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An electron transport model in n-Si/SiGe quantum cascade or superlattice structures is described.
The model uses the electronic structure calculated within the effective-mass complex-energy
framework, separately for perpendicular �Xz� and in-plane �Xxy� valleys, the degeneracy of which is
lifted by strain, and additionally by size quantization. The transport is then described via scattering
between quantized states, using a rate equations approach and tight-binding expansion, taking the
coupling with two nearest-neighbor periods. Acoustic phonon, optical phonon, alloy disorder, and
interface roughness scattering are taken into account. The calculated current/voltage dependence
and gain profiles are presented for two simple superlattice structures. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2722244�

I. INTRODUCTION

Following the successful realization of GaAs/AlGaAs-
based terahertz quantum cascade lasers,1 Si/SiGe quantum
cascade structures are attracting considerable attention as a
very promising technology for the same purpose. This would
offer compatibility and even the possibility of monolithic
integration with the standard complementary metal-oxide
semiconductor �CMOS� technology. Within the Si/SiGe sys-
tem, the p-doped structures have been explored in much
more detail, because of larger discontinuity of the valence
band at heterointerfaces, which makes them applicable not
only in terahertz, but also in midinfrared range. For terahertz
emission, however, even modest discontinuities may suffice,
which makes n-doped structures also interesting, and here we
report on modeling the electron transport and light gain/
absorption in n-Si/SiGe cascades. We have previously per-
formed extensive modeling of hole transport,2 demonstrated
the growth of p-Si/SiGe strain-symmetrized cascades with
up to 1200 layers, and observed terahertz electrolumines-
cence from them.3 Midinfrared luminescence has been ob-
served by another group.4 In this article we consider electron
transport and the possibility of achieving gain in n-doped
Si/SiGe cascade structures. There are numerous differences
compared to the transport in n-doped GaAs/AlGaAs cas-
cades, both because one of the major scattering processes—
polar LO-phonon scattering—does not exist in Si/SiGe, and
because of the presence of two types of quantized electronic
states and degeneracies in this system.

A previous study of n-Si/SiGe quantum cascade

structures5 has considered the operation of a triple quantum
well active region within the unity injection approximation,
accounting for a limited number of scattering processes and
of states present in this system, using a combined �scattering
and tunneling� approximate description of transport. In this
work we present a fully consistent model of scattering-
induced transport in n-Si/SiGe cascades, accounting for dif-
ferent types of quantized states and relaxation processes cou-
pling them, and apply it to two simple superlatticelike
structures.

II. THEORY AND COMPUTATIONAL DETAILS

In pure Si and in Si1−xGex alloys with x�0.85, the con-
duction band minima occur near the X point of the Brillouin
zone, and the low-lying conduction band quantized states in
a Si/SiGe multilayer structures hence originate from the six
X valleys. The X valleys are anisotropic, having different
longitudinal and transverse effective mass. To find the elec-
tronic subband structure, we employ the effective mass en-
velope function Schrödinger equation. For structures grown
on the conventional �001� oriented substrate, the two X val-
leys with their axes parallel to the growth direction �denoted
as Xz� give rise to quantized subbands different from those of
four X valleys whose axes are perpendicular to the growth
direction �denoted as Xxy�. This is because the quantization
effective masses are different in the two cases, amounting to
ml=0.916me and mt=0.19me in both materials, where me is
the free-electron mass. Furthermore, the different lattice con-
stants of Si and Ge imply that layers in Si/SiGe structure are
uniaxially strained, the amount of strain being set by the
choice of the substrate composition �Ge molar fraction xs�, in
turn chosen so as to achieve strain balance. The in-planea�Electronic mail: z.ikonic@leeds.ac.uk
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lattice constant of the epilayer material equals that of the
substrate, while the perpendicular lattice constant changes.
The strain lifts the degeneracy between the six X valleys, and
hence also influences the subband energies. The potential
energy �position of the X valley bottom� in a strained
Si1−xGex alloy layer, measured from the valence band top of
the substrate, is calculated accounting for the uniaxial and
hydrostatic strain induced shifts, according to6

Econd
X = −

�so�xs�
3

+ �Ev,av�x,xs� − �Ev,av,hyd�x,xs�

+
�so�x�

3
+ Eg�x� + �Ehyd

H �x,xs� + �Euni
X �x,xs� , �1�

where X stands for either Xz or Xxy, �so is the composition
dependent spin-orbit splitting, �Ev,av= �x−xs��0.74
−0.06xs� �eV� is the average valence band offset between
relaxed substrate and this alloy, Eg�x�=1.17−0.34x
+0.206x2, is the �experimental� band gap of the alloy,
�Ev,av,hyd=aV�2�xx+�zz� is the hydrostatic strain component
induced change of the valence band offset, �Ehyd

H = ��d

+�u /3��2�xx+�zz� the hydrostatic strain component induced
shift of the X valley edge, while �Euni

Xz =2�u��zz−�xx� /3 and
�Euni

Xxy =−�u��zz−�xx� /3 are the uniaxial strain component
induced shifts of the X valley edge �different for the two
types of X valleys�. The strain components in a layer are
given by �xx=�yy =a /a0−1 and �zz=−�2C12/C11��xx, where
a0 and a are lattice constants of unstrained layer and sub-
strate, respectively. The lattice constant of an unstrained
layer with Ge mole fraction x is given by a�x�=aGex+aSi�1
−x�+bbowx�1−x�.

The material constants used in this calculation are aV=
−4.54�−3.1�, for Si �Ge� and linear interpolation for the
Si1−xGex alloys, �u=8.6 �9.4� and �d=−6.0 �−4.92�, C11

=1.675 �1.315�, C12=0.650 �0.494�, a=0.543�0.565� nm for
Si �Ge�. Linear interpolation is used for the Si1−xGex alloy
parameters, except for the lattice constant where bowing was
taken into account, with bbow=0.001 88 nm.

For practically realizable, strain balanced structures,
with Si and SiGe layers grown on a substrate with composi-
tion in between, the Si layers are found to be quantum wells
for both types of electrons �valleys�, with Xz valley shifted
below and Xxy valley above their position in unstrained Si,
and the opposite holds for SiGe alloy layers, implying much
shallower wells for Xxy than for Xz electrons. Combined with
the fact that ml is over 4 times larger than mt, the lowest
couple of subbands will stem from the Xz valley, and these
are much more strongly bound than Xxy valley subbands.

The spectrum of quantized states in Si/SiGe quantum
wells is somewhat more complicated than suggested by the
above effective-mass model, because the two degenerate X+z

and X−z valleys are coupled by the potential discontinuity at
the heterointerfaces; hence, their equivalent quantized states
will in fact mix and split in energy. The wave functions of
these states are approximately equal to an even or an odd
linear combination of the effective-mass wave functions. The
split states can be found within a microscopic framework
such as the tight binding7 or the pseudopotential8 method
�and the coupling constant found in this manner may then be

reimported into the effective-mass picture�. However, these
calculations show that for well widths of interest in this work
the intervalley interference induced splitting is rather modest
�typically a few meV�,7 and is further decreased if interdif-
fusion at the interface is accounted for,8 which enables the
translation of state splitting �and consequently the presence
of slightly different transition energies� into an increased
linewidth of intersubband transitions, and the use of the
effective-mass method as a good approximation. This is the
approach followed in the present work, and the states derived
from the Xz valleys are then twofold, and those from the Xxy

valleys fourfold degenerate.
In biased quantum cascade structures the subbands are

not strictly discrete, since resonances exist in the continuum,
but in most cases, e.g., in conventional III-V based cascades,
these are sufficiently sharp that essentially the same results
may be obtained by solving the Schrödinger equation for
discrete states �with real energies�, using box boundary con-
ditions. The shallow wells present for Xxy electrons in Si/
SiGe would make such an approach inappropriate. There-
fore, we have used the complex energy method,9 as has
occasionally been applied to quantum cascade structures
before.10 The subband �resonance� energies are allowed to
take complex values, with the imaginary part representing
the tunneling rate. While virtually no difference is observed
in the results for well-bound states, in the case of weakly
bound states the wave functions corresponding to these reso-
nances are better “discrete representatives“ of the continuous
spectrum than the wave functions obtained with real-energy
box boundary conditions, and can thus be reliably used in
scattering rate calculations. In addition to the more complex
procedure required for finding the complex resonant states,
there arises an ambiguity in the way in which the complex
energies are used in the calculation of scattering rates, which
requires real energies. While there is no general recipe for
such situations, in the structures considered the imaginary
part of the energy was much smaller than the real part;
hence, only the latter was used in further calculations.

The calculation of electron transport in a cascade, de-
scribed below, requires all states to be assigned to individual
periods of the structure. Among all the states found in a finite
multiple period structure, for which the resonant states are
actually calculated, some are assigned to belong to the refer-
ence �“central“� period based on their localization properties,
and then are replicated �shifted in space and energy� to ob-
tain states assigned to the neighboring periods.

Electrons in the structure change their quantum states by
scattering with phonons, on interface roughness, alloy disor-
der, ionized impurities, and by carrier-carrier scattering. In
this article we consider the first three mechanisms, and take
small enough doping that the last two can be neglected. Fur-
thermore, we take that photon emission/absorption processes
do not contribute significantly to the electron transport �cas-
cade operation below lasing threshold�. With two equivalent
Xz and four equivalent Xxy valleys, there are just as many sets
of degenerate subbands. Some scattering processes cause the
electrons to change the valley they belong to �and perhaps
also the subband index�, and others only act within different
subbands of the same valley.
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If the initial and final states belong to different X valleys,
the �intervalley� scattering is caused by large wave vector
phonons. Processes in which an electron scatters between
two X valleys oriented at 90°, e.g., X+z and X+y, are
f-processes, and those between two valleys oriented at 180°,
e.g., X+z and X−z, are g-processes. It should be noted, there-
fore, that two Xz valley subbands can be coupled by
g-processes �e.g., if the initial state belongs to X+z, and the
final to X−z�. Some of these processes are “allowed” and
others are “forbidden.” On the other hand, small wave vector
acoustic phonons only cause transitions between states be-
longing to the same valley, e.g., both to X+z, and the same is
assumed for interface roughness and alloy disorder scatter-
ing, while small wave vector optical phonons do not induce
intravalley scattering at all. Various scattering processes in
this system are illustrated in Fig. 1. The phonon scattering
rates are calculated according to Ref. 11 and the last two
scattering rates according to Ref. 12. The energy-dependent
scattering rates are then averaged over the in-plane electron
distribution, allowing the electron temperature to differ from
the lattice temperature. In numerical calculations we use the
parameter values for Si as a good approximation, because
this is the well material where most of the wave functions are
localized. The phonon scattering parameters were taken from
Ref. 13 and for the interface roughness scattering we used
the values �=0.4 nm and �=16 nm �as indicated by TEM
images of p-doped Si/SiGe samples used in our previous
work3,14�.

When tracking the electron distribution over quantized
states, set by all the scattering processes involved, one has
two choices in this system which has degenerate, or almost
degenerate, states. One choice is to track the population of
each single state, and the other to consider only the popula-
tion of the full group of degenerate states, knowing that the
electron population is shared evenly between the members of

the degenerate set because there is no mechanism which
would dictate otherwise. We use the second choice because it
considerably reduces the total number of states to handle
explicitly. It should be noted, however, that one then needs
more care in finding the total scattering rate between two
states, being mindful of their degeneracy. For example, the
scattering-induced transition which, within this “grouped
states” description, is denoted as Xz

i →Xz
f, where the super-

script labels the quantized state, consists in fact of the fol-
lowing transitions between individual states: X+z

i →X+z
f

�caused by acoustic phonons, alloy and interface scattering�,
and X+z

i →X−z
f �caused by g-processes�, or of the analogous

two transitions starting with the “−z” initial state. As another
example, the transition Xz

i →Xxy
f is composed of X+z

i →X+x
f ,

X+z
i →X−x

f , X+z
i →X+y

f , and X+z
i →X−y

f , all of which are caused
by f-processes, and are equal among themselves, so only one
of the rates has to be evaluated, and then simply multiplied
by 4 to be used in any further calculation.

We denote with ni the electron concentration in the quan-
tum state i of the “central” period, and explicitly account for
N such relevant states �some of them being of Xz, others of
Xxy type�. We assume periodicity of the electron distribution,
i.e., . . .=ni−N=ni=ni+N=ni+2N=. . . for every i=1,2 , . . . ,N,
where i+N and i+2N denote the ith state of the first and
second period to the right of the “central” one, respectively,
and, correspondingly, we assume charge neutrality of each
period, i.e., �i=1

N ni=ND, where ND is the donor doping den-
sity per period. Using the shift-invariance of scattering rates
wi→f, evaluated as described above, the system of rate equa-
tions reads

dni

dt
= − ni�

j=1

N

�wi→j + wi→j+N + wi+N→j + wi→j+2N

+ wi+2N→j� + �
j=1

N

�wj→i + wj→i+N + wj+N→i

+ wj→i+2N + wj+2N→i�nj . �2�

In the steady state one of the equations is replaced by the
charge neutrality condition. One could add the thermal bal-
ance rate equations to find electron distribution of each sub-
band. In the present calculation, however, we did not use
such an elaborate model, and electron temperatures were set
to fixed values, larger than the lattice temperature and chosen
to lie within the range found in previous calculations in
p-Si/SiGe cascades.2

After finding the electron distribution over the subbands
of the Xz and Xxy valleys, the absorption �or gain� profile can
be calculated. Within the effective mass model, intersubband
optical transitions are allowed only between quantized states
derived from the same valley, e.g., both from X+z, or both
from X−z, etc. Within the more accurate split-states picture,
out of the four possible transitions between the initial quan-
tized state doublet and the final state doublet, only two are
allowed and their matrix elements are very close to those
obtained within the effective mass model.8 These selection
rules imply that the equivalent-valley �quasi�degeneracy in
Si/SiGe has the same effect as the spin degeneracy of �
valley subbands in conventional III/V based structures, with

FIG. 1. �Color online� Scattering processes in n-Si/SiGe structures, for the
initial state in �A� Xz, and �b� Xxy valley: between subbands of the same
valley �red�, f-processes �green�, and g-processes �blue�.
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the spin-conservation selection rule holding in optical transi-
tions �the spin degeneracy is present in this system as well�.
Therefore, the conventional expressions for optical
absorption/gain in � valley intersubband transitions are di-
rectly applicable here. In a quantum cascade structure both
the “intraperiod“ and “interperiod“ intersuband optical tran-
sitions contribute, and the calculation is performed according
to the expression given in Ref. 15.

III. RESULTS AND DISCUSSION

Numerical calculations were performed for two very
simple cascade structures �essentially superlattices, rather
than complex-period cascades normally employed for inter-
subband lasers�, having a single well and barrier per period.
The structures are: �A� Si �6 nm� /Si0.65Ge0.35 �1 nm�, and
�B� Si �8 nm� /Si0.6Ge0.4�1 nm�, and both are assumed grown
on a Si0.95Ge0.05 substrate for strain balance. The Xz state
spacing is in the tens of meV range �precise values depend-
ing on the bias, but approximately 27 and 20 meV between
the lowest two states, respectively�, and there is just one Xxy

state that is significantly localized in the wells, lying between
the first and second excited Xz states. Due to the narrower
wells, the wave functions in structure �A� are more leaky
than in �B�. An example of the subbands calculated in struc-
ture �A� is given in Fig. 2. The wave functions of the four
lowest Xz states are quite strongly localized in single wells,
but the lowest Xxy state wave function extends well into the
next period.

In the electron transport calculation in these structures,
the donor doping was assumed to be 1011 cm−2 per period,
the lattice temperature was set to 20 K, and the carrier tem-
peratures to 150 K �A� and 100 K �B�. The calculated popu-
lation of states and the current, as they depend on the bias,
are shown in Figs. 3 and 4. The populations vary very non-
monotonously over the wide range of bias fields displayed,
as one or the other scattering process becomes dominant. The
current peaks generally correspond to values of bias where

anticrossing �alignment� of states in subsequent periods ap-
pears, which indicates the importance of quasielastic scatter-
ing processes. It is interesting to note, by comparing Fig. 3�a�
and 3�b�, that including the second-nearest-neighbor cou-
pling is significant only for high bias fields in the more
“leaky” structure �A�, while there are almost no differences
for the structure �B�.

Of importance for the possibility of achieving gain, there
clearly exist ranges of bias fields in both structures where an
inversion appears between two subsequent Xz states �i.e.,
where the transition matrix element can be significant�. In

FIG. 2. An example of the subbands calculated in the structure �A�. The Xz

and Xxy valley edges are shown by solid and dashed lines, respectively, and
the state energies are given by the corresponding wave function base lines.
Note that the wave functions of the four lowest Xz states �solid� are rather
strongly localized, but the lowest Xxy state �dashed� is quite leaky.

FIG. 3. �Color online� The population of Xz subbands �solid lines� and the
Xxy subband �dot-dashed line�, and the current density �dashed line� calcu-
lated for Si/SiGe superlattice structure �A� described in the text, using two
nearest-neighbor �a� and only the first-nearest-neighbor �b� coupling. The
lower pane shows the lowest two Xz subbands, and population of other
subbands is shown in the upper pane, for clarity. The arrows on top, anno-
tated as m�n, show the values of bias where state m of one period anti-
crosses with the state n from the next lower period.
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particular, the more leaky structure �A� is predicted to offer a
peak inversion of 54% between the lowest two Xzstates, Xz

2

and Xz
1 in the same well, around the anticrossing of the

ground state in one and the first excited state in the nearest
lower period, at about 43 kV/cm bias. The inversion does not
appear at the corresponding bias in the less leaky structure
�B�, because the electron transfer rate between the wells is
slower and the electrons have more time to relax to the
ground state. However, an inversion of 22% between Xz

2 and
Xz

1 states appears at a larger bias �54 kV/cm� in structure �B�,
this time with the aid of other states which also have signifi-
cant populations in this bias range.

For the gain to be sustainable and useful, however, the
operating point of the structure should not be in the range
where the differential resistance is negative, otherwise do-
main formation is likely to occur, which would drive the
device away from the desired operating point. A closer look
at Figs. 3 and 4 shows that there are, albeit narrow, ranges of
bias where population inversion coexists with stable operat-
ing points.

The calculated fractional gain/absorption profiles for the
two structures, biased at suitably chosen fields, are shown in
Fig. 5, where a linewidth �FWHM� of 10 meV was assumed.
Interestingly, despite the different well widths both structures
have almost the same value of dipole matrix element for the
Xz

2→Xz
1 transition, amounting to 1.3 nm, apparently due to

the comparatively more widespread �leaky� wave functions
in the narrow-well structure �A�. By dividing the fractional
gain by the length of the period, a peak gain coefficients of
18.6 cm−1 �at photon energy of 27 meV� is obtained for
structure �A�, and 4.4 cm−1 �at 21 meV� for structure �B�, the
former being in the range of practical interest. The gain
scales linearly with the doping density, but additional scat-
tering mechanisms which were here neglected �carrier-carrier
and ionized impurity scattering� would have to be included

in calculation for large values of doping. Certainly, further
improvements may be expected from a more complex cas-
cade design.

IV. CONCLUSION

We have considered electron transport in n-Si/SiGe cas-
cade or superlattice structures, using the rate equations ap-
proach and tight-binding expansion, taking the coupling with
two nearest-neighbor periods. Acoustic phonon, optical pho-
non, alloy and interface roughness scattering are taken in the
model. The calculated current/voltage dependence and gain
profiles are presented for two simple superlattice structures.
The existence of significant gain is predicted, occurring at
operating points with positive differential resistance, al-
though in narrow ranges of bias fields. In the examples in-
vestigated in this work, most of the electrons populate the Xz

states, while the population of the Xxy states becomes signifi-
cant only at very high bias fields, implying that the existence
of the latter can usually be neglected. However, by manipu-
lating the strain conditions situations may be created in
which the Xxy state�s� might behave as the principal current
carrying states, which would feed appropriate Xz states with
electrons, in order to achieve population inversion.
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