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Abstract. Nine research teams organized a round-robin measurement campaign of the wake of 

two porous discs in a homogeneous and “low-turbulent’ flow. Mean streamwise velocity and 

turbulence intensity profiles at four diameters downstream of the discs were measured and 

compared through such metrics as the maximum of velocity deficit, the maximum of 

turbulence intensity, the wake width and the thrust coefficient. The dependence of these 

metrics on the inflow conditions (freestream turbulence intensity and Reynolds number based 

on the disc diameter) is discussed.   

1.  Introduction 

Following the outcomes of the experts workshop organized by ForWind-Uni Oldenburg in 2018 

March 22-23 on Wind Energy Science & Wind Tunnel Experiments, it has been agreed to qualify the 

smallest wind turbine models (rotor diameter lower than 0.5m) as Wake-Generating Turbine models 

(WGT). The limitations of small Reynolds numbers and geometrical simplifications result in the 

improper reproduction of the near flow (x/D < 3-4). Studies show that these small models are 

appropriate to model the far-wake properties [1, 2] and are therefore acceptable, when studying the 

wake interactions at a wind farm scale [3, 4]. Several concepts of WGT exist (porous discs with 

different levels of complexity, rotating wind turbines) and have been tested in different facilities. That 

brings about a variety of results in terms of wake expansion, velocity deficit evolution, turbulence 

production, etc. Therefore, nine research teams who attended the workshop decided to organize a 

round-robin measurement campaign to identify the key-elements that can explain these discrepancies. 

                                                      
*
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The aim of the present round-robin is to rationalize the description of the wake generated downstream 

of two specific porous disc models by performing similar wake measurements in nine different wind 

tunnels. The homogeneous incoming flow properties are carefully documented and the wake 

properties are compared in terms of mean velocity and turbulence intensity profiles at four rotor 

diameters downstream of the porous discs.  

The measurements conducted in these round-robin tests are presented herein. The comparison 

between the mean velocity profiles and the turbulence intensity profiles is discussed and discrepancies 

are interpreted through the analysis of the inflow condition properties (primarily Reynolds number and 

freestream turbulence intensity). 

2.  Experimental set-ups 

2.1.  Porous disc models 

The two selected models are based on the simplest wind turbine model, which is the actuator disc 

concept. Disc A is a porous disc made of metallic mesh with a uniform porosity of 57% and a disc 

diameter of 200mm [2] and Disc B is a porous disc made of plywood with a radially non-uniform 

porosity and a disc diameter of 120mm [3] (Fig. 1). Both discs are fixed to a rod of 10mm of diameter, 

reproducing the wind turbine tower. The top of the rod is fixed to the center of the disc. 

The spatial axes (𝑥, 𝑦, 𝑧) are orientated so that x is the streamwise component, y points in the 

lateral direction and z is the vertical component. The reference framework is centred on the discs 

center. 

 

 
 

Figure 1: Geometric properties of the porous discs tested in the round-robin. Disc A: Uniform porous 

disc (left, [2]) and Disc B: non-uniform porous disc (right, [3]) 

 

Velocity measurements within the wake of both models have been performed in nine facilities 

operated by Durham University (DURHAM), Centrale Nantes (ECN), LEGI-CNRS (LEGI), Middle-

East Technical University (METU), Norwegian University of Science & Technology (NTNU), Delft 

University of Technology (TUDELFT), Politecnico di Milano (POLIMI), Portland State University 

(PSU) and ForWind-University of Oldenburg (UOLD). 
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2.2.  DURHAM facility 

The Durham University 2m2 Wind Tunnel is a ¾ open jet Eiffel-type wind tunnel. The contraction is 

8:1 including bellmouth (4:1 from screens), and the air jet speed in the test section can vary from 0 to 

30 m/s. Further details are available in [5, 6]. A particular capability of the tunnel (albeit not used 

here) is an active system for the generation of transient flows [7]. Velocity measurements were 

performed with a five-hole pressure probe, built and calibrated in-house and measurement 

repeatability was confirmed to be within 1% for the results presented here. 

2.3.  ECN facility 

Experiments were conducted in the boundary-layer wind tunnel of the Laboratoire de recherche en 

Hydrodynamique, Energétique et Environnement Atmosphérique of Ecole Centrale de Nantes 

(LHEEA, Nantes, France), which has test-section dimensions of 24m × 2m × 2m. The turbulence 

intensity is 1.2%. The discs were fixed to a rod which was long enough to ensure that the discs were 

located in an area where the flow is homogeneous. Blockage ratios created by the discs within the test 

section are 0.78% and 0.3% for Disc A and Disc B, respectively. Velocity measurements were 

performed with a Cobra probe; the sampling frequency was 1.25 kHz and the sampling time 600s. 

 

Team 
Type of 

instrume
ntation 

Meas. 
error 
[m/s] 

dynamic 
response 

[kHz] 

sampling 
frequency 

[kHz] 

sampling 
time [s] 

Referenc
e wind 
speed 
[m/s] 

Reynolds 
number 

[103] 

Freestream 
turbulence 
intensity 

[%] 

Integral 
length 
scale 
[mm] 

Block
age 

ratio 
[%] 

rod 
length 
[mm] 

Disc 

DURHAM 

Durham 
Universit
y 5-Hole 

Probe 

0.25 
max 

0.25 4 65 25 

333 

1.5 400 

1.6 

300 

A 

200 0.6 B 

ECN 
Cobra 
probe 

0.3 0.15 1.25 600 4.5 / 6.7 
60 / 89 

1.2 45.7 
0.78 

1000 
A 

36 / 54 0.3 B 

LEGI 
Cobra 
probe 

0.3 0.5 1.25 180 7.0 / 12.0 
93 / 160 

<0,5 - 
5.6 

375 
A 

54 / 95 2 B 

METU 

Single 
hot wire 
anemom

etry 

0.23 0.4 10 5 

9.0 / 16.9 100 0.4 / 0.6 2.7/2.1  3.15 

500 

A 

13.9 
100 / 
200 

0.6 2.8 1.15 B 

NTNU 

3 single 
hot 

wires 
anemom

etry 

0.1 10 30 300 8 

100 

0.3-0.6 - 

2.6 
900 

(rod + 
tower) 

A 

62 0.9 B 

POLIMI 
Cobra 
probe 

0.3 2 2 30 
10 / 20 

133 / 
266 2 - 

8 321 A 

10 / 20 80 / 160 3 292 B 

PSU 
2D-2C 

PIV 
0.2 - 0.005 

600 
(3000 

snapshots) 
8.3 

184 
0.4 - 

3.3 600 A 

110 1.2 600 B 

TUDELFT 

Robotic 
PIV, 

tomogra
phic PIV  

0.02 - 0.5 
10 

(5000 
snapshots) 

5 40 2 - 1.92 500 B 

UOLD 

Single 
hot wire 
anemom

etry 

max 
0.13  

10 20 20 

4.1/6.5/7
.5 

55 / 89 /  
101 

<0.4 - 
0.35 

530 
A 

6.5/7.4/1
2.5 

53 / 61 / 
101 

0.12 B 

Table 1: Experimental conditions of the round-robin 

2.4.  LEGI facility 

Experiments at LEGI were performed in a low-turbulence wind tunnel with a measurement section of 

4m long and a square cross-section of 0.75x0.75m². For the two freestream velocities considered, 

background turbulence (measured via hot-wire anemometry and an empty test section) remains always 

below 0.5%. The models were placed at 0.5m from the section’s inlet and very close to its centre. 
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Blockage ratios created by the discs within the test section are 5.6% and 2% for Disc A and Disc B, 

respectively. Horizontal and vertical traverses within the wake are conducted using a Cobra probe and 

data are acquired for 180s and with a sampling frequency of 1.25 kHz at each traverse point. 

2.5.  METU facility 

METU experiments are conducted at an open-return suction type wind tunnel that has a test section of 

1m×1m cross-section. The average inlet turbulence intensity is about 0.5%. The discs are placed at the 

centre of the wind tunnel, where the flow is most homogeneous. Blockage ratios created by the discs 

within the test section are 3.15% and 1.15% for Disc A and Disc B, respectively. Horizontal and 

vertical traverses within the wake are conducted using a single sensor CTA system and data are 

acquired for 5 s and with a sampling frequency of 10 kHz at each traverse point. 

2.6.  NTNU facility 

The recirculating wind tunnel at NTNU has a test-section that measures 2.7 m x 1.8 m x 12 m (width x 

height x length). The discs were placed in the centre of the test-section 1.6 m downstream of the inlet. 

The discs were mounted to a 10 mm pole, which transitioned to a thicker 35 mm pole at a distance of 

200 mm from the centre of the disc. The turbulence intensity varied from 0.3% to 0.6% (peak-to-peak) 

across the test-section. Three single-wire hot-wire probes were driven simultaneously by a Dantec 

StreamLine Pro constant temperature anemometer. Signals were acquired at 30 kHz for 300 s with an 

analogue filter at 10 kHz. 

2.7.  TUDELFT facility 

Wind tunnel measurements using robotic volumetric PIV are conducted in the W-Tunnel of the TU 

Delft Aerodynamic Laboratories. The W-tunnel is an open-jet open-return wind tunnel with a square 

0.6m x 0.6m exit. The robotic PIV system consists of three major parts: the coaxial volumetric 

velocimeter (CVV), comprised of a compact arrangement of four CMOS cameras (10 bits, 800×600 

pixels) at low tomographic aperture and an optical fibre delivering the light emitted by a Nd:YLF 

Quantronix Darwin Duo Laser (21 mJ pulse energy @ 1 kHz, 527 nm wavelength), a robotic arm 

(Universal Robots UR5) that allows the robotic manipulation of the CVV system with six degrees of 

freedom, and the helium-filled soap bubbles (HFSB) seeding generator, which delivers sub-millimetre 

neutrally buoyant tracer particles at a nominal rate of 6×10
6
 tracers per second.  

2.8.  POLIMI facility 

The POLIMI wind tunnel is a closed-circuit facility, with a maximum wind speed of 55m/s and test 

section size 1m x 1.5m (width x height). The freestream turbulence intensity is 2%. Blockage ratios 

created by the discs within the test section are 8% and 3% for Disc A and Disc B, respectively. 

Velocity profiles are measured using a 2D traversing system placed 4D downstream and 2 cobra 

probes are installed at 100mm distance for the measurement of the wake profile. 

2.9.  PSU facility 

The test section of the close-circuit wind tunnel at Portland State University has dimensions of 5m 

(length), 1.2m (width), and 0.8m (height). The contraction ratio is 9:1. The freestream wind speed may 

be adjusted in a reliable working range of 2–40 m/s. The freestream turbulence intensity is 0.4%. 

Particle image velocimetry (PIV) was used to measure the instantaneous velocity fields. A Nd:Yag 

(532 nm, 1200 mJ, 4 ns duration) double-pulsed laser sheet was generated. The flow was periodically 

seeded with vaporized di-ethylhexyl-sebacate and the concentration of the seeding was kept at a 

constant level to ensure consistency of particle imaging. A camera (4MP ImagerProX) was used to 

collect flow snapshots. The PIV measurement window was approximately 0.2m x 0.2m in the 

streamwise and spanwise directions. Velocity vectors were calculated using a multi-pass FFT based 

algorithm with two passes each at 64 and 32 pixel interrogation windows. 
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2.10.  UOLD facility 

The experiments at ForWind, University of Oldenburg, have been carried out in the 30 m long closed 

test section of Oldenburg's Large Wind Tunnel (OLWiT), that has an outlet of 3 m x 3 m [8]. The 

freestream turbulence intensity is lower than 0.4%. Blockage ratios created by the discs within the test 

section are 1.3% and 0.5% for Disc A and Disc B, respectively. Data was collected using a Dantec 

StreamLine with 1D hot-wire anemometry, and the sensor length was 1.25 mm. A hardware low-pass 

filter with a cut-off frequency of 10 kHz was used, and the sampling frequency was 20 kHz. 4.10
5
 data 

points were collected at each position. 

2.11.  Experimental conditions 

Table 1 summarizes the experimental conditions in each facility. The experiments were performed in a 

homogeneous freestream flow, outside of any wall effects and with a freestream turbulence intensity 

as low as possible, depending on the facility constraints. The flow homogeneity was checked by 

measuring the freestream velocity in the empty test section along a crosswise plane larger than the disc 

area. The velocity field without the presence of discs can be used to correct any residual 

inhomogeneity effects in the non-dimensioning of the velocity profiles with the discs. The freestream 

turbulence intensity across all facilities varies between 0.3% and 2%.  

The Reynolds number based on the disc diameter ranges from 36 000 to 333 000, covering one 

decade. 

The turbulent integral length scale is given when possible. It is worthwhile to note that the integral 

length scale measured in DURHAM facility is particularly large and is associated with low-frequency 

motions that exist in their 3/4 open-jet wind tunnel. 

It was recommended to keep the blockage ratio based on the ratio between the disc diameter and 

the test section below 5%. Nonetheless, this recommendation could not be achieved in all facilities due 

to geometrical constraints.  

Except TUDELFT and PSU who performed PIV measurements, all the other teams chose 

pointwise measurements (pressure or hot wire probes). In all set-ups, the measurement error is 

assessed to be lower than 0.3m/s.  

3.  Results 

A direct data comparison across all facilities is performed by plotting the dimensionless mean 

streamwise velocity 𝑈 𝑈𝑒𝑥𝑡⁄  (Figure 2a for disc A and 3a for disc B) and turbulence intensity 𝐼𝑢 

(Figure 2b for disc A and 3b for disc B) profiles at x/D = 4, along the crosswise direction 

perpendicular to the rod. The dimensionless velocity 𝑈 𝑈𝑒𝑥𝑡⁄  is obtained by dividing the local mean 

streamwise velocity by a reference velocity measured at a location outside of wake effects. The 

turbulence intensity 𝐼𝑢 = 𝜎𝑢 𝑈⁄  is the ratio between the standard deviation and the mean value of the 

local velocity.  

The mean velocity profiles measured downstream of disc A present an area of constant velocity 

deficit. This is due to the uniformity of the disc porosity. The turbulence intensity profiles present two 

peaks located at wake borders, where the velocity gradient, and so the turbulence production by shear, 

is at its maximum. Both distributions show that, in these low-turbulent freestream flows, the wake is 

still characteristic of the near-wake at 4D downstream of the disc A.  

The presence of the rod generates a 3D flow disturbance characterised by an overall downwash [9], 

than can be different depending on the rod length and on the fixation system. Therefore, the distance 

between the wall and the disc centre is variable (from 1.5D to 8.3D). Typical crosswise time-average 

velocity fields are presented in Fig. 4. The vertical downwash due to the rod is clearly visible for disc 

A, as well as a slight horizontal drift due to a slight shear detected in the NTNU set-up (Fig. 4a). The 

vertical downwash is less intense for disc B, where the axial induction factor is smaller (Fig. 4b). 

Consequently, the velocity profiles measured at (z/D = 0, x/D = 4) are not systematically crossing the 

wakes at the same location. This feature can also explain the scatter in results and particularly the fact 

that the rod’s signature is not always visible in the wake profiles. 
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The mean velocity profiles measured downstream of disc B present a Gaussian-shape velocity 

deficit, due to the radially non-uniform porosity of the disc. The turbulence intensity profiles present 

two maxima, that are less pronounced than for disc A, but illustrate that the wake cannot be considered 

as a fully far-wake, yet. 

 

 

Figure 2: Time-average velocity (a) and turbulence intensity (b) profiles at x/D=4 downstream of the 

disc A (legends indicate the origin of the data and the Reynolds number based on the disc diameter). 

 

On this first level of comparison, it can be concluded that the obtained results are consistent with 

each other, even if some slight discrepancies are visible (except for DURHAM results where 

significant differences with others are observed).  

In order to compare the results in more detail, reduced metrics were selected and compared: the 

maximum of dimensionless velocity deficit 𝑉𝐷 𝑈𝑒𝑥𝑡⁄ = (𝑈𝑒𝑥𝑡 − 𝑚𝑖𝑛(𝑈(𝑦))) 𝑈𝑒𝑥𝑡⁄ , the maximum of 

streamwise turbulence intensity 𝐼𝑢−𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐼𝑢(𝑦))  the dimensionless wake width ∆𝑦 𝐷⁄ , where 

∆𝑦 is the distance between the two crosswise locations where 𝑉𝐷 = 0.95, and the thrust coefficient CT 

obtained by applying the momentum theory through integration of the velocity deficit within the wake 

and up to 𝑉𝐷 = 0.95. 
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Figure 3: Time-average velocity (a) and turbulence intensity (b) profiles at x/D=4 downstream of the 

disc B (legends indicate the origin of the data and the Reynolds number based on the disc diameter). 

 

The dependence of these metrics on the freestream turbulence intensity and on the Reynolds 

number is presented in Figure 5. Clear trends do not appear, but some statements can be drawn. 

The dimensionless velocity deficits collapse sufficiently well around 0.6 for disc A and 0.4 for disc 

B (Fig. 5a). The dependence of this metric on the freestream turbulence intensity cannot be quantified 

since the scatter is too significant. Reynolds number independence is visible on Fig. 5b. When 

measurements were performed at several inflow conditions in one facility, no Reynolds effect is 

detected on the velocity deficit. 

The maximum turbulence intensity in the wake varies between 12% and 18% (Fig. 6a). No clear 

trend can be seen, as the data scatters significantly. Note that, for the majority of results, an opposite 

distribution between the velocity deficit and the maximum of turbulence intensity is visible. That can 

be explained by the fact that the larger velocity deficit results in a larger velocity gradient and thus 

higher turbulence production in wake borders.  

A slight dependence (negative trend) of the maximum turbulence intensity on the Reynolds number 

is visible when measurements are performed at several inflow conditions in one facility (Fig. 6b). 

The wake width for disc A does not show any dependence on the freestream conditions or the 

associated Reynolds number (Fig. 6c and 6d). Except for POLIMI, the wake width is constant at 
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1.28D. This statement is not applicable to disc B, where values vary between 1.05D and 1.2D. The 

fact that the velocity deficit of disc B is less pronounced and that the wake borders are less sharp 

might inhibit the precise determination of the wake borders. When measurements were performed at 

several inflow conditions in one facility, no Reynolds effect is detected on the wake width. 

Following the same trend, the thrust coefficients collapse well for disc A around 0.65 (except for 

POLIMI) but present more scatter for disc B, with values between 0.33 and 0.51. 

DURHAM experiments present quite peculiar results. In particular, the velocity deficit and, by 

extension, the turbulence intensity are much lower than other results. The only differentiating element 

of the DURHAM set-up is the particularly large turbulence integral length scale (400mm) in the 

freestream flow that might generate a wake meandering and explain a mitigation of the mean values.  

 

 
 

Figure 4: Examples of time-average velocity fields at x/D=4 downstream of the disc a) A (NTNU) 

and b) B (TU DELFT) 

 

  
Figure 5: Maximum of velocity deficit (a and b) versus the freestream turbulence intensity (left) and 

versus Reynolds number based on the disc diameter (right) for disc A (filled symbols) and disc B 

(empty symbols). ■ Durham, ▲ ECN, ▼ LEGI, ► METU, ♦ NTNU,  POLIMI, ◄ PSU,  

 ◄ TUDELFT, ● UOLD. 
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Figure 6: Maximum of turbulence intensity (a and b), wake width (c and d) and thrust coefficient (e 

and f) versus the freestream turbulence intensity (left) and versus Reynolds number based on the disc 

diameter (right) for disc A (filled symbols) and disc B (empty symbols). ■ Durham, ▲ ECN, ▼ LEGI, 

► METU, ♦ NTNU,  POLIMI, ◄ PSU, ◄ TUDELFT, ● UOLD. 
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4.  Conclusion 

Nine research teams organized a round-robin measurement campaign of the wake of two porous discs 

in a “low-turbulent’ homogeneous flow. Mean streamwise velocity and turbulence intensity profiles at 

four diameters downstream of the discs were measured with classical flow measurement systems (PIV, 

hot-wire anemometry and multi-hole unsteady pressure probes) and compared through metrics such as 

the maximum velocity deficit, the maximum turbulence intensity, the wake width and the thrust 

coefficient. The dependence of these metrics on the inflow conditions (freestream turbulence intensity 

and Reynolds number based on the disc diameter) is also discussed. 

In general, results collapse reasonably well across facilities. It is noticed that, even if all 

participants used the same rod to mimic the wind turbine tower, the discrepancy in rod fixation and 

distance between the wall and disc center can generate different wake downwash that might explain 

the slight scatter in the mean velocity and turbulence intensity profiles. 

No clear trend can be noticed regarding the dependence on the freestream turbulence intensity. The 

Reynolds number independence is obvious when measurements were performed at several inflow 

conditions in one facility. 

These preliminary results open the need for additional tests with more realistic - in terms of wind 

energy applications - freestream turbulence intensities to be able to identify some clear trends into the 

data. The effect of integral length scale on the turbine wake structure needs also to be further 

investigated. 
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