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INTRODUCTION

In the field of illumination optics, optical engineers design optical elements to direct
light from a source (LED, laser, or incandescent lamp) to achieve a desired irradiance
(spatial density of radiant flux) or intensity (angular density of the radiant flux) [40].
Freeform lenses and reflectors, which are optics without any symmetry, are attractive to
optical designers as they can enable greater flexibility in creating compact illumination
solutions.

However, determining the geometry of a freeform lens or reflector that produces a speci-
fied irradiance distribution is nontrivial. Many existing techniques assume a zero-étendue
source (i.e., a point or collimated source). Under that assumption, the freeform design
problem can be formulated as a Monge-Kantorovich mass transport problem and solved
either via the Monge-Ampére equation [99, 100, 76, 97, 73] or through optimization [27],
for instance using the supporting quadratic method [37, 68]. Another popular approach
is ray mapping [32, 11, 12, 25], which first constructs a mapping from rays leaving the
source to their locations on the target, and then uses that mapping to compute the ge-
ometry freeform optic.

Difficulties arise when extended sources (finite étendue sources) are considered. Meth-
ods such as simultaneous multiple surface (SMS) [28, 8, 81] handle this case by mapping
edge rays but cannot create arbitrary irradiance distributions. Alternatively, an extended
source can be regarded as a perturbation of a zero-étendue problem, in which the finite
source size effectively blurs the target distribution. This perspective leads to feedback-
type methods that iterate between designing the freeform optic under zero-étendue as-
sumptions and then adjust the target irradiance to progressively approach the desired
distribution [53, 57, 16, 91, 36].

Another route is to directly optimize the lens geometry [46, 19]. However, such ap-
proaches often get stuck in local minima [93, 92, 101, 63]. For these methods, three
components largely determine their effectiveness: how system performance is evalu-
ated, how the geometry of the surface is modeled, and how updates to the surface are
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computed.

1.1. HOwW DO WE EVALUATE THE PERFORMANCE OF FREEFORMS?

To evaluate system performance, ray tracing is used. Ray tracing simulates how light
traverses the system by computing the paths of rays originating from the source through
the optical elements. There are two modes of ray tracing: sequential and non-sequential.
Sequential ray tracers, such as Zemax [3] and Code V [83], are mainly used in the design
of imaging optics. They trace relatively few rays to evaluate image quality metrics and
assume rays travel sequentially from one surface to the next in a fixed order. In non-
sequential ray tracers, such as LightTools [84] and Photopia [55], a large number of rays
are simulated to determine the optical flux through the system. Few assumptions are
made about ray paths or surface interactions, and a single incident ray can split into mul-
tiple rays, for example, due to Fresnel reflections or scattering. Programs tailored for il-
lumination applications, however, often require considerable computation time to trace
a sufficient number of rays. In computer graphics, rendering is performed in a manner
similar to non-sequential ray tracing, however, capable of handling far more rays much
more efficiently, primarily by leveraging graphics processing units (GPUs). Historically,
these renderers have seen limited use in optical design because some speed-ups rely
on approximations that favor visually pleasing results over physical accuracy (e.g., inter-
actions that do not strictly conserve energy). Recently, there has been progress toward
physically based rendering [70], enabling optical engineers to benefit from graphics li-
braries’ speed without sacrificing physical correctness.

1.2. HOw DO WE MODEL THE SURFACE OF A FREEFORM?

As freeforms do not have symmetry, they require more advanced modeling methods
than spherical and aspheric lenses, which are rotationally symmetric. The most com-
mon approach is to describe a freeform surface using polynomial bases. Orthogonal
polynomial bases such as XY, Chebysheyv, or Zernike [59, 18] can represent complex sur-
faces via the weights (coefficients) of the basis functions. A major issue, however, is that
when a minor local change to the lens surface is desired, many coefficients must be ad-
justed. This can be problematic when designing freeforms for complex irradiance dis-
tributions, which typically require many polynomials. Alternatively, B-splines [98] and
their nonuniform rational variant, NURBS [96], can be used to describe freeform sur-
faces. These geometries have control points that allow local adjustment of the surface.
In addition, these surfaces can be gradually made more complex—a favorable prop-
erty when designing freeforms for complex irradiance distributions—as implemented
by Wang et al. [90], who use knot insertion [72] to increase the degrees of freedom. How-
ever, there is still a catch: each time a knot is added, an entire strip of the freeform sur-
face must be refined, introducing more degrees of freedom in regions where they are
not needed. Therefore, alternative spline descriptions can be used, such as LR [26], HB
[34], THB [38], U [85], and T-splines [79]. T-splines have been proposed in the context
of freeform design [6, 22]. In this work, we make use of truncated hierarchical B-splines
(THB-splines) [38, 39].
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1.3. HOW DO WE ADJUST THE SURFACE OF A FREEFORM?

Once it has been established how light propagates through the freeform lens and how
the surface is modeled, the remaining question is: how should we adjust the freeform
lens to approach the desired irradiance distribution? A common strategy is to compute
gradients of the design parameters. Gradients indicate whether changing a parameter
improves or degrades performance, making them useful for freeform lens optimization.
There are two mainstream ways to obtain these gradients: finite differences and algo-
rithmic (automatic) differentiation. Finite differences are straightforward: perturb each
parameter of the freeform lens and evaluate whether the objective improves, repeating
this for all parameters. Each perturbation requires one or more simulations to assess
how the change affects the result. This may be manageable for simple freeform lenses
with few degrees of freedom, however, becomes computationally expensive as the num-
ber of parameters grows. To address this, one can use algorithmic/automatic differentia-
tion with specialized libraries such as PyTorch [69], TensorFlow [61], and JAX [14], which
have matured rapidly due to machine-learning applications. Differentiable ray tracers
have been developed and applied to both sequential [88, 82, 89, 65] and non-sequential
settings [66, 47, 50, 90, 52]. The key benefit is that gradients of the freeform lens param-
eters are computed alongside the ray-tracing simulation, adding little to no overhead to
the total runtime.

1.4. WHAT NOW?

In this thesis we will combine these developments: fast, physically accurate ray tracing,
which is algorithmically differentiable in combination with B-spline surface descriptions
to design freeform lenses.

We begin by introducing the physics behind illumination engineering and ray tracing
(Chapter 2). Modeling freeform surfaces using B-splines and THB-splines, and how to
refine these surfaces, is discussed in Chapter 3. In Chapter 4, we cover strategies for
choosing and optimizing parameters, how gradients are computed, and how to enforce
additional constraints.

After these foundations, we present our initial implementation for designing freeform
lenses with B-spline surfaces (Chapter 5), followed by refinement strategies using THB-
splines (Chapter 6). In Chapter 7, we then ask a more fundamental question: what limi-
tations do finite étendue sources impose on achievable irradiance distributions?

Finally, we close by summarizing our main findings and outlining directions for future
work.






FOUNDATIONS OF GEOMETRICAL
OPTICS

To design an illumination system (e.g., for streetlights, car headlights, or indoor lumi-
naires), we must understand how light or radiative energy emitted by a source propa-
gates to a target (such as a desk or a highway), how it interacts with objects along the
way, and how to quantify the amount of light arriving at the target. The propagation of
radiative energy can be described using wave or ray models. Although the wave model
provides the most accurate description of light behavior, its calculations are often too
complex for macroscopic applications. Therefore, the ray model, also known as geo-
metrical optics, is typically used to design illumination systems. In geometrical optics,
light propagates along curves called rays. It should be noted that the wave nature of light
becomes important when designing structures or objects whose dimensions are on the
order of the wavelength. Within the scope of this thesis, the ray model is assumed to
be sufficiently accurate. Light also has properties such as coherence, which causes in-
terference, and polarization, which defines the direction of its electric field oscillation.
In this thesis, we will not consider these properties. All sources will be assumed to be
monochromatic (single-wavelength), spatially incoherent (so no interference occurs),
and unpolarized (meaning there is no defined oscillation direction). In this chapter, we
begin by mathematically defining a ray as a curve in 3D space. We then explain how each
curve can be represented in phase space by specifying its coordinates on a plane and
its angle with respect to the plane’s normal, effectively reformulating it as a point in 4D.
Next, we discuss how rays are reflected or refracted at interfaces separating different ma-
terials and how the energy carried by each ray is distributed based on the material’s prop-
erties and the ray’s incidence angle. We also introduce the radiometric quantities used
to quantify light at the target namely: flux, radiance, irradiance, and intensity. Finally,
we explain how these concepts are combined to simulate light propagation through an
illumination system via non-sequential ray tracing.
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2.1. DEFINING A SINGLE RAY

In a homogeneous medium with a constant refractive index 7, a ray is a straight line
that passes through a pointrg = [ro,x 7o,y 70zl T and has a direction or momentum vector
pP=I[px py pzl T whose length is equal to the refractive index |p| = n [9, Chapter 3, Equa-
tion 25]. The length along the ray’s path is called the optical path length, denoted by the
scalar s. The ray equation can then be written as:

r(s)=ro+sp, (2.1)
as illustrated in Figure 2.1(a).
a b
2r,
,. R E
ro s e \
p P

Figure 2.1: (a) A ray with a starting point ryp and momentum vector p, showing point r on the ray at optical path
length s; (b) A plane used to determine the (x, y) coordinates of the ray in phase space.

Often, we need to track how a ray travels between surfaces or planes, such as an LED chip
in a streetlight and a section of highway. In these scenarios, it is convenient to specify
the ray using four coordinates. To do this, we first define a plane of width 2r, and height
2ry, which the ray intersects. We then adopt a local coordinate system x € [~Ty, I'x], y €
[~r1y, )] forming the rectangular area «f = [~ry, x| x [-1), 7}]. The point where the ray
intersects the plane is denoted (x;, y5) and is shown in Figure 2.1(b). Since |p| = n, we

have
pz =+\/n?—pi-p5. (2.2)

Taking p, > 0 (assuming the ray propagates in the positive optical-axis direction), we can
write py and py, in spherical coordinates:

px =nsin(@)cos(¢), py=nsin()sin(¢), 2.3)

where the angles 6 and ¢ are illustrated in Figure 2.2. Hence, to specify p, we need two
angles with respect to the plane’s normal: 8 € [0, /2] (the longitude) and ¢ € [0, 27] (the
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latitude). These angles cover the hemisphere /# = [0,7/2] x [0,27]. Combining (x5, ys)
with (0,¢), each ray is defined by x = (x, y,0,¢) and belongs to the phase space % =
o x F.

Figure 2.2: Definition of angles: longitude 6 and latitude ¢

2.2. RAY-SURFACE INTERACTIONS

When a ray encounters an interface between two different media, its trajectory changes
based on the optical properties of those media. If the interface is smooth (meaning that
the scale over which surface changes occur is much larger than the wavelength), the ray
undergoes specular reflection and refraction. In those cases, its path follows the law of
specular reflection and Snell’s law for refraction. Additionally, the fraction of refracted
versus reflected light is determined by the Fresnel equations, which depend on the po-
larization of the light.

2.2.1. REFLECTION AND REFRACTION

Suppose a ray hits an interface with an incident direction (0;,¢;). It is reflected into a
direction (0,,¢;,). The longitudinal angle is conserved: 8, = 0;, but the latitudinal angle
¢, is rotated by 7 radians:

0,=60; and ¢,=¢;+m. (2.4)

Likewise, if a ray traveling in a material of refractive index n; encounters an interface
with a material of index n;, it refracts into a transmitted direction (6;,¢;), according to
Snell’s law:

n;sinf; = n;sinf; and ¢;=¢p;. (2.5)

This can be viewed as momentum conservation for the ray, where nsinf remains con-
stant across the interface. However, as noted in Section 2.1, the ray’s optical momentum
(Ipl = n) is proportional to the refractive index. Consequently, if a ray travels from a high-
index medium into a low-index medium such that it cannot satisfy n; sin8; = n;sin6;,
the ray undergoes fotal internal reflection.
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Although total internal reflection may appear to be a discontinuous phenomenon, where
rays suddenly reflect inside the material, it is actually a continuous phenomenon: each
ray splits into transmitted and reflected components, with the fraction of energy in each
part depending on the angle of incidence. As the angle increases, the reflected compo-
nent grows until it eventually carries all the energy, and the ray is fully reflected.

2.2.2. FRESNEL EQUATIONS

When a ray hits an interface between two different media, it splits into a reflected and a
refracted ray. The fraction of energy in each ray depends on the ray’s incidence angle, the
refractive indices on both sides of the interface, and the light’s polarization. This depen-
dence is governed by the Fresnel equations. While polarization is an electric field prop-
erty describing the oscillation direction it can be included in geometrical optics by as-
signing a particular polarization to a ray. Linearly polarized light is commonly assumed
when discussing reflection and refraction. If the electric field oscillates in a single plane,
we label it: p-polarized when it oscillates parallel to the plane of incidence, or s-polarized
(from the German word senkrecht) if it is perpendicular to the plane of incidence. Any
circular and elliptical polarization can be treated as a combination of those two. The
Fresnel equations are derived from boundary conditions enforcing continuity of the tan-
gential electric and magnetic fields across the interface[43, 9]. Let R and ¥ denote the
s-polarized reflection and transmission coefficients, which are defined as follows:

n;cos; — n;cos, |?
R, = i i r t ’ 2.6)
n;cosf; + nycosb;
2n;cosb; 2
= , (2.7)
n;cosf; + nycosf;
(2.8)
with Rs + T = 1. For p-polarized light,
n;cos6; — n; cosd, |?
p= (2.9)
nycosf; + n;cosB;
B 2n;cos6; 2 2.10)
P n;cos0; + n;jcosh,;| ’

with Ry, + %, = 1. Inillumination applications, light is usually unpolarized. Therefore, it
is convenient to define an unpolarized reflectance R, and transmittance ¥, for which:
R, + T, = 1. The unpolarized reflectance is the average of the reflectances of the two
orthogonal linear polarizations:

1
Ru=3 (Rs+Rp). (2.11)

The reflectances and transmittances for different incidence angles for a ray transitioning
from a medium with refractive index n; = 1 to a medium with refractive index n; = 1.5
are shown in Figure 2.3(a), and for a ray transitioning from a medium with refractive
index n; = 1.5 to a medium with refractive index n; = 1 in Figure 2.3(b).
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1.0 A
0.8
[J]
v
f=
8 0.6 1
[9)
Q
]
o 0.4 Indices: nj=1,n;=1.5
—— Fresnel S-polarization
0.2 Fresnel P-polarization
—— Fresnel Unpolarized
0.0 T T T
0 n/8 n/4 3n/8 n2
Incidence angle 6; [rad]
1.0
© 081
%)
=
©
£ 0.6
£
(%)
c .
g 0.4+ Indices: nj=1.5,n;=1
—— Fresnel S-polarization
0.2 1 Fresnel P-polarization
—— Fresnel Unpolarized
0.0 T T T
0 n/8 n/4 3n/8 n2

Incidence angle 6; [rad]

Figure 2.3: Transmission coefficients for a transition from (a) refractive index n; = 1 to ny = 1.5; (b) refractive
indexn; =15ton;=1

A NOTE ON THE THEORETICAL MAXIMUM EFFICIENCY WITH LENSES

By using Fresnel coefficients, we can get an upper bound of the achievable efficiency
of an optical system with multiple lens elements (assuming no anti-reflection coatings).
The unpolarized reflection coefficient for normal incidence ; = 0 is:

1(ni—n;/\* 1
g)%u:_(’_t) WL

nNy—n; 2
_— (2.12)
2\n;+n; 2

n;+ n;

If each lens is made of glass with a refractive index of 1.5, then at every interface approx-
imately 96% of the light is transmitted. As each lens has two interfaces, about 92% of
the light passes through a single lens. Hence, in a system with NN; lenses, the theoretical
maximum efficiency for a source emitting a total flux @ is

@ pax = 0.962V Dy, (2.13)

2.3. WORKING WITH A BUNDLE OF RAYS: RADIOMETRY

Radiometry characterizes the distribution of electromagnetic radiation in space. The
most important quantities are radiant flux, irradiance, intensity, and radiance. To de-
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fine these radiometric variables, we first introduce the concepts of plane angle and solid
angle.

2.3.1. PLANE AND SOLID ANGLE

A curve C is said to subtend a plane angle 0 at a point P, as illustrated in Figure 2.4. To
find this plane angle, let A and B be the starting and ending points of the curve. We
then radially project these points onto a circle of radius r centered at P and denote the
projected points as A’ and B’. The plane angle 0 is then the ratio of the arc length s
between A’ and B’ and the circle’s radius:

0= E (2.14)
r

Figure 2.4: Definition of plane angle 6.

A solid angle Q) is subtended by a closed curve C with respect to a point P at the center of
a sphere of radius r. Let C’ be the projection of C onto the sphere. This curve C’ encloses
an area A on the sphere’s surface, as shown in Figure 2.5(a). The solid angle is then given
by

A

a==, (2.15)

r

and is measured in steradians (sr).

The projected solid angle Q™ is the solid angle projected onto the plane containing P, as
shown in Figure 2.5(b). It is obtained by projecting the closed curve C’ onto the plane
containing P yielding the closed curve C”. The area enclosed by this curve is the pro-
jected solid angle. A differential solid angle dQ then gives a differential projected solid
angle:

dQ™* = cos0dQ. (2.16)
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It can be useful to express solid angle in terms of the longitude 6 and latitude ¢. Consider
Figure 2.5(b), where the differential area dA on a sphere of radius r is

dA = r?sinfdade. (2.17)

By Equation 2.15, we then obtain

dQ =sin6dfd¢. (2.18)

a b

Figure 2.5: (a) Solid angle Q and projected solid angle Q1 of a closed curve C, which is first projected on the
sphere to get C" and then projected onto the plane to obtain C"’; (b) Differential piece of solid angle in spherical
coordinates.

2.3.2. RADIANT ENERGY
Radiant energy Q is the total energy propagating onto, through, or emerging from a given
surface. A photon of wavelength A carries energy

Qp=— (2.19)

where c is the speed of light (c = 299,792,458 m/s), and h is Planck’s constant, (h = 6.626 x 10734 m? kg/s)
The total radiant energy depends on the number of photons N,, of a given wavelength
measured over a time period:

Q=0QpNp. (2.20)

2.3.3. RADIANT FLUX
Radiant flux, @, is the radiant energy per unit time:

o d0

= , 2.21
ar (2.21)

with units of watts (W =1]/s).
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2.3.4. RADIANCE

Consider a small surface with area dA. Let 8 and ¢ denote the longitudinal and latitu-
dinal angles of a ray originating from a point r on this surface. The radiance L(r,6,¢),
measured in W-m™2-sr™!, is the radiant flux emitted by this area d® into a small solid
angle dQ around (0, ¢), per unit of emitting area d A and per unit of solid angle dQ:

do
cosfdAdQ’

In other words, radiance, L, is the area and solid angle density of radiant flux: the flux
emerging from a point r into a direction (0, ¢). If we assume a lossless transmission from
one material to another, incoming radiance L; travels through an interface from medium
with index n; to one with index n;. According to Snell’s law, the solid angle dQ2; in the
incident medium maps to dQ; in the transmitted medium. Specifically,

L(x,0,¢) = (2.22)

dQl‘ = sinH,'dH,‘dd)ir th = Singtdetdd)t, (2.23)

where 0; and ¢; are related to 8; and ¢, by Equation 2.5. Because d¢p; = d¢p; and n;df; =
n;d0; in the small-angle limit, we have

nlng,- =n;sinf; n;d0;d¢; = n%th. (2.24)
Hence, the quantity
£=1Ln"?, (2.25)

is invariant. This weighted radiance is often called the basic radiance.

2.3.5. IRRADIANCE
The irradiance E, with units W-m™2, is the radiant flux per unit area

E(r) do (2.26)

r)=—. .
dA

Irradiance can also be obtained by integrating the radiance (Equation 2.22) over the en-

tire hemisphere #:

E(r) :f L(r,0,¢) cos0dQ. (2.27)
7

2.3.6. INTENSITY
The intensity I, with units W-sr™?, is the flux density per solid angle

do
10.¢) = 2. (2.28)

It can also be obtained by integrating the radiance over an area «/ on a surface of interest
(e.g., a detector):

I(B,gb):f L(r,0,¢)cosfdA(r). (2.29)
o

In some literature, intensity refers to the squared amplitude of the electric field rather
than the flux per unit solid angle. In such cases, irradiance is the appropriate term.
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2.3.7. ETENDUE
As discussed in Section 2.1, a ray intersecting a plane can be specified using four param-
eters (x, y,0, ¢) which describe a point in 4D phase space. The étendue % of a bundle of
rays passing through an elemental area dA on a surface «/ and forming an angle 6 with
the local normal is:

@l:f f nzcosﬁdAdQ:ffffnzcosﬁsinﬁdﬂd(pdxdy:fdpxdpydxdy, (2.30)
o J 7

where p, and p,, are the momentum coordinates defined in Equation 2.3. We can link
the flux and radiance through étendue as the radiance represents flux per unit étendue:

do @ do
L£(x,y,0,¢) =

— = = . 2.31

d% n?dAcosfdQ dAdp,.dp, @31
Conversely, the flux can be found by integrating the radiance distribution:

P = fil(x, ¥,0,d)d%. (2.32)

Etendue is especially valuable in preliminary designs where no scattering, absorption,
ray splitting, or wavelength conversion occurs, as under these conditions étendue is
conserved [23, Chapter. 18] [94, Appendix. A] [64, Chapter. 2.5]. It sets limits on what
is physically achievable in an illumination system.

2.4. FOLLOWING A RAY THROUGH A SYSTEM: NON-SEQUENTIAL

RAY TRACING
When designing an optical system, we often want to know the intensity, irradiance, or ra-
diance at a particular location or target. Consider aray specified byxs1 = (x5,1, V51,051, ®s,1)
with radiance L, emitted from the source domain <, into the hemisphere #’; above the
source. As it travels through the system, it may reach the target plane with coordinate
X1 = (X£,1,Y61,01,1,P:1) and radiance L;. In principle, we would construct a mapping
& such that

Li(x1) = S {Ls(xs1)} (2.33)

However, there is no general way to derive an analytical expression for .. Instead, we
rely on ray tracing to simulate the ray’s trajectory through the system. In non-sequential
ray tracing, we propagate rays X, ;. (for k =1,..., Ni) from the source to the target accord-
ing to the rules outlined in Section 2.2. By summing the rays at the target, we approxi-
mate Equation 2.27 as

N
Er~ ) Li(x4k)- (2.34)
k=1

In doing so, we must address two key challenges: determining which objects a ray inter-
sects and where, and computing the radiometric quantities at the target.
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2.4.1. INTERACTION BETWEEN RAYS AND OBJECTS

As a ray propagates through the optical system, we must identify which objects it in-
tersects and determine the points of intersection. Although analytical solutions exist
for simple shapes (e.g., spheres, cylinders, and boxes), the complexity increases signif-
icantly for more complicated geometries. For surfaces described by cubic polynomials
or higher, finding closed-form intersection solutions becomes cumbersome or even im-
possible. A common simplification is to enclose each object in a bounding box. We first
check the intersection between the ray and the bounding box to see if the ray might en-
counter that object. If it does, we then either use a root-finding algorithm (e.g., Newton’s
method) to compute the ray-object intersection or approximate the object with a trian-
gular mesh and use a search algorithm to locate the triangle intersected by the ray. Once
the intersection point is known, we consult the object’s bidirectional scattering distribu-
tion function (BSDF) to determine how the ray interacts with that surface. For instance,
the ray may reflect when encountering a mirror, refract when the object is a lens, or scat-
ter when it is a diffuser. In this thesis, we restrict ourselves to refraction while accounting
for Fresnel coefficients. The process of identifying which object the ray interacts with,
computing the intersection point, and determining the ray’s subsequent behavior is re-
peated until the ray reaches the target.

2.4.2. DETERMINING THE RADIOMETRIC QUANTITIES AT THE TARGET

To determine radiance, irradiance, or intensity at specific points at the target, we dis-
cretize the domain where these quantities are evaluated. This is done by distributing
N; x M; points, called pixels, on the target plane. Around each pixel, we define a mea-
surement function or reconstruction filter, W, with finite support <y . This function dic-
tates how much each ray’s radiance contributes to the pixel based on where the ray in-
tersects <. Although measurement functions can seem abstract, they mirror real lab
measurements. For example, a CCD measures irradiance over a square domain, con-
verting incoming photons into an electric signal. In this case, the measurement function
is essentially a box filter of width w:

1 |xlsw/2and|yl=w/2,
Wix,y) = . (2.35)
0 otherwise.

Alternatively, a single-mode fiber measuring local radiance behaves more like a Gaussian
filter, defined by means py, 4y and the standard deviations oy, o:

_ (x_,ux)z _ (J’—#y)z
20% 20?,

1
g(x) y) Mxr Ny;axro'y) = 27T0'x0'y eXp( (236)

Typically, the standard deviations are chosen as oy = 0, = ¢. To limit the extent of the
Gaussian filter to a domain with radius R, values beyond /x2 + y? > R are set to zero:

Wi(x,y) =

{g(x, ,0,0,0) - g(R,0,0,0,0) /x2+y%2<R, 257
. .

otherwise.
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These measurement functions can then be incorporated into Equation 2.34:

Ni

Enm= Z Ltarget (Xt,k) Wh,m (X, x)- (2.38)
k=1

Figure 2.6 shows how the pixel value (P,) is computed on a 1D domain for both box and
Gaussian filters, assuming all rays have the same radiance. When using the box filter,
all rays within the filter's domain contribute equally. As such, the pixel value is the sum
of their radiances. This is shown in Figure 2.6(b1) and Figure 2.6(c1). For the Gaussian
filter shown in Figure 2.6(a2), the domains of the filters often overlap with filters from
neighboring pixels. The radiance of all the rays falling within the domain of a filter are
reweighted based on their distance from the center of the filter and then summed to
give the total pixel value. This process is shown in Figure 2.6(b2) and Figure 2.6(c2). For
an in-depth discussion on Monte Carlo integration, intersection algorithms, sampling
and reconstruction, and other non-sequential ray tracing, the reader is directed to Pharr,
Jakob, and Humphreys (2023).

al a2
P, P, P, P4 P, P, P, P, P4 P,
bl b2

| “ \—mqs|
PQ

R

S}

cl c2

Ny e—o—e
Ny —o0—@

\S)

Figure 2.6: Determining a pixel value for a box filter and Gaussian filter: (al - a2) Pixels with their measurement
functions and ray’s radiances; (b1 - b2) Rays contributing to pixel P, under each filter; (c1 - c2) The final pixel
weight is the sum of individual ray contributions







THE GEOMETRY OF FREEFORM
LENSES

We define a freeform lens as a volume with a uniform refractive index enclosed between
six surfaces: one front, one rear, and four edge surfaces, as shown in Figure 3.1. The
front and rear surfaces, depicted in blue and red in Figure 3.1, are defined on a rectan-
gular domain and are taken as the freeform surfaces, meaning that these surfaces do not
exhibit any symmetry. The edge surfaces, depicted in green, are obtained by connecting
the boundaries of the front and rear surfaces. An overview of the essential parameters re-

Front surface Edge surfaces Rear surface

Figure 3.1: Illustration of a freeform lens geometry, consisting of two freeform surfaces: the front (blue) and
rear (red), connected by the edge surfaces (green).

quired to define the freeform lens is shown in Figure 3.2(a). The extents of the rectangu-
lar domains on which the surfaces are defined are (x5, ys) € D5 = [~Tsx, s, x] X [~ Ty, 75 ],
where s € {front, rear}, with r; ; and ry ) representing the half-width and half-height of
the surface. The points Ogqnt and Oreqr Serve as the local coordinate origins for the sur-

17
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faces and are located on the optical axis. The distance between these points along the
z-axis defines the lens thickness d;.

a Front lens Rear lens b
surface surface
o
front, rear~!

Z .
surface

Figure 3.2: Illustration of the parameters required to define a freeform lens, (a) Parameters for the overall lens
geometry; (b) Freeform surface definition.

3.1. DESCRIPTION OF A FREEFORM SURFACE

We define a freeform surface as the sum of a base conic and a sag component, where the
sag represents the deviation from the conic surface

Zsurface (X, ¥) = Zconic (X, ¥) + Zgag(X, ¥), (3.1

as seen in Figure 3.2(b). The conic term depends on the surface radius R and the conic
constant K, and is expressed as:

l 2
Zeonic (X, y) = 155 1- 1—(1+K)(x2+y2)(ﬁ) , 3.2)
where
RZ
¥ +y < ) 3.3)
1+K

must hold to ensure a real-valued solution. The sag function can be represented using a
basis of polynomial functions f; defined on the closed, rectangular domain &, such as
Legendre and Chebyshev-polynomials. In this case, the sag is given by the sum

Zeag (X%, ) = ) wi fi(x,y),

where the polynomial weights {w;} are used as parameters to shape the surface. How-
ever, a modification to a single weight affects the entire surface. This can be problematic
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when local modifications are required, as all weights must be adjusted to maintain the
overall shape of the rest of the lens.

To allow localized surface modifications, B-splines can be used [72]. In the following sec-
tions, we discuss the construction of a B-spline surface using the B-spline basis functions
and control points. We then demonstrate how new degrees of freedom can be added
without altering the geometry using knot insertion. However, applying knot insertion to
a surface globally introduces degrees of freedom. To allow new local degrees of freedom,
we introduce Truncated Hierarchical B-splines (THB-Splines) [38, 39].

3.2. B-SPLINES
B-spline surfaces S(u, v) = [x(u,v), y(u,v), z(u,v)] are piecewise polynomials defined
over the parameter domain (u, v) € [0,1] and are given by:
Nu=1Ny-1
S(w,v)= ), ) ¢ jNipWwNjqv), (3.4)
i=0 j=0
J
i\j
shape of the surface through the B-spline basis functions Nj . All the control points
together form a control net, which determines the overall geometry of the surface.

T
where the points ¢; ; = [Cf i ¢ Cl-z, j] are called control points and influence the

3.2.1. B-SPLINE BASIS FUNCTIONS

The B-spline basis functions are constructed using a knot vector U = {uy, ..., U} and a
degree p. The knot vector is a sequence of non-decreasing real numbers u; < u;1, called
knots. The interval between neighboring knots [u;, u;+1) is called a knot span. Given the
degree and knot vector, the B-spline basis functions are constructed using the Cox-de
Boor recursion formula [72, Equation 2.5]:

1 ifuj<u<u;i;and u; <uy;
Ni,()(u) — i : i+1 i i+1 i (3‘5)
0 otherwise

—U; Ujtp+1 — U

Nip(u) = Nijp-1(u) +

Nit1,p-1(10), (3.6)
Ujtp — Uj Ujtp+1 — Uj+1

with i + p+1 < m. If both the numerator and denominator in Equation 3.6 are zero,

the fraction is defined as zero (0/0 = 0). The basis functions of degrees 0, 1, and 2, con-

structed using the knot vector {0,0.1,0.2,0.3}, are illustrated in Figure 3.3. We list several

important properties of the B-spline basis functions. A comprehensive list of B-spline

basis-functions properties can be found in Section 3.2 of Piegl and Tiller (1996):
Property 3.2.1 (Local support) N; , =0 outside the interval [u;, U p+1).

Property 3.2.2 In any knot span, [u;, u;+1), at most p + 1 basis functions are non-zero,
namely: Ni_p p,..., Ni p.

Property 3.2.3 (Non-negativity) Foralli, p and u: N; ,(u) = 0.

Property 3.2.4 (Partition of unity) For any knot span [u;, u;+1), Zj.:ifp Njp(u) =1 for
all u € [u;, uis1).
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1.2 1.2 : 1.2

E — NU,l- . Nl,l ; — Nz,l @ H R ND,Z ; . Nl,z é é — N0,3

1.0 1.0 ; A 1.0 H i
: / i\

0.8 0.8 \
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0.6 0.6 / \\
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0.0 01 0.2 03 0.0 01 02 0.3
u u u

Figure 3.3: B-spline basis functions of various degrees which can be made using the knot vector {0,0.1,0.2,0.3}:
(a) degree 0; (b) degree 1; (c) degree 2.

The basis functions of degree p associated with the knot vector U are linearly indepen-
dent and thus form a basis for the vector space %y, p.

%U,p = (NO,py---»NNufl,pf (3.7)

The dimension of this vector space, dim (98), equals the number of basis functions N, =
m—-p-1.

TYPES OF KNOT VECTORS

Knot vectors can be classified based on the spacing and repetition of the knots. One
classification based on the spacing between knots distinguishes between uniform and
non-uniform knot vectors. A knot vector is uniform when the distance between knots is
equally spaced by a value Au, such that ;1 = u; +Au. In anon-uniform knot vector, the
distance between knots is not constant and can vary arbitrarily. Another classification is
based on the repetition of the first and last knots. In this case, a knot vector can be
clamped (also referred to as open or non-periodic knot vectors). A clamped knot vector
has repeated first and last knots. This ensures that the start and end of the B-spline
coincide with the first and last control points. For a B-spline of degree p, the first and
last knots are repeated p + 1 times

U=10,...,0,Ups1,- ) hmp-1,1,..., ). 3.8)
~—— ~——
p+1 p+1

Alternatively, a knot vector can be periodic, meaning it does not repeat its first and last
knots. In this thesis, we primarily use the clamped uniform knot vectors:

Uu=1{0,...,0,Au,...,(m-1)Au,1,...,1}, (3.9)
N——r N——r

p+1 p+1

as this type of knot vector has a simple relationship between the number of control
points N, and the number of knots m = N, + p + 1. This approach simplifies specifying
the number of control points without explicitly defining the knot vector. Thus, specify-
ing the number of control points and the degree p is enough to calculate the knot values
using Equation 3.9, where Au=1/(N, - p—1).
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3.2.2. CONSTRUCTING A B-SPLINE SURFACE
Now that the B-spline basis functions have been defined, we can construct the surface.
To do so, we need to specify the degrees p and g, the knot vectors U and V, and the

T
l; ¢, whereiefo,...,N,~1}and j€0,...,N,~1}. The
B-spline surface is given by Equation 3.4. By collecting the B-spline basis functions in
the vectors

control points ¢; j = cj‘j c

N, () = [Nop@) Nip) ... Ny,-1pw),]"
NyW) = [Nog() Nigt) ... Ny-140).]"

The B-spline surface can be written in matrix form [72, Equation 3.13]

S(u,v) =N, (W CNy(v), (3.10)
where
Co,0 Co,1 e Co,N, -1
c c :
C= 1,0 1,1 ] (3.11)
CN,-1,0 €N,-1,1 .-+ CN,-1,N,-1

3.2.3. MAPPING (u, V) TO (X5, ¥s)

To ensure the B-spline surface uses the coordinates of the lens surface (x5, y;), we need
an analytically invertible mapping (u, v) — (x(u, v), y(u, v)). To achieve this, the coordi-
nates of the control points are chosen such that the parametrizations x and y are linear:

X:u— Qu—1)ry€[—ry, Iyl (3.12a)
yiv— Q2u-1ryel=ry, 1)l (3.12b)

To enforce linearity, we use the nodal representation of the B-spline basis functions [24,
Equation (23)]:

Ny—1
U ul'+1+...+ui+p
— * ) *
u= Y ui,Nipw), uel0ll, uj,= — (3.13)
i=0
which provides a specific knot vector-dependent linear combination of the basis func-
tions. The values u;." p are known as the Greville abscissae [30, sec. 8.6]. Assuming cl’.“ i is

independent of j, such that ¢ = ¢f, =...= ¢ _,, we obtain the following definition
of x:
Nu—1N,-1
xwv)= ) Y ¢y NipNjq) (3.14a)
i=0 j=0
Ny—-1 N,-1
= ) o Nipw Y Njq(). (3.14b)
i=0 j=0

—_——
=1
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Here, ZN w1, ,p(u) =1 by the partition of unity property (Property 3.2.4). If we define
cf] then x(u) = u. Hence, applying the mapping v — (2u — 1)r; x to both sides of

Equatlon (3.13) yields

N,-1
Qu-Dre= Y @uf,=DroxNi ). (3.15)
i=0

We can interpret this by expanding 1 into the sum over all N; ;, (1) by using the partition
of unity. Consequently, if we set cl. = Qu; " — 1)rsx and, similarly, cl?' i= 2 v}f g Drsy
then Equations (3.12a) and (3.12b) are satisfied. For the arguments of z(u, v) the inverses

of x and y are used:

1(x
u:xil(xs)z —(—s+1 ,
2 \rsx

Vs
v=y 'y = z(rs’yﬂ), (3.16)

which allow us to express the B-spline surface in terms of x; and y;

Ny—-1N,—-1

2, y)= Y. Y. ¢f iNip(xs)Njq(ys). (3.17)
i=0 j=0

3.3. B-SPLINE REFINEMENT

In this section, we cover two methods for increasing the number of degrees of freedom
in a B-spline surface. The first and most straightforward method is knot insertion [72,
Chapter 5.2 and 5.3], with which a knot is added to an existing knot vector, thereby in-
creasing the dimension of the associated vector space by one. However, knot insertion
has two main drawbacks: it can introduce excessive degrees of freedom and create am-
biguity regarding how to refine the surface. An example illustrating these issues will be
provided in Section 3.3.2. To address these problems, alternative refinement procedures
have been developed, including T-splines [79], U-splines [85], LR-splines [26], Hierarchi-
cal B-splines (HB-splines) [34], and Truncated Hierarchical B-splines (THB-splines) [38,
39]. The last two of these approaches will be covered in Section 3.3.3.

3.3.1. KNOT-INSERTION
Consider a knot vector U = {uy, ..., un}, which spans a vector space %y, of dimension
N,,. By inserting a unique knot # € [ug, ux+1) we obtain a new knot vector

U ={iip = ug, ..., Ug = U, g1 = Uy Uk = Uk1,--or Ums1 = U, (3.18)

which spans a vector space % a,p = {N; ph 1 =0,...,N, +1. The basis functions N; P
in B p can be related to the original basis functlons Njip in By,p with the following
relatlonshlp

u-—u; -u
Nipt) = =——— N , () + = Uipsz

Uit p+l i ut+p+2_uf+1

Niyy ). (3.19)

~ 4
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For convenience, we define:

-1 Uryppo— U
a;=——"—, P;= — (3.20)
Uiy p+1 — Uf Uiip+2 ~ Uity
so that
Nl-,p(u)=a;N;’p(u)+ﬁ;N;+Lp(u). (3.21)

Using Equation 3.19, we can construct a refinement matrix (Rgz € RN«*Nut1) that relates
the vector of original basis functions Ny, , to the vector of refined basis functions N P

NU,p = RﬁNU’p. (3.22)
To ensure the geometry remains unchanged, we combine Equation 3.10 and Equation 3.22:

_NT T
S(u,v) = Nf]prﬁCNV,q' (3.23)
The new control points are then given by C=R’C.

EXAMPLE: KNOT INSERTION
To demonstrate how knot insertion works, we begin with the uniform clamped knot vec-

tor
u={0 0 0 025 05 075 1 1 1},

into which we insert the knot # = 0.4. This gives the new knot vector
U={0 0 0 025 04 05 075 1 1 1}.

The basis functions of the two knot vectors are shown in Figure 3.4(a) and Figure 3.4(b).

Using Equation 3.21, we construct the refinement matrix Ry, which relates the refined
basis N to the original basis N:

1 0 0 O 0 O0 O

0 ar B 0 0 O O

L 0 0 ao ﬁg 0 0 0
Ru_ 0 0 0 as ﬁg 0 0|’ (3.24)

0 0 0 0 0 1 0

0O 0 0 0O 0 01

with values a; =1, ap = 0.8, a3 = 0.3, f; = 0.2, 2 = 0.7, B3 = 1. These values are illus-
trated in Figure. 3.5, which shows how the refined basis functions N; 3, Ny 3, N33, and
N, 3 combine to recover the original basis functions Nj 3, N» 3, and N3 3.

3.3.2. PROBLEM: OVER-REFINEMENT

When applying knot insertion to 2D B-splines or surfaces, over-refinement can become
problematic. To illustrate this, we consider a B-spline surface of degree 3 in both z and v,
with knotvectors U = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}and V = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}.
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Figure 3.4: (a) The original B-spline basis functions; (b) The basis functions after a knot is inserted.
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Figure 3.5: (a) Refined basis function N1 3, Ng 3 combined to give the unrefined basis function Ny 3 (b) Refined
basis function N2 3, N3 3 combined to give the unrefined basis function N3 3 (c) Refined basis function N3 3,
N4,3 combined to give the unrefined basis function N3 3
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Both spaces 98y and By are 6-dimensional, and their combined spline space %y« y has
dimension 36. The initial knot span is shown in Figure 3.6(a).

Suppose we want to refine the elements [0,0.25) x [0,0.25) and [0.25,0.5) x [0.5,0.75),
highlighted in red in Figures 3.6(a-c). One way to accomplish this is by inserting # = 0.4
into the knot vector U. This raises the dimension of 28y from 6 to 7, so the dimension of
PBuxy then becomes 42. Subsequently, inserting v = 0.1 into the knot vector V increases
the dimension of %y« y to 49.

Thus, in order to refine two elements, we end up refining seven elements, adding 13 de-
grees of freedom when only two were desired. Moreover, there are multiple ways to insert
the new knots. For example, we could have inserted # = 0.1 and 7 = 0.6 instead. The is-
sue is that inserting a knot refines an entire row or column of knot spans, introducing
redundant control points. Therefore, a method to limit refinement strictly to the desired
knot span would be preferable. This is precisely where HB-splines [34] and THB-splines
[38] come into play.

1.00 1.00 1.00

0.75 0.75 0.75
> 0.50 >0.50 >0.50
0.25 0.25 0.25
0.10
0.00 o S o ° N 0.00 N S5 Q.0 > o 0:00 N S 0.0 S o
o P B A0 o P W A8 o g M 1 A0
u u u

Figure 3.6: Knot spans of the B-spline surface at different refinement steps. The red regions highlight where
refinement is desired, orange shows spans refined once, and purple indicates knot spans refined twice: (a)
Original knot span; (b) Knot span after the knot & = 0.4 is inserted; (c) Knot span after the knot 7 = 0.1 is
inserted;

3.3.3. TRUNCATED HIERARCHICAL B-SPLINES (THB-SPLINES)

We now walk through the refinement and truncation steps involved in constructing a
THB-spline [38, 39]. Specifically, we construct a THB-spline of degree p = 3 using the
knot vector U° = {0,0,0,0.25,0.5,0.75,1,1, 1}, the level £ = 0 knot vector. If we bisect each
knot span, dividing it into two equal parts, we obtain the level ¢ = 1 knot vector:

U' =1{0,0,0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1,1, 1}. (3.25)

Using the Cox-de Boor relationship Equation 3.6, we can construct the B-spline basis
functions of levels 0 and 1, shown in Figure 3.7. The resulting spaces are:

B = {Ng (), N{(w), ..., NJ(w)}, (3.26)
B, =N, (W), Nj (W), ..., Ng(w}. (3.27)

Because B-splines are refinable, the basis functions at level ¢ = 0 can be expressed in
terms of those at level ¢ = 1. By constructing a refinement matrix Equation 3.22 for the
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1.2

------ Knot lines —— Basis functions of level £ =0
1.0 3 :
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u
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------ Kn‘ot lines —_— Bésis functions of \e‘vel =1
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Figure 3.7: B-spline basis functions generated using the Cox-de Boor recursion equation (Equation 3.26) for
(a) level ¢ = 0 with knot vector U 0 ; (b) level ¢ = 1 with knot vector U L

inserted knots i; = 0.125, @I, = 0.375, @iz = 0.625, and iy = 0.875 we relate 2 to %, via:
N’ = R; Rz, Rz, Rz, N (3.28)

For example, the basis functions Ng, Nf, and Ng decompose into level ¢ = 1 basis func-
tions as follows:

0 _ 1 1 1

NJ (w) = Ny (u) + 5N1 (u), (3.29)
0 _1 1 § 1 1 1

NY(w) = le () + 4N2 () + 2N3 (w), (3.30)

No(u)zlNl(u)+§N1(u)+§N1(u)+lN1(u) (3.31)
2 4 2 4 3 4 4 4 5 ) .

as illustrated in Figure 3.8.

Suppose we want to refine the domain [0, 0.5]. First, we identify which ¢ = 0 basis func-
tions overlap this region. In our example, the supports of Ng and N? are fully contained
in [0,0.5] as shown in Figure 3.9. Hierarchical B-splines (HB-splines) refine this region
simply by removing those level 0 basis functions and replacing them with level ¢ = 1
functions, as shown in Figure 3.10:

F, = 1Ny (W), ..., N (w), Ng (w), ..., Ng (w)}.

However, HB-splines violate the partition of unity property because Nz1 and N31 appear
twice: once in their own level-1 basis, and again within the decomposition of Ng. Asa
result, these functions can have a weight greater than one, which can cause the spline to
overshoot control points. Furthermore, the HB-spline basis is not orthogonal, as chang-
ing NJ also affects N, and N;.



3.3. B-SPLINE REFINEMENT 27
10 10 10
a 0] ]

08 08 08
06 0.6 0.6
0.4 0.4 0.4
02 0.2 0.2
0.0 0.0 0.0

0.00 025 0.50 075 0.00 0.25 050 075 0.00 025 0.50 075

Figure 3.8: (a) The basis function Ng decomposed into Né and Nll; (b) The basis function N? decomposed
into NI, N21 and N31; (c) The basis function Ng decomposed into N, 1 N;, N, i and N51.
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- Basis functions £ = 0 inside refinement domain
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Figure 3.9: B-spline basis functions at level ¢ = 0 that fall in the refinement domain [0, 0.5]
im— Basis functior‘1 of level £=0 depénding onf=1in r‘efinement domain. —— Basis fun‘ctions of level £ = 1
—— Basis functions of level £ =0 Refinement Domain
1.00

Figure 3.10:

Hierarchical B-spline basis functions.
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To address these issues, Truncated Hierarchical B-splines (THB-splines) set certain
higher-level weights to zero in the lower level functions. In our example, Ng depends
on Nzl and N;, which fall inside [0, 0.5]. We truncate Ng by zeroing those weights:

trunc{Nj }(u) = 0N, (1) + 0N () + 3 NLa + LN ) (3.32)
2 - 2 3 4 4 4 5 . .

See Figure 3.11 and Figure 3.12 for a visual depiction of the process.

1.0

---- Basis function of level f=0 —— Basis functions of level £ = 1 inside refinement domain

0.8 Refinement Domain —— Basis functions of level £ = 1 outside refinement domain

0.6
0.4

0.2

0.75 1.00

Figure 3.11: Decomposition of Ng into level ¢ = 1 functions. Those inside [0, 0.5] (red solid line) will have
weights set to zero; those outside (red dotted line) will remain.

1.0

— Truncate‘d function of level l =0 —_ Basi‘s functions of Ievefl: 1 inside refine‘ment domain

0.8 Refinement Domain —— Basis functions of level £ =1 outside refinement domain

0.6
0.4

0.2

0.75 1.00

Figure 3.12: The truncated basis function after setting weights of N21 and N31 to zero.

After truncation, the THB-spline basis replaces Ng with trunc{Ng}. Hence, the final
Truncated Hierarchical B-spline basis becomes

Tu= {N(}(u),...Ngl(u),trunc{Ng}(u),Ng(u),Nf(u),Ng(u)},
depicted in Figure 3.13.

FORMAL DEFINITION OF THB-SPLINE

For a generalized expression of THB-splines, we require a sequence of nested spline
spaces of levels £ € {0, 1,..., L}, %3 c 38,14 c...c %ﬁ, over a domain Q?I < [0,1]. The high-
est level L is chosen according to the desired refinement. We start with a knot vector at
level ¢ = 0. Higher-level knot vectors

Ut ={uft st (3.33)
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1.0

—— Basis functions of level £ = 0 outside refinement domain —— Truncated function of level £=0
—— Basis functions of level £ =1 inside refinement domain Refinement Domain

0.8

0.75 1.00

Figure 3.13: Final Truncated Hierarchical B-spline basis functions.

are obtained by bisecting each knot span of the lower level knot vector:

l 4
us+u
£+1 /+1 0 0+1 0 1 0+1 4
U :{u0+ =ug,uy" = St =
041 ¢ e _Uma U g g
Up—2 = Ump—1> U1 = 2 yUpm :um}' (3.34)

We denote the vector of B-spline basis functions of level £ by N’. Using the refinement

. . . ¢ 0+1
matrices (Equation 3.22) we define a matrix Rffl € R2 Nuwx2™ ' Nu g9

0,0 ¢ ¢
{u0+u1 ”m—1+”m}

yeeey

R = T] Ry, with # = 5 5

ke

(3.35)

where Ry is the refinement matrix related to inserting the kth knot. We then relate the
level-¢ and level-¢ + 1 basis vectors by:

N¢(u) = RSN (). (3.36)

For a 2D lens surface, define Q° = Q% x QY. We use nested domains Q° 2 Q! 2...2QF
to indicate where we want higher-level spline functions to be active. Figure 3.14(a2) and
Figure 3.14(c2), illustrate an example of nested domains Qg,Q;,Q,. The lens domain
Qo is shown in Figure 3.14(a2) together with its knot lines, indicating where Q,, and Q,
are subdivided. Overlaying all these domains produces a hierarchical mesh of the lens
surface, shown in Figure 3.14(al). Next, we define characteristic matrices Xfl and Xﬁ
for the basis vectors N’ (1) and N/ (v). These matrices, are used to indicate which basis
function fall fully within Q¢ but not in Q¢*!. Formally,

¢ - ¢
X, = dlag(xu'l.), Xy, =

¢ {1, if supp Nf(u)gﬂf,andsupp Nf(u) g_Qﬂ“, (3.37)

0, otherwise.

In other words, x/,; = 1 when N (w) is fully contained within Q° and does not extend
into Q’*!. Otherwise, it is 0. Using X/, and X!, we define the truncation matrix T, [39] as

T! =R, (1° -X)), (3.38)
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where I is the identity matrix. Analogously, we have T/, in the v-direction. The trunca-
tion matrices are used to calculate the THB-coefficient matrix D’

D =T/ D~ '1) + X7 C’XY, (3.39)

starting with D° = C. Thus, a THB-spline Styp at the highest level L is expressed via the
level-L basis:
Stup (1, v) =N"(w) 'D'N* (v). (3.40)

An example of a hierarchical mesh is depicted in Figure 3.14(al), with the correspond-
ing nested domains in Figure 3.14(a2-c2). The resulting THB-spline is shown in Fig-
ure 3.14(b1), where the higher refinement levels exhibit finer surface details.

Hierarchical mesh Surface plot

c2

H
[}

Nested Domains

Figure 3.14: (al) Hierarchical mesh; (b1) A THB-spline surface with random z-positions of control points; (a2-
c2) The nested domains Qg, Q1, Q2. Colored regions indicate where higher-level domains are active.
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NOTE: REFINEMENT WITHOUT NEW DEGREES OF FREEDOM

Sometimes, refining a knot span does not introduce new degrees of freedom. This hap-
pens when the support of the THB-spline of the current level and the lower level do not
fall within the support of the refinement domain.

For instance, consider the example discussed in Section 3.3.3, but now we refine the area
Q, =[0.25,0.5). If none of the basis functions at levels ¢ = 0 or ¢ = 1 lie within Q,, the
knot span is subdivided, but no truncation or addition of new basis functions occurs.

However, if we refine the domain Q, to level ¢ = 2, there are basis functions of level £ =2
which fall fully within Q,, and we gain new control points.

3.3.4. SUMMARY

In this chapter, we have shown how freeform surfaces can be described using B-splines,
HB-splines, and THB-splines. We began by defining B-splines, outlining how to con-
struct their basis functions from a chosen knot vector and degree, and explaining how
these functions, together with control points, form a B-spline surface. We then demon-
strated how to map B-spline spaces back to the physical coordinates of the lens surface.

Next, we discussed how to refine B-spline surfaces via knot insertion, highlighting the
potential over-refinement problem it can create. To address this, we introduced HB-
splines and THB-splines, provided a step-by-step explanation of their construction, and
presented a more formal definition of THB-splines. This theory will be used in later
chapters to model freeform surfaces and to allow local adjustments and refinement.







OPTIMIZATION AND ALGORITHMIC
DIFFERENTIATION

Optimization is the process of finding the best possible solution for a given objective
function. This objective can range from finding the shortest route between two loca-
tions to maximizing the return on a stock portfolio. To achieve this, we define a set of
parameters that influence the outcome, such as the available roads while navigating or
the selection of stocks in a portfolio. The next step is to establish a quantitative measure,
often called an objective function, that allows us to evaluate and compare different pa-
rameter combinations. Finally, an optimization algorithm is employed to systematically
explore and identify the combination of parameters that yields the best possible out-
come. In this chapter, we begin by defining unconstrained optimization and introducing
the primary optimization algorithm used in this thesis: gradient descent. We will discuss
different strategies for selecting the step size and methods for computing gradients, in-
cluding analytical derivation, numerical differentiation, and algorithmic differentiation.
We will conclude with a brief discussion on constrained optimization and various tech-
niques for incorporating constraints, such as penalty methods and parameter weighting.

4.1. MATHEMATICAL FORMULATION

The objective function, £, is a scalar function depending on N, parameters, T € RNp, 1t
can take any form, but often we want to compare an outcome g, which depends on 7,
with some desired outcome gges. Often, this is done by using norms. The most com-
mon one for vectors is the L,-norm, which for a vector a = [a;, ay, ..., ay] is defined as
follows:

lallz = (4.1)
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An example of an objective function using the L, norm is
L) = || 8des — 8|, - 4.2)

To compare matrices, we use the Frobenius norm, which for a matrix

aln a2 v a N
ap azp» e ax N

A= ] . . . , (4.3)
am1 am2 ... AapM,N

is defined as

(4.4)

Once we have chosen the objective function, our goal is to find the set of parameters x*
that minimizes the function £,

a*= argn}Tin L(r). (4.5)

We can distinguish between two types of minimizers: global minimizer and local min-
imizer. A point * is a local minimizer if there is a neighborhood 4" of &* such that
L") < ZL(x) for all x € A. A global minimizer is a point 4* such that £ (x*) < £ (1)
for all . Ideally, we would always find the global minimum. However, no method guar-
antees that the global minimum will be found, and often, there is no way to show that a
minimum is indeed the global minimizer. Therefore, most gradient-based optimization
algorithms are geared towards finding local minima. While methods such as simulated
annealing, particle swarm optimization and genetic algorithms aim to find the global
minimum, they are beyond the scope of this thesis. Instead, we focus on gradient de-
scent, a widely used method for local optimization.

4.2. GRADIENT DESCENT

Gradient descent, in its simplest form, finds local minima by iteratively stepping in the
opposite direction of the gradient, as this is the direction of steepest decrease of £. At
iteration i, the parameter vector s; is updated as:

K1 =7 —a;VL (), (4.6)

where a; is the step size at the ith iteration.

Two essential components for implementing gradient descent are computing the gradi-

ent

0z 0r oz
VL(m) = omy omy onn,

) 4.7)

(discussed in Section 4.3) and choosing a strategy for the step size «;.
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The simplest approaches consider a constant or decaying step size. A constant step size
is achieved by keeping « fixed and decaying step size is achieved by updating the step
size every iteration with: a;,; = aya’ with the decay factor 0 < a < 1. However, large
step sizes might risk divergence or strong oscillation, while small ones lead to slow con-
vergence. In certain problems, information about previous gradients can help smooth
out updates. One straightforward example is the Momentum [29], which keeps a moving
average of past gradients:

miy1 = pPimi+ (1 - pIVL(x;), (4.8)

with $; € [0,1) the momentum decay. Each iteration the parameters are then updated as
follows:

Tip1 =T — AoMit1. (4.9)
This method reduces oscillations and accelerates in consistent descent directions.

Adaptive step size approaches, such as RMSprop [45], address the situation where differ-
ent parameters can have very different sensitivities. By tracking a moving average of the
squared gradients,

vis1 = Pavi+ (1B [VL )], (4.10)

with B, € [0,1) the decay factor for the squared gradients. Each parameter is updated
proportionally to 1/,/v;;1, balancing out large and small gradients:

@0
——F— VL (7). 4.11
o e (i) (4.11)

The Adam method [49] combines the Momentum and RMSProp approaches. Because
the moving averages of both the gradient and squared gradient are initialized to zero,
they are biased toward zero for the first few iterations. To counteract this, unbiased esti-
mates are introduced: ;i +1 = mg1/(1 - Bi*Y), Di41 = visr /(1 - B5*1) and the parame-
ters updated as follows

Tjy1 =TT —

Mi+1
VDis1+e€
where € is a small number preventing the division by zero for the case that 7; = 0.

Finally, a line search can be performed to determine the optimal step size by minimizing
% along the current gradient direction:

i1 =T — g (4.12)

a; =argr%in$(ni—aivz(ni)). (4.13)

Although line searches tend to give good step sizes, they can be computationally more
expensive per iteration as multiple function evaluations are required. In practice, prob-
lems with a large number of parameters make use of constant, decaying, momentum-
based, or adaptive approaches for their simplicity and efficiency.
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4.3. CALCULATING GRADIENTS

There are several ways to calculate the gradient for gradient descent, such as symbolic
differentiation, numerical differentiation, and algorithmic differentiation. We will use
an example to demonstrate how these methods work. In this example, we scan a surface
with varying heights, as depicted in Figure 4.1. At every position, the focus must be ad-
justed so that the image is formed on the detector at a distance d; behind the lens. We
use an adjustable lens with a tunable focal length f to achieve this. We choose the ob-

Figure 4.1: Example problem of varying image and focal length positions.

jective function to be the squared difference between the current image d; position and
the desired image position d;

L(f,do) = (dF —dy)°. (4.14)

The desired image position follows from the thin lens equation:

«_ _dof
ai = o

where the parameters it = [, d,] are used to obtain the desired image position.

(4.15)

4.3.1. SYMBOLIC DIFFERENTIATION

For some problems, the gradient can be calculated by hand, allowing an explicit imple-
mentation in code. This is the case for the example problem, where the gradients with
respect to the parameters f and d, are:

aﬁ:—z‘i‘% [d"f —d-] (4.16)
of do—-f2ldo—f I '
0L =2f* [ dof

ad,,‘m[do—f d’]‘ @1

In addition, having an analytic expression for the gradient can provide valuable insights
into parameter sensitivity and how they affect each other. For simple cases, explicit
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derivatives can reveal how different parameters influence the objective function. How-
ever, for problems with many parameters or highly nonlinear objective functions, com-
puting derivatives by hand can be impractical or even impossible. In these cases, pro-
grams like Maple [60] and Mathematica [95] are efficient tools for calculating symbolic
derivatives.

4.3.2. NUMERICAL DIFFERENTIATION

If an objective function cannot be symbolically differentiated or involves a numerical
simulation, its derivative can be approximated using the finite-difference approxima-
tion. Small perturbations of the parameter vector 6 & are used to approximate the gradi-
ent, based on the Taylor expansion of the loss function:

LAr+6m)=LA)+VL(M) 67+ %&rTVZ&f(n)én. (4.18)

By setting a bound L on || V24| in the region of interest, the last term of Equation 4.18 is
bounded by L/2|6|?, and:

| L +6m)— L) -VLm 67| < §||5n||2. (4.19)

If we choose the perturbation as 6t = €e;, where e; is the ith standard basis vector and
€ is a small increment, we get:

0L
VLA 6a=evLim)Te; = e— (4.20)
i

As [|67||? = €2, we can rearrange Equation 4.18 into

0Z Lr+ee)-ZL(x) L
— () = +—€.
om; € 2

(4.21)

If € approaches zero, the higher order terms become negligible, and Equation 4.21 will

approximately become

0% L(m+ee;) — L ()

——(m= .

orm; €
However, a couple of issues have to be addressed when using this method. If € is too
small, round-off error becomes dominant. Conversely, if € is chosen too large, the ap-
proximation deviates too much from the true gradient, as shown in Figure 4.2(a). A more
accurate approximation, such as the central difference method, can reduce these errors.
In this case, the gradient is approximated as follows:

A L +ce;)— L (m—ce;)

o, O 2e

(4.22)

(4.23)

As shown in Figure 4.2(b), the central difference method reduces errors compared to the
forward difference. However, for a function with n parameters, the forward difference
method requires 7 + 1 function evaluations (one for each perturbed parameter plus the
baseline evaluation), while the central difference method requires 2rn evaluations, mak-
ing it computationally more expensive.
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Figure 4.2: Numerical gradient for the focal length in the example problem, for different values of d,, a current
focal length f =4, and d; = 2 (a) using finite difference; (b) using central difference.
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4.3.3. ALGORITHMIC DIFFERENTIATION

Algorithmic differentiation or automatic differentiation calculates gradients using spe-
cialized software libraries, such as PyTorch [69], TensorFlow [61], and JAX [14]. Algorith-
mic differentiation is based on two core concepts. First, most functions can be expressed
using simple operations on one or more variables, including addition, multiplication,
logarithms, powers, and trigonometric functions. Second, the chain rule allows us to
compute derivatives of composite functions. The chain rule states that if  is a function
of a vector y € R, which depends on x € R"”, we can compute the gradient of i with

respect to x as:
m

Vh(y®) =) %v i (x). (4.24)
iz10Yi

A computational graph is a useful tool for visualizing algorithmic differentiation, as de-
picted in Figure 4.3. It breaks down the function into its elementary operations and il-
lustrates dependencies between parameters and gradients. We define the independent
variables ¢ = —d;, v1 = d,, 12 = f, and at each intermediate step, we introduce intermedi-
ate variables v, vy, ..., vg. The final variable, vy, on the right of the graph, is the function
value Z (7). An overview of all the variables and their full expression is given in Table 4.1.

Figure 4.3: Computational graph for the example problem, Equation 4.14.

We limit the discussion on algorithmic differentiation to an overview of the mathematics
for both the forward mode differentiation and the reverse mode differentiation. For a
much more in-depth discussion on mathematics and computer science, the interested
reader is referred to Griewank and Walther (2008).

FORWARD MODE DIFFERENTIATION
In forward mode differentiation, we evaluate the directional derivative Vq, along q, as
follows:

VqZ () =q-VL (). (4.25)

The directional derivative can be evaluated simultaneously with the function £ itself.
Thus, when the value of v; at any node is known, its directional derivative Vqv; can also
be computed using the chain rule. As the computation progresses, both parameters, v;
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Table 4.1: All the independent and intermediate variables of the example problem.

Intermediate variables | Expressed in intermediate variables | Full expression

C —di —d,’

141 do dO

1) f f

U3 V1 X U2 dox f

vy U2 -f

Us V1 + Vg do —f

v (vs)™! 7
doxf

vy U3 X Ug do—f

vg vr+c Zzij/j —d,

2 dox f 2
Vg (vs) (do_f _di)

and their gradients Vv; propagate through the computational graph simultaneously, as
illustrated in Figure 4.4. Consider computing the directional derivative of v3 = vy x vs.
The gradient is then given by:

ov 3
VU3=—VU1+—VU2. (4.26)
v V2

As the values of vy, v2, Vqu1 and Vq v, are known we can evaluate the directional deriva-
tive

Vquz = 12Vqu1 + 11VqU2, (4.27)

simultaneously with evaluating v3. By recursively applying this process, we eventually
obtain V, £. The gradients of all intermediate variables in the computational graph are
summarized in Table 4.2. Forward mode differentiation is most efficient when the num-
ber of objective functions exceeds the number of parameters. To compute the full gradi-
ent vector V.£, we must traverse the computational graph once per parameter, comput-
ing the directional derivative along each direction q =ej, ey, ...,e;.

4.3.4. REVERSE MODE DIFFERENTIATION

Reverse mode differentiation does not compute gradients while evaluating £. Instead,
it computes the derivatives of £ with respect to each parameter ; by performing a re-
verse sweep. V.Z is obtained by accumulating all partial derivatives #; = .£/dv;, called
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N
\ i,

Figure 4.4: Illustration of forward pass of the computational graph of the example problem. The intermediate
variables (black) and directional derivatives (red) are calculated simultaneously.

Table 4.2: Gradients of the example problem expressed in terms of the intermediate variables.

Intermediate Variable | Gradient Expression H Intermediate Variable \ Gradient Expression

Vo Vu Vs —(v5) 2Vus
Vv, Vv, Vv, v3Vug + vgVus
Vg iV + 1V, Vg Vv,

Vuy -Vuy Vg 2Vuvg

Vs Vuvy+Vuy
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adjoint variables, at each node in the graph. The adjoint 7; is calculated as follows

ov;
b=y Ui, (4.28)
jee ov;
where € represents all the variables that directly depend on v; referred to as child vari-
ables. For instance, the adjoint #, has two child variables v3 and v,4. All adjoint variables
are initially set to zero, except 79, which is set to 1. We can use Equation 4.28 to calculate
U2

b = 5223 4 5, OV (4.29)
S 0112 4 6v2 ’
which equals:
Up = D307 — Uy. (4.30)

All the adjoint variables of the computational graph are shown in Table 4.3. The compu-
tational graph, illustrating the dependency of parameters and the backward propagation
adjoints to the independent variables, is shown in Figure 4.5. Reverse mode differenti-
ation is more efficient when the number of parameters is significantly greater than the
number of objective functions.

Figure 4.5: Illustration of forward pass and reverse sweep of the computational graph of the example problem.
The intermediate variables (black) are calculated in the forward pass, and the adjoints (red) are calculated in
the reverse sweep.

4.4. CONSTRAINED OPTIMIZATION

When optimizing an objective function, we often impose constraints that the parameters
must satisfy. The functions c; are scalar functions of the variables 5, which define the
constraint and can be equality or inequality constraints, given by:

. . ci(m)=0, i€é,
min Z () subject to . (4.31)
T ci(m)=0, ieds.
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Table 4.3: Adjoint variables of the example problem expressed in terms of the intermediate variables.

Adjoint Variable | Expression H Adjoint Variable | Expression

12 Vo U3 + V4 U5 Us V3 U7
Vo 141 173 — Uy 177 178
173 Vg 177 178 2 Vg 179
Uy 141 175 179 1
Us —g(v5) 2

Here, & is the set of indices of the equality constraints, and . is the set of indices of the
inequality constraints. We briefly discuss two approaches to constrained optimization,
the first approach uses weighted variables while the second incorporates constraints
through regularization.

4.4.1. WEIGHTED VARIABLES

When a variable is constrained to a domain —b; < ; < b;, we can reformulate the con-
strained optimization problem as an unconstrained optimization by applying a function
that limits the range of the variable. This is for instance, withtanh or arctan, as shown
in Figure 4.6. The function ensures parameter values do not exceed the given bounds by
optimizing w. Thus, Equation 7.3 becomes an unconstrained optimization problem

w* = argmin £ (w), (4.32)
W
where
7} = bitanh (w}) (4.33)
; i i) .
2.0
—— 2arctan(x)/m
151 tanh(x)
2.0 e e b e
0.5 4 //_/—
0.0 g
-05 —//
Y —— I FSSUSU USRS IS O
154
-2.0 T T T T T
-4 -2 0 2 4
wi

Figure 4.6: Ranges of the functions tanh and arctan

4.4.2. REGULARIZED OPTIMIZATION
A constrained optimization problem can be reformulated as an unconstrained problem
using regularization, which incorporates the constraints into the objective function. The
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new unconstrained optimization problem then becomes
n}inx(n) + pc(rm), (4.34)

where p is a parameter controlling the importance of the constraint. Tikhonov regular-
ization [86], is a common regularization technique that sets the regularization term as:

cm) = x5, (4.35)

which penalizes solutions with a large L?-norm. Certain properties of & can be con-
strained. For instance, smoothness can be enforced by applying a discrete Laplace oper-
ator L, such that the constraint becomes:

c(m) = ||Lx|3. (4.36)

For certain problems, it might be more beneficial to use a barrier function to impose
a steep penalty when the parameter exceeds a certain value. One example of such a
function is the logarithmic barrier function, which for a lower bound b; is defined as:

c(m;) = —log(m; — b;). (4.37)

The penalty term increases to oo as 7; approaches b;. We can then rewrite the optimiza-
tion problem as:
min £(x) + ), —log(b; — ;). (4.38)
r ies
Another common regularization term to enforce positivity is the maximum entropy reg-
ularization [2, 80]. The regularization term is given by:

c(x) = Zﬂilog(ni). (4.39)



DESIGNING FREEFORM OPTICS
WITH ALGORITHMIC
DIFFERENTIABLE RAY TRACING

With the theory presented in Chapters 2, 3 and 4 we start to describe one of the principal
tools to design freeform optics, algorithmic differentiable ray tracing. Throughout this
chapter two differentiable ray tracers are used. The first one being the ray tracer devel-
oped in Koning et al. (2023) used to generate the results of Section 5.5 and MITSUBA 3
[47] which has been used to generate the results of Section 5.1. We start by defining the
optimization problem and how the simulations are set up in LightTools and MITSUBA 3
to make the results as comparable as possible. We show that the method of optimizing
a freeform lens for a prescribed irradiance distribution works well for simple distribu-
tions only needing a low number of control points. For more complicated irradiance
distributions, the optimizers can find a lens capable of projecting the desired distribu-
tion, however, these lenses are undesirable from a manufacturing perspective and suffer
from stray light around the target distribution.

5.1. OPTIMIZING A SINGLE LENS

Our goal is to design a freeform lens with a refractive index of n, which redirects the
light from a source such that a prescribed irradiance distribution is formed at a prede-
termined target plane as depicted in Figure 5.1(a). An overview of the parameters needed
to define the system is shown in Figure 5.1(b). The source can be either a collimated bun-
dle oflight or an extended rectangular source with Lambertian emission with its centroid
on the optical axis and a normal perpendicular to it. The distance from the source to the
origin of the first lens surface (Ogont) is given by dy, the distance between the origins of
the front and the rear surface (Oryr) by d;, and the distance between the origin of the
rear surface and the target plane by d,. The surfaces of the lens are described in terms of

45
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Figure 5.1: (a) 3D model of the system consisting of a source, freeform lens, and a target plane where the
irradiance is measured; (b) Simplified, 2D view of the system depicting the different parameters used to define
the system.

local coordinates (x;, ys) and consist of a base conic and a sag given by a B-spline:

Zsurface (Xs, ¥s) = Zconic (R, K, X5, ¥'s) + ZB-spline (C, Xs, ¥'s).- (6.1

The base conic z¢onic depends on its radius of curvature R and conic constant K and
governed by Equation 3.2. The Cox-de Boor relations (Equation 3.5 and Equation 3.6)
are used to calculate the B-spline basis functions which span the spline spaces %/ and 7'.
T
To construct the B-spline surface, the spline control points ¢; j x = | ;. ik CZ ik c; ik
have to be specified, with i € {0,..., N, — 1} and j € {0,..., N, — 1} and k € {front, rear}.

The B-spline surface, as discussed in Chapter 3 is defined using B-spline basis func-
tions N; ,(u) and N; 4(v) which require a specified degree p and g and knot vectors
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= {ug,...,uy} and V = {vy,...,v,}. We also take both B-spline surfaces use degree
p in u and v, therefore, we omit explicit p, g from the notation from now on. Following
the procedures outlined in Section 3.2.2 we can write the B-spline as a tensor product:

S(u,v) =N,CNL. (5.2)

Using Section 3.2.3 we choose c;f Pk and c kSO that x(u) = Qu—1)rg,, and

y() = 2v —1ry,y, with inverse u = 5 (xs/rk,x +1)and v= %(yslrk'y +1) (Equation 3.16),
and can define the system parameters as:

7 = {Tsource, I'front 'rear, Ttarget, do, d1, d2, 1, . ..

z z
Rtront, Ktront» Gy Pronts Rrear, Krear Crears Prear}-

To limit the maximum deviation, we choose to optimize a weight, as discussed in Sec-
tion 4.4.1, w; j x € R, with the set of all weights denoted by #* = {w; j x}. These weights
are directly related to the z-position of the control points by:

2Zfreedom
lzj i arctan(w;, j k). (6.3)

Using the arctangent, we can restrict the maximum deviation of ¢} ik & t0 [—Zfreedom) Zfreedom]-

These weights are then used to minimize the Frobenius norm of the difference between
the irradiance measured at the target plane Etarget which is a variable of the weights #
and the desired irradiance Egegjreq:

2
L) = Z Z ‘Etarget[n m] - Egesirea |, ml| . (5.4)

n=lm=

To minimize Equation (5.4), we utilize an algorithmically differentiable ray tracer to com-
pute Vy £ by backpropagating through the ray tracer.

This is then combined with a gradient-based optimization approach by making use of
the PyTorch toolbox [69] and the ADAM optimizer [49]. The scheme we use to solve this
problem is shown in Figure 5.2. At each iteration, we first ray trace to evaluate the irra-
diance distribution produced by the current lens. Then, we evaluate the loss function,
and using algorithmic differentiation calculate the gradients of the control points with
respect to the loss function. The amount by which the control points are changed, is
calculated by the step size obtained using Adam. We then recompute the B-spline using
the new control points and repeat this process until the loss falls below a threshold ¢ or
is manually stopped.

5.2. SYSTEM MODELING IN LIGHTTOOLS AND MITSUBA 3

We discuss how the systems are modeled in LightTools and MITSUBA. We cover setting
up the light source, freeform lens, detector, and simulation settings. Additionally, we
highlight the key differences between the two ray tracers.
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Figure 5.2: Overview of our learning-based freeform design pipeline.
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5.2.1. LIGHTTOOLS
LightTools version 2022.03 SR1 is used and controlled using the Python API for all simu-
lations.

Source The collimated and extended sources are initialized as rectangular sources with
awidth and height equal to the source radius. The emission is monochromatic at a wave-
length of 550nm. In the case of the collimated source, the aim region is set to collimated,
with a total flux of 1 Watt measured over the aim region. For the extended source, the
aim region is set to a hemisphere facing the freeform lens, and the angular distribution
is set to Lambertian with a total flux of 1 Watt, measured over the aim region.

Lens Tomodel the lens, we start with a rectangular block with a height and width of the
front and rear surfaces equal to the radii of the respective surface and depth of the lens
thickness. The front surface is then set to a conic, and the rear surface to a freeform sur-
face initiated with the number of vertices of the MITSUBA model and the coordinates of
these points as the coordinates of the vertices. The material of the lens is a user-defined,
homogeneous material with a refractive index of 1.5 at the wavelength of 550nm. The
optical properties of all the lens surfaces (including the edge surfaces) are smooth opti-
cal surfaces that transmit and totally internally reflect rays with Fresnel losses.

Detection To measure irradiance, a dummy plane is created at the location of the tar-
get screen, with the appropriate dimensions onto which a receiver is attached with a
mesh, equaling the detector’s resolution and measuring the irradiance.

Simulation The simulation uses 10 million rays with polarization and coherence set-
tings turned off. We chose pseudorandom ray sampling to match the ray sampling strat-
egy from MITSUBA.

The intersection points of the rays with the target screen and the ray weights are im-
ported into Python. To match the Gaussian reconstruction filter used by MITSUBA 3, we
used the Gaussian filter Equation 2.36 with p, the average value, which determines the
position of the Gaussian, and o, the standard deviation, which determines the spread.
Equation 2.36 is then used to define the reconstruction filter W, ,;;, given by Equation 2.37.
The standard deviation is chosen to equal the pixel separation o = 2/(N; — 1) Ftarget and
the filter extent r = 40. Finally, the pixel values are then calculated as

N!
k

Enm= ) Wam(Xp, Vi) L(x)). (5.5)
k=1

5.2.2. MITSUBA 3
In all simulations, MITSUBA 3.2.1 and drjit 0.4.1 are used. We largely follow the instruc-
tions of the Caustic optimization tutorial [62].
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Source Both collimated and extended sources are initialized as rectangular objects.
When a collimated light source is required, the object is given a directional area emis-
sion. In the case of an extended source, the object is given an area source emission,
giving it a Lambertian emission distribution.

Lens We initiate the rear and front surfaces as a flat rectangle and turn them into a
conic or freeform surface by displacing their vertices using a displacement texture. The
height map of the THB-spline gives the amount of displacement. The front and rear sur-
faces are connected with a boundary, which is made by linearly interpolating the edge
vertices of the two surfaces. Each lens surface is given a smooth dielectric BSDF with an
interior refractive index of 1.5 and an exterior refractive index of 1. The material infor-
mation is only used when a ray interacts with a lens surface, meaning that rays do not
know in what material they are propagating. Therefore, it is essential to close the lens
so that all the rays that enter the freeform lens need two refractions to exit the lens. Dif-
fusion is not supported with the used version of MITSUBA. Thus, the refractive index is
constant for all wavelengths.

Detection Unlike LightTools, MITSUBA cannot measure the irradiance directly in a
plane for a grid of pixels. Therefore, the irradiance is measured by projecting the light
onto a diffuse screen and imaged with a pinhole camera. The diffuse screen causes ev-
ery incident ray to be evenly redistributed over the hemisphere above the target screen,
thus allowing each ray to be captured by the pinhole camera. A field of view  is specified
to ensure the entire target plane is captured. This determines the camera’s position on
the optical axis, a distance ds from the target screen, as illustrated in Figure 5.3. When
choosing the field of view, we made sure that the pinhole camera does not fall inside or
behind the freeform lens.

Simulation We utilize the ptracer integrator to simulate light propagation from source
to target. The number of rays traced is determined by the pixel count of the detector
and the samples per pass setting of the integrator, which specifies the number of rays
sampled per pixel during a simulation.

5.3. FREEFORM OPTIMIZATION

To see how the algorithm performs we consider two target distributions: one simple
target, a uniform top hat distribution, and a complex target, the painting "Girl with a
Pearl Earring" depicted in Figure 5.4(a) and Figure 5.4(b) As for all examples a B-spline
of degree 5 is used and the knot spans for the case of 100 control points having a width
of approximately 1 mm the smallest detail on the lens will be around 5 x 5 mm? in size,
which is much larger than the wavelength 0.55 pym, allowing us to disregard diffraction
effects. We design freeform lenses for varying numbers of control points: 10, 25, 50, 75,
and 100 in both x and y. The simulation parameters used are shown in Table. 5.1 and
the step size used during optimization is 1073, unless stated otherwise,
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Figure 5.3: Simplified view of the optimized system consisting of a source, freeform lens, and a target plane
with pinhole camera imaging the target plane.

Table 5.1: System parameters: Demonstration of directly optimizing B-spline with different amount of control
points

System Parameters Surface parameters
Tsource  47.5 mm do N/A Retront 0o Ny, N, NJ/A
Tfront 50 mm dq 20 mm Ktront 0 p.q 5
Trear 50 mm do 1000 mm Rrear 666.7 mm Ng,Mg 512
rtarget 75 mm Nt, Mt 256 Krear 0 L N/A
w Gaussian ow 0.5 Zfreedom N/A n 1.5

Figure 5.4: Target distributions used: (a) top hat distribution (b) painting of "Girl with a Pearl Earring."
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5.3.1. FREEFORM DESIGN FOR UNIFORM TOP-HAT DISTRIBUTION
Optimizations for the top hat distribution were stopped after 250 iterations, and the re-
sults are shown in Figure 5.5. At first glance, the final irradiance distributions seem simi-
lar to the target distribution in both LightTools and MITSUBA, as seen in Figures 5.5(al-
el) and Figures 5.5(a2-e2). However, the difference becomes apparent when we increase
the contrast by raising each pixel to the power of 0.2, as shown in Figures 5.5(a3-e3). The
light from freeform lenses optimized using 50, 75, and 100 control points falls outside the
desired irradiance distribution due to the irregular surfaces obtained from optimization,
as shown in Figures 5.5(c3-e3). This results in a small area on the lens contributing to
a large area in the total irradiance distribution. In contrast, the surfaces obtained using
10 and 25 control points, shown in Figures 5.5(a3-b3), are smooth, and all the light falls
within the irradiance distribution.

10 x 10 Control points 25 x 25 Control points 50 x 50 Control points 75 x 75 Control points 100 x 100 Control points

MITSUBA results

LightTools results

o
B
@
=4
€
S
S
°
4
&
©
o
S
£

[mm] [mm] ’ [mm] ) [mm] ' [mm]

Figure 5.5: (al - el) final results using MITSUBA; (a2 - e2) final results using LightTools; (a3 - e3) increased
contrast by raising each pixel of the LightTools results to a power of 0.2; (a4 - e4) the final freeform surface
obtained.



5.3. FREEFORM OPTIMIZATION 53

5.3.2. FREEFORM DESIGN FOR GIRL WITH A PEARL EARRING

We now consider the more complex target distribution, the picture of the "Girl with
a Pearl Earring." The optimizations were stopped after 1000 iterations. To accurately
reproduce the picture’s fine details, we expect significantly more control points to be
needed than the top hat to reproduce it. The results validate this assumption. Specifi-
cally, Figures 5.6(al-b1) and Figures 5.6(a2-b2) show that 10? and 25? control points are
not enough to accurately reproduce the target distribution. From 502 or more control
points, finer details can be included in the distribution, and only slight improvements
are achieved by using 75 and 100? control points as seen in Figures 5.6(c1-el) and Fig-
ures 5.6(c2-e2). By increasing the contrast of the irradiance and examining the light out-
side the target distribution (as shown in Figures 5.6(a3-e3)), we observe that a higher
amount of control points leads to more light appearing outside the target. This is caused
by increasingly irregular lenses, as seen in Figures 5.6(a4-e4).

10 x 10 Control points 25 x 25 Control points 50 x 50 Control points 75 x 75 Control points 100 x 100 Control points

MITSUBA results

LightTools results

Increased contrast

Sag plot

-1.86 1.07 —4.01 1.65 -0.75 0.44 -1.20 0.83 -0.57 0.65
[mm] [mm] [mm] [mm] [mm]

Figure 5.6: (al - el) final results using MITSUBA; (a2 - e2) final results using LightTools; (a3 - e3) increased
contrast by raising each pixel of the LightTools results to a power of 0.2; (a4 - e4) the final freeform surface
obtained.

The reason irregular lenses are obtained is likely attributed to the rather large step size.
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This causes the lens to locally want to contribute to the whole irradiance distribution
which results in these diffuser like lenses. To see whether this is the case, we investigate
the effect of decreasing step size on the final lens geometry and the amount of stray light.

5.4. DECREASING STEP SIZE

To make lenses smoother and reduce light outside the target distribution, we test whether
decreasing the step size of the optimizer has the desired effect. Figure 5.7 shows the
results of using a step size of 10™* for the top hat and the "Girl with a Pearl Earring"
target distributions. The lenses obtained using 50% and 75% control points are much
smoother and have significantly less light outside the target distribution as seen in Fig-
ures 5.7(a3,b3, d3, and e3) and Figures 5.7(a4,b4, d4, and e4). However, for 1002, rough
patches persist on the lens surface, indicating the need for further step size reduction.

50 x 50 Control points 75 x 75 Control points 100 x 100 Control points 50 x 50 Control points 75 x 75 Control points 100 x 100 Control points

MITSUBA results

H
F
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-0.59 036 -0.72 030 -0.35 0.18 -1.42 087 -152 ¥ -0.84 0.36
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Figure 5.7: Results obtained using a step size of 107%: (al - c1) final results using MITSUBA for the top hat
distribution; (d1 - f1) final results using MITSUBA for Girl with a Pearl Earring; (a2 - c2) final results using
LightTools for the top hat distribution; (d2 - {2) final results using LightTools for Girl with a Pearl Earring; (a3 -
f3) increased contrast by raising each pixel of the LightTools results to a power of 0.2; (a4 - f4) the final obtained
freeform surfaces.

While decreasing the step size is able to create better behaving freeform lenses, it leads
to much longer optimization times, as can be seen in Figure 5.8 and Figure 5.9. The
graphs show the progression of the optimization loss for two irradiance distributions for
step sizes of 1072 and 10~*. While this might not be an issue in certain situation, as we
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Figure 5.8: Loss progression of optimizations of the top hat distribution.
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Figure 5.9: Loss progression of optimizations of the Girl with a Pearl Earring.



56 5. DESIGNING FREEFORM OPTICS WITH ALGORITHMIC DIFFERENTIABLE RAY TRACING

see the decrease in step size does not guarantee. One way to decrease step size, without
having much longer optimization times is through the use of optimizing a multi-layer
perceptron instead of the control points of the lens directly.

5.5. MULTI-LAYER PERCEPTRON AS AN OPTIMIZATION ACCEL-

ERATOR

The idea of employing multi-layer perceptrons (MLPs) originated from an exploratory
attempt to train a neural network capable of directly generating freeform lenses with
the input being a specific target irradiance distributions. The initial objective of fully
replacing direct optimization was not achieved. However, during experimentation we
discovered that the inclusion of a neural network could accelerate the optimization pro-
cess significantly. Here, we investigate in more detail how different MLP architectures
influence the convergence behavior.

We parameterize the control-point heights with several MLP architectures that take a
constant scalar input of 1. In this configuration, instead of directly optimizing the con-
trol point z-coordinates, we optimize the trainable parameters of the neural network,
which subsequently map onto the z-values of the control points. The hypothesis be-
hind choosing different neural network architectures is that this indirect parameteriza-
tion yields smoother lenses depending on the network connections as changing a neu-
ron will affect multiple control points in which information from different control points
can be influenced by a single parameter and potentially faster convergence than direct
optimization. The networks we considered are standard feed-forward MLPs, consisting
of multiple layers of neurons, illustrated schematically in Figure 5.10.

dense dense dense

Hidden layer Hidden layer Output layer
Trivial input (1,) (mi+1,n2+1) (m+Ln+1 (m+1l,n+1)

Figure 5.10: The dense multi-layer perceptron architecture based on the size of the control net (n+1) x (n2+1).

Specifically, we compare the following architectures:
1. No network (NN): direct optimization of the control points, serving as baseline.

2. Random Sparse (RS): network with randomly initialized weights and biases
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3. Uniform Sparse (US): with sparsity informed by the support of overlapping B-spline
basis functions. This approach enables controlled interactions between control
points sharing influence over common knot spans. Thus, each neuron layer has
connectivity analogous to a convolutional layer with kernel size 2p +1,2q + 1).
However, in contrast to standard convolution, each connection possesses a unique
weight, and each kernel has a distinct bias.

4. Uniform Dense (UD): fully connected MLP architecture, with three layers sized ac-
cording to the control net dimensions with weights initialized uniformly from a
small interval U([-1074,1074]). This architecture rapidly increases the number of
trainable parameters (n* parameters for two consecutive layers, given a square
control net with side length n).

The hyperbolic tangent is chosen as the activation function for all neurons.

We tested these different architectures by optimizing a freeform lens that projects a cir-
cular top-hat distribution (Figure 5.11) from a collimated source. Figure 5.12 shows the

Figure 5.11: The circular top hat target illumination.

optimization loss progression over 1000 iterations for different step sizes (103, 1074, and
107°). The resulting lens shapes and irradiance distributions obtained during optimiza-
tion at a step size of 10~ are shown in Figures 5.13, 5.14, 5.15, 5.16, and 5.17.

The first notable difference between randomly and uniformly initialized sparse neural
networks is that the uniformly initialized converged loss values are much lower than the
randomly initialized, regardless of the chosen step size. There are two possible expla-
nations for why this is the case. First, due to the random initialization of the network
the optimizer tends to converge to a different local minimum than the uniform initial-
ized networks, as shown in Figure 5.13. Second, as the parameter values are randomly
initiated, the influence of certain nodes on certain control points might be unbalanced,
resulting in some control points having a much higher contribution throughout the op-
timization than other control points.

When comparing the different step sizes of the optimizations done using no network,
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US, and UD, we see that when using a step size of 1073, all three cases converge to a loss
of 5x 1077 in roughly 600 iterations as shown in Figure 5.12. At a step size of 1074, the
uniform dense network initially decreases slower but catches up to the other networks
using a step size of 1073 at around 400 iterations, eventually converging to a similar loss
value of 5 x 10~7. While the uniform sparse network takes longer to reach the same loss
value, it still manages to do so after 1000 iterations. When decreasing the step size to
1075, none of the cases fully converge. However, we observe the same behavior of the

uniform dense network, converging faster than the uniform sparse network, which again
converges faster than the no networks case.
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Figure 5.12: Loss progress over the iterations for the pipeline-setups: random sparsely connected (RS), no
network (NN), uniform sparsely connected (US), and uniform densely connected (UD) using step sizes 1073,
1074, and 105 for forming a top hat distribution from a collimated beam.
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Figure 5.13: The lens height field after initialization (n = 0), and n = 50,100 and 1000 iterations respectively,
using a step size of 1074 and different network architectures and network parameter initializations.
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Figure 5.14: Irradiance distributions and pixel-wise errors in the optimization progress of a lens with a random
sparse network and a step size of 10™* towards a circular top hat illumination.
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Figure 5.15: Irradiance distributions and pixel-wise errors in the optimization progress of a flat lens without a
network and a step size of 10~ towards a circular top hat illumination.
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Figure 5.16: Irradiance distributions and pixel-wise errors in the optimization progress of a flat lens with a
sparse network and a step size of 104 towards a circular top hat illumination.
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Figure 5.17: Irradiance distributions and pixel-wise errors in the optimization progress of a flat lens with a
dense network and a step size of 104 towards a circular top hat illumination.
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5.6. CONCLUSION
We demonstrated that non-sequential differentiable ray tracing is a viable tool for de-
signing freeform lenses.

For simple irradiance distributions, freeform lenses made using a low number of degrees
of freedom converge to smooth lenses. However, when the number of degrees of free-
dom increases, which is also required to project complex irradiance distributions, this
is not guaranteed. With this approach the obtained lenses become irregular, almost dif-
fuser like objects.

One simple way to resolve this is to decrease the step size used during optimization.
This allows smaller changes during optimizations, giving the control points more time
to adjust to their neighbors contributions.

Using a neural network to remap the optimization space provides an interesting way
to increase the convergence speed of the optimization. However, further investigation
is required to see whether this generally holds and what the effect is on other network
architectures. Furthermore, using transfer learning knowledge from past optimizations
can be transferred to new optimization scenarios, potentially reducing the time required
for optimization.

Using only a few control points yields smooth, well-behaved lenses, but it cannot repro-
duce the fine detail of a complex target. It is able to produce only a coarse, yet recogniz-
able, approximation. A progressive-refinement strategy can overcome this limitation: by
gradually adding control points to increase the degrees of freedom of the B-spline. With
the introduction of new degrees of freedom, more details can then be added to the ob-
tained irradiance distribution. Such refinement can be realized with both knot insertion
and the use of THB-spline refinement.



THB-REFINEMENT AND
OPTIMIZATION PROCEDURE

In Chapter 5, we observed that designing freeform lenses with B-splines for a complex
irradiance distribution can easily lead to irregular lens surfaces unless preventative mea-
sures are taken such as decreasing the step size. We also observed that for a smaller
number of degrees of freedom the fine details of the irradiance distribution are missing,
although the general shape is typically recognizable. Building on these insights, we pro-
pose a gradual refinement strategy. Initially, we optimize the lens using a small number
of control points to establish its coarse shape. Subsequently, additional degrees of free-
dom are introduced to capture the finer details. To accomplish this, we use two methods
to introduce new control points: knot insertion and Truncated Hierarchical B-splines
(THB-splines). Both approaches allow for local refinement of the surface. However,
as discussed in Section 3.3.2, there is ambiguity when inserting a knot using B-splines,
and therefore we adopt uniform refinement when using ordinary B-splines. In contrast,
THB-splines allow for local refinement. This allows us to develop a more rigorous algo-
rithm to decide where new control points should be added. To achieve this we make use
of algorithmic differentiation, which can give us both the gradient of the control points
and the surface vertices. The vertex gradients quantify local sensitivity and let us iden-
tify regions that need refinement. This technique is introduced in Section 6.1 and its
effectiveness is demonstrated by fitting a THB to a height map in Section 6.2. Finally,
Section 6.3.1 compares THB-refinement with uniform knot insertion for the Girl with a
Pearl Earring target distribution with a zero-étendue source. Section 6.3.2 extends the
THB-spline approach to a finite étendue source which projects a curved target distribu-
tion.

63
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6.1. INITIATING THE THB ALGORITHM

We start the optimization by initializing the surface with a low number of control points
and perform an optimization for a fixed number of iterations. Once finished, we identify
areas where the surface requires refinement by examining how changes in the vertex po-
sitions affect the irradiance distribution. The surface has Ng vertices in the x-direction
and M, vertices in the y-direction. These vertices are located on a grid G within the
domain Q = [0,1]? with the x and y positions of the points:

Gij= (ﬁ’M;—l) with 1,jeN,0<i<Ng—1,0<j<Mg-1.  (6.1)
Each vertex lies inside exactly one knot span product. These are domains between adja-
cent knots represented by Cﬁ o= [uf, uf 1) X we, vf +1) which subdivide the surface. Each
knot span product is identified by its index rs and its refinement level ¢. To determine
which knot spans need refinement, we calculate the gradients of the z-positions of the
vertices, denoted as Z; ;, within a knot span product and sum the absolute values within
the knot span C ﬁ s given by

0L(Z;j)

6.2
62,"]' 6.2)

zrljs: Z

i,jeCt,

If the absolute sum of the vertex gradients within a knot span exceeds the average abso-
lute gradient by a threshold value a:

Zi> > Zh 6.3)

2[mum,, s

the cell is refined, and a new optimization batch is started. The sum is weighted by the
number of knots m, and m, in the u and v directions at level £ = 0. We iterate optimiza-
tion and adaptive refinement until the maximum hierarchy level L is reached.

6.2. FITTING A THB-SPLINE TO A HEIGHT MAP VIA OPTIMIZA-

TION

To demonstrate the effectiveness of the automated surface refinement strategy, we ap-
proximate a height map Zarge: € RN*M depicted in Figure 6.1(al). using a THB-spline
Z%HB € RNV*M with control point matrix C. The THB-spline is initialized as a B-spline of
degree 3 with 10 x 10 control points, and we set the maximum allowable refinement level
of the THB-spline to L = 4. We minimize the Frobenius norm of the difference between

spline and target surface:

2
|Z$, 151, M) = Ziarged[n, m]|”. (6.4)

N
min
C ng'l 1

N

After 150 optimization iterations at one refinement level, the mesh was refined. To reach
the highest refinement level of 4, a total of 750 iterations are performed. In Figure 6.1
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the optimization results are shown. Each column (a-e) corresponds to the successive re-
finement levels ¢ = 0...4. The difference of the THB-spline surface before and after op-
timization is shown in Figures 6.1(a2-e2) with the THB-surface shown in Figures 6.1(a3-
e3). Eachiteration, higher resolution details are added, as seen in the hierarchical meshes
shown in Figure 6.1(a4-e4). The vertex gradient maps Figure 6.1(a5—e5) confirm that
high-gradient regions trigger local refinement.

6.3. RESULTS

We demonstrate the working of the proposed optimization method with two design ex-
amples. The first design is a freeform lens, illuminated by a collimated beam of light
that projects the image of the "Girl with a Pearl Earring." The second design projects a
smooth, curved irradiance distribution with an extended source close to the front sur-
face. All simulations were done on a desktop computer with an Intel Xeon CPU E5-1620
v3 and NVIDIA RTX 2080 Ti GPU.

A Gaussian measurement function is used to ensure the stability of the gradient calcu-
lations of the surface control points. This is because the Gaussian measurement func-
tions of neighboring pixels slightly overlap, preventing rays from suddenly jumping from
one pixel to another. In addition, the standard deviation of the Gaussian was tuned to
smooth out the vertex gradients. This was necessary as small standard deviations pro-
duced noisy gradients, making the refinement procedure unstable.

MITSUBA 3 does not provide a direct method of measuring irradiance values for a grid
of pixels. Therefore, the light redirected by the freeform lens is projected onto the target
screen and imaged by a pinhole camera, giving an unaberrated image of the irradiance
distribution used in the optimization. More details are found in the Section 4 of the sup-
plementary materials. It is also possible to design freeform lenses with B-splines with
a static number of degrees of freedom. In Section 1 of the supplementary materials we
compare results for a simple top-hat distribution and the image of the Girl with a Pearl
Earring with B-splines with various static numbers of degrees of freedom. We learn from
these examples that large degrees of freedom with large step sizes lead to highly irregular
lenses. This can be mitigated to some extent by choosing a smaller step size, leading to
a longer optimization time. Thus giving a trade-off between the number of degrees of
freedom and the step size used. In addition, for the zero-etendue example, we compare
THB-splines with regular B-spline refinement, where all knot spans are refined after a
fixed number of iterations. All results are compared to LightTools [84], in which the sys-
tem is recreated and simulated. A detailed description of how the systems are modeled
in both MITSUBA and LightTools is presented in Section 4 of the supplementary materi-
als, and the lens before and after optimization and the corresponding LightTools models
are shown in Section 5 of the supplementary material. Finally, we look at the size of the
knot spans as their size indicates whether or not diffraction due to small details on the
lens could be problematic [75].
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Figure 6.1: (al) Desired surface; (b1) plot of loss through optimization with refinement parameters and step
sizes; (a2-e2) difference in surface between subsequent optimization steps; (a3-e3) surface at the end of each
optimization step; (a4-e4) hierarchical mesh of the THB-spline, showing which knot span products are refined;
(a5-e5) gradients of the surfaces vertices;
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6.3.1. THB-SPLINE FREEFORM LENS OPTIMIZATION ZERO-ETENDUE

We optimize the rear surface of the freeform lens, which is illuminated by a uniform
collimated beam of light, with all rays having the same radiance, to generate the Girl
with a Pearl Earring (Figure 6.2(al)) at a distance of 300 mm of the lens. A radius of 100
mm and a conic constant of —1 were chosen for the base conic surface such that the
initial irradiance distribution was slightly smaller than the desired target distribution.
The spline surface was initialized as a B-spline of degree 3, and a control net of 10 x 10
and zgeedom Was chosen to be a quarter of the thickness of the lens. The values of all
other system parameters can be found in Table. 6.1.

Table 6.1: System parameters for a collimated beam of light with Girl with a Pearl Earring as target distribu-
tion

System Parameters Surface parameters
Tsource 47.5 mm dy N/A mm Rfront 0o mm N,, N, 14
Tfront 50 mm d, 20 mm Kiront 0 p,q 3
Trear 50 mm d,  300mm Rear  100mm Ny, M, 449
Farget 100 mm Ny, M; 256 Krear -1 L 5
w Gaussian ow 1 Zfreedom 5 mm n 1.5

Figure 6.2(b1) shows the chosen step sizes and refinement parameters used during opti-
mization batches. The step sizes were selected to minimize the number of iterations re-
quired for the optimization to converge and to be small enough to avoid instability. Fur-
thermore, the refinement parameters were chosen first to refine the whole lens surface
and then prioritize areas of high vertex gradients in later stages to correct the fine details
in the desired irradiance distribution. It took 7 minutes and 31 seconds to optimize the
lens. When analyzing the changes in the irradiance distribution after each optimization
batch, as expected, the rough contour is shaped. With increasing refinement level of the
THB-spline, finer details are filled in the irradiance. However, the first two refinement
steps do not significantly reduce the total loss, as seen in the minor changes in the ir-
radiance distributions in (Figures 6.2(b6 and c6)) compared to the initial optimization
batch. Examining the vertex gradients, in which we can recognize a distorted version of
the target distribution, reveals that vertex gradients remain mostly unchanged until the
third refinement step Figures 6.2(a5-c5). This is because the high vertex gradients vary
with a small area, requiring a high refinement level to eliminate them. As can be seen
in the hierarchical meshes shown in Figures 6.2(a4-f4), it is precisely around these areas
that the THB-spline has the highest refinement level.

One area where the optimizer has an issue is the dark area between the chin and the
dress. Initially, it attempts to move the light off the target plane to prevent it from con-
tributing to the irradiance distribution. However, upon close examination, we see that
the size of this area is reduced, as in the distorted image which can be seen in the ver-
tex gradients Figures 6.2(a4-e4), the chin and the dress move closer toward each other,
causing the size of the area which discards light to decrease.

Figure 6.3 shows the results for the B-spline. No significant differences can be noticed
either in the surface or irradiance distributions. Comparing the loss values shown in
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Table 6.2: Numbers of degrees of freedom at the end of each optimization batch for both B- and THB-splines

‘ 250 500 750 1000 1250 1500
THB-spline | 100 161 387 1297 3818 11955
B-spline 100 289 961 3481 13225 51529

Figure 6.4, we see they both end up at comparable loss values. However, we observe that
the THB-spline results were obtained using fewer degrees of freedom than the B-spline
Table. 6.2.

We can see that the results obtained in MITSUBA 3 (Figure 6.2(f6)) and the verification
in LightTools (Figure 6.2(c1)) are visually consistent with each other. The way the Light-
Tools loss decreases compared with the MITSUBA loss is shown in Figure 6.2(b1) and
Figure 6.3(b1). For the first three batches, the LightTools loss matches the MITSUBA
loss. However, for the final three batches, the difference in the loss increases. As this
difference increases during the final batches, the mismatch is likely caused by errors in-
troduced by importing the THB surface into LightTools.

Of the total power emitted by the source (1 Watt), 0.92 Watts end up in the final distribu-
tion. At the highest refinement, a knot span has a size of 156 x 156 um?. As we work with
degree-3 splines, the smallest change in the lens surface has a support of 468 x 468 yum?,
which is roughly one thousand times larger than the wavelength size. This allows us to
disregard diffraction effects.
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Figure 6.2: Results using THB-refinement strategy (al) Desired irradiance distribution; (b1) Plot of loss through
optimization with refinement parameters and step sizes and LightTools loss at the end of each batch; (c1) Ir-
radiance obtained from LightTools; (a2-f2) The difference in the surface between subsequent optimization
steps; (a3-f3) Surface at the end of each optimization step; (a4-f4) Hierarchical mesh of the THB-spline, show-
ing which knot span products are refined; (a5-f5) Gradients of the vertices of the surface; (a6-f6) Obtained
irradiance after every optimization batch.
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Figure 6.3: Results by using B-spline refinement strategy (al) Desired irradiance distribution; (b1) Plot of loss
through optimization with refinement parameters and step sizes and LightTools loss at the end of each batch;
(c1) Irradiance obtained from LightTools; (a2-f2) The difference in the surface between subsequent optimiza-
tion steps; (a3-f3) Surface at the end of each optimization step; (a4-f4) Hierarchical mesh of the THB-spline,
showing which knot span products are refined; (a5-f5) Gradients of the vertices of the surface; (a6-f6) Obtained
irradiance after every optimization batch.
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Source Lens Target plane

Figure 6.6: The LightTools model showing the source, lens and target plane with true color results projected
onto it.
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6.3.2. THB-SPLINE FREEFORM LENS OPTIMIZATION FINITE-ETENDUE

To demonstrate the effectiveness for an extended source, a smooth curved target distri-
bution, depicted in Figure 6.7(al). The reasoning behind the simpler target compared to
the zero-etendue example is that the use of a finite étendue source limits the details that
can be achieved [102, 15, 44]. The basic conics of the front and rear surfaces are set such
that the initial irradiance distribution was of similar size to the desired distribution, and
the B-spline of the rear surface was initialized with 5 x 5 control points while the front
surface is left unchanged throughout the optimization and zgeedom Was chosen to be
roughly a quarter of the thickness of the lens. An overview of all the system parameters
can be found in Table 6.3.

Table 6.3: System parameters: extended source with curved uniform target distribution

System Parameters Surface parameters

Tsource 0.5 mm dy 2 mm Riront -5 mm Ny, N, 9

Tfront 5 mm dq 5 mm Kiront -1 pq 3
T'tear 8 mm do 1000 mm Rrear -10 mm Ng,Mg 450

rtarget 2000 mm Nt, Mt 256 Krear -1 L 5
w Gaussian ow 1 Zfreedom 1.5 mm n 1.5

The step sizes and refinement parameters are shown in Figure 6.7(b1). The step sizes u

were again chosen to balance the number of iterations to the stability of the optimiza-

tion. The refinement parameters were chosen to ensure that the mirror symmetry of the
hierarchical mesh was maintained as long as possible throughout the refinement pro-
cess. The preservation of symmetry was critical in the earlier stages, as breaking it would
result in different areas of the lens being optimized at different refinement levels, leading
to worse-performing lenses. It took 29 minutes and 23 seconds to optimize the lens. At
the end of each batch, the number of control points is 25, 49, 70, 253, 637, and 2180.

The graph depicting the loss shows that each refinement significantly reduces the loss.
Why this is the case can be understood by analyzing the vertex gradients. In Figures 6.7 (a5-
d5), we can identify two distinct gradient areas: a large area in the center with a struc-
tured pattern and a ring surrounding it. It is important to note that although these areas
seem disconnected, they are connected. This is due to the chosen standard deviation
of the Gaussian measurement function, which causes the gradients in this intermediate
area to be much smaller than in the ring or central parts of the vertex gradients when
blurred. During the first four optimization batches, the structured details in the central
area gradually decrease in size (Figures 6.7(a5-d5)), shaping the central, uniform part
of the irradiance distribution (Figures 6.7(a6-d6)). However, after the fifth optimization
batch, unstructured and low-valued gradients dominate the central domain, while the
edges show large gradients, as seen in Figure 6.7(e4). In the final optimization batch,
the area of the rear surface, which corresponds to the edges in the vertex gradients, is
used to correct the thin lines of light protruding from the center of the distribution Fig-
ure 6.7(e6). These corrections can also be seen when looking at the changes made to the
freeform surface during optimization, Figure 6.7(f1). The central area is largely left un-
changed. Thus, the lower THB levels fill the uniform distribution, while the distribution
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Figure 6.7: (al) Desired irradiance distribution; (b1) Plot of loss through optimization with refinement param-
eters and step sizes; (c1) Irradiance obtained from LightTools; (a2-f2) The difference in the surface between
subsequent optimization steps; (a3-f3) Surface at the end of each optimization step; (a4-f4) Hierarchical mesh
of the THB-spline, showing which knot span products are refined; (a5-f5) Gradients of the vertices of the sur-
face; (a6-f6) Obtained irradiance after every optimization batch.
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edges are corrected at the higher level.

During later stages, large changes to the surface occur, as seen in Figures 6.7(e2,f2). How-
ever, these areas no longer affect the measured irradiance as they either do not receive
any light or the light refracted by this part of the lens fails to reach the target screen.

The final results of MITSUBA (Figure 6.7(f6)) and LightTools (Figure 6.7(c1)), appear vi-
sually very similar. However, we see a structural offset in the LightTools loss shown in
Figure 6.7(b1). The loss decreases similarly for both ray tracers, though their difference
increases in the final batches, similar to the zero-étendue case.

al b1 cl

Figure 6.8: Images of the lens projecting the uniform curved distribution from left, center and right before and
after optimization (al-cl) lens before optimization; (a2-c2) lens after optimization.

Using an extended source emitting a total flux of 1 W, a total of 0.84 W gets through
the lens, considering Fresnel losses of which 0.74 W ends up in the target distribution.
The 0.16 W, which does not go through the lens, is reflected in the source. To investigate
where the light goes that does not end up at the target screen, we follow the path of 8 non-
sequential rays, using LightTools non-sequential ray fans. As is shown in Figure 6.10, the
rays emitted by the source at the highest angles are reflected from the edge surface and
totally internally reflect along the rear surface of the lens and refract back through the
front surface into the source or miss it. Some rays that hit the lower or upper parts of the
rear surface are refracted through the edge surface and, therefore, miss the target screen.

At the highest refinement level, the size of a knot span is 31.25 x 31.25 um?. As we use
splines of degree 3, the basis functions are three times the knot span. Therefore, the
smallest change in the surface is approximately 95 x 95 um?, which is 160 times larger
than the wavelength of the light, which is 0.55 um. Therefore, we can assume that diffrac-
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Source Lens

Target plane

Figure 6.9: The LightTools model showing the source, lens and target plane with true color results projected
onto it. As the size of the target plane is much larger than the freeform lens a zoomed in view of the lens and
source is depicted.

— Rays not reaching the target screen — Rays reaching the target screen

Figure 6.10: Overview of the trajectory of different non-sequential rays, indicating which rays end up at the
target screen (green) and those that do not (red) using two different types of ray sampling (a) an equi-angle
sampling of 8 rays; (b) a linear sampling of 8 rays.
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tion effects will be negligible.

6.4. CONCLUSIONS

In this chapter we demonstrated a technique to optimize freeform lenses for both zero-
étendue sources and finite étendue sources. We accomplished this by utilizing the algo-
rithmic differentiable non-sequential ray tracer MITSUBA 3, giving us access to gradi-
ents of the parameters of the freeform surface. This, combined with THB-splines, allows
us to gradually increase the degrees of freedom to avoid getting trapped in undesirable
local minima. The L; norm of the gradient of the vertices within a knot span was used to
determine where refinement was necessary.

The method can find a freeform lens to accurately generate a prescribed target distribu-
tion for zero- and finite étendue sources. However, it is not as effective in finding so-
lutions for zero-étendue sources as dedicated zero-etendue solves such as those which
solve the Monge-Ampére equation [77]. These are capable of finding similar solutions in
a much shorter time. The method excels in its adaptability, as it does not require signifi-
cant changes to the algorithm to optimize for extended sources.

It is shown that a refinement strategy can significantly improve the design stability com-
pared to simply initiating a freeform surface with many control points. In addition, us-
ing THB-splines allows the designer to keep control over where, on the freeform surface,
new degrees of freedom can be added and obtain similar results to classical B-spline
refinement with fewer degrees of freedom.

During optimization, the gradient vertices show interesting information, allowing us to
understand how the optimization changes the surface and identify sensitive areas of the
freeform surface.

Future work will focus on further developing the refinement strategy, such as investigat-
ing other metrics to determine which knot spans should be refined and a more efficient
way to determine the refinement parameters. More freedom in modeling the freeform
lens should be added so that it is not limited to a rectangular optimization domain. Hav-
ing a more accurate way to transfer the THB-description between programs by using
standardized file formats supported by LightTools, such as STEP or IGES.







SHIFT-INVARIANT ETENDUE
SYSTEMS

A common assumption made while designing freeform optics for illumination applica-
tions is to work with zero-étendue sources, such as point sources or highly collimated
lasers. For most practical applications this assumption is too strict, as the source size or
divergence is not negligible, and we must design for a finite étendue source [16, 81, 63,
36]. However, when using finite étendue sources there is no guarantee that a desired ir-
radiance distribution is realizable with the given source. For instance, reproducing high-
spatial-frequency detail can be difficult and be formulated in terms of resolution limits
of freeform elements [102, 15].

Here, we further investigate when a specific finite étendue source can realize a given ir-
radiance distribution. We model the optics as a shift-invariant black-box system: a shift
in source position translates the output without changing its shape. Under this assump-
tion, the irradiance from a finite étendue source equals the convolution of the source
with the system’s zero-étendue response. Prior work has proposed recasting extended-
source design as a zero-étendue problem by deconvolving the desired irradiance with
the source blur [58, 17, 1, 92]. However, the impact of source extent on the quality of
achievable irradiance has received limited attention. We study this relationship by tak-
ing inspiration from deblurring images in astronomy and microscopy [20] where prior
information of the system response, such as non-negativity and finite support, are used
in an attempt to find a physically feasible blur kernel [21]. We use the definitions of posi-
tive definiteness and Bochner’s Theorem to analyze the problem and highlight the issues
in realizing the desired irradiance distribution for simple sources. Furthermore, we show
that restricting the point sources to be located in a grid with equal intensities can sim-
plify the problem and help find analytic solutions. To conclude, we propose a method
of approximating the irradiance with a basis of non-negative functions and show that
the approximation’s quality of the desired irradiance distribution heavily depends on

79
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the chosen source for optimization. These results are then compared to regularization
methods commonly used in the deblurring of images.

7.1. SHIFT INVARIANT RESPONSE

To analyze the problem of which irradiance distributions can be realized with a finite
étendue source, we consider an optical black box system that redirects the light emitted
by a source on the optical axis into an irradiance distribution Ej, as seen in Figure 7.1,
which we call the optical impulse response of the system. We assume that the system

2 Black Box 2
Source plane Target plane

Figure 7.1: The optical black box system redirects the light emitted by a point source on the optical axis located
in the source plane to generate an irradiance distribution Ep, called the impulse response.

is shift-invariant, meaning that a source at a position r® in the source plane illuminating
the optical black box system will shift the impulse response by an amount &° in the target
plane directly proportional to r®, as depicted in Figure 7.2. Now consider a set of Ny mu-

Zs Black Box 2
Source plane Target plane

Figure 7.2: Light emitted by a point source located at r* in the source plane is redirected by the optical black
box system to generate Ej, which is shifted by an amount & with &5 o< 5.

tually incoherent monochromatic sources emitting the same wavelength in the source

plane at r}, each with a different intensity a,,. Then the total irradiance at the target plane
Ey,¢ is the incoherent sum of the contribution of each point source:

Eeor®) = f f Ep(& - £)GE)E, @.1)
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where G, is the blurring caused by the source, and is defined as:

N;
G =) a6’ -§&). (7.2)
n=1

Under this assumption, we can analyze the problem as a deconvolution problem where
we want to find the impulse response E), using a predefined irradiance distribution Eiot
and source blurring G.

Y g
T
<
«©
(S
G
Eto(
2 Black Box 2
Source plane Target plane

Figure 7.3: Multiple point sources in the source plane give an irradiance distribution Eo.

7.2. REGULARIZED DECONVOLUTION OF THE TARGET DISTRI-
BUTION

Given a desired irradiance distribution E;y: and a source blur G, we want to find the im-
pulse response of the optical black box system such that when illuminated with the given
source, the desired irradiance distribution is obtained. All these functions are measures
of radiometric energy. Hence they are non-negative:

Eiot(&), Ep(&), G(&) = 0for all & € R,

To find an E,, for a given source blur the following minimizing problem has to be solved:
min | Bt (&) - Ep (&) * G| )5, (7.3)
where | - ||2 is the L2-norm. Using the Fourier transform, which we define as:
FA1® = [[ roeeia, 7.0

where E is the reciprocal coordinate of &, and f(f) =Z{f}(&). The inverse Fourier trans-
form is defined as

7= ff F@emEEdE, (7.5)
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A solution for E), can then be found in Fourier space [20]:

(7.6)

G@)Ei (€
Ep(f)=9_l{ & tot(f)} 5,

IG@I12+e

where € prevents division by zero. Using Equation?7.6 let us look at the solution obtained
when using the 1D rectangle function as the desired irradiance distribution is:

Emt(f):rect(g—x) with rect(g—x)
a a

) (7.7

1 lf |5x|5a;
0 if [&xl>a.

with two sources of equal strength. Fig.7.4.a0 shows the desired irradiance distribution
Etot(§x) = rect({,/0.5) with a source blur G(¢x) = 6(§x +0.25) +6(§x — 0.25). The E,(Sx)
obtained from Equation7.6 with € = 107!* is shown in Fig.7.4.b0. It is a non-negative
function with bounded support. However, when we slightly change the width of E to
a = 0.51 while keeping G unchanged, E, as given by Equation?7.6, the obtained impulse
response as seen in Fig.7.4.b1, has negative values and does not have bounded support
anymore. Something similar happens when leaving E;,; unchanged, and the source po-
sitions are slightly changed. As seen in Fig.7.4.b2, resulting in E,, oscillating rapidly, has
no finite support and negative values.

From these results, it is clear that this problem is ill-posed and is very sensitive to pertur-
bations of the desired irradiance distribution and the a source blur. To better understand
when a non-negative E, is obtained and what the requirements should be imposed on
Eiot and G to assure this, we can make use of positive-definite functions (Definition 1)
and Bochner’s Theorem (Theorem 2).

Definition 1 (Positive definite functions) A continuous function ® : R" — C is positive
definite onR" if for every N = 1 and everyx,..., Xy € R", there holds:

N N
Z Z Cj(,‘-kq)(Xj —X;) =0
Jj=1k=1

for all complex numbers [c,,- - ,cn1T € C. Hence the matrix with elements D(xj—xi) is
hermitian and non-negative.

Theorem 1 (Properties of positive-definite functions [31])

a) Any non-negative finite linear combination of positive definite function is positive
definite., i.e., if ®1,--- @, are positive definite on R" and w; =0 forall j = 1,---, m,
then:

m
Px) =) wjP;x), xeR”"
j=1

is also positive definite on R".

b) For any positive definite function: ®(0) = 0.
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Figure 7.4: Results from applying regularized deconvolution to a rectangular function when & = 10714 (a0)
Etot(§x) =rect(§x/0.5) and G(¢x) = 6(§x +0.25) +6({x —0.25); (b0) Ep (Sx); (al) Erot(§x) = rect(1.02¢/0.51) and
G(x) =0(5x +0.25) +6({x —0.25) ; (b1) Ep(Sx) ; (a2) Etot(§x) = rect({x/0.5) and G(§x) = 6(¢x +0.25) +6({x —
0.2501); (b2) Ep (¢ x) obtained for ; Results are obtained using linear sampling of ¢ x on the domain [-5,5] with
N =1000001 points.

¢) For any positive definite function: ®(—x) = ®(x).

d) Any positive definite function is bounded. In fact,

[OX)| <®(0) forallxeR".

e) If® is positive definite with ®(0) = 0 then ® = 0.
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) The product of positive definite functions is positive definite.

Theorem 2 (Bochner’s Theorem [31]) A (complex-valued) function ® € C(R") is positive
definite on R" if and only if it is the Fourier transform of a bounded Borel measure |1 on
R", i.e.

1

V(2"

Since the functions }:D\tot, I’(\ ,and E’” are non-negative, Bochner’s theorem implies that the
Fourier transforms Ei, G and Ej, are all positive definite. When applying regularized
deconvolution of Equation7.6 we can use Property.1f: positive definiteness is preserved
under multiplication. This property guarantees that E p is positive definite if 1/ G is also
positive definite but is not a necessary condition. It is simple to show that this cannot
be the case because: G(0) = ICA}(E)I for allz € R? implies that 1/G(0) < II/G(Z)I for allf €
RZ2. Hence, if 1/G were positive definite: 1/G(0) < II/G(E)I <1/G(0) requiring |G to be
constant which is only possible when only a single source is used. Therefore, if multiple
sources are used, it is not possible for I(A?(E)I to be constant. Thus, 1/G is in general not
positive definite, and hence Etot/ Gisin general also not positive definite, and hence E »
is not positive definite. Besides the single source solution, a second trivial case exists
where G(&) = Eiot () with E, (&) = 6(8). This case is realized by choosing the distribution
Eio as the source and projecting it to the desired target plane using an imaging system.

O(x) = fix) =

fe_ix'ydp(y), xeR".
Rn

One can view these two trivial solutions as two extreme solutions to the problem of re-
alizing the desired irradiance using a combination of source and optical systems. The
first solution corresponds to putting all the information into the optical system and only
using a single source. In contrast, the second solution corresponds to shaping the source
distribution and imaging it. The challenge is to find useful solutions between these two
extremes. Therefore, we could reformulate the minimization described in Equation7.3
by treating both the blur and impulse response as variables leading to a blind deconvo-
lution problem given by:

min || Bt (€) — Ep (&) * G@)||5. (7.8)
Ep,G

Algorithms such as iterative blind-deconvolution [5] and Richardson-Lucy deconvolu-
tion [56, 74, 33] can then be used to find both the source and impulse response of the
system. However, despite our efforts in applying these methods, they have yet to pro-
duce significant results. Therefore, we limit our analysis to cases where the source is
given.

7.2.1. ANALYTIC EXAMPLE

To be able to analyze the problem with an analytic example, we impose a couple of re-
strictions on the source blur, given by Equation7.2 of which the Fourier transform is:

N R
G@&) =) lail*exp(i-&)). (7.9)
i=0

The sum of complex exponentials can be rewritten as a complex function:

G@) =1G@)exp(i®s (@), (7.10)
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where @4 is the phase of the complex function and |G| is the modulus, which can be
written as:

n#m

N; R
[E6G] =J Y ai+ Y 2apamcos@- (&, —&m), (7.11)
n=0

(7.12)

N; s
CI’@(E) = arctan ( Yo @nsin(§-&,) ) .

¥ ancos@-&,)

To obtain a valid solution, E/G should, according to Property.4.d, be bounded, which
is the case when all the zeros of |G| are also zeros of Eo;. However, |G| is a cosine polyno-
mial of which only a lower bound can be given for the number of zeros [10, 78] making
it extremely challenging to ensure that all the zeros are found. Two assumptions can be
made to simplify Equation7.11 and Equation7.12. The first assumes that all the sources
have the same intensity a, = a for all n = 1,..., Ns. The second restricts the source po-
sitions to be equidistant with some separation A& = [A{y, A, T such that A& n = nA&.
Combining these assumptions gives the following expression for Equation7.9

N, R
G@) =a)_ expié-nAd), (7.13)
n=0
which can simplified to:
I in (Ns&-A&/2
G@) = aw—z)
sin(&-A&/2)

This expression is closely linked to the Dirichlet kernel [7], and it enables the analytical
analysis of specific desired irradiance distributions.

exp (iN& - A&/2). (7.14)

Again consider the 1D rectangle function of Equation?.7 as the desired irradiance distri-
bution then its Fourier transform is

~ A 1 . ng? sin (ng /a)
Eior(€0) = —sinc( =5 ) = =222, (7.15)
a a wéy
We can calculate E, using the simplified kernel Equation7.14:
~ o~ sin(mé,/a) sin(ExAE/2) o
Eyy) = x Lehd exp (—i€xAE(Ng—1)/2). (7.16)

”Ex sin (ngxAg/z)

By setting A¢ = 27/ Nga the sine in the denominator is canceled by the fist sinus in the
numerator, leaving us with:

STy 1 . T[Ex T Az
B, = n—é\xsm(Nsa)exp(—lfof), (7.17)

where AE = Aé(Ns—1)/2 is used to simplify the expression. We can rewrite this expression
as a sinc function:

~oa 1 & s
E,E0 = msinc(j\iﬂ) exp (—iExAD). (7.18)
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The inverse Fourier transformed of Equation7.18 then gives the solution for the impulse
response

Ep(fx) :l'eCt(astx_Ef), (7.19)

which is depicted in Figure 7.5.b0. This expression shows that as the number of sources
increases, an equal amount of rectangles can be placed next to each other to get back the
original rectangle.

It should be noted that Equation7.19 is one of many solutions we can obtain. By rewrit-
ing Equation7.16 using the sine double angle formula, we can find:

(i€ AE(Ns —1)/2). (7.20)

'?x ”Ex sin (ExASt/Z)
E,(¢x) = —sin cos|2E| 22X ™ oy
b mfx ( 2a ) ( 2a )sin(stxAEIZ)

By choosing A¢ = n/(N;a) the sinus in the denominator is canceled by the first sinus on
the right-hand side of Equation?.20, an alternative solution for the impulse response:

6(§x+$)+6(§x—$)]. (7.21)

This solution can be understood as dividing the rectangle into 2Ny rectangles. The im-
pulse response equals the combination of the first and the (N + 1)™ rectangle, as seen
in Figure 7.5.al.

Ep(Ey) = rect(ZNs aky - Ef) "

The double angle formula can be applied an arbitrary number of times, and gives the
general expression for when it is applied M times

o~ _2M (e sin(ELAE/2) M s
Ep(fx)——Asm(zMa)sin(ngxA{/z) Xp (—i& A& (N — 1)/2)1_[c0s(2

). (7.22)

By choosing A¢ = 1/2M Nya, the sinus in the denominator is again canceled. By Fourier
Transformation of the resulting expression, we get:

M
— 1
Ep(&) = rect(2Mag . - A« @ 5(ex+ 2m+1 )+ (6 - m) . (7.23)
m=
The ®1,\n4:1 is used to denote the M times repeated convolution:
M
fix faxex fu=CK) fn- (7.24)
m=1

This solution can be understood as dividing the rectangle into M N; rectangles. The im-
pulse response equals the combination of the first and every (N, + 1)™ rectangle after
that, in Figure 7.5.b2 the result is shown where the double sine angle is applied three
times.

Based on this example, we can see the importance of correctly choosing the number of
sources and the distance between them because, otherwise, the sines in Equation7.16
do not cancel. However, even with the assumptions used, finding an analytic expression
for the impulse response Ej, is only possible for a limited amount of cases. Therefore,
estimating the desired irradiance distribution using a basis guaranteed to have a solution
provides a more general approach.
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Figure 7.5: Visualization of results obtained by applying Equation7.19, Equation7.21 and Equation7.23 with
N =2 (a0) Desired irradiance distribution; (b0) Impulse response obtained using Equation7.19; (al) Impulse
response obtained using Equation7.21; (b1) Impulse response obtained using Equation7.23 with M = 3;

7.3. APPROXIMATING THE IRRADIANCE DISTRIBUTION THROUGH
OPTIMIZATION

As shown in Section.7.2.1 finding an analytic expression for the impulse response is only
possible for a limited set of desired irradiance distributions. In addition, most irradiance
distributions do not have an analytic expression, and we must turn to optimization to
find a suitable E), given an irradiance distribution Et,¢ and source blurring G.

To implement the minimization algorithm to solve Eq.7.3, we formulate the discretized
problem. The matrices E, Ep, G are the discrete counterparts of Eyo, Ep, G and are
matrices of dimension N x N. Furthermore, to write Eq.7.3 in terms of matrix and vector
multiplications, we use the vectorization vec operator, which for a matrix

a a2 ai,n
a1 dzo ... az,n

A=| _ (7.25)
an,1 Q4p2 ... Qmn

is defined as

T
Vec(A)=[a1,1, ey Qlp, 21, ..., 2p, Qml, --- am,n] . (7.26)
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In addition, we define the toeplitz operator for a general vector:

a= [alr a, as, ey an-2, an-1, an] (727)
as:
ay 0 ... 0 0]
ay a) . 0 0
toepl(a)= | - : N (7.28)
an-1 Gpn-p - a1 0
ap, Gp-1 - ay al

and the reshaping operator resh,;x :

ay ay ooy am
am+1 am+2 ey 2m

resh (@) = : ) ) . (7.29)
An-1)m+1  An-1)m+2 --- Onm

which takes a vector of size NM and reshapes it into a matrix of size N x M such that for
a square matrix M € RN*N we have M = resh vy N(Vec(M)).
Using these operators the convolution of two matrices can be written as a matrix vector
multiplication:

vec(G * Ep) = toepl(vec(G))vec(Ep). (7.30)

We can then formulate the discrete minimization problem as:

min [vec(Ecor) — toepl [vec(G)] vec(E,) |5 (7.31)
P

While solving Equation?7.31, itis crucial to include prior information such as non-negativity
and finite support of the solution. To accomplish this, we describe two approaches:
one involves approximating the desired irradiance distribution using non-negative basis
functions, while the other utilizes regularization techniques.

7.3.1. APPROXIMATION USING NON-NEGATIVE BASIS FUNCTIONS
We define a set of non-negative functions {Py, Py, -+, P,} with coefficient w; > 0 to ap-
proximate the distribution

Eot(§) =) 0;iPi(§) *G(&), w;=0. (7.32)
i

Using this basis we can then reformulate Equation7.3 as finding the optimal coefficients,
such that the following expression is minimized

min
w1,Ww2,...,.Wn

. (7.33)
2

Eiot(§) =) G(&) * w; P;i(§)
i
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The distribution E, is then obtained by summing the weighted basis functions:

Ep@) =) wiP;i(§) (7.34)
i

A suitable choice for P is any probability distribution with finite support such as Beta dis-
tributions, Bates distributions, Irwin distributions, or Kronecker delta distributions [48].
There are two ways of forming a basis for a chosen distribution. First, probability density
functions defined by shape parameters, such as the beta distribution with shape param-
eters a and S:

Px)=x*"'1-xP", af=0 and 0=x=1, (7.35)

allow for creating a non-orthogonal basis by choosing a range over which to define @ and
B and discretize it. For instance, select the range a € [0, A] and S € [0, B] and the amount
of functions in the set using N, and Ng. Then the following set of basis functions is
obtained:

Py j(x) = x"ANa=l(1 - x)/B/No1 - with i=0,1,...,N, and j=0,1,...,Np. (7.36)

Secondly, a probability density function P(x) which does not have shape parameters,
such as the Irwan-Hall distributions, can give a basis by spatially shifting P(x) over a
distance x; by which the basis function becomes:

Pi(x)=P(x) *6(x—x;). (7.37)

. . S . 2
To obtain the discrete optimization problem we define matrix P € RV *M as the concate-

nation of vectorized basis functions
P=[vec(Py), vec(P), ..., vec(Py)], (7.38)
then vec(E,) can be calculated as:

vec(E,) = Pw, (7.39)

where w € RM*! is a vector containing the weights of the basis functions. Combining

Equation7.31 and Equation7.39 the discrete minimization problem becomes:

n}gn ||Vec(Etot) —toepl [vec(G)] Pwng subjectto w=0, (7.40)

which can be solved using non-negative least squares [67, 35]. Once a w is found which
minimizes Eq.7.40 or a maximum number of iterations is reached, E, can be calculated
as:

E, =reshyxn (Pw). (7.41)

7.4. RESULTS

We consider the case of 2 sources with equal intensity, yielding the following source blur:

G&)=0)+5(&+Ad). (7.42)
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Figure 7.6: Schematic representation of how the two sources are defined: the first source is located at the origin
(on the optical axis), the second has position vector A§ = (mA&x, nASy).

One source is fixed at the center of the source plane such that &° = 0 while the other can
move freely with a position A&. A schematic representation is shown in Figure 7.6. For
all cases, the target irradiance distribution is chosen to be of size 256 x 256, and the basis
chosen for optimization consists of shifted Kronecker delta functions,

5,8 = {0’ ferbo (7.43)
1, ifé=¢,

The position of the second source is incrementally changed for source positions A& =
(mA&y, nA¢y) with m, n € [0,20] and Aé , A¢y, = 1/128. The size of G becomes very large.
However, due to the choice of source blur, the matrix toepl(vec(G)) only has 2N 2 non-
zero elements allowing the use of sparsity. At each position, Equation7.3 is solved using
non-negative least squares, which is stopped once a maximum amount of iterations has
exceeded or has not decreased for several iterations, yielding a solution for E,(¢). The
final ? norm value is stored in a matrix of size 20 x 20, called the loss matrix, when
plotted, shows a grid of the loss values, called the loss landscape. The loss landscape
visualizes how well the optimization converges for the different source configurations.

The optimization was done for two desired irradiance distributions: a uniform square
and a uniform circle, of which the results can be seen in Figure 7.7 and Figure 7.8 respec-
tively.

The loss landscape of the uniform square distribution, Figure 7.7.b0, shows several posi-
tions where good estimation is achieved, which are situated along the x and y-axis. The
impulse responses obtained for two cases are shown in Figure 7.7.b1 and Figure 7.7.b3.
These solutions are equivalent to the analytical solutions found by applying the double
sine formula in Equation7.23 in the x or y-direction. Moving the source away from the
X or y axis causes a degradation of the quality of the obtained irradiation distribution.
The obtained distribution is shown in Figure 7.7.a2, and in Figure 7.8.b2, the respective
impulse response.
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For the uniform circle, we see that the desired distribution can be accurately estimated
when the distance between the two sources is small compared to the distribution size,
as seen in Figure 7.8.al. As the distance between the sources increases, the estimation
quality further degrades.

In all results, we see that if the shift induced by moving the source is small with respect to
the size of the target irradiation distribution, an impulse response can be found, which
can be used to approximate the desired distribution accurately.

7.4.1. COMPARISON WITH REGULARIZATION

We compare the results of the non-negative basis function approximation with three
types of regularization: maximum entropy, Tikhonov regularization with L the iden-
tity operator, and Tikhonov regularization with L the discrete Laplace operator, which
is commonly used in edge detection [13] and is chosen to enforce smoothness of the so-
lution and dampen out the wild oscillation observed in Figure 7.4.b1 and Figure 7.4.b2.
We solved the regularized problems using Regularization Tools [42] employing different
solvers for the regularized problems. The maxent solver was used to solve for the max-
imum entropy regularization, the conjugate gradient algorithm (cgls) for the Thikonov
with identity regularization, and the preconditioned conjugate gradient algorithm (pcgls)
for the discrete Laplace operator regularization. We compare the results of two sets of
source positions for both the square and circular distributions. For the square distri-
bution, we compare the results for the source positions: A = (8A¢,0) (Figure 7.9) and
A& = (6A¢y,6A¢)) (Figure 7.10). For the circular distribution, we compare the results of
source positions: A§ = (0ASy,4A¢,) (Figure 7.11) and A& = (13A¢y,4A¢,,) (Figure 7.12).
For both cases of the square distribution, the regularization parameter used to solve the
maximum entropy was set to ¢t = 0.4642. Both the preconditioned and regular conjugate
gradient algorithms converged in 50 iterations. For the circular distribution, p = 0.315
was chosen for the maximum entropy algorithm, and the preconditioned and regular
conjugate gradient algorithm converged in 150 iterations.

In all test cases, the maximum entropy regularization produced non-negative impulse
responses and total irradiances, which, upon visual inspection, closely resembled the
outcomes obtained through approximation by non-negative basis functions. The results
obtained using the conjugate gradient method converge to the known non-negative so-
lution as seen in Figure 7.9.al and Figure 7.9.b1. However, in all other scenarios, the
obtained impulse response oscillates rapidly between positive and negative values and
lacks finite support, as depicted in Figure 7.10.b2, Figure 7.11.b2 and Figure 7.12.b2. Fur-
thermore, the impulse responses obtained using the preconditioned conjugate gradient
method with the discrete Laplace operator are much smoother than the other results, as
shown in Figure 7.10.b2, Figure 7.11.b2 and Figure 7.12.b2. Although both impulse re-
sponse and total irradiance become negative, the amount is much less than the results
obtained using the regular conjugate gradient algorithm. Moreover, while the precon-
ditioned conjugated gradient result extends beyond the desired irradiance domain, the
oscillation appears to be damped towards the edges.
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7.5. CONCLUSION

We have presented a mathematical study of the problem of generating a desired irradi-
ance distribution under the assumption that the irradiance distributions generated by
different point sources are the same except for a translation. Under this assumption
can be analyzed as a deconvolution problem where the desired irradiance distribution,
illumination, and impulse response should all be non-negative. Using positive definite
functions and Bochner’s theorem, we have shown two trivial solutions: one uses a single,
zero-étendue source; the other shapes the source to be the desired irradiance distribu-
tion and designs an imaging system that projects it to the desired plane. When restricted
to equidistantly spaced sources with equal strength, an analytic solution for E, can be
found in specific cases. However, a more general approach is obtained through opti-
mization using a set of non-negative basis functions. Analysis of the results showed, for
the case of two sources, that if the shift induced by moving the source is small compared
to the size of the irradiance distribution, a good estimation can be obtained. However,
once this shift becomes too large, the quality by which the desired irradiance distribution
can be estimated decreases with the distance between the sources.

We compared these results with various types of regularization. The maximum entropy
regularization can come close to the solutions obtained by our proposed method. How-
ever, this approach requires careful selection of the regularization parameter to achieve
optimal results. The conjugate gradient was able to converge to the known non-negative
solution. However, for all other cases, it converges to a solution that is neither non-
negative nor has finite support. Finally, the preconditioned gradient method with a dis-
crete Laplace operator always converges to a solution that has negative values but due
to the smoothness constraint imposed by the Laplace operator, it has finite support, but
it extends beyond the domain on which the desired irradiance distribution is defined.

Future work should address two aspects. First, the issue of large matrices required to
solve the problem will be tackled, enabling the analysis of higher-resolution irradiance
and complex source distributions. Second, the theory should be extended to accommo-
date shift-variant impulse responses, which provide a more realistic representation of
what is observed when moving a source in illumination systems.
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CONCLUSION AND OUTLOOK

8.1. CONCLUSION

We began by showing that combining algorithmic differentiable ray tracing with B-splines
and Truncated Hierarchical B-splines (THB-splines) provides a practical framework for
the design of freeform lenses for illumination applications for both zero-étendue and
finite étendue sources, and concluded by exploring the fundamental limits of which ir-
radiance distributions are achievable for a given finite étendue source.

In chapter 5 we demonstrated that combining algorithmic differentiable ray tracing with
B-splines works well for simple irradiance distributions which can be produced by freeform
surfaces described by only a few control points. For more complex targets, more degrees
of freedom are required and without properly tuning the optimization parameters, irreg-
ularities start to appear in the resulting freeform surfaces. These irregularities, in turn,
increase stray light. Reducing the gradient descent step size can reduce the amount of
irregularities. However, this comes at the cost of longer optimization times. Introducing
aneural network to remap the optimization space can accelerate convergence, although
its broader impact still needs investigation.

To address the trade-off between smoothness and convergence time, Chapter 6 intro-
duced the use of knot insertion and THB-splines to gradually increase the number of
degrees of freedom in the freeform surface. To leverage the THB-splines capability to lo-
cally refine the surface, we used a gradient-based criterion to pinpoint where the surface
should be refined. This strategy shows that gradually increasing the degrees of freedom
yields well-behaved freeform lenses without excessive optimization overhead.

Finally, in Chapter 7, we discuss the more fundamental question: can we generate any
irradiance distribution using an extended source? By approximation an extended source
by multiple spatially shifted sources and assume a shift invariant response of the system
such that the irradiance distribution does not change with source position. We uncov-
ered the underlying complexities which arise when trying to convert a finite-etendue
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problem into a zero-etendue problem. We identify two seemingly trivial cases for this
problem. The first is to use a single source and to design a system to create the target
distribution. The second is to shape the source and image the source onto the target
plane. The complexity arises when not all information can be embedded exclusively in
the system or exclusively in the source. Unless the source is specifically designed for the
target distribution, the only practical path is approximation, subject to a non-negativity
constraint.

8.2. OUTLOOK

Plenty remains to be explored. So far, the results are confined to single-surface freeform
lenses for an extended source.

First, the neural network is currently used only to accelerate optimization. With suf-
ficient training data, it could generate an initial freeform lens for a given target dis-
tribution, and transfer learning could leverage prior optimizations to speed up future
runs. Second, beyond the finite-étendue problem, existing approaches are being ex-
tended to include multiple optical surfaces [4], Fresnel losses [87], surface scattering
[51], and spatially varying refractive index [54]. Combining several of these effects re-
mains challenging. The method developed here could incorporate them with only mod-
erate changes, but the added degrees of freedom and complexity will require smarter op-
timization strategies, perhaps using higher-dimensional splines for GRIN media. Finally,
to better understand which target distributions are achievable with a finite-étendue source,
the shift-invariance analysis should be generalized to shift-variant source responses.
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