdminIII, the PostgreSQL client, is used. When
this proves to be inaccurate e.g. reporting only sizes in gigabytes, one of the
following SQL query is used:

Listing 17: Disk space taken query

/* Table pretty size */

SELECT pg_size_pretty(pg_total_relation_size('
multistar_l10_delft_a '))

/* Table size in bytes */

SELECT pg_total_relation_size(' multistar_l10_delft_a ')

/* Complete database pretty size */

SELECT pg_size_pretty(pg_database_size(current_database()))

/* Complete database size in bytes */

SELECT pg_database_size(current_database())

93

94 E queries

e.3 spatial queries
The following queries are documented for each benchmark. For each bench-
mark the queries for all the data structures are given, with their names as
comments. Take note that most of these queries require specific extensions
and backends:

• TINZ (ST_3DIntersection) requires the SFCGAL backend to PostGIS.
See their website https://oslandia.github.io/SFCGAL/

• Multistar structures requires the multistar extension, see Appendix C.

• Triangle array structures (TINZ_bytea) requires the triangle array struc-
ture, see Appendix D.

• pgTIN functions require the pgtin extension by Ledoux [2013].

• PostGIS is required for all of these functions, except pgTIN.

For large bucketsizes, resulting in few rows, use the following SQL: SET
enable_seqscan TO off; to prevent the PostgreSQL planner from not using
the spatial index.

Listing 18: Point location benchmark of the demo.las dataset.

/* point 82419.172,449005.397 demo.laz */

/* Multistar */

SELECT pl(82419.172,449005.397,id) FROM multistar_l4 WHERE bbox

&& ST_POINT(82419.172 449005.397);

/* MultiPolgyonZ, same for single type PolygonZ */

SELECT ST_Intersection(geom,ST_POINT(82419.172 449005.397)) FROM

multipoly_l4 WHERE geom && ST_POINT(82419.172 449005.397);

/* TINZ, same for single type TriangleZ */

SELECT ST_Intersection(geom,ST_POINT(82419.172 449005.397)) FROM

multitinz_l4 WHERE geom && ST_POINT(82419.172 449005.397);

/* Triangle Array */

SELECT ST_Intersection(tinz_bytea(numt,points,triangles,id)::

geometry,ST_POINT(82419.172,449005.397)) FROM multitin_l5_td

WHERE bbox && ST_POINT(82419.172,449005.397)

/* pgTIN */

SELECT pl(82419.172,449005.397)

Listing 19: Line intersection of demo.las

/* line from 82506.264,448925.855 to 82639.791,449024.138 in demo

.las */

/* Multistar */

https://oslandia.github.io/SFCGAL/

E.3 Spatial queries 95

SELECT profile_count_intersections

(82506.264,448925.855,82639.791,449024.138,id) FROM

multistar_l6 WHERE bbox && ST_POINT(82506.264,448925.855)

/* TINZ, but needs ST_FORCE2D, making it useless */

SELECT ST_ASTEXT(ST_3DIntersection(ST_FORCE2D(geom), ST_MakeLine(

ST_POINT(82506.264,448925.855),ST_POINT(82639.791,449024.138)

))) FROM multitinz_l7 WHERE ST_INTERSECTS(geom,ST_MakeLine(

ST_POINT(82506.264,448925.855),ST_POINT(82639.791,449024.138)

))

/* MultiPolygonZ */

SELECT ST_ASTEXT(ST_Intersection(geom, ST_SETSRID(ST_MakeLine(

ST_POINT(82506.264,448925.855),ST_POINT(82639.791,449024.138)

),28992))) FROM multipoly_l5 WHERE ST_INTERSECTS(geom,

ST_MakeLine(ST_POINT(82506.264,448925.855),ST_POINT

(82639.791,449024.138)))

/* Triangle Array */

SELECT ST_Intersection(tinz_bytea(numt,points,triangles,id)::

geometry,ST_MakeLine(ST_POINT(82506.264,448925.855),ST_POINT

(82639.791,449024.138))) FROM multitin_l4_td WHERE

ST_INTERSECTS(bbox,ST_MakeLine(ST_POINT(82506.264,448925.855)

,ST_POINT(82639.791,449024.138)))

/* pgTIN */

SELECT profile_count_intersections(82506.264,448925.855,

2686.674,448926.463)

Listing 20: Horizontal line intersection of demo.las

/* line from 82348.405,449248.327,82556.899,449248.503 in demo.

las */

/* Multistar */

SELECT profile_count_intersections

(82348.405,449248.327,82556.899,449248.503,id) FROM

multistar_l6 WHERE bbox && ST_POINT(82348.405,449248.327)

/* MultiPolygonZ */

SELECT ST_ASTEXT(ST_Intersection(geom, ST_SETSRID(ST_MakeLine(

ST_POINT(82348.405,449248.327),ST_POINT(82556.899,449248.503)

),28992))) FROM multipoly_l5 WHERE ST_INTERSECTS(geom,

ST_MakeLine(ST_POINT(82348.405,449248.327),ST_POINT

(82556.899,449248.503)))

Listing 21: Diagonal line intersection of g37en2.laz.

/* line 85243.601,443932.968,89657.005,449718.544 g37en2.laz */

/* Multistar */

SELECT profile_count_intersections

(85243.601,443932.968,89657.005,449718.544,id) FROM

multistar_g37_l8 WHERE bbox && ST_POINT(85243.601 443932.968)

;

/* pgTIN */

SELECT profile_count_intersections

(85243.601,443932.968,89657.005,449718.544);

/* Triangle Array */

SELECT ST_Intersection(tinz_bytea(numt,points,triangles,id)::

geometry,ST_MakeLine(ST_POINT(85243.601,443932.968),ST_POINT

(89657.005,449718.544))) FROM multitin_g37_l8 WHERE

ST_INTERSECTS(bbox,ST_MakeLine(ST_POINT(85243.601,443932.968)

,ST_POINT(89657.005,449718.544))

Listing 22: Atomic functions. Each mode is one of the atomic functions, returned
only as log messages.

/* basic point location */

SELECT pl2(82416.692,449007.626,id,0) FROM multistar_l7 WHERE

bbox && ST_POINT(82416.692,449007.626);

/* aspect */

SELECT pl2(82416.692,449007.626,id,1) FROM multistar_l7 WHERE

bbox && ST_POINT(82416.692,449007.626);

/* slope */

SELECT pl2(82416.692,449007.626,id,2) FROM multistar_l7 WHERE

bbox && ST_POINT(82416.692,449007.626);

/* local minimum */

SELECT pl2(82416.692,449007.626,id,3) FROM multistar_l7 WHERE

bbox && ST_POINT(82416.692,449007.626);

/* local maximum */

SELECT pl2(82416.692,449007.626,id,4) FROM multistar_l7 WHERE

bbox && ST_POINT(82416.692,449007.626);

/* degree */

SELECT pl2(82416.692,449007.626,id,5) FROM multistar_l7 WHERE

bbox && ST_POINT(82416.692,449007.626);

96

colophon
This document was typeset using LATEX. The document layout was gener-
ated using the arsclassica package by Lorenzo Pantieri, which is an adap-
tion of the original classicthesis package from André Miede.

This thesis uses and has contributed elements from and to the
MSc Geomatics Thesis Template found at https://github.com/tudelft3d/

MScGeomaticsThesisTemplate.

The figures and diagrams were mostly drawn using IPE, Inkscape and QGIS.
The cover was generated with Rhino and Grasshopper.

https://github.com/tudelft3d/MScGeomaticsThesisTemplate
https://github.com/tudelft3d/MScGeomaticsThesisTemplate

	Coverpage
	Titlepage
	Abstract
	Acknowledgements
	Contents
	Acronyms
	1 Introduction
	1.1 Problem statement
	1.2 Research question and objectives
	1.3 Methodology
	1.4 Use case
	1.5 Scope
	1.6 Outline

	2 Theory and background information
	2.1 Fields and tessellations
	2.2 Representing terrain as a TIN
	2.3 Construction of TINs
	2.4 Applications and operations of TINs
	2.5 Graphs
	2.5.1 Topology
	2.5.2 Convexity

	2.6 Data structure of triangulations
	2.6.1 Node based
	2.6.2 Edge based
	2.6.3 Face based

	2.7 Storing attributes
	2.8 Efficient access to a TIN
	2.9 Validity and integrity
	2.10 Criteria for TIN structures

	3 Related work
	3.1 Construction of massive TINs
	3.1.1 Reducing size
	3.1.2 External memory algorithms

	3.2 Existing TIN structures in DBMS
	3.2.1 OGC TIN
	3.2.2 Oracle SDO_TIN
	3.2.3 Postgis Topology
	3.2.4 Academic implementations

	3.3 Subdivision using buckets
	3.3.1 Pairing functions

	3.4 Efficient access to TINs
	3.4.1 Using topology
	3.4.2 Auxiliary spatial indexes
	3.4.3 Compression

	3.5 Summary of related work

	4 Storing TINs with the multistar approach
	4.1 Motivation
	4.2 Outline of the Multistar structure
	4.2.1 Included metadata

	4.3 Buckets
	4.3.1 Referencing other buckets
	4.3.2 Pairing functions and space filling curves
	4.3.3 Parallel SQL queries
	4.3.4 Height information

	4.4 Indexing and sorting
	4.5 Storage size optimizations
	4.6 Integrity and validity checks
	4.7 Atomic TIN functions
	4.7.1 Thinning and simplification using the implicit TIN

	4.8 Storing extra attributes
	4.9 Drawbacks

	5 Implementation, experiments and comparison
	5.1 Workflow
	5.2 Multistar implementation
	5.3 Alternative implementation
	5.4 Construction and loading performance
	5.5 Storage sizes
	5.5.1 Different bucket sizes

	5.6 PostgreSQL specifics
	5.6.1 PostgreSQL row overhead
	5.6.2 Compression by TOAST

	5.7 Query performance
	5.8 Atomic functions
	5.9 Summary

	6 Conclusion and discussion
	6.1 Conclusion
	6.2 Discussion
	6.3 Future work
	6.3.1 In a month
	6.3.2 In a year
	6.3.3 With a team of developers

	Bibliography
	A Reflection
	B Construction and loading tools
	C Multistar
	D Triangle Array
	E Queries
	E.1 Loading time
	E.2 Database storage size
	E.3 Spatial queries

