
3 rd STAHY International Workshop on STATISTICAL METHODS FOR HYDROLOGY AND WATER RESOURCES MANAGEMENT
October 1-2, 2012 Tunis, Tunisia

ESTIMATES OF EXTREMES IN THE BEST OF ALL POSSIBLE WORLDS

By

R.R.P. van Nooijen(1) and A.G. Kolechkina(1,2)

(1)Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1,
2628 CN, Delft, The Netherlands (r.r.p.vannooyen@tudelft.nl; a.g.kolechkina@tudelft.nl )

(2) Aronwis, Den Hoorn, The Netherlands

ABSTRACT
In applied hydrology the question of the probability of exceeding a certain value occurs regularly. Often it is in a context
where extrapolation from a relatively short time series is needed. It is well known that in its simplest form extreme value
theory applies to independent identically distributed random variables. It is also well known that more advanced theory
allows for some degrees of correlation and that techniques for coping with trends are available. However, the problem of
extrapolation remains. To isolate the effect of extrapolation we generate synthetic time series of length 20, 50 and 100
from known distributions to derive empirical distributions for the 1:100 and 1:1000 exceedance.
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1 INTRODUCTION
There is pressure on hydrologists to provide predictions of extreme system behaviour based on extrapolation.
For an extreme view of the results of this pressure we refer to Klemeš (2000a,b). In this paper we try to establish
empirically how bad things actually are. The experiments are done in the R language R Core Team (2012). We
hope that the resulting images will provide a stimulus for a more skeptical approach to the prediction of extreme
values.

2 FORMAL PROBLEM STATEMENT
There is always a certain tension between theory and practice. As the title of this paper indicates, here we
resolve the tension by positing an ideal world where there theory and practice live in harmony. In that case our
times series of maximum discharges corresponds directly to a random vector X of n independent identically
distributed (i.i.d.) random variables. Moreover in this ideal world our curiosity about future maxima can be
satisfied through the study of a random variable Y that has the same distribution as one of the components of X .
The components Xk are random variables on a probability space hW,A ,Pi (where W is the set of all possible
outcomes, A is the s -algebra of events of interest and P is a probability measure P defined on A 2 A ). We
assume that, although P is unknown, there is a collection P of probability measures such that P 2 P . If we
use X to represent a generic component of X then X induces a measure µX on hR,B (R)i (where B (R) is the
s -algebra ).
We will assume that we can label the elements of P with a parameter vector q 2 L for a certain set L ⇢ Rm in
such a way that these vectors can also be used to label the induced measures. We assume that for the induced
measures µP we have well defined probability density functions (pdf) fX (. | q) and cumulative distribution
functions FX (. | q) on the positive real number axis. For the proper definition of X we construct the product
measure in the usual way. This results in an induced measure PX on B (Rn) that satisfies

PX ([a1,b1]⇥ [a2,b2]⇥ . . .⇥ [an,bn]) =

PX ([a1,b1]) ·PX ([a2,b2]) · . . . ·PX ([an,bn])

For the Bayesian case we assume that we also have a prior probability measure p on hL,B (L)i.
Given this model of reality we can use it to model the effects of methods of estimation of extreme system
behaviour. In the next section we perform an experiment to get a feel for the problem. We pick a set of
parameters that resemble parameters found for real systems. We then generate K samples of size n, use the
maximum likelihood estimator to estimate the parameters based on the sample and determine an empirical
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distribution function for the parameters. Given these parameters we can also determine an empirical distribution
function for the 1 : 20, 1 : 100 and 1 : 1000 event probability or equivalently distributions for the the 95%, 99%
and the 99.9% quantiles. We will then look for theory that can provide information on the spread of predictions
we may expect.

3 DISTRIBUTIONS OF INTEREST
The standard extreme value distributions for maxima are the the Gumbel (type I),
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and the reverse Weibull (type III)
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distributions. In all cases z > 0 and a > 0. Note that the reverse Weibull (type III) has an upper limit on the
maxima. If Z is Fréchet distributed with parameters h0,z ,ai then Y = logZ has a Gumbel distribution with
parameters hlogz ,1/ai,
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Therefore in this paper when providing formulas we limit ourselves to the Gumbel distribution.
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QG (p | hx ,z i) =�z log(� log p)+x

4 AN EXPERIMENT
We take the Nile data set supplied with R 2.15.0 (R Development Core Team, 2012) and fit a Gumbel dis-
tribution to it using from package fgev from package evd with the parameter shape (our a) set to zero.
We find x = 838.2,z = 156.0. For completeness we note that fgev without restrictions gives x = 853.6,z =
157.8,a =�0.1977 which corresponds to a reverse Weibull distribution. Fitting a reverse Weibull gives similar
parameters with x

0 = 1649.6,z 0 = 795.51,a 0 = 5.037 , where as expected x

0 = 1649.6 ⇡ x � z/a = 1651.9,
z

0 = 795.51 ⇡�z/a = 798.3 and a

0 = 5.037 ⇡�1/a = 5.058.
Next we take a Gumbel distribution with parameters x = 838.2,z = 156.0 and derive 1000 vectors of length m.
We fit the Gumbel distribution to the data using the maximum likelihood method and determine QG (p). This
results in an empirical cdf (ecdf). We do this for m = 20,50,100 and p = 0.9,0.99,0.999. The results are given
in Figure 4.1, Figure 4.2 and Figure 4.3 . The vertical lines show the true quantiles.
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(a) p = 0.9
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(b) p = 0.99
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(c) p = 0.999

Figure 4.1 – ecdf of quantiles for m = 20
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(a) p = 0.9
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(b) p = 0.99
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(c) p = 0.999

Figure 4.2 – ecdf of quantiles for m = 50
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(a) p = 0.9
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(b) p = 0.99
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(c) p = 0.999

Figure 4.3 – ecdf of quantiles for m = 100
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5 A STEP TOWARDS PREDICTIONS
If we have just one sample, the maximum likelihood method will give us just one parameter vector, q 0. Boot-
strapping might give us an impression of the spread in possible parameters, but for extremes the samples are
often relatively small and leave little room for bootstrapping. Another way to examine that spread would be
to repeatedly sample from the distribution with label q 0 and examine the spread of the parameter vectors fit
to these samples. However, this method would also suffer from the smallness of the sample and additionally
introduce a dependence on the method used to derive q 0.
There are several theoretical approaches we could take. We could take a confidence interval approach and
look for a function that provides an upper bound bub (a, p,x) on the theoretical quantile location F�1

X (p) with
probability a

Pr(QY (p) bub (a, p,X)) = a

where 1�a is the risk we are willing to take that our upper bound is incorrect.
We could also take a prediction interval approach and look for an upper bound bub (p,x) such that

Pr(Y  bub (p,X)) = p

More advanced techniques look for prediction intervals for the maximum over n observations based on m < n
observations. An overview of many different techniques can be found in Patel (1989) and Barndorff-Nielsen
and Cox (1996).
A basic problem with estimates of prediction intervals is discussed in Barndorff-Nielsen and Cox (1996) and
Vidoni (2009), where, for the general case, an error term of O(1/n) crops up. Although this term might not be
sharp, see for example Chen and Hall (1993), it suggests that extrapolation will be problematical.
A useful tool used in the remainder of the paper are ancillary statistics, according to Ghosh et al. (2010): “the
usual definition is that a statistic is ancillary if its distribution does not depend on the parameters in the assumed
model”.

6 FREQUENTIST THEORY
From a frequentist point of view, the parameter vector is unknown but fixed. We can only examine the probab-
ility that, for a given sample, the corresponding interval will contain the quantile of interest. For a quantile this
would be a prediction interval, a special case of a confidence interval. Such an interval would be a random set
Dn (a,X) such that Pr(Y 2 Dn (a,X)) = a . There is extensive literature on this subject, see for example Law-
less and Fredette (September 2005), Barndorff-Nielsen and Cox (1996), Beran (1990) and the review paper on
prediction intervals by Patel (1989). For the upper quantiles this can be reduced to finding a function bub (a,x)
such that

Pr(Y  bub (a,X)) = a

Now for a series of experiments sampling both Y and X and with null hypothesis that y  QY (p) whenever
y  bub (p,x) we have

Pr(Y  bub (a,X) and Y  QY (p)) = a p

Pr(Y  bub (a,X) and Y > QY (p)) = a (1� p) = Pr(type II error)

Pr(Y > bub (a,X) and Y  QY (p)) = (1�a) p = Pr(type I error)

Pr(Y > bub (a,X) and Y > QY (p)) = (1�a)(1� p)

Formulated in terms of exceedance probability pex = 1� p we find

Pr(Y  bub (a,X) and Y > QY (p)) = a pex = Pr(type II error)

Pr(Y > bub (a,X) and Y  QY (p)) = (1�a)(1� pex) = Pr(type I error)
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6.1 A simple example for the confidence interval approach
Purely for the purpose of illustration we provide a simple example where we can construct a prediction interval
for a quantile. Consider the one parameter exponential distribution, defined for x � 0,

fexp (x | l ) = l exp(�lx)

Fexp (x | l ) = 1� exp(�lx)

Qexp (p | l ) =� 1
l

log(1� p)

Suppose we are interested in determining limits on the quantiles. We use some standard properties of the
exponential distribution:

• if X is exponentially distributed with parameter l = l0 then X/l0 is exponentially distributed with
parameter l = 1.

• the sum of n independent exponentially distributed variables Zk, each with parameter l = l0 is a G
distribution with parameters h1/l0,ni, so
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From these properties follows immediately that, for 0 < a < b,

Pr

  
� log(1� p)

1
n Ân

k=1 Xk

!
a  QY (p,l )

 
� log(1� p)

1
n Ân

k=1 Xk

!
b

!
=

Pr

  
� log(1� p)

1
n Ân

k=1 Xk

!
a � 1

l

log(1� p)
 
� log(1� p)

1
n Ân

k=1 Xk

!
b

!
=

Pr

 
na 

n

Â
k=1

Xk

l

 nb

!
=

FG (nb | h1,ni)�FG (na | h1,ni)

where we used that for c > 0 and X > 0
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This provides us with the probability that, for a long series of identical experiments, each involving taking a
sample of size n, the quantile lies in an interval derived from the sample. We used the following notation:

FG (x | hz ,ai) =
xˆ

t=�•

fG (x,hz ,ai)dx

where

fG (t | hz ,ai) =
ta�1 exp

⇣
� t

z

⌘

z

aG(a)

Estimates of extremes in the best of all possible worlds 5



3 rd STAHY International Workshop on STATISTICAL METHODS FOR HYDROLOGY AND WATER RESOURCES MANAGEMENT
October 1-2, 2012 Tunis, Tunisia

6.2 A simple example for the prediction interval approach
In Example 1 of Lawless and Fredette (September 2005) a predictive distribution is provided, which can be used
to derive a prediction interval. We repeat here the main ingredients and the result. If Xk and Y are independent
random variables with an exponential distribution then

Y
Ân

i=1 Xi
=

Y
l

Ân
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Xi
l

so this neither quantity nor its distribution depends on l . In this fraction the numerator has pdf fexp (. | 1) and
the denominator has distribution fG (. | h1,ni) so
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6.3 Example with Gumbel with confidence interval approach
We wish to study

Pr(QY (p,hx ,z i) bub (p,a,X))

We define
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Define
Wp,a = (a� log(� log p)) ŝ
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this random variable induces a distribution FW (w | hp,ai) that does not depend on x or z . If, for given p, we
can determine a(p,a) such that

1�FW (� log(� log p) | hp,a(p,n,a)i) = a

so the probability that the true quantile is greater than our estimate is a , and we take

bub (p,a,x) = (a(p,a)� log(� log p)) ŝ (x)+ µ̂ (x)

then

Pr(QY (p,hx ,z i) bub (p,a,X)) =

Pr(�z log(� log p)+x  (a(p,a)� log(� log p)) ŝ (X)+ µ̂ (X)) =
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In Figures (6.1,6.1,6.3) a(p,n,a) was taken to match a = 0.9. They show the correct behaviour of our quantile
estimator.
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(b) p = 0.99
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Figure 6.1 – ecdf of quantile estimates for m = 20
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Figure 6.2 – ecdf of quantile estimates for m = 50

7 BAYESIAN THEORY
For the Bayesian approach we need a prior on our parameter space. Once we have that the Bayesian analogue
of a frequentist confidence interval is a credible set Carlin and Luis (2000). It is defined as follows. A 100⇥
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Figure 6.3 – ecdf of quantile estimates for m = 100

(1�a) percent credible set C for a parameter (vector) q given a sample y is a set C such that

1�a  Pr(q 2C | x) =
ˆ

C

p (q | x)dq

where p (q | y) is the posterior density. Next let us consider how to get information on the distribution of a
quantile. Given our earlier definitions we have

Pr(Y  y | q) = FX (y | q)

We introduce the notation QX (p | q) for the quantile function and we assume that for p 2 ]0,1[

FX (QX (p | q) | q) = p

Now suppose Q is the random vector corresponding to q . For a given quantile p0 we are looking for

Pr(QX (p0 | Q) t)

which is the distribution of that particular quantile given a (posterior) distribution for the parameter.

7.1 A toy example
Again we use the one parameter exponential distribution. For known l , in other words l 2 L = {l0} we have

Pr(QX (p0 | L) t) =

(
0 : t < QX (p0 | l0)

1 : t � QX (p0 | l0)

For unknown l we have l 2 L = ]0,•[ we take as prior distribution for the parameter the traditional improper
prior distribution for a scale parameter

p (l ) =
1
l

A priori we have

Pr(QX (p0 | L) t) =
ˆ

{l>0:QX (p0|l )t}

p (l )dl

and a posteriori we have

Pr(QX (p0 | L) t) =
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p (l | x)dl

In both cases
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so the a priori case is not integrable. For the a posteriori case we see that
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As a posteriori distribution for Y we find
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which remarkably enough is equal to the frequentist bound.

8 CONCLUSIONS
We saw that for small samples the spread in estimates of the upper quantiles is considerable. Moreover, both
literature references and common sense (error inversely proportional to number of measurements) suggest that
it will be very hard to obtain reliable estimates of the upper quantiles. It seems unlikely that we can estimate
the 1� 1/k quantile with sufficient accuracy without at least k observations. However, many Bayesian and
frequentist tools to obtain either point or interval estimates exist and research into better, more accurate methods
for quantile estimation is alive and well.
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