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Abstract

I
n this dissertation, we address the problem of performance efficient mul-

tithreading execution on heterogeneous multicore embedded systems. By

heterogeneous multicore embedded systems we refer to those, which

have real-time requirements and consist of processor tiles with General Pur-

pose Processor (GPP), local memory, and one or more coprocessors running

on reconfigurable logic ((e)FPGA). We improve system performance by com-

bining two common methods. The first method is to exploit the available

application parallelism by means of multithreading program execution. The

second method is to provide hardware acceleration for the most computation-

ally intensive kernels. More specifically our scientific approach is as follows:

we categorize the existing program execution models from the processor–

coprocessor synchronization prospective and we introduce new parallel ex-

ecution models. Then, we provide a high-level architectural abstraction of

those execution models and programming paradigm that describes and utilizes

them. Furthermore, we propose a microarchitectural support for the identified

execution models. The functionality of the microarchitectural extensions is en-

capsulated in a new reconfigurable coprocessor, called Thread Interrupt State

Controller (TISC). To improve the overall system performance, we employ the

newly proposed program execution models to transfer highly time-variable and

time-consuming Real-Time Operating System (RTOS) and application kernels

from software, i.e., executed on the GPPs, to hardware, i.e., executed on the

reconfigurable coprocessors. We refer to this reconfigurable coprocessor as

Hardware Task Status Manager (HWTSM). Due to the properties of the newly

introduced execution models such as parallel execution and constant response

time, we preserve the predictability and composability at application level.

Last but not least, we introduce a framework for distribution of slack informa-

i



tion (idle processor time) among processor tiles. In the proposed framework

we employ one of the newly introduced parallel processor–coprocessor execu-

tion models. We refer to the new reconfigurable coprocessor as RS. We use the

extra slack information obtained through our framework for Dynamic Voltage

Frequency Scaling that reduces the overall energy consumption.

Based on the available experimental results with synthetic and real applica-

tions, we improve the system speedup up to 19.6 times with the help of the

Thread Interrupt State Controller. Furthermore, we reduce RTOS cost with the

help of the Hardware Task Status Manager, which results in additional appli-

cation acceleration up to 13.3%. Last but not least, we improve the system

energy consumption up to 56.7% over current state of the art with the help of

inter-tile remote slack information distribution framework.

Overall, with the help of our contributions, the system performance is im-

proved, the predictability and composability are preserved, all with reduced

energy consumption.
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1
Introduction

I
n this dissertation, we address the problem of performance efficient mul-

tithreading execution on heterogeneous multicore embedded systems. By

heterogeneous multicore embedded systems we refer to those, which

have real-time requirements and consist of processor tiles with General Pur-

pose Processor (GPP), local memory, and one or more coprocessors running

on reconfigurable logic.

We organize the rest of the chapter in five sections. Section 1.1 outlines the

trends in contemporary embedded systems. Section 1.2 introduces the research

problems targeted by this dissertation. Section 1.3 describes the proposed solu-

tion for the identified problems. Section 1.4 lists the contributions. Section 1.5

outlines a conceptual computing system with our contributions. The introduc-

tory chapter concludes with Section 1.6, which overviews the organization of

the dissertation.

1.1 Trends in Modern Embedded Systems

Many contemporary embedded systems execute an increasing number of ap-

plications that demand high performance. In what follows, we summarize the

main trends in the state of the art real-time embedded systems that target high

performance computing:

• Multicore systems: Initially, the multicore systems have been designed

to accelerate the computationally intensive applications in the general

purpose domain on desktop platforms. Nowadays, we can observe a

1



2 CHAPTER 1. INTRODUCTION

clear trend of multicore and manycore processors to be employed in

commercial embedded products.

• Reconfigurable systems: By reconfigurable systems, we intend (embed-

ded) FPGAs. In the recent years, reconfigurable systems are considered

by many platform designers as a flexible solution in hardware accelera-

tion for computationally intensive applications. Moreover, most of the

high-end FPGA families have hard-coded processors and provide sup-

port for multiple softcores, as well. Examples of such heterogeneous

reconfigurable systems are Spartan™ and Virtex™ product families by

Xilinx, and Cyclone™ product families by Altera.

• Concurrent programming paradigms: There are different approaches

to efficiently exploit the application parallelism and utilize the plat-

form resources. One of them is to partition applications into multiple

threads and execute them in parallel, also known in literature as Thread

Level Parallelism (TLP). Examples of such programming paradigms

for threads are POSIX Threads (PThreads), while for task examples

are OpenMP, Message Passing Interface (MPI), Kahn Process Net-

works (KPN), data-flow, etc.

The execution of the concurrent programming paradigms on underlying het-

erogeneous resources can be managed statically at design time, e.g., by a

compiler or static schedulers, or dynamically at run-time, e.g., by a Real-

Time Operating System (RTOS). Such an RTOS is responsible for managing

the available system resources, while preserving the application functional-

ity. Throughout this dissertation, we mainly consider the dynamic (RTOS)

approach, because the application domain properties of the targeted embedded

devices, i.e., hand-held devices, requires frequently changes of the set of active

applications or threads at run-time.

1.2 Research Problems

Many recent real-time embedded computer systems such as mobile phones

and smart TVs need to run multiple applications in parallel to ensure their

complete functionality. This is often achieved by multithreading. On such

embedded devices, the multithreading concept has been thoroughly developed

at software level with adequate hardware support. Nevertheless, the problem

has been even less explored in the case of reconfigurable multicore systems,
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which need multithreading execution to efficiently utilize the system resources.

In this dissertation, we investigate embedded multicore reconfigurable systems

in a multithreading context. Our goal is to propose software and hardware

solutions for performance efficient multithreading on multicore reconfigurable

systems. To achieve our goal, we identify the following sub-problems which

are then addressed in this dissertation:

• Facilitate programmability while providing high performance: The

overall system performance is usually defined by the system throughput,

latency, and responsiveness. Very often, the overall system performance

depends on the way programmers encode application algorithms. There-

fore, it is vital to employ a proper programming paradigm, which facil-

itates the programmers to create performance efficient execution codes

for their algorithms.

• Preserve predictability: The predictability is a required property of real-

time embedded systems. Usually, the predictability is associated with

guaranteeing the worst-case bounds of the application and RTOS execu-

tion. In this dissertation, we target the problem of preserving RTOS pre-

dictability by limiting the dependencies between RTOS execution time

and application properties, i.e., the analyses of the worst-case bounds

are leveraged.

1.3 Proposed Approach

To solve the above-mentioned general research questions, in this dissertation

we propose the following approach:

• To improve system programmability, we propose a programming

paradigm with a set of new processor–coprocessor execution models.

The newly introduced programming models are verified with high per-

formance, predictability, composability, and energy consumption crite-

ria. Furthermore, the proposed approach is independent of the function-

ality of the considered application or Operating System.

• To improve the system performance, we reduce the RTOS cost by em-

ploying architectural and microarchitectural extensions for managing

multithreading workloads and moving selected RTOS services on a ded-

icated hardware (coprocessor).
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Figure 1.1: Software /hardware partitioning

• To improve the system predictability, we reduce the execution time vari-

ations of the software kernels that can be part of a user application or

RTOS services.

In Figure 1.1, we summarize the general steps necessary to transfer a given

software kernel to a dedicated coprocessor. Initially, the pure software version

of the investigated application or RTOS service is assumed to be available. In

the first step, by profiling, we transform the original application to a part with

constant and a part with variable execution time software. In the second step,

the most computationally intensive and time variable parts of the applied algo-

rithms are identified for acceleration. We consider two possibilities - case A

and case B, of the variable software which can be candidate for hardware ac-

celeration. In case A, the hardware variability is minimal, while in case B,

the hardware has constant execution time. By hardware, we refer to either

reconfigurable or fixed, depending on the available platform resources. As a

result of the introduced hardware, the remaining software kernel is expected

to have shorter and possibly constant execution time compared to the original

version. Based on the application properties, the introduced hardware, i.e., co-

processors, should execute the applications faster in hardware than software-

only implementation. In such a way, we improve the performance and the

predictability.
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1.4 Dissertation Contributions

In this dissertation, our main contributions are summarized as follows:

• We propose architectural extensions that allow multithreading applica-

tions and RTOS to co-execute in software and in reconfigurable hard-

ware (coprocessors). More specifically, we extend the processor inter-

rupt system, the register file organization, and we propose support for

hardware task synchronization at the instruction level. We encapsulate

the newly introduced microarchitectural extensions in a Thread Inter-

rupt State Controller (TISC). Furthermore, we provide a new Real-Time

Interrupt Service Routine (ISR) to support the new interrupt system.

We provide analytical and experimental comparison of our proposal to

the state of the art proposals in terms of performance-portability and

performance-flexibility characteristics.

• We generalize and classify the existing processor–coprocessor concur-

rent execution models with respect to the employed synchronization

mechanism in the following categories: processor only, processor–

coprocessor sequential, processor–coprocessor parallel blocking,

processor–multicoprocessors parallel blocking.

• We introduce new execution models for the processor–coprocessor

paradigm, called processor–coprocessor parallel non-blocking and

processor–multicoprocessors parallel non-blocking. Unlike the

processor–coprocessor sequential and parallel blocking models, in par-

allel non-blocking models, software thread is never blocked during

processor–coprocessor call, which potentially gains performance and

preserves predictability.

• We introduce a hierarchical programming model capable of providing

flexible task migration from software to hardware, exploiting inter- and

intra-thread parallelism. These types of parallelism are investigated on a

real reconfigurable system working in processor–coprocessor execution

models.

• We provide a comprehensive survey on the existing reconfigurable mul-

tithreading (ρMT) architectures. We propose a taxonomy that classi-

fies these architectures in three distinctive categories with respect to

their architectural support of reconfigurable multithreading. These cate-

gories are: reconfigurable architectures with explicit ρMT support, with
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implicit ρMT support, and no ρMT support. Moreover, we list the

most common design problems and we state some of the open research

questions addressing performance efficient management, mapping, shar-

ing, scheduling and execution of threads on reconfigurable hardware re-

sources.

The proposed processor-coprocessor execution models are a general solution

for various problems in the real-time embedded systems. First, we apply the

execution models to improve the performance and second to guarantee com-

posability and reduce energy consumption. Composability means that the be-

haviour of an application, including its timing, is independent of the presence

or absence of any other application. With respect to the composability and

energy consumption, our contributions are as follows:

• We propose a Hardware Task-Status Manager (HWTSM) responsible for

tracking and computing the status of user tasks. The HWTSM targets

data-flow real-time applications employing First-In-First-Out (FIFO)

communications. The HWTSM operates in the newly introduced par-

allel non-blocking model.

• We propose a run-time framework for slack computation, allocation, and

distribution targeting applications with tasks mapped on multiple tiles.

We augment the tiles of an existing MPSoC with hardware that gener-

ates timestamps and we extend the RTOS accordingly. Since the newly

introduced hardware is related with slack received from others, i.e., re-

mote tiles, we called this hardware RS (Remote Slack). The RS operates

in the newly introduced parallel non-blocking execution model.

1.5 Conceptual Computing System

In Figure 1.2, we introduce hardware and software of a conceptual comput-

ing system extended with our contributions. As an example of the conceptual

computing system, we choose a Multiprocessor System-on-Chip (MPSoC).

The exemplary MPSoC is composed of tiles, connected through a Network

on Chip (NoC). Each tile has a processor (e.g. RISC core), instruction and

data memory, and two types of coprocessors - fixed (e.g. Direct Memory Ac-

cess (DMA) controller) and reconfigurable.

From a software perspective, we consider multiple user applications to be exe-

cuted on the conceptual MPSoC. Furthermore, we assume that the computing
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Figure 1.2: Conceptual computing system extended with our contributions

resources in the tile processor can be shared in time among multiple applica-

tions. We deliver the temporal management through an instance of a Real-

Time Operating System (RTOS). The RTOS is responsible for scheduling the

applications.

In Figure 1.2, we illustrate our contributions in shaded blocks. We intro-

duce a set of (micro-)architectural extensions (see 1 ) to support the vari-

ous processor-coprocessor execution models. As a result of our approach,

reconfigurable coprocessors are shared among RTOS services and user appli-

cations. Furthermore, we introduce parts of the RTOS in hardware (see 2 ),

i.e, TISC, HWTSM, and RS, and the corresponding RTOS interface (see 3 ).

These RTOS reconfigurable coprocessors are accessible through RTOS drivers

and application interface (see 4 ). At application level, we provide sup-

port for processor-coprocessor execution models in various programming

paradigms (see 5 ).

1.6 Dissertation Organization

The rest of the dissertation is organized as follows: background Chapter 2 pro-

vides an overview of the reference architectures, RTOSes, and programming
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models considered throughout the dissertation for proofs of concepts and pro-

totyping.

Chapter 3 defines our general approach towards solving the targeted research

problems. First, we introduce a conceptual model of the targeted class of re-

configurable system and we specify our contributions. In what follows, we

describe the existing and newly introduced concurrent execution models for

processor–coprocessor paradigms. We propose a new programming paradigm

and we provide a comparison to data-driven programming models. We con-

clude the chapter by listing the proposed reconfigurable coprocessors, imple-

mented as Molen-style CCUs operating in the newly introduced execution

models.

Chapter 4 applies the general approach to accelerate parts of the RTOS such as

Thread Interrupt State Controller (TISC). The TISC executes in the processor-

coprocessor/multiprocessor parallel blocking execution model. We describe

the proposed architecture and microarchitectural extensions in detail – hard-

ware components and interfaces, including XREGs, polymorphic instruction

implementations, controller and interrupt management.

Chapter 5 also applies the general approach to accelerate parts of the RTOS

such as the Hardware Task-Status Manager (HWTSM). The HWTSM is a

Molen-style CCU that accelerates part of the RTOS scheduling routines. The

HWTSM executes in the processor-coprocessor parallel non-blocking model.

We provide a quantitative comparison of the possible microarchitectural im-

plementations. We describe the internal organization of the HWTSM, and we

cover the relevant software integration details to the existing system.

Chapter 6 applies framework for slack information distribution among the

processor tiles in a MPSoC. We employ the slack to reduce the energy con-

sumption of the system. We achieve the goal by introducing a Molen-style

CCU called Remote Slack (RS) CCU. The RS CCU operates in processor-

coprocessor parallel non-blocking model.

Chapter 7 presents the experimental results for TISC, HWTSM, and RS CCUs.

For the TISC, we evaluate the performance improvement and we compare our

proposal with the most relevant research projects in terms of performance-

portability and performance-flexibility characteristics. For the HWTSM CCU,

we list the potential application performance improvement. For the RS CCU,

we provide the experiments for the obtained frequency levels in each one the

cores on which the targeted application is mapped. Moreover, we compare the

energy consumption of our proposal with existing state of the art solutions.

We also provide an estimation on the overall potential gains on a conceptual
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architecture, which combines all three CCUs.

Chapter 8 introduces a taxonomy of the existing reconfigurable architectures

with respect to their support of multithreading. Furthermore, we summarize

several relevant design problems.

Finally, Chapter 9 summarizes the dissertation, outlines the contributions, and

points to potential future directions.





2
Background

I
n this chapter we introduced the reference architectures, corresponding

RTOSes, and accompanying terminology for the considered program-

ming models used in this dissertation for proofs of concept and proto-

typing.

2.1 Reference Architectures and RTOSes

In this dissertation, we consider two types of architectures, which we aug-

ment with the Molen processor–coprocessor prototype [111]. We choose these

architectures to be representatives of single and multicore platforms. As a

single-core platform, we employ the MIPS R3000 RISC core [83]. As a multi-

core platform template, we use the CompSoC platform [37]. We conclude the

section with the list of FPGA chip generations on which we implement the

targeted architectures.

2.1.1 The Molen Machine Organization

In Figure 2.1, we present the Molen Polymorphic Processor organiza-

tion [111]. The Molen Polymorphic Processor consists of a General Pur-

pose Processor (GPP) and a Reconfigurable Processor (RP) operating under

the processor–coprocessor architectural paradigm. In the Molen context, the

implementations of application specific functionalities in reconfigurable hard-

ware are called Custom Computing Units (CCUs), therefore we assumed the

same terminology further in this dissertation. The processor has an arbiter,

11



12 CHAPTER 2. BACKGROUND
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Figure 2.1: The Molen polymorphic processor

which partially decodes and issues instructions to either of the GPP or the RP.

A general one-time extension of the instruction set is proposed to support an

arbitrary functionality implemented in the CCU. Six of the eight additional in-

structions are related to the RP and two to the parameters transferred between

the GPP and the RP through exchange registers (XREGs). The RP related in-

structions, support different variations of the set–execute paradigm, described

in detail in [110]. The very basic operations of the RP are “set” and “exe-

cute”. The “set” instruction configures the CCU for a particular functionality

and the “execute” instruction performs the actual computation on the CCU.

The set–execute model can be supported by an additional “break” instruction,

providing synchronization in a sequential consistency programming paradigm.

2.1.2 PlasmaCPU (MIPS R3000) and RTOS

We choose the MIPS R3000 32-bits RISC micorprocessor as a representa-

tive of a single-core architecture. More specifically, we employ the Plasma

CPU [83] which has been already implemented as a softcore on an FPGA chip.

In Figure 2.2, we introduce a block-diagram of the PlasmaCPU microarchitec-

ture. The PlasmaCPU has three-stage pipeline and supports bidirectional serial

port, interrupt controller, and hardware timer. The PlasmaCPU is shipped with

a fully functional Real-Time Operating System (RTOS) that supports threads,

semaphores, mutexes, message queues, timers, heaps, an interrupt manager.

As a scheduling scheme, the authors use Round-Robin. The user applica-

tion can be organized in one or multiple threads following a simplified POSIX

PThreads-like [22] application model.
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2.1.3 CompSoC and CompOSe

We employ the tiled CompSoC platform [9] as a baseline template for our

multiprocessor design. More specifically, we employ the organization of the

tiles presented in [11]. Each tile contains one processor core and multiple lo-

cal memory modules. In Figure 2.3, we present a simplified top-view of the

CompSoC platform. In this particular implementation, the system is config-

ured with two tiles connected through an dAElite NoC [96]. The local data

memory in each of the tiles is organized in three blocks. The first one is Dmem

Figure 2.3: Baseline CompSoC architecture
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which is employed for local data storage only. The second and the third ones,

Cmem.In and Cmem.Out respectively, are dual-port memories, used for inter-

tile communication. The Imem is used for storing the applications and RTOS

executable binaries. All these memories are accessible by the processor [11].

Each user application is partitioned into tasks, following a data-flow [54] ap-

plication model. The data-flow graph is mapped on a MPSoC, thus multiple

tasks might be running and communicating to each other in parallel. The com-

munication between the tasks is performed through FIFO circular-queues that

are memory-mapped and implemented in software using the C-HEAP pro-

tocol [73]. A task is ready, i.e., eligible for execution, if there is enough

data to operate on, i.e., the input FIFOs are not empty, and there is enough

space to produce their data in, i.e., the output FIFOs are not full. Reading

and writing in a circular FIFO is implemented with a read counter (rc) and

a write counter (wc). Thus the amount of data in the queue, hence the task

status, is determined by the values of these two counters. In Figure 2.3, we

depict the rc/wc and FIFO memory locations. The local (per tile) data mem-

ory (Dmem) hosts synchronization and data information for tasks which com-

municate locally, i.e, within the tile. In tile 1, locally communicating tasks

exchange data though FIFO1 with the help of wc1 and rc1 counters. In tile 2,

the FIFO for local communication is FIFO2 with rc2 and wc2. In Figure 2.3,

we also visualize the location of the rc/wc and FIFOs in the Cmem.In and

Cmem.Out for a case when a task mapped on tile 1 (FIFO3p) communicates

with a task on tile 2 (FIFO3c).

The CompSoC platform is designed to be predictable and composable. These

characteristics are delivered by the hardware and the light-weighted RTOS

called CompOSe [36]. The RTOS provides two-level scheduling, intra-

application and inter-application, on each core. The first level uses a static

scheduling policy, i.e., Time Division Multiplexing (TDM). The second level

is responsible for task scheduling and may follow various policies, such as

Round-Robin.

In Figure 2.4, we list the sequence of steps during the communication of two

data-flow tasks through a FIFO. A producer is a task, which writes tokens to

a FIFO and a consumer is a task, which reads those tokens. Furthermore, the

FIFO is implemented by read and write counters, and a circular queue. In Fig-

ure 2.4 at instance 1 , the producer task checks for its firing rules (i.e, whether

there is sufficient space in the FIFO) by: queue size – (wc–rc) ≥ req size,

where req size is the required size for the tokens to be written. If the requested

space is available, the producer task proceeds to the computation operation. At
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Figure 2.4: Producer–consumer implementation of data-flow programming model

instance 2 , producer task completes its computation and writes token(s) and

updates wc to the FIFO. Later, at instance 3 , the consumer task checks for its

firing rules (i.e., whether there is data available) by: wc–rc ≥ req size, where

req size is the required size (e.g. number of tokens) for a single task iteration.

If the condition is satisfied, the consumer task proceeds to the compute opera-

tion. At instance 4 , during produce operation, the consumer updates the rc to

the FIFO.

2.1.4 Considered FPGA Chip Families

In this dissertation, we consider three FPGA chip families by Xilinx. We im-

plement the PlasmaPCU augmented with the Molen-style coprocessor on the

Xilinx Virtex II XC2VP30 FPGA chip using the XUPV2P Prototyping Board.

For the CompSoC platform augmented with the Molen-style coprocessor, we

employ two implementations - on the Xilinx Virtex 5 ML510 (XC5VFX130T)

and Xilinx Virtex 6 ML605 (XC6VLX240T) evaluation boards. Nevertheless,

the presented ideas in the dissertation are not limited to these FPGA chip fam-

ilies.

2.2 Data-driven Parallel Programming Models

The “killer” performance application for the contemporary real-time embed-

ded devices such as mobile phones and smart TVs are encoding and decod-

ing applications for various audio and video formats. Such applications are

often referred as streaming applications [103]. Recently, it becomes a com-

mon practise to represent streaming applications with data-driven program-

ming paradigm [18]. The data-driven paradigm is a model of computation [70]

in which program statements describe the data to be matched and the process-

ing required rather than defining a sequence of steps to be taken [100]. In the
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Figure 2.5: a) An application with four processes mapped on a single processor; b)

an exemplary execution schedule of the same application;

data-driven programming model, a streaming application, written in high-level

abstraction language, is presented as a set of autonomous code segments.

In the domain of streaming applications, the real-time embedded system is

often required to deliver predefined performance. By performance, we mean

to guarantee end-to-end throughput or latency requirements. Therefore, re-

searchers apply different set of restrictions on the data-driven programming

model in order to improve the execution time analysis. Two popular data-

driven programming paradigms are Kahn Process Network (KPN) [45] and

data-flow [54]. In these programming paradigms, the autonomous compu-

tational code regions are referred to processes (KPN) or actors (data-flow).

Both entities have clearly defined input and output communication channels.

Each communication channel is presented by First In First Out (FIFO) queue.

The synchronization is achieved by exchanging atomic data elements, called

tokens, passed through the communication channels. Throughout the disserta-

tion, we apply the same terminology. By introducing the following example,

we clarify the differences between processes (KPN) and actors (data-flow).

In Figure 2.5.a, we present an application executed on a single processor. The

application is composed of four processes - P1, P2, P3, and P4, respectively.

The processes are communicating through FIFO queues - f1, f2, and f3. Fur-

thermore, each FIFO queue can accommodate up to 2 tokens. In Figure 2.5.b,

we present an exemplary execution schedule of the same processes.

In Algorithm 2.1, we provide a code snippet of the process body function

P2 body(in f1, in f2, out f3) as an example of a KPN process. The KPN pro-

cess is characterized by three basic operations – read, compute, and write. A

distinctive KPN property is that these operations can be invoked at any order.

During the read operation a data preserved in input FIFOs, e.g., f1 and f2, is
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read. During the compute operation, the same set of data is processed and

during write operation it is written to the output FIFOs. In Algorithm 2.1, de-

pending on the value of the input token, preserved in X, the process compute

operation varies. Thus, the value of the generated result, denoted as Z, depends

on the value of X, i.e., the process can return variable output. Therefore, KPN

processes are good design choice to express complex dynamic behaviours, de-

pendent on the values of the inputs. The main drawback of the KPN is its

dynamicity, which do not allow computation of throughput or latency of the

graph.

Algorithm 2.1 An example of KPN process.

Function P2 body(in f1, in f2, out f3)

1: read(f1,X );
2: if X > 0 then

3: Z = compute1(X );
4: else

5: read(f2,Y )
6: Z = compute2(X ,Y )
7: end if

8: write(f3,Z );

Algorithm 2.2 An example of CSDF actor.

Function P2 body(in f1, in f2, out f3)

1: consume(X = f1,Y = f2);
2: Z = compute(X ,Y );
3: produce(f3 = Z );

In Algorithm 2.2, we list the content of P2 body(in f1, in f2, out f3) function

in case the data-flow programming model is considered. Similarly to KPN

processes, the data-flow actors have three operations – consume, compute, and

produce. As the operation names suggest, during consume operation all in-

put tokens are read from the input FIFOs. During the compute operation,

all manipulations are performed over the input tokens. During produce op-

eration, the data are transferred to the output FIFOs. Contrary to the KPN

process, the sequence of these three operations should always remain con-

stant. Moreover, an actor is started only when its firing rules are satisfied.

By firing rules, we refer to the required number of input and output FIFO

tokens during single actor iteration. As described in [19], based on the con-

sumption and production rate together with the firing rule setup, there are nu-
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merous data-flow paradigms such as Single-Rate Data-Flow (SRDF), Multi-

rate Data-Flow (MRDF), Cycle-Static Data-Flow (CSDF), and Dynamic Data-

Flow (DDF). In this dissertation, we consider CSDF as representative of the

analysable data-flow graphs. The CSDF model has the following key char-

acteristics: periodically varying rates and bounded execution time per actor

iteration. The main drawback of the CSDF is that it is difficult to express the

behaviour of complex dynamic applications.



3
Proposed Approach –

Concurrent Execution Models and

Programming Paradigm

Note. The content of this chapter is based on the following paper:

P. G. Zaykov and G. K. Kuzmanov and A. M. Molnos and K. G. W. Goossens,

Hardware Task-Status Manager for RTOS with FIFO Communication, To

appear in Proc. Int’l Conf. on ReConFigurable Computing and FPGAs (Re-

ConFig), 2014

I
n this chapter, we describe in detail two of our main contributions,

namely: a classification of the concurrent execution models for the

processor–coprocessor concept and new programming paradigm support-

ing concurrent multithreading execution on reconfigurable and multicore plat-

forms. Furthermore, we provide a comparison between the proposed program-

ming paradigm and two popular data-driven programming models - Kahn Pro-

cess Networks (KPN) and Cycle-Static Data-Flow (CSDF). The chapter con-

cludes with details on the practical applicability of the introduced execution

models and the proposed programming paradigm.

19
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CHAPTER 3. PROPOSED APPROACH –

CONCURRENT EXECUTION MODELS AND PROGRAMMING PARADIGM
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Figure 3.1: Processor–coprocessor execution models
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3.1 Concurrent Execution Models

Once the functionality of the coprocessor is identified, the next step is to

choose the synchronization model between the processor and the coprocessors

and the execution model of the coprocessor. We split processor–coprocessor

execution models in six categories based on the employed synchronization

mechanism, as visible in Figure 3.1. For the sake of the example we con-

sider four computationally intensive kernels, represented as A, B, C, and D. In

the discussion that follows, we assume that only B and C are accelerated on

coprocessors.

Below, we describe each processor–coprocessor execution model:

I Processor only, as presented in Figure 3.1.I, is used as reference. We

consider B and C to be eligible for acceleration. In Figure 3.1.I, the B

starts at instance 1 and C finishes at instance 2 .

II Processor–coprocessor sequential, as depicted in Figure 3.1.II, is com-

monly used to accelerate various computation intensive kernels in a co-

processor. To preserve the functional consistency, a software applica-

tion is blocked after its coprocessor has started. In Figure 3.1.II, at in-

stance 3 , the coprocessor is executed on a hardware Custom Computing

Unit (CCUB+C). When CCUB+C finishes execution, it returns the pro-

gram control to the processor, illustrated in Figure 3.1.II, at instance 4 .

Depending on the duration of the coprocessor execution and the system

requirements, CCUB+C can generate an interrupt or can raise a flag on

which the application waits or polls.

III Processor–coprocessor parallel blocking, as presented in Figure 3.1.III,

allows concurrent execution of a processor (software) and a coproces-

sor (hardware). With the help of hardware synchronization blocks, like

those described in Chapter 4, the CCUC is started at instance 5 and syn-

chronized with processor at instance 6 . In Figure 3.1.III, the software

functionality, denoted as B, finishes earlier than CCUC. To preserve the

application consistency, the software remains blocked until CCUC com-

pletes its execution. Alternatively, B can finish later than CCUC.

IV Processor–multicoprocessor parallel blocking, as presented in Fig-

ure 3.1.IV, is an extension of the model in Figure 3.1.III, with multiple co-

processors executed in parallel. With the help of processor-multiprocessor

parallel blocking, we gain performance from hardware acceleration and
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Figure 3.2: Processor–coprocessor parallel non-blocking: an example

parallelism. In Figure 3.1.IV, at instance 7 , the coprocessors are started.

At instance 8 , only after all coprocessors are finished, the software exe-

cution is resumed. Cases II and IV in Figure 3.1 are in essence the task-

sequential and task-parallel modes in Chapter 4, respectively.

V Processor–coprocessor parallel non-blocking, as introduced in Fig-

ure 3.1.V, is one of the contributions in this thesis. To our best knowledge,

we are the first to use this execution model in the processor–coprocessor

context. Compared to the processor–coprocessor sequential and paral-

lel blocking models, the software execution in the parallel non-blocking

model is never blocked during the coprocessor execution. Note that once

CCUB+C is started, it finishes only at the request of the processor, i.e.,

the processor does not need to restart CCUB+C every-time its results are

needed. Therefore, in parallel non-blocking execution model, the cost to

restart the CCU is entirely avoided. In Figure 3.1.V, at instance 9 , af-

ter CCUB+C is started from the processor, CCUB+C needs several cycles

until the newly computed result is available at instance 10 in Figure 3.1.

Later, at instances 11 and 12 in Figure 3.1.V, the processor reads back

the CCUB+C result.

In Figure 3.2, we present the processor–coprocessor parallel non-blocking

execution model in details. At instances 1 and 4 , the CCUB+C pro-

cesses new data. At instances 2 and 5 , the coprocessor result, marked

as r1 and r2, is available to the processor. Note that a new coprocessor

ri+1 value always overwrite an existing ri value. Later, at instances 3

and 6 , the processor fetches the new result from the coprocessor. Within

the parallel non-blocking execution model, we differentiate two modes

of operation: 1. successive approximation and 2. state approximation, re-

spectively. In the successive approximation execution, each consecutive

coprocessor result has higher accuracy than the previous one. Therefore,

the processor might read multiple coprocessor results until the value with
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the required accuracy is available. In the state approximation, the copro-

cessor result has the most recent status of a software or hardware com-

ponent. Examples of modules capable to operate in state approximation

mode could be potentially any of the services in a single-threaded OS,

such as checking task-status and task scheduling policy. We will demon-

strate these processor-coprocessor models in Chapter 5. Note that for both

parallel non-blocking execution models, we assume that the coprocessor

result ri always remain valid until ri+1 is available.

VI Processor–multicoprocessor parallel non-blocking in Figure 3.1.VI is an

extension to case IV from Figure 3.1. In Figure 3.1.VI, we attach mul-

tiple coprocessors to the processor, where each coprocessor runs in par-

allel non-blocking execution model. At instance 13 , both CCUs, CCUB

and CCUC, are started. The CCUs need several cycles until the newly

computed result is ready, marked by instances 14 and 15 . Later, at

instances 16 and 17 , the processor fetches the CCUs status.

3.2 Programming Paradigms

In this section, we introduce a new programming model that supports the

processor–coprocessor execution models from Section 3.1. Then, we com-

pare our programming model to two popular data-driven programming mod-

els, in particular, Kahn Process Networks (KPN) [45] and Cycle-Static Data-

Flow (CSDF) [19], respectively.

3.2.1 The Proposed Programming Model

Nowadays, there are several widespread multithreading paradigms, such as

POSIX Threads (PThreads) [22] and OpenMP [24]. Because of the fact that

any of the existing multithreading paradigms needs to be modified in order

to accommodate management for reconfigurable resources, we propose a new

hierarchical programming model. The proposed programming model is appli-

cable as an extension to any of the existing standards.

Hierarchical Programming Model: The proposed hierarchical programming

model has explicit communication between threads and between successive

tasks of each thread, i.e., communication and synchronization is performed

before a task starts or after task completes. We address an embedded system,
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where a processor core has multiple reconfigurable coprocessors. A recon-

figurable coprocessor is presented by Custom Computing Unit (CCU), which

is an evolution of the Molen reconfigurable microcode processor. In order to

simplify the software complexity, we partitioned the executed programming

code in three abstraction layers - application, thread, and task. An example

is illustrated in Figure 3.3. The application layer accommodates multiple user

applications, running independently from each other. Each one of the applica-

tions could be composed of one or multiple threads, dynamically created and

terminated.

The second level of this abstraction model is the thread layer, where applica-

tion threads and RTOS kernel service threads co-exist. At this level only, we

positioned control and data dependencies between the threads. In the example

of Figure 3.3, we assume that Application 1 has two threads - Thread A and

B, which are communicating between each other. In our programming model,

the communication/synchronization channel is established through the RTOS

in tasks K1 and K2.

A user thread contains one or multiple tasks. These tasks are the building

blocks of the third layer. Depending on where a task is executed, we distin-

guish two types of the tasks: a function and a CCU task. When a task is

executed in software, we refer to it as to a software function; when a task

is executed in reconfigurable hardware, we refer to it as to a CCU task. We

adopted the term from the Molen Machine Organization (see Section 2.1). All

tasks are non-blocking, i.e., have the following property - when started, they

do not communicate with each other, i.e., they do not exhibit any control or

data dependencies. In software, a task, being a function, receives a set of input

parameters, performs computations and returns a result. These input parame-

ters are transferred through the processor registers and the program stack. In
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hardware, the task input parameters are transferred through preassigned ex-

change registers, described in Section 4.3. A special “execute” instruction is

invoked to start the execution of a task on a reconfigurable logic. When the

CCU completes, it writes back the computed result to a dedicated exchange

register or in a designated location in the shared memory.

Inter-thread and intra-thread parallelism: For simplicity, we assume that

the RTOS is running on the processor only, scheduling two user threads -

Thread A and Thread B, depicted in Figure 3.4. The corresponding execution

pseudo-code of these threads is listed in Figure 3.5. Each thread is composed

of multiple tasks, some executed on CCUs, others in software. In Thread A,

f11 runs CCU1 and in Thread B, tasks f21, f22 are executed on CCU2 while

f23 runs on CCU3. An example of software executed task/function is f12 from

Thread A. The time slots during which the thread runs on reconfigurable logic

are marked by solid lines. The thread execution time on the processor is de-

noted by a dashed line. The thick solid line marks the time when Thread A is

blocked during communication/synchronization with Thread B.

The programming model supports two levels of parallelism - inter- and intra-

thread corresponding to two execution modes - task-sequential (processor–

coprocessor sequential) and task-parallel (processor–multiprocessor parallel

blocking). The type of the execution mode is determined whether one or

more tasks in a thread are running in parallel at the same time. For task-

sequential and task-parallel modes, the task parallelism is determined by the

location of the special “barrier” instruction in the programming code. Al-

though processor–coprocessor parallel non-blocking execution model has a

similar properties to task-parallel mode, we exclude it from the classification

for the sake of simplicity.

Task-sequential mode addresses inter-thread parallelism - in this mode, each

CCU is executed sequentially. When it is finished - it signals back the proces-

sor, and the corresponding thread continues its execution. In task-sequential

mode, only one task per thread can be running at the same time. An example

is task f11 from Thread A in Figure 3.5.

Task-parallel mode addresses intra-thread parallelism - in this mode, multi-

ple hardware CCUs and/or software functions from the same thread could be

co-executed in parallel. In Figure 3.5, such tasks are f21, f22, and f23 from

Thread B. The concurrent execution of CCUs inside of a single thread mimics

the traditional out-of-order execution. The CCU synchronization is controlled

at the software level by a dedicated barrier instruction, described in more detail

in Section 4.3.
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Figure 3.4 also visualizes a scenario when the system has to execute CCUs ac-

quiring more reconfigurable resources than the available ones. We assume that

all CCU resource requests are always granted and multiple CCUs can be se-

quentially executed on the same hardware. For example, in Figure 3.5, Thread

B - tasks f21 and f22 use identical CCUs. The only differences between the

CCU invocations, from f21 and f22, are the values of their input parameters.

Therefore, they can be mapped on the same CCU and can be executed sequen-

tially, one after another.

val=f11(arg1, arg2)

barrier_wait

f12(arg1)

....

....

send(Thread B, data)

Thread A

f21(arg1,arg2)

f22(arg1,arg2)

val=f23(arg1,arg2)

...

barrier_wait

recv(Thread A, data)

Thread B

Figure 3.5: Execution code of Thread A and Thread B



3.2. PROGRAMMING PARADIGMS 27

KPN
Our Progr.

 Model

1.

CSDF

actor

task

1:1

process

1:N

task

Processor
(functions)

Coprocessor
(CCUs)

I     II   III

IV   V    VI

Execution 

models

thread

Any

task

2.

3.

4.

Programming Model

Abstraction 

Level

S
W

H
W

Architecture

Implementation

Task

Application

Figure 3.6: Comparison of CSDF, KPN, and our programming model

3.2.2 Comparison of the Proposed Programming Model to KPN

and CSDF

In this section, we provide a comparison between the proposed programming

model to KPN and CSDF. In Figure 3.6, we present the three programming

models altogether. As it was introduced in Section 2.2, the basic entity of the

KPN is the process. A process intersperses computation and synchronization

sections, and thus has computation sections with variable size. That’s why, a

process can have one or multiple tasks. The mapping between process and task

is 1:N. The basic entity of the CDSF is the actor. An actor always have read,

compute, and write sections, i.e., actor has one task for a specific input tokens

and firing rule setup. That’s why, we define the mapping between an actor and

a task to be 1:1.

In our programming model, we have threads composed of one or multiple

tasks. Furthermore, thread communication and synchronization is not lim-

ited to FIFO channels only. For example, it could be done through complex

data structures using semaphores and mutexes. Moreover, multiple tasks can

be executed in parallel, exploiting the intra-thread parallelism. Therefore, we

identify that the mapping between thread and task to be any, i.e., 1:1 or 1:N.

Independently from the applied programming model, a task can be executed in
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one of the two types of computing resources – either on the processor or on one

of the reconfigurable coprocessors. If a task is executed on the processor, then

we refer to it as a to software function. If it is executed on a coprocessor, i.e.,

reconfigurable logic, then we refer to it as to a CCU task. We synchronize the

processor and the coprocessor, implementing the execution models presented

in Section 3.1.

3.3 Conclusions

In the chapters to follow, we apply the processor–coprocessor execution mod-

els on multiple Molen-Style coprocessors, referred as Custom Computing

Units (CCUs). The proposed coprocessors accelerate computationally inten-

sive and highly variable execution time kernels in hardware. The examined

kernels contain parts of application and RTOS, employing different application

execution paradigms, e.g., data-flow and PThreads. In such a way, we demon-

strate that the proposed execution models are independent from the application

execution paradigm and they are very general. Briefly, the functionalities of

the proposed Molen-style coprocessors are as follows:

• Thread Interrupt State Controller: We examined the processor–

coprocessor/multicoprocessor parallel blocking execution model by the

Thread Interrupt State Controller (TISC). The TISC allows parallel ex-

ecution of tasks over one or multiple coprocessors. The TISC is im-

plemented as an extension of the Molen-style “barrier” instruction. Our

experiments contain synthetic and real applications. Further details of

the TISC are revealed in Chapter 4.

• Hardware Task-Status Manager: We examined the processor–

coprocessor parallel non-blocking model by the Hardware Task-Status

Manager (HWTSM). The HWTSM CCU is applied on Multiprocessor

System-on-Chip (MPSoC), targeting data-flow applications composed

on multiple tasks. More precisely, the HWTSM CCU determines the

execution eligibility of tasks from FIFO-filling information. More de-

tails on the HWTSM CCU are provided in Chapter 5.

• Remote Slack Distribution: We apply the processor–coprocessor par-

allel non-blocking execution model for a CCU. The CCU takes part in

a run-time technique for slack computation, allocation, and distribution

framework targeting applications with tasks mapped on multiple tiles in
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an MPSoC. We refer to the slack transferred from one tile to another as

Remote Slack. We name the CCU as RS CCU, respectively. We provide

more detail for the RS CCU in Chapter 6.
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Thread Interrupt State Controller

Note. The content of this chapter is based on the the following papers:

P. G. Zaykov and G. K. Kuzmanov, Architectural Support for Multithreading

on Reconfigurable Hardware, Proc. Int’l. Symp. on Applied Reconfigurable

Computing (ARC), 2011, pp. 363–374

P. G. Zaykov and G. K. Kuzmanov, Multithreading on Reconfigurable

Hardware: an Architectural Approach, Microprocessors and Microsys-

tems (MICPRO), Vol. 36, Issue 8, 2012, pp. 695–704

I
n this chapter, we address the problem of organization and management

of threads on a multithreading custom computing machine composed of a

General Purpose Processor (GPP) and Reconfigurable Coprocessors. We

target higher portability, flexibility, and performance of the perspective design

solutions by means of a strictly architectural approach. Our proposal to im-

prove overall system performance is twofold. First, we provide architectural

mechanisms to accelerate applications by supporting computationally inten-

sive kernels with reconfigurable hardware accelerators. Second, we propose an

infrastructure capable of facilitating thread management. Besides the architec-

tural and microarchitectural extensions of the reconfigurable computing sys-

tem, we also propose a hierarchical programming model. The model supports

balanced and performance efficient SW/HW co-execution of multithreading

applications. We demonstrate that our approach provides better performance-

portability and performance-flexibility trade-off characteristics compared to

other state of the art proposals through experiments reported in Chapter 7.

31
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4.1 Introduction

Reconfigurable embedded devices often require multiple applications to be ex-

ecuted concurrently. A common strategy to encapsulate various application

functionalities in a conventional software system environment is to use multi-

threading. Typically, a Real-Time Operating System (RTOS) is employed to

manage the dynamic creation, execution, and termination of multiple threads.

If the hardware platform is composed of a reconfigurable logic and a General

Purpose Processor (GPP), the RTOS should be capable of efficiently mapping

the running threads on the available reconfigurable hardware resources. Due to

its heterogeneity, the platform complexity and respectively RTOS service cost

have grown rapidly. As a result, some of the conventional RTOS kernel ser-

vices should be optimized to be able to fully exploit the new high performance

system capabilities.

The primary objective of this work is to improve the overall performance of

the heterogeneous reconfigurable systems following the multithreading ex-

ecution paradigm. We provide architectural and microarchitectural mecha-

nisms to accelerate RTOS kernels and applications in hardware as an exten-

sion to the Molen reconfigurable coprocessor [110]. The proposed program-

ming model efficiently exploits the hardware architectural and microarchitec-

tural augmentations. The introduced architectural model does not depend on

either a specific GPP architecture, nor on any reconfigurable fabrication tech-

nology. Therefore, our approach is highly flexible and allows easy portability

to different reconfigurable hardware platforms. More specifically, the main

contributions of this chapter are:

• Clear definition of the problem of multithreading execution on reconfig-

urable machines in terms of portability, flexibility, and performance.

• Architectural extensions that allow multithreading applications and

RTOS to co-execute in software and in reconfigurable hardware. More

specifically, we extend the processor interrupt system, the register file

organization, and we modify hardware task synchronization at the in-

struction level.

• Microarchitectural extensions, which support the newly introduced

Thread Interrupt State Controller (TISC). A Real-Time Interrupt Service

Routine (ISR) is provided to support the new interrupt system.

• A hierarchical programming model capable of providing flexible task

migration from software to hardware, exploiting inter- and intra-thread
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Figure 4.1: Processor–coprocessor sequential and processor–multicoprocessor paral-

lel blocking execution models considered for the TISC

parallelism. These types of logic parallelism are investigated in a

real reconfigurable system working physically in task-parallel and task-

sequential modes.

• Analytical and experimental comparison between state of the art pro-

posals in terms of performance-portability and performance-flexibility

characteristics.

The remainder of the chapter is organized as follows. The problem defini-

tion and related work are presented in Section 4.2. Section 4.3 describes the

proposed architecture and microarchitectural extensions in detail – hardware

components and interfaces, including XREGs, polymorphic instruction imple-

mentations, a TISC controller and interrupt management. Finally, Section 4.5

concludes the chapter and outlines some future research directions.

4.2 Problem Definition and Related Work

In this chapter, by introducing a strictly architectural approach, we address

the problem of multithreading on heterogeneous systems containing recon-

figurable resources. More specifically, we investigate this problem in terms

of portability, flexibility, and performance. We consider portability being the

ability to port a hardware design to different computing systems. Furthermore,

we define flexibility as the ability to change, add, or extract new functionalities

from the software into the reconfigurable hardware. Proposing proper archi-

tectural support for multithreading on reconfigurable devices can guarantee

that the programmer has the necessary control over the system resources while

fully exploiting the system performance capabilities. Furthermore, we investi-

gate the behaviour of the reconfigurable system in two modes of multithread-

ing execution, namely: task-sequential and task-parallel. In task-sequential
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mode, multiple reconfigurable accelerators are assigned to a single software

thread and executed sequentially, while in task-parallel they are executed in

parallel. The task-sequential and task-parallel modes correspond to processor–

coprocessor sequential (see Figure 3.1.II) and processor–multiprocessor paral-

lel blocking (see Figure 3.1.IV) execution models, respectively. A snapshot

of Figure 3.1 is provided in Figure 4.1 More detail on the two processor–

coprocessor execution models are revealed in Section 3.2.1.

An extended version of the related work will be discussed in Chapter 8. Here,

we briefly discuss the most relevant works to the TISC functionality and execu-

tion model. The problem of efficiently sharing hardware computing resources

among multiple threads or processes could be solved statically or dynamically.

The former involves the usage of advanced compiler techniques and the latter

employs some sort of a run-time system, say an Operating System, or a dy-

namic resource scheduler. The compiler approach solves the resource manage-

ment problem by performing different optimizations on the application control

dataflow graph. Examples of such embedded architectures with static resource

management are: MT-ADRES [119] and UltraSonic [40]. In our work, we

focus on the infrastructure for dynamic run-time approaches for resource man-

agement, therefore, we do not address any compiler related optimizations.

In the dynamic scheduling approach, assuming an RTOS is employed, parts

of the programming code, both from the Operating System and/or from the

applications, can be transferred onto reconfigurable logic. A detailed classifi-

cation of the existing reconfigurable multithreading architectures is presented

in [122]. Based on this classification, in the category of dynamic approaches,

we discuss the works reported in [64], [112] and [123]. There, the designers

improve the system performance and lower the energy consumption by trans-

ferring parts of the Operating System kernels to hardware. A similar approach

is followed by other authors, e.g., [62], [43], where a dedicated hardware re-

source manager is proposed. The manager makes decisions using heuristic

scheduling and placement algorithms. In contrast to the related works cited

above, we propose a system capable of accommodating in reconfigurable logic

parts of the user applications, as well as parts of the RTOS. These RTOS ser-

vices could be responsible not only for the scheduling of hardware tasks, but

also for the management of software tasks. The idea of accelerating RTOS

routines on reconfigurable logic, such as the scheduling of software tasks only,

has already been presented in several research projects, e.g., [25]. Our archi-

tectural proposal, however, allows to co-execute the management routines for

both software and hardware tasks on reconfigurable hardware.
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To our best knowledge, ReconOS [58] and Hthreads [79] are the most relevant

projects to our current proposal. In ReconOS [58], the authors propose the idea

of having a delegate software thread per hardware kernel. The synchroniza-

tion to/from the hardware kernels is delivered through a software intra-thread

synchronization routines. As a result, the authors increase the system porta-

bility to different heterogeneous platforms. Compared to [58], our approach

achieves better performance than ReconOS while preserving the system porta-

bility. Moreover, we demonstrate that our proposal is more flexible compared

to ReconOS. It is because the ReconOS design has a limited ability for trans-

ferring in hardware RTOS services of single-threaded Operating Systems. In

a single-threaded RTOS, the kernel services are sequentially invoked after the

occurrence of an external event, e.g., an interrupt. For such a scenario, the

concept of having a delegate thread for each computationally intensive kernel

service has a limited applicability.

In [79], the authors use dedicated RTOS modules for communication and

synchronization procedures among hardware threads. The inventors of the

Hthreads use a programming model [12] to distribute the running threads

among GPP and reconfigurable logic. The major difference between [79] and

our proposal is that we are able to migrate both user application and RTOS

thread functions while only complete application threads are moved to hard-

ware in [79]. Our model is more flexible, because it supports migration of parts

of the user thread and RTOS kernels in hardware identically.

The authors of [53] propose a heterogeneous system running an RTOS Linux.

Their system is composed of a single GPP core combined with multiple Hard-

ware Accelerators (HA). One of the contributions in [53] is the communication

cost optimization between the HAs and the GPP while an IRQ scheme is con-

sidered. The approach followed by [53] is complementary to ours, because

the authors reduce the communication cost by improving the software IRQ

protocol stack. Therefore, the hardware “barrier” instruction, proposed in this

chapter, can be employed at architecture level for achieving even lower system

cost. Furthermore, the “barrier” instruction might improve the system scalabil-

ity when a high number of HAs are executed concurrently on platforms such

as [53].

There are also projects such as Silicon OS [69], where the run-time system is

completely transferred into hardware. Such an approach is not flexible at all

and has only limited potential for future improvements, because the complete

run-time system is represented by a complex Finite State Machine (FSM).



36 CHAPTER 4. THREAD INTERRUPT STATE CONTROLLER

GPP

T
IS

C

Recon gurable Hardware

CCU1 CCU2

...

...

call CCUs

...

...

barrier_wait

...

...

ISR

...

1

5

3

4

T
h
re

a
d
 A

T
h
re

a
d
 B

2

T
h
re

a
d
 A

ti
m

e

6

Figure 4.2: A conceptual model of the Thread Interrupt State Controller (TISC) op-

eration

Instruction /Data 

Memory

31                        0

ρIRQ

ρInstr
movtx

movfx

exec

barrier

p /c set

pref. exec

pref. set

XREGs

31                0

GPP Register 

File

31                0 IRQ

Figure 4.3: Proposed architectural extensions compared to [111] (shaded blocks)



4.3. PROPOSED ARCHITECTURAL EXTENSIONS 37

4.3 Proposed Architectural Extensions

We choose the Molen Polymorphic Processor [111] as a base architecture for

our current work. The background for the Molen Polymorphic Processor can

be found in Chapter 2.1.1. Therefore, we directly proceed with the proposed

innovations.

In the original Molen design [111], multithreading was not considered, but

in [107], interleaved multithreading (IMT) was addressed and a hardware

scheduler was used instead of an RTOS. The achieved simulation performance

speedup reported in [107], with an MJPEG benchmark was 2.75, having a

theoretical maximum of 2.78. Since these results were quite appealing, we

decided to design a system with an RTOS managing multiple concurrent user

applications. Moreover, we provide the infrastructure to partition the RTOS

and transfer parts of its functionality on reconfigurable logic.

In Figure 4.2, we present a conceptual model of the TISC operation. We

demonstarte the TISC operation with an application composed of two threads

- Thread A and Thread B, respectively. Furthermore, we assume that Thread A

employs two CCUs - CCU1 and CCU2, respectively. The threads are sched-

uled by a preemptive RTOS. In Figure 4.2 at instance 1 , Thread A calls the

TISC to initiate the parallel execution of the two CCUs. After executing user

code, at instance 2 , Thread A blocks on a barrier function call and waits for

the completion of the associated CCUs. Since the Thread A is blocked, the

RTOS schedules Thread B for execution. At instance 3 , CCU1 completes its

execution and signls the TISC. At instance 4 , CCU2 completes its execution

and signals the TISC as well. At instance 5 , the TISC identifies that all CCUs

linked with barrier has completed. As a result, the TISC initiates an IRQ to the

GPP to notify Thread A. Later, at instance 6 , the RTOS schedules Thread A

for execution. With the help of the TISC, we demonstrate the task-parallel

mode.

The proposed architectural extensions with respect to [111] are visualized

in Figure 4.3 by shaded blocks. More specifically, they are: 1. new XREG

file organization; 2. modified interrupt system, extended with two software

accessible registers - ρIRQ/ρIRQ-ack; 3. we extend the “break” instruction to

support synchronization in a multithreading scenario and we call it a “barrier”

instruction.
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Table 4.1: Original Molen XREGs organization

XREG# Value

0 CCU Offset
1 Input params, CCU1

... ...
m Output param, CCU1

m+1 Input params, CCU2

... ...
n Output param, CCU2

Table 4.2: Proposed XREGs organization

XREG# Value

0 Input Thread CCU offset
1 PID OUT TID OUT –FREE–
... ...
m PID IN TID IN FID Priority

m+1 Input parameter#1 CCU1

m+2 Input parameter#2 CCU1

m+3 Output parameter CCU1

4.3.1 XREG Organization

In Table 4.1, the original Molen XREG organization is presented. The

XREG#0 stores an offset, interpreted as a starting XREG address of the input

parameters to the corresponding CCU. In our design, the XREGs are integrated

into the GPP core as an extension of the existing register file.

Because the RTOS is running concurrently to the hardware tasks, some of

the CCUs might finish at a time when a different thread has started on the

GPP. Therefore, a mechanism is needed that allows the CCU to inform the

RTOS which thread it corresponds to. Another problem occurs, if a context

switching is performed after the CCU input parameters and XREG#0 offset

are loaded, just before the “execute” instruction is fetched. Later, when the

hardware task starts, it might read a wrong offset value at XREG#0, if it has

been changed by another thread. We solve these problems by: 1. modifying

the XREG organization, as suggested by Table 4.2; and 2. pushing and popping

the contents of XREG#0 to/from the program stack during context switching.

The interpretation of the XREG parameter abbreviations in Table 4.2 is as fol-

lows: Process Identifier (PID IN), Thread Identifier (TID IN), Function Identi-

fier (FID) and Priority. Note, the Priority might be equal to the Thread priority

or custom set by the programmer. The FID is used to differentiate multiple

hardware tasks executed in task-parallel mode and having the same ρµ-code
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Table 4.3: Barrier instruction format

Opcode FID Num FID 1 FID 2

... ... ... ...

FID N FID N+1 FID N+2 FID N+3

Table 4.4: Example of the barrier instruction

Software Thread ISR

<do smth>
Barrier Instruction

<do smth>

OS Semaphore Pend
Blocked

Blocked OS Semaphore Post
<do smth>

address. If the number of tasks that acquire the same CCU is higher than the

number of the available CCUs, then these tasks will be executed sequentially,

according to their assigned priorities. We assume that the tasks scheduling

is managed by the hardware as a TISC extension. After a CCU computation

completes, it writes the result back to an XREG address calculated as the sum

of the offset address and the number of input parameters. It also writes back

its PID and TID to the PID OUT and TID OUT fields of XREG#1. They are

used by the RTOS to identify which one of the threads is ready for execution.

There is a possibility that multiple CCUs simultaneously acquire read/write

access to the XREGs. The requests are granted according to task Priorities

through an XREG Controller, designed as part of the exchange register file.

Similarly, we also design an appropriate Memory Controller.

4.3.2 Barrier Instruction

The “barrier” instruction provides synchronization mechanism used by the

RTOS to manage the CCUs execution. It is an extended version of the Molen

“break” instruction. In task-sequential execution mode, the barrier instruction

participates in each CCU invocation. In task-parallel mode, one barrier in-

struction corresponds to multiple CCU invocations indicating which of them

will be executed in parallel.

An exemplary instruction format of the barrier instruction is presented in

Table 4.3. The “barrier” instruction is encoded by the “Opcode”. The
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“FID Num” field corresponds to the number of CCUs synchronized by the

current barrier instruction. The multiple “FID *” fields indicate the Function

IDs of the corresponding hardware tasks blocked.

An example of the usage of the barrier instruction is presented in Table 4.4. Af-

ter the barrier instruction call is performed, the software thread is blocked on

a semaphore by the OS Semaphore Pend call. Later, the thread is unblocked

after all CCUs, marked by the barrier, have finished their execution. The un-

blocking is done by the OS Semaphore Post function during the Interrupt Ser-

vice Routine (ISR).

4.3.3 Interrupt Handling

In task-sequential execution mode, after a hardware task has completed, it ac-

quires access to the XREGs. When such access is granted, the CCU writes the

computed result back to the corresponding XREG. Next, an interrupt is issued

to the RTOS indicating that a task has completed. In task-parallel execution

mode, depending on the position of the barrier instruction, the CCU could be

marked as finished and possibly be reused by another task without generating

any interrupt. After an interrupt is asserted by a CCU, the ISR fetches the con-

tent of XREG#1 in Table 4.2 and unblocks the corresponding thread or kernel

service. Then, the thread is placed in the RTOS Ready queue and an ρIRQ-ack

is sent back to signal the TISC.

4.4 The Microarchitecture

We assume that the GPP has already been extended with the original Molen

architecture features and our microarchitectural augmentations are denoted

as shaded blocks in Figure 4.4. The “ρInstr. unit” is a Molen style Ar-

biter/Decoder [110], integrated in the GPP Decode stage.

Our main contribution at microarchitecture level is the Thread Interrupt State

Controller (TISC). This unit allows concurrent execution of multiple threads

having tasks co-executed in software and in hardware. The TISC controller,

illustrated in Figure 4.5, has two finite state machines (FSMs) responsible for

instruction predecoding, synchronization and interrupt management of multi-

ple CCUs. The TISC executes the “barrier” instruction at FSM 1: “TISC - New

ρ-instruction” in state “Update”. The rest of the ρ-instructions are redirected to

the Molen style coprocessor at FSM 1 in state “Redirect”. When a CCU com-

pletes, it uses “end op” signal to inform FSM 2: “TISC - IRQ Management”,
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which switches to “Check & Update NB” state. The TISC checks whether all

“end op” signals assigned to the corresponding barrier instruction have been

activated. If this is the case, FSM 2 asserts interrupt and jumps to “Send &

Wait” state to wait for an “ρIRQ-ack” signal. When a hardware task com-

pletes execution, it generates an interrupt to the processor. The interrupts are

sequentially dispatched to the GPP by the TISC Controller according to their

priority. Contrary to other approaches found in literature, e.g., [105], which

connect each hardware kernel to a separate interrupt vector, we decided to use

only one interrupt vector for all active kernels (CCUs). Thus, the achieved

system portability is at the cost of minimal time cost - no more than six ad-

ditional clock cycles are necessary for the FSMs (see Figure 4.5). It must be

noted that the proposed interrupt mechanism is applicable both in preemptive

and non-preemptive execution modes of the CCUs.

4.5 Conclusions

In this chapter, we proposed a holistic architectural support for performance

efficient multithreading execution on reconfigurable hardware. More specifi-

cally, a new programming model for inter- and intra-thread parallelism was in-

troduced and several architectural and microarchitectural improvements were

proposed. Experimental results, reported and discussed in Chapter 7 suggest

that in order to benefit from our Custom Computing Machine model, a system

programmer should consider the following recommendations: First, restruc-

ture the programming code and employ CCUs in task-parallel execution mode

whenever possible - especially when tasks have short execution times. Second,

carefully select the number and type of threads working on CCUs, because

such an action could even decrease the system performance. If the system has

hard realtime requirements, more advanced scheduling algorithms should be

employed.



5
Hardware Task-Status Manager

Note. The content of this chapter is based on the the following paper:

P. G. Zaykov and G. K. Kuzmanov and A. M. Molnos and K. G. W. Goossens,

Hardware Task-Status Manager for RTOS with FIFO Communication, To

appear in Proc. Int’l Conf. on ReConFigurable Computing and FPGAs (Re-

ConFig), 2014

I
n this chapter, we address the problem of improving the performance of

real-time embedded Multiprocessor System-on-hip (MPSoC). Such MP-

SoCs often execute data-flow applications composed of multiple tasks,

which communicate through First-In-First-Out (FIFO) queues. The tasks on

each processor in the MPSoC are scheduled for execution by an instance of a

Real-Time Operating System (RTOS). To improve performance, we propose a

Hardware Task-Status Manager (HWTSM) block that reduces the Worst Case

Execution Time (WCET) of the RTOS. The HWTSM is a Molen-style Custom

Computing Unit (CCU), a coprocessor that determines the execution eligibil-

ity of tasks from FIFO-filling information. Furthermore, we propose a new

processor–coprocessor execution model, denoted as parallel non-blocking. In

this model, the HWTSM execution overlaps with the execution of RTOS and

user applications. The HWTSM is integrated into the existing CompSoC plat-

form and this entire system is prototyped on a Xilinx XC5VFX130T FPGA

chip. In Chapter 7, we report the experimental results with the prototyped

HWTSM.

43
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5.1 Introduction

Contemporary embedded systems execute an increasing number of applica-

tions that demand high performance. Many of these applications belong to

the signal processing domain and usually require the execution of complex

audio, video, and telecommunication algorithms in real-time. Often, such

applications are partitioned into multiple tasks, which are concurrently exe-

cuted on a Multiprocessor System-on-Chip (MPSoC). Furthermore, efficient

task scheduling on each one of the processors of the MPSoC is required. A

widely accepted solution for this scheduling problem is to employ a Real-Time

Operating System (RTOS) in software.

The temporal behaviour of real-time applications on the MPSoC must be

characterizable, i.e., predictable. In turn, this implies that the RTOS should

have a worst-case bound on its execution time, i.e., a Worst Case Execution

Time (WCET). Hence, to be able to improve overall system performance, the

worst-case RTOS cost should be as short as possible. Last but not least, exist-

ing RTOSs may have extra properties meant to ease application design. Com-

posability, proposed and advocated in several real-time systems [35,48], is one

of them. Composability means that the behaviour of an application, including

its timing, is independent of the presence or absence of any other application.

This property is very important for the temporal verification of mixed-time

criticality applications that run on the same MPSoC platform [9]. Solutions

that improve RTOS performance should not invalidate composability.

We consider an MPSoC architecture in which each processor executes its own

instance of the RTOS. The RTOS typically preempts, schedules, and loads user

tasks. The exact steps involved in the RTOS execution, however, are depen-

dent on the application programming model. One popular programming model

suitable for streaming applications is data-flow [54]. A data-flow application

consists of a set of tasks that communicate through First-In-First-Out (FIFO)

queues. The RTOS schedules only tasks that are eligible for execution, mean-

ing that they have input data to operate on, i.e., input FIFOs are not empty, and

space to produce output data, i.e., output FIFOs are not full.

In this chapter, we address the problem of improving the performance of real-

time embedded MPSoCs by reducing the WCET of the RTOS. More specifi-

cally, we map one of the most time-consuming RTOS services from software,

executed on a processor, to a dedicated hardware coprocessor. In our case

this is the service responsible for checking execution eligibility of tasks by

using the FIFO-filling information. In Section 2.1.3, we provide more infor-
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Figure 5.1: Processor–coprocessor parallel non-blocking execution model considered

for the HWTSM

mation for the execution eligibility of tasks. We denote the custom copro-

cessor responsible for checking the task eligibility as Hardware Task-Status

Manager (HWTSM). The computed task-status information is used as an input

to the RTOS scheduler.

To decide how to implement the HWTSM, we first discuss different existing

possibilities for execution on the processor and co-processor(s). Second, we

propose a new processor–coprocessor execution model, denoted as parallel

non-blocking. A coprocessor, operating in parallel non-blocking execution

model, has the following characteristics: 1. it runs continuously and it does

not need to be restarted every time the processor needs the coprocessor; 2. the

processor can request a result from the coprocessor at any time; 3. independent

of its current status, the response time of the coprocessor is always constant.

We implement the HWTSM with the parallel non-blocking model (see Fig-

ure 3.1.V), hence its execution overlaps with the software execution of user

applications and RTOS services. A snapshot of Figure 3.1 is provided in Fig-

ure 5.1. The response time of the HWTSM is very short and constant, equal

to five cycles in our prototype, which leads to a significant reduction of the

RTOS worst-case cost. Furthermore, the HWTSM reduces the WCET of the

RTOS. As we will see in Section 6.4, although the HWTSM executes concur-

rently with the applications, it does not influence the applications behaviours.

The HWTSM has a constant, application-independent response time and does

not introduce additional RTOS execution variability. As a result it preserves

composability.

Summarizing, the main contributions in this chapter are as follows:

• We propose a Hardware Task-Status Manager (HWTSM), responsible

for tracking and computing the status of user tasks. The HWTSM targets

data-flow real-time applications employing FIFO communication;
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• We introduce a new execution model for the processor–coprocessor

paradigm, called parallel non-blocking model. We apply this execution

model on the HWTSM;

• We explore and demonstrate a HWTSM implementation on an FPGA

model of the CompSoC predictable and composable multiprocessor

platform [9];

To prove our concept we experiment with two synthetic applications and two

real applications, i.e., JPEG and H.264 decoders, respectively. All applica-

tions are executed on a CompSoC platform instance [9], implemented on an

FPGA. With the synthetic applications, we investigate the RTOS cost reduc-

tion by varying the scheduling policies, because they are the ones that directly

affect the number of the task-status computations. Hence, each one of the syn-

thetic applications is specifically designed to explore one of the two types of

scheduling policies - static, e.g., time-division multiplexing, or dynamic, e.g.,

Round-Robin. The experimental results on synthetic benchmarks suggest a

reduction in the WCET of the RTOS, compared to a pure software implemen-

tation, between 1.1 and 1.8 times for static scheduling policies. For dynamic

scheduling policies, this WCET reduction is between 1.1 and 3.0 times. With

real applications, the reduction in the WCET of the RTOS with HWTSM is

between 1.3 and 1.6 times, for the JPEG and H.264 decoders, respectively.

Moreover, we observe that the overall performance gain varies from 2.3% to

7.5%, when the WCET of the RTOS is reduced, respectively. The hardware

complexity of the HWTSM scales close to linearly with the number of tasks.

The remainder of the chapter is organized as follows. Section 6.2 discusses

the related work. The problem is defined through a motivating example in

Section 5.3. Section 6.4 presents the proposed solution. Section 6.5 describes

the baseline hardware platform, the internal organization of the HWTSM, and

covers the relevant software integration details. In Chapter 7, we report the

experimental results with the prototyped HWTSM. The chapter concludes with

Section 6.6.

5.2 Related Work

In this section, we discuss related projects that employ hardware acceleration

for RTOS. The related work will be discussed in detail in Chapter 8. On top

of it, we briefly discuss projects related to the HWTSM execution model and

functionality. Then, we compare our approach with hardware acceleration for
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dataflow programming models. We conclude the section, by discussing the

available processor–coprocessor execution models.

There are numerous examples of embedded systems, such as [25, 57, 64, 112]

using an RTOS to co-execute applications in software and in hardware. Al-

though these approaches target coarse-grained reconfigurable embedded sys-

tems, the same ideas can be applied with minor changes to more fabrication

technologies. In these approaches, the hardware co-processors implementing

parts of the RTOS, are used for synchronization and communication between

software and hardware. With the help of these hardware co-processors, the

application execution time is reduced without affecting the RTOS execution

time. Compared to those approaches, our goal is different: besides accelerat-

ing the applications, we also aim at reducing the (worst-case) execution time

of the RTOS.

Other related approaches [47, 49, 87] execute the RTOS scheduling policy en-

tirely in hardware. Compared to them, we leave the scheduling policy in soft-

ware. In such a way, the system programmer is not restricted to any particular

scheduling policy and can employ the most suitable one to fulfil the system

specification.

Some other proposals [69] go even further in RTOS acceleration by completely

implementing the RTOS in hardware. Due to the fact that RTOS is substituted

by a complex Finite State Machine (FSM), the approach is less flexible and

limited for future improvements, e.g., substituting scheduling policy or chang-

ing the programming model.

To the best of our knowledge, we are the first to propose a hardware co-

processor performing FIFO tracking and computing task-status for data-flow

applications. Hereafter, we list the research projects that employ data-flow

programming models and transfer computationally intensive kernels in hard-

ware. The Communication Assists (CA), by Shabbir et al. [90] and by Kyri-

acou et al. [52], are examples of hardware acceleration in the domain of em-

bedded data-flow systems. In [90], user tasks are executed in non-preemptive

mode without employing Operating System, where FIFO communication and

FIFO management are entirely integrated in hardware. Moreover, Shabbir et

al. [90] do not consider a processor–coprocessor paradigm, i.e., their CA is

a stand-alone hardware accelerator. Therefore, the HWTSM might be used

to augment their system, if task preemption is supported and RTOS is em-

ployed. The proposed CA in [52] provides only a Network on Chip (NoC)

abstraction and memory management. It is employed to decouple communi-

cation from the computation without affecting the RTOS execution time. Both
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approaches [90], [52] are orthogonal to ours in the sense that they accelerate

different parts of the Operating System.

Tumeo et al. [106] propose a custom Direct Memory Access (DMA) controller.

Similar to CA [90], the proposed DMA controller optimizes execution time of

user tasks, by reducing the time cost involved remote memory operations. The

proposed Hardware Task-Status Manager has a similar execution behaviour

to DMAs, in a sense that both are running in parallel to the software. In

fact, the DMA controller can be considered to be executed in what we refer

as processor–coprocessor parallel blocking model, described in Section 6.4.

Furthermore, the DMA signals back the processor by setting a flag and the

DMA might have a buffer. The DMA buffer enables temporary storage of

multiple DMA invocations. Therefore, their work is different than our new

execution model, i.e., processor–coprocessor parallel non-blocking. Contrary

to the DMAs, the HWTSM is not influencing the communication cost, i.e.,

we are not directly accelerating the application execution, but rather the RTOS

execution. As a result, both, the DMAs and the HWTSM, could be employed

together to improve system performance.

In the domain of execution models for coprocessors, Rupnow et al. [86] in-

troduce three preemption methods for hardware accelerators, executed on re-

configurable logic. Contrary to our new execution model, they assumed that if

a software thread is preempted, the associated hardware accelerator should be

blocked, dropped or rollbacked. A blocked hardware accelerator is stalled until

the corresponding software thread is activated once again. The generated out-

put of a dropped hardware accelerator is discarded. Finally, a roll-backed hard-

ware accelerator is restated from the software when the software thread again

becomes active. Compared to our classification of processor–coprocessor,

their approach falls into what we refer as a processor–coprocessor sequential

execution model for the hardware accelerators.

Lange et al. [53] propose an embedded system running RTOS Linux. Their

system is composed of a single processor combined with multiple hardware ac-

celerators. One of the contributions is an execution model for hardware accel-

erators. This execution model corresponds to what we refer to as a processor–

coprocessor parallel blocking model. Therefore, their work is not related to

our contributions, which consider a different processor–coprocessor execution

model.
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Figure 5.2: RTOS & application execution scenarios. a) RTOS in SW; b) RTOS in

SW/HW with slack; c) RTOS in SW/HW with performance gain;

5.3 Motivating Example

We assume that each application is composed by a set of tasks. The tasks are

scheduled by an instance of a RTOS, running on each core in a MPSoC plat-

form. Each task is executed in one or more constant time slots, denoted as

application slots. Each application slot is followed by an RTOS slot in which

the RTOS stores the current task context, schedules, and loads the next task.

Because the system has to be predictable, the execution time of the RTOS

needs to be boundable. Moreover, if the system needs to be composable, then

the size of the RTOS time slot should be constant and equal or longer than the

WCET of the RTOS [9]. Our goal in this chapter is to achieve high application

performance while preserving the predictability and composability of the sys-

tem. We improve the application performance by reducing the WCET of the

RTOS.

Figure 5.2 provides a motivating example by presenting the execution profile

of a predictable and composable real-time embedded system in three scenarios.

We assume that an RTOS schedules two applications - A1 and A2. Application

A1 comprises two tasks T11 and T12. Application A2 contains only one task -

T21. In Figure 5.2.a, we present a scenario when user applications and RTOS

kernel services are executed on a single processor. The white spaces indicate

processor idle periods, denoted as slack, which occur when the RTOS finishes

earlier than in its WCET. Figure 5.2.b illustrates a case when at least one of

the RTOS services that has a highly variable in execution time is transferred to
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hardware for acceleration. As a result, the WCET of the RTOS is minimized,

which preserves predictability and composability, and improves performance.

In Figure 5.2.c, the RTOS time slot is made smaller due to the new reduced

WCET of the RTOS. As a result of the short RTOS time slot, the overall system

performance is improved. Note, that in all three scenarios, the size of the

application slots is left unchanged.

We aim at minimizing the WCET of the RTOS. Two main procedures exe-

cute during the RTOS time slot: 1. context switching and 2. scheduling. The

minimization of the context switching time is already solved in fine-grained

simultaneous multithreading architectures, by having a dedicated register file

for each one of the hardware contexts [55]. Thus we aim to improve only

the RTOS scheduling procedure running on each of the cores of an MPSoC

platform. The scheduling procedure is composed of two parts - computing

the status of application tasks and the scheduling policy itself. In this chap-

ter, we aim to accelerate the computing task-status procedure in hardware, and

preserve the flexibility to implement any scheduling policy in software.

5.4 Proposed Solution for the HWTSM

In Figure 5.3, we detail the execution profile of the proposed HWTSM for

one processor core. After that, since the parallel non-blocking processor–

coprocessor model (see Figure 3.1.V) is employed, tracking and computing

the status of tasks is performed in parallel to the software execution. In our

example, at instances 2 and 3 , user tasks read/write from/into their in-

put/output FIFOs. This results in updated read/write counters of the FIFOs, as

well as indirectly triggers the calculation of a new task-status by the HWTSM,

as indicated by arrows in Figure 5.3. The HWTSM computational intervals

are marked by Update Status, and are overlapped with the execution of the

user tasks. The status update may also be triggered by remote read/write into a
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FIFO from a task mapped on another core, as exemplified at instance 4 . Later,

at instance 5 , the RTOS scheduler fetches the task-status from HWTSM. Note

that, while the RTOS fetches the status of a task, the HWTSM may update this

status, if that is triggered by tasks on other cores.

The status returned by the HWTSM leads always to correct application execu-

tion or, in other words, task-status update is conservative. It is not possible that

the RTOS sees a task as eligible whereas in fact the task is ineligible for exe-

cution, for the following reasons. Producer and cosumer tasks (see Chpater 2)

can make each other eligible for execution. For example, when a producer

task writes data into a FIFO (the FIFO free space is reduced), a cosumer task

becomes eligible for execution. Furthermore, when a consumer task reads data

from a FIFO, it creates free space for the producer task to write into. When a

task is eligible for execution, i.e., there is enough free space to write or enough

data to read from the FIFO, no other task can change its eligibility. A task can

only change its status from eligible to ineligible by cosuming or/and produc-

ing data. And this can only be done whe the task is executed on a processor.

Once a task is updated to ineligible by the HWTSM, the RTOS will see it as

such. Thus the only corner case that may lead to incorrect execution is when

a task was eligible, it changes to ineligible, but the HWTSM does not detect

that fast enough. Once a task is eligible it can change its status only while it

is actually executed; its status cannot be changed to ineligible by another task

executed on another core. For example, if a consumer task has enough data

to read, i.e., is eligible, when the corresponding producer tasks writes more

data into the FIFO, the consumer will still be eligible. Hence problems may

only occur when the task itself does FIFO reads/writes that renders it ineli-

gible, then it is immediately preempted and the RTOS fetches its status. As

the HWTSM is next to the core where the task executes, the task-status up-

date use only local information. Hence the HWTSM is quicker than the time

required to switch the context to the RTOS. Thus it is not possible that the

task-status update is invisible to the RTOS. Nevertheless, it is possible that the

RTOS scheduler fetches the task-status just before the coprocessor updates it,

i.e., during the Update Status interval. As a result, the RTOS scheduler may

get an ‘ineligible’ status for a task that is in fact eligible for execution. Such

a case is application safe, because a different task may be scheduled, and the

‘eligible’ status will be read in the next RTOS slot.
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Figure 5.4: Conceptual model of an MPSoC with HWTSM

5.5 Base Hardware Platform and System Implementa-

tion

In this section, we describe the tiled-platform and implementation details of

the HWTSM and the RTOS modifications.

In this section, we augment the CompSoC platform with hardware accelera-

tion modules using a Molen-style processor–coprocesor design [110]. More

specifically, we employ the microarchitecture from [121] used to solve a dif-

ferent, yet related problem, namely management of multiple threads on re-

configurable hardware. We chose the Molen paradigm, because it provides

architectural means to efficiently accommodate any software computationally

intensive kernel in hardware. Each kernel might be accelerated by one or mul-

tiple Molen-style CCUs. In the current chapter, the HWTSM is implemented

as a single Molen-style CCU. The coprocessor is controlled through a fixed set

of additional instructions [111]. The data transfers to and from the coprocessor

might be performed through dedicated exchange registers (XREGs) or through

shared data memory.

5.5.1 System Implementation Overview

In Figure 5.4, we present a conceptual model of the CompSoC platform ex-

tended with one HWTSM per processor tile. The applications executed on the

platform in Figure 5.4, are those considered in the example of Figure 5.2. Ap-

plication A1 is mapped on both tiles, while A2 is mapped on the second tile

only. We implement each one of the task-status units, denoted as T11, T12, and

T21 as separate hardware blocks. These blocks are responsible for computing

and updating the status of the assigned software tasks. As a result of this de-
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Figure 5.5: The processor microarchitecture with HWTSM

sign choice the HWTSM preserves the composability and predictability of the

platform, as explained in what follows.

First, the hardware task-status units do not need to exchange information

among each other, thus are completely independent. Plus concurrent com-

putation of the statuses of all tasks is possible. These tasks may belong to

the same application or to different applications. Thus, the HWTSM does not

create inter-application interference, hence it preserves composability.

Second, as detailed below, the RTOS fetches the task-status by simply reading

the registers of the HWTSM. Hence the RTOS perceives the response time of

the HWTSM as constant. Moreover, this time is shorter than in a software

implementation that would involve a sequential calculation of the available

data/space in each FIFO, in turn. Thus the predictability of the RTOS is pre-

served, and its WCET is reduced when compared to a software solution. Fur-

thermore, the response time of the HWTSM is independent of the task-status

and of the number tasks. Therefore, we can scale the number of the hard-

ware task-status units, while the WCET of the RTOS remains constant, which

means that the worst-case bounds on the RTOS are lower than in a software

implementation.

In addition, it is worth to mention that the HWTSM does not require any mod-

ifications to the existing NoC.
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Figure 5.6: HWTSM ntegration to CompSoC – option A

5.5.2 Tile Microarchitecture Modifications

In Figure 5.5, we present the microarchitecture of one of the processing tiles

in the CompSoc platform, augmented with a Molen-style coprocessor. The

Molen coprocessor is attached to a processor interface using a custom wrap-

per, marked by a shaded block. As a result, all Molen instructions [111] and

input/output data are transferred through that processor interface with the help

of a custom software library. With respect to the Thread Interrupt State Con-

troller presented in Chapter 4, we perform the following modifications:

• We propose a new processor–coprocessor parallel non-blocking execu-

tion model;

• The HWTSM CCU does not initiate interrupts to the processor;

• We attach an I/O module, which provides an abstraction interface be-

tween the CCUs and the external communication protocols, for the NoC

interface and for the Local Memory Bus;

• We alleviate the communication bottlenecks between XREG [110] and

the CCUs by allocating an XREG for each CCU;

The shaded blocks in Figure 5.6 and Figure 5.7 present Molen-style copro-

cessors attached to the baseline CompSoC multicore platform. Based on the

platform characteristics, we distinguish three possible options for the HWTSM
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integration. In the first option, denoted by A in Figure 5.6, the HWTSM is at-

tached through a dedicated memory port to each one of the three Data Memory

types, i.e., HWTSM reads memories without affecting the processor. As a re-

sult, the dual-port Dmem, Cmem.In, and Cmem.Out need to be substituted by

three-port memories. We do not consider this option as a viable solution in our

design, because multiport memories are expensive in terms of hardware re-

sources. By multiport memories, we denoted those with more than two ports.

In the second option, denoted by B in Figure 5.7, the HWTSM is attached to

the Data Memory and to the NoC Input buses. Such configuration enables the

HWTSM to be executed in the parallel non-blocking model, which allows it to

track FIFO updates (i.e., snoop the communication) at the exact moment they

occur on the corresponding buses. Therefore, the integration of the HWTSM

in the existing CompSoC platform is accomplished with a minimum number

of modifications. The third option, denoted by C in Figure 5.7, combines all

HWTSMs into one dedicated tile. We ignore option C, because updating and

obtaining the task-status over the NoC causes immense delays amounting to

hundreds of cycles. These delays can substantially increase the execution of

the RTOS.

Summarizing, we attach the HWTSM to the CompoSoC multicore platform

following option B in Figure 5.7.
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5.5.3 Hardware Task-Status Manager Design

In Figure 5.8, we present the internal organization of the HWTSM for the ex-

ample of Figure 5.2. For the operation of the HWTSM, there are three basic

types of FSMs involved – FSM T*, FSM I/O, and FSM Setup. The FSM T*

contains the core functionality of the Hardware Task-Status Manager. By

FSM T*, we refer to any of the FSM T11, FSM T12, and FSM T21 in Figure 5.8.

Each of the FSM T* computes and stores the task-status information of T11,

T12, and T21, respectively. The number of FSM T* might vary from one design

to another, but it should be equal to the maximum number of tasks among all

running applications assigned to the current HWTSM tile. The FSM T* has

an internal memory which preserves the rc/wc memory addresses, the size of

the FIFOs and the number of data elements (tokens) available in each of the

FIFOs, associated to a particular task. The FSM I/O translates from the exter-

nal bus protocols, such as NoC interface protocols and Local Memory Bus, to

internal buses shared among all Molen-style coprocessors. The FSM Setup, is

responsible for starting and terminating the execution of FSM T*.

At run-time, the following events occur, in order as presented in Figure 5.8:

1. A new configuration is transmitted to the XREGs;

2. The processor emits the Molen exec instruction [111], initiated by the

start op signal, indicating that there is a new CCU setup available in

XREG;

3. The FSM Setup state machine redirects the start op signal to the corre-
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sponding FSM T* or FSM I/O state machines. The configuration infor-

mation for the FSM I/O contains memory address locations of task’s FI-

FOs, which are part of the local Data Memory space. Once the FSM T*

state machine is started, it continuously tracks the changes to all FIFOs

connected to T* and the new setup FIFO configuration;

4. The FSM I/O snoops on NoC interface and Local Memory Bus and

detects write operations to the dedicated rc/wc memory ranges. The

FSM I/O is a slave on the bus and it does not affect applications bus

access timings;

5. If there is a write operation to the tracked memory ranges, then the

FSM I/O generates a strobe signal and transmits the address and data

values to the internal bus;

6. The updated task-status by FSM T* state machines is preserved in

XREG;

7. During the RTOS time slot, the RTOS task scheduler fetches task-status

information from the XREG;

In Figure 5.9, we present the internal states of FSM T* state machines. Dur-

ing the RTOS Initialization phase, the task FIFO configuration is loaded at

Init Status state in FSM T*. During Update Status, the task-status is updated in

XREG. Next, during Check Loc and Check Rem states, the FIFO reads/writes

are tracked on the local memory bus and on the network interface, respectively.



58 CHAPTER 5. HARDWARE TASK-STATUS MANAGER

2. User Task [App Slot]

 * Load Sched.Task Cntx

 * Read from Input Buffer

 * User Code ...

 * Write to Output Buffer

 ** DMA: Send the Data/ WC (producer)

 ** DMA: Send RC (consumer)

1. System Init [OS Slot]

 * Create & Init User Apps, 

    Tasks and FIFO Manager

3. CompOSe [OS Slot]

 * Save Current Task Cntx

 * OS Scheduler:

  - Next App. by TDM Sched.

  - Next Task by Sched. Policy

HWTSM
DMA

Controller

Get Ready

Apps/Tasks

NoC

Tile #2

Tile #1

 Receive 

RC/ WC

Send Data

RC/ WC

timer interrupt

Figure 5.10: CompOSe – application and RTOS time slots

5.5.4 RTOS Extensions

In Figure 5.10, we present the integration of the HWTSM to the CompOSe

RTOS [36]. The HWTSM management is performed through a tiny driver that

virtualizes the low-level interface. The following stages occur during the ex-

ecution of the RTOS. In stage 1, during system initialization, all coprocessors

are initialized and user applications are created. After this stage, the processor

starts the first application time slot. In stage 2, the context of the scheduled

task is loaded. The task reads input data from input FIFOs, performs some

computations and writes back the results to the output FIFOs. In case an appli-

cation is partitioned and distributed on multiple tiles, a DMA module could be

used to send data and FIFO information over the NoC to the remote tile mem-

ory. When a FIFO is updated, the HWTSM instantly detects the rc and wc

changes and updates task-status. The HWTSM operates identically for intra-

and inter-tile communication. If a user task finishes earlier than its slot, the

processor goes to an idle state. After an interrupt from the hardware timer is

raised, in stage 3, the processor starts the RTOS time slot. The context of the

running task is saved. The RTOS scheduler gets task-status information from

the HWTSM. Based on it, the RTOS scheduler chooses one of the ready tasks

according to its task scheduling policy. Note that stages 2 and 3 are repetitive.
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5.6 Conclusions

In this chapter, we proposed for an implementation of a time-consuming RTOS

part in hardware, as a coprocessor. This coprocessor, called HWTSM, com-

putes the task-status in a real-time MPSoC embedded system running stream-

ing applications. For the HWTSM, we applied processor–coprocessor parallel

non-blocking execution model, which allows overlapping of the coprocessor

operation with the processor operation. As a result, we achieved shorter WCET

of the RTOS while preserving the predictability and composability of the orig-

inal MPSoC. Our proposal is integrated into the existing CompSoC platform

and this entire system is prototyped on FPGA chip. In Chapter 7, we report the

experimental results.





6
Remote Slack Distribution

Note. The content of this chapter is based on the the following paper:

P. G. Zaykov and G.K. Kuzmanov and A. M. Molnos and K. G. W. Goossens,

Run-time slack distribution for real-time data-flow applications on embedded

MPSoC, Proc. 16th Euromicro Conference on Digital System Design (DSD),

2013, pp. 39–47

L
ow energy consumption is crucial for embedded systems, including

the ones that employ tiled Multiprocessor Systems-on-Chip (MPSoC).

Such systems often execute real-time applications consisting of sev-

eral tasks synchronized in a data-flow manner and mapped over different MP-

SoC tiles. Energy can be saved by lowering the processor voltage and fre-

quency, hence extending the application execution over periods of time other-

wise left idle, i.e., exploiting slack. In this chapter we propose a framework

to distribute slack information at run-time, intra- and inter-tile, to enable ac-

curate and conservative slack calculation within each tile. The slack is trans-

ferred along with the existing inter-task synchronization and as a result it is

distributed across the MPSoC with low cost. In each tile, we add a hardware

block that calculates the slack received during inter-tile communication and a

software library to program this hardware. We integrate this framework into

an existing MPSoC platform and we prototype an entire system with two tiles

on an Xilinx ML605 FPGA board. We demonstrate the effectiveness of our

proposal with a simple, conservative, DVFS management policy applied to an

H.264 decoder application. We report the experimental results in Chapter 7.

61
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6.1 Introduction

Nowadays, many modern real-time embedded systems execute computation-

ally intensive, streaming applications. To achieve the desired performance,

application designers exploit available concurrency by encapsulating each of

the computationally intensive kernels into tasks that may communicate. Many

such applications are mapped on a tile-based MPSoC, where tiles are con-

nected through a Network on Chip (NoC). At run-time, in each tile, the appli-

cation tasks are scheduled by a Real-Time Operating System (RTOS). Tasks

are executed for one or more time slots, denoted as application slots. Each

application slot is followed by an RTOS slot in which the RTOS stores the

current task context, schedules, and loads the next task.

Real-time embedded systems have to be predictable and often should operate

within a limited energy budget. A system is predictable if it is possible to ac-

curately characterize its performance. An important performance metric for

streaming applications is throughput, i.e., number of output data items pro-

duced per unit of time. Typically throughput is guaranteed by analysing, at

design time, the critical execution paths of the application under worst-case

assumptions [30, 95]. At run-time, each task is invoked repeatedly for an un-

determined number of iterations. Such systems may have two basic types of

slack: static and dynamic [67]. Static slack may be intrinsically present in an

application when not all tasks are on the critical paths that limit the application

throughput. Dynamic slack is present when the actual case execution time of

a task iteration is shorter than its worst case execution time.

In this context, many approaches aim to reduce energy consumption without

affecting the application guarantees. A way to save energy is to conserva-

tively lower the processor operating points, e.g., by dynamic voltage-frequency

scaling (DVFS) for each application task [23, 42, 67, 116]. However, existing

methods cannot observe the entire static and dynamic slack that is present in

an application at run-time, leading to energy waste.

In this chapter, we address the problem of accurate slack observation in real-

time, data-flow applications mapped on MPSoCs. We propose a framework

for conservative slack accounting and distribution between tiles. We perform

slack accounting with the help of timestamps. Furthermore, the main features

of our proposal are, as follows: 1. slack is distributed between tasks, poten-

tially mapped to different tiles, along with the existing inter-task synchroniza-

tion, 2. slack can be distributed in two directions, i.e., from producer tasks to

consumer tasks and vice versa, and 3. static and dynamic slack is addressed.
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Figure 6.1: Processor–coprocessor parallel non-blocking execution model considered

for hardware coprocessor in the slack distribution framework

Our framework consists of a hardware coprocessor and a software library

to provide support for it. The coprocessor runs in parallel non-blocking

model (see Section 3.1). In Figure 6.1, we briefly introduce the operation

of the parallel non-blocking model. Furthermore, we integrate the coprocessor

and the software library into an existing MPSoC platform and we prototype

the entire system on a Xilinx ML605 FPGA board.

The remainder of the chapter is organized as follows. In Section 6.2, we com-

pare our proposal with the related state of the art. In Section 6.3, we introduce

the application and platform models. In Section 6.4, we present the concepts

behind our solution and an example for intra-tile and inter-tile task commu-

nication. In Section 6.5, we provide the implementation details. The chapter

concludes with Section 6.6.

6.2 Related Work

In this section, we discuss approaches in 1. slack management, distribution,

and power-aware scheduling for data-flow applications, and two timestamps.

Nelson et al. [71] propose to reduce the energy consumption using static slack,

when an application is mapped on multiple tiles. The analysis employs a cus-

tom design time tool calculating the Maximum Cycle Mean (MCM) [95] (in-

tuitively, the length of the critical path divided by the number of tokens on the

path) of the application graph. The tool finds lower clock frequencies for the

tasks that do not belong to the MCM. One of the limitations of this approach

is that compile-time tools may not observe all available slack. Other compile-

time (static) tasks mapping and DVFS schemes for MPSoCs are based on the

application data-flow graph [42, 85, 116]. Compared to these approaches, we

propose a run-time technique that has the potential to improve on design time

solutions.
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Other approaches [44, 67] propose run-time methods to observe the dynamic

slack locally in each MPSoC tile. If a task finishes early, DVFS is conser-

vatively performed for the next executed task of the application. Those ap-

proaches accurately observe all dynamic slack within a tile, however early

completion in one tile may also result in early start in other tiles. In such a

case, observing the slack locally in each MPSoC tile might not be efficient

enough. Compared to these approaches, we distribute the slack information

between the tiles which overcomes this limitation. Moreover, we address the

static slack as well.

Carta et al. propose to minimize energy consumption in a pipelined MPSoC

architecture [23] by using linear and non-linear feedback control schemes. The

considered pipeline architecture resembles the execution of a streaming appli-

cation. Furthermore, Zamora et al. [120] utilize stochastic automata networks

for system-level performance/power analysis and trade-offs in designing of

multimedia, streaming applications. However these approaches target the soft

real-time domain, hence the throughput guarantees are not hard.

Several examples of systems that utilize timestamps to share timing informa-

tion exists [21,77].The first proposes a fully synchronous MPSoC. Timestamps

are utilized to synchronize heterogeneous IP blocks which might be operating

at various frequencies. In this way real-time guarantees are offered to appli-

cations. We use the timestamps in a different context, to compute the slack

information that is sent from one tile to another. The approach in [21] assigns

timestamps to the arrival of external events in a hard real-time system. This

information is used to schedule ready tasks. Similarly, we register the arrival

time of the synchronization information. However, unlike existing work, we

utilize this information for slack calculation to enable energy management.

In summary, to the best of our knowledge, our proposal to distribute informa-

tion among tiles together with synchronization, for the purpose of enabling ac-

curate, conservative slack observation in data-flow applications is novel. More-

over, it can augment existing state of the art policies to further save energy.

6.3 Prerequisites

This section introduces the application and the platform models that are useful

to understand the rest of this chapter.
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Figure 6.2: Producer-consumer example: a) considered application; b) static and

dynamic slack.

6.3.1 Application Model

A data-flow application, A, consists of a set of tasks that communicate via to-

kens through first-in-first-out (FIFO) channels of bounded-size. Task execute

indefinitely, iteratively, processing tokens from input FIFOs and producing to-

kens into output FIFOs. As we target the real-time domain, we consider that

each task Ta has a worst case execution time, wceta, known design time. Each

task iteration i, also denoted as Ta,i, has an actual execution time, aceta,i, un-

known at design time. If a task Ta produces tokens that a task Tb consumes,

Ta is denoted as the predecessor of Tb and Tb the successor of Ta. A task is

eligible for execution, or ready, if it has sufficient tokens in the input FIFOs

and space in the output FIFOs. The eligibility of a task Ta is preserved in its

state, referred to as statea.

The maximum throughput of an application is given by the Maximum Cycle

Mean (MCM) [30, 95] Intuitively, this is the length of the critical path in the

task graph devided by the number of tokens. Static throughput analysis utilizes

the worst-case execution time of tasks. For simplicity, hereafter the explana-

tions consider single-rate data-flow applications.

In Figure 6.2.a, we consider a data-flow application with two tasks, a producer

and a consumer. In the example two basic types of slack are distinguished

upon: static and dynamic, as graphically presented in Figure 6.2.b. Intuitively,

the static slack occurs because not all task are on the critical path. Static slack

is also denoted as the maximum deadline extension in the literature [68, 95].

When the two tasks are executed on different tiles, their iterations may overlap.

Consider that wceta > wcetb and there is enough space in the FIFO. We can

delay the finish of any iteration j of Tb until the finish of another iteration i+1

of Ta and the throughput of the application will remain the same. Or in other

words, in this example Tb has wceta−wcetb static slack. Dynamic slack occurs
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when the actual case execution time of a task iteration is shorter than its worst

case execution time, e.g., wceta − aceta,i for Ta in the example in Figure 6.2.

6.3.2 Platform Model

The targeted MPSoC consists of a number of processor tiles, hereafter shortly

denoted as tiles, communicating via a Network on Chip (NoC). A tile typically

comprises of a processor core, a set of memory blocks, and Direct Memory

Access (DMA) modules. As we address real-time systems, we assume that

the NoC offers guaranteed service, e.g., maximum throughput and minimum

latency. We assume that each tile can be scaled independently, i.e., the tiles and

the NoC are in own clock domains, and a time translation between different

clock domains is possible (the clocks are mesochronous or there is a slower,

reference clock). For the purpose of distributing slack among the tiles, we need

to have time-translation functions to the referenced clock.

Application tasks may be mapped to different tiles. One tile may be shared

between several applications. An RTOS executes on each processor core. Pro-

cessor scheduling is at two levels, as follows. At the first level, the RTOS allo-

cates fixed time quanta denoted as slots to each application, in a time-division

multiplexing (TDM) fashion. Hence the inter-application level scheduler is

preemptive. As applications are completely isolated, an application perceives

its time as continuous, although in practice it may be preempted. We can con-

sider that each application has a virtual-time consisting of the set of slots allo-

cated to it. By knowing the TDM allocation, one can translate the application

virtual-time in the physical-time of the tile and vice versa.

The two time-line translation functions are as follows:

timephy = fv p(timevir,A, tile),

timevir = fp v(timephy,A, tile).
(6.1)

where timephy is the number of cycles in the tile-physical time, timevir is the

number of cycles in task-virtual time, (both measured at the maximum tile

frequency level), A and tile are the considered application and tile, respectively.

At the second level, tasks are scheduled within an application. Typically, for

data-flow applications the intra-application scheduler is non-preemptive, in the

sense that the task scheduler is called only after a task iteration has finished.

Tasks are scheduled only if they are eligible. Hence, once a task iteration starts

it is guaranteed that it finishes without blocking. This means that idle time can

occur only between iterations.
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Figure 6.3: A conceptual model for slack information distribution by: a) Intra-tile

technique [67]; b) Our inter-tile technique with dynamic slack.

Inter-task communication is implemented by memory mapped software FI-

FOs employing the C-HEAP protocol [73], where each FIFO stores a limited

number of data elements (tokens). The number of the available tokens is de-

termined by the values of the read counter (rc) and write counter (wc) of the

FIFO. For each FIFO, the consumer and the producer side are responsible for

updating the write counter and the read counter, respectively. Further details

are provided in Chapter 2.2.

When two communicating tasks are mapped on different tiles, for each token,

the NoC travel time is bounded by a worst-case traveling time wctt. This time

depends on, e.g., the parameters of the NoC, the token size, and it is known at

design time, for each FIFO [38]. As the focus of this chapter is tile slack, to

simplify the notation, in the rest of this chapter we will use wctt to denote the

worst-case traveling time in general. This notation can be detailed per FIFO

and per connection.

6.4 Proposed Solution

In this section, we first outline the concept of our framework for inter-tile slack

distribution and second we introduce the equations behind.
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6.4.1 Conceptual Solution

In Figure 6.3, we compare the conceptual models for slack information distri-

bution employing intra-tile technique [67] and our inter-tile technique. In FI-

FOs, data is transferred from Ta to Tb, while the synchronization information

is transferred in both directions (see Figure 2.4). In Figure 6.3.a, we present

a case in which the slack is computed locally, within the tile, e.g., [67]. In

Figure 6.3.b, we present a case when synchronization is augmented with slack

information for each one of the communicating tasks. As a result, we can

distribute slack in both directions - from producer to consumer task and vice

versa.

The distributed slack among the tiles can be static and dynamic. We model

static slack as the time at which a task has to finish its next iteration. Note,

this reference is not the static slack, but rather the information required to

calculate it. Furthermore, we model dynamic slack as the duration of time

that the current iteration has ran ahead, i.e., the difference between worst-case

execution time (wcet) and actual-case execution time (acet). At run-time, we

transfer static and dynamic slack in a single combined value.

Two ways to represent the slack are possible – either a relative or an absolute

value. We choose a relative value representation because we target distributed

systems where the global notion of time is often missing. Furthermore, a rel-

ative time value can be measured in different time-domains. In the first one,

the relative time is measured in the time-domain of the application (applica-

tion virtual-time). In the second one, the relative value is measured in the

time-domain of the tile, taking into account the RTOS costs and the time when

other applications might be running (tile physical-time). A slack measured in

application virtual time-domain in one tile and transferred to another tile can

be interpreted wrongly. To avoid this, we transform the slack from the virtual

to physical time-domain, after which it can be transferred safely to the other

tile.

We extend the static and dynamic slack classification with two new types of

slack, tile (Stile) and remote (Sremote), depending on the location of the slack in

the system from the perspective of the tile. The Stile is shared among all tasks

of an application in a tile. Once it is distributed to another tile, we refer to it as

remote on the tile that receives it. Eventually, in the remote tile, Stile is updated

with the received Sremote. The Stile and Sremote contain static and/or dynamic

slack. If multiple applications are running on the tile, then each application will

have its own Stile and Sremote. Slack values are updated at each task iteration

start and finish; nevertheless, for brevity and readability we omit the indexes



6.4. PROPOSED SOLUTION 69

of each iteration.

Summarizing, our proposal has the following features:

• We distribute slack from one tile to another only during existing inter-

task synchronization; this reduces costs compared to dedicated slack

communication;

• We distribute slack in both directions, i.e., from the producer to the con-

sumer task and vice versa; in this manner we distribute the slack in an

unified way during any inter-task synchronization;

• We distribute static and dynamic slack in one combined value; this aims

to increase the potential for energy saving.

Our slack distribution framework is applicable for all three mapping possibili-

ties for multi-tasking applications running on a tiled MPSoC:

1. Application is mapped as such (e.g. all tasks are on one tile only) that

there is only intra-tile communication;

2. Application is mapped on two or more tiles such that the tasks involved

in inter-tile communication do not have any intra-tile communication;

3. Application is mapped on two or more tiles such that the tasks involved

in inter-tile communication do have intra-tile communication;

We introduce Case 1 in Section 6.4.2 and Case 3 in Section 6.4.3.

6.4.2 Intra-tile Slack Distribution

For intra-tile slack distribution, we explain our framework by means of an

example presented in Figure 6.4. Figure 6.4 illustrates the moments that are

relevant to slack computation, allocation, and distribution during two consecu-

tive task iterations, Ta,i and Ta,i+1. The application is the same as in Figure 6.2.

Since all tasks are mapped in one tile only, we detail the transmission and

reception of Stile.

Transmission of Stile: In Figure 6.4, the first event that we consider is the start

of Ta,i, at instance 1 . Note that at this point slack may already exist on the

tile and a management policy may have allocated a part of it to Ta,i. We refer

to the allocated slack as Sallocated.
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Figure 6.4: Slack computation, allocation, and distribution for intra-tile task commu-

nication

Second, at instance 2 the Ta,i finishes earlier than at worst case, marked at

instance 3 . Therefore, the dynamic slack for Ta,i, in application virtual-time,

is computed as:

Sdynamicvir
= wceta − aceta,i (6.2)

As a result, at instance 2 , the tile slack is updated with the newly computed

dynamic slack:

Stilevir
= Stilevir

+ Sdynamicvir
(6.3)

Reception of Stile:

Later, at instance 4 the consumer task Tb,j starts its j-th iteration. For intra-tile

communication, application tasks share the Stile based on dynamic slack only

(no static slack is considered), while remote slack is equal to zero. The slack

policy (fslack) allocates slack for Tb,j, and potentially scales its operating point:

Sallocatedvir
= fslack(Staskvir

) (6.4)

If not all slack is allocated, the remaining tile slack before starting the sched-

uled task is updated, as follows:

Stilevir
= Stilevir

− Sallocatedvir
(6.5)

Let assume that slack policy allocates all of the Stile to Tb,j. At instance 5 , the

Tb,j finishes with its WCETb,j. Next iteration of the producer task Ta,i+1 starts

with Stile=0 at instances 6 and finishes with WCETa,i+1 at 7 .

In Section 6.4.3, we extend the example towards inter-tile slack distribution.

6.4.3 Inter-tile Slack Distribution

Many of the steps in this section are the same as for the intra-tile slack com-

munication. For sake of clarity, we repeat them again. Figure 6.5 illustrates

the moments that are relevant to slack computation, allocation, and distribution
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Figure 6.5: Slack computation, allocation, and distribution for inter-tile task commu-

nication

during two consecutive task iterations, Ta,i and Ta,i+1. The application is the

same as in Figure 6.2 and each of the tasks is mapped on a different tile. Next,

we detail the transmission and reception of Sremote.

Transmission of Sremote:

The first event that we consider in Figure 6.5, is the start of Ta,i, at instance 1 .

Note that at this point slack may already exist on the tile and a management

policy may have allocated a part of it to Ta,i.

Second, the Ta,i finishes earlier than at worst case, at instance 2 . Therefore,

the dynamic slack for Ta,i, in application virtual-time, is computed as:

Sdynamicvir
= wceta − aceta,i (6.6)

As a result, at instance 2 , the tile slack is updated with the newly computed

dynamic slack:

Stilevir
= Stilevir

+ Sdynamicvir
(6.7)

Since the tasks are mapped on different tiles, in Figure 6.5 at instance 2 , we

compute the Sstatic as follows:

Sstatic = stdelaya,i+1 +

{

wceta if statea = Ready,

0 otherwise.
(6.8)

where stdelaya,i+1 is the starting delay, i.e., the duration between the current

moment and the earliest starting time of the next iteration, i+1, of Ta. A start-

ing delay may exists, because, in general, the processor may be shared among
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multiple tasks of the application, hence several other tasks may be scheduled

before Ta,i+1. Sstatic is the latest moment in time (relative to instance 2 ) until

when the predecessors and successors of Ta have to finish their next iterations

in order to respect the throughput constraint. If the starting delay cannot be

calculated (for example, because the scheduling policy is dynamic) it is con-

servatively set to zero. If the next candidate for execution is the currently

finishing task, then the starting delay is also zero. In case iteration i+1 of Ta

is already eligible for execution (statea = Ready) at the time when the current

iteration completes and the execution of the Tb,j finishes by wceta, then the

application throughput is met. If Tb is on the critical path, then the transferred

wceta to Tb results in zero cycles slack (see Equation 6.15).

Furthermore, at instance 2 , we compute the remote slack as the sum of appli-

cation slack and static slack, as follows:

Sremotevir
= Stilevir

+ Sstaticvir
(6.9)

As introduced in Section 6.4.1, we distinguish two types of remote slack:

S
type
remote =

{

Dyn if Sstaticvir
= 0,

StaDyn otherwise.
(6.10)

where Dyn models that remote slack includes only dynamic slack and StaDyn

models that remote slack includes static and dynamic.

As a last step, we translate the remote slack value from task-virtual to tile-

physical time-domain:

Sremotephy
=< fv p(Sremotevir

,A, tile), S
type
remote >, (6.11)

where A and tile are the target application and tile, respectively. Note that the

Sremotephy
also contains S

type
remote.

Reception of Sremote:

After the remote slack is calculated, it is sent to the predecessors and succes-

sors of Ta, along with the synchronization information, over the NoC. Because

at run-time the actual NoC latency might be smaller that the worst-case, the

NoC can generate a type of dynamic slack, which we refer as communication

slack (Scomm). For example, at instance 4 , the data arrives to the destination

tile earlier that the worst-case which is illustrated by 5 . We compute the

communication slack as follows:

Scommphy
= wctt − (tNoCout − tNoCin), (6.12)
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where tNoCout is the timestamp when Sremotephy
arrives on the destination tile.

The tNoCin is the timestamp when Sremotephy
initially enters the NoC. tNoCout and

tNoCin are measured in the NoC time-domain.

After the data has arrived, the consumer task (Tb,j) is started, at instance 6 .

We define the time between instances 4 and 6 as wasted slack, as follows:

Swastedphy
= stb,j − tNoCout, (6.13)

where stb,j is the tile physical starting time of iteration j of Tb. For applications

with more tasks running on a tile, we may employ the starting time of any of

the application tasks (stA) instead of stb,j, if we associate the slack information

with application and not with a task. In Section 7.4, we conduct experimental

study for the two cases, i.e., remote slack associated with a task and with an

application, that trade accuracy of the computed slack for computation cost. If

the NoC does not share a common source for clock frequency with the tiles,

then tNoCout in Equation 6.13 should be transferred from the NoC physical

time-domain to the tile physical time-domain.

In Figure 6.5 at instance 6 , we calculate, what has left from the remote and

communication slacks after the wasted slack is subtracted, i.e., X , as follows:

X = Sremotephy
+ Scommphy

− Swastedphy
,

Y =

{

X if X > 0,

0 otherwise.

(6.14)

Furthermore, based on the S
type
remote value, the received remote slack is calculated

as follows:

Z =

{

fp v(Y − 2 ∗ wctt,A, tile)− wcetb if S
type
remote =StaDyn,

fp v(Y,A, tile) otherwise.

Sremotevir
=

{

Z if Z > 0,

0 otherwise.
(6.15)

If the S
type
remote is StaDyn, then remote slack contains a non-zero reference for

static slack calculation. This means that, to be conservative, the current task

iteration should finish until this reference in time. At worst case, finishing

would take the communication cost and wcetb for the current task iteration.

The communication cost equals to 2*wctt, because we need to count the cost of
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two synchronizations, the one after Ta,i finished and the one after Tb,j finishes.

Once we obtain the remote slack, we perform the time-domain translation. If

the remote slack is equal to zero, it means that all of it is lost.

Next, the available slack for Tb,j (Staskvir
) is computed as a max of the remote

slack and tile slack:

Staskvir
=

N tasks
max
tid=1

(S tid
remotevir

, Stilevir
), (6.16)

where S tid
remotevir

is the remote slack for each remote predecessor or successor

task (tid). The Stilevir
is the slack generated by the tasks executed on the local

tile. In Equation 6.16, we achieve accurate and conservative calculation of the

slack, even when we apply max instead of min function. To explain such a

choice, we consider a case, which multiple tasks are mapped on the same tile

and and all of them receive remote slack values. Lets assume, we do not em-

ploy Equation 6.16 while we schedule the task with the highest value of remote

slack. Therefore, even if the task iteration finishes with wcet, the remote slack

of the task is distributed to the other tasks on the tile. As a result, max function

in Equation 6.16 preserves the conservative calculation of the slack.

Existing work typically computes and allocates slack per task, and not per ap-

plication. However, we differentiate two implementations of Equation 6.16,

depending on the value of N, i.e., either the number of remote tasks for Tb,j or

the total number of remote tasks in the application. In Section 7.4 we investi-

gate the quantitative difference between these two approaches.

Finally, a slack policy (fslack), may be applied to allocate slack for Tb,j, and

potentially scale its operating point:

Sallocatedvir
= fslack(Staskvir

) (6.17)

If not all slack is allocated, the remained tile slack before starting the scheduled

task should be updated, as follows:

Stilevir
= Stilevir

− Sallocatedvir
(6.18)

At instance 7 , task Tb,j completes its execution and updates the rc-counter

of the FIFO (see Figure 2.4). During the rc counter update, the consumer

task sends back to the producer task its Sremote and tNoCout (both values are re-

computed when Tb,j finishes). The exact list of steps are already listed in the

‘transmission of Sremote’ paragraphs. Later, at instance 8 , the i+1 iteration of

the producer task is started and finishes at instance 9 .
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Figure 6.6: CompSoC processor tile augmented with Molen-style RS CCU

Summarizing, we propose a run-time framework that: 1. accurately computes

and distributes static and dynamic slack between tasks mapped on different

tiles of an MPSoC, and 2. enables the utilization of any management policy

that can allocate slack and scale the tile operating point to reduce energy con-

sumption.

6.5 System Implementation

In this section we describe the new software and hardware components added

to an existing RTOS and MPSoC.

The tiled CompSoC platform [37] is the template for our implementation.

Each tile execute the CompOSe RTOS [66]. To implement slack distribution,

we augment the CompSoC tile with a Custom Computing Unit (CCU) using

Molen-style processor–coprocessor design [111], more specifically, the copro-

cessor microarchitecture of the TISC CCU (see Chapter 4). We refer to the

software part of our framework as Remote Slack (RS) library. Respectively,

we call our CCU - RS CCU.

In Figure 6.6, we present the architecture of a CompSoC tile augmented with

Molen-style coprocessor. This CCU accesses the NoC and data memory buses.

The RS CCU receives the remote slack from the NoC bus and it registers the

time of its arrival in tNoCin. The RS CCU stores the remote slack, the tNoCout,

and the communication slack for each FIFO in its internal memory, which is

part of the data memory organization of the tile, hence it is accessible by the

tile processor through the data memory bus.
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Figure 6.7: RS library and RS CCU integration to the CompOSe RTOS

6.5.1 Design Tradeoffs

We consider three abstraction levels for the partitioning of the RS library and

the RS CCU: at application, at task, and at FIFO level. The most intuitive

implementation is to associate the RS CCU at application level, because the

slack itself is per application. At this abstraction level, the RS CCU should

compute the Stilevir
for each user application. If a task communicates with mul-

tiple remote tasks, then the RS CCU should be able to register the tNoCout, and

process multiple Sremotephy
. By processing, we understand that the RS CCU

should implement Equation 6.16, i.e., compare the Sremotephy
and Stilevir

values.

If the Sremotephy
is the same type as Stilevir

, e.g., static or dynamic, or one of

them is equal to zero, then the comparison can be done by a standard hardware

comparator. Otherwise, if the Stilevir
and Sremotephy

types are different, then the

RS CCU should be able to convert them to the same slack type. The conver-
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sion is possible if the RS CCU has access to Equation 6.15. Such an access

can be granted by either implementing Equation 6.15 in hardware or having an

extra synchronization between the processor and the RS CCU to exchange the

parameters in Equation 6.15. Therefore, we consider this approach as inappro-

priate for our implementation.

At the second abstraction level, the RS CCU is associated with a task. Again,

there can be a task which communicates with multiple remote tasks. Similarly

to the previous abstraction level, the RS CCU needs to have access to Equa-

tion 6.15. Therefore, we consider this approach also as inappropriate for our

implementation.

At the third abstraction level, the RS CCU is associated with a FIFO. Because

of the CSDF application model that we employ, there is always one producer

and one consumer task associated with a FIFO. Therefore, the RS CCU does

not need to compare explicitly the Sremotephy
values. The RS CCU can be kept as

simple as possible, preserving the Sremotephy
, registering the tNoCout, and com-

puting the Scomm. The Scomm is computed by Equation 6.12. The rest of the

computations can be left in software, as a part of the RS library. This is the

design choice that we consider for the software/hardware partitioning.

In Figure 6.7, we present the integration of the the RS library and the RS CCU

to the CompSoC platform. The shaded blocks represent our contribution to

the existing platform. The two large arrows illustrate the transmission and

reception of FIFO tokens. If a task consumes tokens from a FIFO, then it

receives the data and the wc, and it is responsible with updating the rc. If a

task produces tokens into a FIFO, then it receives the rc and it sends data, and

updates the wc. We augment the synchronization information, namely rc and

wc, with two extra fields: slack and timestamp (tNoCin). In this way, remote

slack is distributed in both directions: from the producer task to the consumer

task and vice versa.

Figure 6.8 details the sequence of steps involved in slack distribution. First,

after a task iteration finishes the RTOS invokes the RS library to update the

Sremotevir
, as represented with 1 . Internally, the RS library calls the fv p func-

tion that uses the application scheduling information (at RTOS level) to cal-

culate Sremotephy
. This is represented with 2 in Figure 6.8. After that, at in-

stance 3 , the RTOS invokes the FIFO communication library to transfer the

tokens (if the task is a producer), the synchronization, and the slack to remote

tiles. Hence first, at instance 4 , the FIFO communication library transfers,

via the DMA, to the remote tile, either the DATA+wc (producer task), or rc

(consumer task). At instance 5 , Sremotevir
and tNoCin are transferred via the
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Figure 6.8: RS library and RS CCU integration to the CompOSe RTOS: detailed view
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DMA.

On a remote tile, for a given FIFO, at instance 1 , synchronization and slack

information is received. The RS CCU stores the Sremotephy
, registers its arrival

time, tNoCout, and computes the Scomm. Later, whenever a task finishes, a new

one should be scheduled, for example at instance 2 . At this moment, inde-

pendently whether instance 1 occurred, the RTOS invokes the RS library to

calculate the Stask by employing Equation 6.16. At instance 3 , the RS library

invokes fp v. Internally, as labeled with 4 , the fp v employs the received remote

slack and the scheduling policy information to translate the remote slack from

the tile physical-time to the application virtual-time. At instances 5 and 6 ,

the translated remote slack value is returned back to the RS library and the

RTOS, respectively. The instances from 3 to 5 are repeated as many times

as the task has predessesors and successors (see Equation 6.16).

6.6 Conclusions

In this chapter, we proposed a framework for slack computation, allocation,

and distribution that transfers the static and dynamic slack information among

the tiles in an MPSoC, executing dataflow applications. We send slack alto-

gether with the existing inter-task synchronization. Moreover, we transferred

the slack in both directions - from the producer to the consumer task and vice

versa. We introduced RS CCU running in a processor–coprocessor parallel

non-blocking execution model for transferring the slack between the tiles.





7
Experimental Results

I
n this chapter, we present our experimental setup and obtained results

for each of the previously introduced coprocessors (CCUs). More pre-

cisely, we provide a comparison with the related state of the art projects in

terms of one or multiple of the following criteria: performance–portability and

performance–scalability trade-offs, average system speedup, SW/HW costs,

operating processor frequency levels, and energy consumption. For our exper-

iments, we employ synthetic and real applications.

We evaluate the Thread Interrupt State Controller (see Chapter 4) with the help

of single-threaded and multithreaded benchmarks. For real applications, the

suggested average system speedups are between 1.2 and 19.6. Based on single-

threaded synthetic benchmark, we achieve average speedup between 8.5 and

129. For multithreaded synthetic benchmark, the achieved average speedup is

between 1.3 and 7.3.

We also evaluate the Hardware Task Status Manager (see Chapter 5) through

two types of applications (synthetic and real) running in software. With syn-

thetic applications, the results indicate a WCET reduction of the RTOS be-

tween 1.1 and 3.0 times. With the real applications, i.e., JPEG and H.264 de-

coders, the WCET of the RTOS is reduced by 1.3 and 1.6 times, respectively.

The overall system performance gain varies from 0.9% to 13.3%.

We evaluate the concept of the Remote Slack distribution framework (see

Chapter 6) by comparing the processor frequency levels, and the energy con-

sumption in four cases: a no-slack management, an existing intra-tile slack

management, and two implementations of our inter-tile slack management.

The experimental results suggest that our inter-tile technique reduces the aver-

age processors frequency down to 56% and the energy consumption down to

81
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53%. In very few worse cases, our technique introduce negligible increase of

the average processors frequency with 0.3%, and the energy consumption with

0.03%. Our proposal introduces only trivial software cost of up to 4% over the

application execution time and negligible additional chip utilization of 0.002%

from the considered FPGA board (XC6VLX240T).

7.1 Introduction

In this section, we provide a brief overview of the performed experiments for

each one of the CCU exercised in the current chapter. We experiment with the

CCUs as follows:

Thread Interrupt State Controller: We consider various experimental sce-

narios to quantify the performance gains due to our approach. Experimental re-

sults with real applications suggest average system speedups between 1.2 and

19.6 compared to pure software implementations. Based on single-threaded

synthetic benchmark, we achieve an average speedup between 8.5 and 129

compared to pure software implementation. For multithreaded benchmark, the

average speedup is between 1.3 and 7.3. Our proposal is compared qualita-

tively and quantitatively with the current state of the art research projects. The

results of the comparison suggest that our approach allows better performance-

portability and performance-flexibility trade-off characteristics than the most

recent related proposals.

Hardware Task Status Manager: To prove our concept we experiment

with two synthetic applications and two real applications, i.e., JPEG and

H.264, respectively. All applications are executed on a CompSoC platform

instance [37], implemented on an FPGA. We investigate the RTOS cost reduc-

tion by varying the scheduling policies, because they are the ones that directly

affect the number of the tasks status computations. Hence, each one of the syn-

thetic applications is specifically designed to explore one of the two types of

scheduling policies - static, e.g., time-division multiplexing, or dynamic, e.g.,

Round-Robin. The experimental results on synthetic benchmarks suggest a

reduction in the WCET of the RTOS, compared to a pure software implemen-

tation, between 1.1 and 1.8 times for static scheduling policies. For dynamic

scheduling policies, this WCET reduction is between 1.1 and 3.0 times. With

the real applications, i.e., an JPEG decoder and a H.264, the reduction in the

WCET of the RTOS are 1.3 and 1.6 times, respectively. Moreover, we estimate

that the overall performance gain varies from 0.9% to 13.3%, when the cost of

the RTOS is reduced.
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Remote Slack Distribution: Our experiments are based on a data-flow im-

plementation of the H.264 decoder. We compare a no-slack management tech-

nique, an intra-tile management technique [67] and two implementations of

our inter-tile technique. In each of the cases, we employ a simple slack pol-

icy that extract as much as possible of the observed slack without jeopardizing

the end-to-end application performance. As evaluation criteria, we employ

the frequency levels, the consumed energy, and the introduced costs of our

technique for each one of the tiles. Our experiments suggest that the average

frequency level reduction of the tasks in our technique compared to existing

intra-tile technique [67] is down to 56.8%. Furthermore, the average energy

consumption reduction is down to 53.3%. In very few worse cases, our tech-

nique increases the average processors frequency levels with 0.3%, and the

energy consumption with 0.03%. The introduced software cost in terms of ex-

tra clock cycles varies from 1% to 4% of the application execution time. The

introduced hardware cost in terms of chip utilization is trivial - 0.002% from

the considered FPGA board (XC6VLX240T).

In the sections to follow, we reveal more details for each one of the performed

experiments.

7.2 Thread Interrupt State Controller Evaluation

We have developed an experimental platform based on the Xilinx Virtex II

XC2VP30 FPGA chip using the XUPV2P Prototyping Board. In the follow-

ing, we briefly discuss our experimental setup.

GPP Core: The GPP, used to obtain the experiments, has a traditional RISC

architecture. It is based on the MIPS R3000 [83] implemented as a soft-core

on the FPGA chip.

RTOS: The RTOS running on the GPP is a light-weight version of [83], which

we named ρRTOS. It has a memory footprint of less than 20 KBytes. The

RTOS has support of multithreading, memory management, synchronization,

and round-robin (RR) scheduling.

To satisfy our RTOS requirements, we made the following modifications to

[83]: 1. improve the ISR that serves the hardware timer - the XREG#0 value is

pushed and popped to/from the program stack; 2. a new ISR is designed, man-

aging thread semaphores; 3. a Molen programming library is used to emulate

the Molen instructions.

Compiler Support: We do not address any static scheduling techniques by
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the Compiler. We create the MIPS compatible binary code, by using a stan-

dard version of the GCC compiler. Instead of modifying the compiler to con-

sider Molen polymorphic instructions, we create a Molen programming library

which emulates them. The new opcodes are generated with a custom tool,

which modifies the execution binary file. In case a Molen library call is is-

sued, the tool substitutes the used instruction with the proper opcode. In our

experimental implementation, the FIDs are statically generated by the system

programmer, but ultimately they should be managed by an appropriately de-

signed compiler.

7.2.1 Evaluation Methodology

We run several real streaming applications and we design our own synthetic

benchmark suite to evaluate the impact of the RTOS and the TISC on the

thread and task performance. Each one of the experiments includes: thread

creation, thread termination, interrupt handling, and an RTOS scheduling pol-

icy algorithm. We define a scenario to be a set of application threads, where

each thread has a certain number of software and hardware tasks. We evalu-

ate the system performance in scenario k by computing the average speedup,

denoted as Sav(k):

Sav (k) =

n exp
∑

i=1

TSWe(i)

THWe(i) ∗ n exp
(7.1)

where TSWe(i) corresponds to the computation time of the pure software im-

plementation and THWe(i) is the computation time in each one of the other

scenarios, containing reconfigurable hardware executions. The n exp variable

represents the number of performed simulations in each one of the scenarios.

We employ the following nomenclature to structure the experimental scenario

names (SN ): SN= {SN ,(DL)} where D={1,2,3,4} and L={C,SW,T}. SN is

composed of multiple (DL) pairs, where L are interpreted as follows: C cor-

responds to a task executed on a CCU, SW is a software task and T indicates

the total number of threads. For example: 4C1T denotes 4 CCUs running in

parallel in 1 thread; 1C3SW4T means 4 threads and 4 tasks, one task executes

on a CCU, the other three tasks in software. Note, that in the 4C1T scenario,

the TISC Unit shall assert an interrupt to the GPP only after all four hardware

tasks (CCUs) are finished.

The streaming applications package includes three popular real applications:

Floyd-Warshall algorithm, Conjugate Gradient and MJPEG Encoder. We
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Table 7.1: Evaluation results with Floyd-Warshall algorithm, measured in clock cy-

cles

Application type

Scenarios

1 thread 4 threads

SW HW SW SW + Reconfig. HW HW

1SW1T 1C1T 4SW4T 1C3SW4T 2C2SW4T 3C1SW4T 4C4T

FL25 47 650 46 520 120 483 119 382 116 981 116 497 112 079

FL400 158 082 50 830 568 505 454 976 346 849 240 635 126 787

FL1600 914 349 65 470 3 591 126 2 739 194 1 886 204 1 032 139 187 630

Sav(Var. Floyd) 1 6.1 1 1.2 1.5 2.3 8.2

choose them, because they present three different application domains: graph

analysis, linear equation systems and multimedia. The results, in terms of

clock cycles, are presented in Table 7.1. Note, that in all scenario, which have

CCU invocations, the CCU design is identical. In the scenarios with four tasks,

e.g., 4C4T and 4SW1T, each task is processing a size of dataset equal to the

data size used in 1C1T/1SW1T. Thus, the four tasks in 4C4T, process four

times more data than the task in 1C1T.

Real Benchmarks: The Floyd-Warshall algorithm (FL) finds all shortest paths

in a weighted graph. In Table 7.1, it is marked as FL25, FL400, and FL1600,

where the numbers indicate the count of nodes in the graph. When work-

ing with small data-sets, e.g., FL25, the execution time of the system in all

scenarios is almost equal to the pure software execution time - 1SW1T and

4SW4T. The reason for such a behaviour is caused by the RTOS cost in terms

of thread creation and scheduling routines. For larger datasets, see FL400 and

FL1600, the execution time of 1C1T/4C4T remains relatively constant com-

pared to pure software. The experiments composed of software functions and

hardware CCU threads such as 2C2SW4T, mimics the behaviour of 4SW4T

due to the software tasks. The Floyd-Warshall CCU is designed according

to the implementation details for a dedicated Floyd-Warshal coprocessor, pre-

sented in [20].

The second experimental application is based on the Conjugate Gradient (CG)

benchmark, part of the NAS Parallel Benchmark Suite [15]. The most compu-

tation intensive parts of this application are the floating-point arithmetic opera-

tions. The results suggest that even with a small number of trails - 14, running

such applications on a simple RISC core without floating-point unit and using

software math library only, requires a tremendous amount of time. This is the

reason why we do not perform any experiments with larger datasets and we

do not run more than one thread. The purpose of this benchmark is to indi-
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Table 7.2: Evaluation results with CG and MJPEG applications, measured in clock

cycles

Scenarios

Application type Pure SW Reconfig. HW

1SW1T 1C1T

CG14 72 251 488 3 684 817

MJPEG64 4 030 275 1 269 830

Sav(CG) 1 19.6

Sav(MJPEG64) 1 3.2

cate the potential portability of our ideas to application domains traditionally

positioned outside of the embedded world. On the other side, we demonstrate

that we can port such complex applications in embedded systems, that have

not been considered before. The experimental results, reported in Table 7.2,

suggest speedup of more than 19 times compared to the pure software imple-

mentation. The experiments are executed using a dedicated memory hierarchy

which feeds the CCUs with data efficiently. The description of such hierarchy

is outside the scope of this dissertation. The reason of such high speedup is

the fact that more than 95% of the application computation time is spent in

a simple function. The function performs multiplication on a floating-point

numbers. More implementation details of the Conjugate Gradient CCU can

be found in [84].

The most time intensive function of the MJPEG Encoder is the Discrete Cosine

Transformation (DCT), which we implemented in a CCU. The experimental

results, reported in Table 7.2, suggest that the overall application execution

time drops more than three times for a tiny video stream with 64 pixels (8×8)

per frame.

The achieved speedup of the Conjugate Gradient and MJPEG encoder applica-

tions is due to the CCU implementation of the software functions in hardware.

In 1SW1T and 1C1T, the strength of our proposal over the baseline Molen de-

sign is that the GPP can execute a different thread while one or more CCUs

are performing their computations. More specifically, the GPP will be notified

only after the predefined set of CCUs have terminated successfully.

Synthetic Benchmarks: Last but not least, we have designed a synthetic

benchmark suite, which covers more use-cases than the previously described

real applications. In Table 7.3 and Table 7.4, we list the experimental results

for two types of synthetic applications, single- and multithreaded, respectively.

We use one and multiple tasks per thread for the single-threaded applications

and only one task per thread for the multithread applications. We assume
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Table 7.3: Evaluation results with a single-threaded synthetic benchmark suite, mea-

sured in clock cycles

Dataset

SW tasks are running 10x slower SW tasks are running 100x slower

than HW implementation than HW implementation

1SW1T 1C1T 4SW1T 4C1T 1SW1T 1C1T 4SW1T 4C1T

100 25 413 22 165 37 438 22 273 61 422 22 165 134 783 22 273

200 29 413 22 195 53 438 22 303 101 413 22 195 341 708 22 303

500 41 428 22 491 101 438 22 599 277 223 22 491 417 184 22 599

1000 61 422 22 987 134 783 23 095 505 627 22 987 785 440 23 095

2000 150 659 23 912 231 388 24 020 1 001 412 23 912 1 507 519 24 020

4000 227 437 25 389 351 956 25 497 1 960 469 25 389 2 951 504 25 497

8000 412 996 26 283 641 095 26 391 3 833 259 26 283 5 771 489 26 391

10000 505 627 26 991 785 440 27 099 4 843 057 26 991 7 291 585 27 099

12000 598 185 29 515 929 678 29 623 6 101 164 29 515 9 184 147 29 623

Sav 1 8.5 1 13.6 1 86.4 1 129

that these two types of applications are not functionally equivalent. There-

fore, they cannot be compared, and we evaluate them separately. In general, a

single-threaded application cannot be always transferred into a multithreaded

one and vice versa. For each one of the synthetic applications, we investi-

gated two basic scenarios, when: 1. software functions are executed 10 times

slower than their corresponding hardware implementations; and 2. software

functions are 100 times slower than the corresponding CCUs. The execution

time of the CCU, modelled as number of iterations in a single loop, varies from

100 cycles up to 12000 clock cycles. Depending on the hardware speedup (10

times or 100 times), the number of software executions varies from 10×100

up to 10×12000 and from 100×100 up to 100×12000. All synthetic sim-

ulations are implemented with four tasks, executed in a variable number of

software threads with equal priorities.

In Table 7.3, we present the experimental results for the single-threaded syn-

thetic application. The application has two scenarios with hardware tasks,

i.e., 1C1T and 4C1T, and two scenarios with software tasks, i.e., 1SW1T and

4SW1T. Based on the results for 1C1T and 4C1T, we can conclude that the

RTOS cost for intra-thread parallelism is minimal, in terms of dozen of cycles

for each additional CCU. In scenario 4SW1T, we perform four sequential invo-

cations of the targeted software task/function. This explains the high speedup

gains for 4C1T over 4SW1T, which are mainly due to the faster CCU execution

compared to its SW equivalent.

In Table 7.4, we present the experimental results for the multithreaded syn-

thetic application. As the results suggest, the execution time of 4C4T is almost

constant, even when the dataset size increases. This is due to the overlapping

of the CCU execution with the RTOS services. Because we consider synthetic
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benchmarks, we are only interested in the overall behaviour of the system.

These benchmarks were not created with any functionality in mind. Therefore,

we are not in a position to investigate local deviations in the system behaviour,

but rather the trends in its performance. The experimental results in Table 7.4

suggest that the higher the number of threads executed, the faster the overall

application execution is. Moreover, our approach introduces trivial time costs

compared to the huge performance gains it enables.

Based on the target application, the programmer can potentially employ more

complex scenarios than the ones presented. One such application might have

a large set of threads, where intra- and inter-thread parallelism might be ex-

ploited at the same time.

7.2.2 Comparison with Related Work

In Table 7.5, we provide an analytical comparison of our design and two of the

most relevant state of the art projects in the domain of heterogeneous systems,

ReconOS [58] and Hthreads [79]. We evaluate these projects in terms of per-

formance by measuring the RTOS cost during the synchronization procedures.

We consider four execution scenarios with respect to the location of the syn-

chronizing entities. We inherit them from [58]. With SW→SW, we denote

a scenario when two software threads are synchronized to each other. In

SW→HW scenario, a software thread performs a call, i.e., synchronizes it-

self with a hardware kernel running on a dedicated CCU. In HW→SW, a CCU

initiates a synchronization to a software thread. In HW→HW, two CCUs are

synchronized between each other.

We generate the results in all four scenarios using one user application com-

posed of two types of threads. The first thread type contains a hardware kernel

call, i.e., CCU call. The second thread contains the user code, except in sce-

nario HW→HW, where the user thread is substituted by a delegate thread.

According to the ReconOS terminology, a delegate thread is a software thread

containing a CCU call. Therefore, all communication and synchronization pro-

cedures in scenarios SW→HW, HW→SW and HW→HW, implicitly include

the delegate to user thread synchronization cost (SW→SW). In HW→HW

scenario, we execute two CCUs sequentially, where each one of the CCUs

is assigned to a different delegate thread. Note, that we verify the system

scalability by extending two of the scenarios SW→HW and HW→SW with

arbitrary number of CCUs, denoted as N.

In column 2 of Table 7.5, we present analytically the ReconOS semaphore
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costs. The 1*SW→1*SW synchronization is achieved by posting and pending

operations on a semaphore by the source and destination thread, marked as

Sem postuser. In the 1*SW→N*HW scenario, the same 1*SW→1*SW cost is

available with the difference that one of the user threads is substituted by a del-

egate thread, Sem postdelegate . With L, we define the time period necessary for

transferring the CCU parameters to the XREGs. In the SW→N*HW scenario,

the RTOS cost also includes the Interrupt Service Routine (ISR) cost. The cost

in the last scenario, 1*HW→1*HW, is a combination of all previous scenarios.

The ReconOS designers observe that the cost in 1*HW→1*HW scenario is

too high for some streaming applications which have directly communicating

CCUs. Therefore, the designers employ a dedicated hardware FIFOs between

the CCUs to minimize this cost. This concept is completely compatible with

our prototyping platform and can not be the source of the difference between

our approach and the one from [58]. Therefore, we do not consider it as a

target of further experiments.

In column 3 of Table 7.5, we study the cost of the Hthreads platform. Be-

cause of the fact that the RTOS scheduler is implemented entirely in hardware,

the cost among all scenarios is due to hthread mutex and hthread add func-

tions, used for synchronization purposes. In scenarios 1*SW→N*HW and

N*HW→1*SW, the number of Hthreads function calls grows with the num-

ber of the communicating tasks. For a large number of threads, we expect

the Hthreads synchronisation cost to be much higher than the results reported

in [79], because a single bus is employed to connect all CCUs and hardware

RTOS blocks. Although an evaluation study of the bus cost was not provided,

we expect the system scalability of [79] to be poor beyond a certain threshold.

For the same number of scenarios, in column 4 of Table 7.5, we present our

synchronization cost. In 1*SW→1*SW scenario, our design has the same

performance and functionality as ReconOS. In 1*SW→N*HW, the only delays

in our design are due to the CCU parameter transfers. Therefore, we expect our

design to be faster than the ReconOS project. Compared to N*HW→1*SW,

we substitute the delay of one of the software semaphores with the delay of

the “barrier” instruction, which is equal to 4 cycles extra. Note that because

of the “barrier” instruction, the software cost remains constant, independent of

the number of CCUs, denoted as N. In the HW→HW scenario, similarly to

ReconOS, the software cost is equal to the sum of all costs for the previous

scenarios.

In Table 7.6, we present the experimental results of our comparison. All sce-

narios are generated using two threads only. All results, reported in Table 7.6
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Table 7.6: Experimental performance comparison of OS semaphores, measured in

GPP clock cycles

Semaphore ReconOS
Hthreads This work

Synchronization eCos /PPC /PThreads Our RTOS /MIPS

SW → SW 305 332 36+hthread add 332

SW → HW 528 505 36+hthread add 32

HW → SW 908 814 36+hthread add 198

HW → HW (2 sequential CCUs) 1114 1007 36+hthread add 262

are obtained with synthetic Molen-style CCUs, where the latter are designed

to generate a predetermined delay of 1000 GPP clock cycles. An immedi-

ate comparison between our design and the ReconOS project is not possible,

because the latter has primary software implementation on a completely dif-

ferent platform, programming model and RTOS. The original ReconOS was

implemented on eCos RTOS [5] using Power PC as a processor and POSIX

PThreads. Therefore, in order to provide a fair comparison between the two

approaches, we decided to reimplement the ReconOS synchronization concept

on our platform. In column 2 of Table 7.6, we present the originally reported

results in [58] and in column 3, the results from our redesign of ReconOS.

Apparently, the results from column 2 and 3 in Table 7.6 match closely, which

provides us with confidence for the correctness of our further comparisons. In

Table 7.6, we also provide the experimental results obtained for our design.

For the SW→SW synchronization, our proposal has the same cost as the Re-

conOS, because the software user threads are communicating through software

semaphores. As suggested by the analytical study, for the other scenarios, we

can achieve the same functionality as ReconOS for 1

16
up to 1

5
of the time,

confirmed by the figures in column 2 and column 5 in Table 7.6.

In column 4 of Table 7.6, we present the Hthreads results. We decide not to

redesign any part of it, because the Hthreads has primary hardware implemen-

tation. The results in [13] reveal that the semaphores cost remains constant

among all SW to HW thread synchronizations, due to the hardware imple-

mentation. The authors achieve thread semaphore synchronization by using

Hardware blocks called Mutexes and Thread Manager. The cost of 36 cycles

for the hthread mutex is mainly due to the cost of the multi-master bus that

designers employ. We do not include any numbers for the hthread add func-

tion used for communication between the Mutexes and the Thread Manager,

because the authors do not evaluate this cost. Due to the hardware approach

in Hthreads, we expect the cost of the hthread add function to be in terms of

dozens of clock cycles. Compared to Hthreads, our approach performs much
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Table 7.7: Qualitative comparison of the three approaches

ReconOS Hthreads This work

Portability HIGH MEDIUM HIGH

Flexibility MEDIUM LOW HIGH

Performance LOW HIGH HIGH

slower in the SW→SW scenario. In the SW→HW scenario, our performance

is comparable to Hthreads. In the HW→SW and the HW→HW scenarios, the

overall performance of our design is much closer to the Hthreads than to the

ReconOS.

Based on our analysis and the obtained experimental results in Table 7.7, we

provide a qualitative comparison of the three different designs considered. We

compare them in terms of portability, flexibility, and performance, all defined

in Section 6.2. With our reimplementation, we have demonstrated that the Re-

conOS is easily portable. We rate ReconOS as medium flexible, because their

design is limited to transferring Operating System services of a single-threaded

RTOS into hardware. The overall performance of the ReconOS design is lower

than our proposal.

In Hthreads, the portability is at medium level, but their flexibility is low, be-

cause the system does not provide an efficient mechanism to port additional

RTOS specific services in hardware. Their performance is ranked high, be-

cause the selected RTOS services are entirely implemented in hardware. Due

to our architectural approach and the properties of the Molen architecture, we

are able to achieve high system portability. The flexibility of our approach is

also ranked high since we provide a platform capable to port any RTOS ser-

vice or user application into hardware. As the experimental results suggest,

our performance is high and it is in the same order as the highest performance

demonstrated by the Hthreads project.

7.3 Hardware Task-Status Manager Evaluation

In this section, we measure and analyze the RTOS actual-case and worst-

case execution time with synthetic and real applications with and without the

HWTSM CCU.

We perform all experiments with a tiled CompSoC platform employing Xil-

inx Microblaze as a core inside of a processor tile. The design is synthe-

sized using Xilinx Platform Studio 12.2 and verified on a Xilinx Virtex 5
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... Tn

T2T1

T4T3

Tile#1

Figure 7.1: Synthetic application with StS policy

ML510 (XC5VFX130T) Evaluation Board. We employ data-flow, i.e., stream-

ing applications to evaluate our system. The exercised streaming applications

include two synthetic applications and two popular applications in the embed-

ded systems domain – an H.264/AVC decoder [80] and an JPEG decoder. We

experiment with synthetic applications mapped on one processor tile only and

with real applications ona two processor tiles. However, the obtained results

can be generalized for any arbitrary number of tiles. The reason for such a gen-

eralization is that the execution time of the RTOS in one processor tile depends

only in the number of tasks (and the number of their FIFOs) executed locally

on that tile. Furthermore, the execution time of the RTOS does not depend on

the number of processor tiles to which these local tasks communicate with.

The rest of the section, we organize as follows: we first present the analytical

model and the evaluation results from the synthetic applications, followed by

the real applications and the overall system performance improvement. Then,

we provide a qualitative comparison of the HWTSM using different processor–

coprocessor execution models. We conclude the section, by evaluating the

hardware costs of the HWTSM.

We develop two synthetic applications. We use each one of the applications to

evaluate our proposal with two basic types of intra-application scheduling poli-

cies: Static Scheduling (StS) and Dynamic Scheduling (DyS). We explicitly

investigate different scheduling policy types, because they are the ones which

dictate the number of HWTSM calls. We generate our synthetic benchmark by

varying the number of FIFOs per task and the total number of tasks, both in

the range from 1 to 10. For each one of the synthetic and real applications, we

investigate the WCET of the RTOS with and without the HWTSM included.

In the synthetic applications setup, all FIFOs are configured to accommodate

up to two tokens.

In the StS policies, such as time-division multiplexing (TDM), the next sched-

uled task is always the next one in the list of tasks. In case the task is not ready,

the corresponding application time slot is left idle. In Figure 7.1, we present
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Figure 7.2: RTOS profiling with StS for 10 tasks

an inter-task communication pattern of the synthetic application that we use

in a combination with StS policy. Let us assume that the currently executed

task is T1 and the next one to be scheduled is T2. As a result, during the RTOS

time slot, the StS policy only checks FIFOs associated with T2. That’s why we

create the StS scenarios by scaling the number of FIFOs associated with T2.

The WCET of the RTOS with StS policy without using HWTSM is

WCETsts sw:

WCETsts sw = T(nf) + Constsched + Constcntx (7.2)

where T(nf) is the time to read the task rc and wc for each of the FIFOs (nf)

associated with a task and compute the status of the task. The Constsched is the

constant time for the scheduling policy. The Constcntx is the context switching

time. Therefore, WCETsts sw is a linear function, depending only on the number

of FIFOs (nf).

The WCET of the RTOS using the HWTSM and the StS policy is

WCETsts hw:

WCETsts hw = Const′sched + Constcntx (7.3)

where Const′sched is the constant time necessary to fetch the task-status from

the HWTSM. Since the FIFO checking and task-status computing are per-

formed in hardware, overlapped with the execution of the software, then the

RTOS execution time is always constant.

In Figure 7.2, we present the execution time of the pure software RTOS for

an application that has 10 tasks and 9 FIFOs in total. The deviations in the

RTOS actual case execution time are due to the number of FIFOs in the task

to be scheduled. A task with low number of FIFOs (such as T1) requires less

time to be determined whether it is eligible for execution than a task with high



96 CHAPTER 7. EXPERIMENTAL RESULTS

RTOS [SW]
RTOS+HWTSM [SW/HW]

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

Number of Tasks

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

Number of FIFOs per Task

 450

 500

 550

 600

 650

 700

 750

 800

 850

W
C

E
T

 o
f 
th

e
 R

T
O

S
 [
c
lo

c
k
 c

y
c
le

s
]

Figure 7.3: WCET of the RTOS with StS

number of FIFOs (such as T2). In Figure 7.2, the RTOS actual case execution

times mostly varies around 500 clock cycles, because the StS policy suggest to

schedule a task with low number of FIFOs, which is not eligible for execution.

Therefore, the RTOS StS policy loads the idle task. The WCET of the RTOS

is equal to 846 clock cycles for the synthic application presented in Figure 7.1.

Our analysis suggest that the WCET of the RTOS is experienced when T2 is

scheduled for execution, because T2 is the task with the highest number of

FIFOs in the application. As explained in [9], the composability of the system

is ensured by leaving the processor idle for the time difference between the

real execution time of the RTOS and its WCET. In Figure 7.2, the shortest

execution time of the RTOS is equal to 266 clock cycles. Therefore, the idle

period is equal to 620 clock cycles. Our goal is to reduce the WCET of the

RTOS, as well as RTOS execution time variations, such that the idle period is

minimized.

In Figure 7.3, we present the WCET of the RTOS for the StS policy as a func-

tion of the number of tasks and FIFOs. The results are obtained with and

without the HWTSM for the synthetic application from Figure 7.1. As the an-

alytical model for StS suggests, the variations of the WCET of the RTOS are

close to linear, with respect to the number of FIFOs. In Figure 7.4, we present

a snapshot from Figure 7.3 to visualize more clearly the dependence of the

WCET of the RTOS to the number of FIFOs for an arbitrary number of tasks.
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Figure 7.5: Synthetic application with DyS policy

In our experiments, the number of tasks varies from 1 to 10. The non-linear

behaviour at two FIFOs is caused by the software implementation, because the

processing of the input/output FIFOs is different. As the analytical model for

StS suggests, the WCET of the RTOS with HWTSM is always constant, equal

to 461 clock cycles. The constant execution time is due to the StS execution

profile and the proposed parallel non-blocking execution model.

In Figure 7.5, we present the second synthetic application using DyS policy.

In our experiments, we use the Round-Robin (RR) scheduling algorithm as a

representative of the DyS policies. Contrary to StS, the DyS policies might

check multiple tasks until a ready one is found. The WCET of the RTOS for

a DyS policy occurs when all tasks belonging to the current application are

checked and the next scheduled task is again the currently running one. We

construct the synthetic applications for the DyS policy by varying the number

of tasks and FIFOs in the application graph.

The WCET of the RTOS with DyS policy for pure software implementation is
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Figure 7.6: RTOS profiling with DyS for 10 tasks and 10 FIFOs per task

WCET dys sw:

WCETdys sw = T(nf,mt) + Tsched(mt) + Constcntx (7.4)

where T(nf,mt) is the time to read the task rc and wc for each of the FIFOs (nf)

associated with each task (mt) and compute each task status. The Tsched(mt)
is the scheduling time for the DyS policy algorithm. The Constcntx is the time

necessary for context switching.

The WCET of the RTOS employing HWTSM and the DyS policy is

WCETdys hw:

WCETdys hw = T ′schedhw(mt) + Constcntx (7.5)

where T′schedhw(mt) is time for the employed DyS policy when a HWTSM is

used. Since the time for the FIFO management is removed, the deviations of

the WCETdys hw are only due to T′schedhw(mt). Therefore, if the DyS policy

has linear complexity, the WCET of the RTOS also grows linearly.

In Figure 7.6, similarly to the StS, we present the execution time of the RTOS

when a single application of 10 tasks and 10 FIFOs per task is executed. Con-

sequently, there will be a total of 100 FIFOs in the application. As it is visible

in Figure 7.6, the RTOS execution time varies from approximately 1000 up to

6000 cycles among different RTOS invocations. The deviations in the actual

case execution time of the RTOS are due to the checked number of tasks until

an eligible for execution is found.

In Figure 7.7, we present the WCET of the RTOS as a function of the num-

ber of tasks and FIFOs. The experimental results are obtained for six different

scenarios with the number of FIFOs per task equal to 2, 4, 6, 8, and 10. As the

analytical study for DyS suggests, the WCET of the RTOS for the pure soft-

ware implementation grows in two dimensions defined by the number of tasks
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Figure 7.7: WCET of the RTOS with DyS
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tion with DyS and StS for synthetic applications

and FIFOs. For the DyS scenario with HWTSM, denoted as RTOS+HWTSM

in Figure 7.7, the WCET of the RTOS does not change when the number of

FIFOs per task is increased. To give a better view on the execution time, we

introduce Figure 7.8, which is based on the results from Figure 7.7. Keep in

mind that Figure 7.8 is a projection of Figure 7.7. The execution time of the

RTOS for RTOS+HWTSM is the same throughout all scenarios. It is because

the HWTSM computes in parallel the tasks-status, which depends on the num-

ber of FIFOs per task. The non-linear change at the point of two FIFOs per

task is due to our particular implementation.

In Figure 7.9, we summarize the achieved reduction in the WCET of the RTOS.

The reduction is computed as a ratio between the WCET of the RTOS between

pure software and HWTSM implementations. Figure 7.9 suggests that the

reduction in the WCET of the RTOS for StS varies between 1.1 and 1.8 times

compared to the pure software implementation. The results indicate that for

the DyS scenarios, the reduction is between 1.1 and 3.0 times.

We follow the implementation approach from [72] to partition and map the

JPEG and the H.264 decoders on the baseline CompSoC platform. The appli-

cation inter-task communication pattern of the JPEG decoder is presented in

Figure 7.10. We partition the JPEG decoder into three tasks. One of the tasks



7.3. HARDWARE TASK-STATUS MANAGER EVALUATION 101

T1

T3T2

NoC

Tile#2

Tile#1

Figure 7.10: JPEG decoder

T1T2T3

T6T5T4

NoC

Tile#2

Tile#1

Figure 7.11: H.264 decoder

 400

 600

 800

 1000

 1200

 1400

 0  1  2  3  4

W
C

E
T

 o
f 

th
e

 R
T

O
S

 [
c
lo

c
k
 c

y
c
le

s
]

Number of Tasks

H.264-Tile1 [SW]

H.264-Tile2 [SW]

JPEG-Tile1 [SW]

JPEG-Tile2 [SW]

RTOS+HWTSM[SW/HW]

Figure 7.12: WCET of the RTOS for JPEG and H.264 decoders



102 CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.8: Overall system performance improvement

RTOS slot : Application slot ratio

10% : 90% 20% : 80%

StS 0.9% − 4.5% 1.8% − 8.9%

DyS 0.9% − 6.6% 1.8% − 13.3%

JPEG 2.3% 4.6%

H.264 3.8% 7.5%

is mapped on one processor tile and the other two are running on the other

processor tile. The application inter-task communication pattern of the H.264

decoder is depicted in Figure 7.11. We partition the H.264 decoder into six

tasks. Each of the processor tiles executes three of the tasks.

In Figure 7.12, we present the WCET of the RTOS in each one of the tiles for

the JPEG and H.264 decoders with and without the HWTSM. For the JPEG

decoder, the reduction of the WCET of the RTOS with HWTSM is up to 1.3

times. Although the H.264 decoder has an equal number of tasks in each tile,

we observe small deviations in the measurements, caused by the different num-

ber of the input/output FIFOs of the mapped application tasks. The reduction

in the WCET of the RTOS with HWTSM is up to 1.6 times. The reason for

the high WCET reduction of the RTOS even with low number of tasks is due

to the parallel non-blocking execution model which leads to a constant, short

in our case, response time of the HWTSM equal to five cycles.

Once the WCET of the RTOS is reduced, there are at least three possibilities to

utilize the extra clock cycles. The first option is to improve the overall perfor-

mance. The second one is to improve the system responsiveness, by increasing

the rate of RTOS invocations, while preserving the application performance as

in the pure software implementation. The third option is a combination of the

previous two. Table 7.8 presents the overall system performance when the re-

duction in RTOS WCET is used to speedup the application. We investigate two

cases, when the ratio of the RTOS slot to application slot size is 10%:90% and

20%:80%, respectively. As the reduction in the WCET of the RTOS slot varies

between 1.1 to 3.0 times when the RTOS slot size is 10% of the total execu-

tion, the overall system performance improvement is between 0.9%-6.6%. If

the RTOS slot size is 20% of the total execution time, then the overall system

performance improvement is between 1.8%-13.3%. If the number of tasks and

FIFOs per application are further increased, we expect to achieve even higher

overall performance improvement than the current results.

One of our contributions in this dissertation is the definition of the parallel non-

blocking execution model. To assess it, we provide a qualitative comparison
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on four of the execution models presented in Figure 3.1 with respect to the

presented HWTSM operation. If we execute the HWTSM in sequential model,

then the software should be stalled for some time. In this time, the HWTSM

reads the rc/wc values from the data memories and computes the status of the

application tasks. Therefore, the HWTSM should be sharing the data memory

ports with the tile processor because the latter is not using them at the same

moment in time. Such an approach enables an easy integration in the existing

platform. The total execution time of the RTOS with HWTSM, running in the

sequential model, is expected to be always longer and more variable than the

HWTSM executed in the parallel non-blocking model.

A possible scenario to execute the HWTSM in the parallel blocking model is

to make the HWTSM calls in advance, e.g., at the beginning of the RTOS slot.

Therefore, the fetching of the rc/wc values is overlapped with the rest of the

RTOS services. A way to access the rc/wc memory locations in the CompSoC

platform without affecting the execution of the processor and the network in-

terfaces is by adding an extra memory port to the data memories. The high

hardware cost of implementing a three-port data memory makes the parallel

blocking model impractical for the proposed HWTSM in the CompSoC plat-

form.

In Figure 7.13, we present the hardware costs of the HWTSM in terms of

number of slices on the FPGA chip. The results are obtained by varying the

number of hardware task-status units from 4 up to 32, identified as FSM T* in

Figure 5.8. Each FSM T* represents a separate state machine. As expected, the

hardware cost scales close to linear with the number of tasks. The deviations

from the linear behaviour are due to the Place & Route heuristics in the FPGA

design tools.
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Figure 7.14: H.264 tasks: mapped on CompSoC processor and WCET (clock cycles)

7.4 Remote Slack Distribution Evaluation

In this section, we first briefly describe the platform and the tools. Then, we

present the target application, namely H264, and the experimental setup. In

the end of this section we present the observed clock frequencies of the tiles,

consumed energy and costs in software and hardware.

For our experiments, we employ a dual-tile CompSoC platform. Each tile

embeds a Xilinx Microblaze core. The design is synthesized with Xilinx Plat-

form Studio 12.3 and verified on Xilinx Virtex ML605 (xc6vlx240t) evaluation

board. Moreover, we consider that each processor can operate in 15 equidis-

tant frequency levels, varying from 50MHz downto 3.1MHz. We consider the

same energy model as [71].

We exercise a streaming data-flow H.264/AVC decoder [72], to evaluate our

slack distribution technique. In Figure 7.14, we present the H.264 tasks to

tiles mapping and we list the worst-case execution times of tasks. The H.264

application has static slack, due to the difference in the wcet of the tasks, and

dynamic slack, caused by the variations of the acets of tasks.

We compare our inter-tile slack distribution with intra-tile slack manage-

ment (Intra-tile slack mngm) [67]. Furthermore, we investigate two variants

of our proposal, depending on the computation of Stask, i.e., the value of N in

Equation 6.16. In the first case, the remote slack is the maximum value among

the remote slack values from the FIFOs linked/connected with the task that is

schedule to start next (Inter-tile slack mngm (MAXtask)). In the second case,

the remote slack is the maximum value among the remote slack values from

the FIFOs of all tasks mapped on the tile (Inter-tile slack mngm (MAXtile)).

In both cases, we utilize a simple, greedy slack policy that always allocates all

the available slack to the next scheduled task.
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Figure 7.15: Frequency levels for the H.264 tasks running in Tile 1

In Figure 7.15 and Figure 7.16, we present the clock frequency of Tile 1 and

Tile 2 for 150 task iterations. In case when no slack management is applied

the core operates all the time at the maximum frequency (fmax). For Tile 1, the

proposed inter-tile slack technique does not always achieve lower frequencies

than the intra-tile technique. Compared to the existing intra-tile technique [67],

the total frequency level reduction of the tasks for MAXtask is 5.7% and for

MAXtile is −0.3%, respectively. There are two main reasons for it: 1. our slack

policy employs more slack in a given task iteration and there is not enough

slack for the policy to scale down the frequency in the following task itera-

tions; 2. the transferred remote slack value is lower than the RS library cost,

therefore, RS library introduces slow-down, instead of speed-up in the appli-

cation.

For Tile 2, as the results suggest, the MAXtile case finds lower clock frequency

than MAXtask. This difference is because of the amount of the Swasted and the

task that employs Sremote. For example, if the Swasted is equal to zero, then

the ratio between the acetT6
and the received remote slack is more than 15

times. In such a way, the task clock frequency can be set to the lowest possible.

Compared to [67], the total frequency level reduction for MAXtask is 48.3%

and for MAXtile is 56.8%.

In Figure 7.17 and Figure 7.18 we present the consumed energy for each one of
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Figure 7.16: Frequency levels for the H.264 tasks running in Tile 2
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Figure 7.17: Consumed energy for the H.264 tasks running in Tile 1
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Figure 7.18: Consumed energy for the H.264 tasks running in Tile 2

the previously introduced cases, for Tile 1 and Tile 2, respectively. We run the

system for 150 application slots. In Figure 7.17, the consumed energy for our

proposals are almost equal to the intra-tile technique, as it was suggested by the

clock frequency of Tile 1 in Figure 7.15. The total reduction of the consumed

energy for MAXtask and MAXtile, compared to [67] is equal to −0.03% and

0.17%, respectively. In Figure 7.18, we observe that the consumed energy

of each of MAXtask and MAXtile is lower than the intra-tile slack manage-

ment, as also suggested by the frequency levels in Tile 2. During the first few

application slots, the consumed energy is equal for the two implementations

of our proposal. The reason is that it takes time for the inter-tile communica-

tion to be established. In Tile 2, compared to the intra-tile technique, MAXtask

and MAXtile reduce energy consumption with 46.5% and 53.3%, respectively.

Based on the measured energy reduction, we computed the total reduction over

both tiles.

In what follows, we present the software and hardware cost of the RS library

and RS CCU. The software cost is in terms of extra clock cycles. The hard-

ware cost is in terms of chip utilization, i.e., the number of occupied FPGA

slices. Depending on the number of remote FIFOs, the software cost of the

RS library is as follows: for the transmitting of the remote slack varies from

1.5k up to 3.2k clock cycles. As illustrated in Figure 7.14, the number of re-
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Figure 7.19: Conceptual MPSoC extended with three Molen-style CCUs – TISC,

HWTSM, and RS

mote FIFOs varies between one and two. The software cost of the slack policy

varies from 2.0k up to 2.5k clock cycles. Since, the RS library is invoked at

the beginning and at the end of a task iteration, the introduced cost varies be-

tween 1% and 4% compared to the execution time of the H.264 task iterations

directly involved in the remote slack transmission and reception.

The chip utilization of the Molen wrapper with a dedicated memory bank of

64 bytes is 585 slices. The cost of the RS CCU is 84 slices. As we expected

the chip utilization of the RS CCU is negligible, less than 0.002% of the total

number of slices in the considered FPGA chip. Furthermore, the hardware

cost of the RS CCU does not dependent on the number of applications, tasks,

and FIFOs. The only resource which scales with the number of remote FIFOs

is the data memory that stores remote slack and timestamps. Although the

RS CCU runs continuously due to its small footprint, we expected its energy

consumption to be low as well.
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7.5 Overall Results

In this section, we introduced a conceptual architecture, which illustrates

that all three previously introduced CCUs, namely: TISC CCU, HWTSM

CCU, and RS CCU, can be combined together. The TISC CCU operates in

processor–coprocessor parallel blocking model, while HWTSM CCU and RS

CCU operate in parallel non-blocking. In Figure 7.19, we present an MPSoC

tile extended with Thread Interrupt State Controller, Hardware Task-Status

Manager, and supporting inter-tile remote slack distribution. For the proper op-

eration of the CCUs, we connect each one of the CCUs to the following buses:

1. Local Data Coprocessor (LDCop) bus employed for the communication

between the processor and reconfigurable coprocessors; 2. Local Data (LD)

bus employed for communication between the processor and the local data

memory; 3. Remote Data Receive (RDR) bus employed for inter-tile commu-

nication, i.e., for receiving data from other tiles through the NoC. Note, that

we run HWTSM CCU and RS CCU in processor–coprocessor parallel non-

blocking programming model. Therefore, their end op signals are employed

only during their explicit termination from the software and not during their

normal operation. For further details on the transferred data through the buses

by each of the CCUs, we refer the interested reader to Chapters 4, 5, and 6.

Based on the available experimental results, we estimate that the improvement

in the system speedup can be up to 19.6 times with the help of the Thread

Interrupt State Controllers. Furthermore, we reduce RTOS cost with the help

of the Hardware Task Status Manager, which results in additional application

acceleration can be up to 13.3%. Last but not least, the improvement of the

system energy consumption can be up to 56.7% over current state of the art

with the help of inter-tile remote slack information distribution framework.

Overall, with the help of our contributions, the system performance is im-

proved, the predictability and composability are preserved, all with reduced

energy consumption.

7.6 Conclusions

For each one of the previously introduced CCUs, we have carried out extensive

experimental evaluations and we outlined the following conclusions:

For the Thread Interrupt State Controller, we verify the system by means of

synthetic benchmarks as well as by real applications. Comparison in the ex-



110 CHAPTER 7. EXPERIMENTAL RESULTS

perimental results between our proposal and other state of the art proposals

suggested that our approach demonstrated the best performance-portability and

performance-flexibility characteristics.

The hardware complexity of the Hardware Task Status Manager grows close

to linearly with the number of tasks. The experimental results are obtained

with synthetic and real applications. With synthetic applications, the WCET

reduction of the RTOS up to 3 times. With the real applications, i.e., JPEG

and H.264 decoders, the WCET of the RTOS is reduced by 1.3 and 1.6 times,

respectively. The results suggested that our technique leads to overall system

performance gains up to 13.3%.

We verify our framework for slack computation, allocation, and distribution

that transfers the static and dynamic slack information among the tiles in an

MPSoC with a data-flow implementation of the H.264 decoder. More pre-

cisely, we studied four scenarios with the H.264 decoder: a no-slack manage-

ment, an inter-tile slack management, and two variants of our inter-tile slack

management. As evaluation criteria of our framework, we employed the clock

frequency, the consumed energy, and the introduced cost in software and hard-

ware.

The results suggested that our inter-tile technique reduces the total energy con-

sumption of 27% at the cost of minor software cost of up to 4% and negligible

additional FPGA chip utilization of 0.002%.

As a result of our proposal, a proof-of-concept system that includes all three

previously proposed reconfigurable coprocessors has improved performance,

preserved predictability, and preserved composability, all at the cost of reduced

energy consumption.
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Note. The content of this chapter is based on the following papers:
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puter Systems: Architectures, Modeling and Simulation (SAMOS IX), 2009,

pp. 263–274

P. G. Zaykov, G. K. Kuzmanov and G. N. Gaydadjiev, State of the art Recon-

figurable Multithreading Architectures, Technical Report - CE-TR-2009-02,
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T
his chapter provides a survey on the existing proposals in the field

of reconfigurable multithreading (ρMT) architectures. Until the time

of this survey, reconfigurable architectures have been classified ac-

cording to implementation or architectural criteria, but never based on their

ρMT capabilities. More specifically, we identify reconfigurable architectures

that provide implicit support for ρMT, explicit support for ρMT, and no ar-

chitectural support for ρMT. Further subdivision of these three classes is also

provided by the taxonomy proposed in this chapter. For each of the referenced

works, we discuss the conceptual model, the limitations and the typical appli-

cation domains. We also summarize the main design problems and identify

some key research questions related to highly efficient ρMT support. In ad-

dition, we discuss the application perspectives and propose possible research

directions for future investigations.
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8.1 Introduction

Contemporary embedded systems require high processing power and often em-

ploy varieties of different functionalities. One widely spread technique to com-

bine multiple functionalities and improve Instruction Level Parallelism (ILP)

over non-consecutive instructions is multithreading or Thread Level Paral-

lelism (TLP). Modern appliances, such as digital cameras, mobile phones, per-

sonal media players, handheld gaming consoles and many electronic devices

used in medical and automotive industries employ multithreading supported

either by the Operating System (OS) or by dedicated hardware mechanisms.

Many applications running on modern embedded devices are composed of

multiple threads, typically processing (exchanging) data among multiple

sources. Such examples are: drivers that handle user interaction from touch-

screen displays/buttons, management of wireless network protocols, multi-

media (audio and video) computations, etc. During the quest of maximum

performance and flexibility, the hybrid architectures combining one or more

embedded General Purpose Processors (GPPs) with reconfigurable logic have

emerged. There is a clear trend which shows that in the near future there will

be more embedded systems integrating reconfigurable technology. The first

indications of such approaches were presented in [41], [89], [110]. It is envi-

sioned that multithreading support will become an important property of such

systems.

One of the fundamental problems in multithreaded architectures is efficient

system resource management. It has been successfully solved in contempo-

rary GPPs using various implicit and explicit methods. In literature [109], the

explicit techniques have been further partitioned into three main categories:

Block Multithreading (BMT) - employing Operating System (OS)/compiler

approaches and Interleaved/Simultaneous Multithreading (IMT/SMT) using

hardware techniques. The main reason is that the reconfigurable hardware

is changing its behavior per application, unlike the GPPs, which have fixed

hardware organization regardless the programs running on them. Yet, current

state of the art architectures do not provide efficient holistic solutions for ac-

celerating multithreaded applications by reconfigurable hardware.

In this chapter we approach the reconfigurable multithreading (ρMT) archi-

tectural problems both from the hardware and the software perspective. The

specific contributions of the chapter are as follows:

• We analyze a number of existing reconfigurable proposals with respect

to their architectural support of ρMT. Based on this analysis, we propose
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Figure 8.1: A conceptual behavioural model of an ρMT system

a taxonomy with three main classes, namely: reconfigurable architec-

tures with explicit, implicit and no ρMT support. A further subdivision

of these three classes is also provided;

• We summarize several design problems addressing performance ef-

ficient management, mapping, sharing, scheduling and execution of

threads on reconfigurable hardware resources;

• We provide our vision for promising research directions and possible

solutions of the identified design problems;

The chapter is organized as follows: in Section 8.2, a taxonomy covering re-

lated projects is presented. In Section 8.3, we describe in more detail the design

problems. the status of the current state of the art, our vision on some possi-

ble application perspectives. Finally, the concluding remarks are presented in

Section 8.4.

8.2 A Taxonomy of Embedded Reconfigurable Multi-

threading Architectures

A taxonomy on Custom Computing Machines (CCMs) with respect to explicit

configuration instructions has been already proposed in [91]. However, that

study did not consider multithreading support as a distinguishing feature. In
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this section, we introduce a taxonomy of existing reconfigurable architectures

with respect to the ρMT support they provide. We identify three main classes

of such architectures, namely: with explicit, with implicit, and with no ar-

chitectural ρMT support. Note, the meaning that we relate to the definitions

of explicit and implicit ρMT, is different from what is used in GPP systems.

In general purpose systems, the classification is based on multithreading sup-

port from algorithmic point of view [109]. In our taxonomy we use as a dis-

tinguishing feature the presence of architectural/µ-architectural extensions for

creation/termination of multiple threads on reconfigurable logic. If we classify

the ρMT research projects based on the GPP explicit multithreading technique,

our taxonomy looks like:

• Reconfigurable Block Multithreading (ρBMT): e.g. [110], [118], [119];

• Reconfigurable Interleaved Multithreading (ρIMT): e.g. [61];

• Reconfigurable Simultaneous Multithreading (ρSMT): e.g. [107], [79];

In this chapter, we consider a different classification perspective. In architec-

tures with no ρMT support, application threads are mapped into reconfigurable

hardware using software techniques – either at the OS or at the compiler level.

This software approach provides unlimited flexibility, but the performance cost

too often penalizes the overall execution time especially for real-time imple-

mentations. On the other hand, architectures with implicit ρMT support, pro-

vide performance efficient solutions at the cost of almost no flexibility due

to the fixed underlying microarchitecture (µ-architecture) facilitating multi-

threading. To exploit the flexibility provided at both the software level, as well

as by the reconfigurable hardware at the µ-architectural level and to achieve

higher system performance, a third emerging class of architectures is iden-

tified and termed as architectures with explicit ρMT support. Hereafter, we

enlighten the proposed taxonomy through examples of existing reconfigurable

architectures.

A conceptual behavioral model of an ρMT system is depictured in Figure 8.1.

The picture represents the basic steps in the management and execution process

of multiple threads. Initially, the programmer creates applications (tasks – Sec-

tion A) or kernel service (Section B) composed of multiple threads. Later, dur-

ing run-time, when an application is selected for execution, depending on the

system status information, the Top-level Scheduler (Section C) passes threads

to local schedulers (Section D and E). The local reconfigurable scheduler (Sec-

tion E) composed of multiple units - queues, scheduling algorithm, placement
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technique and loading process. The synchronization between different threads

is managed by e.g. semaphores or read/write counters (Section F). The differ-

ent sections of the behavior model, depicted in Figure 8.1, are implemented

either at the software level, or at the architectural, or at the µ-architectural

level, depending on the particular architecture. Hereafter, we shall reveal how

different popular reconfigurable proposals manage the scheme from Figure 8.1

and based on their architectural support for ρMT, we shall classify them.

8.2.1 State of the art Reconfigurable Architectures

In general, reconfigurable hardware allows the designer to extend the processor

functionality both statically and at run-time to speed up the application by exe-

cuting its critical parts in hardware. In [28], a survey on architectural proposals

targeting GPP cores extended with reconfigurable logic is presented. However,

that paper has not considered ρMT as a classification criterion. In the years af-

ter, a few more reconfigurable proposals have been introduced, capable to be

supported by an OS without any specific hardware modifications. We choose

to briefly introduce the following two of these reconfigurable projects, uncov-

ered by [28], because we consider them as a natural evolution of contemporary

embedded systems and potentially good candidates for explicit ρMT exten-

sions:

MOLEN: We choose The Molen Polymorphic Processor [110] proposed

by CE Lab, TUDelft, The Netherlands, as an example of tightly cou-

pled (processor–coprocessor) fine-grained reconfigurable architecture. It com-

bines a GPP with several reconfigurable Custom Computing Units (CCU-

es). Further details on the Molen Polymorphic Processor are revealed in Sec-

tion 2.1.1.

The Molen concept has been successfully employed in various projects in the

domain of multimedia [50] and cryptography [26]. In the Molen original pa-

pers, multithreading has not been discussed, but a follow-up research towards

multithreading has been reported in [107]. An overview of this enhanced MT

version of Molen is examined in Section 8.2.3.

Montium TP: As an example of a Coarse Grained Reconfigurable Ar-

ray (CGRA) processor core, we choose Montium TP [41], designed by

RECORE Systems. It combines five identical Custom Reconfigurable Pro-

cessing Units (CRPUs) in a single chip, connected through a simple 2D-mesh

communication infrastructure. This architecture has the following character-

istics: once configured, it does not issue any instructions (just processes the
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data). It does not have a fixed instruction set architecture (ISA) - the applica-

tion is encoded at microcode level and has fast reconfiguration response time,

because of its coarse-grained hardware structure. In its current implementa-

tion, the Montium TP is capable to support execution of multiple threads (ap-

plications) but only at the OS level. The CRPU does not have support for

context-switching - multiple threads are not capable to share the same hard-

ware resources. The processor was originally targeting the domain of stream-

ing applications: i.e., broadcast and multimedia.

Although in our investigations we are particularly interested in the embed-

ded systems domain, for the completeness of our survey, we also consider

briefly a few large-scale (high performance) proposals. Many contemporary

mainframe/supercomputing platforms, such as Altix Family by SGI [2], Pro-

Liant server by HP [6], Convey hybrid-core HC-1 [4], RAMP emulation plat-

form [3], employ reconfigurable hardware to speed-up computationally inten-

sive kernels. Though no particular attention on ρMT on these machines is paid

in the literature, we believe that multithreading applications can be mapped on

them using different (not trivial) software techniques [101].

Preliminary investigations indicate that an efficient ρMT processor would al-

low better overall system performance [107] as the thread management cost at

the software level could be dramatically reduced. In addition, [107] provides

clear indications that multithreading should be also addressed by the state of

the art real-time reconfigurable systems at the hardware level.

The necessity for an embedded, real-time ρMT processor has been also identi-

fied in several integrated EU projects, such as MORPHEUS [104] and hArtes

[1]. Currently, in those EU projects, as well as in other related reconfigurable

research efforts, multithreading is supported either by the OS, by the compiler

or at the application level.

Unfortunately, to our best knowledge, there is no complete study on the design

perspectives of the architectural support for reconfigurable MT reported in the

literature so far. Therefore, it is our ambition with this chapter to provide the

results of such a study in the sections to follow.

8.2.2 Architectures with No ρMT Support

In this section, we consider all those reconfigurable proposals, which do not

provide any architectural facilities to support ρMT. For all these architectures,

multithreading is supported at the software level only – either by the OS, or by

the compiler. The thread context is represented as a software data structure.
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OS Support for ρMT

In this section, we group all known OS targeting reconfigurable devices and

implementing in software - Section A, B, C, D, E and F from Figure 8.1. The

first proposal, which identifies some of the necessary services, that an Oper-

ating System for reconfigurable devices should support, is presented in [118]

and [31] by a research group at the University of South Australia.

BORPH [93]: The research work presented in [93] and [94] by the Univer-

sity of California - Berkeley, identifies that application migration from one

reconfigurable computing platform to another, using conventional codesign

methodologies, requires from the designer to learn a new language and APIs,

to get familiar with new design environments and re-implement existing de-

signs. Therefore, BORPH is introduced as an OS designed specifically for

reconfigurable computers, sharing the same UNIX interface among hardware

and software threads, which speeds up the design process. The major differ-

ence between BORPH and conventional OS-es for Field Programmable Gate

Array (FPGA) architectures comes from the fact that the system reconfigurable

logic are treated as a first-class computational resources instead of coproces-

sors. The BORPH contains three basic components: concept of hardware

process and a set of universal interfaces - input/output registers (IOREG) and

hardware file input/output (I/O) interface. The proposal has the following lim-

itations - hardware executed threads are not sharing reconfigurable resources.

Experimental results are produced from simple applications such as: wireless

signal processing, low density parity check decoder and MPEG-2 decoding.

SHUM-uCOS [123]: Another design, tackling the problems caused by the es-

sential differences between software and hardware-tasks is the SHUM-uCOS

by the Fudan University, China [123]. The authors propose an real-time

OS (RTOS) for reconfigurable systems employing uniform multi-task model.

It traces and manages the utilization of reconfigurable resources, improves the

utilization and the parallelism of the tasks with hardware task preconfiguration.

Detailed descriptions of the abstract layers and their functionality are presented

in [123] and [124]. For evaluation of the system, the authors use benchmarks

and multiple voice over Internet protocol (VOIP) compression/decompression

algorithms. The limitations on the current implementation of SHUM-uCOS

are in the static scheduling approach (they adopted multiprocessor critical path

scheduling algorithm - [51]) and the resource reusage, supported by the com-

piler only.
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Compiler Techniques for Multithreading on Reconfigurable Platforms

The most common feature of the architectures grouped in this subcategory is

the responsibility of the compiler for task partitioning, scheduling and man-

agement of the system resources. The major reason to employ multithreading

in these architectures is to hide reconfiguration latencies.

MT-ADRES [119]: In MT-ADRES by IMEC, Belgium, the DRESC Compiler

Framework [65] has been extended to support several threads.

A major limitation of this proposal is the inability to execute/terminate threads

at run-time which is posed by the compiler static scheduling and optimiza-

tion algorithms, operating with Control Data Flow Graph (CDFG). Control

decisions, such as hiding the reconfiguration latencies and resource manage-

ment are taken at compile time. Due to the implementation complexity and

the fact that the Very Long Instruction Word (VLIW) processor and the CGRA

have complete access to the register file, the DRESC compiler [65] limits the

execution to only one computing resource at a time, which reduce potential

performance gains. All experiments providing information about MT-ADRES

performance are achieved through multimedia simulations, without any real

hardware implementations.

UltraSONIC [40]: Another proposal falling in this category is the Ultra-

SONIC project, represented by Sony Research Labs, UK [40]. It is a recon-

figurable architecture optimized for video processing. It has a list of Plug-In

Processing Elements (PIPEs), connected through several buses. The program-

mer receives an architecture abstraction through an API interface. In [117]

and [74], the authors introduce multitasking to the architecture. The goal

is achieved through two-phase clustering algorithm working on a Directed

Acyclic Graph (DAG). The phases are: partitioning (based on Tabu Search)

and list scheduling (a static technique). The algorithm places and schedules

tasks, applying the following system constraints: FPGA resources, shared re-

source conflicts, configuration time, communication and processing cost. The

system also has a Task Manager, responsible for task creation and termination

procedures. Because of its static nature, the architecture has the same limita-

tions as the MT-ADRES project [119]. The system is initially designed for the

multimedia and the data encryption application domains.
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8.2.3 Architectures with Implicit ρMT Support

The proposals from this category share one common feature - the detailed mul-

tithreading support on reconfigurable threads is implicit, i.e. hidden from the

system programmer. The Instruction Set Architecture (ISA) does not have

dedicated special instructions for thread creation and termination procedures.

The functionality is achieved with µ-architectural extensions while preserving

the architectural model. Bellow, we describe some of the existing proposals

falling into the category.

Reconfigurable Extensions for the CarCore Processor: In [107], the authors

combine a simultaneous multithreaded processor CarCore [108](a simulation

model, architecturally compatible with Infenion TriCore 1 Processor) with a

Molen style reconfigurable coprocessor [111]. To minimize the complexity of

the implementation, the authors employ several constrains to the architecture.

They modeled a hardware scheduler, which supports execution on reconfig-

urable logic of only one thread at a time, preserving the real-time capability for

it. Once a thread is started for hardware execution, it could not be interrupted

until it is finished (no context-switching). There is no additional ISA exten-

sions for reconfigurable thread management. Meanwhile, other non-real-time

threads can continue their execution employing the latencies of the real-time

thread. The implementation includes two scheduling policies – fixed-priority

and round-robin, over four executing threads. The ISA extension comprises

only the Molen polymorphic ISA and no additional specific instructions for

multithreaded support.

The REDEFINE project [88], [10] by the Indian Institute of Science, Ban-

galore, proposes a synthesis methodology to realize applications written in

a high level language (HHL) on the coarse-grained Runtime Reconfigurable

Hardware (RRH). Contrary to related projects in the field, they assume that the

whole application could be represented as a set of custom instructions executed

on RRH. The custom instructions are not based on occurrence statistics, but are

based on co-execution (e.g. both paths of branch instruction). The transforma-

tion of the application (in HHL) to hardware proceeds in three steps: 1. The

compiler transforms HHL specification to DFG; 2. The compiler partitions the

DFG into various application substructures called HyperOps (equal to a thread

in our classification); 3. The HyperOps are synthesized into hardware config-

urations. At run-time, depending on the availability of computing elements

on the fabric and the data dependencies among different HyperOps, a subset

of clusters (composed of HyperOps) ready for execution are scheduled based

on pre-order depth first search. Each HyperOp contains information about its
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data-dependent successors. Because of the lack of detailed description, we

assume that this control information is provided implicitly.

Hthreads [79]: The Hthreads(Hybrid Threads) model presented by University

of Kansas [79], [12] is multi-layer computational architecture which aims to

bridge the gap between the programmers and complex reconfigurable devices.

Some of the main system features are the migration of thread management,

synchronization primitives and run-time scheduling services (Figure 8.1, Sec-

tion F) for both hardware and software threads into hardware module accessed

from the GPP only through an universal bus. The authors represent hardware

threads with user defined component (designed by the programmer), state con-

troller and universal interface (Register Set). Synchronization procedures are

performed through semaphores. In the proposal, the CPU is only interrupted

when a change in the system state requires the CPU to switch to another ac-

tivity. Such changes include timers expiring, devices completing an assigned

activity and generating an interrupt. The basic system components are: 1. soft-

ware thread management (SWTM) which is only responsible for scheduling of

software threads. It is executed in parallel with the CPU threads, which reduce

the cost and context switching jitter. The SWTM scheduler manages all CPU

interrupt requests, including external-device interrupt, expiring timers, termi-

nating, blocking and unblocking threads; 2. hardware thread interface (HWTI)

controller which provides management and distributed control (through com-

mand and status registers) of threads executed on reconfigurable resources.

Some of the major limitations in the implementation of the Hthreads model

are as follows: 1. threads executed on reconfigurable resources are not sched-

uled, instead they are directly loaded when it is necessary and 2. threads are

not sharing the reconfigurable resources even when the thread is marked as

blocked/idle. Because of the fact that the system does not have modifications

at architectural and µ-architectural levels, the proposal is classified as an im-

plicit ρMT. The experimental results are provided in the image processing ap-

plication domain.

Reconfigurable Multithreaded Architecture Model [115], [114]: The pro-

posal is presented by a research group in the Hamburg University of Tech-

nology, Germany. Their primary idea is to map computational threads via

pipelined configuration technique into available physical reconfigurable hard-

ware resources. The fixed resource limitations are overcome by virtualizing the

computational, communication and memory resources in the reconfigurable

hardware. The architecture is based on a synchronous multifunctional pipeline

flow model using coarse-grained reconfigurable processing cells and recon-

figurable data paths. Descriptors are used for run-time and partial reconfigu-
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ration, which enables the processor cells to be configured by Time Division

Multiple Access (TDMA). By itself, the descriptors represent small configu-

ration templates in special opcodes, extending a conventional ISA. Therefore,

the ISA grows proportionally with the design complexity and the number of

the configuration templates. Compared to existing architectural proposals, the

difference comes from the fact that, the authors do not employ the GPP to

control the reconfigurable resources. Instead, a hardware approach is taken -

a Microtask controller is employed. Current implementation does not support

dynamic (runtime) scheduling of incoming workloads. The ideas are not ap-

plied in heterogeneous systems yet, represented by a combination of GPP and

reconfigurable logic. The designer is responsible for partitioning and mapping

the CDFG in microtasks (subtasks), by allocating the flow graph nodes to the

system processing resources. The simulation results of streaming multimedia

applications are studied.

The research group at the university of Karlsruhe [16] introduces an architec-

ture capable to manage execution of multiple run-time threads (called Spe-

cial Instructions - SI) through a ’Special Instruction Scheduler’(SI scheduler).

Each Molecule is composed of one or several Atoms representing elementary

data paths. Multiple Molecules (varying in resource usage & performance)

compose each Special Instruction. As a result, the SI Scheduler implicitly

selects (without additional control instructions) for execution a mixture of dy-

namically loaded data paths with conjunction with base processor instructions.

The authors examines multiple run-time algorithms based on Molecule load-

ing sequences. Because of the reduced granularity and increased possibility

of resource reusage, the system achieves high system performance, tested with

H.264 and CIF-video applications.

8.2.4 Architectures with Explicit ρMT Support

The basic idea of this ρMT class is to combine the flexibility of the soft-

ware and the reconfigurable hardware with the potential performance effi-

ciency of the latter and to support ρMT, both at the software level and at

the µ-architectural level. There are several partial solutions in the literature

which do not provide such a compete mixed model of ρMT - the software and

the hardware corporate together to provide simultaneous execution of multiple

threads. In such a model, the system services (e.g. scheduling, resource man-

agement) should be optimally separated between software and µ-architectural

levels. Combined with efficient memory management and thread/function pa-

rameters exchange through dedicated registers, an architecture with explicit
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ρMT support would potentially reduce the intra- and inter- thread communica-

tion costs. Similar approaches are taken in the following proposals:

OS4RS [64]: In [64], [75] and [76], a research group at IMEC, Belgium, in-

vestigates the concepts and reveals some of the open questions, raised by the

run-time multithreading and interconnection networks [63] for heterogeneous

reconfigurable SoC. The novelty of their approach resides in the integration

of the reconfigurable hardware in a multiprocessor system completely man-

aged by the OS for Reconfigurable Systems (OS4RS). The system maintains

several threads by a two-level scheduler. The high-level scheduler is handled

in software by the main GPP, which stores the running tasks as a linked list.

The low-level/local scheduler can be implemented in software or hardware de-

pending on the type of the slave computing resources (GPPs or reconfigurable

logic). Note, that in the current implementation of OS4RS, hardware threads

are not sharing the same reconfigurable resources. The OS has several services

executed on the main GPP, responsible for monitoring the status of the hetero-

geneous system and distributing the workload among slave processing units.

Due to the fact that a software approach is taken to solve heavily computational

problems, such as real-time scheduling, resource allocation and loading, it will

eventually become a system bottleneck during heavy computation periods. In

their current implementation, the top-level scheduler (Figure 8.1, Section C) is

implemented in software and the local-level hardware (reconfigurable) sched-

uler (Figure 8.1, Section E) is not implemented, yet. The authors also propose

a proof-of-concept method for context-switching and migration between het-

erogeneous resources by saving the task state. The questions related to thread

state translation between GPP register set and reconfigurable logic are still

open. The OS4RS has been tested in JPEG frame decoding and experimental

3D video game. According to the project time schedule, the next generation of

the system is expected to be designed between 2008 and 2010.

Reconfigurable Multithreaded processor [60], [61] by the University of

Wisconsin-Madison: The authors augment SandBlaster 3000 simulator [34]

with Polymorphic Hardware Accelerators (PHAs), which combine properties

of functional units and reconfigurable hardware. The processor by itself has

four multithreaded Digital Signal Processor (DSP) cores and an ARM proces-

sor that provides support for user interface and OS. The research study inves-

tigates potential benefits of closely coupled reconfigurable hardware to mul-

tithreaded processor. The work could be separated into two topics: the first

one is to investigate architectural techniques to provide hardware-software in-

terface between the multithreaded processor and PHAs, the second one is to

evaluate the potential benefits of incorporating PHAs in a multithreaded DSP
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to improve the system performance. The PHAs are implemented as a func-

tional units at the execution stage of the processor pipeline. The multithread-

ing is mainly employed to hide the reconfiguration time. Each one of the PHA

blocks contains PHA control interface, reconfigurable block(executing user

logic) and optional registers. Configuration of the PHA is done, by loading a

sequence of instructions to specific register, accessed by PHA control interface.

If a certain high priority task requires a PHA, it is only dedicated to it, with-

out any interference with the other threads. In case of interrupt, thread’s PHA

inner state could be saved and the unit is released. Therefore, the processor

supports context switching over reconfigurable resources. In case of a lack of

PHAs, a realtime thread could preempt a non-realtime one. Once configured,

in case of identical PHA instructions, the PHA could be reused by different

threads. Some of the system model assumptions are: the PHAs are not shar-

ing the same reconfigurable resource area, as a result there is no necessity for

placement algorithms. The architecture is limited to Interleaved Multithread-

ing called Token Triggered Threading. The authors argue the choice of such

an approach instead of Simultaneous Multithreading, because of the possible

power consumption reduction. The authors investigate two PHA binding tech-

niques - static & dynamic. In case of a run-time binding, the system provides

realtime constraints by restricting PHA reusage among threads.

8.2.5 Summary of the Proposed Taxonomy

Based on the criteria of the provided ρMT support, the aforementioned archi-

tectures can be briefly classified as follows:

I. No architectural ρMT support:

I.1. OS support for ρMT: Molen [110], Montium [41], SGI Altix [2], HP

ProLiant server [6], Convey hybrid-core HC-1 [4], RAMP [33], South Aus-

tralia [118], BORPH [93], SHUM-uCOS [123];

I.2. Compiler techniques for ρMT: MT-ADRES [119], UltraSONIC [40];

II. Implicit architectural ρMT support:

CarCore Processor extensions [107], REDEFINE [88], Hthreads [79], Recon-

figurable Multithreaded Architecture Model [114], University of Karlsruhe

[16];

III. Explicit architectural ρMT support:

III.1. µ-architecture + OS: Reconfigurable Architectures of this kind are just

emerging. This approach is promising for high performance efficient schedul-
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ing and execution of threads on reconfigurable hardware due to the hardware

& software co-design of the ρMT managing mechanisms. OS4RS [64];

III.2. µ-architecture + compiler: Reconfigurable Multithreaded processor [61].

8.3 Design Problems

The very basic design questions related to thread scheduling on reconfigurable

resources are:

• Which threads to execute, schedule or preempt at certain instance of

time (e.g., when the requested reconfigurable area of prepared for exe-

cution hardware threads is higher than the available area)?

• Where to place a thread (in case of several possibilities)?

• When to reallocate the newly created threads and how to efficiently hide

the reconfiguration latencies?

Depending on model assumptions, from complexity point of view, the schedul-

ing problem on reconfigurable logic could be reduced to several well-known

NP-Hard problems [97], [125], [14], [81]. Therefore, one of the ways to be

solved is by reducing it to the well-known Bin-Packing problem, i.e., the

scheduling problem could be solved by the introduction of an advanced heuris-

tic algorithm. Some partially and completely solved design problems, grouped

by topic, are presented in sections that follows.

8.3.1 Hiding Reconfiguration Latencies

In reconfigurable systems, the reconfiguration latency is caused by the time

needed for the configuration bitstream to set the reconfigurable device for the

particular operation. Typically, configuration latency is introduced during the

initial task loading (tasks are composed of one or multiple threads). This is

one of the major system delays and causes severe performance degradation in

case of frequent reconfigurations. In literature, the most common ways to hide

or minimize the reconfiguration latency are:

1. Compressing the task’s bitstream. Different techniques are examined in

[82];
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2. Employing prefetch technique and local caching for earlier reconfigura-

tion (overlap reconfiguration with computations). The existing prefetch tech-

nique proposals are grouped into three categories:

• Static – predictions are performed at design time by the compiler (e.g.,

The Molen compiler [78]);

• Dynamic – at runtime by the reconfigurable scheduler, which stores

most recent configurations [56];

• Hybrid (combining the Static & Dynamic approaches) [27], [56]. In

case of missprediction, alternative Hybrid methods [56] always pay time

penalty, by delaying the reconfiguration. In [32] and [82], the authors

propose inter-task placement in case of free reconfigurable area, but it is

only limited to periodic hardware tasks. For aperiodic tasks, the problem

has not been solved.

8.3.2 Optimized Inter-Thread Communication Scheme

The Erlangen-Nuremberg Slot Machine (ESM) [59] has target several prob-

lems common for contemporary FPGA based architectures such as: limitations

of partial support on Actual FPGAs; I/O pin, intermodule communication and

local memory dilemmas. The authors underline as a major advantage of the

ESM platform its unique slot-based architecture which allows the slots to be

used independently of each other by delivering peripheral data through a sep-

arate crossbar switch. The decision to exploit an off-chip crossbar is in order

to have as many available resources on the FPGA for partially reconfigurable

modules as possible. The ESM architecture is based on the flexible decoupling

of the FPGA I/O-pins from a direct connection to an interface chip. This flex-

ibility allows the independent placement of application modules in any avail-

able slot at run-time. As a result, run-time placement is not constrained by

physical I/O-pin locations as the I/O-pin routing.

8.3.3 Scheduling and Placement Algorithms

In the research work presented in [99] by ETH Zurich, Switzerland, the au-

thors propose several algorithms to manage the sharing of resources in the

reconfigurable surface. Their proposal includes system services for a par-

tial reconfiguration, which by scheduling the dynamically incoming threads

solve the problems with complex allocation situations. Detailed description
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of the system model could be found in [98] and [112]. The primary idea of

the project is to separate threads into two groups according to their arriving

times - synchronous and arbitrary. For threads with aperiodic arriving times,

the authors propose two non-preemptive techniques: “horizon” and “stuffing”

methods [97]. On the other side, for threads with periodic arriving times,

authors propose another two preemptive scheduling algorithms: “EDF-NF”

and “MSDL” [29]. Unfortunately, the preemptive methods are not adaptable

for threads with arbitrary arriving times, because the system cannot guaran-

tee that each preempted thread, previously executed for some period of time,

will finish before it’s relative deadline. Each one of the scheduling techniques

is combined with optimized placement method named “On the Fly Partition-

ing” [113], based on Bazargan partitioner [17].

The ideas and algorithms are further enhanced by a research group at Fundan

University [125]. They introduce an advanced heuristic algorithms based on

“stuffing” technique [97]. The authors prove that the combination of a schedul-

ing algorithm with a recognition-complete placement method does not result

to a recognition-complete technique. Therefore, they enhanced the “stuffing”

scheduling algorithm [97] and named the new one: “windows-based stuffing”.

In [126], the authors propose “Compact Reservation” (CR) scheduling algo-

rithm which attains recognition-earliest scheduling (arrange the start time of a

newly arrived thread as early as possible) by exploiting the knowledge about

temporal properties of each thread. In [8] the cases of potential thread mi-

gration depending on the workload is examined – a newly arrived thread is

started either in software or in hardware. Slightly different approach is pro-

posed in [32] by a research group at the Paderborn University. They enhance

a single processor algorithm (e.g., a stochastic server) with preemption sup-

port (limited only during the time of reconfiguration) for hardware tasks.

8.3.4 Context Switching

In [46], the authors clearly identify the two possible techniques for context

switching of hardware threads in partially reconfigurable FPGAs. The tech-

niques are named as follows:

1. Thread Specific Access Structures – when the scheduler decides to switch a

thread, it’s current state is saved in an external structure. The major advantages

of this approach are the high data efficiency and its architecture independence.

The disadvantages come from the fact that each thread is different and it is

difficult to design a standard generic interface. On the other hand, the de-

signer also needs detailed knowledge about the structure and the behavior of
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the thread, therefore the method is not applicable for IP Cores represented by

black-box functional blocks. In [92], the authors explore the control software

required to support thread switching as well as the requirements and features

of context saving and restoring in the FPGA coprocessor context. Similar ap-

proach is taken in [7] - each hardware thread is represented by one complicated

Finite State Machine (FSM). In case of context switching, the scheduler saves

current FSM state together with multiple data registers.

2. Configuration Port Access – the thread bitstream is completely downloaded

from the FPGA chip and the state information is filtered. In [46], the authors

design custom tools for offline bitstream processing. The advantages of the

approach are: additional design efforts and information about internal thread

behavior are not needed. In [7], the authors additionally compress the bit-

stream (bitwise XOR) to minimize the size and delay of downloaded data. The

method is named “ReadBack technique”.

8.3.5 Real-time Support for Reconfigurable Hardware Threads

In the literature, there are two basic approaches (described below) capable to

deliver real-time support for software/hardware heterogeneous platforms:

1. Per-case solutions using Heuristic Algorithms – many of the proposed al-

gorithms (see Section 8.3.3) support “Commitment Test” - each newly created

hardware thread is checked for successful termination before its deadline and

critical affects (e.g., delays) on other executing threads. Unfortunately the pro-

posed ideas (heuristic algorithms) are designed only for independent hardware

threads with known executing times, therefore they are not applicable for hard-

ware threads with data, resource or communication dependencies.

2. Complete Solutions on Conventional Reconfigurable Platforms (e.g.,

BORPH [93], UltraSonic [40], Hthreads [79]) – none of them supports recon-

figurable resource sharing among executing threads. In case reconfigurable

area is shared, all possible resource collisions are solved at compile time.

8.3.6 Run-time Creation and Termination of Threads

Currently, all existing proposals (Section 8.3) offer partial solution for schedul-

ing non-preemptive and periodic preemptive only tasks on reconfigurable

logic. Therefore, the open question arises: “How to manage creation and ter-

mination of data, resource and communication dependent real-time threads?”.

The topic is still open and it is closely related to Section 8.3.5. It is one of our
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Table 8.1: Design problems

Partially [PS] & Completely [CS] Solved Design Problems:

[CS] - Hiding reconfiguration latencies by prefetching, context

switching and resource reusage among threads; [27], [56], [82]

[PS] - Optimized inter-thread communication scheme; [59]

[PS] - Real-time thread support by the reconfigurable

architecture; [107], [93], [40], [79]

[PS] - Preemptive techniques [context switching] for threads with

arbitrary arriving times. Consider inter-thread data dependencies,

free reconfigurable area and communication profile; [99], [98], [125], [97]

[PS] - Thread migration between software and hardware; [92], [46], [7]

[PS] - Consider virtualization and protection; [115], [114]

[PS] - Rescheduling of threads, depending on the workload; [32]

[PS] - Run-time creation and termination of threads; [59], [93]

primary objectives to make further investigations in future research. Many of

the current projects (e.g., [59], [93]) have run-time creation as a feature, but

none of them provides resource sharing and real-time support for data depen-

dent threads. In Table 8.1, we summarize the design problems discussed in

this section.

8.3.7 Application Perspective

In this thesis, we consider for hardware acceleration two types of kernels that

are part of the user applications and RTOS services, respectively.

As user applications, we target streaming applications such as, but not limited

to, MJPEG, JPEG, and H.264. Furthermore, we consider applications and

algorithms that were not initially considered as part of the embedded systems,

such as Floyd-Warshall algorithm and Conjugate Gradient benchmark part of

the NAS Parallel Benchmark Suite [15]. In general, the ideas presented in

this dissertation can be potentially employed to any computationally intensive

kernel in the streaming applications domain.

As part of the RTOS services, we consider three types of kernels. The first

one is an advance interrupt management. The second one is the most com-

putationally intensive and variable part of the RTOS scheduling, responsible

for checking the status of the tasks. The third one is a service responsible for

slack distribution among processor tiles in an MPSoC. In general, we can target
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RTOS services with a behaviour similar to UNIX daemons. The daemons are

background processes, not directly controlled by the users, that execute period-

ically or wait for an event such as arrival of a packet from the network [102].

We believe that if designers decide to transfer one or multiple daemons in

hardware, then the proposed parallel non-blocking model can be an excellent

candidate for an execution model. On the other hand, we consider that the

parallel non-blocking execution model has limited applicability for hardware

RTOS acceleration in reactive real-time systems [39]. By reactive real-time

systems we understand systems that schedule and execute tasks, entirely rely-

ing on the presence of external events, e.g., interrupts generated by pressing a

button. Both, the daemons and the reactive real-time systems rely on events.

The difference between them is in the system response time requirements. The

daemons usually register events only, while in reactive real-time systems, an

immediate response is required.

8.4 Conclusions

In this chapter, we provided a survey and proposed a taxonomy of existing

reconfigurable architectures with respect to their support of multithreading on

reconfigurable resources. We identified three main classes – explicit, implicit

and no ρMT support, each one of them with several sub-categories. We further

summarized a number of identified design problems and several research ques-

tions, which addressed performance efficient management, mapping, sharing,

scheduling and execution of threads on reconfigurable hardware resources. Fi-

nally, we marked which of the identified design problems have been partially

or completely solved and which research questions remain open.





9
Conclusions and Future Directions

I
n this chapter, we first provide a summary of the dissertation. Then,

we outline the conclusions derived from the experimental results. We

conclude the chapter by a discussion on the open research questions and

the potential research directions.

9.1 Conclusions

In this dissertation, we targeted the research problem of investigating the be-

haviour of embedded multicore reconfigurable systems with real-time require-

ments in a multithreading context. In achieving this goal, we have identified

the following sub-problems: facilitate programmability while improving per-

formance as well as preserve predictability.

Our general approach to solve these problems were: 1. Introduce multithread-

ing and multitasking through architectural and microarchitectural augmenta-

tions, synchronization primitives, and execution models. 2. Hardware acceler-

ation of the most variable and computation intensive kernels from user appli-

cations and RTOS services. Throughout the experiments we demonstrated that

the newly introduced processor–coprocessor programming models and copro-

cessors, which exercise those models are applicable for different application

programming paradigms, architectures, and problems in the domain of em-

bedded architectures.

Bellow, we summarized the targeted research problems in this dissertation and

we provided a short discussion how we addressed each one of them:

• Improve performance – We improved the system performance by

proposing new parallel execution models for processor–coprocessor ex-

ecution. With the help of the new execution models, we executed one of

131
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the most time-consuming and time-variable parts of the RTOS in hard-

ware. More precisely, we implemented as a reconfigurable coprocessors

the following RTOS services: Thread Interrupt State Controller (TISC)

and Hardware Task-Status Manager (HWTSM).

With the help of the TISC, we reduced the thread synchronization cost.

More specifically, the TISC acts as a barrier that signals back the pro-

cessor only after all identified application tasks executed on reconfig-

urable coprocessors are completed. We assumed that the reconfigurable

coprocessors were executed in processor–coprocessor sequential execu-

tion model. A comparison of the experimental results to the other state

of the art proposals suggested that our approach demonstrated the best

performance-portability and performance-flexibility characteristics.

With the help of the HWTSM, we ported one of the most time-

consuming RTOS kernel services in hardware. The HWTSM imple-

ments part of the RTOS scheduler functionality. More precisely, the

HWTSM is responsible for checking the status of the application tasks.

In such a way, we reduce the RTOS cost, which leaded to improved

application performance.

• Preserve predictability – Usually the predictability is associated with

guaranteeing the worst-case bounds of the application and RTOS ex-

ecution. We achieved our goal by proposing new parallel processor–

coprocessor execution model and implementing one of the most variable

and time consuming kernels in hardware. In particular, we consider part

of the RTOS services responsible for checking the status of the tasks,

called HWTSM.

The proposed processor-coprocessor execution models are general solution for

various problems in the real-time embedded systems. To prove generality, we

apply the processor-coprocessor execution models to two common problems

in the embedded domain, i.e., guarantee composability and reduce energy con-

sumption. Composability means that the behaviour of an application, includ-

ing its timing, is independent of the presence or absence of any other applica-

tion. We addressed composability and energy consumption as follows:

• Preserve composability – We preserved the composability, i.e., appli-

cation virtualization, with the help of new processor–coprocessor par-

allel execution model in the context of reconfigurable systems. More

specifically, the coprocessor runs continuously and it does not need to
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Table 9.1: Addressed design problems

Partially [PS] & Completely [CS] Solved design problems:

[CS] - Hiding reconfiguration latencies by prefetching, context

switching and resource reusage among threads; [27], [56], [82]

X [PS] - Optimized inter-thread communication scheme; [59]

X [PS] - Real-time thread support by the reconfigurable

architecture; [107], [93], [40], [79]

[PS] - Preemptive techniques [context switching] for threads with

arbitrary arriving times. Consider inter-thread data dependencies,

free reconfigurable area and communication profile; [99], [98], [125], [97]

X [PS] - Thread migration between software and hardware; [92], [46], [7]

[PS] - Consider virtualization and protection; [115], [114]

[PS] - Rescheduling of threads, depending on the workload; [32]

[PS] - Run-time creation and termination of threads; [59], [93]

X [PS] - Hardware scheduler agnostic to the employed embedded GPP;

X [PS] - System performance evaluation parameters;

be restarted every time when the processor needs the coprocessor. Fur-

thermore, the processor can request the status of the reconfigurable co-

processor at any time. Last but not leased, independently of the current

status of the reconfigurable processor, its response time is always con-

stant. In such a way, a coprocessor can be shared among multiple appli-

cations without introducing any dependability among the applications.

We examined the execution of the proposed processor–coprocessor exe-

cution model with RTOS services.

• Reduce energy consumption – We reduced the energy consumption by

proposing a framework that distributes the slack information among the

processor tiles in an MPSoC. We employ the extra slack information

for Dynamic Voltage Frequency Scaling (DVFS). As the experimental

results suggested, our inter-tile technique dramatically reduces average

processor frequency level and energy consumption at the cost of negli-

gible software and hardware costs.

In Table 9.1, we mark with ticks the addressed Design Problems in this dis-

sertation. In essence, Table 9.1 is an updated version of Table 8.1 from Chap-

ter 8. In this dissertation, we address the problem of “Optimized inter-thread

communication scheme” by proposing the TISC CCU. The TISC CCU al-
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lows hardware synchronization of multiple hardware tasks executed in paral-

lel. Since one of our target problems is to preserve the predictability, we also

address the problem “Real-time support by the reconfigurable architecture”.

The proposed programming model and execution paradigms also allow easy

“Thread migration between software and hardware”. Last but not least, we

also partially solve two new design problems, namely: “Hardware scheduler

agnostic to the employed embedded GPP” and proposal for “System perfor-

mance evaluation parameters”. Concerning the first new design problem, we

transfer to hardware part of the RTOS scheduler (i.e., HWTSM CCU). The

HWTSM CCU is responsible for checking the status of the tasks and its design

is independent of the employed GPP. Concerning the second new design prob-

lem, we introduce performance-portability and performance-flexibility charac-

teristics to compare our TISC CCU with the other state of the art projects.

9.2 Future Research Directions

One of the direct gains from employing reconfigurable multithreading archi-

tecture would be the capability for time efficient run-time creation, termination

and management of multiple threads sharing the reconfigurable resources with-

out critically affecting (delaying) each other. Possible future research could

extend the functionality and overcome some limitations providing for exam-

ple:

1. Real-time and runtime support of multiple hardware threads through archi-

tecture agnostic hardware scheduler. It could support run-time creation and

termination of multiple threads mapped into reconfigurable logic and hard-

ware system implementation. The compiler would be only responsible for

inter-thread optimizations. The hardware scheduler would manage intra-thread

optimizations;

2. More sophisticated scheduling policies capable to fairly distribute resources

among multiple resource-dependent hardware threads. Introduction of a metric

evaluating the resource distribution and potential thread starvation.

3. Hiding of reconfiguration latencies and efficient thread-preemption and mi-

gration model with estimation of performance costs. For periodic and sporadic

threads, the migration might take place right after the end of the current itera-

tion.

4. Consider other RTOS services for hardware acceleration. In order to achieve

better results, we suggest the processor–coprocessor parallel execution models
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to be employed whenever possible. Prospective experiments over various plat-

forms and programming models will indicate further possible improvements

of the overall system performance.
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GOOSSENS, K., LLOPIS, R. P., AND LIPPENS, P. C-HEAP: A heterogeneous multi-

processor architecture template and scalable and flexible protocol for the design of

embedded signal processing systems. Design Automation for Embedded Systems 7, 3

(2002), 233–270.

[74] NOGUERA, J., AND BADIA, R. M. Multitasking on reconfigurable architectures: mi-

croarchitecture support and dynamic scheduling. Trans. on Embedded Computing Sys.

3, 2 (2004), 385–406.

[75] NOLLET, V., COENE, P., VERKEST, D., VERNALDE, S., AND LAUWEREINS, R. De-

signing an Operating System for a heterogeneous reconfigurable SoC. In Proc. Int’l

Symp. Parallel & Distributed Processing (IPDPS) (2003), pp. 174–180.

[76] NOLLET, V., MIGNOLET, J.-Y., BARTIC, A., VERKEST, D., VERNALDE, S., AND

LAUWEREINS, R. Hierarchical run-time reconfiguration managed by an Operating Sys-

tem for reconfigurable systems. In Engineering of Reconfigurable Systems and Algo-

rithms (2003), CSREA Press, pp. 81–87.

[77] OBERMAISSER, R., SALLOUM, C. E., HUBER, B., AND KOPETZ, H. The time-

triggered system-on-a-chip architecture. In Proc. Int’l Symp. on Industrial Electronics

(ISIE) (2008), pp. 1941–1947.

[78] PANAINTE, E. M. The Molen Compiler for Reconfigurable Architectures. PhD thesis,

TU Delft, 2007.



142 BIBLIOGRAPHY

[79] PECK, W., ANDERSON, E., AGRON, J., STEVENS, J., BAIJOT, F., AND ANDREWS,

D. HTHREADS: a computational model for reconfigurable devices. In Proc. Int’l Conf.

on Field-Programmable Logic and Applications (FPL) (2006), pp. 885–888.

[80] RAO, A., ALLE, M., V, S., SHAIK, R., CHOWHAN, R., SANKARAIAH, S., MANTHA,

S., NANDY, S. K., AND NARAYAN, R. An input triggered polymorphic ASIC for

H.264 decoding. In Proc. Int’l Conf. on Application-specific Systems, Architectures and

Processors (ASAP) (2009), IEEE Computer Society, pp. 106–113.

[81] RESANO, J., MOZOS, D., AND CATTHOOR, F. A hybrid prefetch scheduling heuris-

tic to minimize at run-time the reconfiguration overhead of dynamically reconfigurable

hardware. In Proc. Int’l Conf on Design, Automation & Test in Europe (DATE) (2005),

pp. 106–111.

[82] RESANO, J., MOZOS, D., VERKEST, D., AND CATTHOOR, F. A reconfiguration man-

ager for dynamically reconfigurable hardware. IEEE Design & Test of Computers 22, 5

(2005), 452–460.

[83] RHOADS, S. http://www.opencores.org/project,plasma, 2011.

[84] ROLDAO, A., AND CONSTANTINIDES, G. A. A high throughput fpga-based floating

point conjugate gradient implementation for dense matrices. ACM Trans. Reconfigurable

Technol. Syst. 3, 1 (2010), 1–19.

[85] RUGGIERO, M., ACQUAVIVA, A., BERTOZZI, D., AND BENINI, L. Application-

specific power-aware workload allocation for voltage scalable MPSoC platforms. In

Proc. of ICCD (2005), pp. 87–93.

[86] RUPNOW, K., FU, W., AND COMPTON, K. Block, drop or roll(back): Alternative

preemption methods for rh multi-tasking. Field-Programmable Custom Computing Ma-

chines (FCCM) (2009), 63–70.

[87] SAEZ, S., VILA, J., CRESPO, A., AND GARCIA, A. A hardware scheduler for complex

real-time systems. In Proc. Int’l Symp. on Industrial Electronics (ISIE) (1999), vol. 1,

pp. 43–48.

[88] SATRAWALA, A., VARADARAJAN, K., LIE, M., NANDY, S., AND NARAYAN, R. Re-

define: Architecture of a soc fabric for runtime composition of computation structures. In

Proc. Int’l Conf. on Field-Programmable Logic and Applications (FPL) (2007), pp. 558–

561.

[89] SENO, K., AND YAMAZAKI, M. Virtual mobile engine (VME) LSI that

“changes its spots” achievies ultralow power and diverse functionality. CX-News-42

(http://www.sony.com) (2005).

[90] SHABBIR, A., KUMAR, A., STUIJK, S., MESMAN, B., AND CORPORAAL, H. CA-

MPSoC: An automated design flow for predictable multi-processor architectures for mul-

tiple applications. J. Syst. Archit. 56, 7 (2010), 265–277.

[91] SIMA, M., VASSILIADIS, S., COTOFANA, S. D., VAN EIJNDHOVEN, J. T. J., AND

VISSERS, K. A. Field-programmable custom computing machines - a taxonomy. In

Proc. Int’l Conf. on Field-Programmable Logic and Applications (FPL) (2002), pp. 79–

88.

[92] SIMMLER, H., AND LEVINSON, L. Multitasking on FPGA coprocessors. In Proc. Int’l

Conf. on Field-Programmable Logic and Applications (FPL) (2000), Springer-Verlag,

pp. 121–130.



BIBLIOGRAPHY 143

[93] SO, H. K.-H., AND BRODERSEN, R. A unified hardware/software runtime environ-

ment for FPGA-based reconfigurable computers using BORPH. ACM Transactions on

Embedded Computing Systems 7, 2 (2008), 1401–1407.

[94] SO, H. K.-H., AND BRODERSEN, R. W. BORPH: An Operating System for FPGA-

Based Reconfigurable Computers. PhD thesis, EECS Department, University of Califor-

nia, Berkeley, 2007.

[95] SRIRAM, S., AND BHATTACHARYYA, S. S. Embedded Multiprocessors: Scheduling

and Synchronization. Marcel Dekker, Inc., 2000.

[96] STEFAN, R., MOLNOS, A., AND GOOSSENS, K. dAElite: A TDM NoC supporting

QoS, multicast, and fast connection set-up. IEEE Transactions on Computers 99 (2012).

[97] STEIGER, C., WALDER, H., AND PLATZNER, M. Heuristics for online schedul-

ing real-time tasks to partially reconfigurable devices. In Proc. Int’l Conf. on Field-

Programmable Logic and Applications (FPL) (2003), pp. 575–584.

[98] STEIGER, C., WALDER, H., AND PLATZNER, M. Operating systems for reconfigurable

embedded platforms: Online scheduling of real-time tasks. IEEE Trans. Computers 53,

11 (2004), 1393–1407.

[99] STEIGER, C., WALDER, H., PLATZNER, M., AND THIELE, L. Online scheduling

and placement of real-time tasks to partially reconfigurable devices. In IEEE Real-Time

Systems Symposium (RTSS) (2003), IEEE Computer Society, pp. 224–235.

[100] STUTZ, M. Get started with gawk: Awk language fundamentals. Tech. rep., IBM, 2006.

[101] TAN, Z. Multithreaded sparc v8 functional model for ramp gold. In Presentation -

http://ramp.eecs.berkeley.edu/ (2008), p. 15.

[102] TANENBAUM, A. S., AND WOODHULL, A. S. Operating Systems Design and Imple-

mentation (3rd Edition). Prentice Hall, Jan. 2006.

[103] THIES, W., KARCZMAREK, M., AND AMARASINGHE, S. P. Streamit: A language for

streaming applications. In In Proc. of the Int’l Conf. on Compiler Construction (CC)

(2002), Springer-Verlag, pp. 179–196.

[104] THOMA, F., KUHNLE, M., BONNOT, P., PANAINTE, E. M., BERTELS, K., GOLLER,

S., SCHNEIDER, A., GUYETANT, S., SCHULER, E., MULLER-GLASER, K., AND

BECKER, J. Morpheus: Heterogeneous reconfigurable computing. In Proc. Int’l Conf.

on Field-Programmable Logic and Applications (FPL) (2007), pp. 409–414.

[105] TUMEO, A., BRANCA, M., CAMERINI, L., MONCHIERO, M., PALERMO, G., FER-

RANDI, F., AND SCIUTO, D. An interrupt controller for FPGA-based Multiprocessors.

In Proc. Int’l Conf on Embedded Computer Systems: Architectures, Modeling and Sim-

ulation (SAMOS-VII) (2007), pp. 82–87.

[106] TUMEO, A., MONCHIERO, M., PALERMO, G., FERRANDI, F., AND SCIUTO, D.

Lightweight DMA management mechanisms for multiprocessors on FPGA. In Proc.

Int’l Conf. on Application-specific Systems, Architectures and Processors (ASAP) (2008),

pp. 275–280.

[107] UHRIG, S., MAIER, S., KUZMANOV, G. K., AND UNGERER, T. Coupling of a

reconfigurable architecture and a multithreaded processor core with integrated real-

time scheduling. In Proc. Int’l Reconfigurable Architectures Workshop (RAW) (2006),

pp. 209–217.



144 BIBLIOGRAPHY

[108] UHRIG, S., MAIER, S., AND UNGERER, T. Toward a processor core for real-time

capable autonomic systems. In IEEE Symp. on Signal Processing and Information Tech-

nology (ISSPIT) (2005), pp. 19–22.
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Samenvatting

I
n dit proefschrift beschouwen we het probleem van het efficiënt uitvo-

eren (met betrekking tot performance) van meerdere threads op hetero-

gene embedded multicore systemen. Deze systemen hebben eisen wat

betreft het real-time gedrag, en bestaan uit processor tiles (tegels) met daarop

een General Purpose Processor (GPP), lokaal geheugen, en één of meer co-

processors uitgevoerd in herconfigureerbare logica ((e)(FPGA). We verbeteren

de performance van het systeem door een combinatie van twee methoden. Ten

eerste buiten we het beschikbare parallelisme uit door middel van het uitvo-

eren van multithreaded programma’s. Ten tweede gebruiken we hardware

versnellers voor de kernels die de meeste rekenkracht benodigen. Om pre-

cies te zijn is onze wetenschappelijke aanpak als volgt: we categoriseren de

bestaande modellen voor uitvoering van programma’s vanuit het perspectief

van de processor-coprocessor synchronisatie, en introduceren nieuwe paral-

lelle modellen voor het uitvoeren van deze programma’s. Daarna beschrijven

we een architecturale abstractie van deze modellen alsmede een paradigma

voor het programmeren dat deze modellen omschrijft en benut. Verder stellen

we een micro-architecturale ondersteuning voor de genoemde modellen voor.

De functionaliteit van deze micro-architecturale uitbreidingen is ingekapseld

in een nieuwe herconfigureerbare co-processor, genaamd de Thread Interrupt

State Controller (TISC). Om de performance van het gehele systeem te ver-

beteren benutten we de voorgestelde modellen voor de overdracht van tijd-

variabele en tijd-consumerende Real-Time Operating Systems (RTOS) en ap-

plicatie kernels vanuit de software, d.w.z. uitgevoerd op de GPP’s, naar de

hardware, d.w.z. uitgevoerd op de herconfigureerbare co-processors. We ref-

ereren aan de herconfigureerbare co-processor als de Hardware Task Status

Manager (HWTSM). Vanwege de eigenschappen van de nieuw gentroduceerde

modellen voor uitvoering zoals parallelle uitvoering en constante antwoordti-

jden behouden we de voorspelbaarheid en componeerbaarheid (composabil-

ity) op het niveau van de applicatie. Tenslotte introduceren we een frame-

work voor de distributie van informatie over slack (ongebruikte processortijd)

tussen processor tiles. In het voorgestelde framework gebruiken we één van de

nieuw gentroduceerde modellen voor uitvoering op parallelle processors/co-

processors. We refereren aan de nieuwe herconfigureerbare co-processor als

RS. We gebruiken de extra informatie over slack die wordt verkregen door ons

framework voor Dynamic Voltage Frequency Scaling, wat resulteert in een re-

ductie van het algemene energieverbruik.
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Gebaseerd op de beschikbare experimentele resultaten met zowel synthetische

als echte applicaties versnellen we het systeem met een factor van maximaal

19.6 met hulp van de Thread Interrupt State Controller. Verder reduceren we de

kosten van het RTOS met hulp van de Hardware Task Status Manager, wat re-

sulteert in een bijkomende versnelling van de applicatie van maximaal 13.3%.

Ook reduceren we het energieverbruik van het systeem met maximaal 56.7%

vergeleken met de huidige state-of-the-art, met hulp van het framework voor

de distributie van informatie over slack tussen tiles.

In het geheel genomen leiden onze bijdragen tot een verbetering van de per-

formance van het systeem terwijl voorspelbaarheid en componeerbaarheid be-

houden blijven, dit alles met gereduceerd energieverbruik.
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