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Abstract

Picnic is an online supermarket that delivers groceries, packed in totes. We have
tried to create a bin-packing algorithm that assigns items from a customer-order
to totes such that the amount of totes is minimized. Analyzing the bin-packing
algorithm that was used before this thesis had been written, taught us that %
of the customer-orders was packed non optimal. In this thesis four algorithms are
applied to Picnic data. The order in which the algorithms assign items to a tote has
major consequences for the solutions. Eight different ways to order the items are
combined with each algorithm, resulting in 32 different tote-calculations. Out of
those 32 tote-calculations, the Best Fit Algorithm with items ordered in decreas-
ing normalized values generates the best results. Remarkably, ordering items ran-
domly also gives good solutions. This brought us to introducing a new method,
where each customer-order is calculated at most eight times, each time shuffling
the items before rerunning the algorithm and remembering the better solution.
This heuristic is optimal for 99.97% of the customer-orders. An analysis on the
financial impact showed us that implementing the new heuristic can save Picnic
more than in 2019.

iii





Preface

Before you lies the thesis "Picnic’s tote-calculation", that came into being in col-
laboration with the online supermarket Picnic. It has been written to complete
the master Applied Mathematics at TU Delft. This research aims to minimize the
amount of bins used to ship Picnic’s customer-orders. I constructed the algorithm
that assigns the groceries to the bins. I loved writing my thesis about a problem
that was on one hand mathematically challenging, but on the other hand practical
and easy to explain. Also, the direct impact that I could achieve motivated me to
think broader than the original subject.

I could not have completed this thesis without the help of many others. I would
like to thank my daily supervisor, Fernando Mario de Oliveira Filho, for his feed-
back and critical questions. Also I would like to thank my committee, Karen Aardal
and Martin van Gijzen, for their time and feedback. Special thanks to my Picnic
supervisor Frank Gorte from whom I have learned so much.

Furthermore I would like to thank my colleagues at Picnic for their help and
for all the fun I had in this period. Especially Jenneke Evers with whom I discussed
my progress during a biweekly catch up and Julia van den Belt who reviewed my
text many times. Besides the TU and Picnic I would like to thank my friends and
family. Furthermore, I would like to thank Hylke Waalewijn, whose broad interest I
admire. Even though my field of expertise differs so much from his, he was able to
give me accurate advise. My parents deserve a particular note of thanks: their wise
counsel, sympathetic ear and cute but sometimes wrong mathematical advice kept
me happy and motivated.

I hope you will enjoy reading as much as I have enjoyed writing.

Margot van Aken
Amsterdam, February 18, 2019

v





Contents

Abstract iii
Preface v
1 Introduction 1

1.1 Picnic’s logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Bin-packing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The bin-packing problem and its complexity 7
2.1 Problem complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Complexity proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Bin-packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Brute-force enumeration 13
3.1 Bin-oriented search tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Item-oriented search tree . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Bin-oriented search tree . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Dominance criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Finding non strongly dominated bin assignments . . . . . . . . . . . . 17

3.3.1 Finding maximal bin assignments . . . . . . . . . . . . . . . . . . 17
3.3.2 Eliminate dominated bin assignments . . . . . . . . . . . . . . . 17

3.4 Bin completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Picnic’s current algorithm and an integer programming formulation 21
4.1 Picking process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Current bin-packing algorithm . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Determine optimality using Gurobi . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Integer Programming formulation . . . . . . . . . . . . . . . . . . 26
4.3.2 Gurobi output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Better heuristics 31
5.1 Four bin-packing heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Next Fit Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2 First Fit Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.3 Best Fit Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.4 Worst Fit Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.5 Comparison of the algorithms . . . . . . . . . . . . . . . . . . . . 37

5.2 Ordering items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



viii Contents

6 Final heuristic, results and financial impact 41
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Final heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Estimation of the financial impact . . . . . . . . . . . . . . . . . . . . . . 43

7 Conclusions and Recommendations for further research 47
7.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1. Adjust the fill-rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2. Item to tote optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3. Tote to pick cart optimization . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography 51
A Appendix 53

A.1 The bin-packing problem and its complexity - extended version. . . . 53
A.1.1 Problem complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.1.2 Turing machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.1.3 Complexity proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.2 Project for data accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



1
Introduction

Online shopping has become a fast-growing market in the Netherlands. “In 2018,
the average online market share of non-daily consumer goods was 15.1%. In the
fashion industry it was even 28%. Remarkably, the market share of online grocery
shopping stays far behind: in 2018 it was only 2%” [1]. However, the revenue in the
supermarket sector in the same year wase39 billion [2]. This is where the founders
of Picnic saw an opportunity. Their vision is that without expensive physical stores
and with an optimized logistics system, high quality groceries can be delivered for
free and at a low price. In just a few years Picnic has become a serious challenger
in the online supermarket sector in the Netherlands.

This chapter will start with further introducing the online supermarket Picnic,
focused on the logistical aspects. Then the subject of this thesis will be given, fol-
lowed by a short introduction of the bin-packing problem. Eventually a brief out-
line of all chapters in this thesis is given.

1.1. Picnic’s logistics
Without physical shops, Picnic has a different logistics system than traditional su-
permarkets, see Figure 1.1. Customers place orders via an application on their
mobile phone. The producers deliver goods at the Fulfillment Centers (FCs). At
these FCs the customer-orders are packed into two types of totes (crates). Ambi-
ent products are packed in plastic red totes, and chilled and frozen products in
insulated black totes. These totes are delivered by Picnic employees in electrical
vehicles to the customers’ homes. Since the grocery market is a low-margin indus-
try, it requires a relentless focus on cost. The key to become profitable is having a
highly efficient supply chain. Picnic’s supply chain has three main aspects:

1. Accurate forecasting. Because the exact customer-orders for the next day
are known, purchasing products can be done very precisely. This results in
low waste.

1



2 1. Introduction

Figure 1.1: Supply chain of Picnic - an online supermarket without physical shops.

2. Efficient operations in the Fulfillment Center. The flow of goods in the FCs
is illustrated in Figure 1.2. The goods are delivered by producers at the FC,
where they are put in logically ordered aisles with shelves. The customer-
orders are packed into appropriate totes by Picnic employees, and then put
in dispatch frames. In the back of Figure 1.3 the aisles with shelves where
the customer-orders are picked are shown. In the front we see the dispatch
frames with full totes that are ready to be delivered. These dispatch frames
are designed to perfectly fit into the electrical vehicles, see Figure 1.4.

Figure 1.2: Flow of goods through the Fulfillment Center.

3. Efficient distribution system. When the groceries are packed, they are ready
to be delivered at the customers’ homes. Picnic’s electrical vehicles are used
to deliver the groceries at a fixed time each day of the week. An example of
a schedule for a customer could be Monday 15:30 - 16:30, Tuesday 21:00 -
22:00, Wednesday 18:15 - 19:15, and so on. The time slots give the oppor-
tunity to cluster deliveries and thereby minimize the distribution costs. The
Picnic vehicle routing method was aimed to be optimized in a thesis written
by a colleague mathematics graduate intern in 2016, Joris van Tatenhove [4].
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Figure 1.3: Picnic’s Fulfillment Center.

Figure 1.4: Electrical Picnic vehicle.

1.2. Thesis subject
In this thesis, it is tried to optimize a part of the second aspect of the supply chain:
packing customer-orders in the FCs. The problem is as follows: a customer orders
a set of products. Each product has a weight and a volume. The totes in the FCs can
be filled up to a certain volume and a weight. The goal is to minimize the number
of totes used to ship the customer-order. This minimization-problem is known as
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the bin-packing problem and further introduced in the next section. Optimizing
the packing-process can be divided into three subproblems:

1. Fill-rate optimization. Currently a fill-rate constraint is implemented in the
bin-packing algorithm. A tote that is filled up to 85% of its actual volume
capacity is considered full. This fill-rate is meant to prevent overfull totes
that can lead to delay in the logistics process. On the other hand, delivering
totes with items that could have been packed in less totes is obviously a waste
of money. An optimal balance needs to be found between too full and too
empty totes. An analysis on the financial impact of increasing the fill-rate
is described in the last chapter, but it should still be analyzed which fill-rate
is optimal. The question is if the artificial fill-rate of 85% is optimal. The
theoretical output should be compared to the practical output of the bin-
packing algorithm.

2. Data accuracy. Accurate information about the volume and weight of each
product is necessary to calculate how many totes are needed to ship a customer-
order. Until recently, the data Picnic used was based on supplier data. Due to
a lack of incentive to provide accurate data, the data was often not reliable.
Improving data accuracy will reduce the margin of error and therefore im-
prove the correctness of the bin-packing algorithm. The fill-rate explained
above, can be increased by increasing the data accuracy. This subproblem
was tackled in the form of a short internship project. There is a chapter about
this project in Appendix A.2.

3. Bin-packing algorithm. A bin-packing algorithm runs to calculate which
item will be put in which tote. The amount of totes used to ship a customer-
order should be minimized, because of costs that linearly scale with the amount
of totes used. Before this thesis, there was no data available on the perfor-
mance of the current algorithm. The main focus of this thesis is Picnic’s bin-
packing algorithm. The current algorithm is analyzed and a heuristic is cre-
ated that consistently finds good solutions.

1.3. Bin-packing problem
The bin-packing problem is a well-studied problem in mathematics and computer
science with many applications. In each application a set of items is given and the
question is what the minimum number of bins is that we need, to fit in all the
items. Each application can have additional constraints. You can think of packing
goods in trucks in a stable way: heavy products on the bottom, light products on
top. Another example is the commercial break between a TV show. A collection
of ads of different lengths is packed into the (various) sizes of the break-length.
This thesis is about a classical variant of the 2D bin-packing problem, provided in
Definition 1.
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Definition 1 (2D bin-packing problem). Given a volume capacity V ≥ 0, a weight
capacity W ≥ 0, and n items with volumes v1, ..., vn and weights w1, ..., wn . The bin-
packing problem is to find the minimum M with an M-partition B1∪·· ·∪BM of the
set {1, ...,n} such that

∑
i∈Bk

vi ≤V and
∑

i∈Bk
wi ≤W for all k = 1, ..., M.

An optimal solution can be found by simply applying brute-force: try all possibil-
ities and pick the best option. The amount of possibilities of placing n items into
bins is equal to the amount of all partitions of n items. A short illustration fol-
lows. Assume we have a set of items: {a,b,c}. Place a in bin 1: {(a)}. There are 2
possibilities to place b: place it in the same bin or in a new bin. For c there are 5
options: {(a,b,c)}, {(a,b)(c)}, {(a,c)(b)}, {(a), (b,c)} and {(a), (b), (c)}. The number of
all partitions is called the Bell number, shown in Table 1.1.

n Bell number
1 1 1
1 2 2 2
2 3 5 3 5
5 7 10 15 4 15

15 20 27 37 52 5 52
52 67 87 114 151 203 6 203

Table 1.1: The Bell number up to n = 6.

The triangle on the left can be obtained by first putting a 1 at the top. Then the first
(leftmost) number of a new row is the rightmost number of the previous row. Other
numbers in the triangle are the sum of the number to its left and the number above
the number to its left. With only 15 items there are over a billion partitions. In this
thesis, we are looking for a smart way to pack customer-orders in as few totes as
possible in acceptable little time.

1.4. Report outline
In this section, the subjects of each chapter are shortly described, together with
the relevance to the thesis. In Figure 1.5 the thesis structure is given.

Chapter 2 is devoted to complexity theory. Basic concepts of complexity theory
are given, leading to Cook’s theorem that states that the SATISFIABILITY problem is
NP-complete. Finally it is proven that the bin-packing problem in the form of a
decision problem is NP-complete. This proof gives us the clear goal of finding an
approximation algorithm in this thesis that computes a solution with an accept-
able small error within reasonable time.

Chapter 3 is about a bin-packing problem solving method, called Bin Comple-
tion. The idea is that a search tree is made with clustered items as nodes. These
nodes can be pruned under certain circumstances. The theory in this chapter will
give us an example of how to find an optimal solution to a bin-packing problem.
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Figure 1.5: Thesis structure.

Furthermore it will give us intuitive insights in why ordering items before execut-
ing an approximation bin-packing algorithm can change the output, what we will
need later on in the thesis.

The fourth chapter explains the current tote-calculation. First the picking pro-
cess in the FC is further explained, then the current algorithm is mathematically
described, underpinned by an example. Of course we are interested in knowing
how good the solutions of the current algorithm are. The solver Gurobi is used to
find optimal solutions for a set of customer-orders. In order to
be able to write a Python script that solves bin-packing instances using Gurobi, an
Integer Programming formulation is required. This IP formulation is given in the
Subsection 4.3.1. The Gurobi results serve two purposes. Firstly, the current tote-
calculation is evaluated and analyzed. Secondly, the results form our main goal of
this thesis: write an algorithm that finds solutions that are (almost) as good as the
Gurobi solutions.

In the fifth chapter, four different algorithms are given, explained and com-
pared. Since the order of the items influences the output of an algorithm, eight
different item-orders are given. These item-orders and algorithms are combined,
resulting in 32 different tote-calculations.

In chapter 6, the results are discussed of applying the tote-calculations on Pic-
nic data. Remarkably, the solutions of the algorithms when ordering the items
randomly, is a very accurate approximation of the optimal solution. This insight
caused the introduction of a new method where the same algorithm runs several
times. Before rerunning the algorithm, the order of the items is shuffled. This
method turns out to give an optimal output for of the customer-orders.
The chapter ends with an analysis on the financial impact of implementing this
method. More than euros can be saved in 2019 by implementing the
new heuristic.

The last chapter gives conclusions and recommendations. Various interesting
topics for further research occurred during writing the thesis. The recommenda-
tions vary from adjusting the artificial volume capacity of a tote to redistributing
items between the totes of a customer-order.



2
The bin-packing problem and its

complexity

This chapter is devoted to complexity theory. Some basic theory of the complexity
classes is given in the first section. In the second section the foundation of all NP-
complete proofs is given: Cook’s Theorem. With this theorem we will prove the
complexity of bin-packing.

It is important to know that bin-packing is NP-complete, because then we know
that there does not exist an algorithm that solves it in polynomial time, unless
P =NP. For this reason we aim to write an algorithm that finds solutions with an
acceptable small error within reasonable time.

In Appendix A.1 an extended version of this chapter is written. First more basic
complexity theory is given there, then it is explained how a Turing machine works.
We need this knowledge for the whole proof of Cook’s Theorem, which is also given
in the appendix. In this chapter, only information is given that is necessary for the
proof that bin-packing is NP-complete.

2.1. Problem complexity
Before introducing computational complexity, it should be clear what a decision
problem is. A decision problem is a problem that, given an input, asks a yes-no
question. Some examples:

1. Input: x ∈Z. Question: "Is x a prime number?"

2. Input: a 9×9 matrix, partly filled in with integers 1,...,9. Question: "Is there a
Sudoku solution for the given matrix?"

3. Input: a set of n items with weights w1, ..., wn and m bins with weight capac-
ity C . Question: "Can we pack items 1, ...,n into m bins?"

If the answer is yes, the instance is called a yes-instance and a solution is called a
yes-output. Note that the last example is a one-dimensional bin-packing problem,

7
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written as a decision problem. There are two questions that indicate the complex-
ity of a decision problem:

1. Can we solve the decision problem in polynomial time?

2. Given a yes-output, can we certify it in polynomial time?

If a decision problem can be solved in polynomial time, the decision problem is
in the complexity class P. If a yes-output of a decision problem can be certified in
polynomial time, the decision problem is in the complexity class NP. Obviously,
P ⊆ NP.

Definition 2 (Polynomial reduction). Given two problems X and Y . We say that X
polynomially reduces to Y if a polynomial algorithm exists such that the input of
the algorithm is a yes-instance of X if and only if the output is a yes-instance of Y .

Later on in this chapter we will prove that the bin-packing problem, formulated as
the decision problem in the third example, is NP-complete.

Definition 3 (NP-complete). A decision problem D ∈ NP is called NP-complete if
all other problems in NP polynomially reduce to D.

It might now be clear that, to prove that bin-packing is NP-complete, we need to
show that bin-packing is in NP and that all other problems in NP can be polyno-
mially reduced to bin-packing. It is generally easy to see if a problem is in NP. For
the second part of the proof we need Cook’s theorem, stated in the next section.

2.2. Complexity proof
The foundation of all NP-complete proofs lays in a theorem that states that the
SATISFIABILITY-problem is NP-complete [10]. In this section, the SATISFIABILITY-
problem will be explained. Then another decision problem, the 3-Dimensional
Matching, will be described. Through this problem we will eventually be able to
prove the complexity of bin-packing.

Satisfiability
The question that needs to be answered for the SATISFIABILITY-problem is, given
a collection of clauses over a set of literals, is the formula satisfiable, i.e., is there
a truth assignment such that the Boolean function corresponding to the family of
clauses is true? Let us take an example that explains the SATISFIABILITY-problem.
Assume we have X = {x1, x2, x3} and let xi be the negation of xi for i = 1,2,3.
Then the set of literals is L = {x1, x2, x3, x1, x2, x3}. If we now take a collection of
clauses {{x1, x3}, {x1, x2}, {x1, x2, x3}}, then this corresponds to the Boolean function
(x1 ∧x3)∨ (x1 ∧x2)∨ (x1 ∧x2 ∧x3). This collection of clauses is satisfiable, because
for example the assignment (x1, x2, x3) = (tr ue, f al se, tr ue) satisfies the problem.
An easy example of a no-instance would be the collection of clauses {{x1}, {x1}}.
Since x1 is the negation of x1, no assignment can be found such that the Boolean
function (x1)∨ (x1) is true.
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Theorem 1 (Cook, 1971). Satisfiability is NP-complete.

The complete proof of Cook’s theorem is given in Appendix A.1.3. By Cook’s the-
orem, it follows from Definition 3 that all problems in NP polynomially reduce to
SATISFIABILITY. Now consider an arbitrary problem D ∈ NP. If we can find a poly-
nomial reduction from SATISFIABILITY to D , then D must be NP-complete. This is
the method we will use in this chapter to prove that bin-packing is NP-complete.
First another decision problem will be described.

3DM.
The question that needs to be answered for the 3DM problem is, given 3 disjoint
sets and a set of edges that match one element from each set to each other, can
we find a subset of these edges such that all elements are matched exactly once?
In Figure 2.1 two examples of the 3DM instance are illustrated. A more formal
definition of the 3DM problem follows.

Definition 4 (3-Dimensional Matching). Given 3 disjoint sets X ,Y , Z of equal car-
dinality and a set of triples T ⊆ X ×Y ×Z . Is there a subset S ⊆ T such that |S| = |X |
and for each pair (x, y, z), (x ′, y ′, z ′) ∈ S one has x 6= x ′, y 6= y ′ and z 6= z ′?

Figure 2.1: Two examples of a 3DM instance.

Theorem 2 (Karp, 1972). 3DM is NP-complete.

In the proof of this theorem, SATISFIABILITY is reduced to 3DM, see Appendix A.1.3.
We now know that SATISFIABILITY can be reduced to 3-Dimensional Matching.
Next, we will reduce 3-Dimensional Matching to Bin-packing. Then bin-packing
must be NP-complete. The complete proof structure is thus the following:
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2.2.1. Bin-packing
We have arrived at the most important theorem of this chapter for this thesis. The
complexity of bin-packing will finally be showed. The proof of the following theo-
rem is based on a proof written by Papadimitriou in 1982 [13].

Theorem 3. Given an instance I of a bin-packing problem. It is NP-complete to
decide whether I can be solved with B bins.

Proof. Clearly the problem is in NP, because we can easily verify in polynomial
time that a given partition is feasible. It leaves us to show that all other problems in
NP polynomially reduce to this decision problem. We shall reduce 3-Dimensional
matching to it.

Given the sets of nodes X = {x1, ..., xn}; Y = {y1, ..., yn} and Z = {z1, ..., zn} and
the set of triples T = {t1, ..., tm} ⊆ X ×Y × Z . We are asked whether there is a set of
n triples in T , such that each node in X , Y and Z is contained in exactly one of the
n triples.

We will construct an instance of bin-packing that has N = 4m items. Each triple
in T corresponds to an item, denoted simply t j . Furthermore, each occurrence
of a node in X , Y , and Z to a triple corresponds to an item. Let ui ∈ X ∪Y ∪ Z .
Then ui will be denoted by ui [1],ui [2], ...,ui [N (ui )], where N (ui ) is the number of
occurrences of ui in the triples. The sizes of the items are shown below:

triple (xi , y j , zk ) ∈ T has weight 10M 4 +8− i M − j M 2 −kM 3

xi [q] has weight

{
10M 4 + i M +1 if q = 1
11M 4 + i M +1 if q > 1

y j [q] has weight

{
10M 4 + j M 2 +2 if q = 1
11M 4 + j M 2 +2 if q > 1

zk [q] has weight

{
10M 4 +kM 3 +4 if q = 1
8M 4 +kM 3 +4 if q > 1

Here, M is a very large number, say 100n. Note that there is a difference in size
between (arbitrarily) the first occurrence and the other occurrences of the nodes
in X , Y and Z . Define the bin capacity C := 40M 4 + 15. This capacity makes it
possible to fit exactly one triple and one node of all three sets X , Y and Z as long
as the nodes are either all three or none of the three a first occurrence. There are
m bins, as many as triples.

Assume all items fit into m bins. Note that the sum of all items is mC . Hence,
each bin must be full. Also, note that the weight of each item is strictly between 1

5
and 1

3 . Hence, each bin must contain four items. We have C mod M = 15. Given
are the numbers 1, 2, 4, and 8. Even if we allow repetition, there is only one way
to get the number 15 by choosing four numbers: each number must be chosen
once. Furthermore, the sum modulo M 2 must also be 15, so (i ′− i ) ·M +15 = 15
mod M 2, thus i = i ′. Similarly, taking the sum modulo M 3 and M 4, get j = j ′ and
k = k ′. Each bin thus contains a triple t = (xi , y j , zk ), together with xi ∈ X , y j ∈ Y
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and zk ∈ Z . Furthermore, since 40M 4 must be reached, either all three occurrences
are first occurrences or none of them are. Hence, there are n bins that contain only
first occurrences, the n triples in these bins form a 3-Dimensional matching.

Conversely, assume a 3-Dimensional matching exists. Making sure that the
triples in the matching get first occurrences of all three members, we can fit all
items into the m bins by matching each triple with occurrences of its members. ■

Picnic’s bin-packing problem is two-dimensional (each item has a weight and a
volume). Corollary 2 states that the decision problem version of the two-dimensional
bin-packing problem is also NP-complete. It is therefore our goal to write an algo-
rithm in this thesis that finds solutions with an acceptable small error instead of
finding a solution, assuming P 6= NP.

Corollary 1. Given an instance of a two-dimensional I bin-packing problem. It is
NP-complete to decide whether I can be solved with B bins.

Proof. Clearly it is in NP to decide whether I can be solved with B bins. It leaves
us to show that it is NP-complete. Consider a bin-packing instance I1 that is one-
dimensional; each item has a volume and each bin has a volume capacity V . Adding
weight 0 to each item and adding the weight capacity W to each bin gives us an in-
stance of a two-dimensional bin-packing problem. Obviously this is a yes-instance
if and only if I1 is a yes-instance. We see that one-dimensional bin-packing is a spe-
cial case of two-dimensional bin-packing. We may conclude that it is NP-complete
to decide whether a two-dimensional bin-packing problem instance can be solved
with B bins. ■





3
Brute-force enumeration

An instance of a bin-packing problem can be solved by simply applying brute-
force. As explained in the introduction, the calculation time explodes if the amount
of items increases. To drastically decrease calculation time, Fukunaga and Korf
[17] developed a method that combines a bin-oriented branch-and-bound strat-
egy and dominance criteria [18] and called it Bin Completion. The idea is that a
search tree is made with clustered items as nodes. These nodes can be pruned un-
der certain circumstances. This chapter is devoted to Fukunaga and Korf’s theory.
It is assumed that the standard principles of the branch-and-bound method are
known [20].

The first section will explain how to make a basic search tree that finds so-
lutions to a bin-packing problem. In the second section, a proposition is given
that states certain criteria of when to prune the search tree. In the third section, a
method is constructed where only bin assignments are found that do not needs to
be pruned according to the theory in this chapter. The fourth section then com-
bines the previous sections to the final method: bin completion.

3.1. Bin-oriented search tree
This section will first explain how to make a basic search tree that leads to every
feasible solution of a bin-packing problem. In the first subsection, the nodes in
the search tree represent items that need to be packed. In the second subsection,
certain items are clustered to reduce calculation time.

3.1.1. Item-oriented search tree
Let us start with an example that will be the common thread in this chapter. As-
sume we have a set I of 8 items with weights 10, 10, 8, 8, 7, 7, 6, and 3 and a bin
capacity of 20. Without loss of generality, we can order the items in non-increasing
weight. As explained in Chapter 1, the total amount of possible bin assignments,
including infeasible bin assignments, is the Bell number. For n = 8 this is 4140. An
explanation of a search tree with all 4140 bin assignments follows. Place the first

13
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item in a bin: (10). For the second item there are two possibilities: 1. Place it in the
same bin: (10,10). 2. Place it in a new bin: (10)(10). For the third item there are
five possibilities: (10,10,8); (10,10)(8) and (10,8)(10); (10)(10,8); (10)(10)(8). Con-
tinuing this way will give us the 4140 options.

Definition 5 (Bin assignment). Given a set of items I = {1, ...,n} with weights {w1, ..., wn}
and a bin with capacity C . A bin assignment A is a subset A ⊆ I . A bin assignment
is feasible if

∑
i∈A wi ≤C and infeasible otherwise.

Going back to the example, the bin assignment (10,10,8) is infeasible. In conse-
quence, the following bin assignments are also infeasible: (10,10,8,8) and (10,10,8)(8).
To find only feasible solutions, prune under infeasible bin assignments. In Figure
3.1 this has been done for the first four items. This method will lead to 45 feasible
bin assignments. In the figure each node represents how an item can be put in a
bin, given that the items up to the current item are put in bins according to what is
shown in the previous node. Each level i in the search tree shows partitions of the
first i items.

Figure 3.1: Part of an item-oriented search tree for items with weights 10, 10, 8, 8, 7, 7, 6, and 3 and
bin capacity 20.

3.1.2. Bin-oriented search tree
Note that this item-oriented method needs much calculation time for larger sets
of items. This is because every item is assigned to a bin one at a time. What if the
items can be clustered? In a bin-oriented branch-and-bound algorithm, items are
clustered in maximal subsets.
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Definition 6 (Maximal). Given a set of items I with weights {w1, ..., wn} and a bin
capacity C . A feasible set of items M ⊆ I is called maximal if there does not exist an
item i ∈ I \M such that M ∪ {i } is feasible.

In other words, a feasible set is maximal if adding any item to the set makes it in-
feasible. Maximal sets of the example set I including the first item 10, are (10,10); (10,8); (10,7,3)
and (10,6,3). A search tree with maximal bin assignments is called a bin-oriented
search tree. A bin-oriented search tree of the example is shown in Figure 3.2.
Where in Figure 3.1 the nodes represent partitions, in Figure 3.2 each node repre-
sents a maximal bin assignment of the sub problem excluding the items in the bin
shown in the previous node. The maximal bin assignments include the first item
of the (sub)problem. Example: the first maximal bin assignment (10,10) leaves the
remaining subproblem 8, 8, 7, 7, 6, and 3. All maximal bin assignments including
the first item then are (8,8,3), (8,7,3) and (8,6,3). Still 20 feasible solutions occur. It

Figure 3.2: Search tree with maximal bin assignments as nodes including the first item of the
(sub)problem, for items with weights (10,10,8,8,7,7,6,3) and bin capacity 20.

might be clear that this has to do with exploring what follows from every maximal
bin assignment. If we can show that certain maximal bin assignments always in-
duce solutions with more bins than other maximal bin assignments, we can prune
under those bin assignments.

3.2. Dominance criteria
This section is devoted to the definition of dominance and to a proposition with
dominance criteria and their proofs. These dominance criteria will lead to an effi-
cient way to prune under certain bin assignments.

Definition 7 (Dominant). Given two bin assignments A and B, we say that A dom-
inates B, if the optimal solution after assigning A consists of at most as many bins
as the optimal solution after bin assignment B.
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We need to find criteria that show the dominance of certain bin assignments. The
first obvious dominance criterion is maximality. If a bin assignment is not maxi-
mal, it is by definition a subset of another feasible bin assignment and is therefore
dominated.

An intuitive example that shows other dominance criteria follows. Again con-
sider the same example set I with weights 10, 10, 8, 8, 7, 7, 6 and 3, and bin capacity
20. Consider the maximal bin assignments including the first item A1 = (10,10),
A2 = (10,8), A3 = (10,7,3) and A4 = (10,6,3). It is always better if there is an option
to divide a weight in the remaining subproblem. Therefore A1 dominates A3. Fur-
thermore, if we compare A1 with A2, we see that all elements of A2 can be mapped
one-to-one to the elements of A1, and the elements of A2 are all at most as big
as the elements of A1. The remaining subproblem after assigning A2 contains as
many items as after assigning A1, but all remaining items are at least as big as the
remaining items after assigning A1. Therefore A1 dominates A2. Combining this
reasoning gives that A1 also dominates A4: {10} 7→ 10 and {6,3} 7→ 10. These criteria
are formulated by Christofides, Mingozzi, and Toth [19] and by Martello and Toth
[18]:

Proposition 1 (Dominance Criteria). Given two feasible bin assignments A and B.

1. A dominates B if B ⊆ A.

2. (Christofides, Mingozzi and Toth) A dominates B if there exists a one-to-one
mapping from B to A such that each item b ∈ B is mapped to an element of
a ∈ A with w(b) ≤ w(a).

3. (Martello and Toth) A dominates B if B can be partitioned into n subsets
B1, ...,Bn such that each subset Bi is mapped one-to-one to an item ai ∈ A
with w(Bi ) ≤ w(ai ).

Proof. Consider a set of items I and bin assignments A and B .

1. Assume bin assignment B is a subset of bin assignment A and let I ′ = {x1, ..., xn}
be the set of elements such that I ′∪B = A. Consider an optimal solution in-
cluding bin assignment B , using M bins. Moving all elements of I ′ to the
bin containing B , leads to another feasible solution containing bin assign-
ment A. We have shown that M is the upper bound of an optimal solution
containing bin assignment A. Hence, A dominates B .

2. The proof of criterion 2 follows from the proof of criterion 3.

3. Assume B can be partitioned into n subsets B1, ...,Bn such that each subset
Bi is mapped one-to-one to an item ai ∈ A with w(Bi ) ≤ w(ai ). Given B ,
let sB be an optimal solution, with |sB | bins. Now consider the bins with the
items of A. Swap the items of A with the corresponding partitions of B . After
each swap, all bins will remain feasible, since A is feasible and w(Bi ) ≤ w(ai ).
Hence, there is a solution containing bin assignment A with |sB | bins, so |sB |
is the upper bound of an optimal solution containing bin assignment A.
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■

Note that any bin assignment that would be pruned by the second criterion, would
also be pruned by the third criterion. This does not apply the other way around.

Definition 8 (Strongly dominant). Given two bin assignments A and B, we say that
A strongly dominates B, if A dominates B conforming the Dominance Criteria.

3.3. Finding non strongly dominated bin assignments
The problem remains to find non strongly dominated bin assignments. This sec-
tion will explain how to find them in two steps: first find maximal bin assignments
and then find the non strongly dominated bin assignments.

3.3.1. Finding maximal bin assignments
All items must be assigned to a bin eventually. It therefore has no influence on the
total amount of bins in a solution when choosing one item and find all maximal
bin assignments including that item. See the first part of Proposition 1 for further
explanation. Also, the less the remaining capacity after choosing the first item, the
fewer possible maximal bin assignments can be found, hence the less computation
time needed. Therefore order the items in decreasing weight and take the first item
as start item.

Make a binary tree with the first item as root. Each node represents an item.
Left branches represent including the item and right branches represent excluding
the item. The root therefore only has a left branch. The leafs represent maximal
bin assignments. In Figure 3.3 the example is shown. For each node calculate the
summed weight. This is the weight of nodes with a left branch plus the weight of
the current node. Also determine for each branch which items can potentially be
added to the bin without exceeding the bin capacity. If the weight of the remaining
items together with summed weight is less than or equal to the bin capacity, make
a leaf with all those items. The leafs are maximal bin assignments.

3.3.2. Eliminate dominated bin assignments
Using Proposition 1, we could compare all maximal bin assignments and eliminate
the strongly dominated ones. The number of maximal bin assignments is poten-
tially much bigger than the number of items. Furthermore, we can only compare
them, if we store them. However, we could also compare a maximal bin assign-
ment to items that are not included. Then we can immediately eliminate strongly
dominated bin assignments. This saves calculation time and memory storage. Let
W be the sum of the weights of a maximal bin assignment A and let C be the bin
capacity. Note that the bin assignment A is strongly dominated if and only if there
is an item x ∈ I \A such that replacing a subset y ⊆ A with x increases W without
exceeding C . So

W ≤W −w(y)+w(x) ≤C .
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Figure 3.3: Binary search tree aiming to find all maximal bin assignments including the first item.

Using this elimination formula, the binary tree that finds only non strongly domi-
nated bin assignments is drawn in Figure 3.4.

Figure 3.4: Binary search tree with non strongly dominated bin assignments as leaves. The grey
dashed leafs are strongly dominated maximal bin assignments.

3.4. Bin completion
Combining the previous three sections gives bin completion: a bin-oriented branch-
and-bound method with maximal bin assignments as nodes, where the dominance
criteria are used to prune the search tree. All nodes of the branch-and-bound tree
are non strongly dominated bin assignments. Other maximal bin assignments are
pruned. If several non strongly dominated bin assignments exist, the trivial lower
bound should be calculated to see under which node should be searched first.
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Definition 9 (Trivial lower bound). Given a bin-packing problem for a set of items
I with weights {w1, ..., wn} and a bin capacity C . Let w(I ) = ∑n

i=1 wi . The trivial
lower bound of the problem is:

LB(I ) =
⌈

w(I )

C

⌉
.

In the example we have been using this chapter, we see that in each step only one
non strongly dominated bin assignment exists. Therefore the bin completion tree
for this example is simple, see Figure 3.5. The trivial lower bound is only of im-

Figure 3.5: Bin completion tree for weights {10,10,8,8,7,7,6,3} and bin capacity 20.

portance if several non strongly dominated bin assignments exist with the first (re-
maining) item. An example follows. Assume we have a set of 9 items with weights
10, 9, 9, 9, 6, 5, 5, 5, and 2 and a bin capacity of 20. The total weight is 60, so we
have a trivial lower bound of

⌈60
20

⌉= 3 bins. With the method explained in Subsec-
tion 3.3.1 and 3.3.2, we find two non strongly dominated bin assignments includ-
ing the first item: (10,9) and (10,5,5). Calculating the lower bound again gives us
LB(10,9) : 1+⌈41

20

⌉= 4 and LB(10,5,5) : 1+⌈40
20

⌉= 3. Because 3 < 4, we first search under
the bin assignment (10,5,5). The next step in the bin completion method is thus to
find non strongly dominated bin assignments of the items with weights 9, 9, 9, 6,
5, and 2. As long as in each step the lower bound is at most 4, we do not need to
explore the possibilities under bin assignment (10,9). This eventually gives us the
tree in Figure 3.6.
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Figure 3.6: Bin completion tree for weights {10,9,9,9,6,5,5,5,2} and bin capacity 20.



4
Picnic’s current algorithm and an

integer programming formulation

In this chapter, the current bin-packing algorithm Picnic uses will be described. To
fully understand what the bin-packing algorithm is used for, it is explained in the
first section what the picking process in a fulfillment center looks like. In the sec-
ond section the current algorithm will be explained and an upper bound is given.
In the third section the current algorithm will be analyzed and compared to opti-
mal solutions obtained by the solver Gurobi. For this an integer programming for-
mulation is written, given in Subsection 4.3.1. All results in this chapter are based
on approximately 21 thousand customer-orders of Picnic; all the customer-orders
on a Monday and a Friday in October 2018. Monday and Friday provide most in-
teresting data, because firstly, these days are the busiest. Secondly, the size of an
average customer-order on Monday is smaller than an average customer-order on
Friday. This difference might give interesting results.

4.1. Picking process
This section will provide insights in how groceries are picked such that they can be
delivered at the customers’ homes. The explanation of the picking process will be
divided into three parts.

Tote
A tote is a crate that is used for delivering the customer-orders. A customer-order
can be packed in several totes, this is referred to as a multiple tote customer-order.
Each tote contains items of only one customer. In other words, if a customer orders
groceries that fill 1.2 totes, there will be 2 totes shipped to the customer. In each
tote there are three bags placed. The totes are used to pack and distribute the bags
with groceries. The customer only receives the bags. There are two different types
of totes. Open, red totes are used for storing ambient items and black totes are

21
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used for storing chilled and frozen items and closed with a lid after the picking
process.

Picking path
All goods are put in logically ordered aisles with shelves. The order the items are
placed in is determined by four item characteristics: volume, weight, fragility, and
contamination. The items’ volume and weight get smaller as the path approaches
the end. Also, since it became clear to Picnic that clients do not like their groceries
to be packed such that chemical items touch their food, employees get the instruc-
tion to pack all contaminating items in the middle bag. To make this instruction
as easy as possible for the employee, all contaminating items are placed in the first
aisle. Furthermore, fragile items are placed at the end of the picking path. Because
this path is followed, a light, small and fragile item is never put under a heavy item
that could damage it. A simplified illustration of a picking path is shown in Figure
4.1.

Figure 4.1: Illustration of a picking path.

Order picking
A pick cart holding multiple totes is pulled by an employee through the picking
path to pack items into totes, see Figure 4.2. The employee gets instructions from
a device on her arm. It tells her which item to pack in which tote. Throughout the
process, every time an item is placed in a tote, both the item and the tote must
be scanned. If a mistake is made, this is indicated by the device. Therefore, wrong
items that actually arrive at a customer are rare. Once the picking process has been
completed, the totes are put into specially designed frames, that fit into the vehi-
cles that deliver the groceries to the customers. These frames are called dispatch
frames.
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Figure 4.2: An employee picking groceries.

Initially, order picking and dispatch frame loading were managed by third-party
software. This software lacked flexibility for process improvements on various top-
ics, like allocation of totes to pick carts. In the summer of 2018, Picnic launched
its own, in-house designed Warehouse Management System (WMS). This system
manages all processes within the fulfillment center. Because of time constraints,
the WMS has adopted the former tote allocation strategy for now. The goal of this
thesis is to analyze the bin-packing algorithm written in WMS and if possible im-
prove it. In other words, our goal is to optimize the output of the device that gives
instructions to the employees during the picking process.

4.2. Current bin-packing algorithm
Now that the picking process is explained, the current bin-packing algorithm can
be described. The current algorithm Picnic uses is a fast and simple algorithm,
also known as the Next Fit Algorithm. First the mathematical formulation of the
algorithm is given, followed by an example. Afterwards it is explained how well the
algorithm theoretically performs.

Current bin-packing algorithm. Given a set of items I = 1, ...,n with correspond-
ing volumes v1, ..., vn and weights w1, ..., wn , ordered in decreasing weight and given
totes y j , j ≥ 1 with a volume capacity V and a weight capacity W . This algorithm
assigns each item to a tote such that the items will be placed in one tote until ei-
ther V or W is reached. Then the next item will be assigned to a new tote. Variables
va and wa are used for auxiliary storage; they respectively represent the summed
volume and weight of the items in the tote to which the last item is assigned.

1. [Ini t i al i ze.] Set j = 1, va = v1 and wa = w1. Assign 1 to y1.

2. [Assi g n the i tems to a tote.] For i = 2, ...,n, if va +vi ≤V and wa +wi ≤W ,
assign i to y j , set va = va + vi and wa = wa + wi . Otherwise, set j = j + 1,
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assign i to y j and set va = vi and wa = wi . Repeat step until every item is
assigned to a tote.

This algorithm runs in O(n) time. Above we see the mathematical formulation of
the algorithm. To analyze and use it, it is written in a Python script.

An example of how the algorithm works follows. For the sake of an intuitive
illustration, we assume that ordering in decreasing weight is equal to ordering
in picking path location. Given a customer that ordered items 1, ...,9 with corre-
sponding volumes (v1, ..., v9) = (65,60,55,50,45,40,40,20,15) and weights (w1, ..., w9) =
(5,5,4,3,3,3,2,2,1). The way the items are placed in the picking path can be seen in
Figure 4.3. Apply the algorithm, assuming a tote can be filled up to volume V = 200

Figure 4.3: Example of one customer-order in a fulfillment center

and weight W = 18. Also assume there is an unlimited supply of totes y j , j ≥ 1 and
consider auxiliary variables va and wa .

1. Set j = 1, va = v1 = 65 and wa = w1 = 5. Assign 1 to y1.

2. va + v2 = 125 ≤ V and wa +w2 = 10 ≤ W , so assign 2 to y1. Set va = 125 and
wa = 10.

3. va + v3 = 180 ≤ V and wa +w3 = 14 ≤ W , so assign 3 to y1. Set va = 180 and
wa = 14.

4. va + v4 = 230 6≤V , so assign 4 to y2. Set va = v4 = 50 and wa = w4 = 4.

5. va + v5 = 96 ≤ V and wa + w5 = 7 ≤ W , so assign 5 to y2. Set va = 95 and
wa = 7.

6. va + v6 = 135 ≤ V and wa +w6 = 10 ≤ W , so assign 6 to y2. Set va = 135 and
wa = 10.
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7. va + v7 = 175 ≤ V and wa +w7 = 12 ≤ W , so assign 7 to y2. Set va = 175 and
wa = 12.

8. va + v8 = 195 ≤ V and wa +w8 = 14 ≤ W , so assign 8 to y2. Set va = 195 and
wa = 14.

9. va + v9 = 210 6≤V , so assign 9 to y3.

Figure 4.4: Output of the algorithm in dashed lines: three totes. A better solution is also given, using
two totes.

The solution that the algorithm gives is shown in Figure 4.4. Clearly, the algorithm
does not find a solution with the minimum amount of totes, since item 9 could
have been assigned to tote y1.

Following is an intuitive analysis of how well the algorithm performs. It is di-
vided into the amount of totes the algorithm uses to assign all items of a customer-
order to.

• One tote. If the current algorithm assigns all items to one tote it is optimal,
since one tote is the absolute minimum.

• Two totes. If the algorithm assigns all items to two totes, it means that ei-
ther the maximum volume or the maximum weight of the fist tote has been
reached. Any bin-packing algorithm that minimizes the number of totes
would need a second tote. Therefore we can conclude that solutions where
the items are assigned to a total of two totes are also optimal solutions.

• Three or more totes. Assume the algorithm assigns the items to three or
more totes. Items will only be assigned to the current or to a new tote. If an
item is assigned to a new tote, it means that the space left in the current tote
is less than the space needed for that item. This does not mean that no item
fits in that tote. This is what we saw in the example in the previous section.
We conclude that solutions where the items are assigned to three or more
totes, are potentially non-optimal solutions.
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Because all potential optimization is in customer-orders that are currently packed
in three or more totes, we should look at the distribution of amount of totes per
customer-order, shown in Figure 4.5. We see that the percentage of customer-
orders that are currently packed in one or two totes is 94%. The percentage of
customer-orders that could potentially have a reduction in totes is 6%.

Amount of totes per customer-order: Percentage of total amount of customer-orders:
1 %
2 %
3 %
4 %
>4 %

Figure 4.5: Distribution of the amount of totes used per customer-order.

Knowing the distribution given in Figure 4.5, it is not that odd that Picnic did not
improve its tote calculation yet. The current algorithm provides the absolute min-
imum amount of totes for at least % of the customer-orders in linear time.

There is a noticeable difference between the two days that are analyzed. The
customer-orders on Mondays are smaller than on Fridays. This can be seen in
the data that is used for this research. The percentage of customer-orders that is
packed in one or two totes on the Monday that was analyzed was % and on
Friday %.

4.3. Determine optimality using Gurobi
To verify the performance of the current algorithm, we need to know the absolute
minimum number of totes per customer-order. For this thesis the solver Gurobi
is used in the programming language Python. Gurobi is a commercial optimiza-
tion solver that solves among others mixed-integer programming (MIP) problems.
These MIP problems are generally solved using Branch-and-Bound. For the imple-
mentation of the solver, the 2D bin-packing problem has to be written as an integer
programming problem. This section starts therefore with a subsection containing
an integer programming formulation. Finally, the results obtained by Gurobi are
given.

4.3.1. Integer Programming formulation
The input of Picnic’s bin-packing problem is a customer-order; a set I of items with
|I | = n. A volume function v : I → R assigns a volume to each item and a weight
function w : I → R assigns a weight to each item. A supply of n totes is given.
Each tote can be filled up to weight W and volume V . The goal is to minimize the
amount of totes that are used to pack all items.
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This bin-packing problem should be translated into an integer programming
formulation in a systematic way. First the variables need to be defined. These vari-
ables are used to formulate the constraints corresponding to the feasible solutions
of the problem and to formulate the objective function.

Definition of the variables.

xi j =
{

1 if item i is packed in tote j
0 otherwise

, y j =
{

1 if tote j is used
0 otherwise.

Definition of the constraints.
Each item is placed in a tote:

n∑
j=1

xi j = 1 for i = 1, ...,n.

The volume in each tote is less than or equal to a maximum volume V :

n∑
i=1

xi j vi ≤V for j = 1, ...,n.

The weight in each tote is less than or equal to a maximum weight W :

n∑
i=1

xi j wi ≤W for j = 1, ...,n.

An item is only assigned to a tote if that tote is in use:

xi j ≤ y j for i = 1, ...,n and j = 1, ...,n.

Definition of the objective function.
The amount of totes used to pack all items is minimized:

min
n∑

j=1
y j .

Now the integer programming formulation is complete for the bin-packing prob-
lem. Extra constraints to the interests of Picnic can be applied later. The resulting
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IP is:

minimize
n∑

j=1
y j

subject to
n∑

j=1
xi j = 1 for i = 1, ...,n

n∑
i=1

xi j vu ≤V for j = 1, ...,n

n∑
i=1

xi j wi ≤W for j = 1, ...,n

xi j ≤ y j for i = 1, ...,n and j = 1, ...,n

xi j ∈ {0,1}, y j ∈ {0,1}

4.3.2. Gurobi output
The integer program is written in a Python script to solve a set of 21 thousand
customer-orders using the Gurobi optimizer. The results can be seen in Table 4.1.
The second column tells us how many totes are actually needed if the current al-
gorithm packs the items in the amount of totes that is written in the first column.
Indeed we see that if the current algorithm assigns all items to one or two totes, it

Current algorithm: Gurobi:
1 1
2 2
3 2.56
4 3.34
5 4.27
6 5.09

... ...

Table 4.1: Gurobi results.

is optimal. The more totes used, the worse the algorithm’s solution is. To see what
this outcome means for the two analyzed days at Picnic, the Table 4.2 is attached.

We see that there is a potential tote reduction of totes for the two days that
are analyzed. In total there are customer-orders that could have been packed
in less totes; only eight customer-orders have a potential tote reduction of more
than one tote. The results in percentages:

• % of the totes do not need to be used.

• % of the customer-orders can be packed in less totes.

As explained at the end of Section 4.2, customer-orders on Fridays are bigger than
on Mondays. The logical consequence is that there are more non-optimal solu-
tions made by the current algorithm on Friday than on Monday. On the analyzed
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Amount of
totes:

Amount of customer-
orders:

Total amount of totes
used:

Gurobi:

1
2
3
4
5
6
>6
Total: 20861 29570 28907

Table 4.2: The amount of totes Picnic used and the amount of totes they actually needed.

Monday there is a potential tote reduction of % of the customer-orders, against
% on the analyzed Friday. Chapter 5 is devoted to finding a way to achieve this

reduction.





5
Better heuristics

In this chapter, four algorithms and item-orders are given and analyzed. The first
section is devoted to these algorithms: Next Fit, First Fit, Best Fit and Worst Fit.
They are described, mathematically formulated and explained through an exam-
ple. Also, they are compared based on item distribution, calculation time and per-
formance. The subject of the second section is item-ordering. It is explained why
ordering items affects the output of an algorithm. All different item-orders that we
use in this thesis are given.

5.1. Four bin-packing heuristics
In this section, four algorithms will be given and explained. To prevent repetition
of the same introduction in each following subsection, it is given here:

• Mathematical formulation. For the mathematical formulation of the algo-
rithm, assume a set of items I = 1, ...,n is given with corresponding volumes
v1, ..., vn and weights w1, ..., wn and an unlimited amount of totes y j , j ≥ 1
with volume capacity V and weight capacity W . Variables v(y j ) and w(y j )
represent the volume and weight of tote y j .

• Example set. One simplistic example is given, applied to each algorithm. To
provide a simple, but satisfying example, weights are omitted. The example
set consists of 10 items with volumes (v2, ..., v10) = (8,3,8,3,8,2,2,7,7,2). The
totes (y1, y2, ...) have volume capacity 10. The example set is given in Figure
5.1.

Figure 5.1: Example set.

31
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5.1.1. Next Fit Algorithm
The current algorithm is Next Fit. Since the mathematical formulation is described
in Section 4.2, here only the example from Figure 5.1 is given.

Next Fit example. Consider the example set. Next Fit will do the following:

1. Set j = 1, va = v1 = 8. Assign item 1 to y1.

2. va + v1 = 11 > 10, so assign item 2 to y2. Set va = v2 = 3.

3. va + v3 = 11 > 10, so assign item 3 to y3. Set va = v3 = 8.

4. va + v4 = 11 > 10, so assign item 4 to y4. Set va = v4 = 3.

5. va + v5 = 11 > 10, so assign item 5 to y5. Set va = v5 = 8.

6. va + v6 = 10, so assign item 6 to y5. Set va = va + v3 = 10.

7. va + v7 = 12 > 10, so assign item 7 to y6. Set va = v7 = 2.

8. va + v8 = 9 ≤ 10, so assign item 8 to y6. Set va = va + v8 = 9.

9. va + v9 = 16 > 10, so assign item 9 to y7. Set va = v9 = 7.

10. va + v10 = 9 ≤ 10, so assign item 10 to y7. Done.

We see that Next Fit packs the items of the example into 7 totes. The example is
illustrated in Figure 5.2.

Figure 5.2: Next Fit example.

5.1.2. First Fit Algorithm
An obvious improvement of Next Fit would be to try to assign the item in previous
totes as well instead of only to the current tote. First Fit does exactly that. It assigns
each item to the first feasible tote. If no tote is found, the next item will be assigned
to a new tote.
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First Fit Algorithm Given the assumptions for the mathematical formulation writ-
ten in the introduction of this section.

1. [Ini t i al i ze.] Set v(y1) = v1 and w(y1) = w1. Assign 1 to y1. Set m = 1.

For i = 2, ...,n execute step 2 and 3:

2. [Assi g n i tem to the f i r st f easi ble tote.] For j = 1, ...,m if v(y j )+ vi ≤ V
and w(y j )+wi ≤W , assign i to y j , set v(y j ) = v(y j )+vi and w(y j ) = w(y j )+
wi , break.

3. [I f no tote i s f ound , assi g n i tem to a new tote.] Otherwise, set m =
m +1, assign i to ym and set v(ym) = vi and w(ym) = wi .

First Fit Example Consider the given example. First Fit will do the following:

1. Set j = 1, v(y1) = v1 = 8. Assign item 1 to y1. Set m = 1.

2. v(y1)+ v2 = 11 > 10, so assign item 2 to y2. Set v(y2) = 3 and m = 2.

3. v(y1)+ v3 = 16 > 10, v(y2)+ v3 = 11 > 10, so assign item 3 to y3. Set v(y3) = 8
and m = 3.

4. v(y1)+ v4 = 11 > 10, v(y2)+ v4 = 6 ≤ 10, so assign item 4 to y2. Set v(y2) = 6.

5. v(y1)+ v5 = 16 > 10, v(y2)+ v5 = 14 > 10, v(y3)+ v5 = 16 > 10, so assign item
5 to y4. Set v(y4) = 8 and m = 4.

6. v(y1)+ v6 = 10, so assign item 6 to y1. Set v(y1) = 10.

7. v(y1)+ v7 = 12 > 10, v(y2)+ v7 = 8 ≤ 10, so assign item 7 to y2. Set v(y2) = 8.

8. v(y1)+ v8 = 15 > 10, v(y2)+ v8 = 15 > 10, v(y3)+ v8 = 15 > 10, v(y4)+ v8 =
15 > 10, so assign item 8 to y5. Set v(y5) = 7 and m = 5.

9. v(y1)+ v9 = 15 > 10, v(y2)+ v9 = 15 > 10, v(y3)+ v9 = 15 > 10, v(y4)+ v9 =
15 > 10, v(y5)+ v9 = 14 > 10, so assign item 9 to y6. Set v(y6) = 7 and m = 6.

10. v(y1)+ v10 = 12 > 10, v(y2)+ v10 = 10, so assign item 10 to y2. Done.

We see that First Fit packs the items of the example into 6 totes. The example is
illustrated in Figure 5.3.

5.1.3. Best Fit Algorithm
The Best Fit algorithm assigns each item to the tightest tote. The tightest tote is the
tote with the least space left. If the item does not fit in any tote, it will be assigned
to a new tote.
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Figure 5.3: First Fit example.

Best Fit Algorithm Given the assumptions for the mathematical formulation writ-
ten in the introduction of this section. Also, variables α, ω j and Ω are used for
auxiliary storage.

1. [Ini t i al i ze.] Set v(y1) = v1 and w(y1) = w1. Assign 1 to y1. Set m = 1.

For i = 2, ...,n execute step 2, 3 and 4:

2. [C alcul ate auxi l i ar y vol ume.] For j = 1, ...,m, if v(y j )+vi ≤V and w(y j )+
wi ≤W set ω j = v(y j )+ vi . Otherwise, set ω j =−1.

3. [Deter mi ne the hi g hest auxi l i ar y volume.] Set Ω = −1 and α = m +1.
For j = 1, ...,m, if ω j >Ω setΩ=ω j and α= j .

4. [Assi g n i tem to the f ul l est possi ble tote.] IfΩ=−1 set m = m+1. Assign
item i to tote yα.

Note that this algorithm assigns the items to the tote with most volume. Similarly,
the algorithm could assign the items to the tote with most weight, or we could
combine weight and volume such that the algorithm assigns the items to the tote
with the tightest density. In the results, all possibilities are examined. The same
holds for the algorithm described in the next subsection; Worst Fit.

Best Fit Example Consider the given example. Best Fit will do the following:

1. Set j = 1, v(y1) = v1 = 8. Assign 1 to y1. Set m = 1.

2. v(y1)+ v2 = 11 > 10, so set ω1 =−1. Ω=−1,α= 2 so set m = 2. Assign item 2
to y2. Set v(y2) = 3.

3. v(y1)+ v3 = 16 > 10, so set ω1 =−1. v(y2)+ v3 = 11 > 10, so set ω2 =−1. Ω=
max{−1,−1} =−1 so α= 3. Set m = 3. Assign item 3 to y3 and set v(y3) = 8.

4. Ω= max{−1,6,−1} so α= 2. Assign item 4 to y2. Set v(y2) = 6.
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5. Ω= max{−1,−1,−1} soα= 4. Set m = 4. Assign item 5 to y4 and set v(y4) = 8.

6. Ω= max{10,8,10,10} so α= 1. Assign item 6 to y1. Set v(y1) = 10.

7. Ω= max{−1,8,10,10} so α= 3. Assign item 7 to y3. Set v(y3) = 10.

8. Ω = max{−1,−1,−1,−1} so α = 5. Set m = 5. Assign item 8 to y5 and set
v(y5) = 7.

9. Ω = max{−1,−1,−1,−1,−1} so α = 6. Set m = 6. Assign item 9 to y6 and set
v(y6) = 7.

10. Ω= max{−1,8,−1,10,9} so α= 4. Assign item 10 to y4. Done.

We see that the Best Fit algorithm packs the items of the example into 6 totes. The
example is illustrated in Figure 5.4.

Figure 5.4: Best Fit example.

5.1.4. Worst Fit Algorithm
One could say that Worst Fit is the inverse of Best Fit; it assigns items to the least
tightest tote. If the item does not fit in any tote, the item will be assigned to a new
tote.

Worst Fit Algorithm Again use assumptions given in the introduction of this sec-
tion. Also, variables α, θ j andΘ are used for auxiliary storage.

1. [Ini t i al i ze.] Set v(y1) = v1 and w(y1) = w1. Assign 1 to y1. Set m = 1.

For i = 2, ...,n execute step 2, 3 and 4:

2. [C alcul ate auxi l i ar y vol ume.] For j = 1, ...,m, if v(y j )+vi ≤V and w(y j )+
wi ≤W set θ j = v(y j )+ vi . Otherwise, set θ j =∞.

3. [Deter mi ne the l owest auxi l i ar y volume.] SetΘ=∞ andα= m+1. For
j = 1, ...,m, if θ j <Θ setΘ= θ j and α= j .
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4. [Assi g n the i tem to the most empt y tote.] IfΘ=∞ set m = m+1. Assign
item i to tote yα.

Worst Fit Example Consider the given example. Worst Fit will do the following:

1. Set j = 1, v(y1) = v1 = 8. Assign item 1 to y1. Set m = 1.

2. v(y1)+v2 = 11 > 10, so set θ1 =∞. Θ=∞,α= 2 so set m = 2. Assign item 2 to
y2. Set v(y2) = 3.

3. v(y1)+ v3 = 16 > 10, so set θ1 =∞. v(y2)+ v3 = 11 > 10, so set θ2 =∞. Θ =
min{∞,∞} =∞ so α= 3. Set m = 3. Assign item 3 to y3 and set v(y3) = 8.

4. Θ= min{∞,6,∞} so α= 2. Assign item 4 to y2. Set v(y2) = 6.

5. Θ= min{∞,∞,∞} so α= 4. Set m = 4. Assign item 5 to y4 and set v(y4) = 8.

6. Θ= min{10,8,10,10} so α= 2. Assign item 6 to y2. Set v(y2) = 8.

7. Θ= min{10,10,10,10} so α= 1. Assign item 7 to y1. Set v(y1) = 10.

8. Θ= min{∞,∞,∞,∞} so α= 5. Set m = 5. Assign item 8 to y5 and set v(y5) =
7.

9. Θ = min{∞,∞,∞,∞,∞} so α = 6. Set m = 6. Assign item 9 to y6 and set
v(y6) = 7.

10. Θ= min{∞,10,10,10,9,9} so α= 5. Assign item 10 to y5. Done.

We see that Worst Fit packs the items of the example into 6 totes. The example is
illustrated in Figure 5.5.

Figure 5.5: Worst Fit example.
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5.1.5. Comparison of the algorithms
This subsection is devoted to the differences between Next Fit, First Fit, Best Fit and
Worst Fit. Define Other Fit:={First Fit, Best Fit, Worst Fit}. The most obvious differ-
ence between any algorithm in Other Fit and Next Fit is that while Next Fit only
takes the current tote into account, the other algorithms also look back to previous
totes. Other differences between the algorithms are split into item distribution,
calculation time and quality of the solutions.

Item distribution. The difference between the algorithms in Other Fit has mostly
to do with the distribution of the items over the totes. We can easily see the dif-
ferent distributions when comparing the solutions of the example set used in this
section, see Figure 5.6. First Fit provides solutions with the first tote the fullest, Best
Fit provides solutions with some very full totes and some empty totes and Worst
Fit provides solutions where the items are more evenly distributed over the totes.

Figure 5.6: Example for Next Fit, First Fit, Best Fit and Worst Fit.

Calculation time. Next Fit runs in O(n) time, while the other algorithms in this
chapter run in O(n2) time. If we store the bins in a self-balancing binary search
tree, the algorithm can be implemented in O(n log(n)) time.

Solution quality. It might be clear that Next Fit is not as good as any algorithm
in Other Fit. This is proven in the following lemma.
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Lemma 1. Let I be a bin-packing instance. Let A be an algorithm in Other Fit, then

A(I ) ≤ N F (I ).

Proof. Let 1, ...,n be the items of I . Let Y a := {Y a
1 ,Y a

2 , ...} be the Other Fit tote-
assignments and let Y n := {Y n

1 ,Y n
2 , ...} be the Next Fit tote-assignments. If Next Fit

fills each tote up to its capacity, then Y a = Y n and thus A(I ) = N F (I ). Assume
that Y a 6= Y n and that i ∈ I is the first item such that i ∈ Y a

j and i ∈ Y n
k , with j 6=

k. Since Next Fit only takes the current tote into account, we know that j < k.
Consequently, Y n

j ⊆ Y a
j . By Proposition 1 part 1, Y a

j dominates Y n
j , hence A(I ) ≤

N F (I ). ■
Coffman, Garey, Johnson, and Tarjan [22] proved that F F (I ) ≤ 17

10 ·OPT (I )+1.
Let us take some examples where every time only one algorithm from Other

Fit is worst . Assume we have totes with volume capacity 20, again weights are
omitted. Consider the following volumes:

• I = (14,15,8,5,6,4,5,2)
First Fit packs the items into 4 totes: (14,5)(15,4)(8,6,5)(2)←− worst solution
Best Fit packs the items into 3 totes: (14,6)(15,5)(8,4,5,2)
Worst Fit packs the items into 3 totes: (14,4,2)(15,5)(8,5,6)

• I = (15,8,8,3,2,2,2)
First Fit packs the items into 2 totes: (15,3,2)(8,8,2,2)
Best Fit packs the items into 3 totes: (15,2,2)(8,8,3)(2) ←− worst solution
Worst Fit packs the items into 2 totes: (15,3,2)(8,8,2,2)

• I = (16,15,4,3,2)
First Fit packs the items into 2 totes: (16,4)(15,3,2)
Best Fit packs the items into 2 totes: (16,4)(15,3,2)
Worst Fit packs the items into 3 totes: (16,3)(15,4)(2)←− worst solution

Next Fit is not included in the examples above, since by Lemma 1 Next Fit is always
at most as good as any algorithm in Other Fit. The examples serve the purpose of
giving the insight that it depends on the set of items which algorithm from Other
Fit performs best.

5.2. Ordering items
This section is devoted to item-ordering. First an intuitive insight is provided as to
why ordering items before executing one of the algorithms could give a different
solution. To do so, two simple examples are given of when ordering in decreas-
ing volume gives a better and when it gives a worse solution. Then the examples
are explained referring to the dominance criteria from Chapter 3. After these ex-
amples, several item-orders are given that are applied to Picnic data in the next
section.
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• Example 1. Consider four items with volumes (1,2,8,9) (no weights), and
totes with volume capacity 10. The lower bound is d1+2+8+9

2 e = 2 totes. All
four algorithms will provide the same solution: (1,2)(8)(9). Clearly the first
two items can be split over the second and the third tote. Now order the items
in decreasing volume: (9,8,2,1). Again First Fit, Best Fit and Worst Fit will
provide the same solution, but this time it is an optimal solution: (9,1)(8,2).
Next Fit will still not give an optimal solution: (9)(8,2)(1).

• Example 2. It is not always better to order the items in decreasing volume
though. Consider six items with volumes (2,5,3,4,2,4) (no weights), and
totes with volume capacity 10. The lower bound is d2+5+3+4+3+4

2 e = 2 totes.
All algorithms will give an optimal solution: (2,5,3)(4,2,4). Now order the
items in decreasing volume: (5,4,4,3,2,2). All algorithms will give the fol-
lowing, worse solution: (5,4)(4,3,2)(2).

The theory of the dominance criteria in Chapter 3 might give an intuitive insight in
why ordering items in decreasing volume or weight before executing one of the al-
gorithms, often gives a better solution. Consider an example set of volumes {4,2,2}.
Referring to Proposition 1 part 2, it is always equally good or better to first assign
the 4 and then the two 2’s. On the other hand, if we have the example set of vol-
umes {4,3,2}, Proposition 1 does not tell us anything about it. In other words, it
depends on the set of items if ordering in decreasing weight or volume gives better
solutions.

The weight of the items does not linearly scale with the volume of the items.
Some extreme examples are chips and a bottle of beer. Ordering these items in
decreasing weight, means ordering them in increasing volume. We introduce a
normalized value that takes both volume and weight into account. Let i be an
item with volume vi and weight wi . Let V and W be the totes’ volume and weight
capacity respectively. Define si := vi

V + wi
W . This value makes it possible to order the

items in both weight and volume at the same time. This could increase the effect
of Proposition 1 part 2 on the solutions.

For this thesis several item-orders are applied to the algorithms described in
the previous section. The items are ordered in:

1. Weight - high to low;
2. Weight - low to high;
3. Volume - high to low;
4. Volume - low to high;
5. Normalized - high to low;
6. Normalized - low to high;
7. Shelf location;
8. Random.

As explained in Chapter 4, if a customer-order is assigned by Next Fit to one or
two totes in total, all algorithms from Section 5.1 with all item-order written above
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will give an optimal solution. Note that for each set of items there exists at least one
item-order (not necessarily one that is written above) in which all algorithms from
Section 5.1 will provide an optimal solution. After all, if Next Fit gives an optimal
solution, all the other algorithms will do that too.



6
Final heuristic, results and financial

impact

In this chapter, the results are described and interpreted in the form of a financial
impact. From now on, we call a combination of the algorithms with an item-order
from previous chapter a tote-calculation. Not only do the tote-calculations de-
scribed in Chapter 5 need to be compared to each other, we also need to compare
their performances to Gurobi (see Chapter 4). The same data set as in Chapter 4 is
used in this chapter. The results of the tote-calculations are described in the first
section. The second section will then describe the final heuristic. In the third sec-
tion an analysis is made on the financial impact of implementing the final heuris-
tic.

6.1. Results
In the data set that is used, there is an absolute potential reduction of 663 totes.
Define those 663 totes as 100% of the non optimal tote-assignments with respect
to the current situation. In Figure 6.1 is an explanatory chart given that explains
the charts further on in this chapter. The higher the column, the worse the given
calculation. Our goal is to find a calculation that gives zero non optimal tote-
assignments. Combining Section 5.1 (four algorithms) and Section 5.2 (eight item-
orders), gives us 32 calculations. The results of these calculations are shown in
Figure 6.2.

It is to be expected that each time the items are shuffled, the output of the algo-
rithms will be different. For this reason, the calculations with a random item-order
were executed 15 times. The differences were small and there were no outliers. Be-
cause the biggest difference was less than 0.13% of the total tote amount, taking
the average of 15 times reshuffling and rerunning the algorithm gives a good ap-
proximation of what the output will be when ordering the items randomly.

In addition, the results are examined of Best Fit and Worst Fit assigning items to
the (least) tightest density, volume and weight. The differences between the results

41
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Figure 6.1: Explanatory chart.

Figure 6.2: Results of 32 different tote-calculations.

were at most 6.9·10−3%, thus negligible. Only assigning items to the (least) tightest
volume is therefore shown in the results, see Figure 6.2.

Note that the current calculation (Next Fit, items ordered in decreasing weight)
is the worst calculation. Furthermore, note that there is no big difference between
ordering in increasing or decreasing volume/weight, in contrast to the normalized
value, where ordering in increasing or decreasing value does differ. As explained in
Section 5.2, this has to do with Proposition 1 part 2.

6.2. Final heuristic
Remarkably, shuffling the items gives quite good solutions. Since there always ex-
ists an item-order in which all algorithms will output an optimal solution, it might
be an idea to combine several item-orders and remember the best solution. Prefer-
ably, we do not want to recalculate a customer-order if we already have an optimal
solution. We therefore calculate the lower bound (see Definition 9) and only redo
the calculation with the items in a different order if the solution does not equal the
lower bound.
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Final heuristic:

1 . Calculate lower bound
2 . Shuff le the items
3 . Run FIRST FIT
4 . Do the following up to 8 times :

I ) I f the output of FIRST FIT equals the lower bound :
i . Stop .

I I ) Otherwise :
i . Shuff le items

i i . Run FIRST FIT
i i i . Remember output only i f i t uses l e s s totes

In Chapter 4 we used the solver Gurobi to find the amount of totes needed mini-
mally per customer-order. Comparing the Gurobi-solutions with a simple calcu-
lated lower bound shows us that only 0.06% of the customer-orders have an op-
timal solution that does not equal their lower bound. Furthermore, 97% of the
customer-orders were already optimal using Next Fit, items ordered in decreasing
weight. By Lemma 1 we know that First Fit is at least as good as Next Fit. There-
fore the extra calculation time needed to shuffle and recalculate is low. The results
of the method above are shown in Figure 6.3. We see that after reshuffling the

Figure 6.3: Progress of the results when shuffling the items several times.

items 6 times, no further reduction occurs. Out of 20861 customer-orders, there
are 7 customer-orders for which Gurobi gives a better solution than the method
described in this thesis. In total there is a difference of 7 totes between the Gurobi
solutions and the solutions obtained by the new heuristic. We conclude that we
have a total tote-reduction of 2.24% and that for 99.97% of the customer-orders
the given method is optimal.

6.3. Estimation of the financial impact
The financial impact of implementing the final heuristic written in the previous
section, is given in this section. In order to calculate cost savings, we need to know
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which costs linearly scale with the amount of totes used per customer-order. To-
gether with a Picnic mathematician from the growth team, an analysis is made
on the costs that linearly scale with the amount of totes used. Costs are mostly
based on the time needed to fulfill a task, expressed in wage costs (€ /hour).
Other costs are directly linked to the costs of certain products (like bags or vehi-
cles). These costs can be divided into fulfillment and distribution costs. In Figure
6.4 a chart is displayed that shows how these costs are made up. Important for now
is that each tote extra costs € .

Figure 6.4: Costs that linearly scale with the amount of totes used.

Cost savings in 2019. In this subsection, it will be calculated how much money
will be saved in 2019 by implementing the new heuristic. For the two days that
are analyzed, totes could have been saved by the new heuristic. That gives
us an average of saved totes per day. This is equivalent to a cost-saving of

that day. We cannot simply multiply by 365 to see what the
cost savings for a whole year would be. There are a few important remarks:

• Monday and Friday have the most customer-orders. The two days that
are analyzed are a Monday and a Friday. These days are Picnic’s busiest
days. Consequently more tote-reduction can be achieved on these days than
on other days. The data set used, contained customer-orders, hence

each day. We should find out what the forecast tells us about the av-
erage customer-order size and the average amount of customer-orders a day
in 2019. Picnic’s growth team provided the required data.
For further calculation we assume that the average size of a customer-order
in the data set used is representative for the size of an average customer-
order each day of that week. Since the tote-reduction depends on the size
of a customer-order, we may then assume that the % tote-reduction will
be achieved every day. Note that the assumption of the customer-order size
may influence the calculation.

• Increasing customer-order size. Picnic aims to encourage customers to place
larger orders. At the end of 2019 the customer-orders are expected to be %
larger. On average the customer-orders will thus be approximately % larger
than the customer-orders in the data set that is used. In order to see what
would happen with the amount of totes per customer-order given the same
data-set with % larger we reduced the volume capacity of the totes. Re-
running the current tote-calculation and the final heuristic with % smaller
totes, gives us a reduction of totes that day.

• Increasing amount of customer-orders. Picnic is growing rapidly. The growth
team provided the data that gives the expectation of the amount of customer-
orders per week in 2019. Taking the average of each week in 2019 and divid-
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ing it by 7 gives us an average of customer-orders each day.
This means that the amount of customer-orders per day will increase with a
factor , leading to an average reduction of totes
each day in 2019.

This brings us to the final calculation. By implementing the new tote-calculation
described in Section 6.2 Picnic could save
in the year 2019.





7
Conclusions and Recommendations

for further research

The main goal of this thesis, was to write an algorithm that finds good solutions
to Picnic’s bin-packing problem, by modelling several algorithms. Since the order
in which the algorithms assign items to a tote has a major influence on the out-
put of the algorithms, several item-orders are applied to the algorithms. Because
ordering the items randomly gives remarkably good solutions, a new method is in-
troduced where each customer-order is calculated at most eight times, each time
shuffling the items before rerunning the algorithm, and remembering the best so-
lution. It turned out that this method is optimal for % of the customer-orders.

7.1. Recommendations
An analysis on the financial impact (Section 6.3) showed us that implementing the
new heuristic can save Picnic in 2019. This is based on a cost saving of
per reduced tote. It would be interesting to see if we can reduce the amount of totes
used per customer-order even further. Also, given a certain amount of totes, some
fulfillment processes could potentially be optimized by redistributing the items
between the totes. This section is devoted to interesting topics for future research.
A few are described, clustered in three main recommendations.

1. Adjust the fill-rate
Currently a fill-rate constraint is implemented in the tote calculation. A tote that is
filled up to 85% of the volume capacity is considered full. This fill-rate is meant to
manage several uncertainties:

• Differences in packaging types
• Measurement inaccuracy (see Appendix A.2)
• Untidiness during the packing process

47
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Delivering totes filled with items that could have been packed in less totes is obvi-
ously a waste of money. On the other hand, if totes are too full to dispatch, it will
cost extra time and thus money to rearrange the items such that putting the totes
in the dispatch frames is possible. A right balance (fill-rate) needs to be found
between too full and too empty totes. In the Python tote-calculation script, the
current fill-rate of 85% is implemented. This percentage can be easily adjusted to
calculate how many totes will be saved by increasing the fill-rate. This resulted
in the percentages shown in Figure 7.1. The calculation in the financial impact

Figure 7.1: The percentage of totes saved when increasing the fill-rate, compared to the current
fill-rate of 85%.

analysis in Section 6.3 can be applied to these percentages, resulting in a yearly
cost-saving shown in Figure 7.2.

Some short practical research in one of Picnic’s Fulfillment Centers has been
done. Let us define a "full" tote as a tote that needs to be rearranged before dis-
patching, and a "too full" tote as a tote that cannot be dispatched at all. According
to the FC-lead approximately 1 out of 20 totes are full. On the other hand, an em-
ployee that has been working for more than a year as full-time dispatcher said that
he had never seen a "too full" tote. Given the high numbers shown in Figure 7.1
and Figure 7.2, I recommend analyzing the fill-rate and adjusting it if possible.

Figure 7.2: The yearly cost savings in €1000 when increasing the fill-rate.

2. Item to tote optimization
Without increasing the number of totes, items can be redistributed between totes
to improve ergonomics and productivity. At the moment, items are not redis-
tributed after the tote calculation is performed, which results in customer-orders
with very heavy and full totes, as well as very light and empty totes. This distribu-
tion occurs because items are always placed in the first feasible tote, see Subsec-
tion 5.1.2. I recommend analyzing the following characteristics and implementing
if possible:

• Volume redistribution
The volume of a tote has a large effect on pick productivity. As explained in
Recommendation 1, the items in full totes potentially need to be rearranged
before dispatching. This occurs after a pick round, and takes about 30 sec-
onds. Distributing volume will increase the pick productivity. A short calcu-
lation of the financial impact of redistributing volume follows.

According to Picnic FC-lead, need to be rearranged
before dispatching. After running the tote-calculation, we can order the totes
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in decreasing volume. Let us assume that the totes that need to be rear-
ranged are the top %, which is totes in the two-day data set that we
use. Note that redistributing items is only possible in multiple tote customer-
orders.

Consider the following method to redistribute items. Let V70 be 70% of the
volume capacity. First check if the summed volume of the items in the fullest
tote is over V70. If this is the case, take items one-by-one from the fullest tote
and place it in the emptiest tote. Repeat this, until the summed volume of the
items in the fullest tote is less than or equal to V70. In the data set out of
the full totes can be rearranged.
We can expand these two-day costs to the costs on a yearly basis the same
way as described in the financial impact analysis in Section 6.3. This gives us
a cost-saving of for the year 2019.

• Weight redistribution
Redistributing the weight will increase the dispatch ergonomics. The max-
imum weight of a tote is 20 kg. This is recorded as very heavy. When re-
distributing volume, the weight will probably be redistributed as well. If the
method of redistributing items described above selects the heaviest items in
the fullest totes and replaces them, we kill two birds with one stone.

• Aisle skipping
The pick locations can be of major importance on pick productivity. The
items in a tote determine which aisles must be passed. Currently, in a pick
round always all aisles are passed, see Section 4.1. However, if the items of a
customer-order can be clustered into the items of the picking aisles, poten-
tially aisles can be skipped.

3. Tote to pick cart optimization
Picking the items is the highest labor intensive process in Picnic’s Fulfillment Cen-
ters. The selection of totes on a pick cart is currently solely determined by the
location in the dispatch frames. However, selecting totes based on other aspects
could decrease the total walking distance of a shopper. All the following character-
istics could increase pick ergonomics and pick productivity. It is therefore recom-
mended to analyze them and if possible, implement them in the tote-calculation.

• Number of different items
Customers often order larger quantities of the same item at once. An order-
line is a single item, in a certain quantity. For each order-line, the shopper
needs to walk from the pick cart to the aisle and back. The number of differ-
ent order-lines determines the number of times a pick must be performed
and should be considered when determining the position of the tote on a
pick cart. Placing totes containing the same order-lines on a pick cart can
increase the productivity.
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• Cross aisle travelling
Each aisle of the picking path has two sides. Placing totes on a pick cart in a
way that minimizes cross aisle travelling will decrease the total walking dis-
tance.

• Most items at front of pick cart
A pick cart is approximately 2.5 meters long and pulled from the front. Whilst
picking, the bigger the distance between a tote and the front of the pick cart,
the further the shopper needs to walk. Placing the totes with most differ-
ent order-lines in the front of the pick cart would decrease the total walking
distance.
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A
Appendix

A.1. The bin-packing problem and its complexity - ex-
tended version

This chapter is the extended version of Chapter 2. It is devoted to complexity the-
ory. Some basic theory of the complexity classes is given in the first section. Then
in the second section it is explained how a Turing machine works. We need this
knowledge for the foundation of all NP-complete proofs: Cook’s Theorem [10]. In
section 3 the complexity of bin-packing will eventually be given and proven, by
first proving the complexity of two other problems. It is important to know that
decision problem version of the bin-packing problem is in the complexity class
NP-complete, because then we know that there does not exist an algorithm that
solves it in polynomial time, unless P = N P . For this reason we aim to find an algo-
rithm in this thesis that outputs an approximation of a solution with an acceptable
small error within reasonable time.

A.1.1. Problem complexity
Before introducing computational complexity, it should be clear what a decision
problem is. A decision problem is a problem that, given an input, asks a yes-no
question. Some examples:

1. Input: x ∈Z. Decision problem: "Is x a prime number?"

2. Input: a 9×9 matrix, partly filled in with integers 1,...,9. Decision problem:
"Is there a Sudoku solution for the given matrix?"

3. Input: a set of items 1, ...,n with weights w1, ..., wn and m bins with capacity
C . Decision problem: "Can we pack items 1, ...,n into m bins?"

If the answer is yes, we call a corresponding solution a yes-instance. Later on in
this chapter we need a more formal way to define a decision problem. A decision
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problem is a pair D = (X ,Y ), where X are all instances of D and Y ⊆ X are all yes-
instances of D . Taking the first example again, then X = {x : x ∈ Z} and Y = {x :
x is prime}. There are two questions that indicate the complexity of the decision
problem:

1. Can we solve the decision problem within a reasonable time?

2. Given a yes-instance and a solution to this yes-instance. Can we verify the
solution in reasonable time?

Here within a reasonable time means in polynomial time.

Definition 10 (Polynomial time). Assume we have a decision problem with an input
of size n. An algorithm solves the problem in polynomial time if for some integers
C ,k > 0, it solves the problem in at most C nk steps.

If a decision problem can be solved in polynomial time, the decision problem is
in the complexity class P. If the yes-output of a decision problem can be verified
in polynomial time, the decision problem is in the complexity class NP. Logically,
P ⊆ N P .

The Clay Mathematics Institute of Cambridge awards a prize of $1 million to
solve the next question [5]. If the solution to a problem can be verified in poly-
nomial time, is it then always also solvable in polynomial time? This problem is
better known as the P versus NP problem.

• If P = N P : All problems that can be verified in polynomial time, are also solv-
able in polynomial time. Decision problems that are not solvable in polyno-
mial time, are called NP-hard.

• If P 6= N P : There are decision problems that can be verified in polynomial
time, but cannot be solved in polynomial time. Decision problems that are
not solvable in polynomial time, are called NP-hard. If a decision problem
is not solvable in polynomial time but the answer is verifiable in polynomial
time, it is called NP-Complete.

In Figure A.1 a simplistic Euler diagram is given that illustrates the sets. An often
used definition of an NP-hard problem is that it is at least as hard as any other
problem that is known to be NP-hard. Later on in this chapter we will prove that
the bin-packing problem, formulated as the decision problem in the third exam-
ple, is NP-complete. First we will give an often used definition of an NP-complete
problem, for what we need to know what polynomially reduce means. Consider
two decision problems D1 and D2. We say that D1 polynomially reduces to D2 if we
can create a function that in polynomial time outputs a yes-instance of D2 if and
only if its input is a yes-instance of D1.

Definition 11 (NP-complete). A decision problem D ∈ N P is called NP-complete if
all other problems in N P polynomially reduce to D.
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Figure A.1: P versus NP. Note that if P=NP, then P=NP=NP-complete.

It might now be clear that, to prove that bin-packing is NP-complete, we need to
show that bin-packing is in NP ánd that all other problems in NP polynomially
reduce to bin-packing.

A.1.2. Turing machine
To prove the complexity of the bin-packing problem, we need to know more about
how a yes-instance can be verified. Alan Turing invented a machine that can ver-
ify instances: the Turing machine. Before we jump into the details of the Turing
machine, we need a definition.

Definition 12 (Alphabet). A finite set A, consisting of at least two elements with no
blanks is called an alphabet. The set of all possible strings consisting of elements in
A of length at most n is denoted by A∗ :=⋃

n∈N An . A language over A is a subset of
A∗. The elements of a language are words. The length of a string x ∈ An is denoted
by si ze(x) := n.

Let us take an example that explains what an alphabet is. As alphabet we take
A := {0,1,2,3,4,5,6,7,8,9}. As language we take all prime numbers up to 999. A
word then is for example 173. As said in the introduction, the question whether
a number is prime is a decision problem, D = (X ,Y ). In this particular example,
the set X = ⋃3

n=0 An (all natural numbers up to 999) and Y ⊆ X exists of all prime
numbers up to 999.

Assume we want to solve a certain decision problem. An algorithm is a way of
writing down some very specific rules in such a way that if you follow them, it will
lead you to the answer of your problem. Alan Turing came up with a machine that
can solve algorithms. To do this, the input needs to be written as a string of symbols
of an alphabet (see Definition 12) together with t’s (blanks). At any moment in
time the machine is in a particular state and it’s looking at a value. The state the
machine is in tells it what to do. The machine is programmed to do 3 things with
this state and value: it overwrites the value, it moves to another position and it
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goes into a (new) state. The machine reduces the string one by one to a new string
containing elements of the alphabet with t’s and eventually when it has reached
its final state, the new string is the answer to your problem.

Definition 13 (Turing machine). Assume we have an alphabet A. Define A := A ∪
{t}. A Turing machine is defined by a function

Φ : {0, ..., N }× A 7−→ {−1, ..., N }× A× {−1,0,1}, for some N ∈N.

Let us analyze this definition. We can see the Turing machine as the following
function:

Φ : (Cur r ent St ate, Symbol ) 7−→ (New St ate, New Symbol , Movement i nstr ucti on).

This function sends 2-dimensional information to information in a 3-dimensional
space. Given a current state (1) and a symbol (2), the Turing machine will go into a
new state (1), overwrites the symbol (2) and moves to a new position (3).

Note that the set of new states has one more element than the set of current
states, namely -1. This state is the final state. If the Turing machine is in state -1,
the program is finished.

Definition 14 (Compute). Consider two languages of an alphabet A: L,D ⊆ A∗.
Assume we have a function f : L → D. Let Φ be a Turing machine. If for an l ∈ L the
Turing machine gives the output(Φ, l ) = f (l ), we say thatΦ computes f .

An example now follows. Assume we have a binary number as input and we want
to add 1 to the number. In this example we thus have the alphabet A = {0,1} and
language L ⊆ A∗ where the elements of L are numbers written in binary code. Also,
we have a function f that is defined by f (l ) : l +1. The following Turing machineΦ
computes f :

Φ(0,0) = (0,0,1)

Φ(0,1) = (0,1,1)

Φ(0,t) = (1,t,−1)

Φ(1,0) = (−1,1,0)

Φ(1,1) = (1,0,−1)

Φ(1,t) = (−1,1,1)

The Turing machine can begin at any value in the binary code, as long as the first
state it is in, is 0. State 0 makes sure the beginning position is the most right value
of the binary number. If the Turing machine is in that position, it switches to State
1. In State 1 the adding of the number 1 is done. In Figure A.2 an illustration is
given of the example Turing machine, for the binary number 59.
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Figure A.2: Illustration of the Turing machine example where 1 is added to the binary number 59.
The grey box represents the position of the Turing machine.

A.1.3. Complexity proof
The complexity of bin-packing will be proven in this section. To prove that a deci-
sion problem D is NP-complete, it should be proven that the problem is in NP and
that any other problem in NP can be polynomially reduced to D . It is generally
easy to see if a problem is in NP, but the second part is often a bit more compli-
cated. The foundation of all NP-complete proofs lays in a theorem written and
proven by Stephen Cook in 1971 [10]. It states that the SATISFIABILITY-problem is
NP-complete.

Assume we have proven that SATISFIABILITY is NP-complete. Reducing an easy
problem such as "Is an integer x dividable by 3?" to SATISFIABILITY does not say
anything about the complexity of the easy problem. A problem could be made
as difficult as one wants. A polynomial reduction the other way around does say
something though. Assume we have a decision problem D . If we can polynomially
reduce SATISFIABILITY to D , it means that D is at least as hard as SATISFIABILITY

and therefore NP-hard. That is exactly what we will do in this section. The proofs
in this section are based on proofs written by Bernhard Korte and Jens Vygen [12]

In the first subsection the SATISFIABILITY-problem will be explained. Further-
more, it will be proven that the problem is NP-complete. In the second subsection
another decision problem will be introduced, namely the 3-Dimensional Match-
ing. Through this problem we will eventually be able to prove the complexity of
bin packing:



58 A. Appendix

Satisfiability
The first step in the triple proof will be to prove that SATISFIABILITY is NP-complete.
The question that needs to be answered for a SATISFIABILITY-problem is, given a
collection of clauses over a set of literals, is there a truth assignment such that the
Boolean function corresponding to the family of clauses is true?

Definition 15 (Clause). Assume X = {x1, ..., xk } is a set of Boolean variables and let x
be the negation of x. Call the elements of the set L := X ∪{x : x ∈ X } literals. A clause
over X is a subset of literals.

Definition 16 (Satisfiable). A clause is true or satisfied if and only if at least one of
its literals is true. A collection C of clauses over X is satisfiable if and only if there
exists a truth assignment satisfying all of its clauses.

Let us take an example that explains the SATISFIABILITY-problem. Assume we have
X = {x1, x2, x3}. Then the literals are L = {x1, x2, x3, x1, x2, x3}. If we now take a col-
lection of clauses {{x1, x3}, {x1, x2}, {x1, x2, x3}}, then this corresponds to the Boolean
function (x1 ∧ x3)∨ (x1 ∧ x2)∨ (x1 ∧ x2 ∧ x3). This collection of clauses is satisfi-
able, because for example the assignment (x1, x2, x3) = (tr ue, f al se, tr ue) satis-
fies the problem. An easy example of a no-instance would be the collection of
clauses {{x1, x2}, {x1, x2}}. No assignment can be found such that the Boolean func-
tion (x1∧x2)∨(x1∧x2) is true, since (x1∧x2) is the negation of (x1∧x2) and therefore
cannot both be true. Now that the SATISFIABILITY-problem is explained, we need
only one more definition before we can start the proof.

Definition 17 (Certificate). Let D = (X ,Y ) be a decision problem. D is in NP if there
exists a corresponding problem D ′ = (X ′,Y ′) in P and a polynomial p with

X ′ := {x#c : x ∈ X ,c ∈ {0,1}bp(si ze(x))c},

such that
Y = {y ∈ X : ∃ c ∈ {0,1}bp(si ze(x))c} with y#c ∈ Y ′},

where x#c is a string containing x, the symbol # and c. If there exists a string c with
x#c ∈ Y ′, we say that c is a certificate for x. An algorithm that checks if an instance
of D ′ is a yes-instance, is called a certificate-checking algorithm.

Theorem 4 (Cook, 1971). Satisfiability is NP-complete.

Proof idea. We take a problem D in NP that is not SATISFIABILITY and polynomially
reduce it into SATISFIABILITY. Since D = (X ,Y ) is in NP, it is verifiable in polyno-
mial time. Furthermore, by Definition 17 there exists a polynomial-time Turing
machineΦ for a corresponding problem D ′ = (X ′,Y ′), polynomially depending on
si ze(x#c). We will define an upper bound on the computationlength of Φ, for any
input x#c ∈ X ′ and we will define a set of Boolean variables V (x). We will construct
a collection of clauses C (x) over V (x) in such a way that C (x) is satisfiable if and
only if x is a yes-instance of D (x ∈ Y ). To prove this "if and only if relation", we
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again need Definition 17. Since Φ is a certificate checking algorithm, we will con-
clude that if the output of the Turing machine is 1, x ∈ Y . Conversely, if x ∈ Y , we
show that indeed C (x) is satisfiable.

Proof. It is clear that SATISFIABILITY belongs to NP. We must prove that it is NP-
complete by showing that any decision problem in NP can be polynomially re-
duced to SATISFIABILITY (Definition 3). Let D = (X ,Y ) be a problem in NP that
is not SATISFIABILITY. Let D ′(X ′,Y ′) be the corresponding decision problem from
Definition 17 and let Φ be a polynomial-time Turing machine for D ′ with alpha-
bet A with A = A ∪t. There is a polynomial b depending on si ze(x#c) such that
time(Φ, x#c) ≤ b(si ze(x#c))∀ x#c ∈ X ′. Define l (x) := bp(si ze(x))c. Let B := b(si ze(x)+
1+ l (x)) be an upper bound on the computation length of Φ on input x#c, ∀ c ∈
{0,1}l (x).

We will construct a collection of clauses C (x) such that C (x) is satisfiable if and
only if x is a yes-instance (x ∈ Y ). First we define the set V (x) of Boolean variables
for each x ∈ X :

• vi , j ,σ for all 0 ≤ i ≤ B ,−B ≤ j ≤ B and σ ∈ A: indicates whether at time i the j -th
position of the string contains the symbol σ;

• wi , j ,n for all 0 ≤ i ≤ B ,−B ≤ j ≤ B and −1 ≤ n ≤ N : indicates whether at time i the
j -th position is scanned and the instruction in state n is executed.

We will now construct the collection of clauses C (x) over the set V (x). There is a
symbol in each position at any time:

• At time i and position j , the string contains a symbol σ ∈ A:
{vi , j ,σ :σ ∈ A} for 0 ≤ i ≤ B and −B ≤ j ≤ B ;

• Let σ,τ ∈ A with σ 6= τ. At time i and position j , the string can only contain the
symbol σ if it does not contain the symbol τ:

{vi , j ,σ, vi , j ,τ} for all 0 ≤ i ≤ B ,−B ≤ j ≤ B .

There is a single instruction executed in a unique position at any time:

• At time i a symbol is scanned at position j in state n:
{wi , j ,n : −B ≤ j ≤ B ,−1 ≤ n ≤ N } for 0 ≤ i ≤ B ;

• Let −B ≤ j ,k ≤ B and −1 ≤ n,m ≤ N with ( j ,n) 6= (k,m). At time i , position j can
only be scanned in state n if position k is not scanned in state m:

{wi , j ,n , wi ,k,m} for 0 ≤ i ≤ B ,−B ≤ j .

The algorithm starts correctly:

• At time 0 and position j , the string contains the j -th symbol of x:
{v0, j ,x j } for 1 ≤ j ≤ si ze(x);

• At time 0 and position si ze(x)+1, the string contains the symbol #:
{v0,si ze(x)+1,#};

• At time 0 and position si ze(x)+1+ j , the string contains either a 0 or a 1:
{v0,si ze(x)+1+ j ,0, v0,si ze(x)+1+ j ,1} for 1 ≤ j ≤ l (x);
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• At time 0 and position j , the string contains the symbol t:
{v0,si ze(x)+1,t} for −B ≤ j ≤ 0 and si ze(x)+2+ l (x) ≤ j ≤ B ;

• At time 0 and position j , the instruction state is 0:
{w0,1,0}.

The algorithm works correctly:

• Assume Φ(n,σ) = (m,τ,δ). Suppose the algorithm is in time i , the position it is in
is j and the symbol that is scanned is σ in the state n.

– Then the symbol σ is changed into the symbol τ:
{vi jσ, wi j n , wi+1, j ,τ} for 0 ≤ i < B ,−B ≤ j ≤ B ,σ ∈ A and 0 ≤ n ≤ N .

– Then the state will be m in position j +δ:
{vi jσ, wi j n , wi+1, j+δ,m} for 0 ≤ i < B ,−B ≤ j ≤ B ,σ ∈ A and 0 ≤ n ≤ N .

• When the algorithm reaches state -1, it stops:

– If in time i the position is j and the state is -1, the state will stay -1 in position
j :

{wi , j ,−1, wi+1, j ,−1} for 0 ≤ i < B ,−B ≤ i ≤ B and σ ∈ A;
– If in time i the position is j , the state is -1 and the symbol σ is scanned, the

symbol will stay σ in position j :
{wi , j ,−1, vi , j ,σ, vi+1, j ,σ} for 0 ≤ i < B ,−B ≤ i ≤ B and σ ∈ A.

• Symbols in positions that are not scanned do not change:

– Assume at time i , the symbol in position j is σ. If at time i the symbol in
position k is scanned, the symbol σ in position j will stay σ:

{vi , j ,σ, wi ,k,n , vi+1, j ,σ} for 0 ≤ i ≤ B ,σ ∈ A,−1 ≤ n ≤ N and −B ≤ j ,k ≤ B
with j 6= k.

• The output of the algorithm is 1:

– At the end, at time B the symbol in position 1 is 1:
{vB ,1,1};

– At the end, the symbol in position 2 is t:
{vB ,2,t}.

Now it remains to show that C (x) is satisfiable if and only if x ∈ Y .
" =⇒ " Let x ∈ X and assume C (x) is satisfiable with a satisfying truth assignment T .
We will show that x ∈ Y by giving a certificate c for x. Let c ∈ l (x) with c j = 0∀ j with
T (v0,si ze(x)+1+ j ,0)=TRUE and c j = 1 otherwise. The construction above represents
the computation of Φ on input x#c. Since C (x) is satisfiable, the output of the
algorithm is output(Φ, x#c) = 1. By Definition 17 it now follows that x ∈ Y .
" ⇐= " Assume x ∈ Y and let c be a certificate for x.

Now consider the computation of the the Turing machineΦ on input x#c. De-
fine T (vi , j ,σ)=TRUE if and only if at time i , in position j the symbol is σ. Also
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define T (wi , j ,n)=TRUE if and only if at time i , the symbol that is scanned is in po-
sition j and the state it is in is n. Furthermore, if the computation is done, we want
the symbols to stay the way they are: for i = m + 1, ...,B set T (vi , j ,) := T (vi−1, j ,σ)
and T (wi , j ,n) := T (wi−1, j ,n) ∀ j ,n and σ. Now T is a truth assignment satisfying
C (x). ■

3-DimensionalMatching
The next step is to prove that 3-Dimensional Matching (3DM) is NP-complete, by
reducing SATISFIABILITY to 3DM. The question that needs to be solved for a 3DM-
problem is, given 3 disjoint sets and edges that match one element from each set,
can we find a subset of these edges such that all elements are matched exactly
once? In Figure A.3 two examples are given that illustrate the following definition.

Definition 18 (3-Dimensional Matching). Given 3 disjoint sets X ,Y , Z of equal car-
dinality and a set of edges E ⊆ X ×Y × Z . Is there a subset S ⊆ E such that |S| = |X |
and for each pair (x, y, z), (x ′, y ′, z ′) ∈ S one has x 6= x ′, y 6= y ′ and z 6= z ′?

Figure A.3: Two examples of a 3DM instance. The left one has a solution, the right one does not.

Theorem 5 (Karp, 1972). 3DM is NP-complete.

Proof. Obviously 3DM is in NP. We need to prove 3DM is NP-hard. We will do
this by polynomially reducing SATISFIABILITY to 3DM. Consider a collection C of
clauses C1, ...,Cm over X = {x1, ..., xn}. We will construct an instance (X ,Y , Z ,T ) of
3DM in such a way that it is a yes-instance if and only if C is satisfiable. Define the
3 disjoint sets, all with cardinality 2nm:

X := {x j
i , xi

j : i = 1, ...,n; j = 1, ...,m}

Y := {y j
i : i = 1, ...,n; j = 1, ...,m}∪ {y y j : j = 1, ...,m}∪ {y y y j

k : k = 1, ...,n −1; j = 1, ...,m}

Z := {z j
i : i = 1, ...,n; j = 1, ...,m}∪ {zz j : j = 1, ...,m}∪ {zzz j

k : k = 1, ...,n −1; j = 1, ...,m}
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Now define all matching edges E :

E1a := {(x j
i , y j

i , z j
i ) : i = 1, ...,n; j = 1, ...,m}

E1b := {(xi
j , y j

i , za
i ) : i = 1, ...,n; j = 1, ...,m; a = 1, ...,m, where ym+1

i := y1
i and a = j

unless i = n, then a = 1}

E1 := E1a ∪E1b

E2a := {(x j
i , y y j , zz j ) : i = 1, ...,n; j = 1, ...,m; xi ∈C j }

E2b := {(xi
j , y y j , zz j ) : i = 1, ...,n; j = 1, ...,m; xi ∈C j }

E2 := E2a ∪E2b

E3a := {(x j
i , y y y j

k , zzz j
k ) : i = 1, ...,n; j = 1, ...,m;k = 1, ...,n −1}

E3b := {(xi
j , y y y j

k , zzz j
k ) : i = 1, ...,n; j = 1, ...,m;k = 1, ...,n −1}

E3 := E3a ∪E3b

E := E1 ∪E2 ∪E3

Note that in E2 the clauses of C are defined. C is satisfiable if and only if all clauses
are true. Given the constructed edges and sets, we will now prove that (X ,Y , Z ,E)
is a yes-instance if and only if it is a satisfying truth assignment.
" =⇒ " Assume (X ,Y , Z ,E) is a yes-instance and let S ⊆ E be a solution. Since S is a
solution, all elements in X , Y and Z must be matched by edges in S. An illustration
is given in Figure A.4, with m = 2 and n = 2. E1, E2 and E3 exist of 2 sets of matching
edges, a and b. The set a is drawn as a continuous line, b as a dotted one. The

Figure A.4: Illustration of the 3DM instance used in the proof of Theorem 5.

red lines represent E1, the blue lines E2 and the yellow lines E3. In the figure we

can easily see that the elements y j
i and z j

i for all i and j are only matched by red
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lines. Also, combining red dotted lines with red continuous lines is not possible in
a solution. Hence we have 2 options:

1. S ∩E1 = E1a , i.e. all red continuous lines are in the solution S. Set xi to false. Since
y y i still must be matched, only the blue dotted lines can be used. They are all
connected to the x j

i , so the literals are both true. Hence we have a satisfying truth
assignment.

2. S ∩E1 = E1b , i.e. all red dotted lines are in the solution S. Set xi to true. Since
y y i still must be matched, only the continuous blue lines can be used, which are
now connected to the true xi

j , so again the literals are both true. Hence we have a
satisfying truth assignment.

Hence, a 3DM yes-instance implies a satisfying truth assignment.
" ⇐= " Assume we have a satisfying truth assignment. Then the blue lines in the
solution are either all dotted, or all continuous. So, there are 2 options:

1. S ∩E2 ⊆ E2a , i.e. a subset of the blue continuous lines match y y j and zz j for j =
1, ...,m. Define these lines a set S2 ⊆ S. S2 has cardinality m. The only option to

match y j
i and z j

i for all i and j are all the lines in E1b . We have a set S1 ⊆ S of
cardinality nm.

2. S∩E2 ⊆ E2b , i.e. a subset of the blue dotted lines match y y j and zz j for j = 1, ...,m.

Define this as a set S2 ⊆ S of cardinality m. The only option to match y j
i and z j

i for
all i and j now, are all the lines in E1b . Again we have a set S1 ⊆ S of cardinality nm.

In both options we see that for each distinct (x, y, z), (x ′, y ′, z ′) ∈ S1 ∪ S2 we have
x 6= x ′, y 6= y ′ and z 6= z ′. Obviously we can add (n−1)m elements from E3 to S1∪S2,
to complete a solution. Hence, a satisfying truth assignment implies a 3DM yes-
instance. ■

Bin-packing
The proof of the following theorem is based on a proof written by Papadimitriou in
1982 [13].

Theorem 6. Given an instance I of a bin-packing problem. It is NP-complete to
decide whether I can be solved with B bins.

Proof. Clearly the problem is in NP, because we can easily verify in polynomial
time that a given partition is feasible. It leaves us to show that all other problems in
NP polynomially reduce to this decision problem. We shall reduce 3-Dimensional
matching to it.

Given the sets of nodes X = {x1, ..., xn}; Y = {y1, ..., yn} and Z = {z1, ..., zn} and
the set of triples T = {t1, ..., tm} ⊆ X ×Y × Z . We are asked whether there is a set of
n triples in T , such that each node in X , Y and Z is contained in exactly one of the
n triples.

We will construct an instance of bin-packing that has N = 4m items. Each triple
in T corresponds to an item, denoted simply t j . Furthermore, each occurrence
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of a node in X , Y , and Z to a triple corresponds to an item. Let ui ∈ X ∪Y ∪ Z .
Then ui will be denoted by ui [1],ui [2], ...,ui [N (ui )], where N (ui ) is the number of
occurrences of ui in the triples. The sizes of the items are shown below:

triple (xi , y j , zk ) ∈ T has weight 10M 4 +8− i M − j M 2 −kM 3

xi [q] has weight

{
10M 4 + i M +1 if q = 1
11M 4 + i M +1 if q > 1

y j [q] has weight

{
10M 4 + j M 2 +2 if q = 1
11M 4 + j M 2 +2 if q > 1

zk [q] has weight

{
10M 4 +kM 3 +4 if q = 1
8M 4 +kM 3 +4 if q > 1

Here, M is a very large number, say 100n. Note that there is a difference in size
between (arbitrarily) the first occurrence and the other occurrences of the nodes
in X , Y and Z . Define the bin capacity C := 40M 4 + 15. This capacity makes it
possible to fit exactly one triple and one node of all three sets X , Y and Z as long
as the nodes are either all three or none of the three a first occurrence. There are
m bins, as many as triples.

Assume all items fit into m bins. Note that the sum of all items is mC . Hence,
each bin must be full. Also, note that the weight of each item is strictly between 1

5
and 1

3 . Hence, each bin must contain four items. We have C mod M = 15. Given
are the numbers 1, 2, 4, and 8. Even if we allow repetition, there is only one way
to get the number 15 by choosing four numbers: each number must be chosen
once. Furthermore, the sum modulo M 2 must also be 15, so (i ′− i ) ·M +15 = 15
mod M 2, thus i = i ′. Similarly, taking the sum modulo M 3 and M 4, get j = j ′ and
k = k ′. Each bin thus contains a triple t = (xi , y j , zk ), together with xi ∈ X , y j ∈ Y
and zk ∈ Z . Furthermore, since 40M 4 must be reached, either all three occurrences
are first occurrences or none of them are. Hence, there are n bins that contain only
first occurrences, the n triples in these bins form a 3-Dimensional matching.

Conversely, assume a 3-Dimensional matching exists. Making sure that the
triples in the matching get first occurrences of all three members, we can fit all
items into the m bins by matching each triple with occurrences of its members. ■

Picnic’s bin-packing problem is two-dimensional (each item has a weight ánd a
volume). Corollary 2 says that the decision problem version of the two-dimensional
bin-packing problem is also NP-complete. It is therefore our goal to find an algo-
rithm in this thesis that outputs an approximation of a solution with an acceptable
small error instead of finding a solution, assuming P 6= N P .

Corollary 2. Given an instance of a two-dimensional I bin-packing problem. It is
NP-complete to decide whether I can be solved with B bins.

Proof. Clearly it is in NP to decide whether I can be solved with B bins. It leaves
us to show that it is NP-complete. Consider a bin-packing instance I1 that is one-
dimensional; each item has a volume and each bin has a volume capacity V . Adding
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weight 0 to each item and adding the weight capacity W to each bin gives us an in-
stance of a two-dimensional bin-packing problem. Obviously this is a yes-instance
if and only if I1 is a yes-instance. We see that one-dimensional bin-packing is a spe-
cial case of two-dimensional bin-packing. We may conclude that it is NP-complete
to decide whether a two-dimensional bin-packing problem instance can be solved
with B bins. ■
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A.2. Project for data accuracy
For a highly efficient supply chain, we need information about Picnic’s products.
To be able to run the algorithm for tote-calculation, the weight and volume is nec-
essary. For the construction of the picking shelves, the packaging type and three
product characteristics need to be known: fragility, stackability and contaminat-
ing. Picnic has purchased a 3D measurement device that should give accurate
data. The data accuracy project consisted of four main tasks:

1. Writing measurement instructions

2. Training Picnic workers to do the measurements

3. Creating a data-validation system

4. Doing a fill-rate analysis on new data

The first, third and fourth tasks are written down below.

Task 1. Writing measurement instructions
Certain product characteristics need to be known to create an efficient logistical
flow. These characteristics are Fragility, Stackability and Contaminating. To un-
derstand how to decide whether a product has a certain characteristic, it should
be known exactly what is meant by the characteristic. After that, it can be decided
how to write a decision instruction in such a way that everybody would assign the
same characteristics to a certain product. I decided to create flow-charts. Each
flow-chart is a decision tree where answering the questions will eventually lead to
whether a product has a characteristic or not.

Fragility
Picnic wants their products to arrive in a perfect condition at their customers.
Therefore they want fragile products to be picked at last, to make sure that they
are at the top in a bag. These products should get the label fragile. Intuitively these
are the products that you cannot lay under a 2L pack of milk. Note that fragility in
different companies can mean something different. For example, a company that
sells and delivers glasses would consider itself to handle fragile products. Since
Picnic delivers their groceries in a hard plastic crate, glass bottles should not get
the label fragile. Examples of products that should get the label fragile at Picnic are
raspberries, eggs and chips. The flow-chart to decide whether a product is fragile
is shown in Figure A.5:

As you might notice, the fragility flow-chart includes a subjective question,
namely "Does the packaging break easily when a 2L pack milk is laid on it?". I
recognize the subjectivity. After trying to change this, I noticed that the decision
tree became harder to use. Discussing the problem with several Picnic people lead
to the decision to keep the subjective question in the flow-chart.
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Figure A.5: Flowchart for the characteristic Fragile.

Stackability
In the distribution center, the shelf capacity should be used as much as possible.
Therefore, it is important to know whether a product can be stacked. If so, several
layers can be placed on top of each other, to reduce the needed shelf space. There
are products that intuitively can be stacked, but in practice should not be stacked.
For example products that have a glass packaging should never be stacked due to
safety reasons. The flow-chart to decide whether a product can be stacked is shown
in Figure A.6. There has been a discussion about the definition of a stackable prod-
uct. It is clear that for example shoe boxes can be stacked, but what about bags of
rice? Two layers are fine, but the more bags you will stack, the more the stack will
look like a pyramid. I learned that Picnic plans the shelf filling such that only a few
layers are used. Therefore a bag of rice is considered stackable.

Contaminating
Picnic collects a lot of data through the feedback it gets from customers. This way,
it showed that some people dislike the idea of having a chemical product or animal
food in the same bag as the food they eat. Therefore the characteristic Contami-
nating needs to be checked for every product. The flow-chart to decide whether a
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Figure A.6: Flowchart for the characteristic Stackable.

product is contaminating is shown in Figure A.7. Unlike the fragility flow-chart, it
is easy to wright down in an objective way whether a product is contaminating or
not. There are only three categories of products that should be labeled as contam-
inating: animal food in a soft packaging, chemicals that are not used for cleaning
humans and barbecue products.

Measurement instruction
1. Grab the product and scan the barcode.
2. Take a picture of the ingredient list (only applicable for food products)

(a) Keep the list in front of the camera
(b) Make sure the lens is focussed on the list
(c) Press the button with the camera symbol

3. Put the product on the plate in the following way:

(a) Place it with the (scannable) barcode facing forward, unless:

• It’s a fluid (fluids always upright!)
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Figure A.7: Flowchart for the characteristic Contaminating.

• The barcode facing forward is an unstable way of placing the prod-
uct

• The product is damaged if the barcode is facing forward (ready
meals must always stand upright)

(b) Make sure the product is placed as straight as possible against the line.

4. Push “start”. The product will be measured now.
5. Fill in the fields Packaging type, Fragility, Contaminating and Stackability ac-

cording to the corresponding flow-charts
6. Press “Save” and take the product off the plate
7. Check if all values below “Meetresultaten” are 0. If so, go to step 8.

(a) If not, press “kalibreren”. All values should be 1 now

• If not, send the supervisor a slack-message. Do not continue mea-
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suring.

8. Put the product back and start with step 1 again with the next product.

Task 2. Creating a data-validation system
It is clear that the flow-charts can be interpreted differently by different people.
Furthermore, if the device is not calibrated in the right way, fault data will be pro-
duced. Therefore data-validation needs to be done. There are two ways to vali-
date the measurements. The first is to compare the measurement to the data that
is known. Although the existing data is not very reliable, measurements should
stand out if the total volume or weight differs much. Also fragility, contaminating
and stackability are already known in the old database, so the new characteristic
can be compared to the old data. The second way to validate a measurement is
in the measurement itself. Cross-checks can be executed. For example, a bottle
(packaging type) is never fragile (product characteristic).

1. Compare measurements to old data:

• Volume and Weight

– If the differences are over 20%, remeasure

• Fragile/Stackable/Contaminating

– If old and new data differ, check photo
– Fill in yes or no according to flow-charts

2. Cross-check

• If the following data occurs, check photo and fill in yes or no according
to flow-charts:

– (Fragile) and (Blister pack, Bottle, Crate, Bucket, Jar, Can, Tube,
Pack, Contaminating)

– (Contaminating) and (Fragile, Not packed, Pack, Vacuum Tray,
Net)

– (Stackable) and (Bottle, Tube)

– (Not stackable) and (Bucket)

If a measurement did not make it through the validation, it was measured again an-
other day. The data validation that is described, has been programmed in Python.

Task 4. Doing a fill-rate analysis on new data
As soon as the new data will be implemented, there will fit a different amount of
products in a tote. On one hand this could mean that in the FC products will be
stuffed in a tote. This could cause product quality loss. On the other hand it could
mean that with the new data unnecessarily much air will be moved and thus make
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unnecessary costs. In other words, a fill-rate analysis had to be done to make sure
the logistical process of Picnic would not lose efficiency. From now on, the data
Picnic used to use is called Previous data and we assume the measurements are
correct, hence call them Actual data.

For this analysis a week of customer-orders is used. The current bin-packing al-
gorithm is analyzed, to be able to simulate how many totes are used for one order.
For this analysis, the interesting totes are the volume restricted totes. Therefore
all volume restricted totes are filtered for the three temperature zones; ambient,
chilled and frozen. It is compared how full they were according to the previous
data with how full they actually were. Not only the average differences were ana-
lyzed, but also the distribution of the actual volumes if the previous volume was
near to the maximum volume was analyzed.

Ambient
Looking at the totes that where volume restricted, we see the following:

Previous volume: 78.43%
Actual volume: 76.46%
Average decrease: 1.98%

In Figure A.8 you see a graph where the darker line shows how full Picnic thought a
tote was, with a corresponding lighter line that shows the exact data. As expected

Figure A.8: Previous versus Actual volume fill-rate of ambient totes.

because of the average decrease of only 1.98%, we see a line that is very close to the
original line. To see what the variation is of the actual volume versus the previous
volume, a histogram follows with all the actual volumes corresponding to previ-
ous volumes 84% and 85% in Figure A.9. We see almost a normal distribution, but
with a little bit more area to the left of the peak. This means that there have been
more totes that were filled up to less than the maximum volume than the other
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Figure A.9: Actual distribution for previous fill-rate of 85% of ambient totes.

way around. Combining this with the average volume decrease of 1.98%, imple-
menting the actual data without adjusting the tote-calculation could cause more
overfull totes.

Chilled
As the name suggests, in chilled totes products are packed that are cold. Therefore
there are ice-packs packed into each tote. The tote-calculation does not take these
into account. Looking at the chilled totes that where volume restricted, we see the
following:

Previous volume: 81.29%
Actual volume: 72.44%
Average decrease: 8.85%

In Figure A.10, you see a graph where again the darker line shows how full Picnic
thought a tote was, with a corresponding lighter line that shows the exact data.
As for the ambient totes, it was expected to see this lighter line under the darker

line, but here we see that the difference between the previous- and actual volume
differs more as the maximum volume is reached. The histogram with all the actual
volumes corresponding to previous volumes 84% and 85% is shown in Figure A.11.

Again we see more area to the left of the peak. The same applies to the chilled
area: not adjusting the tote-calculation could cause more overfull totes.

Frozen
As for the chilled totes, there are extra cooling products packed in the frozen totes.
Also here we could say therefore that the the totes are actually fuller. Looking at
the frozen totes that where volume restricted, we see the following:
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Figure A.10: Previous versus Actual volume fill-rate of chilled totes.

Figure A.11: Actual distribution for previous fill-rate of 85% of chilled totes.

Previous volume: 68.64%
Actual volume: 75.99%
Average increase: 7.35%

Note that unlike ambient and chilled, there is an average volume increase. Again,
you see a graph where the darker line shows how full Picnic thought a tote was,
with a corresponding lighter line that shows the exact data.

Normally, frozen products are ordered less than ambient and chilled products.
Consequently, a frozen tote being volume restricted is rare. Therefore a histogram
as shown for ambient and chilled with only the totes that are previously filled up
to 84% and 85% does not give much information. For that reason the histogram is
not shown here.

The increase in volume means that the totes have been filled up to a higher
volume than previously thought.
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Figure A.12: Previous versus Actual volume fill-rate of frozen totes.

Recommandations
It is important to understand that because the actual ambient and chilled volume
is less than the previous volume, there fit more products in one tote than previ-
ously thought. On one hand this is positive news since eventually less totes need
to be used per customer-order. On the other hand, untidiness during the packing
process can cause air between the products in the tote. The more products, the
more air. Hence, the more products you can put in one tote, the lower the maxi-
mum volume used in the tote-calculation should be.

Currently the the totes are filled up to 85% of the maximum volume in each
temperature zone. As we can see in the analysis above, the potential adjustment
should be different for every zone. Theoretically the ambient and chilled fill-rates
should be decreased as much as the average volume decrease and the frozen fill-
rate should be increased as much as the average volume increase. It is advised not
to do this.

Recently, Picnic has been using the new data without adjusting the fill-rate.
I would not recommend to adjust the fill-rate based on this analysis, because it
would increase the costs for ambient and chilled, while the practice now shows
that the fuller totes are fine to work with.

Last but not least, this analysis is based on the idea that the current fill-rate of
85% works for Picnic. This analysis answers the question how to adjust the fill-
rate such that in practice the totes will remain to be filled up to the same volume.
However, one of the reasons that the artificial fill-rate is set to 85% has to do with
the reliability of the data. Since the reliability has increased, the fill-rate should
also be increased and not decreased.
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