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Abstract

The combination of continuously increasing safety standards and harder requirements on the
emissions of cars leads to a challenge for the automotive industry: cars need to become safer
and more efficient. One way to overcome this challenge is to make use of Carbon Fibre
Reinforced Polymers (CFRP) in the car frame. CFRP laminates have vastly different failure
modes than metal and are generally anisotropic. As a consequence, the structural concepts
perfected for metals may not be the best ones for CFRP frames, hence, re-evaluation of them
is needed to obtain the structurally most efficient concept for a CFRP car frame.
Finite Element Analysis (FEA) is chosen as one of the tools to evaluate these concepts.
However, one problem is that currently there is no method to model CFRP which can be
used in the context of car crash simulations, without the requirement of specifying the exact
stacking sequence of the used laminates. Therefore, a new method is being developed for the
implementation in a commercially available FEA software package (LS-Dyna) which does fulfil
this requirement. The basis of this method is that it compacts a whole CFRP laminate into
one element through thickness with a homogenized material, making use of the Equivalent
Single Layer (ESL) theory. This thesis provides an approach to include one of the failure
modes of CFRP in the method: delamination.
As foundation for the new method, a four-noded bilinear element based on First-order Shear
Deformation Theory (FSDT) is chosen due to its low computational cost during processing.
The problem with combining this element with the ESL theory, is that it is not possible
to model the kinematics of delamination. Because of this, delamination in the new method
is split into two parts: the detection of onset of delamination and modelling the effects of
delamination.
For the detection of delamination, a stress-based failure criterion is chosen, following the fail-
ure theory of Alfred Puck and a quadratic delamination failure criterion. However, transverse
stresses are not accurately predicted in FSDT: transverse shear stresses are assumed to be
constant through thickness and transverse normal stresses are assumed to be zero. Therefore,
each time step is post-processed automatically to recover more accurate transverse stresses.
The result is a parabolic distribution of the shear stresses through thickness, however, due
to the absence of parabolic shape functions in the four-noded bilinear element, transverse
normal stresses are not recovered.
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Since the kinematics of delamination cannot be modelled with the chosen four-noded ele-
ment in combination with the ESL theory, each structural effect of delamination is analysed
separately. The reduction of bending stiffness (to 25% of the undamaged laminate) and the
reduction in stresses due to bending (to 50% of the undamaged laminate) are considered
the most severe and are therefore selected to be implemented into the method. The im-
plementation is done by applying a damage factor in the calculation of the stresses at an
integration point. Afterwards, the same damage factor is used in the calculation of the nodal
moments, simulating the desired bending stiffness. Since undamaged material surrounding a
delamination can stiffen the delaminated part of a structure, only elements which are part
of two perpendicular free edges or connected to them via a continuous delamination should
have a reduction in bending stiffness and stress. Therefore, an algorithm is developed which
identifies these elements.

The previously described method of modelling delamination in two-dimensional FEA models
has been compared to finely meshed three-dimensional FEA models, by modelling square
cantilever plates with differing shapes of delamination. First a benchmark model without
delamination was tested: a square cantilever plate with a length 10 times the thickness of
the plate, resulting in the shell elements over-predicting the out-of-plane displacement at
the tip of the plate by 5.9%. The two models with common delaminations, a plate with a
one-dimensional delamination and a plate with a moderate size square two-dimensional de-
lamination, showed comparable over-prediction of the displacement. Finally, the two models
with more uncommon delaminations, a plate with a two-dimensional delamination on the
brink of becoming a one-dimensional delamination (i.e. progressing towards a third perpen-
dicular free edge) and a plate with a slender delamination, showed more inaccurate results,
with approximately 30% over-prediction of the deflection.

Several sidetracks and new problems arose during this research which have not been explored
yet, and are therefore recommendations for further work. Due to time constraints exact
implementation of the effects of delamination was not possible in the finite element software;
a comparable method (manually assigning the delaminated area) was used to examine the
results of the method. Implementation of the method would allow for better comparison to
three-dimensional results, both obtained due to experimental tests as well as more detailed
FEA. Next to this, while free edges and delamination crack fronts are identified using the
earlier mentioned algorithm, their effects on delamination onset and growth have not been
implemented. Hence, while this thesis provides an approach to model delamination in an
equivalent single layer model in explicit finite element analysis, there are still possibilities left
to enhance the capabilities and increase the accuracy of this approach.
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Chapter 1

Introduction

The automotive industry faces new challenges as regulatory bodies set harder requirements
on the CO2 emissions of cars, while safety standards are continuously increasing. The most
demanding safety standards for a car are to pass crash tests like defined in a New Car
Assessment Program (NCAP). These programs are defined by regulatory bodies in various
regions, for instance the Euro NCAP by the European Union [1] and the US NCAP by the
United States National Highway Traffic Safety Administration [2].

One opportunity to achieve the reduction in emissions, without compromising safety, is recon-
sidering the choice of material in car frames. For over a century, these have been mainly made
out of metal. The geometrical concepts for the frame are therefore highly perfected. This
means that for a new car model made of steel, the geometrical concept is set on forehand, the
wall thickness of frame elements is usually the first parameter which can be changed. Because
of the high level of perfection of the current metal car frames, meeting the emission and safety
standards in the future will require a higher use of lightweight materials, one option is to make
use of Carbon Fibre Reinforced Polymer (CFRP) in the car frame [3]. These materials are
proven to have superior specific stiffnesses, strength and energy absorptions with respect to
metals. Using CFRP makes mass savings on the car frame of up to 57% possible [4]; when
evaluating the car as a whole, weight savings of 20% or more are expected [5]. However,
the European Roadmap Safe Road Transport noted that the lack of numerical finite element
crash simulation tools with accurate predictive capabilities prevent the wide-spread use of
CFRP in the development of new automobiles [6]. This thesis will cover a part of this lack.

Contrary to isotropic materials such as steel, CFRP is a composite material consisting out
of fibres embedded in a matrix, creating a brittle material with failure modes which are
vastly different from metals. Furthermore, CFRP is anisotropic, with strength and stiffness
parallel to the fibre direction an order of magnitude higher than perpendicular to the fibre
direction. To circumvent this issue, laminates can be created by stacking several unidirectional
plies on top of each other with different fibre directions. The combination of the freedom
in stacking sequence and the complex failure modes of CFRP means that the geometrical
concepts perfected for metals may not be the best concepts for frames made of CFRP. Hence,
designing a CFRP car frame means an extra design phase is added: concept evaluation.



2 Introduction

To evaluate the concepts, numerical tools like Finite Element Analysis (FEA) will be used,
both its implicit and explicit form. Implicit FEA can be used to analyse the quasi-static
crushing strength of car frame components. Although this is a useful tool, it is not capable of
accurately predicting the energy absorption behaviour during dynamic loading like the NCAP
tests; for this an explicit FEA code is necessary [7, 8]. In order to be able to evaluate more
concepts in a limited time, details will be sacrificed in order to decrease the computational
costs. Shell elements can be used when one of the dimensions is at least one order of mag-
nitude smaller than the others. This reduces the number of degrees of freedom and hence
reduces the computational cost. Furthermore, the CFRP laminate can be simplified using
the Equivalent Single-Layer (ESL) theory, in which the material of a shell is homogenized
through the thickness dimension. The combination of the ESL method with shell elements
greatly reduces the computational cost when compared to solid element models [9].
One of the problems with homogenising a whole CFRP laminate through thickness, is that
the failure modes are dependent on the differences in material characteristics through thick-
ness. To tackle this problem, a new material model is being developed at BMW AG for
the implementation in an explicit FEA code. While anisotropy in stiffness is easily imple-
mented in FEA, the different failure modes of CFRP laminates need development. In this
thesis the main focus will be on one of those failure modes: delamination. Delamination is
the separation of a laminate into multiple sublaminates due to interlaminar cracks. For a
broader overview of delamination itself, see the reviews by Garg [10] and Senthil et al. [11],
and Chapter 2.13 in Comprehensive Composite Materials by Pagano and Schoeppner [12].
There are various ways to model delamination of laminates in FEA. One way is the global-local
approach [13, 14]: the general global mesh is locally altered to incorporate the delaminated
region. The use of changing element types throughout the analysis makes this way compu-
tationally very expensive in explicit FEA. Another way of modelling delamination in FEA
is to make use of connecting elements (like cohesive zone elements) between two sublami-
nates [15–17]; if such an element fails, the laminate is delaminated. The use of these elements
requires knowledge of the expected location of delamination in advance, and can only model
a number of delaminations equal to the number of connecting elements.
While these are the most useful ways to model delamination, they are both computationally
too expensive to be used in the new material model [18]. Hence, a new method is needed,
leading to the following research question: How to detect and model delamination of laminated
composites in an equivalent single layer model in explicit finite element analysis?
To give a well-founded answer, this report is structured as follows: first, the basics of composite
materials and failure modes are covered in Chapter 2. In Chapter 3, the context of explicit
FEA and initial considerations for the concept of the model are presented. Chapter 4 then
explains how onset of delamination can be detected. The effects of delamination and how
they can be used in an ESL method are described in Chapter 5. Chapter 6 concludes this
thesis with a discussion on the model detailed in the previous chapters, and recommendations
for future research.
New contributions in this thesis are the accurate calculation of transverse shear stresses in
a homogenised material model in explicit FEA using ESL shell elements (see Section 4.1.4)
and modelling the most important effects of delamination for the evaluation of new car frame
concepts: a reduction in bending stiffness and a reduction in strain due to bending (see
Section 5.2).



Chapter 2

Behaviour of Composite Structures

In contrast to isotropic materials like metals, carbon fibre composite laminates consist of
different anisotropic layers with a high directional differences in stiffness and strength. This
may lead to totally different failure mechanism as known from ductile metals. One of these
failure modes is delamination. To have a better understanding of the underlying topics
regarding the research question, this chapter serves as background information on composite
laminates and the delamination failure mode, with emphasis on the implementation in finite
element analysis. The reader is referred to Daniel and Ishai [19] or Hahn and Tsai [20] for a
more in-depth explanation on the engineering mechanics of composite materials.

To give a brief overview of this chapter, Section 2.1 starts of with a description of the com-
ponents of the composite material and how a laminate is built up. Section 2.2 follows with
the description of the First-order Shear Deformation Theory (FSDT), a theory which can
be used for the analysis of composite structures. Section 2.3 then explains failure modes of
composites on micro-level. How they can interact with each other in the case of a car crash
is explained in Section 2.4. Since delamination is the failure mode of interest for this thesis,
Section 2.5 closes the chapter with an in-depth analysis of its causes and effects.

2.1 Basics of Composite Materials

Composite materials owe their name due to their composition of two different materials. In
the case of CFRP, the first component is the carbon fibre, which is stiff and strong in one
direction. The second component is the weaker isotropic polymer, in which the fibres are
embedded. If designed properly, the result is a composite whose mechanical properties are
superior to those of the separate materials. In the case of CFRP, the fibres are the load
bearing component of the composite, with their stiffness and strength one to two orders
of magnitude higher than those of the matrix. The matrix then binds the fibres together,
transferring the load between them and providing protection of the fibres against wear and
chemicals. Comparison of specific properties of typical aluminium, steel, CFRP laminates
and the bare components of CFRP as used in car frames can be found in Table 2.1.
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Table 2.1: Specific material properties of typical car frame materials

ρ E11
ρ

E22
ρ

R11,ult
ρ

1 R22,ult
ρ

1

Material
(

kg
m3

) (
m3MPa

kg

) (
m3MPa

kg

) (
m3kPa

kg

) (
m3kPa

kg

)
Aluminium 6101 T6 [21] 2680 25.7 25.7 74.6 74.6
Steel DP980 [22] 7870 26.7 26.7 127 127
Polymer 3501-6 [23] 1265 3.32 3.32 54.5 54.5
Carbon fibre AS4 [23] 2 1790 126 - 1872 -
AS4/3501-6 Unidirectional [23] 3 1580 79.7 6.96 1234 30.4
AS4/3501-6 Quasi-isotropic [24] 3 1580 31.7 31.7 412 412

1 Strength values are tensile test results of ambient conditions on room temperature.
2 Note that carbon fibres cannot be used effectively as a stand-alone material; they need a matrix
for stabalization and provide load transfer between the fibres.
3 The composite laminates had a fibre volume content of 60%.

A single carbon fibre has a diameter of 5 to 10 micrometer. To increase the manufacturability
of CFRP, the thin carbon fibres are bundled together to form strands several thousands of
fibres. The amount of fibres per strand is know as the tow count, which for general applications
can vary from 1K (i.e. 1000) to 48K fibres per strand. The heavier tows (i.e. 24K and 48K)
have generally slightly lower mechanical properties, however, their lower cost favours them
for the use in automotive applications [18]. The resulting strands can then be used to create
unidirectional plies, in which all fibres are aligned in a single direction.

The majority of plates used in automotive industry have more than one direction in which
stiffness and strength are required. Therefore, several plies are stacked together and bonded
such that load transfer between them is possible. This stack of bonded plies is called a
laminate, with a characteristic stacking sequence defined by the orientation angle of the plies.
An example of the notation to identify the stacking sequence of a laminate is [0/90/45/-45]s,
see Figure 2.1. Evaluating this notation from the left to the right, the “0” stands for the
outside ply in which the fibres are aligned with the main direction of the laminate. A slash
designates the following ply, which in this case is rotated by an angle of 90◦ with respect
to the main direction of the laminate. At the end, the subscript s designates that the base
unit of 4 plies between brackets is mirrored after the -45◦ layer, creating a laminate of 8
plies in total. In this example the single layers are stacked such that the properties of the
laminate are equal in all in-plane directions, therefore this laminate is called quasi-isotropic.
Furthermore, since mirroring about the mid-plane of the laminate would create a copy of the
laminate itself, it is called symmetrical as well.

As can be seen from Table 2.1, the quasi-isotropic laminate performs better than its metal
counterparts in terms of specific stiffness and strength. This is however based on test coupons
with a fibre volume content of 60%. While it is possible to get such a high value for parts
with simple geometries [26], for more sophisticated geometries a fraction of 50% is more likely
to be achievable [27]; which would decrease the specific properties of the composite laminates
of Table 2.1 by about 15%. However, the real power of composites lies in their ability to
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Figure 2.1: Stacking sequence of a [0/90/45/-45]s laminate [25]

tailor their layup to the loads applied to the structure. This means that for a properly
designed CFRP part, the specific properties are in between the values of the unidirectional
and quasi-isotropic laminates.

For a more detailed description on the basics of how a composite laminate is built up, the
reader is referred to Chapters 1 and 2 of Engineering Mechanics of Composite Materials by
Daniel and Ishai [19].

2.2 First-Order Shear Deformation Theory

One tool to analytically assess composite structures on their behaviour under load is the
FSDT, which will be described in this section. The FSDT, first developed by Reissner [28]
and Mindlin [29], is based on the Classical Plate Theory (CPT) of Kirchhoff and Love [30],
but relaxes the assumption that plane sections remain perpendicular to the mid-plane. An
overview of this plate theory as given by Whitney and Pagano [31] is presented first, followed
by the expansion of the theory for composite materials by the same authors in Section 2.2.1.
Section 2.2.2 closes the chapter by analysing the assumption of a homogenised material.

The previously mentioned relaxation increases the accuracy for plates which show relatively
large shear deformation with respect to bending, which is the case for moderately thick plates
and composite plates. It leads to a displacement field as given by Equation (2.1), with strains
calculated by Equations (2.2) to (2.6).

 ux
uy
uz

 =

 ux0
uy0
uz0

+ z

 θy
−θx

0

 (2.1)

With u the displacements and θ the cross-sectional rotations, as visualised in Figure 2.2.
Subscript 0 denotes that it is evaluated at mid-plane.

εxx = ux,x + zθy,x (2.2)

εyy = uy,y − zθx,y (2.3)

γxy = ux,y + uy,x + z (θy,y − θx,x) (2.4)
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θy

uz,x

x

z

Figure 2.2: Definition of angles used in FSDT in the xz-plane

γxz = uz,x + θy (2.5)

γyz = uz,y − θx (2.6)

With ε the strains, γ the shear strains and a comma representing a derivative with respect
to (i.e. uz,x = ∂uz

∂x ).

When comparing FSDT with CPT, two new degrees of freedom are introduced: θx and θy.
However, for FSDT all derivatives needed for calculation of the strains are first derivatives,
whereas for CPT second derivatives of uz are needed for calculation of the bending strains
in εx, εy and γxy. This has a beneficial effect on the computational cost of FEA, as will be
explained in the next section on the element formulation.

2.2.1 Expansion for Composite Materials

Just like the Classical Laminate Theory (CLT) expands the CPT for the use with composite
laminates, Whitney and Pagano [31] expanded the FSDT for the use of composites. The
remainder of this section is based on their work. Since the relaxation of the assumption that
plane sections remain perpendicular to the mid-plane does not affect the in-plane stiffness,
the in-plane stiffness matrices used in it are equal; the FSDT only adds a transverse shear
stiffness matrix. For completeness, they are shown next. First, the reduced ply stiffness
matrix Q̂ and the transverse shear stiffness matrix Ĝ for an orthotropic material are needed.

Q̂ =


Qxx Qxy 0

Qxy Qyy 0

0 0 QS

 =


ELL

1−νLT νTL
νLTETT

1−νLT νTL 0
νLTETT

1−νLT νTL
ETT

1−νLT νTL 0

0 0 GLT

 (2.7)

Ĝ =

 GLT 0

0 GTT

 (2.8)

In which E is the Young’s modulus, ν the poisson ratio (first subscript symbol is the load
applied, second is the effect) and G the shear modulus. Furthermore, subscript L denotes
longitudinal, T transverse and S shear. To obtain the stiffness matrices in the laminate
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coordinate system, Q̄ and Ḡ, these need to be rotated by an angle ϑ. This is done in
Equations (2.9) and (2.10).

Q̄ = T3Q̂TT
3 (2.9)

Ḡ = T2ĜTT
2 (2.10)

With T3 and T2 the transformation matrices, given by Equations (2.11) and (2.12), respec-
tively.

T3 =


cos2(ϑ) sin2(ϑ) 2cos(ϑ)sin(ϑ)

sin2(ϑ) cos2(ϑ) −2cos(ϑ)sin(ϑ)

−sin(ϑ)cos(ϑ) sin(ϑ)cos(ϑ) cos2(ϑ)− sin2(ϑ)

 (2.11)

T2 =

 cos(ϑ) −sin(ϑ)

sin(ϑ) cos(ϑ)

 (2.12)

The stiffness matrices in laminate coordinates can now be used to construct the laminate
membrane stiffness matrix A, laminate coupling matrix B, laminate bending stiffness matrix
D and laminate transverse shear stiffness matrix H, which are shown in Equations (2.13),
(2.14), (2.15) and (2.16), respectively.

A =
∫ h/2

−h/2
Q̄dz (2.13)

B =
∫ h/2

−h/2
Q̄zdz (2.14)

D =
∫ h/2

−h/2
Q̄z2dz (2.15)

H =
∫ h/2

−h/2
Ḡdz (2.16)

In which h is the total thickness of the laminate. Finally, this leads to the relation between
force and moment resultants and strains, as given by Equations (2.17) and (2.18).

[
N
M

]
=
[

A B
B D

] [
ε0
κ

]
(2.17)

R = kHγ (2.18)

With the vectors
ε0 = [εxx0 εyy0 γxy0]T
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κ = [θy,x − θx,y θy,y − θx,x]T

γ = [γxz γyz]T

Furthermore, N is the membrane force resultant, M the moment resultant and R the trans-
verse shear force resultant, given by Equations (2.19), (2.20) and (2.21), respectively. Finally,
k is the shear correction factor, usually taken as k = 5/6 for isotropic plates [28]. While this
might be a material constant for metals, Whitney [32] indicated that it is a function of (at
least) the layup of a composite laminate. The shear correction factor is needed to compensate
for the fact that a constant shear angle through thickness is assumed, which violates local
stress equilibrium at unloaded top and bottom surfaces of the laminate.

N =
∫ h/2

−h/2
σdz (2.19)

M =
∫ h/2

−h/2
σzdz (2.20)

R =
∫ h/2

−h/2
τdz (2.21)

With the vectors
σ = [σxx σyy τxy]T

τ = [τxz τyz]T

and σ and τ the stress and shear stress, respectively.

2.2.2 Stiffness of the Homogenised Material Model

This section explains what the assumption of a homogenised material through thickness means
for the material properties to be used, focussing on the stiffness.

For CFRP, the equivalent in-plane stiffness can be calculated as membrane stiffness using
Equations (2.22) to (2.24), or bending stiffness using Equations (2.25) to (2.27) [20].

E11m = 1
ha11

(2.22)

E22m = 1
ha22

(2.23)

G12m = 1
ha33

(2.24)

In which a is the inverse of the laminate membrane stiffness matrix A. Next to that, subscript
m denotes membrane properties.

E11b = 12
h3d11

(2.25)
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Table 2.2: Mechanical properties IM7/8551-7 [33]

Property Value Property Value
E11 (GPa) 165 Rt22 (MPa) 73
E22 (GPa) 8.4 Rc22 (MPa) 185
E33 (GPa) 8.4 Rt33 (MPa) 63
G12 (GPa) 5.6 Rc33 (MPa) 185
G13 (GPa) 5.6 R13 (MPa) 90
G23 (GPa) 2.8 R23 (MPa) 57
ν12 0.34 tply (mm) 0.125
ν13 0.34 ν23 0.5

E22b = 12
h3d22

(2.26)

G12b = 12
h3d33

(2.27)

In which d is the inverse of the laminate membrane stiffness matrix D. Furthermore, subscript
b denotes bending properties. Both A and D can be obtained through FSDT.
To further understand the effects the homogenization has on the stiffness of laminates, a
comparison is made on six eight-layered quasi-isotropic laminates. According to the FSDT
the in-plane stiffness of these three layups is identical. However, due to the different stacking
sequences, the bending stiffness is different. Using a standard CFRP material as given by
Table 2.2, the results for bending over membrane stiffness ratios are given by Table 2.3. While
the three layups show high differences in their bending behaviour, homogenizing the material
using the membrane stiffness will lead to incorrect behaviour in bending. Vice-versa, using the
bending stiffness in the homogenization will lead to incorrect membrane behaviour. Hence,
using the CLT or FSDT for homogenizing the material will need knowledge on the load case
on forehand to approach the real stiffness of a plate as close as possible.

2.3 Failure Modes of Composites on Micro Scale

The composite material model which this thesis is part of, will mainly be used in the com-
putational analysis of impacts of cars. In such an event, the kinetic energy of the car has to

Table 2.3: Bending versus membrane properties of quasi-isotropic laminates

Layup E11b
E11m

E22b
E22m

G12b
G12m

[0/90/45/-45]s 1.65 0.94 0.41
[90/0/45/-45]s 0.94 1.65 0.41
[0/45/-45/90]s 1.68 0.37 0.77
[90/45/-45/0]s 0.37 1.68 0.77
[45/-45/0/90]s 0.59 0.44 1.46
[45/-45/90/0]s 0.44 0.59 1.46
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Figure 2.3: Failure modes of CFRP laminates [35]

be absorbed by its frame. The decelerations of the car should be kept to certain limits as
defined in NCAPs in order to decrease the injuries of the occupants of the car. In composites,
a weight-effective way to do this is by composite crushing. This is a laminate failure mode,
which in turn is a combination of failures on a micro-level. In order to have a better under-
standing of these, this section describes four of these failure modes; fibre failure, interfacial
debonding, matrix fracture and delamination in Sections 2.3.1 to 2.3.4. All four sections are
based on Chapter 3 of Damage and Failure of Composite Materials by Talreja and Singh [34],
unless specified otherwise. For a visualisation of the failure modes, see Figure 2.3.

2.3.1 Failure of Fibres

For a properly designed laminate, the final failure (separation) of CFRP ultimately comes from
breaking of all fibres on a cross-section. For the case of a tensile loaded composite, fibres first
break at the weakest point, which causes a redistribution of load via the matrix to other fibres.
This redistribution may then cause new failure of fibres if the stress exceeds the strength of
the affected fibres. The strength of each individual fibre is of a statistical nature because
of manufacturing processes of the fibres themselves and the processes of manufacturing a
composite structure. Therefore, the number of fibre breaks per unit volume is higher in the
vicinity of a crack tip and reduces as the distance to the crack tip increases. Because of the
difference in stiffness and strength between matrix and fibres, the main parameters influencing
the magnitude of absorbed energy in this failure mode are the stiffness and strength of the
fibres.

In the case of a compressive loaded composite, fibre failure is characterised by kinking of
the fibres on micro level and is therefore known as the microbuckling of fibres. During the
manufacturing processes of a composite structure, misalignment of fibres on micro level is
inevitable. Therefore, idealizations of perfectly aligned fibres cannot be used in analysis of
this type of buckling, as misalignments of even a few degrees tend to give inaccurate buckling
loads. Next to the properties of the fibres, also the stiffness and strength of the matrix
influence the amount of energy absorbed in this failure mode.
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2.3.2 Interfacial Debonding

A primary factor in the mechanical performance of composite laminates is the quality of the
interface between the fibres and the matrix. This interfacial bond secures the transfer of
load between the two components of the composite material. Considering the strength of the
interface in the fibres and the matrix, a weak bond results in matrix cracks at relatively low
stresses. On the other hand, a bond which is too strong could cause a catastrophic failure of
the composite once the matrix cracks, as the fibres will crack simultaneously. Controlling the
bond strength is thus essential in creating a composite with optimal mechanical performance
and maximum potential on absorbed energy.

According to Daniel and Ishai [19], a stress concentration in the interface is needed to cause
failure in it, combined with a relatively weak interface when comparing to the matrix strength.
They mention two main sources of stress concentration in the interface:

• For a ply tensionally loaded along the fibre direction, a single failed fibre causes stress
concentrations in the interface since the load which was carried by this fibre, has to be
transferred to other fibres

• For a ply loaded perpendicular to the fibre direction (both in tension and compression),
as well as plies loaded in shear, the difference in stiffness of the fibre and matrix will
cause the stress concentration

2.3.3 Matrix Fracture

As can be seen from Table 2.1, CFRP offer high stiffness and strength in the direction parallel
to the fibres (1-direction). However, in the direction perpendicular to the fibres (2-direction),
the matrix is dominant in providing the mechanical properties of the composite and hence
the magnitude of these are lower. As a result, cracks tend to develop in the matrix along the
fibres as first failure in a composite laminate. For laminates containing plies with different
fibre orientations, these cracks can start in a given ply at a defect, progress to neighbouring
plies and grow along the fibres in these plies. Defects include interfacial debonds and voids
and inclusions due to manufacturing. Even though intralaminar matrix fracture itself does
not cause structural failure, the effects can be significant, including considerable degradation
in material stiffness. Furthermore, intraply matrix crack can induce more severe forms of
damage, such as fibre failure and delamination. Even though the matrix strength and stiffness
are low when compare to the properties of the fibres, the amount of absorbed energy can be
significant because of the large crack area.

2.3.4 Delamination

A crack between two plies of a laminate which causes a separation between those plies is called
delamination. Next to the earlier mentioned intraply cracks, delaminations in composite
laminates can start at free edges, curvatures and changes in cross-sections. They can also be
the result of a low-velocity impact. The effects of delamination are a reduced compressive
strength and a reduction in membrane and bending stiffness. Visual inspection cannot be
used in all cases to detect delamination, as the surface may appear undamaged while a
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(a) Schematic visualization (b) Typical load-displacement curve

Figure 2.4: Plastic buckling of an axially loaded tube [40]

delamination has started. For a more in-depth analysis of the delamination failure mode, the
reader is referred to Section 2.5.

2.4 Laminate Failure in In-Plane Impact Events

In contrast to metals structures, which generally collapse by plastic buckling in in-plane im-
pact events [36], most composite structures collapse by a combination of the fracture processes
described in the previous section [37, 38]. The actual interaction between these processes is
highly dependent on the geometry of the structure, lamina orientation, type of trigger and
crush speed, all of which can be suitably designed to develop high energy absorbing mecha-
nisms [39].

The fact that plastic buckling is still possible for some specific composite structures, is de-
scribed in Section 2.4.1. However, the preferred laminate failure mode in impact events is
composite crushing, which is described in Section 2.4.2.

2.4.1 Plastic Buckling of Composites

The plastic buckling failure mechanism of tubes involves successive locally buckled tube sec-
tions, such that the tube folds axially similar to the folding of an accordion, see the schematics
of Figure 2.4a. The corresponding load-displacement curve, shown in Figure 2.4b, shows three
distinguishable parts, each corresponding to one of the three schematics. First, the tube com-
presses linear-elastically up to a peak load before dropping to a mean crushing load. In the
second part, the load oscillates about a mean crush level in which each period corresponds to
the formation of one new fold in the tube. Once no new folds can be created in the tube, the
load rises rapidly in the final part.

The plastic buckling failure mode is typical for composites tubes based on aramid fibres,
as these exhibit plastic yielding in case of compressive failure, instead of fracture seen in
composites based on brittle fibres (like glass or carbon) [41–43]. There are cases known for
which composites based on brittle fibres do exhibit the plastic buckling failure mode. Farley
and Jones [44] identified three requirements for composites based on brittle fibres to exhibit
plastic buckling:
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Figure 2.5: Sequence of images visualising the crushing of a [0/90]4s CFRP laminate [45]

1. The interlaminar stresses are small relative to the strength of the matrix
2. The matrix has a higher failure strain than the fibre
3. The matrix exhibits plastic deformation under high stress

However, Farley and Jones noted that this mode of failure is generally an inefficient one
for thin-walled specimens, favouring the composite crushing mode as described in the next
section.

2.4.2 Composite Crushing

Composite crushing is defined as the the result of a combination of several failure mechanisms,
such as matrix cracking, delamination and fibre tensile and compressive fracture, leading to a
progressive brittle failure in a composite under an axial compressive force. How all different
failure modes interact with each other during composite crushing is explained by using several
of the tests of Israr et al. [45]. The first test was on the crushing of a [0/90]4s laminate,
photographs of the progressive crushing are shown in Figure 2.5. The plate was given a 20◦
chamfer at the impact surface to create a progressive crash front, see image 1 of Figure 2.5.
From the beginning to image 1, the tip of the specimen crushes. The outermost ply delami-
nates and has a combination of interfacial debonding and matrix cracks, as can also be seen
from the splitting of the outer 0◦ ply on the right hand side of image 1. Continuing to image
2, more delaminations appear, creating several [0/90] sublaminates. After image 2, parts of
the laminate begin fragmentation, which is the separation of small parts of the laminate,
completely losing the load bearing capability for the remaining structure. During fragmen-
tation, fibres break in the 0◦ plies due to excessive bending (tensile failure) or microbuckling
(compressive failure). In the 90◦ plies, the matrix fractures as a result of losing the load
carrying ability of the connected 0◦ plies. As the crushing progresses from image 3 to 6, the
delamination grows such that fragmentation decreases and most of the sublaminates bend,
creating larger fragments.
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(a) [0/90]4s laminate (b) [0]8 laminate (c) [90]8 laminate

Figure 2.6: Crushing of three different CFRP laminates. Red lines indicate the thickness of the
laminate in pure fragmentation mode [45]

Figure 2.6 shows photographs of three more tests at the stage of full crushing; i.e. the stage
of images 4 to 6 of Figure 2.5. Note that these three laminates have a chamfer angle of 45◦.
When comparing Figure 2.6a to image 4 of Figure 2.5, the difference in chamfer angle results
in comparable crushing behaviour. This is not the case for the crushing of a [0]8 laminate,
as can be seen from Figure 2.6b. It exhibits more splaying than the cross-ply laminate,
resulting in a smaller part of the laminate which fails by fragmentation; 9 out of 16 plies for
the cross-ply laminate versus approximately 2 out of 8 plies for the uni-directional laminate.

Comparing Figure 2.6c to Figure 2.5, the failure modes interact differently with each other
for the transverse uni-directional laminate as well. Since no fibres are in the direction of
movement of the impacted surface, the stiffness and strength in this direction are low. This
causes smaller delaminations and fragment sizes. Furthermore, minimal fibre breakage was
reported, as the stress in the fibres is relatively small. Hence, matrix failure and delaminations
are dominant in this crushing test. Since the way the failure modes interact with each other is
different for the three presented cases, it is concluded that the layup of a laminate influences
this interaction. The exact manner in which the material parameters (like strengths, failure
strains, stacking sequences) influence the crushing process is not fully understand yet.

2.5 Delamination

As concluded from the previous section, delamination plays a major role in the crushing of
composites. However, not only in crushing does delamination occur, it can also have other
causes, as can be read in Section 2.5.1. The effects of delamination on a structural level follow
in Section 2.5.2.

2.5.1 Causes of Delamination

Delaminations start when the transverse stresses on the interface between plies become higher
than the strength of this interface. Due to the anisotropic nature of CFRP, there are more
causes for transverse stresses than for metals. Curvatures, free edges, changes in cross-sections
and applied transverse loads can all give rise to these stresses [46]. Each of them is shortly
explained below.
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Figure 2.7: Curved beam under bending load

Curvatures

Delamination due to curvature could be best explained using a simple beam. If a curved beam
is bent such that the deformation is in the opposite direction as the initial curvature (see
Figure 2.7), the layers near the inner surface will tend to straighten out. The layers near the
outer surfaces will keep part of their curvature. This combination leads to a tensile transverse
normal stress. The opposite also holds; a loading which leads to an increase in the initial
curvature, develops a compressive transverse normal stress in the curved region. To keep
local stress equilibrium, transverse shear stresses develop as well. This effect is also present
in isotropic material, for which the maximum stress is approximated by Equation (2.28) [47].

σmaxrr = 3M
2t√riro

(2.28)

In whichM is the applied moment (positive direction is shown in Figure 2.7), t is the thickness
and ri and ro are the radius of curvature of the inner and outer surfaces, respectively. For
further reading on this topic, the reader is referred to sections 23 and 24 of Lekhnitskii [48],
who developed a theory for the loading of anisotropic curved beams. Webber [49] noted a
small error in Lekhnitskii’s derivation for the application of a force in the tangential direction
and provided a corrected equation for it.

Free-Edge Effects

When laminates are built up from plies of different orientations, general lamination theory
implies interlaminar shear is needed to overcome the difference in the elastic constants between
layers. However, this indicates a problem at traction-free boundaries, where such shear stress
would violate local equilibrium. The first widely accepted model to analyse this problem was
developed by Pipes and Pagano [50], which is based on a finite-difference solution technique.
The numerical results of this analysis indicated a singularity in the interlaminar shear stress
at the intersection of the interface and free-edge. This phenomenon is known as the free-edge
effect. The mathematical proof and the strength of the singularity in the transverse shear
stresses were later obtained by Wang and Choi [51]. Shalev and Reifsnider [52] performed
tests on notched plates of moderate thickness (4 to 5 mm) and showed delaminations due to
the free edge effect are likely to occur close to the outer plies of the laminate. For a broader
literature review from 1967 to 2004 on this topic, see the review of Mittelstedt and Becker [53].

To overcome the general problem of singular stresses, Whitney and Nuismer [54] introduced
an approach to either take the stress at a characteristic length d0 away from the stress
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concentration (point stress), or to take the average stress over a region of length a0 (averaging
stress). When applying either of these approaches to the free edge problem, the characteristics
lengths d0 and a0 are a function of material and geometrical parameters. Much debate
has arisen on the particular parameters influencing these lengths [55–57], including material
properties, ply orientation and laminate thickness. It is however generally agreed upon that
the free-edge effect is a local effect, only influencing the transverse stresses in the vicinity of
a free edge (within a few laminate thicknesses of it).

A different method predicting the transverse stresses due to the edge effect is presented by
Kassapoglou [58], based on the principle of minimum complementary energy. Although the
method does not predict singular stresses, the agreement when compared to other literature
is good up to a few fibre diameters away from the free edge. Two arguments are given for
the unimportance of the solution in this small region. First, on this scale the assumption of
a homogeneous material would no longer hold. Second, the method will mainly be used to
evaluate the stresses for failure. This is generally done using the averaging or point stress
approach of Whitney and Nuismer, minimizing the effect this difference has on the resulting
delamination strengths.

Changes in Cross-Section

In the case of a change in cross-section, transverse shear stresses are locally needed to redis-
tribute the load. To keep local stress equilibrium, transverse normal stresses are also intro-
duced. Examples of cross-sectional changes are internal and external ply-drops, a stiffener
bonded to a skin and doublers.

Since the problem of dropping plies is an inherently three-dimensional problem, no solutions
exist to obtain the resulting stresses in an ESL approach. For a stiffener bonded to a skin, a
series of studies by Kassapoglou [59–61] showed that local transverse shear stresses of up to
1.5 times the applied in-plane shear stress can be obtained for certain skin-stiffener designs.
However, this was found to be a local effect, with the transverse stresses generally vanishing
within 10 times the skin laminate thickness. For a broader review on the effect of changes in
cross-section on transverse stresses and delamination, see the review of He et al. [62].

Applied Transverse Loads

When a transverse normal load is applied to a composite laminate, transverse stresses are
a results. For a simply-supported rectangular composite laminate consisting of only 0◦ and
90◦ plies, Pagano [63] developed a general analytical solution. Rohwer [64] used this general
solution to construct benchmark results with plates under a double-cosine load on both top
and bottom surfaces, see Figure 2.8. The results were transverse shear stresses which are of
piece-wise continuous parabolic shape, with no stress at the outer surfaces as no transverse
shear is applied. Since the transverse normal load was applied on both surfaces, the transverse
normal stress was constant through thickness.

Since the exact solution of Pagano can only be used for simple configurations and lamination
schemes, Savoia and Reddy [65] developed a three-dimensional elasticity solution which can
be used for more general laminates, including anti-symmetric laminates and laminates with
arbitrary ply orientations. Rolfes et al. [66] used this elasticity solution to generate benchmark
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Figure 2.8: Simply supported symmetric laminate under double-cosine transverse load [64]

results for simply supported rectangular plates (i.e. the same as Figure 2.8), however, now
only a load was applied on the top surface of the laminate. The results are a piece-wise
continuous fourth order equation of z for the transverse normal stress, ranging from 0 at the
unloaded bottom surface to the applied stress at the top surface.

2.5.2 Effects of Delamination

Once a delamination exists in a laminate, based on the location and size it can have sev-
eral structural effects. These can be distinguished into effects on membrane and bending
behaviour, as explained below.

Membrane Behaviour

Stalnaker and Stinchcomb [67] performed experiments on plates containing delaminations,
caused by fatigue loading. After damage was inflicted, they tested the panels on membrane
stiffness and strength. While no change in tensile strength was noted, the tensile stiffness was
decreased by up to 13.6% for quasi-isotropic laminates. Building on these results, O’Brien [68]
performed stiffness analysis on panels designed to delaminate on their edges and validated
this analysis with experiments. Using a rule of mixtures approach, the result was a reduction
of 25.8% in membrane stiffness for a totally delaminated panel with layup [±30/±30/90/90]s
with delaminations in both -30/90 interfaces. Kutlu and Chang [69,70] developed an analytical
model for compression loading of panels containing multiple delaminations, and validated this
with FEA and experiments. Their main conclusions were that buckling of sublaminates is the
dominant source of reduction in compression strength of delaminated panels, and multiple
delaminations reduce the compression strength more than a single delamination does.
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Figure 2.9: Stresses in beams due to applied transverse displacement

Bending Behaviour

To start the description of the effect a delamination has on bending behaviour, first a com-
parison is made between a cantilever beam and two cantilever beams of half thickness above
each other, see Figure 2.9. This is done by calculating the bending stiffness of an isotropic
beam, EI, in which E is the Young’s modulus and I the area moment of inertia. If a beam
is delaminated, its area moment of inertia changes, see Equation (2.29).

I = wt3

12 (2.29)

With w the width of the beam and t the thickness. Due to the third power of thickness, the
inertia of a beam of half thickness is 12.5% of the full thickness beam. However, since there
are two halves, the total inertia is 25%. As can be seen from Figure 2.9, not only the stiffness
changes, but also the stress distribution through thickness. Since the beam is split in two,
each half has its own neutral line. For each half, the maximum distance to the neutral line is
halved. Therefore, the maximum stress due to bending for an applied transverse displacement
is halved as well.

This can be beneficial for CFRP, as it can delay failure of the outer plies due to bending while
keeping the load carrying ability in the in-plane directions. One application of this could be
in the firewall between a front-engine and the passenger compartment; a reduction of the
bending stiffness due to delaminations would increase the intrusion of the engine into the
firewall without the latter being penetrated or failed catastrophically. This in turn increases
the effective length of the frontal crumple zone of the car, which in the end leads to a lower
average deceleration of the occupants of the car in case of a frontal crash.

Chan and Chou [71] extended the rule of mixtures approach for membrane stiffness as used
by O’Brien to the calculation of bending stiffness. Without comparison to other methods or
experiments, they obtained reductions in bending stiffness of over 80% for a beam with a
single delamination over its full length. One of the essential assumptions made, was that a
delamination can be translated in in-plane coordinates without any consequences. That this
last assumption is not valid, was shown by Tracy and Pardoen [72]. They used an analytical
solution for a one-dimensional mid-plane delamination, not reaching the end of a beam. At the
crack tips, axial displacement between the intact segment and the delaminated segments was
satisfied. They validated their model using FEA and experiments, with excellent agreement.
Looking at the bending stiffness of the whole beam under three-point bending, they concluded
that up to 40% delamination, the reduction in stiffness is less than 5%. However, after 40%
delamination, the stiffness reduces linearly to 57% of the intact beam, for a 99% delaminated
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Figure 2.10: Bending of a delaminated beam

beam (the 1% at the end is still capable of load transfer between the halves). Without any
shear transfer at the end, a fully delaminated beam would have a reduction in bending stiffness
of 75% of the intact beam based on the inertia of two beam halves. In contrast to the reduced
bending stiffness for three-point bending, they noted no reduction in bending stiffness for a
delaminated beam under four-point bending, as long as there is shear transfer at the end of
the beam. Without shear transfer, the stiffness would again be reduced by 75%. Hence, a
beam with a delamination of three-quarters of its length at the root has a significant different
stiffness than a beam with the same delamination length starting at the tip, invalidating the
essential assumption made by Chan and Chou.

The difference as to why a three-point bending beam sees a reduction in bending stiffness,
while a four-point bending beam does not, is perhaps best explained by Mujumdar and
Suryanarayan [73] and Figure 2.10: at the crack tip, a single beam element is connected
to two delaminated beam segments (the sublaminates). Satisfying compatibility of axial
displacement at both ends of the crack, creates an additional load system with magnitude
P of equal and opposite forces on the delaminated segments. One segment is compressed
while the other is stretched, such that their ends lie in the same plane. The effect of this
load system gives is a net resultant internal bending moment. Thus the requirement of axial
compatibility produces a differential stretching of the delaminated segments which add to the
total bending stiffness of the beam in the delamination zone. Looking at the isolated top
half of an intact beam under three-point bending, the magnitude of the axial load increases
closer to the axial midpoint of the beam. This is made possible by shear transfer to the
bottom half. The delaminated beam misses this possibility of shear transfer, which in turn
reduces the bending stiffness for larger delaminations. For four-point bending, there is no
such increase in load. Hence, no shear transfer is needed between the top and bottom half,
leading to no reduction in bending stiffness.
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Hou and Jeronimidis [74, 75] identified a local thickness increase for small delaminations
created by impacts, when measuring the vibration characteristics of circular plates with cen-
tralized, elliptical delaminations. This increase in thickness caused an increase in bending
stiffness. Once the size of the delaminations increased above a certain threshold, the effect
of local thickening was reduced and a decrease in bending stiffness was observed. However,
the magnitude of the changes in bending stiffness was small, the natural frequencies of the
delaminated plates were within 5% of the intact plates.



Chapter 3

Finite Element Framework and Initial
Concept

A delamination failure in a composite will have an effect on the mechanical performance of the
whole laminate through thickness, as was shown in Section 2.5.2. In order to see how this can
be implemented in an ESL model in explicit FEA, this chapter describes the framework for this
thesis on the numerical side. The framework is given through the commercial finite element
code LS-Dyna [76]. LS-Dyna is a widely used crash solver in the automotive industry. It has
the advantage that essential parts of the code are available for user interface coding. This
allows access to most parts of the code, including transformation matrices, material models,
etc. Furthermore, the complete element formulation for one of the most efficient elements,
the Belytschko-Lin-Tsay (BLT) element, is included in the user interface, which can easily be
modified. The combination of using LS-Dyna and the BLT element is a boundary condition
for this thesis.

In the BLT element, the thickness direction is represented by making use of several integra-
tions points through thickness. Any material law of material model is applied to an integration
point, as will be shown in Section 3.5. Since delamination affects the stress distribution of all
integration points through thickness, its effects cannot be implemented in a material model
alone. Hence, the element formulation and its interaction with the material model are needed
as well.

To be able to explain the element and material models, first a brief overview of the explicit
solution scheme is covered in Section 3.1. This section is followed by the element formulation
in Section 3.2. In Section 3.3 initial considerations for the concept, as basis for this work,
are outlined. Section 3.4 continues with describing methods currently used to model delami-
nation in finite element analysis. Section 3.5 finalizes this chapter by explaining the relevant
subroutines and identifying possibilities for the implementation of the method.
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Figure 3.1: Time integration loop used in LS-Dyna [78]

3.1 Explicit Solution Scheme

This section provides a brief overview of the explicit time integration scheme. For the full
time integration loop as used by LS-Dyna, see Figure 3.1. Furthermore, the reader is referred
to Belytschko et al. [77] for a more in-depth explanation of explicit finite element analysis;
this section is an excerpt of it with focus on the parts which are important for this thesis.

The aim of the method is to solve the equation of motion, Equation (3.1), for the whole
structure.

mü+ cu̇+Ku︸ ︷︷ ︸
f int

= fext (3.1)

With m the mass, c the damping coefficient, K the stiffness, fext the externally applied force
and f int the internal force. Furthermore, ˙ represents a derivative in time, which makes u̇ = v,
the velocity, and ü = a, the acceleration. Discretising in space and time leads to the discrete
equation of motion, as shown in Equation (3.2).

Man = (f ext)n − (f int)n (3.2)

Due to the discretization in space, the scalars fext, f int and ü become vectors, and m is
discretised to the mass matrixM. Superscript n indicates the time step at which the equation
is evaluated. It follows from Figure 3.1 that the external forces are calculated in the first part
(apply force boundary conditions) and the internal forces are calculated in parts 2 to 4:
based on the displacements obtained in part 9 of the previous time step, first the strains are
calculated on each integration point of an element. Using a material model, these strains
are then converted into stresses. Finally, these stresses are integrated over the element to
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create the internal force vector. Hence, rewriting Equation (3.2) to Equation (3.3) leads
to the accelerations at time step n, since all parameters on the right-hand side are known.
These are then used in combination with a central-difference time integration to calculate the
unknown velocities, Equation (3.4), and displacements, Equation (3.5), at the next time step.
This roughly compares to parts 5 to 9 in the integration loop of Figure 3.1.

an =M−1
(
(f ext)n − (f int)n

)
(3.3)

vn+1/2 = vn−1/2 + an∆tn (3.4)

un+1 = un + vn+1/2∆tn+1/2︸ ︷︷ ︸
∆u

(3.5)

In which ∆t is the time step, which is updated in the last step of the integration loop. ∆tn+1/2

is the average of ∆tn and ∆tn+1.

The process of calculation of stresses, forces, moments and failure is all part of the calculation
of f int, in particular in the step of processing brick, beam and shell elements. To know how
this processing is done, the following section will look into the shell element formulation used
in crash analyses.

3.2 Belytschko-Lin-Tsay Shell Element

The main shell element used in explicit FEA is the Belytschko-Lin-Tsay (BLT) element,
especially in dynamic problems [78]. This element is computationally efficient due to the
combination of a corotational and velocity strain formulation. These two concepts are ex-
plained in Sections 3.2.1 and 3.2.2, followed by the method of calculating the stresses inside
the element in Section 3.2.3. These sections are based on the description of the original devel-
opers of the element; see Belytschko, Lin and Tsay [79]. The element is based on the FSDT
as described in Section 2.2, however, it does not include Whitney and Pagano’s expansion of
it for the use of composites [31]. Therefore, the analysis inside an element is done assuming
one layer of material through the thickness. This means, for instance, that Q̄ and Ḡ as used
in Equations (2.13) to (2.16) are constant through thickness. However, the material can be
orthotropic, and under an angle ϑ.

3.2.1 Corotational Formulation

One characteristic of explicit FEA is that thousands of time steps are used to deal with
dynamic problems, which means non-linear geometrical and material behaviour. When using
a fixed coordinate system, difficulties may arise of expressing physical properties in an element.
Therefore, the BLT element has a coordinate system embedded in the element, see Figure 3.2.
The mid-plane of the element acts as a reference plane of the coordinate system, which reduces
the effort needed to calculate orthotropic material properties in the element.
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Figure 3.2: Corotational coordinate system of the BTL element [78]

3.2.2 Velocity Strain Formulation

To be able to analyse dynamic behaviour, the BLT element uses a velocity strain formulation.
In a certain time step, this means that the time derivative of the strains are calculated first,
which are then multiplied by the size of the time step to get an increase in strain. To be able
to do this, first the velocity of a point in the element is defined as Equation (3.6), which is
the time derivative of Equation (2.1).

v = v0 − ze3 × ω (3.6)

With v the velocity vector, e3 the shell base vector normal to its surface and ω the angular ve-
locity vector. Similarly to Equations (2.2) to (2.6), the rate of deformation tensor components
dij are given by Equations (3.7) to (3.11).

dxx = vx,x + zωy,x (3.7)

dyy = vy,y − zωx,y (3.8)

dxy = vx,y + vy,x + z (ωy,y − ωx,x) (3.9)

dxz = vz,x + ωy (3.10)

dyz = vz,y − ωx (3.11)

Note that these relations are evaluated at the integration point, which is in the middle of
the element. The BLT element uses standard bilinear isoparametric interpolation to deter-
mine the mid-plane element coordinates, angular velocities and mid-surface velocities, see
Equations (3.12) to (3.15).

x0 (ξ, η) =
4∑
I=1

NI (ξ, η) xI (3.12)
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v0 (ξ, η) =
4∑
I=1

NI (ξ, η) vI (3.13)

ω (ξ, η) =
4∑
I=1

NI (ξ, η)ωI (3.14)

N1 = 1
4 (1− ξ) (1− η) ; N2 = 1

4 (1 + ξ) (1− η) ;

N3 = 1
4 (1 + ξ) (1 + η) ; N4 = 1

4 (1− ξ) (1 + η)
(3.15)

With subscript I denoting the nodal values. Furthermore, ξ and η are the in-plane isopara-
metric coordinates, ranging from -1 to 1. The BLT element uses one integration point in
in-plane coordinates, at ξ = η = 0.

The use of the FSDT in the BLT element has as beneficial effect that only first derivatives of
the velocities are needed to calculate the strains inside an element. This allows for the use
of only 4 nodes to construct the full internal force vector. This greatly increases the com-
putational efficiency when compared to an element based on CPT, where second derivatives
are needed to calculate all strains. Hence, parabolic shape functions are needed, requiring at
least 8 nodes for a quadrilateral element.

3.2.3 Stress and Force Calculation

In the BLT element in its original formulation, the stresses are calculated using Equa-
tions (3.16) to (3.19), distinguishing between the membrane behaviour in σ and the transverse
shear behaviour in τ .

σn+1 = σn + ∆t
(
σ̇n+1/2

)
(3.16)

τn+1 = τn + ∆t
(
τ̇n+1/2

)
(3.17)

The time derivatives of the stresses, σ̇ and τ̇ , are given by Equations (3.18) and (3.19).

σ̇ = Cdσ (3.18)

τ̇ = Gdτ (3.19)

With C the material in-plane stiffness matrix, G the material transverse shear stiffness matrix
and the vectors

dσ = [dxx dyy dxy]T

dτ = [dxz dyz]T

Note that the time integration, here done in the step of calculating the stresses, can be done in
other steps as well. In the user modules of LS-Dyna, it is chosen to integrate the velocities over
the time step, thus creating the displacement increments. Hence, the ∆u of Equation (3.5)
is used to calculate the strain increments, see Equation (3.20).



26 Finite Element Framework and Initial Concept

∆ε = B∆u (3.20)

With B the strain-displacement matrix, which is a 6x24 matrix containing the spatial deriva-
tives of the shape functions. How this matrix is filled depends on the arrangement of the
strain and displacement components in ∆ε and ∆u. In the user modules of LS-Dyna, the six
components of ∆ε are called d1 to d6. The eight unique entries of B are given through the
shortened form Bs in Equation (3.21).

Bs = 1
2A

[
y2 − y4 y3 − y1 y4 − y2 y1 − y3
x4 − x2 x1 − x3 x2 − x4 x3 − x1

]
(3.21)

With A the area of the element, calculated by Equation (3.22); xI and yI the local coordinates
of node I and the entries of Bs following Equation (3.23).

A = 1
2
(
(x3 − x1) (y4 − y2) + (x2 − x4) (y1 − y3)

)
(3.22)

Bs1I = ∂NI
∂x , Bs2I = ∂NI

∂y (3.23)

With NI the shape functions of Equation (3.15).

Finally, in the case of a linear elastic material law, the new stresses are calculated by Equa-
tions (3.24) and (3.25). Application of a non-linear material law is also possible, as will be
explained in Section 5.2.1.

∆σ = C∆ε (3.24)

σn+1 = σn + ∆σ (3.25)

With the stresses now available, the force and moment resultants at the integration point are
calculated identically as in the FSDT, see Equations (2.19) to (2.21). Afterwards, these resul-
tants are integrated and extrapolated to the nodes to create the nodal forces and moments.
This results in Equations (3.26) to (3.31).

fxI = A

(
Bs1I

∫ h/2

−h/2
σxxdz + Bs2I

∫ h/2

−h/2
τxydz

)
(3.26)

fyI = A

(
Bs2I

∫ h/2

−h/2
σyydz + Bs1I

∫ h/2

−h/2
τxydz

)
(3.27)

fzI = Ak

(
Bs1I

∫ h/2

−h/2
τxzdz + Bs2I

∫ h/2

−h/2
τyzdz

)
(3.28)

mxI = A

(
Bs2I

∫ h/2

−h/2
zσyydz + Bs1I

∫ h/2

−h/2
zτxydz −

1
4k
∫ h/2

−h/2
τyzdz

)
(3.29)
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myI = A

(
−Bs1I

∫ h/2

−h/2
zσxxdz + Bs2I

∫ h/2

−h/2
zτxydz + 1

4k
∫ h/2

−h/2
τxzdz

)
(3.30)

mzI = 0 (3.31)

With Bs2I and Bs1I the entries of the contracted strain-displacement matrix of Equation (3.21)
and A the area of the element of Equation (3.22).
To be able to construct the total internal force vector in the BLT element, Equations (3.26)
to (3.31) show that integrations through thickness are needed. This is done in the BLT element
by making use of Gaussian quadrature. Considering only elastic behaviour of materials, two
integration points would be sufficient to cover all integrations of Equations (3.26) to (3.31).
This can be the case for ductile metals, if the structure will stay connected during an impact
event. However, for composites the fragmentation seen during crushing calls for an option
to gradually let sublaminates of the laminate fail during crushing, creating stress functions
which can be non-continuous through thickness. Accurately covering this can be done by
increasing the number of integration points through thickness, and deleting an integration
point (i.e. setting its stress values to 0) if the sublaminate this point represents has failed.
Therefore, the number of integration points through thickness is usually set to 5 [76,78].

3.3 Initial Considerations for Concept

Figure 3.3 shows a design cycle as used in automotive applications. When using this so-
called V-diagram in combination with CFRP materials, up to the phase of “Requirements on
Material/Structure” the layup of components is not known. However, already in the phases
of “Loadpath Concept” and “FE-Loadpath Model” FEA has proven to be a valuable design
tool for metals. To be able to use FEA in this phase for CFRP as well, a new material
model is in development which does not rely on exact layups, but on the total stiffness and
strength of a plate. Hence, a homogenized material in combination with the ESL method
is chosen to represent the laminate. With this approach, requirements on laminates and
components could be obtained and laminates can be designed to fulfil global requirements,
like stiffness, strength, crushing stress and delamination characteristics. This approach also
makes it possible to develop requirements on components and perform tests on components
in an early design stage. The goal of the material model in development is that material
constants, like failure strengths and stiffnesses, are mainly to be obtained through static
and dynamic tests. However, to limit the scope of this thesis, the assumption is made that
material properties are to be obtained using CLT or FSDT. Further assumptions are that only
symmetric, balanced laminates are used, with negligible bending-twisting coupling. Also, the
laminates used will at least have 8% of the fibres in the layup aligned with each of the four
principle directions, to prevent failures due to secondary load cases.

3.4 Current Methods of Modelling Delamination in Finite Element
Analysis

There are numerous ways to model delamination of laminates in FEA, which can be cate-
gorised in the scale they operate; on the micro-, meso- or macro-scale. On the micro-scale,
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Figure 3.3: Design diagram of a new car from initial idea to validation through full scale NCAP
tests [18]

each of the fibres in a yarn is modelled separately. On the meso-scale, the modelling is on
ply-level as a multiphase material. On the macro-scale, the laminate is being modelled as
unidirectional plies stacked together. The equivalent single layer method falls into the last
scale, hence, this section will focus on modelling delamination on macro-scale. The most com-
mon approach is to model each ply with one shell or brick element through thickness, which
are separated by connecting elements to simulate the bond between two plies. Connecting
elements used in this approach are the cohesive zone elements of Alfano and Crisfield [15]
and Camanho, et al. [16] and the constraint element of Greve and Pricket [17] fall into this
category. The use of these elements requires knowledge of the expected location of delam-
ination in advance, and can only model a number of delaminations equal to the number of
connecting elements.

To be used for delamination analysis in composites, cohesive elements need to be inserted
at every location where delamination can be expected. Therefore, one can also design a
laminate which is prone to delaminate only at a few ply interfaces through thickness, an
approach which was used by Reedy et al. [80]. This would decrease the computational cost,
as now sublaminates of several plies can be simulated with a single element through thickness.

Another way to model delamination is to make use of the global-local approach: the general
global mesh is locally altered to incorporate the delaminated region. For instance, Krueger
and O’Brien [13] developed a combined shell/brick modelling technique for which a local
three-dimensional solid finite element model is used only in the immediate vicinity of the
delamination front. Instead of using solid elements at the delamination front, Gim [14] de-
veloped a method in which the delaminated area was modelled by using two layers of plate
elements, each representing one of the two sublaminates. While both methods provide rea-
sonably accurate results, their use of changing element types throughout the analysis makes
them computationally very expensive in explicit FEA.
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3.5 User Modules of LS-Dyna

In the previous sections the theory of FEA and the considerations of the initial concept
have been examined. To see what can be implemented in LS-Dyna, this section describes
the user modules of this software package and what manipulations can be made for the
implementation. The user subroutines used in LS-Dyna are given in Table 3.1 and Figure 3.4.
The user modules are written in Fortran, with most of the routines in the file dyn21b.f. The
user material subroutines are the only exception, they are found in the file dyn21.f.

In the user modules, it is possible to create new parameters belonging to elements. An
example of this is the damage parameters of Figure 5.2, which are used in the umatXXv
subroutine. The value of these parameters is allowed to change freely in time steps. It is also
possible to create new elements belonging to nodes, however, there is a problem on how these
parameters can be processed. The root of this problem is in how LS-Dyna divides the total
analysis into subanalyses when using multiple CPUs. All elements of the total analysis are
divided into subanalyses, usually of elements linked to each other. The way LS-Dyna submits
each subanalysis to its own CPU, makes communication between the subanalyses while they
are running impossible in user subroutines [18]. Since each element only belongs to one
subanalysis, this allows for easy processing of parameters being stored on elements. However,
on the border between two element groups, nodes are part of more than one subanalysis.
This means that if these node parameters are processed during different subanalyses, there
may be more than one value for a single node parameter. When assembling the subanalyses
back together, a maximum, minimum or average value can be obtained for node parameters
belonging to neighbouring subanalyses.

Another limiting factor of the division of the analysis into subanalyses, is in the communica-
tion between elements. Inside the double integration point loop of Figure 3.4, a node does
not know to which elements it belongs. This can be circumvented by storing a matrix on each
node which has all the connecting element IDs. While this has been done before, it proved
to be a very computationally expensive routine [18].
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Table 3.1: Description of subroutines in the user modules of LS-Dyna.

Subroutine Function Input

usrshl Main subroutine, called for in the "process brick, beam and
shell elements"-step of Figure 3.1. Initializes all element
properties and user specified parameters.

All

usrshl_b General subroutine for partially assembling the strain-
displacement matrix B.

ξ; η; ζ; N ;
N,ξ; N,η; h;
x; v; ω

ushl_bXXX Calculates B for element type XXX, with XXX ranging from 101
to 105. Contains all shape functions and their derivatives.

ξ; η; ζ; N ;
N,ξ; N,η; h;
x

usrshl_b2b Performs matrix operations for final form of B. B

usrshl_str Computes strain and rotation increments in element coordi-
nate system, see Equations (3.5) and (3.20).

B; ∆u

usrshl_con Transfers information from element subroutines to material
subroutines.

usrmat Selects right type of constitutive model used, in this case
shell, ‘s’.

urmats Transforms strain increments and stresses from element co-
ordinate system to material coordinate system.

σn−1; τn−1;
∆ε; ∆γ; ε;
γ

umatYYv Material model for material type YY, with YY ranging from
41 to 50. Updates the stresses, including calculation of non-
linear material behaviour (Figure 5.2), damage parameters
and final failure.

E; R; σn−1;
τn−1; ∆ε;
∆γ; ε; γ;
Dn

usrshl_frc Calculates element forces and moments. Of all int.
points: B;
σn; τn
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Subroutine usrshl

DO ipp=1,nipp

DO m=1,ipt

CALL usrshl_b

CALL ushl_bXXX

CALL usrshl_b2b

CALL usrshl_str

CALL usrshl_con

CALL usrmat

CALL urmats

CALL umatXXv

CALL usrshl_frc

END Subroutine

loop through in-plane
integration points

loop through thickness
integration points

Fortran file dyn21b.f

Fortran file dyn21.f

Figure 3.4: Schematic of the routines used for the user shell element modules, see Table 3.1 for
routine descriptions.
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Chapter 4

Prediction of Delamination Initiation

In general, there are three groups of methods for the detection of onset of delamination. The
first group uses cohesive zone elements to detect delamination. Section 3.4 showed that this
group cannot be used in combination with the ESL method, because it requires more than
one element through thickness. The second group assumes pre-existing flaws in the material,
which can be seen as cracks. This group of methods then looks at the stresses and strains
and checks if there is growth possible of such a small defect.

The second group of methods, which focusses on pre-existing flaws in the material, includes
the virtual crack closure technique [81], the virtual crack extension technique [82] and using
a path-independent integral (i.e. J-integral) to calculate near-tip strain concentrations [83].
These methods have two problems: they require the location of the initial crack and they
distinguish between the opening modes I, II and III, visualised in Figure 4.1. To circumvent
the first issue, one can assume small defects like voids everywhere in the laminate. However,
distinguishing between the three different modes is not possible for the delamination initia-
tion in an ESL method. Even if this would be possible, there are differences in opinion by
several authors on how the modes interact with each other. Reasons for these differences
include: the difficulty in obtaining, identifying and characterising pure mode III crack growth
in experiments [84]; the debate over whether mode III is considered a separate mode or acts
together with mode II [85]; and the absence of any reliable tests for mixed mode I-III and II-III
crack growth measurements [86]. Hence, methods used to determine growth of delamination,
cannot be used combined with an ESL method to detect delamination onset.

The third group calculates the transverse stresses inside a plate and applies a stress based
failure criterion on these to see whether delamination occurs. For this method, accurate
prediction of the transverse stresses is needed; Section 4.1 shows the possibilities and limita-
tions of this. Next, Section 4.2 covers the failure criterion which will be used in the model.
Section 4.3 closes this chapter with the conclusions and an outlook for further work.
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Mode I (Tension) Mode II (Shearing) Mode III (Tearing)

Figure 4.1: Opening modes of cracks

4.1 Prediction of Transverse Stresses

To be able to use a stress-based failure criterion, accurate transverse stresses are needed. As
explained in Section 3.2, the BLT element is the basis for this approach. The BLT element in
its original form [79] is unable to predict transverse normal stresses, and predicts transverse
shear stresses which are constant through thickness. These shear stresses would violate local
stress equilibrium on unloaded surfaces. Hence, an alternative to the transverse stresses as
predicted by the BLT element is needed.
In this section, first the literature on transverse stresses in FEA is reviewed in Section 4.1.1.
The best methods will then be analysed for compatibility with the BLT element in Sec-
tion 4.1.2. Evaluation of these methods lead to the conclusion that direct implementation
of any method to predict transverse normal stresses is not possible. Therefore, attempts to
obtain these stresses are described in Section 4.1.3. Afterwards, the effects that homogeniz-
ing the material through thickness have on the results for transverse stresses, is explained in
Section 4.1.4. Finally, how the improved transverse stresses can be implemented by using the
user modules of LS-Dyna is explained in Section 4.1.5.

4.1.1 State of Art Literature on Transverse Stresses in Finite Element Analysis

As alternative to using the transverse stresses predicted by the BLT element, one option is to
choose an element based on a different plate theory. Since this will add DOFs to the system,
it means that efficiency is sacrificed in the general analysis step for more accuracy on the
transverse stresses. To the best knowledge of the author, the element to choose would be the
one developed by Tabiei and Tanov [87,88], since other elements [89–91] would have a higher
computational cost. The Tabiei and Tanov element uses a Third-order Shear Deformation
Theory (TSDT), a theory which is based on the FSDT, but with added DOFs to improve the
accuracy of transverse strains. While an increased accuracy of the shear stress distribution
over the BLT element was reported, the eight-fold increase in computing time [88] is considered
too high for the use in the current model.
Several other approaches have been considered to obtain more accurate transverse stresses
with the use of the BLT element. These approaches, including the the predictor-corrector
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approach, the post-processing approach and an approach which uses enrichment formulations,
are described in the next paragraphs. Afterwards, these options are compared with each other
by making use of comparative studies reported in literature.

Predictor-Corrector Approach

The predictor-corrector approach uses a global solution, obtained by a computationally effi-
cient element like the BLT element (predictor part), followed by a second step which refines
certain aspects of the global solution (corrector part). Methods using this approach for com-
putation of the transverse stresses in ESL models [92–98] use in the first step an efficient
FSDT element to compute the global response. They differ in the second step; either a re-
fined higher-order shear deformation theory is used [92–94], or a re-analysis using an updated
force vector due to the non-linear part of the displacements is performed [95, 99], or the
transverse stresses are calculated by means of a re-analysis using improved shear correction
factors [96–98]. While most of the methods apply the corrector phase once, some of these
methods [93,99] apply the corrector phase a number of times until the solution is converged.

Post-Processing Approach

The post-processing approach uses the results of each time step to calculate more accurate
transverse stresses. This is done by using the three-dimensional equilibrium equations to
calculate the transverse stresses, see Equations (4.1) to (4.3).

σxx,x + τxy,y + τxz,z + bx = 0 (4.1)

τxy,x + σyy,y + τyz,z + by = 0 (4.2)

τxz,x + τyz,y + σzz,z + bz = 0 (4.3)

In which b denotes a body force and a comma represents a derivative with respect to (i.e.
τxy,y = ∂τxy

∂y ).

One of the first uses of these equilibrium equations in combination with a shell finite element,
is the work of Pryor and Barker [100]. Equations (4.1) and (4.2) were used to recover the
transverse shear stresses by deriving the in-plane stresses and then integrating them over
the thickness. The element they used had 28 DOFs, compared to the 20 provided by the
BLT element. The extra DOFs were needed to set up a third order equation for w in x
and y, otherwise the derivatives needed in Equations (4.1) and (4.2) are non-existent. They
showed a significant improvement in the transverse shear stresses compared to other finite
elements at that date. However, the approach comes at a cost of more DOFs, and hence, is
computationally more expensive. Other approaches calculating the transverse shear stresses
using higher-order shear deformation theories are, amongst others, developed by Chauduri
[101] and Reddy et al. [102].

Instead of using a higher-order theory, Rolfes and Rohwer [103] used additional assumptions
to recover the transverse stresses with Equations (4.1) and (4.2). By neglecting the influence
of membrane forces and assuming two cylindrical bending modes, the transverse shear stresses
are only a function of the transverse shear forces. Using this approach, they were also able
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to compute improved shear stiffnesses, no longer needing shear correction factors. Therefore,
instead of needing a higher-order shear deformation theory or a higher-order element, the
transverse shear stresses can be computed in a 4-node element based on FSDT, like the BLT
element.

Further building on this theory, Rolfes et al. [66] used Equation (4.3) to calculate the trans-
verse normal stress inside such an element as well. Since second derivatives of the out-of-plane
displacement w are needed, the method could only be applied to parabolic quadrilateral ele-
ments using FSDT. Noting small errors in their printed paper (see the corrected Equations (19
of [66]) and (20 of [66])), the solutions agree well with (semi-)analytical solutions. However,
a comparison for elements with an initial curvature is missing.

c(z) = 1
2

k−1∑
i=1

Q̄i(zi+1 − zi)2 + 1
2Q̄k(z − zk)2 +

k−1∑
i=1

Q̄i(zi+1 − zi) · (z − zi+1) (19 of [66])

d(z) = 1
6Q̄kz

3 +
k∑
i=1

Q̄iz
2
i

(1
2z −

1
3zi
)

+
k−1∑
i=1

Q̄iz
2
i+1

(1
2z −

1
3zi+1

)
(20 of [66])

Tanov and Tabiei [104] used added an additional assumption to the work of Rolfes et al. to
prevent the need for parabolic elements: they assume that the ratio of the transverse shear
strains in an element, γxz and γyz, is equal to the weighted ratio of the derivatives of the
transverse shear forces, Rxz,x and Ryz,y. In this case, weighted means weighted with respect
to the transverse shear stiffness in their respective directions. They mentioned themselves
that this assumption is quite arbitrary, although the comparison with a 3D elasticity solution
showed good agreement. Furthermore, this method is only capable of calculating transverse
normal stresses due to locally applied transverse loads, the transverse stresses due to curva-
tures cannot be predicted.

Alfano et al. [105] used a different way to obtain the higher-order functions needed to con-
struct the transverse normal stress profile. For each node, they constructed an extensional
and bending strain field, using strain values of nodes of neighbouring elements. Focussing
on transverse normal stresses due to locally applied loadings, their comparison to three-
dimensional elasticity solutions showed equal accuracy as previously mentioned methods of
Rolfes et al. [66] and Tanov and Tabiei [104]. As like in previous mentioned papers, no studies
were made of transverse normal stresses due to curvatures. Furthermore, since the method
requires strain values of neighbouring elements, the computational cost of implementing this
in the user modules of LS-Dyna is too high.

A method which does take the transverse stresses due to curvatures into account, is presented
in the PhD thesis of Roos [106]. Although this method is mainly developed for a self-designed
parabolic element, Section 5.2 of the thesis shows a method to calculate the initial curvature
for 4-node elements, needed for the evaluation of transverse normal stresses. Just like the
method of Alfano et al. [105], it requires communication between elements, on the basis of
nodes. Furthermore, a comparison was done between the solution using a mesh constructed
of 4-node elements and using doubly-curved 8-node elements. This comparison showed an
under prediction of 55.7% in transverse normal stress for the model with 4-node elements,
even though its mesh was more refined at critical areas.
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Other Methods

Comparable to the predictor-corrector approach, Schuerg et al. [107] used a coupled system
of ordinary differential equation in terms of two warping functions to calculate the transverse
shear stresses. Although no higher-order theories are needed in this model, solving the system
of differential equations described in the paper is still computationally expensive.

Kant and Manjunatha [108] proposed several elements for evaluation of both transverse shear
and normal stresses. Since the elements themselves are based on higher-order shear deforma-
tion theories, they are not of interest. To obtain the transverse stresses via the equilibrium
equations (i.e. Equations (4.1) to (4.3)), they propose the central difference exact surface fit-
ting method. This method interpolates the in-plane stresses of 9-noded or 16-noded elements,
such that the second and third derivatives of these, needed for the equilibrium equations, are
obtained.

The final method discussed in this literature review is based on the eXtended Finite Element
Method (XFEM). XFEM, first described by Moes et al. [109], works by enriching a standard,
displacement-based FEA near a crack by incorporating two type of fields through a partition
of unity method: discontinuous fields and near tip asymptotic fields. Then, it constructs
the enriched approximation from the interaction of the crack with the mesh. This technique
allows the crack to be represented independently of the mesh, therefore remeshing is not
necessary to model crack growth.

For the specific application of modelling delamination, several element formulations and
model enrichments in XFEM have been proposed. Nagashima and Suemasu [110] developed
a method in which a thin-walled structure containing a bonded joint is modelled by shell
elements, and the nodes on the interface are enriched in order to model the delamination.
The goal for this method was to model delamination of two bonded surfaces, like a stiffener
bonded to a skin. Therefore, only a single delamination can be modelled at the interface,
which should be defined during preprocessing.

An enrichment formulation to model delaminations in general is proposed by Brouzoulis et
al. [111], which is also capable of modelling the interaction between intraply matrix cracks
and delaminations. To prevent constant through thickness transverse shear strain, they use
an element with 7 DOFs per node. Building on this approach, Framby et al. [112] developed
a method to predict delamination onset and growth. To recover the transverse normal stress,
they use a method based on the central difference exact surface fitting method as proposed
by Kant and Manjunatha [108]. They change this method, by instead of using the in-plane
stresses of different integration points in a single element, using these stresses of neighbouring
elements. As was explained in Section 3.5, acquiring this type of information while staying
inside a subanalysis during an analysis is computationally very expensive. So even though the
XFEM approach provides methods to model the effects of delamination, it relies on the same
approaches used in general FEA to recover the transverse stresses and predict delamination.

Comparisons

To evaluate the different methods described in the previous paragraphs, several comparative
studies are presented in literature. The results of these are presented in Table 4.1, based on the
following comparisons. In the studies of Noor et al. [113, 114], their own predictor-corrector
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approach [97] was compared to a general FSDT approach (without any additional post-
processing) and three more refined plate theories. Noor and Malik [115] compared a further
developed predictor-corrector approach [93] to three refined plate theories. Final comparative
study included in Table 4.1 is the one of Rohwer et al. [116], in which the approach of Rolfes
and Rohwer [103] was compared to the direct application of Equations (4.1) to (4.3) and
several more refined plate theories. The remaining theories in Table 4.1 [66,87,88,99,106,112]
were ranked based on comparisons made in their own studies.

Table 4.1: Qualitative comparison of methods to calculate transverse shear and normal stresses

Approach type Ref. Accuracy 1 Computational

Shear Normal 2 Efficiency 3

FSDT 4-node element (standard BLT
element)

[79] −− X ++

FSDT 4-node element with
post-processing and improved shear
stiffness

[103] o X ++

FSDT 4-node shell element with initial
curvature computation

[106] o ++ (C:−) +

FSDT 8-node shell with
post-processing and improved shear
stiffness

[66] o ++ +

FSDT 8-node shell element including
curvature effects

[106] o ++ (C: o) +

FSDT 4-node shell predictor,
non-converged corrector approach

[97,99] o ++ −

FSDT 4-node shell predictor,
converged corrector approach

[93,99] + ++ −−

TSDT 4-node element [87,88] o X −

TSDT 4-node element with XFEM,
using exact surface fitting method

[112] o ++ −

1 Maximum error reported in literature: ++ <2%; + <5%; o <20%; − <50%; −− >50% or
incorrect trend; X: non-existent stress.
2 Only Roos’ [106] methods are capable of predicting normal stresses due to curvature effects (C),
which are therefore mentioned separately from normal stresses due to applied loads. All methods
which are capable of calculating the transverse normal stress due to applied loads are very accurate,
since a general, accurate third-order equation can be constructed for every symmetric laminate.
3 Only qualitative, since no quantitative data is mentioned in literature except for the TSDT
element of Tabiei and Tanov [87,88], mentioning an 8-fold increase in computation time over the
BLT element.
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The following is concluded from the comparison in Table 4.1. All described methods provide
a decent improvement in accuracy on transverse shear stress when compared to the stan-
dard BLT element formulation. Furthermore, as soon as a method is capable of predicting
transverse normal stress, it does it accurately as well (within 2% of a three-dimensional elas-
ticity solution). Lastly, the efficiency for the post-processing methods is still decent, but
for elements using predictor-corrector approaches or a more refined plate theory, there is an
unacceptable increase in computing cost. For both accuracy and efficiency, ‘o’ is considered
the minimum to be used in the new material model [18]. However, currently there are no 8-
node elements implemented in the LS-Dyna user modules or the capability to compute initial
curvature. Therefore, the solution that will be implemented for computation of transverse
shear stresses is the one of Rolfes and Rohwer [103]. There is currently no method to predict
transverse normal stresses in 4-node shell elements, which can readily be implemented into
the user modules of LS-Dyna. Section 4.1.3 will analyse this problem further.

4.1.2 Prediction of Transverse Stresses in Shell Elements

As explained in the previous section, the method developed by Rolfes and Rohwer [103] is
the most promising one to predict the transverse shear stresses. Therefore, this method is
explained in more detail in this section, together with additions to this theory, like the one of
Tanov and Tabiei [104].

In each element, two cylindrical bending modes are assumed and the influence of the mem-
brane forces on the transverse shear stresses is neglected. This means that the transverse
shear stresses will only be a function of the transverse forces, which for most practical cases is
a valid assumption [66,103]. Furthermore, this is also in line with how the FSDT is built up
(see also Section 2.2); the membrane behaviour is modelled independently from the transverse
forces, by the introduction of two new DOFs with respect to the CPT: the two cross-sectional
rotations θx and θy. Afterwards, these are equilibrated in the nodal force and moments cal-
culations, i.e. Equations (3.26) to (3.31) (or, in the case of explicit FEA, the accelerations
are calculated).

Applying the two previously explained assumptions on the equilibrium Equations (4.1) and (4.2),
results in in Equation (4.4).

τ (z) =
[
F11 F32
F31 F22

]
R (4.4)

With τ the transverse shear stresses, Fij components of the stress-force resultant matrix F
given by Equation (4.5) and R the transverse shear forces given by Equation (4.11).

F (z) =
(
a (z) A−1B− b (z)

)
D∗−1 (4.5)

With A and B the membrane and coupling matrix of the composite laminate and D∗ the
reduced bending stiffness matrix, see Equation (4.6). Furthermore, the partial membrane
stiffness a (z) and partial coupling stiffness b (z) are given by Equations (4.7) and (4.8),
respectively.
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D∗ =
(
D−BTA−1B

)
(4.6)

With D the bending stiffness matrix of the laminate.

a (z) =
∫ λ=z

λ=−h/2
Qdλ (4.7)

b (z) =
∫ λ=z

λ=−h/2
Qλdλ (4.8)

With Q the reduced stiffness of the local lamina, z the thickness coordinate and h the total
thickness of the laminate. Note that a (h/2) = A, the laminate membrane stiffness matrix,
and b (h/2) = B, the laminate coupling matrix. Furthermore, since Q is a piece-wise constant
function through thickness, Equations (4.7) and (4.8) can be written as sums, as shown in
Equations (4.9) and (4.10).

a(z) = Qk (z − zk) +
k−1∑
i=1

Qi (zi+1 − zi) (4.9)

b(z) = 1
2Qk

(
z2 − z2

k

)
+ 1

2

k−1∑
i=1

Qi

(
z2
i+1 − z2

i

)
(4.10)

In which the thickness location z lies in lamina k and an subscripts of z denote the thickness
location of the lower surface of that lamina.

R =

∫ z=−h/2

z=−h/2

[
F11 F31
F32 F22

] [
G55 G45
G45 G44

]−1 [
F11 F32
F31 F22

]
dz

−1

︸ ︷︷ ︸
H

γ (4.11)

With G the matrix of transverse shear moduli, γ the transverse shear strains and H the
improved shear stiffness matrix. The use of this improved shear stiffness matrix eliminates
the use of shear correction factors as done in the extension for FSDT for composites, see
Equation (2.18). An improvement in accuracy of the transverse shear stresses is the result
[103].

Next to the transverse shear stresses, Rolfes et al. [66] also developed a method to predict
the transverse normal stresses. Using the same assumptions, the result is given by Equa-
tion (4.12).

σzz (z) = −
([

F ∗11 F ∗32

]
R,x +

[
F ∗31 F ∗22

]
R,y

)
+ p0 (4.12)

With p0 the applied transverse load at z = −h/2, F ∗ij components of the resulting matrix
given by Equation (4.13) and the derivatives of the shear forces R,x and R,y given by Equa-
tions (4.16) and (4.17), respectively.



4.1 Prediction of Transverse Stresses 41

F∗(z) =
(
c(z)A−1B− d(z)

)
D∗−1 (4.13)

With c(z) and d(z) the integrals of a(z) and b(z), respectively, and given by Equations (4.14)
and (4.15).

c(z) = 1
2Qk (z − zk)2 +

k−1∑
i=1

Qi (zi+1 − zi)
(
z − 1

2zi+1 −
1
2zi
)

(4.14)

d(z) = 1
6Qk

(
z3 + 2z3

k − 3z2
kz
)
+1

2
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i=1

Qi

((1
3z

3
i+1 − z3

i

)
+
(
(zi+1 + zi) (z − zi+1)− z2

i

)
(zi+1 − zi)

)
(4.15)

R,x = Hγ,x (4.16)

R,y = Hγ,y (4.17)

The problem of combining Equations (4.16) and (4.17) with the BLT element lies in the fact
that the shear strains γ are constant throuhgout the element in x- and y-direction, as can
be seen from Equations (2.5) and (2.6). Therefore, elements with at least parabolic shape
functions are needed to implement the transverse normal stress recovery of Rolfes et al. [66].
This is further explained in Section 4.1.3.

Tanov and Tabiei [104] made additional assumptions in their model to prevent the need for
parabolic shape functions. First, they assumed no transverse shear coupling in the laminate,
hence the non-diagonal terms G45 = 0 in Equations (4.11), (4.16) and (4.17). Next, they
consider bending and shear in x-direction not having any gradients in y-direction (and vice
versa), hence γxz,y = γyz,x = 0. This leads to H becoming a diagonal matrix and therefore
Equations (4.16) and (4.17) are simplified to Equations (4.18) and (4.19).

[
Rxz,x
Ryz,x

]
=
[
H11 0

0 H22

] [
γxz,x

0

]
(4.18)

[
Rxz,y
Ryz,y

]
=
[
H11 0

0 H22

] [
0

γyz,y

]
(4.19)

Hence,

σzz (z) = −F ∗11H11γxz,x − F ∗22H22γyz,y (4.20)

Equation (4.20) still has two unknowns: γxz,x and γyz,y. Combining equilibrium on the upper
surface of the laminate with the fact that Tanov and Tabiei assume the load p0 to be applied
to the top surface of the laminate (contrary to Rolfes et al., who assume it to be applied on the
lower surface), leads to one relation between the two derivatives, as shown by Equation (4.21).

σzz (z = h/2) = −F ∗top11 H11γxz,x − F ∗top22 H22γyz,y = p0 (4.21)
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In which F ∗top11 and F ∗top22 denote F ∗11 and F ∗22 evaluated at z = h/2, respectively. This leaves
one relation needed to have a solvable system of equations. One more assumption is therefore
needed as presented by Tanov and Tabiei, which is made as follows. First, two new parameters
α and β are introduced, such that H11γxz,x = α · p0/F

∗top
11 and H22γyz,y = β · p0/F

∗top
22 . Then,

from Equation (4.21), α + β = 1. This means that α and β represent the contribution of
resultant transverse shear stresses τxz and τyz to the transverse normal stress. Now, they make
use of the decoupling of behaviour in x- and y-directions again, by assuming that H11γxz,x is
proportional to the shear strain γxz and that H22γyz,y is proportional to the shear strain γyz,
as contribution to σz in Equation (4.12). Therefore, the following assumption is made on the
ratio of α and β:

α = |γxz |
|γxz |+|γyz | ; β = |γyz |

|γxz |+|γyz | for |γxz|+ |γyz| 6= 0

α = β = 1
2 for |γxz|+ |γyz| = 0

(4.22)

Combining Equation (4.20) with the relations given in Equations (4.21) and (4.22) results in
the final expression for σz:

σz (z) = −p0

(
α
F ∗11 (z)
F ∗top11

+ β
F ∗22 (z)
F ∗top22

)
(4.23)

As can be concluded from Equation (4.23), this approach only yield transverse normal stresses
on laminates at which a transverse normal load p0 is applied on the top surface. A general
solution for transverse normal stresses at locations without an applied transverse normal
load cannot be obtained by the method of Tanov and Tabiei. Furthermore, the equation
requires the knowledge whether the applied pressure p0 acts on top or bottom surface, which
is unavailable information when using the BLT element in LS-Dyna.

4.1.3 Attempts on Obtaining Transverse Normal Stress

Trying to find a general solution which can predict transverse normal stresses anywhere in a
shell structure, Rolfes et al. [66] stated that at least parabolic shape functions are needed to
recover the transverse normal stresses from an analysis based on FSDT elements, in absence
of applied transverse normal stresses. The reasoning behind this is as follows. The transverse
normal stresses are obtained by substituting the result of Equations (4.16) and (4.17) into
Equation (4.12). To do this, first the in-plane derivatives of γxz and γyz are needed, which
are obtained by using the derivatives of Equations (2.5) and (2.6), given by Equations (4.24)
to (4.27).

γxz,x = uz,xx + θy,x (4.24)

γxz,y = uz,xy + θy,y (4.25)

γyz,x = uz,xy − θx,x (4.26)

γyz,y = uz,yy − θx,y (4.27)
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As can be seen from Equations (4.24) to (4.27), the second in-plane derivatives of uz are
needed, which calls for at least parabolic shape functions of uz. This is the only DOF for
which linear shape functions are not sufficient, since only first derivatives are needed of the
cross-sectional rotations θx and θy.

To find a solution for σz (Equation (4.12)), attempts were made to acquire a parabolic equa-
tion of uz in the form of Equation (4.28).

uz(ξ, η) = C0 + C1ξ + C2η + C3ξη + C4aξ
2 + C4bη

2 (4.28)

With the unknown constants C0 to C5 to be solved for using boundary conditions, which
means a total of 6 are needed. One could also choose for an equation in x and y and then
transform back using transformation matrices. However, chosen is for an equation in the
isoparametric coordinates ξ and η, because the implementation will have to be done in the
stage of the subroutines where these coordinates are used.

The relevant information available in an element is:

• Values of all 20 DOFs of the element: three translational velocities and two angular
velocities per node

• Spatial coordinates of all nodes

• Material constants of the element (Young’s moduli, poisson ratios, strengths, etc.)

• In-plane damage parameters

• Thickness of the element

• Parameters derived from the previous mentioned ones: displacements, cross-sectional
rotations, strain increments and stress increments

• Stresses, strains and internal forces and moments of the previous time step

As was concluded in Section 3.5, relevant information from neighbouring elements during the
evaluation of an element can only be obtained at an unacceptable computational cost.

Since the nodal values are solved for in the analysis step, the first four conditions can be
obtained from the value of uz at the nodes. Substituting these to rewrite Equation (4.28)
leads to Equation (4.29).

uz (ξ, η) = C5
(
1− ξ2

)
+ C6

(
1− η2

)
+

4∑
I=1

NI (ξ, η)uzI (4.29)

With NI the linear shape functions as used in the BLT element, see Equation (3.15); uzI
the out-of-plane displacement at node I and the new constants C5 and C6 to be determined.
Rewriting to this form automatically satisfies the solution at the four nodes (ξ = ±1, η = ±1).

Several conditions have been invoked to find the two equations for C5 and C6, with no
satisfying result. The most promising one was by making use of two additional conditions.
Equate the internal energy of the linear solution of uz to the internal energy of the parabolic
solution of uz, which is the first equation. Second equation is to minimize the internal energy
with respect to one of the unknowns C5 and C6. Problem here is that the energy is first set to
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a constant value by equating it to the energy of the linear solution, which leaves no possibility
for minimization any more.
Next to solving the problems in two dimensions right away, attempts have been made to find
the solution for a one-dimensional problem in the form of Equation (4.30), followed by using
a form of superposition to construct a two-dimensional solution. One attempt was made by
assuming a Timoshenko beam, using the out-of-plane displacement and the cross-sectional
rotation to construct a solution for uz. While the Timoshenko beam theory does allow for a
parabolic function of uz, constructing that solution with the out-of-plane displacement and
cross-sectional rotation at the nodes needs the assumption of a constant shear angle. The
result is that while the terms of the right-hand sides of Equations (4.24) to (4.27) may be
non-zero, the left-hand sides are always zero.

uz (ξ) = C8 + C9ξ + C10ξ
2 (4.30)

Final attempt to find a parabolic solution for the one-dimensional problem, was to use an idea
that had also been used in the two-dimensional case: use uz at the nodes to get a solution
for the first two constants, and equate the internal energy of the linear solution of uz to the
internal energy of the parabolic solution of uz to get the last unknown. Equivalent to the
two-dimensional case, Equation (4.30) can be rewritten to Equation (4.31).

uz (ξ) = C11
(
1− ξ2

)
+ ξ − 1

2 uz1 + −ξ + 1
2 uz2 (4.31)

Using the internal energy approach, the trivial solution (C11 = 0) and a new solution were
found. While this new solution was mathematically correct, it was found to be physically
invalid. The reason for this, is that the transverse shear strain given by Equation (2.5), is
squared in the internal energy equation. If the trivial solution would lead to Equation (2.5)
being a positive function, the found second solution would be the negative counterpart of that
function. For a more elaborate explanation, see Appendix A.
It should be noted that, once there is a parabolic version of uz is available, it can readily
be implemented into the LS-Dyna code to obtain the transverse normal stress. For this
implementation, see Appendix B.

4.1.4 Application to Homogenised Material Model

As was discussed in Section 2.2.2, the overall approach is the usage of a homogenised material
model, to gather basic laminate parameters for a new architectural approach. This also
effects the transverse stresses, which will be discussed in this section. First, the effects on the
transverse shear stress distribution are discussed, followed by the transverse shear stiffness.
Then, a comparison is made on the transverse shear stress distribution for six quasi-isotropic
laminates.

Transverse Shear Stress Distribution

To explain what the effect of homogenizing the material through thickness has on the dis-
tribution of transverse shear stresses, several equations are needed which are given in the
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previous sections and chapters. For convenience of the reader, they are revisited below.

The equations for the laminate stiffness and coupling matrices:

A =
∫ h/2

−h/2
Q̄dz (2.13 revisited)

B =
∫ h/2

−h/2
Q̄zdz (2.14 revisited)

D =
∫ h/2

−h/2
Q̄z2dz (2.15 revisited)

H =
∫ h/2

−h/2
Ḡdz (2.16 revisited)

The equation for the transverse shear stresses as function of the transverse shear force resul-
tant, as derived by Rolfes and Rohwer [103]:

τ (z) =
[
F11 F32
F31 F22

]
R (4.4 revisited)

The stress-force resultant matrix:

F (z) =
(
a (z) A−1B− b (z)

)
D∗−1 (4.5 revisited)

The reduced bending stiffness:

D∗ =
(
D−BTA−1B

)
(4.6 revisited)

The partial membrane and coupling stiffness matrices:

a(z) = Qk (z − zk) +
k−1∑
i=1

Qi (zi+1 − zi) (4.9 revisited)

b(z) = 1
2Qk

(
z2 − z2

k

)
+ 1

2

k−1∑
i=1

Qi

(
z2
i+1 − z2

i

)
(4.10 revisited)

The equation for the transverse shear force resultant as function of the transverse shear
strains, as derived by Rolfes and Rohwer [103]:

R =

∫ z=−h/2

z=−h/2

[
F11 F31
F32 F22

] [
G55 G45
G45 G44

]−1 [
F11 F32
F31 F22

]
dz

−1

︸ ︷︷ ︸
H

γ (4.11 revisited)
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Since there is only one layer of material, Q̄ and Ḡ are constant through thickness in Equa-
tions (2.13) to (2.16). This results in B = 0 and D given by Equation (4.32).

D =
∫ h/2

−h/2
Qz2dz = h3

12Q (4.32)

This in turn leads to D∗ = D by the use of Equation (4.6). It also means that k = 1
in Equations (4.9) and (4.10), hence the summation in them is dropped. Substituting the
results in Equation (4.5) simplifies it to Equation (4.33).

F(z) = −1
2Q

(
z2 − z2

k

)
D−1 (4.33)

Substituting D from Equation (4.32) in Equation (4.33) and simplifying gives Equation (4.34).

F(z) =
(

3
2h −

6z2

h3

)
I3 (4.34)

Finally, substituting the needed entries of F(z) from Equation (4.34) into Equation (4.4) gives
Equation (4.35).

τ (z) =
(

3
2h −

6z2

h3

)
R (4.35)

Hence, an expression for more accurate transverse shear stresses inside the BLT element is
obtained assuming a homogenised material. It only relies on the transverse shear force of the
element, and is a quadratic equation through thickness ranging from zero stress at the top
and bottom surface of the element to the maximum at the mid-plane of the element.

Transverse Shear Stiffness

Now that an expression for the stress-force resultant matrix F(z) is obtained in Equa-
tion (4.34), it can be used to improve upon the transverse shear stiffness of an element.
This is done by substituting it into Equation (4.11), resulting in Equation (4.36).

R = 5h
6

[
G55 G45
G45 G44

]
︸ ︷︷ ︸

H

γ (4.36)

The resulting equation can now be compared to its counterparts of the general FSDT, i.e.
Equations (2.16) and (2.18). The result is the same, if k = 5/6 is assumed, which is the
case for isotropic plates according to Reissner [28]. Hence, applying the theory of Rolfes and
Rohwer [103] to the homogenized material, leads to an unchanged transverse shear stiffness.
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Figure 4.2: Transverse shear stress distribution for different quasi-isotropic layups under an
applied shear force

Transverse Shear Stress Comparison

The transverse shear stresses are changed from a constant value to a depending quadratically
on the thickness coordinate. To give a brief overview of the effect, this shear stress distri-
bution is compared to the shear stress distribution of the same six quasi-isotropic laminates
of Section 2.2.2. These laminates have a unit width and all contain eight plies of 0.125 mm
thickness each. On these laminates, a force of Rx = 1 N is applied, and the theory of Rolfes
and Rohwer [103] is used (see Section 4.1.2) to obtain the shear stress distribution over the
thickness. These distributions are compared to the FSDT as used in the BLT element, as
well as the parabolic distribution of Equation (4.35). The result is Figure 4.2.

Since all layups are symmetrical, all show their maximum shear stress on the mid-plane of
the laminate. The maxima range from 1.22 Pa for the [0/45/-45/90]s laminate, to 2.25 Pa
for the [90/45/-45/0]s laminate. The FSDT approach as used in the BLT element shows a
constant stress of 1 Pa, while the parabolic distribution of Equation (4.35) shows a maximum
of 1.5 Pa.

In general, laminates which are designed against bending in the direction of loading (in this
case, having the 0-layers on the outside to prevent bending in x-direction, due to the applied
load Rx), have lower transverse shear stresses as well for a given applied shear force. The
reason for this is that the transverse shear stresses and membrane stresses due to moments are
coupled to each other through the stress equilibrium Equations (4.1) and (4.2). Hence, plies
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which take up more of the bending load have in turn higher transverse shear stress gradients.
This can be seen as the shear stresses being coupled to the membrane stiffness of a ply in
Equation (4.10). A ply with a higher in-plane stiffness will result in a higher transverse shear
stress gradient, as can also be observed from Figure 4.2. Therefore, having those stiffer plies
on the outside of the laminate, will result in a higher gradient at the outside, in turn resulting
in a lower maximum shear stress.

4.1.5 Implementation in LS-Dyna

For the calculation of the transverse shear stresses, the thickness coordinate is needed.
The last subroutine in the flow chart of Figure 3.4 in which this coordinate is available,
is ushl_bXXX. This is however the isoparametric thickness coordinate, which is defined as
ζ= 2 ·z/h. To include this adaptation, elements of B determining the transverse shear strains
need to be multiplied by a factor cγ , as defined by Equation (4.37).

cγ (ζ) = 3
(
1− ζ2)
2h (4.37)

4.2 Delamination Failure Criteria and Adaptation for Shell Ele-
ments

Based on a more accurate transverse stress prediction, this section searches for a failure cri-
terion for delamination. To find the best suited delamination failure criterion, Section 4.2.1
starts with a review of the available literature on this topic. One promising failure theory,
the one of Puck [117], is analysed in Section 4.2.2 and adjusted to predict pure delamination
failure. Together with the most used delamination failure criterion [56], the resulting delam-
ination failure criterion is further simplified in Section 4.2.3, by adding the assumption of no
transverse normal stresses. Section 4.2.4 finalises the delamination failure criteria analysis
with the implementation in the user modules of LS-Dyna.

4.2.1 State of Art Literature on Delamination Failure Criteria

To evaluate the different theories on delamination onset based on stress analysis, first the
World Wide Failure Exercises are examined. One of the the best performing failure criteria
in these exercises, the one of Puck, is analysed next, followed by failure criteria designed for
pure delamination.

Failure in composites is still hard to predict today, with countless failure criteria often lacking
validation across the whole range of load cases they are supposed to cover. This reason
led Hinton, Kaddour and Soden to organize the first World-Wide Failure Exercise (WWFE-
I) [118]. In this experiment, authors of leading failure criteria and theories were invited to
blindly predict failure of various test cases, after which the tests were independently executed
and the results were compared. Since this was the first effort to compare failure criteria on
such a large scale, only test cases with in-plane failures were addressed. Interesting is that
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one of the best performing failure theories was a three-dimensional failure theory, developed
by Puck [117].

Because of the critical acclaim the organisers got on WWFE-I, they decided to continue with
efforts to determine which failure criteria are best suited for certain load cases. They set up
experiments for composites under triaxial loads in the second World-Wide Failure Exercise
(WWFE-II) [33,119–121], focussing on in-ply failures. Hence, no tests were done on prediction
of delamination. Out of 12 theories, the theory developed by Puck was among the three best-
performing ones, together with the failure criteria developed by NASA’s Langley Research
Center (LaRC) [122] and the theory developed by Laurin et al. [123]. All three theories have
in common that they distinguish between fibre failure and matrix failure, an idea dating back
to Hashin’s failure criteria [124]. Out of the three best-performing failure theories, Puck’s
theory is the only one capable of predicting delamination. The opinion of LaRC is that
delamination should be included in FEA by the use of cohesion elements [122] as developed
by Camanho et al. [16] or Turon et al. [125]. Laurin et al. initially developed their model for
first ply failure and final failure, not incorporating delamination. Even though this theory
was further developed to take some effects of delamination into account [126], the authors
state that delamination is a specific mechanism that must be modelled and identified with
specialised tools. Parallel with the second one, also the third World-Wide Failure Exercise
(WWFE-III) was started with experiments for cracks and damage development [127, 128].
Among the participants in this exercise are Laurin et al. [129] and the LaRC group [130].
The blind predictions have been published for this exercise [131], the comparison to test
results is not finished yet. Nonetheless, the results would only be relevant for the prediction
of growth of delamination, not the onset of it.

Puck’s failure criteria

The failure theory of Puck [117] (conveniently translated to English and summarized in text-
book form by Knops [132]) is a three-dimensional failure criterion, capable of predicting a
failure delamination. It distinguishes between damage due to fibre failure and damage due
to matrix failure. When comparing to the failure modes in Section 2.3, this means that the
modes matrix fracture, interfacial debonding and delamination are all contained in the matrix
failure group. Since delamination failure is a matrix failure, only this mode will be evaluated
here. Matrix failure in the Puck failure theory is based on the stresses acting on a fracture
plane in a single ply, which is always parallel to the fibres. The fracture plane angle α is
measured counter-clockwise from the x3-axis, hence α = 90 deg is pure delamination. For a
visualization, see Figure 4.3. Puck’s failure criterion for matrix failure distinguished between
a tensile and a compressive stress normal to the action plane and is given by Equation (4.38).

(
τnψ
R⊥ψ

)2
+ 2p

c
⊥ψσn
R⊥ψ

= 1 if σn < 0(
τnψ
R⊥ψ

)2
+ 2p

t
⊥ψσn

Rt⊥
+
(

1− 2p
t
⊥ψR

t
⊥

R⊥ψ

)(
σn
Rt⊥

)2
= 1 if σn ≥ 0

(4.38)

With R the strength for different failure modes and p the inclinations parameters, which are
all material parameters. Superscripts t and c represent tension and compression, respectively.
Furthermore, a single n subscript means normal to the action plane, subscript nψ denotes
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Table 4.2: Puck’s inclination parameters for typical FRP [133]

pt⊥‖ pc⊥‖ pt⊥⊥ pc⊥⊥
GFRP/Epoxy 0.30 0.25 0.20 to 0.25 0.20 to 0.25
CFRP/Epoxy 0.35 0.30 0.25 to 0.30 0.25 to 0.30

in the plane perpendicular to the action plane, aligned with ψ. The angle ψ itself is defined
as the angle between τnt and τnψ, see also Figure 4.3. Subscripts ⊥ and ‖ are referring to a
direction perpendicular and parallel to the fibre direction, respectively.

The strengths R in Equation (4.38) are material parameters and can all be relatively easily
obtained by performing tests. The inclination parameters p would require more extensive
testing, as these parameters are derivatives of a failure curve. Therefore, several tests are
needed with different stress ratios to obtained each p. Recent research [133] suggests that
these parameters are a function of type of material (i.e. Glass Fibre Reinforced Polymer
(GFRP) or CFRP), rather than the exact specifications of the material (i.e. an AS4 carbon
fibre or an IM7 carbon fibre). For epoxy based CFRP and GFRP, these parameters are given
in Table 4.2. Strengths and inclination parameters which are a function of ψ will need to be
determined by Equations (4.39) and (4.40). The relations between the action plane stresses
and stresses in the ply coordinate system are all geometrical and given by Equations (4.41)
to (4.44).

R⊥ψ = τnψ√(
τnt
R⊥⊥

)2
+
(
τn1
R⊥‖

)2
(4.39)

pt,c⊥ψ = R⊥ψ
τ2
nt + τ2

n1

pt,c⊥⊥τ2
nt

R⊥⊥
+
pt,c⊥‖τ

2
n1

R⊥‖

 (4.40)

The strengths R⊥‖ and Rt⊥ can be determined by in-plane shear tests and in-plane tensile
tests perpendicular to the fibres, respectively. Experimental results using tests designed
purely for R⊥⊥ are unreliable, since a transverse shear loading has to be applied, hence

Figure 4.3: Definition of coordinate system and angles used in Puck’s failure theory [132]
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very thick specimens would be needed [117]. However, based on behaviour observed during
tests [134–136], Puck is convinced that the transverse shear-off failure observed in in-plane
compression can be used to determine this value. Equation (4.45) is used for this.

σn(α) = σ2cos2α+ σ3sin2α+ 2τ23sinαcosα (4.41)

τnt(α) = −σ2sinαcosα+ σ3sinαcosα+ τ23
(
cos2α− sin2α

)
(4.42)

τn1(α) = τ31sinα+ τ21cosα (4.43)

τnψ(α) =
√
τ2
nt + τ2

n1 (4.44)

R⊥⊥ = Rc⊥
2(1 + pc⊥⊥) (4.45)

In which subscript t denotes tangential to the fibre direction. Note that n and t refer to the
action plane, while ⊥ and ‖ refer to the fibre direction.

Delamination failure criteria

Next to the three-dimensional failure criteria presented in the previous paragraphs, there
are failure criteria solely focussed on the prediction of delamination. Brewer and Lagace [56]
developed a failure criterion, Equation (4.46), and compared it to test results of three laminate
families: [±15n]s, [±15n/0n]s and [0n/±15n]s, with n ranging from 1 to 5. When comparing
their failure criterion to a strain energy release rate approach, they concluded that the strain
energy release rate is dependent on effective ply thickness. The results was that the stress
based failure criterion showed better correlation to test results.

(
τ31
R31

)2
+
(
τ23
R23

)2
+
(
σc33
Rc33

)2
+
(
σt33
Rt33

)2

= 1 (4.46)

Note that only one of the last two terms on the left-hand side can be non-zero. Other,
comparable failure criteria purely designed for delamination are the ones of Ochoa and Eng-
blom [137], Equation (4.47); Hashin [124], Equation (4.48); and Lee [138], Equation (4.49).

τ2
31 + τ2

23
R23

+
(
σ33
Rt33

)2
= 1 (4.47)

(
τ31
R31

)2
+
(
τ23
R23

)2
+
(
σ33
Rt33

)2
= 1 (4.48)

√
τ2

31 + τ2
23

RS
= 1 or σ33

Rt33
= 1 (4.49)

Lee is not clear whether RS is equal to R31, R23 or a combination of the two, just that it
should be experimentally obtained [138].
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The just mentioned four criteria are all quadratic criteria. The differences can be divided
into three categories. First, they debate whether a matrix tension should be separated from
matrix compression. Looking at the argumentation given by Hou et al. [139] and by Puck in
the previous paragraph, it is expected that there is a difference, since the stresses acting on
the failure plane are different; the compressive applied stress results in a shear stress on the
failure plane, while the tensile applied stress results in a tensile stress normal to the failure
plane. Second, the criteria differ on whether R31 has a different value from R23. Since one
of these shear stresses is acting along the fibres, and the second one is acting only transverse
to the fibres, it is expected that there is a difference. Creemers [140] confirmed this, noting
that R31 is generally larger than R23. This can furthermore be seen from these strengths
of IM7/8551-7 CFRP as obtained by experiments, see Table 2.2. Final difference is whether
shear and normal stress interact with each other, or that they can be viewed separately. Since
the matrix itself can be viewed as an isotropic constituent in the composite, it is expected
that normal stress and shear stresses acting on the matrix do interact with each other. This
is backed up by looking at the in-plane matrix failure criteria of LaRC [122] and Laurin et
al. [123], next to Puck the other two best-performing theories of WWFE-II, both having
interaction in their matrix failure criteria. Hence, it is expected that this is also the case for
delamination, making the criterion of Brewer and Lagace the best candidate out of the four
pure delamination failure criteria.

Further building on the effect of interaction of stresses on delamination strength, Fenske and
Vizzini [141] developed a criterion also taking into account the in-plane stresses acting on a
laminate. Comparing their criterion to the one of Brewer and Lagace on test results of the
same three laminate families ([±15n]s, [±15n/0n]s and [0n/ ±15n]s, with n ranging from 1
to 5), they obtained an increase in average accuracy of 0.8% over the 15 tests. However,
this increase in accuracy is not deemed justified by the increase in complexity, and hence
computational effort.

4.2.2 Puck’s Failure Criteria for Pure Delamination

Due to the homogenized material approach, the distribution of fibre directions through thick-
ness is not known. This is of importance for the failure theory of Puck, since its matrix failure
mode relies on fracture planes parallel to the fibre direction. However, there is one plane al-
ways parallel to the fibres; the 12-plane of Figure 4.3. Combining this with the fact that the
goal is to look for delamination, which is a fracture on the 12-plane, an angle of α = 90 deg
will be used. This leads to Equations (4.41) to (4.44) being reduced to Equations (4.50)
to (4.53).

σn(α = 90 deg) = σ33 (4.50)

τnt(α = 90 deg) = τ23 (4.51)

τn1(α = 90 deg) = τ31 (4.52)

τnψ(α = 90 deg) =
√
τ2

23 + τ2
31 (4.53)

Substituting Equations (4.50) to (4.53) into the relation for the strengthR⊥ψ (Equation (4.39))
leads to Equation (4.54).
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R⊥ψ =
R⊥⊥R⊥‖

√
τ2

23 + τ2
31√

τ2
23R

2
⊥‖ + τ2

31R
2
⊥⊥

(4.54)

Noting that all Rs are always defined positive [117]. Now, substituting into the relation for
pt,c⊥ψ (Equation (4.40)) leads to Equation (4.55).

pt,c⊥ψ =
pt,c⊥⊥τ

2
23R⊥‖ + pt,c⊥‖τ

2
31R⊥⊥√(

τ2
23R

2
⊥‖ + τ2

31R
2
⊥⊥

) (
τ2

23 + τ2
31
) (4.55)

Finally, substituting these results into the failure criteria, Equation (4.38), leads to Equa-
tion (4.56).

(
τ23
R⊥⊥

)2
+
(
τ31
R⊥‖

)2
+ 2

(
pc⊥⊥τ

2
23

R⊥⊥
+

pc⊥‖τ
2
31

R⊥‖

)
σ33

τ2
23+τ2

31
= 1 if σ33 < 0

(
τ23
R⊥⊥

)2
+
(
τ31
R⊥‖

)2
+

2
(
pt⊥⊥τ

2
23R⊥‖+pt⊥‖τ

2
31R⊥⊥

)
√(

τ2
23R

2
⊥‖+τ2

31R
2
⊥⊥

)
(τ2

23+τ2
31)

(
σ33
Rt⊥

)

+
(

1−
(
pt⊥⊥τ

2
23

R⊥⊥
+

pt⊥‖τ
2
31

R⊥‖

)
2Rt⊥

τ2
23+τ2

31

)(
σ33
Rt⊥

)2
= 1 if σ33 ≥ 0

(4.56)

Inspecting Equation (4.56), the following can be deducted. For a compressive transverse
normal stress, all quantities on the last term of the left hand side are positive, except σ3
itself. Hence, a compressive transverse normal stress delays delamination failure. Following
the same logic, in case of a tensile transverse normal stress the third term of the left hand side
is always positive. For the fourth and last term of this case, the terms after the minus sign have
to be analysed. The squared shear stresses in both the nominator and the denominator cancel
each other out. According to Table 4.2 the inclination parameters pt‖‖ and p

t
⊥‖ are maximum

0.35. This leaves a ratio of 1/(2 · 0.35) = 1.43 for Rt⊥/R⊥⊥ and Rt⊥/R⊥‖ to make the last
term on the left hand side always positive. After analysing several different kinds of CFRP
and GFRP [33,128,142], the highest ratio found was 1.32 for the CFRP G40-800/5260 [128].
Hence, the total term after the minus sign will be lower than 1 for the analysed GFRP and
CFRP materials. Thus, in contrary to a compressive transverse normal stress, a tensile stress
will accelerate delamination failure. It is therefore essential to know if a transverse normal
stress acting on a laminate is tensile or compressive, according to the inter-fibre failure theory
of Puck.

4.2.3 Delamination Criteria Without Transverse Normal Stress

The most promising delamination criteria mentioned in the previous section (Brewer-Lagace,
Puck) will be compared to each other while subjecting them to the case where the transverse
normal stress is zero, and then compared to each other.
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Ignoring the transverse normal stress in the Brewer-Lagace delamination criterion, Equa-
tion (4.46), simplifies it to Equation (4.57).

(
τ31
R31

)2
+
(
τ23
R23

)2
= 1 (4.57)

For Puck’s failure criterion, neglecting the transverse normal stress in Equation (4.56) leads
to Equation (4.58).

(
τ23
R⊥⊥

)2
+
(
τ31
R⊥‖

)2

= 1 (4.58)

Since the shear strength parallel to the fibres is the 23-direction, R23 = R⊥⊥. Furthermore,
the shear strength perpendicular to the fibres is either the 12-direction or the 31-direction,
R31 = R⊥‖. Hence, neglecting the transverse normal stress will lead to the same results
according to the theory of Puck and the theory of Brewer and Lagace.

4.2.4 Implementation

For detection of onset of delamination, the only equation that needs to be implemented is
the resulting failure criterion of the previous section, Equation (4.59). The location of this
implementation is in the subroutine umatXXv, there all the needed stresses and strengths are
available, plus this is the location where the in-plane failures are calculated as well.

Di =
(
τ31
R31

)2
+
(
τ23
R23

)2
(4.59)

As soon as the failure index for delamination Di is larger than one, delamination is detected.
What happens once there is delamination in an element, is the topic of the next chapter.

4.3 Summary

In this section, first the main conclusions of this chapter are presented. This is followed by
an outlook on future work, based on the results of prediction of onset of delamination using
the BLT element.

4.3.1 Conclusion

A method has been found in literature which is capable of predicting the transverse shear
stresses in a 4-node element in explicit FEA due to applied transverse loads. Due to the
limitation of using only symmetrical laminates, the maximum transverse shear stress was
always found in the middle of the laminate. An example on 6 quasi-isotropic laminates
showed that homogenizing the material through thickness, as done in an ESL approach, will
cause errors in the predicted transverse shear stresses. An under prediction of 33% and an over
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prediction of 31% were the highest values obtained for these 6 laminates. No solutions were
found to predict the transverse normal stresses inside the 4-node element based on FSDT.

To determine what level of transverse normal stress would lead to delamination, several
delamination failure criteria were examined. In the absence of transverse normal stresses, it
was found that several failure criteria, including the Brewer-Lagace quadratic failure criterion
and the fracture plane failure criterion of Alfred Puck, are equivalent to each other. Due to
the quadratic transverse shear stress distribution through thickness, delamination onset is
always predicted at the mid-plane of the laminate.

4.3.2 Outlook

To increase the accuracy of the prediction of onset of delamination, methods to predict the
transverse normal stress need to be implemented. For transverse normal stresses caused by
curvature effects, changing to a 8-node element would be enough to cover these. For transverse
normal stresses due to applied transverse loads, the FEA code needs to be able to define on
which surface (top or bottom) this load is acting, and whether it is a tensile or compressive
load.

To further increase the accuracy of the prediction of delamination, more sources of transverse
shear stresses need to be incorporated. One source of these stresses, the free edge effect, is
highly dependent on the stacking sequence of the laminate. This will be a problem for the
use in an ESL method, since it eliminates this information in the FEA input.

If a new method to incorporate the prediction of transverse normal stresses in the BLT
element is developed, a new critical reflection of the used delamination failure criterion is
needed. Three questions will need to be covered in this reflection:

• Should matrix tension failure be separated from matrix compression failure?

• Should matrix shear failure along the fibres be separated from shear failure perpendic-
ular to the fibres?

• Is there interaction between the transverse shear and transverse normal stresses?

To help answer these questions, comparisons can be made to experimental results. For in-
stance, to evaluate the criteria on performance on delamination failure due to curved regions,
the test results of unidirectional curved laminates by Martin [143] or Wimmer et al. [144] can
be used. If the calculation of transverse stresses due to free edges would be implemented,
comparison to test results of Crossman et al. [145] or Shalev [52] is possible.



56 Prediction of Delamination Initiation



Chapter 5

Effects of Delamination

After a method for the initiation of delamination is implemented in the previous chapter, the
next step is to analyse what the effects of a delamination are on the structural response of
plates. Two leading authors in field, Reddy and Robbins [146,147], stated that the kinematics
of delamination itself cannot be modelled using an ESL approach. For the implementation,
this means that there is not a single solution capable of modelling all effects of delamination
at once. Hence, every effect has to be analysed and found a solution for separately.

Section 5.1 analyses and quantifies the three main effects of delamination, being a reduction
in compression strength, a change in membrane stiffness and a reduction in bending stiffness.
After concluding that the reduction in bending stiffness has the largest magnitude, this effect
is chosen to implement in LS-Dyna in Section 5.2. The chapter continues in Section 5.3
with the results of the developed method and compares it to three-dimensional FEA results.
Section 5.4 closes this chapter with the conclusions and an outlook for further work.

5.1 Analysis on Effects of Delamination

The literature review of Section 2.5.2 showed that the main effects of delamination on a
laminate are a reduction in compression strength, membrane stiffness and bending stiffness.
This section will analyse these three effects.

5.1.1 Compression Strength Reduction

Kutlu and Chang [69,70] concluded that the compressive strength of a panel containing delam-
inations can be severely lowered. The dominant source of reduction in compression strength
of delaminated panels is sublaminate buckling, and multiple delaminations reduce the com-
pression strength more than a single delamination does. However, buckling of sublaminates
is out of the scope of this thesis, and therefore this effect is not included in further analysis.
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5.1.2 Membrane Stiffness Reduction

The reduction of membrane stiffness as predicted and observed by Stalnaker and Stinchcomb
[67] and O’Brien [68] can be described very well using a rule of mixtures approach, see
Equation (5.1).

A∗ = 1
h

n∑
i=1

Aiti (5.1)

In which A∗ is the equivalent membrane stiffness matrix, h is the total laminate thickness
and Ai and ti are the membrane stiffness matrix and thickness of sublaminate i, respectively.
When using this equation, the only possibility of having a reduced membrane stiffness is if
the sublaminates have different poisson ratios. As explained in Chapter 4, the maximum
transverse stresses are always predicted at the mid-plane of the laminate, hence delamination
can be predicted only on this plane. Next, if also symmetrical laminates are assumed, the
poisson ratio of the top and bottom sublaminate are equal. Furthermore, the use of an
equivalent single layer model with homogenized material excludes the use of different poisson
ratios for the sublaminates. Hence, there is no reliable way to include the reduction in
membrane stiffness. The reduction in stiffness of 5% to 26% as reported by Stalnaker and
Stinchcomb [67] and O’Brien [68] will therefore be ignored.

5.1.3 Bending Stiffness Reduction

Section 2.5.2 showed that by analysing the inertia of a one-dimensional delaminated beam
without axial displacement compatibility, a reduction of 75% in bending stiffness is observed
combined with a 50% reduction in maximum stress due to bending. With axial displacement
compatibility, Tracy and Pardoen [72] showed that the reduction would be up to 43%, de-
pending on the length of the delamination, delaminations of up to 40% of the length of the
plate would see negligible stiffness reduction.

Comparing the magnitude of all previously mentioned effects, the focus of the remainder of
this chapter will be on the effect with the largest magnitude, which is the bending stiffness
reduction of a delaminated beam without axial displacement compatibility. Since this effect is
coupled to the reduction in maximum stresses due to bending (see Figure 5.1), a delamination
failure can be used in a beneficial way. Namely, for some structural parts of a car frame, an
out-of-plane displacement is applied to the part for which catastrophic failure is allowed. In
this case, the delamination would cause a lower bending stress and hence delay ply failure.
Hence, the goal of the bending stiffness reduction is two-fold: not only should the resulting
bending moment for a given displacement on a delaminated beam be 25% of the value for a
undelaminated beam; the stresses due to bending should be halved as well.

How the reduction in bending stiffness and maximum bending stress is achieved is presented
in the next section.
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Figure 5.1: Stresses in bending beams

5.2 Implementation

The implementation of the reduction in bending stiffness is accomplished by a virtual strain
reduction, which results in adjusting the strains obtained due to bending, while keeping the
strains due to membrane loading constant. This is done by letting the integration points of
the element simulate one sublaminate, and later multiply the resulting forces and moments
by the number of sublaminates in the delaminated element. To investigate how this can be
done, first the techniques used for the implementation of in-plane damage in LS-Dyna are
examined in Section 5.2.1. When possible, these are used for the implementation of the virtual
strain reduction as explained in Section 5.2.2. Once the method of how to reduce the bending
stiffness is covered, a method to cover the problem of axial displacement compatibility is
presented in Section 5.2.3.
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Figure 5.2: Calculation of stresses in case of non-linear material behaviour, with a stress-based
failure model calculating the damage by using the undamaged stress

5.2.1 In-Plane Strength and Damage Evolution

In crash simulations, not only the point up to first failure is of interest, but also the damage
evolution like the crushing of composites as explained in Section 2.4.2. For in-plane failure, a
stress-based failure criterion is used (initial failure). The stiffness will be reduced by a factor
depending on the damage mode, i.e. a softening curve as in Figure 5.2a will be used. For
instance, for a compressive crushing mode the stiffness will be reduced to nearly zero. Then,
if a certain threshold strain on an integration point is applied, it will be deleted. Finally,
when a user-defined number of integration points of an element is deleted, the whole element
is deleted (final failure).

While in-plane failure can be incorporated by adjusting the stresses using the method of
Figure 5.2 on integration point level, this is not the case for delamination. For instance, de-
lamination on the mid-plane surface would have an effect on the stress calculation of the outer
integration points due to reduction of bending stiffness of the whole laminate. Furthermore,
the calculation of forces and moments is done using the same stresses inside the element cal-
culations. Hence, to adjust this, not only needs delamination to be detected in the material
on an integration point level as was presented in Chapter 4, the effects of delamination need
to be modelled in the element calculations.



5.2 Implementation 61

5.2.2 Virtual Strain Reduction

Since the goal of the bending stiffness reduction is two-fold, i.e. reduction of bending stiffness
by 75% and reduction of the stresses due to bending by 50%, implementing a separate bending
stiffness would not work, as only one of the two goals can be reached. Furthermore, if the
stress distribution could be directly changed from the undelaminated case to the delaminated
case of Figure 5.1, an inaccuracy would arise when calculating the resulting bending moment:
the BLT element relies on a Gauss quadrature integration for the bending moment out of
the stresses, with 5 integration points through thickness. The inaccuracy then comes from
applying Gauss quadrature to a function with a step in it. Furthermore, if a delamination
occurs on one of the integration points, it would have two stresses simultaneously. Hence, a
solution comprised of several steps is needed, which does not make use of a function which
has a step function in it.

Looking at the internal force calculation of the BLT element, the stresses are calculated by
application of a material model law to the strains, which are in turn obtained by a summation
of the all strain increments over the time steps. The strain increments are calculated using
the velocity-strain relations, see Equations (3.7) to (3.11).

dxx = vx,x + zωy,x (3.7 revisited)

dyy = vy,y − zωx,y (3.8 revisited)

dxy = vx,y + vy,x + z (ωy,y − ωx,x) (3.9 revisited)

dxz = vz,x + ωy (3.10 revisited)

dyz = vz,y − ωx (3.11 revisited)

To distinguish between strains due to bending and membrane loading, first the average strain
over all integration point is calculated as the strain vector ε0, which is equal to strain due
to membrane loading. To adjust for the reduction of strain due to bending in the case of a
delamination, the strain is calculated by the average of the undamaged strain and the average
strain weighted by the amount of damage, see Equation (5.2).

εj = (1−Dr)ε0 +Drε̃j (5.2)

With ε̃j the undamaged strain at integration point j, Dr the delamination damage factor and
the vector

ε = [εxx εyy γxy]T

A damage factor of 1 corresponds to no delamination, a factor of 0.5 corresponds to one
delamination on the mid-plane. There is a possibility to add friction as a stiffening factor, for
instance by applying a factor of 0.5 < Dr < 1 on a lamination with one mid-plane delamina-
tion. Exploitation of this option is out of the scope of this thesis, and up for recommended
further work. Using a material law, the strains of Equation (5.2) are converted into stresses.
Therefore, applying a delamination factor of 0.5 on a laminate with a single delamination,
satisfies the requirement of reduction of the stresses due to bending by half without reducing
the membrane stresses. This means that the average stress does not change, and integration
of the stresses over the thickness will result in the same force resultant.
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Figure 5.3: Cantilever plate with two-dimensional delamination
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With the in-plane stresses due to bending being reduced by half, this means that the moments
in Equations (3.29) and (3.30) will be reduced by half as well. This, while the requirement
for the moments was a reduction of 75% for a given applied displacement. Therefore, in the
calculation of the nodal moments, the factor Dr needs to be applied another time. Since
the transverse shear stiffness should not change, the factor should not be applied to the last
integral of Equations (3.29) and (3.30); the result is Equations (5.3) and (5.4).

mxI = A

(
DrB2I

∫ h/2

−h/2
zσydz +DrB1I

∫ h/2

−h/2
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1
4k
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(5.3)
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−h/2
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−h/2
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4k
∫ h/2

−h/2
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)
(5.4)

5.2.3 Free Edge Indicator

The implementation of the reduction in bending stiffness would be relatively easy for a one-
dimensional delamination; only when the delamination has no possibility for shear transfer
at one of its ends, the bending stiffness would be reduced. However, the problem becomes
more complex when looking at a two-dimensional delamination; take for instance the rectan-
gular cantilever plate containing a delamination of length a and width b of Figure 5.3. The
delamination has a distance from the edges of sx at x = l and sy at y = w.

Several three-dimensional FEA models have been made to understand what the requirements
on the delamination would be to cause a reduction in bending stiffness. These models were
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built up using constant stress hexahedron elements, which are the default solid element in
LS-Dyna [76]. Furthermore, frictionless contact was applied on all elements, and an isotropic
material was chosen. A delamination was modelled by disconnecting the top from the bottom
half of the plate at the location of the delamination. The models had a line load at x = l, the
dimensions l = w, h = l/10, a = b = w/2 and sx and sy were varied. The results showed that
only for sx = sy = 0, i.e. the case when the delamination reaches two free edges, a reduction
in bending stiffness was noticed. For the other cases, the axial displacement compatibility
prevents the two sublaminates from sliding over each other.
To see whether the order of magnitude of the reduction in bending stiffness was comparable
to the 75% of only taking into account the reduction in area moment of inertia, the plate
was then modelled with BLT elements. Since the method described in the previous section is
not yet implemented in LS-Dyna, the delaminated area was modelled in a comparable way.
At the location of delamination, the thickness of the elements was set at h/2. Next, these
elements were duplicated on the same nodes. While this is physically impossible since it has
two elements occupying the same physical space, it does replicate the stress distribution of
Figure 5.1b and hence the same bending stiffness. The results showed good agreement on the
displacements of the plate, as can be seen in Figure 5.4.
The results of the previous two paragraphs leads to the following observation: to reduce
the bending stiffness of a plate by 75% due to delamination, the delamination should have
progressed to two perpendicular free edges. To include this in the user modules of LS-Dyna,
a new parameter is introduced which is stored on each node of the mesh: Df . On each node
this parameter can have the following three integer values:

• Df = 0: This node is neither part of any free edge, nor connected to one via a continuous
delamination
• Df = 1: This node is part of one free edge or connected to one via a continuous
delamination
• Df = 2: This node is part of two perpendicular free edges, or connected to them via a
continuous delamination

During the damage calculation in each time step in the analysis, Df is updated. If the
element is not delaminated, i.e. Dr = 1, the values of the flags are not changed. If the
element is delaminated, the maximum of the four flags of the element is taken, and assigned

Figure 5.4: Modelling of a cantilever square plate with a delamination at the corner, brick
elements versus plate elements
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Figure 5.5: Flow chart of all delamination parameters

to all four nodes. For a flow chart of all delamination parameters Di, Dn, Dr, and Df in the
calculation of a single element, see Figure 5.5. Furthermore, two examples are given below
for clarification.

Example 1

This example shows the evolution of the delamination free edge flags on a cantilever square
plate with delamination starting at a corner, see Figure 5.6. At the start of the analysis no
delamination is present, and hence only the nodes at the free edges are given non-zero flag.

Due to an arbitrary loading, at time step T=1000 the element at a free corner of the plate
delaminates. Since the lower left node of the element has a free edge flag of 2, the delamination
immediately causes a reduced bending stiffness. At the end of the time step, the delamination
causes the propagation of the Df = 2 to all the nodes of the element.

As the plate is further loaded, at time step T=2000 the delamination progresses one element
inwards. Since at this element the two nodes on the right side have Df = 2, the delamination
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Figure 5.6: Example 1 on development of bending stiffness reduction: delamination starting at
the corner of a cantilever plate

again causes an immediate reduction in bending stiffness, followed by setting the flag for all
nodes of this element at Df = 2.

Example 2

This example shows the evolution of the delamination free edge flags on a cantilever square
plate with delamination starting at the middle of the free side of the plate. The start of the
analysis is identical to the previous example, see Figure 5.7.

Due to a different arbitrary loading, at time step T=1000 one of the middle elements at the
free side of the plate delaminates. Since the maximum value of the free edge flag of the four
nodes is 1, the bending stiffness of the element is not affected. Afterwards, the delamination
causes the propagation of the Df = 1 to all the nodes of the element.

As the plate is further loaded, at time step T=2000 the delamination progresses one element
inwards. Again there is no delamination flag of 2 so the bending stiffness is not affected, and
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Figure 5.7: Example 2 on development of bending stiffness reduction: delamination starting in
the middle of the free side of a cantilever plate

afterwards all flags of the element are set to Df = 1.
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Due to further development of the applied load, at time step T=3000 the delamination pro-
gresses to corner element, which has one node with Df = 2 at the start of the time step.
Therefore, this element has its bending stiffness reduced by setting Dr = 0.5. However, since
at the start of this time step the other two delaminated element have max(Df ) = 1, they do
not see a reduced bending strain. At the end of the time step, all nodes belonging to the
corner element get Df = 2.

At the start of the next time step, all delaminated elements contain at least one node with
Df = 2. Hence, the bending stiffness of all these elements is reduced by setting Dr = 0.5. At
the end of the time step, the delamination flags follow by setting the flag of all nodes of the
delaminated elements to Df = 2.

The use of this delamination flag has as added benefit that it identifies nodes which are part of
the free edges and delamination crack fronts. These are the locations at which delamination
cracks are known to initiate or propagate at global stress levels way below the undamaged
interlaminar strength because of stress concentrations due to local effects as was explained in
Section 2.5.1. While this is beyond the scope of this thesis, it leaves the possibility open to
use the delamination flag to include the effects of free edges and delamination growth.

5.3 Verification

To see how the accuracy is of the previously described methods, comparisons on different
loaded plates have been made to three-dimensional FEA.

5.3.1 Model Descriptions

The two methods of modelling are compared by comparing the results on rectangular can-
tilever plates with a line load at the free side of the plate. All analyses are done using the
explicit solver of LS-Dyna, to minimize the number of differences between these comparisons
and usage of the methods in a real case. The strains, and therefore the stresses, are derived
from the displacements and are thus a function of them. Therefore, the displacement of the
plates are the entity which is compared, in particular, the out-of-plane displacement uz across
the whole plate. The plates are of isotropic material; aluminium with E = 71700 MPa and
ν = 0.33. Furthermore, they contain a delamination up to the corner of the free side of the
plate. In total five plates are analysed:

0. A square plate without any delaminations to act as the benchmark to indicate the error
between shells and bricks for this geometry; see Figure 5.8a.

1. A square plate with a one-dimensional delamination spanning half the length of the
plate; see Figure 5.8b.

2. A square plate with a delamination spanning half the length and width of the plate; see
Figure 5.8c.

3. A square plate with a square delamination almost reaching the root and the third free
edge; see Figure 5.8d.

4. A square plate with a half-width delamination from the root to free side; see Figure 5.8e.



68 Effects of Delamination

75 N/mm

100 mm
100 mm

10 mm

z

x

y

(a) FEA model 0: no delamination

75 N/mm

100 mm
50 mm

100 mm
100 mm

10 mm

z

x

y

(b) FEA model 1: one-dimensional delamination

75 N/mm

50 mm
50 mm

100 mm
100 mm

10 mm

z

x

y

(c) FEA model 2: corner delamination

75 N/mm

94 mm
94 mm

100 mm
100 mm

10 mm

z

x

y

(d) FEA model 3: close-to-third-edge delamination

75 N/mm

50 mm
100 mm

100 mm
100 mm

10 mm

z

x

y

(e) FEA model 4: slender longitudinal delamination

Figure 5.8: Geometrical specifications of the five used FEA models

The three-dimensional brick models are built up as follows. The plates are modelled with
10 elements through thickness, with the length and width of an element twice its thickness.
A delamination is modelled by disconnecting the top from the bottom half at the desired
location. The line load Rx is distributed through the thickness, creating forces on the nodes
with their magnitude weighted to the amount of free side surface they represent.

Since the methods to model delamination in the BLT element are not yet implemented in
the user modules of LS-Dyna, the shell element models are constructed in the same way
as done in Section 5.2.3. The delaminations are modelled by having two elements of half
the plate thickness at the same location, sharing the nodes. This makes sure the nodal
forces and moments mimic the behaviour of a delaminated plate without axial displacement
compatibility. The line load Rx is distributed to the nodes, again with their magnitude
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weighted to the amount of free side surface they represent.

5.3.2 Results

The results show varying success for the different types of delamination shapes and locations.
For a visual representation of the out-of-plane displacement of all 5 cases, see Figures 5.9
to 5.13. The maximum displacements, the error in maximum displacement and the average
error on all nodes are given in Table 5.1. In these figures and table, a positive error means
an over prediction of the displacement of the proposed method using shell elements, when
compared to the brick element model.

The FEA for a cantilever square plate without delaminations, visualised in Figure 5.9, shows
that the error in maximum displacement is 5.9% when comparing a model built up with shell
elements to a model built up with brick elements. The error on the out-of-plane displacement,
averaged over all nodes at least two plate thicknesses away from the clamping area, is higher
at 7.1%. This gives a benchmark to compare the errors to of the remaining 4 tests.

Figure 5.10 shows the results on the first test case: a cantilever plate with a delamination
starting at half the length of the plate until the tip, which can be seen as the case of a one-
dimensional delamination. Compared to the benchmark result, the errors on on the maximum
displacement and the average error are slightly higher, 7.0% and 9.5% respectively. When
comparing the distribution of the error over the plate, i.e. Figure 5.10b to Figure 5.9b, it can
be seen that profile is the same, only the error on the plate with delamination is 2% higher.
Hence, the proposed method of modelling delamination in shell elements is very well suited
for one-dimensional delaminations.

The next plate analysed is the cantilever plate with a delamination of moderate size at a free
corner of the plate, spanning half the width and half the length. The results are found in
Figure 5.11. Again the error in maximum displacement and the average error are comparable
to the benchmark case: 7.6% and 8.8%, respectively. However, when looking at the error
distribution over the plate in Figure 5.11b, it can be seen that the error is higher on the edge
which does not have the delamination. This means that the displacement obtained in the

Table 5.1: Results of the comparison with 3D FEA

max(uz) (mm) Error
Delamination type Bricks Shells max(uz) Average1

0: None 3.95 4.18 +5.9% +7.1%
1: 1D 5.51 5.90 +7.0% +9.5%
2: Corner 4.55 4.90 +7.6% +8.8%
3: Close to 3rd edge 10.47 13.95 +33.2% +49.7%
4: Slender 6.24 7.97 +27.8% +39.4%

1 For the average error in displacement, the rows of nodes close to the clamping (within two plate
thicknesses) are omitted. This is to prevent the effects of clamping cluttering the results.
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(a) FEA of the shell and brick models

-10
-10

-8
-8

-8
-6

-6
-6

-4

-4

-4

-2

-2

-2

0

0

0

0

2
2

4
4

6

6

6

8

8

0 20 40 60 80 100

x (mm)

0

20

40

60

80

100

y 
(m

m
)

-10
-8
-6
-4
-2
0
2
4
6
8
10
12
14

%
 d

iff
er

en
ce

, u
z 

of
 s

he
ll 

m
od

el
w

.r
.t.

 u
z 

of
 b

ric
k 

m
od

el

(b) Error on out-of-plane displacement

Figure 5.9: Results of the cantilever plate without delamination, comparing brick elements to
the proposed method using shell elements

proposed method with shell elements comes more due to a rotation about the y-axis than the
brick elements model, and less due to a rotation about the x-axis. The reason for this is that
the edge of the delamination at half of the plate width does not cause an axial displacement
compatibility for the shell model as strong as the one for the brick model. However, the
overall displacement response of the shell model still replicates the brick model as well as
the benchmark results, and hence, the proposed method can be used for delaminations of
moderate size as well.

The third test case is for a cantilever plate in which a corner delamination almost reaches
the third free edge, i.e. it is almost progressed from a two-dimensional delamination to a
one-dimensional one. As can be seen from the results in Figure 5.12, both the profile of the
out-of-plane delamination as well as the magnitude cannot be covered well by the proposed
solution. This can be seen from the error in maximum displacement (33.2%) and the average
error in out-of-plane displacement (49.7%) as well. The reason for this is the same as for
the previous test case: the axial displacement compatibility condition at the crack front
parallel to the x-axis is not as strong in the shell model as in the brick model. This causes
a stiffer non-delaminated part for the brick model, which is reflected in the profile of the
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(a) FEA of the shell and brick models
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(b) Error on out-of-plane displacement; hatched area is the delamination

Figure 5.10: Results of the cantilever plate with a one-dimensional delamination, comparing
brick elements to the proposed method using shell elements

out-of-plane displacement, as can be seen from Figure 5.12b. Hence, for the case where a two-
dimensional delamination is on the brink of reaching another free edge and hence becoming a
one-dimensional delamination, the proposed method using shell elements cannot predict the
bending stiffness of the plate accurately.

Figure 5.13 presents the results on the final test case; delamination over half of the width of
the cantilever plate, reaching from the root until the tip of the plate. The proposed method
does not provide an accurate representation of the structure when compared to the brick
model, with an error in maximum displacement of 27.8% and an average error of 39.4%. The
reason for the high differences can again be found in the axial displacement compatibility at
half width leading to an under prediction of the bending stiffness for the proposed method
using shell elements. So, also for plates containing a delamination with a high aspect ratio,
the proposed method does not capture the bending stiffness of the plate accurately. However,
for all the test cases including the method is still better than not including it when using an
ESL method with delamination, as can be seen when comparing the maximum out-of-plane
displacements in Table 5.1.

It should be noted that the tests were all done with isotropic materials, whereas the intention
of the method is to be used with CFRP materials. The CFRP laminates will however be
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(a) FEA of the shell and brick models
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(b) Error on out-of-plane displacement; hatched area is the delamination

Figure 5.11: Results of the cantilever plate with a two-dimensional delamination at a free corner,
comparing brick elements to the proposed method using shell elements

homogenized through thickness, as was explained in Sections 2.2.2 and 4.1.4. Because of the
homogenization, the results obtained with an isotropic material can be used for verification.
If any errors occur because of the difference in material, it is expected these are due to the
homogenization, as was discussed in the two previously mentioned sections.
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(a) FEA of the shell and brick models
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(b) Error on out-of-plane displacement; hatched area is the delamination

Figure 5.12: Results of the cantilever plate with a two-dimensional delamination almost extending
to the whole plate, comparing brick elements to the proposed method using shell elements
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(a) FEA of the shell and brick models
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(b) Error on out-of-plane displacement; hatched area is the delamination

Figure 5.13: Results of the cantilever plate with a two-dimensional delamination from root to
tip over half the width of the plate, comparing brick elements to the proposed method using shell
elements
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5.4 Summary

In this section, first the main conclusions of this chapter are presented. This is followed by
an outlook on future work.

5.4.1 Conclusion

After a literature review on the effects of delamination on the structural response of a plate
under loading, it was found that the effect with the most impact on the results is the reduc-
tion in bending stiffness and bending stresses when a delamination does not have an axial
displacement compatibility at its end. By looking at the inertia and stress distribution of a
delaminated plate, it was found that the stress due to bending should be halved, while the
bending stiffness should be 25% of the value of the original plate in the case of a mid-plane
delamination. Axial displacement compatibility is easy to identify for the case of a one-
dimensional (i.e. through the width) delamination, since it should be progressed to the tip of
the plate. For a two-dimensional delamination, an algorithm was developed which identifies
if an element is part of two perpendicular free edges or connected to them via a continuous
delamination. If this is the case, the element should have its bending behaviour changed. This
is done by first halving the strains due to bending inside an element. These strains are then
converted to stresses using a standard material law, covering the effect of halving the stresses
due to bending. Next, to satisfy the requirement reducing the bending stiffness by 75%, the
moments calculated by integration of the new bending stresses should again be halved.
Due to time constrains on the project, implementation in the user modules of LS-Dyna was
not possible. However, the proposed method could still be compared to more detailed brick
FEA models. This was done by placing two elements of half thickness at the location of
delamination. By first comparing the out-of-plane displacement results for shell elements to
brick elements for a plate without any delaminations, a benchmark results was obtained to
compare the other four test cases to. This benchmark FEA showed an over prediction of the
displacement of the model with shell elements of 7.1%, when looking at the average error over
the whole plate. The two first test cases, a one-dimensional delamination and a delamination
of moderate size, showed satisfactory results with an average error in displacement of 9.5%
and 8.8%, respectively. However, the method was not able to accurately predict the bending
response for all four tested cases. Especially when a plate included an axial displacement
compatibility transverse to the loading direction the results were unsatisfactory, which was
the case with high-aspect ratio delaminations (average error of 39.4%) or delaminations on
the brink of progressing to a third free edge (average error of 49.7%). For these cases, the
results show an under prediction in bending stiffness, however, including the method provides
more accurate displacement results than not including it. Furthermore, it is expected that
for car crashes a delamination will quickly progress to the third free edge once it is close to
it. Therefore, this case is unlikely to exist in car crash FEA for a long period of time.
To conclude, if an under prediction in stiffness leads to a robust design, implementation
of this method is advised, as this method shows a clear benefit compared to no prediction
of delamination. Also, in the stage of design where this method should be implemented
(development of new car architecture concepts), the qualitative results are more important
than the quantitative results. The main qualitative result is the opportunity to compare
different design concepts, having the same differences to real delamination degradation.
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5.4.2 Outlook

Even though the proposed method has been compared to detailed three-dimensional FEA
by using a equivalent method, the actual implementation of the proposed method in the
user modules of LS-Dyna would allow for verification and better validation of the method.
Furthermore, this would allow for a better investigation as to why the axial displacement
compatibility condition is not carried out very well when it is perpendicular to the main load
path.

It may also a benefit to implement the delamination in a way, that the effect of delamination
could be scaled as some sort of material parameter, i.e. a bending reduction factor dependent
on the layup. This parameter might be obtained by three-point bending tests from certain
laminates as a function of anisotropy and lamination parameters, making the parameter a
function of the stacking sequence.

While friction between sublaminates was not part of the scope of this thesis, the delamination
damage factor, used to reduce the stresses due to bending and the bending stiffness, has been
set up such that there is a possibility to include effects of friction as well. How the friction
exactly affects the structural performance of a delaminated plate, is a possibility for further
work.

Another possibility for further work is to include effects of free edges and delamination growth
into the method. The delamination flag, used to identify when the axial displacement com-
patibility condition should be adhered to, can be a part of this as it also identifies which
elements are part of a free edge or a delamination crack front.

To further improve the method, the two other main structural effects could be included as well,
being a change in membrane stiffness and a reduction in compressive strength. The difficulty
herein lies that both effects are largely dependent on the stacking sequence of the laminate and
the through-the-thickness location of the delaminations and hence a lot of experiments and
calibration would be needed to implement this in a ESL method. The reduction in bending
stiffness for the case with axial displacement compatibility is also an effect which will increase
the overall accuracy of the method. However, it is expected that implementing this kind of
reduction in bending stiffness would come at a high computational cost.



Chapter 6

Conclusions and Recommendations

The goal of this thesis was to answer the research question How to detect and model delam-
ination of laminated composites in an equivalent single layer model in explicit finite element
analysis?
To be able to answer this question, first a background was given on composites together with
sources of the delamination failure mode. Then, a description of the most common way of
modelling delamination in finite element analysis in general was given, which was done by
using one shell or brick element per ply through thickness and connecting these elements
with cohesive elements. However, since the goal of the equivalent single layer model was to
eliminate the use of more elements through thickness, it was concluded that this approach
could not be used in this thesis.
To further understand the problem, the most used element in explicit finite element analysis
(the Belytschko-Lin-Tsay shell element [79]) was described to analyse possibilities to incorpo-
rate delamination failure in an equivalent single layer model. The conclusion was that the best
way to answer the research question was to split the problem into two parts; the detection
of delamination onset and the modelling of the effects of delamination. Furthermore, making
use of the user modules of the commercial explicit finite element software package LS-Dyna
would give a flexible but comprehensive basis to start with.
Next, the problem of delamination onset was analysed. The best method available to predict
this in an equivalent single layer model which makes use of the Belytschko-Lin-Tsay element,
was concluded to be calculating the transverse stresses inside an element, followed by the
application of a stress-based failure criterion. It was possible to improve the accuracy of
the transverse shear stresses from the solution of a Belytschko-Lin-Tsay element by making
use of the method of Rolfes and Rohwer [103]. However, no solution was found which could
calculate the transverse normal stresses without making rigorous adaptation to either the
element scheme or the pre-processing. After a literature study, the failure theory of Puck [132]
and the quadratic failure criterion of Brewer and Lagace [56] were selected to be the most
promising failure criteria. Both were adapted for the use of pure delamination in the absence
of transverse normal stresses, which led to the conclusion that under these circumstances they
result in the same criterion.
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The final part of this thesis tackled the effects of delamination and how they could be im-
plemented into the user modules of LS-Dyna. From the start it was noted that modelling
the kinematics of delaminations was not possible while making use of the equivalent single
layer method, hence all effects were analysed and implemented separately. The most severe
effect, a reduction of bending stiffness and stresses due to bending in the case of a delami-
nation without axial displacement compatibility at the end, was selected to be analysed and
implemented. It was concluded that for a mid-plane delamination with an equivalent single
layer model, the maximum stresses due to bending should be decreased by 50%, while the
bending stiffness should be reduced by 75%. The implementation was done by applying a
delamination damage factor in the calculation of the stresses at an integration point. Then,
the same damage factor was used in the calculation of the nodal moments, which led to the
desired moment when a certain displacement is applied. Next, an algorithm was developed
which identifies the elements without axial displacement compatibility. Then, a method was
explained on how this approach could be implemented: by passing element information via
the nodes. This made sure that only elements which are part of two perpendicular free edges,
or connected to them via a continuous delamination, have their bending stiffness and stress
reduced.

Since implementation of the previously described methods was not possible yet due to time
constraints, the method was compared to more detailed finite element analysis in a different
way. This was done by placing two elements of half thickness at the location of delamination.
Using this equivalent method, a rectangular cantilever plate without delamination showed
an average error in out-of-plane displacement of 7.1% and served as a benchmark result for
the remaining test cases. Comparable errors of 9.5% and 8.8% were found for the test cases
of a one-dimensional delamination and a delamination of moderate size at the corner of the
plate, respectively. Hence, the proposed method of modelling the effect of bending stiffness
reduction gave results with good agreement on these shapes of delamination. However, less
satisfactory results were obtained for test cases with delaminations progressed close to a third
free edge (error of 49.7%) and delaminations with high aspect ratios (error of 39.4%). However,
including the method provided more accurate displacement results than not including it.

The first part of the research question therefore has the following answer: to detect delam-
ination in an equivalent single layer model in explicit finite element analysis, the transverse
shear stresses are recovered from the solution of a time step, followed by the application of
a delamination failure criterion. The second part of the research question has the following
result: to model the effects of delamination in the same framework, each effect has to be
treated separately, leading to the use of a delamination damage factor to reduce the bending
stiffness and stresses due to delamination.

Outlook

While this thesis provided an answer to the research question, it does not mean the answer
cannot be improved upon. Sections 4.3.2 and 5.4.2 already gave recommendations for future
work on the prediction of onset of delamination and on the modelling of the effects of delami-
nation, respectively, and therefore they will not be repeated here. However, there are possible
additions to the combination of the two parts and recommendations to the overall concept,
which will be described in this section.



79

One large addition to the current method would be to include transverse stresses from other
sources than only applied loads. Not only would this lead to better prediction of onset of
delamination, it may also cause the first delamination to start on a different plane than the
mid-plane of a laminate. This in turn would cause the need for a more detailed analysis
on the two main effects of delamination besides a reduction in bending stiffness: a change
in membrane stiffness and a reduced compression strength. The reason for this, is that
sublaminate buckling is a large contributor to these two effects, a type of buckling which
is more likely to occur on thinner sublaminates. In turn, sublaminate buckling may be a
accelerator of delamination growth, especially if crack has an opening mode I (transverse
tension).

This brings up the next recommendation for improvement of the current method: including a
difference between the calculation of delamination growth versus delamination onset. A first
version of this could be to implement a damage factor to reduce the interlaminar strength
of an intact element whose neighbour has delaminated. A detection for this can be done
by analysing the delamination free edge flag presented in Section 5.2.3. If not all node flags
belonging to an element are equal to zero, one of the neighbouring elements is either a crack
tip or a free edge. This would mean that a free edge will be treated as a crack tip, however,
it is known that free edges are prone locations of delamination onset.

Finally, the overall concept of modelling using an equivalent single layer model for composites
would benefit from distinguishing a membrane laminate stiffness from a bending laminate
stiffness. While in the stage of car development where the equivalent single layer method
is used relative large errors are expected, including three extra stiffnesses in the material
card may be worth the while to reduce those errors. Section 2.2.2 showed that differences
between bending and membrane stiffness could already be 68% for a quasi-isotropic layup.
Implementation of these bending stiffnesses could be done by including a ratio of bending
stiffness over membrane stiffness in the calculation of node moments.
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Appendix A

Obtaining Transverse Normal Stresses
in a One-Dimensional Linear Element

In addition to Section 4.1.3, this appendix presents an attempt to obtain the transverse normal
stresses through post-processing of the BLT element; for this a parabolic distribution of the
out-of-plane displacement component uz is needed. To simplify the problem, obtaining this
solution for a one-dimensional element is analysed. This is done by trying to find a non-trivial
solution for C11 in Equation (A.1), making sure the internal strain energy of that solution is
equal to that of the one-dimensional FSDT solution of Equation (A.2).

uzP (ξ) = C11
(
1− ξ2

)
+ −ξ + 1

2 uz1 + ξ + 1
2 uz2 (A.1)

uzL (ξ) = −ξ + 1
2 uz1 + ξ + 1

2 uz2 (A.2)

θy (ξ) = −ξ + 1
2 θy1 + ξ + 1

2 θy2 (A.3)

With ξ the isoparametric coordinate, ranging from -1 to 1, and uz1 and uz2 the out of plane
displacement at nodes 1 and 2, respectively. Furthermore, the subscripts L and P denote the
linear and parabolic interpolation for the out-of-plane displacement.

Equations (A.4) and (A.5) give the stress-strain relations for an orthotropic material and the
internal strain energy equation, respectively.



σxx
σyy
σzz
τyz
τxz
τxy


=



E11 E12 E13 0 0 E16
E12 E22 E23 0 0 E26
E13 E23 E33 0 0 E36
0 0 0 E44 E45 0
0 0 0 E45 E55 0
E16 E26 E36 0 0 E66





εxx
εyy
εzz
γyz
γxz
γxy


(A.4)
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U = 1
2

∫∫∫
V

σxxεxx + σyyεyy + σzzεzz + τxyγxy + τxzγxz + τyzγyzdV (A.5)

εxx = ux,x + zθy,x (2.2 revisited)

γxz = uz,x + θy (2.5 revisited)

εzz = uz,z (A.6)

Assuming unit depth in y and no dependence on y:

U = 1
2

∫∫
σxxεxx + σzzεzz + τxzγxzdxdz (A.7)

Substituting stresses from Equation (A.4)

U = 1
2

∫∫
E11ε

2
xx + E33ε

2
zz + 2E13εxxεzz + E55γ

2
xzdxdz (A.8)

Substituting strains from Equations (2.2), (2.5) and (A.6):

U = 1
2

∫∫
E11(ux,x + zθy,z)2 +E33u

2
z,z +2E13 (ux,x + zθy,z)uz,z +E55(uz,x + θy)2dxdz (A.9)

Of interest is the equivalence of the internal energy of the parabolic interpolation with respect
to the linear interpolation. Therefore, the terms which are equal for both energies are cancelled
out:

U = 1
2

∫∫
E55

(
u2
z,x + uz,xθy

)
dxdz (A.10)

Assume a coordinate system such that x = ξ, and hence all dependencies on z drop:

(uz,x)L = uz2 − uz1
2 (A.11)

(uz,x)P = uz2 − uz1
2 − 2C11ξ (A.12)

Substituting Equations (A.3), (A.11) and (A.12) leads to the two internal energies:

UL = E55
2

∫
dz

ξ=1∫
ξ=−1

(
uz2 − uz1

2

)2
+
(
uz2 − uz1

2

)(1− ξ
2 θy1 + ξ + 1

2 θy2

)
dξ (A.13)
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UP = E55
2

∫
dz

ξ=1∫
ξ=−1

(
uz2 − uz1

2 − 2C11ξ

)2
+
(
uz2 − uz1

2 − 2C11ξ

)(1− ξ
2 θy1 + ξ + 1

2 θy2

)
dξ

(A.14)

Working out integrals:

UL = E55
4

∫
dz [(uz1 − uz2) (uz1 − uz2 − θy1 − θy2)] (A.15)

UP = E55
4

∫
dz

[
(uz1 − uz2) (uz1 − uz2 − θy1 − θy2) + 16

3 C
2
11 + 4

3C11 (θy1 − θy2)
]

(A.16)

Now, equating UL to UP and solve for C11 leads to the trivial solution and:

C11 = −θy1 + θy2
4 (A.17)

The original goal of this method was to find a parabolic solution for uz, such that it can be used
to calculate the transverse normal stress, for that γxz,x should exist. Based on Equation (2.5),
it is given by Equation (A.18).

γxz,x = uz,xx + θy,x (A.18)

Continuing with the assumption of a coordinate system such that x = ξ and substituting
uzP and θy from Equations (A.1) and (A.3) and C11 from Equation (A.17) leads to Equa-
tion (A.19).

γxz,ξ = ∂2

∂ξ2

(−θy1 + θy2
4

(
1− ξ2

)
+ −ξ + 1

2 uz1 + ξ + 1
2 uz2

)
+ ∂

∂ξ

(−ξ + 1
2 θy1 + ξ + 1

2 θy2

)
(A.19)

Solving Equation (A.19) leads to γxz,ξ = 0. Hence, while a solution was found for a parabolic
distribution of the out-of-plane displacement, the effect was that the sought for differential is
equal to zero.
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Appendix B

Transverse Normal Stress
Implementation

This appendix provides the necessary equations in order to implement the post-processing
needed to calculate the transverse normal stresses. This is under the assumption that a valid,
parabolic distribution is available for the out-of-plane displacement uz, i.e. a solution to the
unsolved problem of Appendix A. The goal is to obtain ∆γxz,x, ∆γxz,y, ∆γyz,x and ∆γyz,y,
such that the part of Section 4.1.2 on the transverse normal stresses can be implemented as
well.

This will be done using spatial derivatives of the strain-displacement matrix: B,x and B,y. The
items of interest for the calculation of the mentioned derivatives are given in the shortened
notations in Equations (B.1) and (B.2).

∆γ,x = Bs,x ∆us

[
∆γxz,x
∆γyz,x

]
=
[
N1,xx 0 N1,x . . . N4,xx 0 N4,x N5,xx N6,xx
N1,xy −N1,x 0 . . . N4,xy −N4,x 0 N5,xy N6,xy

]



∆w1
∆θx1
∆θy1
...

∆w4
∆θx4
∆θy4
C5
C6


(B.1)
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∆γ,y = Bs,y ∆us

[
∆γxz,y
∆γyz,y

]
=
[
N1,xy 0 N1,y . . . N4,xy 0 N4,y N5,xy N6,xy
N1,yy −N1,y 0 . . . N4,yy −N4,y 0 N5,yy N6,yy

]



∆w1
∆θx1
∆θy1
...

∆w4
∆θx4
∆θy4
C5
C6


(B.2)

In which C5 and C6 are the constants of Equation (4.29), N1 toN4 are given by Equation (3.15)
and N5 and N6 are given by Equation (B.3)

N5 =
(
1− ξ2) ; N6 =

(
1− η2) (B.3)

The second derivatives of the shape functions require an approach presented by Reddy et
al. [102], shown in Equation (B.4).

 NI,xx

NI,yy

NI,xy

 = J−1
1


 NI,ξξ

NI,ηη

NI,ξη

− J2

[
NI,x

NI,y

] (B.4)

Subscript I denotes the shape function. Note that there are 6 shape functions for w. Fur-
thermore, J1 and J2 given by Equations (B.5) and (B.6), respectively.

J1 =

 (x,ξ)2 (y,ξ)2 2x,ξy,ξ
(x,η)2 (y,η)2 2x,ηy,η
x,ξx,η y,ξy,η x,ηy,ξ + x,ξy,η

 (B.5)

J2 =

 x,ξξ y,ξξ
x,ηη y,ηη
x,ξη y,ξη

 (B.6)

And the inverse of Equation (B.5) given by Equation (B.7).

J−1
1 = 1

(x,ηy,ξ − x,ξy,η)2

 (y,η)2 (y,ξ)2 −2y,ηy,ξ
(x,η)2 (x,ξ)2 −2x,ηx,ξ
−x,ηy,η −x,ξy,ξ x,ηy,ξ + x,ξy,η

 (B.7)

Hence, if there is a possibility to adapt the BLT element in such a way that the out-of-
plane displacement can be interpolated using parabolic shape functions, while making sure
the transverse shear strains do not become equal to zero as a result, the calculation of the
spatial derivatives of the transverse shear strains can be implemented in the user modules of
LS-Dyna by using the equations of this appendix.
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