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Preface

At the heart of every complex human civilization, there is a story. Or at least this is what the historian
and writer Yuval Noah Harari claims. According to him, stories and myths make up the building blocks
of complex human societies. At first glance, the concept might sound bizarre, alien even, but if we
analyze things deeply it starts to make sense. This is because things such as corporations, money,
governments, justice systems and even more abstract concepts like democracy and human rights are
not ’real’, they are not part of our physical reality. Would a government continue to exist if a majority of
people would stop believing in its authority? As history has taught us times and times again, probably
not. This is because institutions, laws, organizations and currency are part of an imagined reality, a
shared set of ideas we all believe in. In other words, they are all pieces of information distributed across
our brains.

In accordance with Harari’s unorthodox claims, even the earliest complex civilizations have acknowl-
edged the importance of centralizing, storing, retrieving and distributing information efficiently to people.
Representative examples are the Great Library of Alexandria, established in the 3rd century BCE, the
ancient Chinese imperial documentation going as far back as the Han Dynasty (202BC - 9AD) or the
ancient Roman and Greek codices. What all of these large corpora of physical documents had in
common was an index, i.e. a system that would allow a librarian to retrieve relevant pieces of informa-
tion efficiently. But what happens when a civilization grows too complex and its library too big for an
overworked ancient librarian to manage? If we were to trust Isaac Asimov and his novels, any human
civilization that reaches a critical level of complexity will perish under its own weight, as its complexity
becomes unmanageable.

Luckily, late 19th and 20th century visionaries such as Paul Otlet or Vannevar Bush had something
different in store for us. They believed that informational complexity could be tamed by automation, so
they proposed the creation of systems and machines such as the Mundaneum or the Memex, which
are considered early visions of a contemporary search engine.

And here we are, at the beginning of the 21st century, when search engines have stopped being a
novelty, but rather a mundane part of our everyday lives. Hype in our contemporary times is no longer
generated by search engines but by AI systems powered by deep neural networks that can accomplish
tasks that programmers of previous generations would have only dreamed about.

It is safe to say that, by now, artificial neural networks have made their way into almost every area of
computer science. And search engines are no exception. If previous generations of search engines
had to rely on lexical similarity to judge the relevancy of documents, now they can leverage the power
of neural rankers to comprehend semantics. So far, neural ranking models seem like a dream come
true that will lead us to the holy grail, the ultimate search engine that will empower our societies to scale
their complexity indefinitely without ever collapsing. But, as Steve Jobs once said, ”Sometimes life hits
you in the head with a brick. Don’t lose faith.”. It turns out that dual-encoders, which represent the
state-of-the-art neural ranking technology, require a lot of memory, which means that they don’t scale
well to large corpora of documents. Will we allow Jobs’ bricks to shatter our dream of societies that
scale indefinitely in complexity and knowledge? Or will we revive the spirit of Vannevar Bush and use
technology to prevent the world from falling into a dark era of Asimovian proportions?

My thesis is a mathematical manifesto that directs the reader to march for the latter and help prevent
the fall of humanity into the global Middle Ages. Since, as Suzanne Collins wrote, ”Hope is the only
thing stronger than fear”. For some, it might sound like a utopia. My high school literature teacher once
said that ”any utopia put into practice is a dystopia”. Well, the scope of my thesis is to prove her wrong.
How, you might ask? The keyword is vector quantization.

Catalin-Petru Lupau
Delft, June 2024
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Abstract

Passage re-ranking is a fundamental problem in information retrieval, which deals with reordering a
small set of passages based on their relevancy to a query. It is a crucial component in various web
information systems, such as search engines or question-answering systems. Modern approaches
for building re-ranking systems rely on neural language models such as BERT [39], or its derivatives,
to create dense indexes for the target document corpus. While such approaches bring significant
performance gains compared to classical lexical re-rankers, they have the disadvantage of increased
memory costs.

A family of methods that can be used to reduce the memory footprint of a dense index is called vector
quantization. Vector quantization algorithms usually rely on a combination of clustering and space
manipulation operations to perform a lossy compression of the dense index at the expense of index
performance. While vector quantization is widely used for first-stage retrieval, its use in the context of
re-ranking is underexplored. To this end, this thesis evaluates the effectiveness of product quantization,
a well-known vector quantization method, on single-vector dual-encoders, specifically TCT-ColBERT
[47] and Aggretriever [46]. In addition to this, we show how linear interpolation of sparse scores can be
leveraged to improve the performance of quantized dense indices with negligible costs to the memory
footprint or speed. Last but not least, we propose WolfPQ, a learnable quantization method aimed at
further improving quantization for re-ranking by bridging the gap between the objective functions used
in training product quantization and re-ranking systems, respectively.
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Nomenclature

Quantizers
Abbreviation Explanation

PQ product quantization
OPQ optimized product quantization
CQ contextual quantization
JPQ jointly optimized query encoder and product quanti-

zation
RepCONC discrete representations via constrained clustering
DPQ differentiable product quantization
WolfPQPre pre-trained only WolfPQ
WolfPQ WolfPQ with selection by minimum distance, fine-

tuned using dense scores only
WolfPQSem WolfPQ with selection by semantic sampling, fine-

tuned using dense scores only
WolfPQI WolfPQ with selection by minimum distance, fine-

tuned using sparse-interpolated scores and mixed
pointwise-listwise loss function

WolfPQSemI WolfPQ with selection by semantic sampling, fine-
tuned using sparse-interpolated scores and mixed
pointwise-listwise loss function

Common notations
Symbol Definition

ϕ quantizer
ϕ(i) subquantizer for subspace i
Φ set of all theoretically possible quantizers
s codebook index
C codebook
C(i) subcodebook corresponding to the ith subspace
c codeword
c(i) subcodeword corresponding to the ith subspace
x vector
x(i) subvector corresponding to the ith subspace
x̂ quantized vector
D corpus
Q query set
q query
d document (or passage, which is equivalent)
d+ positive sample / relevant document for the query
d− negative sample / irrelevant document for the query
ηd(d) semantic encoding of document d
ηq(q) semantic encoding of query q

ix
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Symbol Definition

η̂d(d) quantized semantic encoding of document d
η̂q(q) quantized semantic encoding of query q
H (or h) the dimensionality of the vectors, encodings, embed-

dings, i.e. ηd(d) ∈ RH

M the number of subspaces
K number of codewords in a codebook
R rotation matrix or rotation tensor
R(i) rotation matrix for subspace i (if R is a rotation ten-

sor)

Note on abbreviation composition
A consistent abbreviation composition convention is used throughout the thesis to describe either one-
stage or two-stage retrieval systems. The convention follows the structure described by equation 1.

<Retrieval model> + (<Re-ranking model>)− (<Quantizer>)− (I) (1)

The pair of parentheses behind the components in the structure in equation 1 denotes that the compo-
nent is optional. The optional −I at the end encodes whether or not re-ranking by sparse interpolation
is used. The list below provides a few examples of how the notation should be interpreted:

• BM25 +Aggretriever-PQ-I: BM25 retrieval combinedwith re-ranking performed by a PQ-quantized
Aggretriever index that uses sparse interpolation.

• TCT-ColBERT-PQ: dense retrieval (with no re-ranking) performed by a PQ-quantized TCT-ColBERT
index.

• BM25 + ColBERT: BM25 retrieval combined with re-ranking performed by ColBERT (no sparse
interpolation used)

• BM25 + TCT-ColBERT-WolfPQI: BM25 retrieval combined with re-ranking performed by TCT-
ColBERT quantized with a version of WolfPQ configured to perform selection by minimum dis-
tance. The version of WolfPQ was trained using interpolated dense scores and amixed pointwise-
listwise loss function. The re-ranking is performed without interpolation.

• BM25: plain BM25 retrieval
• BM25 + Aggretriever-I: BM25 retrieval combined with re-ranking performed by Aggretriever (not
quantized) that uses sparse interpolation.

Note on core terms used interchangeably
The following table contains terms that are used interchangeably throughout the thesis.

Interchangeable terms Explanation

centroid, codeword Codeword is part of quantization vocabulary, while centroid is a term used
in clustering. Since, in many quantization algorithms, the codewords are ob-
tained by clustering, the two terms are used interchangeably.

set of centroids, code-
book

Since a codebook is a set of codewords, the reason why the two are the same
becomes self-explanatory.

document, passage The difference between the two is subtle. Generally speaking, a document
could be divided into multiple passages, and each passage could be encoded
separately. Within the scope of the thesis, we assume all input is processed
atomically. Hence, distinguishing between documents and passages does not
make sense. So, the two terms are used as synonyms.

document set, passage
set, corpus

All three terms refer to the set of documents we are searching through.
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Interchangeable terms Explanation

query, question The term query is used in the context of search engines, while question is
used in question-answering system. Since our research could be applied to
both, the terms mean the same thing within the context of the thesis.

semantic encoding, se-
mantic embedding, vector
encoding, vector embed-
ding, encoding, embed-
ding, semantic vector

All of these terms refer to the vectors created by the dual-encoders to numeri-
cally represent the meaning of a document or a query.



1
Introduction

Deep learning has made its way into almost every area of computer science, and information retrieval
is no exception. Previous generations of search engines had to rely on lexical similarity to determine
the relevance of a passage or document with respect to some question or query [76, 71]. However,
nowadays, we are able to accomplish the task with much better accuracy by relying on deep neural
networks that can process the meaning (a.k.a semantics) behind a piece of text, be it passage or query
[76, 71]. Even more, neural networks designed for natural language processing have made it possible
to create chatbots that provide us directly with answers to our questions [52, 73]. Such chatbots are
just glorified search engines [73], which make use of large language models to provide users with
conversational interfaces, a representative example being Perplexity AI [2]. Regardless, it is safe to
say that neural ranking models are becoming an increasingly important component of the technology
stack powering search engines such as Google or Bing [38, 10].

We are probably all users of a popular web search engine by now. What a web search engine does
is that it provides us with an ordered list of web pages ranked by their relevancy to our search query.
Passage ranking is simply the task of ordering a collection of passages in accordance to their relevancy
to a query [71]. Both the passages (documents) and the query are textual data. Hence, what we
are doing is ordering longer snippets of human text (passages) based on how relevant they are with
respect to the informational need contained in a shorter snippet of human text (query). A neural ranking
model performs this task with the help of a neural network with inherent language modeling capabilities,
known as a neural language model, that can understand and process the semantics behind the pieces
of human text.

Dual-encoders, which are one of themain contemporary standards in neural ranking technology, require
a lot of memory, which means that they do not scale well to large corpora of documents [44, 70, 72, 22].
To put things into perspective, according to WorldWideWebSize.com, a website using a transparent
estimation methodology [7], the size of the indexed web at the moment of the writing is at least 5.1
billion pages [42]. Assuming that we make use of a single-vector dual-encoder such as TCT-ColBERT
[47], and we encode every page using a single vector, which is unrealistic since many web pages would
have to be split into multiple passages, the size of the index created by the model would be roughly
14591,2GB1. While an index of this can be stored given current technology, the index would live in
secondary storage, which is slower than random access memory. And what about the future? As the
number of web pages keeps increasing, so will the sizes of the neural indices we create, forcing us
to expand the data centres. Nevertheless, data centres are expensive to maintain as they use much
energy [45, 14], which we all know is not entirely produced in a sustainable manner [15].

Finding a solution to the problems highlighted above represents the primary motivation driving this the-
sis. Our aim is to reduce the memory footprint of dual-encoder-based dense indices, while maintaining
as much of the original ranking performance. One category of techniques that comes to mind when

15.1 · 109(num. vectors) · 768 (vector dim.) · 4( 32 bit values) · 1024−3(B to GB conversion)
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discussing the compression of vector collections is vector quantization, which has proven to be very
effective in the field of approximate nearest neighbour search [53, 36].

Figure 1.1: Broad overview of the problem setup and research focus.

Vector quantization is an umbrella term for a family of algorithms used to perform lossy compression of
collections of vectors [53]. As the reader will hopefully discover in the next chapters of the thesis, dense
indices, as created by dual-encoders, are nothingmore than collections of semantic vectors that encode
the meaning of the documents or passages in the corpus. This makes vector quantization algorithms
a viable solution for compressing dense indices based on dual-encoders. While vector quantization
has a long history as a technique being used to compress indices for retrieval (approximate nearest
neighbour search), its use in the context of passage re-ranking is severely underexplored. To the best
of our knowledge, there is only one paper introducing a quantization algorithm aimed at dual-encoder-
based re-ranking. This algorithm is called a contextual quantizer, and it suffers from a major drawback
[70].

The disadvantage of the contextual quantizer is that, by design, it is only applicable to dual encoders
operating with term-level representations, such as ColBERT[70, 40]. As far as I am aware, there is no
obvious way to adapt the contextual quantizer to single-vector dual encoders such as TCT-ColBERT
[47] or Aggretriever [46], which create much smaller indices than ColBERT (or other term-level dual
encoders) to begin with [47, 46, 40]. To this end, the thesis explores the use of vector quantization
on single-vector dual-encoders for the purpose of improving the memory required by neural passage
re-ranking. It does so by testing how well product quantization, one popular type of vector quantization,
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performs on TCT-ColBERT and Aggretriever. In addition to that, I explore the intersection between
quantization and re-ranking with sparse interpolation, a technique recently proven to improve re-ranking
performance [68, 44]. Finally, my thesis proposes WolfPQ, a novel quantization algorithm aimed to
bridge the gap between the learning objectives of classical quantization and those of re-ranking models.
All of the above contributions are made driven by the following research questions:

• RQ1: How well does product quantization work with single-vector dual encoders, specifically
TCT-ColBERT and Aggretriever?

• RQ2: Can we increase the compression rate of product quantization, while maintaining the re-
ranking performance, by introducing interpolation with sparse scores to the reranking score func-
tion?

• RQ3: Can we train a quantizer in a supervised fashion to optimize its behaviour for dense rerank-
ing? If so, can we train the quantizer in a way that enables it to adapt to sparse score interpolation
achieving even higher performance improvements over product quantization?

The experimental results show that PQ-quantized single-vector dual encoders, specifically TCT-ColBERT
and Aggretriever, achieve better memory-performance trade-off when compared against their token-
level counterpart, BM25 + ColBERT-PQ. At the expense of slightly lower re-ranking performance, a
quantized single-vector dual-encoder can use up to x10 less memory than its multi-vector counterpart.

In addition to the above, the sparse-retrieval-based configuration enables the use of sparse-score inter-
polation, which our experiments reveal to improve re-ranking performance by up to 224% at extremely
high compression ratios.

Last but not least, WolfPQ is shown to generally outperform PQ at similar compression ratios. Compar-
isons to other ad-hoc retrieval methods indicate that our best setup (BM25 + TCT-ColBERT-WolfPQI-I)
is a strong candidate for a state-of-the-art system when looking at performance and memory together.
Further experimentation would be needed to claim that with high certainty.

In light of the above, the thesis is structured in 7 chapters, excluding this introduction. Chapter 2 pro-
vides the reader with the necessary background needed to comprehend the core of the thesis, while at
the same time comprehensively summarizing the related work. Building on that, chapter 3 introduces
the problem formally through the power of mathematical modelling by rigorously defining all concepts
that make up the theoretical framework of the research. Chapter 4, on the other hand, contains de-
tailed summaries of three scientific papers that were foundational to this research, particularly due to
being sources of inspiration for the design of WolfPQ, the novel quantization algorithm that this thesis
proposes. Chapter 5 makes a deep dive into the methodology by explaining the techniques used to an-
swer the research questions and, more importantly, explaining the inner workings of WolfPQ. Chapter
6 provides details about the experimental setup, which are crucial for the reproducibility of the results.
Finally, chapters 7 and 8 present the results and the conclusion aimed to direct future scientific endeav-
ours.



2
Background and related work

The purpose of this chapter is to provide the reader with the theoretical background needed to fully
comprehend the reasons behind the proposed research, its scope, as well as its contributions within
the broader fields of information retrieval and natural language processing. To this end, the chapter is
logically structured into three main sections that correspond to the core concepts needed for a complete
understanding of the thesis.

The first section explores the retrieval pipeline, a broad architectural pattern commonly used by search
engines whose understanding is important for correctly framing the topic of the thesis within the wider
field of information retrieval. Consequently, the second section takes a deep dive into the problem of
passage ranking, one of the main components of the retrieval pipeline, by providing an overview of the
evolution of relevant techniques and their relationship to breakthroughs in deep learning. Finally, the
third section explains the concept of vector quantization, a well-known compression technique which,
in the context of this research, is used with the goal of improving passage ranking.

2.1. The two-stage retrieval pipeline
Ad-hoc passage ranking is a core component of amodern search engine. The task consists of retrieving
and ranking passages from a corpus based on their relevancy to a query specified by the user [71].
Most solutions for ad-hoc document ranking rely on a common architectural framework known as the
two-stage retrieval pipeline. As indicated by its name, the two-stage retrieval pipeline involves multiple
steps and components. Since the retrieval system has to search over a large corpus of passages (or
documents), the need for a data structure that enables efficient search over a corpus arises. Such a
data structure is known as an index, and the process of constructing an index is called indexing. It is
thus not a coincidence that the very first step of the retrieval pipeline is indexing. The index is always
pre-computed and used from memory during runtime [71].

The process through which the retrieval system returns the relevant passages to the user is a two-
stage process. Initially, the query is sent to the index, which returns a set of documents that are likely
to be related to the query. This set is formally known as the retrieval set or first-stage retrieval set. As
corpora can be huge, it is important that first-stage retrieval is very fast, even at the expense of being
precise. Subsequently, the small set of retrieved passages is ordered based on query relevancy. This
enables the system to discard the least relevant passages and present the most relevant passages
in a convenient order to the user. The process of re-ordering the passages in the first-stage retrieval
set is called re-ranking. Unlike first-stage retrieval, re-ranking needs to be very accurate despite being
slower.

What is common across both first-stage retrieval and re-ranking is the need to have a relative measure
of query relevancy for passages, be it to decide which documents to include in the retrieval set or to
re-order the documents based on how related they are to the query. The process of assigning a score
based on which passages can be compared in terms of their relevancy to a query is known as passage
ranking or text ranking [71]. Information retrieval literature contains numerous techniques for passage
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ranking, each with its own benefits and drawbacks. A summary of these techniques will be provided in
the following sections.

2.2. Passage ranking
The previous section has provided an overview of a fundamental architectural pattern in information
retrieval, the two-stage-retrieval pipeline, while simultaneously introducing passage ranking, a core
component of the pipeline. Following the chain of reasoning, this section will go deeper into passage
ranking by looking at the three most popular families of techniques and their relative advantages and
drawbacks.

As previously mentioned, the purpose of passage ranking is to assign numerical scores to the passages
in a collection based on which their relative relevancy to the query can be compared. Thus, the following
subsections will present various methods that can be used to assign such scores.

2.2.1. Sparse rankers
One of the older categories of passage ranking techniques still used nowadays is constituted by sparse
rankers [71]. Before the deep-learning era, which enabled us to create semantic models of human
language and text, sparse rankers used to be the state-of-the-art, having powered many of our legacy
search engines [71, 64].

While differing from each other in terms of mathematical specifics, sparse rankers share a plethora
of common characteristics, which justifies their classification as a distinct methodological category.
Among the commonalities of sparse rankers, we can enumerate the reliance on classical inverted
indexes that store term-level statistics about the corpus, analyzing text lexically (rather than semanti-
cally), leading to an inability to properly deal with synonyms (vocabulary mismatch [25], [75]), as well
as a theoretical foundation built upon probability theory applied on sets of terms (words).

Maybe one of the simplest forms of sparse rankers is the TD-IDF method [3]. The intuition behind
TD-IDF is rewarding passages in which the query terms appear with a high frequency while assigning
a lower weight to frequent terms that are common across the entire corpus. Formulating this idea
mathematically leads to equation 2.1. The formula in equation 2.1 can also be obtained by treating
the problem from an information-theoretical perspective, in which case the TD-IDF weights can be
interpreted as the expected mutual information between a passage in the corpus and some word in
some arbitrary query [3].

wi,j := tfi,j · log( |D|
dfi

)

wi,j − tf-idf weight between query word i and passage j
tfi,j − frequency of word i in passage j
dfi − number of passages in the corpus that contain word i
|D| − the size of the corpus

(2.1)

The same intuition as TF-IDF is used by most sparse rankers. BM25 (equation 2.2), one of the most
popular sparse ranking functions, can be seen as a refinement of TF-IDF introducing term saturation,
which means that the contribution of a term to the total relevancy of a document decreases with each
new occurrence of the term [61]. Despite being an older method, BM25 is still used nowadays, and it
is a very common benchmark in information retrieval research [44, 47, 46, 40]. We will go deeper into
BM25 in the next chapter, as it represents an integral part of the problem setup.
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bm25(d, q) =
∑

w∈q
fw,d·(k1+1)

fw,d+k1·(1−b+b· |d|
avgdl )

· log |D|−nw+0.5
nw+0.5

fw,d := the frequency of word w in document d
nw := number of documents in the corpus containing word w
|D| := the size of the corpus
|d| := the length of document d
avgdl := the average length of a document in the corpus
b := paramater controlling the impact of document length on word (term) saturation
k1 := parameter controlling word (term) staturation

(2.2)

As previously mentioned, since sparse rankers such as TD-IDF and BM25 analyze passages and
queries only lexically, they perform poorly in cases where the passage and a query do not use the
exact words to describe the concept but rather synonyms. This problem, called the vocabulary mis-
match problem [25, 75], is what motivated the development of more advanced sparse rankers such as
SPLADE [24] or DeepImpact [51], as well as dense rankers [71] (cross-encoders and dual-encoders),
which will be presented in the following subsections.

2.2.2. Cross-encoders
The recent developments in natural language processing, powered by deep learning, have led to the
development of neural language models [54]. The idea behind neural language models is to train
neural networks on large amounts of human text to enable them to understand and generate human
language [54]. This data-driven approach towards language modelling represented a step forward
from the sparse rankers of the previous subsection since they provided a way to mitigate the vocabulary
mismatch problem, which used to be themain obstacle in the way of developingmore accurate passage
rankers.

The first neural network architectures that were used for the purpose of processing language were
RNNs, LSTMs and GRUs [58, 49, 62]. These families of neural network architectures enjoyed relative
success but suffered from two main limitations. Firstly, recurrent neural networks have the inability to
deal with very long sequences of text, a problem formally known as the vanishing gradient problem [65,
43, 55]. Secondly, all of the mentioned neural network architectures are sequential, which means that
training them on a lot of data parallelly is not possible [66].

Everything changed with the introduction of the transformer [66], a foundational model that enables
efficient training of neural language models on huge amounts of data, tackling the limitations of the
recurrent neural networks. Using the transformer, highly effective neural language models, known as
large language models, were developed. One of the most popular such large language model among
natural language processing researchers is BERT [39], which has the property of analyzing text in a
bi-directional fashion.

Taking into account all of the above, the question that arises is whether or not large language model
technology can be leveraged to improve passage ranking. Cross-encoders are a family of passage
rankers that aim to achieve exactly that, outperforming sparse rankers by a significant margin [71].
Cross-encoders work by feeding a query-passage pair into a large language model with the purpose
of obtaining a relevance score. To illustrate this, we will have a look at a widely popular BERT-based
cross-encoder known as MonoBERT [56].

The main idea behind MonoBERT [56] is to convert the passage ranking problem into a binary text clas-
sification problem, where the two labels are relevant and non-relevant. The passages are then ordered
according to the relevancy probabilities predicted by the model, in accordance with the probability rank-
ing principle. As illustrated by figure 2.1, the architecture of MonoBERT consists of an instance of the
BERT large language model, followed by a shallow neural network used for binary classification. The
query q and the passage d are truncated to 64 and 512 tokens, respectively, and then concatenated.
The concatenated input is propagated through the BERT model and the [CLS] vector of the output is
extracted. The [CLS] vector is then further propagated through the shallow feed-forward neural net-
work, which finally outputs the ranking probability. The inference process is formally shown in equation
2.3.
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Figure 2.1: Diagram illustrating the architecture of monoBERT. Figure taken from [71].

input := trunacate(q, 64) ◦ trunacate(d, 512)
monoBERT (d, q) = P (d|q) := FeedForwardNet(BERT (input)[CLS])

trunacate(x, n)− truncates the textual input x to n tokens
a ◦ b− concatenation between vectors a and b
BERT (x)[CLS] − the [CLS] vector obtained by feeding x into BERT

(2.3)

The instance of the BERT model used in MonoBERT is initialized with the weights corresponding to
one of the instances of pre-trained BERT models. MonoBERT is then further trained in an end-to-end
fashion (BERT and the feed-forward neural network together) on query-passage pairs obtained by per-
forming passage selection from top BM25 results. During the training process, the cross-entropy loss
is used, as shown in equation 2.4, which is a standard loss function for binary classification problems.

LmonoBERT (q) = −
∑

d+∈S+(q) logP (d+|q)−
∑

d−∈S−(q)(1− logP (d−|q))

S+(q)− positive samples for query q
S−(q)− negative samples for query q

(2.4)

As we have seen in the section about the two-stage retrieval pipeline, retrieval speed is of high impor-
tance for any information retrieval system [32, 37]. Considering this, a major drawback of monoBERT
in particular and cross-encoders in general becomes apparent. Having to process all passages at
runtime for every new incoming query is very time-consuming [71]. This results from the fact that, as
already mentioned, passage corpora can be quite large, as well as from the fact that passages can con-
tain many tokens. Since transformers, the building blocks of most cross-encoders, have a quadratic
time complexity with respect to the number of input tokens [66], the processing time of applying cross-
encoders for passage re-ranking can easily skyrocket. Hence, cross-encoders are not themost feasible
technique for real-time information retrieval [71].
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2.2.3. Dual-encoders
Dual-encoders were born out of the necessity to make cross-encoders more feasible for real-time pas-
sage ranking by reducing their time complexity while at the same time preserving as much of their
superior ranking performance [37, 71]. This was achieved by tackling the most obvious bottleneck of
the cross-encoder ranking architecture, i.e. the necessity to process passages for every new incoming
query. Hence, the idea behind dual-encoders is to split the processing of queries and passages into
two distinct operations. In this way, the passages can be pre-computed before runtime and retrieved
from memory when needed. Thus, dual-encoders follow the classical algorithmic design technique of
trading memory for increased processing speed. To better illustrate the workings of dual-encoders,
we will have a look at ColBERT [40], a well-known dual-encoder among IR researchers, as well as
TctColBERT [47] and Aggretriever [46], which represent the focus of our research.

ColBERT
ColBERT [40] is a widely popular dual-encoder that, similarly to monoBERT [56], is built upon the BERT
[39] neural language model. Following the dual-encoder architectural framework, ColBERT splits the
computation of the passage and the query into two by introducing a query encoder and a passage/doc-
ument encoder. Both the query encoder and the document encoder share the same instance of BERT,
but the two input categories are differentiated by prepending a special token [Q] to queries and [D] to
passages. The query and document encoders have very similar architectures, as both preprocess the
input text using BERT and then further propagate the output through a convolutional neural network
followed by a normalization step. The output of the document encoder pipeline is further put through a
filtering step that removes the embeddings corresponding to punctuation marks, which are considered
semantically irrelevant. The workings of the two encoders are described in more mathematical depth
by equation 2.5.

Eq := Normalize(CNN(BERT (truncate([Q] ◦ q,Nq))))
Ed := Filter(Normalize(CNN(BERT ([D] ◦ d))))

Eq − bag of ColBERT embeddings for the query
Ed − bag of ColBERT embeddings for the document
Nq − number of tokens to truncate the query to
trunacate(x, n)− truncates the textual input x to n tokens
a ◦ b− concatenation between vectors a and b

(2.5)

Figure 2.2: Comparison between the representation learning paradigm (left), the all-to-all interaction paradigm used by
cross-encoders (middle) and the late interaction paradigm (right). Figures taken from [40].

Maybe the most interesting part about ColBERT is the introduction of the concept of late-interaction [40].
A dual-encoder that works purely within the realm of representation learning would summarize both the
query and the passage with vectors that belong to the same semantic space and would compute the
ranking score based on some similarity metric between the vectors. This would lead to a significant
decrease in ranking performance since the passage and the query are never analyzed together by the
neural network, or, in other words, the two never interact at the level of neural connections. At the other
end of the spectrum, we have the cross-encoders that analyze the query and the document together
from the very beginning, achieving high ranking performance but low processing speeds. Models like
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ColBERT, which operate in the paradigm of late-interaction, try to achieve amiddle ground by separating
most of the query and passage processing but still introducing some interaction between the two inside
the final scoring function. For ColBERT, this is achieved through an operator called MaxSim, that
computes the relevancy score based on the two bags of embeddings outputted by the query encoder
and document encoder, respectively, as shown in equation 2.6 and figure 2.3.

Figure 2.3: Diagram illustrating the architecture of ColBERT. Figure taken from [40]

colBERT (d, q) := maxSim(Ed, Eq) =
∑

eq∈Eq
maxed∈Ed

eq · eTd

eq − query embedding
ed − document embedding
Eq − bag of query embeddings outputted by the query encoder
Ed − bag of document embeddings outputted by the document encoder

(2.6)

TCT-ColBERT
While achieving state-of-the-art results [40], ColBERT has the disadvantage of requiring a lot of mem-
ory. This is because, as illustrated by equation 2.5, ColBERT outputs and stores a bag of embeddings
for each passage in the corpus. TCT-ColBERT [47] and Aggretriever [46] represent attempts to miti-
gate this by creating single-vector representations for the passages. In essence, the two models are
attempts to switch back from the late-interaction paradigm to the representation learning paradigm
while trying to preserve as much of the ranking performance specific to late-interaction.

In the case of TCT-ColBERT the transition back from late-interaction to representation learning is
achieved by means of knowledge distillation. More specifically, TCT-ColBERT is a distilled version
of ColBERT that replaces the maxSim operator by the dot product between the single-vector repre-
sentations of the query and the passage. To this end, TCT-ColBERT defines two probability distri-
butions expressing the relevance of documents given queries, a teacher distribution estimated using
ColBERT and a student distribution estimated using TCT-ColBERT, as shown in equations 2.7 and 2.8.
TCT-ColBERT is, hence, trained in such a way that the student distribution approaches the teacher
distribution, which corresponds to minimizing the Kullback–Leibler divergence [41] between the two
probabilities, as expressed by equation 2.9.
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P̂ (d|q) = exp(maxSim(Ed,Eq)/τ)∑
d′∈D exp(maxSim(Ed′ ,Eq)/τ)

P̂ (d|q)− relevancy probability of passage d estimated using ColBERT
τ − temperature parameter

(2.7)

P (d|q) = exp(Pool(Ed)·Pool(Eq))∑
d′∈D exp(Pool(Ed′ )·Pool(Eq))

Pool(E) := 1
|E|

∑
e∈E e or maxe∈E e

P (d|q)− relevancy probability of passage d estimated using Tct-ColBERT

(2.8)

KL(P̂ ||P ) =
∑

d′∈D P̂ (d′|q) log P̂ (d′|q)
P (d′|q) (2.9)

Aggretriever
Unlike TCT-ColBERT, which achieves effective single-vector representations by performing knowledge
distillation from ColBERT, Aggretriever [46] is a single-vector dual-encoder built from scratch with BERT
as a basis. Aggretriever is constructed on the intuition that simply relying on the [CLS] token of BERT
as a single-vector representation for a passage is not enough, as the token contains insufficient infor-
mation. Instead, it proposes the aggregation of the MLM output of BERT into a vector named agg∗,
which, once combined with the [CLS] token, forms the single-vector representation of the textual input.

The agg∗ vector is obtained by applying a series of operations on the tokens outputted by the MLM head
of BERT. First, the MLM head of BERT is re-used in combination with softmax to project each individual
token into a high-dimensional vector representing a probability distribution over the vocabulary of BERT,
as indicated by equation 2.10.

pqi := softmax(eqi ·WMLM + bMLM )

eqi − the ith BERT output token
WMLM , bMLM − the weights and bias of the pre-trained MLM linear projector
pqi − probability distribution corresponding to token qi

(2.10)

The following step is the application of weighted max-pooling on the sequence of high-dimensional
vector representations corresponding to each of the tokens. The weights used in max-pooling are ob-
tained by propagating the output tokens once more through a one-layer neural network. The procedure
is described in equation 2.11.

vq[j] = maxi∈{1,2,...,l}wi·pqi
[j]

wi = |eqi ·W + b|

vq[j]− result of the pooling operation at the jth position inside the vector
W, b− the weights and bias of the single vector neural network
pqi [j]− the value of the probability vector corresponding to token qi at index j

(2.11)

The agg∗ vector is obtained from the output of max-pooling vq by applying a complex pooling operation
that consists of creating multiple subdivisions of the input and taking the maximum in each subdivi-
sion. Finally, the single-vector representation for both input queries and input passages is formed by
concatenating the agg∗ vector with the [CLS] token outputted by BERT. A conceptual diagram of how
Aggretriever works is illustrated by figure 2.4.
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Figure 2.4: Diagram illustrating the architecture of Aggretriever. Figure taken from [46].

2.3. Vector quantization
In the previous sections, we have provided an overview of the two-stage retrieval pipeline as well as a
summary of the evolution of the algorithms used in one of its key components, namely passage rank-
ing. We have also seen that single-vector dual-encoders, such as TCT-ColBERT [47] and Aggretriever
[46], provide a good balance between memory, speed and ranking performance, making them strong
candidates for the re-ranking component of the retrieval pipeline [44]. As mentioned in the introduction,
the focus of the thesis is the application of vector quantization, a family of lossy compression algo-
rithms, on the dense indices corresponding to single-vector dual-encoders with the purpose of further
reducing memory usage. To this end, this section will present the reader with a general description of
the technique, which will form a necessary basis for comprehending the methodological section of this
thesis.

2.3.1. General formulation
Vector quantization represents a family of algorithms that aim to perform lossy compression of vector
spaces [53]. These algorithms have been studied extensively in the context of achieving efficient ap-
proximate nearest neighbour search (ANN). However their use for the purpose of passage ranking is
severely underexplored [70].

From a mathematical perspective, the classical forms of vector quantization find a mapping between a
continuous vector space and a discrete vector space. The mappings that these algorithms find need to
be in such a way that the distance (a.k.a. distortion) between the original vector and its representation in
the discrete space is minimized [53, 36]. Concretely, given a sample X = {x1, x2, ..., xn} ⊂ RH of n H-
dimensional real vectors, the algorithm yields a new finite set of vectorsC = {c1, c2, ..., ck} ⊂ RH (k < n)
representing the discrete vector space and a mapping ϕ : RH → C, encoding any real vector from the
continuous space as one of the vectors ci ∈ C in the discrete space. The set C is formally known as
a codebook, and each individual vector ci ∈ C is called a codeword. The mapping ϕ : RH → C,
associating real-valued vectors to codewords, is called a quantizer.

The quality of a quantizer is measured using a function known as distortion [53, 36]. Since the dis-
tortion needs to express how different the quantized version of a vector is from its original form, it is
mathematically defined by the euclidean distance between the quantized and the non-quantized ver-
sions of the vector, as expressed in equation 2.12.
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dist(x, ϕ(x)) = ∥x− ϕ(x)∥2
dist(x, ϕ(x))− the distortion between the original vector x and its quantized form ϕ(x)

(2.12)

When the distortion is low, the discrete vector space represented by the codebook C is a good ap-
proximation of the continuous vector space from which we have sampled X. Thus, the objective of an
(unsupervised) quantization algorithm is to find a codebook C and a quantizer ϕ : RH → C such that
the mean distortion is minimized, as shown in equation 2.13.

MD(X;ϕ∗, C∗) = 1
m

∑
xi∈X dist(xi, ϕ

∗(xi))
ϕ,C = argminϕ∗∈Φ,C∗⊂RH MD(X;ϕ∗, C)

MD(X;ϕ∗, C∗)−mean distortion induced by the quantizer ϕ∗ on the vector dataset X
Φ− the set of all possible quantizers
ϕ− the optimal quantizer
C − the optimal codebook

(2.13)

One interesting aspect to notice is that despite the fact that our quantizer ϕ : RH → C is defined on
the entire space of H-dimensional real vectors RH , it is only obtained using a finite subset of vectors
X ⊂ RH . The reason for this is that the subset X is assumed to be a representative random sample of
the vector space, which can be conceptually thought of as a multi-dimensional probability distribution
despite not being concretely modelled mathematically. In other words, under its classical formulation,
vector quantization can be seen as an unsupervised learning algorithm. From the perspective of this
analogy, the subset X is the training set of the learning algorithm, while the mean distortion MD in
equation 2.13 is the loss function. Last but not least, the quantizer ϕ and the codebook C make up
the model that we are learning, which we hope to generalize well for new vectors outside the training
datasetX. The analogy between vector quantization and unsupervised learning is summarized in table
2.1.

Vector
Quantization

Unsupervised
Learning

ϕ : RH → C (quantizer) model
X (sample from continuous vector space) training set
MD(X;ϕ,C) (mean distortion) loss function (MSE loss)

Table 2.1: Correspondance between concepts in vector quantization and unsupervised learning.

2.3.2. Unsupervised quantization
Having seen the general formulation of vector quantization in the previous subsection, we will now
move on to presenting a few concrete, commonly used vector quantization algorithms whose under-
standing is vital to develop the intuition needed to comprehend the methodological part of the thesis.
The three quantization algorithms that we will present build on top of each other, which helps illustrate
how quantization can be developed and iteratively improved by leveraging concepts such as clustering,
subspace division and space transformations.

K-means quantization
One of the most basic forms of vector quantization, which is essentially just a subcase of product quanti-
zation (PQ) [36, 53], is K-means quantization. The idea behind K-means quantization is elementary yet
very powerful. K-means clustering [1] is applied on the input vector dataset X. This leads to the emer-
gence of K vector clusters, each cluster i having its own centroid ci. We will compose the codebook
C out of the centroids of all clusters formed by applying K-means, as shown in equation 2.14.
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{c1, c2, ..., cK} ← KMeans(X)
C := {c1, c2, ..., cK}

C − codebook
ci ∈ RH − codeword / centroid
X − input vector dataset (training set)

(2.14)

Having fixed our codebook, the definition of the quantizer function follows through from the fact that our
objective is to minimize the mean distortion, as expressed by equation 2.13. It is not hard to see that
the mean distortion is minimized when the quantizer function maps every input vector to its nearest
codeword (or centroid), as shown in equation 2.15.

ϕKMeans(x) = argminc∈C dist(x, c) = argminc∈C∥x− c∥2 (2.15)

While K-means quantization works decently, the amount of compression that can be achieved is not
mindblowing. Since the entire codebook C needs to be stored in its original form in memory, for a
codebook of size |C| = K, we use O(K ·H) memory.

Product quantization
Product quantization (PQ) [36] is a way to make K-means quantization more memory efficient under the
same codebook size constraint. This is achieved by leveraging a technique called subspace division,
which involves breaking up the input vectors into subvectors of equal size. Product quantization can be
seen as a foundational vector quantization algorithm since many other quantization algorithms originate
from it [36, 53, 26, 4, 67]. Since product quantization represents an important part of the methodology
used for this thesis, it is presented in greater mathematical depth in chapter 5. As a result of this, this
subsection aims to provide the reader with only a basic intuition by illustrating how product quantization
works when applied in the context of M = 2 subspaces for vectors of size H = 4.

Following up on the ideas mentioned above, let us consider our 4-dimensional input vector set X as
described in equation 2.16.

X = {


x1,1

x1,2

x1,3

x1,4

 ,


x2,1

x2,2

x2,3

x2,4

 , . . . ,


xn,1

xn,2

xn,3

xn,4

} (2.16)

Subspace division consists of splitting each of the 4-dimensional vectors into two 2-dimensional vectors,
as shown in equation

x
(1)
i :=

[
xi,1

xi,2

]
(ith vector in subspace 1)

x
(2)
i :=

[
xi,3

xi,4

]
(ith vector in subspace 2)

X(s) := {x(s)
1 ,x

(s)
2 , ...,x

(s)
m } (input vectors in subspace s)

(2.17)

The next step is to apply K-means quantization distinctly in each of the two vector subspaces corre-
sponding to the two input vectors (training sets) {X(1), X(2)}. Doing this will result in a pair of quan-
tizers (ϕ(1), ϕ(2)) and a pair of codebooks (C(1), C(2)), containing the centroids obtained after applying
clustering on the two 2-dimensional vectors sets {X(1), X(2)}. The procedure is formally described in
algorithm 1.

The global quantizer ϕ across the entire vector space is defined by applying quantization on each of
the subspaces and then concatenating each of the outputs together to form a final quantized vector.
The definition of the global quantizer for our two subspaces case is shown in equation 2.18.



2.3. Vector quantization 14

Algorithm 1 PQ (s = 2, d = 4)
Require: X = {x1,x2, ...,xm} ⊂ R4

X(1), X(2) ← subspaceSplit(X)
ϕ(1), C(1) ← kMeansQuant(X(1))
ϕ(2), C(2) ← kMeansQuant(X(2))
return (ϕ(1), ϕ(2)), (C(1), C(2))

ϕ(x) =

[
ϕ(1)(x(1))
ϕ(2)(x(2))

]
=

[
argminc(1)∈C(1)∥x(1) − c(1)∥2
argminc(2)∈C(2)∥x(2) − c(2)∥2

]
(2.18)

Since the codewords c ∈ C that the global quantizer ϕ outputs are ultimately pairs of subcodewords
(c(1), c(2)) in the two subcodebooks (C(1), C(2)), the codebookC is made up of all possible combinations
of subcodewords. This concept can be mathematically expressed as a cartesian product, as shown in
equation 2.19.

C = C(1) × C(2)

C − the codebook for the whole vector space
C(1) − the subcodebook for the first subspace
C(2) − the subcodebook for the second subspace

(2.19)

From equation 2.19 and the fact that each subcodebook has the same cardinality |C(1)| = |C(2)| = K,
it follows that the size of the global codebook C is |C| = |C(1)| · |C(2)| = K2. The power of subspace
division and, subsequently, product quantization comes from the fact that, while our final codebook
is much larger than for K-means quantization, our memory complexity remains exactly the same, i.e.
O(2 ·K · H2 ) = O(K ·H). An equivalent way of expressing this is that for a codebook of fixed sizeK, the
memory complexity is O(2 ·K 1

2 · H2 ) = O(K
1
2 ·H). The same idea can be generalized to an arbitrarily

large number of subspace divisions M , in which case higher degrees of compressions are achieved,
considering a fixed codebook size, as shown in table 2.2.

Quantization M Codebook cardinality Memory complexity
K-means - K O(K ·H)
PQ 2 K2 O(K ·H)
PQ m Km O(K ·H)
K-means - K O(K ·H)

PQ 2 K O(K
1
2 ·H)

PQ m K O(K
1
m ·H)

Table 2.2: Comparison between codebook cardinality and memory complexity of PQ and K-means quantization.

Optimized product quantization
As the name suggests, optimized product quantization (OPQ) is an improvement over product quantiza-
tion, which involves performing a pre-rotation to the input vectors before quantizing them. The concept
was introduced by two different papers independently [26, 57], and it was motivated by the intuition that
the subspace division is an arbitrary heuristic that might not be optimal for all datasets [53].

The idea behind optimized product quantization is to apply a rotation to the vector space before per-
forming product quantization. From a mathematical point of view, a rotation is nothing more than a
linear space transformation, and thus, it can be encoded as an orthogonal matrix R [26]. Our original
problem is, hence, turned into an optimization problem with two objectives: finding an optimal rotation
matrix R and an optimal quantizer-codebook pair (ϕ,C). The solution to the problem relies on the fact
that given a fixed quantizer ϕ and codebook C, finding the optimal rotation matrix R is a mathematical
problem with a known closed-form solution, namely the Orthogonal Procrustes Problem [26, 63]. As
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a result of this, the dual-optimization problem behind OPQ can be solved iteratively by alternating be-
tween finding an optimal (ϕ,C) given a fixed R and then finding an optimal R given a frozen (ϕ,C), as
shown in algorithm 2.

Algorithm 2 Optimized product quantization
R0 ← IH(identity matrix of size H)
for i in [1,MaxIter] do

(ϕi, Ci)← PQ(Ri−1X)
Ri ← OptimalProcrustesSolver(ϕi, Ci)

end for
return (ϕMaxIter, CMaxIter, RMaxIter)

If, in the case of PQ, we would only be saving the codebook in memory as a required artefact of the
compression [36, 53], in the case of OPQ, we need to store both the codebook C and the rotation
matrix R [26]. Since the size of the rotation matrix R is H2, it follows that, excluding the stored index
assignments, the memory complexity of OPQ becomes O(K

1
m · H + ·H2) = O((K

1
m + 1) · H) =

O(K
1
m ·H). In other words, the memory complexity remains unchanged.

As a result of the above, the main takeaway that we can get from OPQ is that the performance of a
vector quantization algorithm can be improved by employing rotations at the cost of an insignificant
memory increase, which does not have an impact on asymptotic complexity.

Another important observation is that PQ is a submethod of OPQ. Hence, by creating an improved
quantization algorithm that is functionally equivalent to PQ we are automatically improving OPQ as
well.

2.3.3. Supervised quantization
In the previous subsections, we have gone over the classical formulation of vector quantization, and we
have shown that under this formulation, product quantization is essentially an unsupervised learning
algorithm whose objective is to minimize the mean distortion, as expressed by equation 2.13. We have
also seen examples of several concrete implementations of vector quantization, which illustrate how
techniques such as subspace divisions or space rotations can be used to improve memory complexity
and performance.

Taking all of the above into account, the main question that arises is: what if we want to apply vector
quantization to problems for which theminimization of mean distortion (equation 2.13) is not the ultimate
goal? It turns out that achieving this requires a reformulation of the classical unsupervised vector
quantization framework, which opens the way to a novel category of the quantization algorithms, namely
the supervised quantization algorithms [53, 13, 22, 72, 70]. While several such algorithms have been
developed in the last few years, we will go over three key ones [13, 22, 72].

DPQ
DPQ [13] is one of the first models that tried to address the limitations of PQ and its derivatives when
it comes to transitioning from an unsupervised to a supervised problem setting. Since many of the pre-
vious quantization algorithms involved non-differentiable operations [53, 36, 26], training with respect
to an arbitrary loss function would be difficult. This limitation is tackled by DPQ, which introduces a
framework for performing differentiable product quantization.

DPQ introduces a reverse-quantizer (called reverse discretization function in the paper), which leads to
a re-definition of the original mathematical quantization formulation. The neural architecture of DPQ fol-
lows the design pattern of an encoder-decoder network [74]. The quantizer, which becomes a learnable
encoder, creates a mapping from the input space to the codebook (ϕ : RH → C), while the reverse
quantizer maps the codebook back to a continuous vector containing the quantized vector outputs
(ρ : C → RH ). Both the quantizer ϕ(·;K) and the reverse quantizer ρ(·;V ) are learnable differentiable
functions. Their learnable parameters are contained in the matrices K and V , referred to as the key
matrix and the value matrix.
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DPQ is a flexible quantization model that could be trained in either an unsupervised or a supervised
setting. In an unsupervised learning context, DPQ would be trained like an auto-encoder to minimize
the difference between the original vector x and its quantized counterpart ρ(ϕ(x)). However, as a
consequence of all operations being differentiable, any arbitrary loss function L(ρ(ϕ(x)), y) could be
used for training, enabling supervised learning.

JPQ
A more effective alternative to DPQ [13] is JPQ [22]. JPQ takes a different approach from DPQ, an
approach which involves training the quantizer and query encoder together. This way of training leads
to better ranking performance but at the cost of higher training requirements. The main techniques that
lie at the core of JPQ are:

• ranking-oriented loss
• PQ centroid optimization
• end-to-end negative sampling

As the name suggests, the main idea behind ranking-oriented loss is the use of a loss function that
penalizes poor ranking performance. Hence, in JPQ, the quantizer and the query encoder learn to
adapt to each other to deliver optimal document or passage ranking results.

Differentiability in JPQ is achieved by means of PQ centroid optimization, which is a different way of
obtaining differentiability than the one used in DPQ. Unlike DPQ, JPQ starts by applying PQ on the
input embeddings, yielding a codebook C and a set of vector-to-codeword assignments induced by the
quantizer function ϕ. During supervised training, JPQ adjusts the codewords created by PQ but keeps
the index assignments frozen.

During the training process, JPQ performs end-to-end negative sampling. This means that rather than
pre-computing the positive-negative pairs used during training, these pairs are obtained in real time by
performing retrieval as the model learns. This results in a training process that is closer to the behaviour
of the real time system and, hence, more efficient.

RepCONC
Similarly to JPQ [22], RepCONC [72] is a supervised quantization method that aims to adapt the quan-
tizer and the dual-encoder together for the purpose of increased ranking performance. However, while
JPQ only trains the query encoder, RepCONC involves training the full dual encoder together with the
quantizer.

RepCONC achieves the training of the dual-encoder and PQ together [36] by leveraging a technique
called constrained clustering. Like JPQ, RepCONC relies on the ranking-oriented loss to obtain su-
pervised signals that iteratively improve the re-ranking performance of the system. The authors of
RepCONC argue that the design decision made in JPQ to keep the index assignments fixed leads to
suboptimal results. Since, according to them, relying exclusively on the ranking-oriented loss would
lead to unexpected behaviour in the context of learnable index assignments, RepCONC uses a combi-
nation of the supervised ranking-oriented loss and the unsupervised distortion (MSE), as indicated by
equation 2.20.

L := Lr + λLm

Lm := ∥ηd(d)− η̂d(d)∥2

Lr := − log
exp(ηq(q)·η̂d(d

+))
η̂d(d+)+

∑
d− exp(ηq(q)·η̂d(d−))

L− loss function
Lm − distortion (MSE) loss
Lr − ranking oriented loss
λ− parameter controlling the trade-off between the two losses

(2.20)

Despite being used together, the ranking-oriented loss and MSE have divergent objectives. While one
of them encourages performing representation learning in a way that guarantees the distinctiveness of
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representations, the other one forces the system to learn overlapping representations of documents.
The issue is solved by uniform clustering. This means that documents are assigned uniformly across
the clusters (i.e. each cluster has an approximately equal number of documents). It can be proven that
uniform clustering minimized the degree of representation overlap, reducing the degree of divergence
between the two learning objectives.



3
Problem setup

This chapter aims to provide the reader with a formal introduction to the problem we are solving and
a brief overview of the contributions (in relation to the research questions) that lie at the heart of the
thesis. To this end, the first section, entitled Problem setup, lays the theoretical basis of the thesis by
introducing the context of the research in its full mathematical rigour. Building on the first section, the
second section defines the general problem that the thesis tackles, which acts as a foundation for the
subsequent research questions. Lastly, the third section provides a brief overview of the contributions
that this thesis has made to information retrieval.

3.1. Problem setup
3.1.1. Algorithmic formulation of two-stage retrieval
As the reader might have seen in the previous sections of the thesis, two-stage retrieval systems, which
constitute the focus of our research, follow a well-defined algorithmic framework, which is described in
the following paragraphs.

Our setup starts with a corpus of documents (or passages, which is equivalent)D = {d1, d2, ..., dn} and
a query q. The query q is assumed to be sampled from some probability distribution FQ : Q→ [0, 1] that
captures general user behaviour. Both the corpus D and the query q are textual data. The corpus D
is assumed to be static and known before runtime. In contrast, the query q is only received at runtime
when the user interacts with the information retrieval system. The purpose of the two-stage retrieval
system is to accurately retrieve the most relevant documents with respect to the query and order them
by their relevance. The described setup is illustrated by figure 3.1.

As its name suggests, a two-stage retrieval system is made up of two functional components. The first
component is the retriever, whose aim is to find a subset of documents in the corpus that are likely
relevant for the query [71, 44]. We will refer to this subset as the first stage retrieval set Sq

k for the
query q, where k is the size of the set (k := |Sq

k|). We can mathematically model the behaviour of the
retriever as a function defined on all possible queries, parameterized by the corpus D and the size of
the retrieval set k. The retriever function returns a retrieval set Sq

k for every possible user query q, as
described by equation 3.1.

RetrieverD,k : Q→ P (D)
RetrieverD,k(q) := Sq

k ⊆ D

Q := the set of all possible queries
P (D) := the power set of the corpus D
Sq
k := the first stage retrieval set of the query q

(3.1)

Since most retrievers create the retrieval set Sq
k by assigning some relevancy score to the documents in

the corpus, we will formally define a function that provides the first stage retrieval score of a document

18
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Figure 3.1: Diagram describing the general problem setup. The retriever selects a subset of relevant documents from the
corpus based on the query. The re-ranker orders the documents by their relevancy.

with respect to the query. The first stage relevancy score function is described by equation 3.2.

retrievalScore : D ×Q→ R
retrievalScore(d, q) := numerical value expressing the relevancy of document d for q (3.2)

The second component of a two-stage retrieval system is the re-ranker. The role of the re-ranker is to
order the documents in the first stage retrieval set Sq

k according to their query relevancy. Similarly to
the retriever, we will formally define the re-ranker as a function that takes the retrieval set and the query
as input and whose output is a sequence of integer numbers representing the rank (or order) of each
document in the set. This definition is provided by equation 3.3.

RerankerD,k : P (D)×Q→ Zk

RerankerD,k(S
q
k, q) := rq = [rq,1, rq,2, ..., rq,k]

Q := the set of all possible queries
P (D) := the power set of the corpus D
Sq
k := the first stage retrieval set of the query q

Zk := the set of all integer vectors of size k
rq := vector encoding the rank (order) for all retrieved documents
rq,i := integer representing the rank (order) of the ith document in the set

(3.3)

In the sameway as the retriever, the re-ranker will order the retrieved documents by assigning relevancy
scores. The main difference between the relevancy score of the retriever and the re-ranker is that the
latter is assumed to be more accurate but slower to compute. Hence, the re-ranking score will follow
the exact formal definition as the retrieval score, as shown in equation 3.4.

rerankingScore : D ×Q→ R
rerankingScore(d, q) := numerical value expressing the relevancy of document d for q (3.4)

Having defined all of the above, we can formulate a generic algorithmic framework that captures the
behaviour of a two-stage retrieval system. Our framework contains two subprocedures that can be
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closely mapped to the two functional components of the system, the retriever and the re-ranker. The
main procedure of the framework combines the two subprocedures to achieve the desired behaviour,
i.e. an efficient search engine. The abstract formulation of the algorithmic framework can be found in
Algorithm 3.

Algorithm 3 Abstract formulation of two-stage retrieval
procedure Retriever(D, k, q)

Sq
k ← {}

for d in D do
if len(Sq

k) < k then
Sq
k ← Sq

k ∪ {(retrievalScore(d, q), d)}
else

minScore← min(Sq
k)[0]

currentScore← retrievalScore(d, q)
if currentScore > minScore then

Sq
k ← Sq

k ∪ {(currentScore, d)} \ {min(Sq
k)}

end if
end if

end for
return Sq

k

end procedure

procedure Reranker(Sq
k, q)

rankingScoreList← []
for (retScore, d) in Sq

k do
rankingScoreList← append(rankingScoreList, rerankingScore(d, q))

end for
r ← argSort(rankingScoreList)
return r

end procedure

procedure TwoStageRetrieval(D, k, q)
Sq
k ← Retriever(D, k, q)

r ← Reranker(Sq
k, q)

return Sq
k, r

end procedure

3.1.2. Sparse retrieval
Having seen an abstract, generic formulation of the two-stage retrieval algorithm, it is time to have a
closer look at the first component of the system, the retriever. More specifically, we will look at how the
retrievalScore function (equation 3.2) is defined in the context of our setup.

As previously mentioned, the role of the retrievalScore function is to assign a relevancy score to a
given document-query pair, represented as textual (character string) data. In the theoretical back-
ground section of the thesis, we have presented multiple families of approaches that can be employed
to achieve this objective. While modern approaches make use of data-driven, deep-learning-based,
natural language processing techniques [40, 56, 47, 46, 71, 44], we have seen that such techniques
come at the disadvantage of high computational time, which leads to slow retrieval in situations where
the document corpus D is large. Since the core idea of the two-stage retrieval pipeline is to perform
a fast, lower accuracy retrieval step and improve the accuracy in the re-ranking stage [44], a better
design choice is to perform sparse retrieval.

Sparse retrieval is an umbrella term for a family of pre-deep-learning era information retrieval tech-
niques that became popular and widely used in industry for their relatively high accuracy and low
computational time [71, 61, 73]. The core assumption behind the sparse retrieval models is to look
at treat both documents and queries as lexical bags [61, 3]. This means that a sparse retrieval system
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will model both documents and queries as unordered bags of words, where each word is an atomic
element. Hence, the relevancy score will be calculated on the basis of bag statistics that, ultimately,
represent a measure of word (or lexical) overlap between the query and the document. The exact
formula that computes the relevancy score has its foundations in probability and information theory [3].

The sparse retrieval method that was chosen for the setup analyzed in this thesis is BM25 [61], and its
formula is defined in equation 3.5. BM25 is one of the most popular sparse retrieval scoring functions.
Since BM25 is still one of the most widely used benchmarks in information retrieval research [47, 70,
46, 44, 40], it made sense for it to become part of our setup, as it made our results more comparable
to previous research.

retrievalScore(d, q) := bm25(d, q) =
∑

w∈q
fw,d·(k1+1)

fw,d+k1·(1−b+b· |d|
avgdl )

· log N−nw+0.5
nw+0.5

fw,d := the frequency of word w in document d
nw := number of documents in the corpus containing word w
N := number of documents in the corpus
|d| := the length of document d
avgdl := the average length of a document in the corpus
b := paramater controlling the impact of document length on word (term) saturation
k1 := parameter controlling word (term) staturation

(3.5)

BM25 is an improved version of TF-IDF [3]. The core idea behind BM25 is to iterate over all words in
the input query. A document d will get a higher score if it contains many occurrences of the words in the
query, which corresponds to the fw,d·(k1+1)

fw,d+k1·(1−b+b· |d|
avgdl )

factor of the formula. However, since certain words

are generally more likely to occur than others, the score provided by each word is weighted down by
the frequency of the word across the entire corpus, corresponding to the log N−nw+0.5

nw+0.5 factor.

An improvement that BM25 makes over TF-IDF is the introduction of term saturation. The intuition
behind term saturation is that the more a particular word (term) occurs in a document, the less each
new occurrence of the word will contribute to the relevancy. In other words, if a specific document
contains 1000 occurrences of the word duck and another document contains 2000 such occurrences,
it is presumably incorrect to claim that the second document is twice more relevant than the first. This
is because both documents contain enough ducks to be assumed as very relevant for the informational
need corresponding to the beloved winged animal. How fast terms (words) saturate and how much the
document length influences the saturation speed are controlled by the parameters k1 and b.

3.1.3. Dense re-ranking
The previous subsection provided an overview of sparse retrieval, the technique chosen for our sys-
tem’s retriever component. We have seen that the fundamental assumption behind sparse retrieval is
the bag-of-words model of the query and document. The fact that the bag-of-words model treats terms
as atomic elements is why sparse retrieval is very fast [61, 71]. While the term atomicity can be seen
as one of the main strengths of the technique, it is, at the same time, one of its most significant weak-
nesses. The reason for this is the fact that the term atomicity prevents the retriever model from handling
synonymous words, as they will be represented as distinct, unrelated elements. The inability of sparse
retrieval systems to deal with synonyms is formally known as the vocabulary mismatch problem [25,
75, 30], and it is the main reason behind why dense, data-driven, relevancy scoring techniques were
developed.

Taking into account that the role of the re-ranker is to tackle the deficiencies induced by having used
a sparse retrieval in the first stage of the system, the reason why a dense model has been chosen
as the relevancy scoring function behind the re-ranker becomes obvious. As the reader has seen in
the theoretical background section, many categories of dense methods have been developed over the
years [56, 40, 71]. However, the state-of-the-art considering all characteristics required for information
retrieval, which also constitutes the focus of our research, is the dual-encoder [37, 71].

The dual-encoder is a relevancy scoring technique that heavily relies on an area of deep learning known
as representation learning [6]. As its name suggests, the dual-encoder involves the training and use of
two distinct transformer-based neural networks [66, 39] responsible for encoding the documents and
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queries in a shared vector space [40, 47, 46, 71]. The characteristics of the vector space differ from
dual-encoder to dual-encoder. However, across the different techniques, the vector space shares two
characteristics:

• the vectors encode the semantics of the document or query
• distances between vectors in the space correspond to semantic closeness behind pieces of text
(document or query)

As mentioned in the general problem setup, the corpus of documents D over which we search is
known before runtime. This fact enables the dual-encoder to pre-compute the vector encoding for all
the documents in the corpus, which is a way of trading memory for speed [37, 40, 71]. This also means
that the only computations that the dual-encoder needs to perform during runtime are encoding the
query and then computing the distances between the query and the document encodings. The general
workings of a dual-encoder are illustrated by figures 3.2, 3.3 and 3.4.

Figure 3.2: Diagram illustrating the encoding of the document corpus into a semantic vector space by the document encoder
of a generic dual-encoder. As mentioned in this chapter, the encoding of the document corpus is performed before runtime and

the vector encodings are stored in memory.

It was previously mentioned that the application of quantization on ColBERT [40], a very popular BERT-
based dual-encoder, has already been explored. The paper’s authors introduce a new type of quantizer,
called CQ (contextual quantizer), which relies on both context-free and contextual BERT encodings
[70]. The latter design choice makes the proposed quantizer dependent on dual-encoders that produce
token-level embeddings, such as ColBERT. As a result, the application of quantization on single-vector
dual-encoders, which by design produces smaller semantic vector spaces, is unexplored in the context
of re-ranking. Since quantization’s primary purpose is reducing the vector space’s size, as we have
seen in the theoretical background, exploring quantization on more memory-efficient dual encoders
is a logical next step. This is why single-vector dual encoders have been chosen for the re-ranker
component.

The specific single-vector dual-encoders chosen for analysis are TCT-ColBERT [47] and Aggretriever
[46]. While TCT-ColBERT is obtained by distilling ColBERT into a dual-encoder that computes similarity
by dot-product, Aggretriever consists of a learned aggregation of the token embeddings into a single
vector.

Regardless of the chosen single-vector dual-encoder, the re-ranker follows the same algorithmic flow.
The dual-encoder comprises two functional components, a document encoder and a query encoder,
that can be mathematically modelled as shown in equation 3.6.
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Figure 3.3: Diagram illustrating the encoding of a query into the semantic vectory space by the query encoder of a generic
dual-encoder. As mentioned, the encoding of the query is performed during runtime, in a real-time fashion.

Figure 3.4: Diagram illustrating the distance computation between the encoder query and the encoded documents from the
retrieved set.

ηq : Q→ Rh

ηq(q) := the encoding of query q
ηd : D → Rh

ηd(d) := the encoding of document d

(3.6)
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Since both TCT-ColBERT and Aggretriever use the dot product as their distance metric for their se-
mantic space, the re-ranking score in the context of our system is defined as the dot product between
the query encoding and the document encoding, as indicated by equation 3.7.

rerankingScore(d, q) := ηd(d) · ηq(q) (3.7)

3.2. Problem definition
In the previous section, we have gone over the technical details behind the system we are analyzing:
a two-stage retrieval system composed of a sparse first-stage retriever and a dense single-vector dual-
encoder re-ranker. As mentioned in the introduction, this thesis aims to reduce the memory used by
such a system.

It is not hard to see that the largest amount of memory in the two-stage retrieval pipeline is the pre-
computed dense index used by the dual-encoder. The reason for this is that the document corpus that
a retrieval system needs to work with can get arbitrarily large. As an example, MSMARCO Passage,
a dataset commonly used by information retrieval researchers, has roughly 8.8 million passages [5,
11]. A dual-encoder with a small memory footprint, like TCT-ColBERT, outputs a single vector with
768 dimensions per passage [47]. Assuming that each numerical value is stored as a 32-bit floating
point number, the resulting dense index for the MSMARCO Passage dataset would have roughly 27.2
GB, which is beyond the capabilities of most commodity hardware to hold in the RAM memory. Since,
ideally, we would like to scale the retrieval pipeline to larger and larger corpora, it becomes clear why
tackling the memory issues induced by the use of dual-encoder re-rankers is of high importance.

Following up on the ideas of the previous paragraph, our problem can be formally thought of as com-
pressing the size of a collection of vectors (i.e. the document embeddings created by the dual-encoder
in our setup) in a way that the performance of the downstream task (the re-ranking of documents with
respect to some query) is hurt as little as possible. In other words, we are looking into the use or
development of a vector compression algorithm that can achieve a good trade-off between memory
compression and the deterioration of ranking performance. An illustration of the problem being tackled
is provided in figure 3.5.

Figure 3.5: Diagram illustrating the idea of compressing the vector space composed of the document encodings.

While many families of compression algorithms could be applied, one promising option, as indicated
by its good performance in the context of dense retrieval (or approximate nearest neighbour search),
is vector quantization [53].

As we have seen in the theoretical background section, from a mathematical perspective, vector quan-
tization can be seen as an algorithm that finds a mapping between a continuous vector space and
a discrete vector space in such a way that the distance between the original vector and its discrete
space representation is minimized. One of the most basic forms of vector quantization would be using
K-means clustering on the original vector space and then representing each vector in the cluster as the
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cluster’s centroid [53, 36, 1]. Doing this would, of course, lead to many neighbouring vectors being re-
duced to the same vector, making the re-ranker unable to distinguish between them and, thus, hurting
the re-ranking performance.

We will formally introduce vector quantization to our general problem setup by defining a quantizer
function ϕ that maps any vector in the semantic vector space to its quantized representation in the
compressed space, as indicated by equation 3.8.

ϕ : Rh → C
ϕ(ηd(d)) = η̂d(d) ∈ C
ϕ := the quantizer function
C := the codebook associated to the quantizer
ηd(d) := the vector embedding associated to document d
η̂d(d) := the quantized vector embedding associated to document d

(3.8)

Introducing vector quantization to the two-stage retrieval pipeline leads to a slight modification of the
rerankingScore function defined in equation 3.7. Namely, rather than computing the re-ranking score
using the original document encoding, we use the quantized document encoding instead, as shown in
equation 3.9.

rerankingScore(d, q) := ϕ(ηd(d)) · ηq(q) = η̂d(d) · ηq(q) (3.9)

Having formally added vector quantization to our problem setup leads to a more precisely formulated
definition of our general problem. Can we find a quantizer function ϕ and codebook C that min-
imizes the memory footprint of the dual-encoder while preserving as much of its re-ranking
performance as possible?

3.3. Cotributions
In the previous section, we formally defined the problem we aim to solve, i.e., finding an optimal quan-
tization algorithm for dual-encoder-based re-ranking. Since the problem is extensive and completely
unexplored (as far as we are aware) in the context of single-vector dual-encoders [70], this thesis aims
to make the first steps in its direction, laying the groundwork for future research. To this end, the scope
of this thesis is to answer the research questions by bringing the following contributions:

• studying the effectiveness of product quantization on single-vector dual-encoders in the context
of passage re-ranking.

• investigating if, by leveraging sparse score interpolation, higher level of compression with similar
performance decay can be obtained.

• proposing and evaluating WolfPQ, a learnable quantization method aimed at further improving
quantization for re-ranking by bridging the gap between the objective functions used in training
product quantization and re-ranking systems respectively.



4
Theoretical foundation

In the previous chapter, we formally introduced the problem and provided the reader with an overview
of the research questions. Following up on this, this chapter will present the reader with a summary
of a few papers that are intimately related to the research focus of this thesis. Hence, the first chapter
will go over a paper entitled Fast Forward Indexes for Efficient Document Ranking [44], from which our
research borrows the problem setup, as well as the idea of re-ranking with interpolation. The second
section will provide an overview of Jointly Optimizing Query Encoder and Product Quantization to Im-
prove Retrieval Performance [22], which introduces a state-of-the-art supervised quantizer for dense
retrieval. Finally, the last section will present Compact Token Representations with Contextual Quan-
tization for Efficient Document Re-ranking [70], which is the only paper that tackles similar research
questions as us and whose limitations are addressed in this thesis.

4.1. Fast Forward Indexes
The paper Fast Forward Indexes for Efficient Document Ranking [44] was born out of the necessity to
reduce the query processing times of neural transformer-based passage re-ranking methods. While
such methods have been proven numerous times to produce gains in ranking performance, their use
in practice was limited by an associated increase in online processing time. According to the paper, the
high query processing times are a direct result of the use of over-parameterized cross-attention models
for scoring the retrieved passages.

The paper addresses these limitations by introducing a concept called fast forward indexes. The idea of
fast forward indexes is to replace the above-mentioned cross-attention models with dual-encoders that
allow for the separation between document (passage) and query processing. Relying on the insight that
interpolation-based re-ranking is a computationally inexpensive way to improve re-ranking performance,
the paper proposes a re-ranking setup in which sparse retrieval is used to retrieve small document
subsets, which are re-ranked using their dual-encoder scores linearly interpolated with their retrieval
sparse scores. As the fast forward indexes setup has proven to be a cost-efficient way to perform highly
accurate re-ranking, we ended up adopting it as the framework under which the quantization research
of this thesis is performed. The setup corresponding to the fast forward indexes framework has already
been presented in great detail in the previous chapter.

Another concept introduced by the authors of the paper is sequential coalescing, an optimization tech-
nique aimed to reduce the memory of the dual-encoder dense index, which the previous chapter has
shown to be a significant bottleneck in the re-ranking framework of our study. The main idea behind
sequential coalescing is to group together passages whose semantic vectors are close to each other
and represent them by the average of the group, as indicated by figure 4.1. The threshold-based group-
ing of vectors used in sequential coalescing can be seen as a form of vector clustering, which in the
theoretical background chapter has been shown to be a basic form of quantization. Hence, our re-
search into vector quantization for the dual-encoder-sparse-interpolated re-ranking setup is an attempt
to improve sequential coalescing, which the paper proves to be a promising technique to reduce the
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memory requirements, at the cost of only slight deteriorations to the re-ranking performance.

In light of all the above, it is not hard to see that this thesis can be framed as a direct continuation of
Fast Forward Indexes for Efficient Document Ranking, having the aim to explore ways of reducing the
memory usage of the dual-encoder based re-ranking setup even further.

Figure 4.1: Diagram illustrating sequential coalescing. Figure taken from [44]

4.2. JPQ
Jointly Optimizing Query Encoder and Product Quantization to Improve Retrieval Performance [22],
commonly abbreviated as JPQ, is a popular paper in the vector quantization research community that
introduces a supervised quantization algorithm for dense retrieval. The main motivation behind the pa-
per is the necessity to reduce the size of the indices used in dense retrieval. As the authors of the paper
mention, while previous techniques of performing vector compression already exist, these techniques
suffer from a series of limitations. On the one hand, as we also pointed out in the previous sections
of the thesis, many of the compression methods do not benefit from supervised signals during training,
as they are trained by optimizing the reconstruction error, which can be seen as an unsupervised form
of training. In addition to this, the document encoders and the quantizer algorithms are often trained
separately, which can lead to incompatibilities and decreased performance. Finally, while some studies
into jointly training the document encoder and quantizer already exist, they do not focus on web search,
for which negative sampling-based training is of high importance. The authors of the paper tackle all
of these limitations by proposing a novel quantization algorithm called JPQ.

From an architectural perspective, JPQ can be seen as a trainable extension of PQ [36], which follows
the training workflow indicated by figure 4.2. As shown in the figure, JPQ is trained in an end-to-end
fashion using a loss function that takes into account the quality of the ranking results. The training
process involves iterating over all queries in the training dataset, performing negative sampling us-
ing those queries, quantizing the positive and negative document embeddings, computing the dense
ranking scores using these embeddings and finally ranking the documents based on these scores to
calculate the ranking-oriented loss of the model.

The core techniques that lie at the heart of JPQ are the use of the Ranking-oriented loss, PQ centroid
optimization, and End-to-End negative sampling.
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Figure 4.2: Training workflow of JPQ. In the diagram, backpropagated gradients are indicated by solid lines. Figure taken from
paper [22].

The ranking-oriented loss proposed by JPQ is a pairwise loss that compares the dense scores of pairs
of positive and negative document samples obtained after quantization, as indicated by equation 4.1.
While the paper only specifies the form, but not the exact formula used by the loss, the authors suggest
that hinge loss [16], RankNet [8] and LambdaRank [9] are all viable options.

s†(q, d)− the dense score computed based on query q and the quantized embedding of document d
l(s†(q, d+), s†(q, d−))− the form of the ranking-oriented loss function

(4.1)

The idea of PQ centroid optimization is to initialize the codebook of JPQwith the centroids resulting from
training PQ on the target document dataset. During the training process, the PQ centroids are treated as
learnable parameters and are further optimized using backpropagation based on the gradients shown
in equation 4.2. The authors of the paper choose to keep the index assignments frozen, as their claim
is that it is challenging to create differentiable approximations for index assignments.

δl(s†(q,d+),s†(q,d−))

δc
(i)
j

=


−αq(i) j = ϕ(i)(d+), j ≠ ϕ(i)(d−)

αq(i) j ̸= ϕ(i)(d+), j = ϕ(i)(d−)

0 j = ϕ(i)(d+), j = ϕ(i)(d−)

0 j ̸= ϕ(i)(d+), j ̸= ϕ(i)(d−)

α = δl(s†(q,d+),s†(q,d−))
δs†(q,d−)

δl(s†(q,d+),s†(q,d−))

δc
(i)
j

− gradient of the loss function with respect to the subcodebook c
(i)
j

q(i) − ith subspace division of the query embedding
ϕ(i) − subquantizer corresponding to the ith subspace

(4.2)

Last but not least, JPQ relies on end-to-end negative sampling, which has been proven to be useful
for training dual-encoders. The intuition behind negative sampling is to penalize top-ranked negatives,
while ignoring low-ranked documents that are truncated by the evaluation function regardless.

The sampling of top-ranked negative documents is performed in real-time by performing dense retrieval
based on the current version of the PQ centroid embeddings, as indicated by equation 4.3.

D−†
q = sort(d ∈ C \D+

q ordered by s†(q, d))[: n̂]

D−†
q − negative sample for query q

C − corpus
D+

q − positive documents according to labels
n̂− number of documents to be sampled

(4.3)
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JPQ forms a good example of a supervised quantizer. Unfortunately, the model is aimed at retrieval,
not re-ranking, so it is not fully applicable to our problem. Having said that, WolfPQ, the model that
this thesis proposes, borrows a few ideas from JPQ. The codebook of WolfPQ is initialized with the
centroids of PQ to reduce training time. In addition to that, WolfPQ is fine-tuned using end-to-end
negative sampling. However, since in the framework of the fast forward indexes retrieval is done using
BM25, end-to-end negative sampling in the case of WolfPQ is based on BM25.

4.3. Contextual quantization
As far as we are aware, Compact Token Representations with Contextual Quantization for Efficient
Document Re-ranking [70] is the only paper that directly touches the topic that this thesis explores,
i.e. the development of a quantization algorithm for dense re-ranking. What sparked the authors to
investigate quantization for re-ranking was the noticeable success of ColBERT [40], a late interaction
dual encoder whichmanaged to bring significant performance improvements. Themathematical details
behind ColBERT have already been presented in chapter 2.

As the authors of the paper mention, while ColBERT has brought about significant improvements in
terms of both ranking performance and speed, this has come at the cost of extensive memory require-
ments. As an example, for the MSMARCO corpus [5, 11], the ColBERT encodings take up 1.6TB [70],
making it impossible to store it anywhere other than the disk, which results in slow random access. The
paper attempts to tackle the issue by proposingContextual Quantization (CQ) [70], a novel quantization
technique aimed at compressing the ColBERT dense index for re-ranking.

The core concept that CQ relies upon is something called contextual decomposition. The idea behind
contextual decomposition is to model the BERT token embeddings as being made up of two compo-
nents, one that is context-dependent and one that is context-independent. While the context-dependent
components are assumed to be implicitly learned by the model, the context-independent components
are explicitly created by feeding single tokens into BERT, and they are shared across multiple docu-
ments. The mathematical details behind contextual decomposition can be found in equation 4.4.

E(ti) = comp(E◦(ti), E
∆(ti))⇔ (E◦(ti), E

∆(ti)) = decomp(E(ti))
E(ti) = BERT (t1, t2, ..., tn)i
E◦(ti) = BERT (ti)

E(ti)− BERT embedding for term i
E◦(ti)− context-independent BERT embedding for term i
E∆(ti))− context dependent BERT embedding
comp− contextual composition function
decomp− contextual decomposition function
d = {t1, t2, ..., tn} − document modeled as a bag of terms

(4.4)

Architecturally, CQ is composed of two functional component, a quantization encoder and a quantiza-
tion decoder.

The role of the quantization encoder is to take a term embedding as input and output a discrete index
into the associated codebook. More specifically, the quantization encoder takes the concatenation
between the standard BERT encoding of a term and its associated context-independent embedding.
For each input token, the encoder outputs a vector s = [s1, s2, ..., sM ] of M indices into the codebook
C = [C(1), C(2), ..., C(M)], a tensor of M matrices each encoding the K codewords for one subspace.
Since the encoding process needs to be differentiable yet output discrete indices, the encoder relies
on gumbel softmax [35, 50] as a differentiable sampling function. The architecture of the encoder is
presented in figure 4.3.

Symmetrically to the quantization encoder, the quantization decoder involves two steps. The first step
consists of using the stored codebook C and indices s to obtain the quantized context-dependent com-
ponent from codewords. The second step involves combining the quantized context-dependent com-
ponent and the context-independent component into the final quantized encoding of the term. This
process is performed in real-time using a shallow neural network, as shown in figure 4.4.
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Figure 4.3: Diagram illustrating the architecture of the CQ encoder.

Figure 4.4: Diagram illustrating the architecture of the CQ decoder.

The composition of the quantized context-dependent embedding can be performed either through con-
catenation, analogously to PQ [36], or thorough addition, in a similar fashion to ADQ [4], as illustrated
by equations 4.5 and 4.6.

Ê∆(ti) = C
(1)
s1 ◦ C

(2)
s2 ◦ ... ◦ C

(M)

sM
(4.5)

Ê∆(ti) = C
(1)
s1 + C

(2)
s2 + ...+ C

(M)

sM
(4.6)

In terms of training, several loss functions have been tried, including mean squared error (mean distor-
tion) and pairwise cross-entropy loss [70, 16]. Despite these, the training procedure that was proven the
best is knowledge distillation with a non-quantized version of ColBERT as the teacher model. Margin-
MSE [32] is the distillation loss that has been used for training, whose formula is shown in equation
4.7.
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LMarginMSE(q) :=
∑

d+,d−∈S(q)[(fqd+ − fqd−)− (f̂qd+ − f̂qd−)]2

fqd − dense score for document d computed using ColBERT
f̂qd − dense score for document d computed using ColBERT-CQ (quantized ColBERT)
S(q)− pairs of positive and negative samples for query q

(4.7)

CQ represents a good shot at solving the problem of quantization for re-ranking. Its main limitation is
the fact that it is specifically designed to work with ColBERT, which is a dual-encoder that produces
massive dense indices, to begin with. Due to the fact that CQ operates at the token level, there is no
obvious way to adapt it to single vector models such as TCT-ColBERT or Aggretriever. Having said
that, WolfPQ, our proposed model, borrows a couple of helpful design ideas from CQ. More specifically,
WolfPQ uses the same training procedure for fine-tunning as CQ. On top of that, some architectural
elements of the neural network used in semantic sampling are inspired by the CQ encoder component.



5
Vector quantization for re-ranking

The aim of this chapter is to provide the reader with a deep dive into the mathematical details of the
techniques used to answer the research questions. To this end, the first section describes the process
of applying product quantization for memory-efficient dense re-ranking. This is done to assess the
effectiveness of product quantization on single-vector dual encoders, essentially answering the first
research question. Building on the methods used in the first research question, the second section
looks into leveraging sparse-score interpolation in an attempt to improve the performance of quantized
dual-encoder re-rankers. Finally, the last section introduces WolfPQ, a novel data-driven quantization
algorithm which aims to achieve higher re-ranking performance while creating an index of the same
size as classical product quantization.

5.1. Dense re-ranking with product quantization
As mentioned above, the scope of this section is to provide a deep dive into the mathematical details
involved in applying product quantization to single-vector dual-encoder-based re-ranking, which was
done to evaluate its effectiveness in accordance with the objectives of the first research question. In our
problem setup, we have already provided a general formulation of re-ranking with a quantized dense
index, which we reiterate in equation 5.1.

ϕ : RH → C
rerankingScore(d, q) := ϕ(ηd(d)) · ηq(q) = η̂d(d) · ηq(q)

(5.1)

In this section, we will take things further and see how we can concretely define the quantizer ϕ and
codebook C according to the product quantization (PQ) algorithm [36].

The fundamental idea that lies behind product quantization is dividing the original vector space into
lower-dimensional subspaces. This is achieved by breaking up each document encoding vectors into
subvectors of equal size, as illustrated by the diagram in figure 5.1, as well as indicated by equation
5.2.

ηd(di) = ηd(di)
(1) ◦ ηd(di)(2) ◦ ... ◦ ηd(di)(M)

ηd(di)
(j) =

[
ηd(di)j· H

M
, ηd(di)j· H

M +1, ..., ηd(di)(j+1)· H
M

]T
ηd(di)

(j) − the jth subvector of the document encoding
M − the number of subspace divisions
H − the length of a document encoding vector
a ◦ b− operation representing vector concatenation

(5.2)

After the subspace division has been performed, the next step is to apply quantization in each of the
vector subspaces independently. Hence, in product quantization we will define a subquantizer ϕ(j)
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Figure 5.1: Diagram illustrating the division of a vector representing a H-dimensional document encoding (ηd(di)) into M
subsvectors ({ηd(di)(1), ηd(di)(2), ..., ηd(di)(M)}) corresponding to the M subspaces used in product quantization.

and subcodebook C(j) for each subspace j. The subcodebook C(j) is obtained by applying k-means
clustering on the set of subvectors corresponding to the subspace j. The subcodebook C(j) will be
made up of the set of K centroids that result from applying the clustering algorithm. This process is
formally described in equation 5.3.

C(j) = {c(j)1 , c
(j)
2 , ..., c

(j)
K } ← KMeans({ηd(d1)(j), {ηd(d2)(j), ..., {ηd(dn)(j)}) (5.3)

Having obtained the subcodebook C(j), it is time to come up with a definition for the subquantizer ϕ(j).
While we could come up with an arbitrary definition for the subquantizer, we need to keep in mind that
we aim to perform an optimal quantization of the encodings. In this context, optimality is defined by
obtaining a quantized vector as close as possible to the original. In order to formally quantify closeness
between the original encoding and its quantized form, we will introduce a metric called distortion, which
consists of the squared euclidean distance between two vectors, as defined by equation 5.4.

dist(v1, v2) = ∥v1 − v2∥2
dist(v1, v2)− the distortion between the vectors v1 and v2

(5.4)

Making use of the mathematical formulation of the distortion, we can start defining the objective for our
ideal quantization function, which, as mentioned before, should try to minimize the distortion between
some arbitrary vector input and its quantized form. This idea leads us to the objective function described
by equation 5.5.

ϕ = argminϕ∗∈Φ Ed[dist(ϕ∗(ηd(d)), ηd(d))] = argminϕ∗∈Φ Ed[dist(η̂d(d), ηd(d))]

ϕ− the optimal quantizer
Φ− the set of all possible quantizers

(5.5)
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If we assume that the documents in our corpus D are a representative sample of all the documents
that could be encountered in the wild, equation 5.5 can be approximated by equation 5.6.

ϕ ≈ argminϕ∗∈Φ

∑
i dist(ϕ∗(ηd(di)), ηd(di)) = argminϕ∗∈Φ

∑
i dist(η̂d(di), ηd(di))

ϕ− the optimal quantizer
Φ− the set of all possible quantizers

(5.6)

Equation 5.6 is also known as Lloyd optimality condition [36] and it can be proven that, under the
structural constraints imposed by product quantization, its solution is a quantizer that assigns each
vector to the nearest centroid in every subspace, as shown by equation 5.7.

ϕ(j)(ηd(di)
(j)) = argminc(j)∈C(j) dist(ηd(di)(j), c(j))

ϕ(ηd(di)) = ϕ(1)(ηd(di)
(1)) ◦ ϕ(2)(ηd(di)

(2)) ◦ ... ◦ ϕ(M)(ηd(di)
(M))

ϕ(j) − the subquantizer for subspace j
ϕ− the full quantizer function

(5.7)

The reason why equation 5.7 describes the optimal quantizer is not hard to see once you realize that
the distortion between 2 vectors is equal to the sum of the distortions of the vectors in each of the
M subspace divisions, as shown by equation 5.8. Assuming that we took any other codeword rather
than the minimum distance one in any of the subspaces, according to equation 5.8, we would obtain a
larger distortion than if we took the minimum distance codeword, which would violate Lloyd’s optimality
condition (equation 5.6). It follows that the quantizer defined in equation 5.7 is indeed optimal in the
context of product quantization.

dist(v1, v2) =
∑

j dist(v(j)1 , v
(j)
2 ) (5.8)

Now that we have obtained the optimal quantizer ϕ, we need to define our codebook C. Analyzing
equation 5.7, it is not hard to see that the final quantized vector ˆηd(di) = ϕ(ηd(di)) is simply a combina-
tion of codewords selected from theM subcodebooks {C(1), C(2), ..., C(M)}. Hence, the final codebook
can be expressed as the cartesian product of all the subcodebooks, as described in equation 5.9.

C = C(1) × C(2) × ...× C(M) (5.9)

5.2. Quantization with sparse interpolation
In the previous section, we saw how product quantization can be applied to our two-stage retrieval setup
to reduce the memory used by the re-ranking stage. To this end, we redefined the rerankingScore
function to take the dot product between the quantized document encoding and the query encoding,
as specified by equation 5.1. As we will see in the results section, this leads to a significant drop in
re-ranking performance. Ideally, we would like to mitigate the performance drop without introducing
any new memory costs to the system. Recent studies suggest that performing linear interpolation of
sparse scores with dense scores can lead to better ranking accuracy [68, 44]. Since this operation
comes naturally to our setup that already computes BM25 scores for the retrieval step, it made sense
to investigate its potential in mitigating quantization performance drops. Performing the linear inter-
polation between the quantized dense scores and the sparse scores conducts the redefinition of the
rerankingScore function, as indicated by equation 5.10.

rerankingScore(d, q) := (1− α) · η̂d(d) · ηq(q) + α · bm25(d, q)

α ∈ [0, 1]
α− interpolation parameter

(5.10)



5.3. Supervised quantization for re-ranking 35

5.3. Supervised quantization for re-ranking
In the previous sections, we have seen how product quantization (PQ) can be applied to a dual-encoder-
based dense index to reduce its memory at the expense of some ranking performance decay. We have
also seen that the product quantization algorithm minimized the Lloyd optimality condition described in
the equation 5.6. While it can be argued that the Lloyd optimality condition is a good objective function
for our problem setup, it is debatable whether or not it is the best objective function. This is because,
while product quantization optimizes equation 5.6, we measure the performance of a re-ranking system
by metrics such as NDCG, AP or RR [71].

Considering the above, one can claim that there is an objective gap between product quantization
and the re-ranking problem. This leads to the question of whether or not we can mitigate the gap by
training a quantizer in a more appropriate way for re-ranking. To test this idea, we proposeWolfPQ, a
differentiable vector quantization algorithm that can be trained in a supervised setting. In the following
subsections, we will explore the inner workings of WolfPQ in their full mathematical depth.

5.3.1. General architecture of WolfPQ
As its name suggests, the overall architecture of WolfPQ is inspired by how classical product quanti-
zation (PQ) works. Subspace division, one of the core ideas behind product quantization (PQ), is also
an operation that WolfPQ relies upon. Hence, the input vector to WolfPQ is divided into subvectors of
equal length, as indicated by equation 5.11.

ηd(di) = ηd(di)
(1) ◦ ηd(di)(2) ◦ ... ◦ ηd(di)(M)

ηd(di)
(j) =

[
ηd(di)j· H

M
, ηd(di)j· H

M +1, ..., ηd(di)(j+1)· H
M

]T
ηd(di)

(j) − the jth subvector of the document encoding
M − the number of subspace divisions
H − the length of a document encoding vector
a ◦ b− operation representing vector concatenation

(5.11)

What is different from product quantization, however, is how the codebooks are defined. If, in the
case of PQ, the codebooks are obtained by applying K-means clustering on the vectors in each of
the subspaces, in WolfPQ, codebooks are treated as learnable parameters, similar to the weights of a
neural network. This idea is also used by other supervised quantization algorithms, such as JPQ [22].
Hence, one of the parameters that we are learning during the training of WolfPQ is a tensor C that is
made up of a stack of K ∗ H

M matrices, representing the codebooks for each of the M subspaces, as
illustrated by equation 5.12.

C =
[
C(1), C(2), ..., C(M)

]
C(j) :=

[
c
(j)
1 , c

(j)
2 , ..., c

(j)
K

]
C(j) ∈ RK× H

M − subcodebook for subspace j
C ∈ RM×K× H

M − codebook

(5.12)

In addition to the codebooks, WolfPQ introduces another set of learnable parameters representing
rotation matrices, one for each subspace. The rotation matrices are inspired by algorithms such as
OPQ [26], or JPQ [22], which highlight the effectiveness of rotations in increasing the performance of
quantized dense indices. Thus, the second set of learnable parameters in WolfPQ are encoded by the
tensor R, containing the learned rotation matrix of each of the subspaces, as shown in equation 5.13.

R =
[
R(1), R(2), ..., R(M)

]
R(j) ∈ RK×K − rotation matrix for subspace j
R ∈ RM×K×K − rotation matrices tensor

(5.13)
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The quantization process consists of selecting one of the codewords from the rotated subcodebook
corresponding to each subspace to encode each corresponding subvector of the input vector. Since
we explore multiple ways of performing the selection, we will formally refer to the selection as an ab-
stract function, as introduced by equation 5.14, whose exact definition will be described in the next
subsections.

Select : RK× H
M × R H

M → {1, 2, ...,K}
Select(C(j), ηd(di)

(j)) := the index of the codeword selected for the subvector ηd(di)(j)
(5.14)

Figure 5.2: Diagram illustrating the general architecture of WolfPQ. The input vector ηd(di)(j) is divivided into M subvectors
of equal size, one subector for each susbspace. In each of the M subspaces, the selection function is applied on the subvector
and rotated subcodebook to select a codeword. The selected codewords are than recomposed into the final quantized vector.
The rotated subcodebooks and selected indices are stored in memory and they represent the compressed representation of

the dense index. The learnable components are highlighted in blue.

Based on the selection function, we can start defining the subquantizer function ϕ(j) in the context of
WolfPQ. Similar to PQ, the role of the subquantizer function is to return a codeword in each of the
M subspaces, which will be later combined to construct the quantized version of the input document
embedding η̂d(di). Hence, the subquantizer ϕ(j) and the selection function (described in equation 5.14)
are closely related, the main difference being that the selection function return an index refering to the
selected codeword, while the subquantizer returns the selected codeword. One other aspect to keep
in mind is that we will not apply the selection function to the original subcodebooks, but rather to their
rotated version, obtained by multiplying each rotation matrix to its corrsponding subcodebook. In the
light of all of these, we formally define the subquantizer function ϕ(j) in equation 5.15.
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ϕ(j)(ηd(di)
(j)) := R(j) · C(j)[sji] = R(j) · c(j)sji

sji− := Select(R(j) · C(j), ηd(di)
(j))

C(j) :=
[
c
(j)
1 , c

(j)
2 , ..., c

(j)
K

]
ϕ(j) − subquantizer function for subspace j
C(j) − subcodebook for subspace j
C(j)[l]− indexing operator, extracting the lth column of the subcodebook
c
(j)
k − kth codeword in the subcodebook for subspace j
R(j) − rotation matrix for subspace j
sji − the index of the selected codeword for document encoding i in susbpace j

(5.15)

In a similar way to PQ, the final quantized vector η̂d(di)(j) is obtained by concatenating the outputs of
each of the M subquantizers ϕ(1), ϕ(2), ..., ϕ(M), as shown in equation 5.16.

ϕ(ηd(di)) = ϕ(1)(ηd(di)
(1)) ◦ ϕ(2)(ηd(di)

(2)) ◦ ... ◦ ϕ(M)(ηd(di)
(M))

ϕ(j) − the subquantizer for subspace j
ϕ− the full quantizer function

(5.16)

What is ultimately stored in memory after applying WolfPQ on a dense index is the rotated codebook
R · C and the selected codeword indices for each of the quantized document encodings S1, S2, ..., Sn,
as illustrated by figure 5.2. During runtime, the quantized version of the document encodings is re-
constructed based on the stored indices and codebook, as already described by the equations 5.15
and 5.16. Since the stored output and quantized vector reconstruction process of WolfPQ follow the
same structure as that of PQ, WolfPQ can be considered functionally equivalent to PQ once it has
been trained. This is because WolfPQ will always create a compressed index of the same size as
PQ, which can be used in the same manner by the integrated system, making PQ and WolfPQ fully
interchangeable. The main difference between PQ and WolfPQ is that WolfPQ will be trained to create
a compressed, dense index better adapted for the re-ranking task.

5.3.2. Selection by minimum distance
In the previous section, we presented the overall architecture and flow of WolfPQ, the supervised
quantization algorithm proposed for our re-ranking problem. As the reader might have noticed, the
subsection introduced the subquantizer ϕ(j) as a function that depends on an abstract Select operation
that has not been defined. In this subsection and the next, we will remedy this by presenting two
alternative ways in which the selection operation can be defined.

The simplest way to define the selection operation is to simply follow the recipe used by product quan-
tization [36], as well as other well-known vector quantization algorithms [26, 53], and always select the
codeword that is the closest to the subvector in each of the subspaces. Since this selection method is
well-tested and is known to usually provide decent results, it makes sense to choose it as our baseline
method. The formal definition of selection by minimum distance is provided by equation 5.17.

SelectMinDist(R
(j) · C(j), ηd(di)

(j)) := argmins∈{1,2,...,K} dist(R(j) · c(j)s , ηd(di)
(j)) (5.17)

Having defined our selection operation, the construction of the output quantized vector ˆηd(di) can be im-
plemented in a differentiable way by building sparse, one-hot-encoded vectors that specify the selected
indices. The target codeword for each of the M subspaces is retrieved by multiplying the codeword’s
subcodebook with the corresponding sparse selection vector. The result of the multiplication will be a
matrix of the same shape as the subcodebook, filled in with 0s in all positions that do not correspond to
the target, selected codeword. Summing all the columns of this sparse output matrix will, hence, yield
exactly the selected codeword, but after a sequence of differentiable operations. All of these lead us
to the differentiable redefinition of our subquantizer function, as expressed by equation 5.18.
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Figure 5.3: Diagram illustrating the selection by minimum distance procedure. The distance between the subvector ηd(di)(j)

and all of rotated codewords {Rjc
(j)
1 , Rjc

(j)
2 , ..., Rjc

(j)
K } is computed and the rotated codeword with the minimun distance is

selected (in the example, the second codeword has the minimum distance).

ϕ(j)(ηd(di)
(j)) := R(j)C(j) · OneHot(sji) =

= R(j)
[
c
(j)
1 , ..., c

(j)
sji , ..., c

(j)
K

]
·
[
0, ..., 1, ..., 0

]
= R(j)c

(j)
sji

sji− := SelectMinDist(R
(j)C(j), ηd(di)

(j))

(5.18)

While the differentiable redefinition of the subquantizer as expressed by equation 5.18 is computa-
tionally more expensive than the original definition of equation 5.15, it is needed during the training
process of WolfPQ. The reason for this is that differentiability is required for backpropagation, which is
the training algorithm employed by WolfPQ and most modern deep-learning models.

5.3.3. Selection by semantic sampling
In the previous subsection, we presented WolfPQ’s baseline selection method. This section will explain
amore advanced selection procedure, dubbed selection by semantic sampling. The intuition driving this
selection method is based on the observation that dense re-ranking is ultimately based on analyzing the
semantic information contained in the document and the query. Following up on this idea, if we want
to train a quantizer that performs better on the re-ranking task, exposing the quantizer to semantic
information about the document might be helpful. For instance, if two documents belong to the same
topic and are likely to end up in the same retrieval set, their quantized encodings should probably be
distinct so that the re-ranker can distinguish between them.

In light of the ideas presented above, we can identify a key limitation of selection by minimum dis-
tance, i.e. the fact that the selection of the codebook is based purely on vector geometry. While one
could argue that in the semantic vector space created by the document encoder ηd, vector geometry
corresponds to semantic relationships, we need to keep in mind that WolfPQ, similarly to other vector
quantization algorithms [53], relies on subspace division. This means that the inputted semantic vector
is broken down into subvectors, which might no longer have well-defined semantic meanings.

To mitigate the limitations presented in the previous paragraph, it becomes necessary to take into
account the whole semantic vector when selecting the codeword in each of the subspaces. This leads to
our proposed technique, called selection by semantic sampling. Roughly inspired from the architecture
of CQ’s encoder component [70], the semantic sampling selection function relies on a 2-layer feed-
forward neural network to analyze and derive useful information from the semantic encoding ηd(di),
which we are aiming to quantize.

The first layer of the neural network has an input size of H, corresponding to the dimensions of the
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document encodings, and an output size of M ∗ K/2, where M is the number of subspaces and K
the number of codewords per subspace. The layer uses a tanh activation function, as described by
equation 5.19.

h = tanh(W1 · ηd(di) + b1)

h ∈ RMK
2 − hidden layer

ηd(di) ∈ RH − input semantic vector
W1, b1 − learnable weights and bias

(5.19)

The second layer of the feed-forward network has an input size ofM ∗K/2 and an output size ofM ∗K.
The choice of the output size is not a coincidence, however, since the output logits of the network are
interpreted as being proportional to the probability of selecting each of the K codewords in each of the
M subspaces. Unlike the first layer of the network, the second layer will use a relu activation function
[20], as indicated by equation 5.20. One small aspect to notice is that the original implementation of
CQ’s encoder used a softplus activation. The reason why we decided to replace softplus with relu is
that deep learning literature considers it a better alternative [27] [28, Chapter 6].

o = relu(W2 · h+ b2)

h ∈ RMK
2 − hidden layer

o ∈ RMK − output layer
W2, b2 − learnable weights and bias

(5.20)

As mentioned earlier, we interpret the output of the feed forward network as indicating the probabilities
of selecting each of the codewords in each of the subspaces. As a consequence of this, we will reshape
the output vector o ∈ RMK as a 2-dimensional matrix A ∈ RM×K , where each row corresponds to the
logits encoding the selection probability within one subspace, as shown by equation 5.21.

A :=


o1 o2 ... oK

oK+1 oK+2 ... o2K
...

... ...
...

o(M−1)K o(M−1)K+1 ... oMK


A(j) =

[
o(j−1)K o(j−1)K+1 ... ojK

]
A− reshaped output layer encoding the semantic selection probability logits for all M subspaces
A(j) − vector encoding the semantic selection probability logits for the jth subspace

(5.21)

While in an ideal scenario, we would only rely on the semantic probability logits derived in equation
5.21, learning a good selection strategy completely from scratch could be a difficult process that would
require many optimization steps and a large training dataset. However, since we already know that,
while maybe not optimal, selection by minimum distance is a decent strategy, we can design our deep
learning architecture in such a way that our model is implicitly biased to select the minimum distance
codeword with a higher probability. In the case of WolfPQ, this is implemented by performing a linear
interpolation between the semantic selection probability logits A(j) and the one hot encoded minimum
distance index OneHot(SelectMinDist(R

(j) ·C(j), ηd(di)
(j))), as derived in the previous subsection (equa-

tion 5.17). The one-hot encoded minimum distance index is multiplied by the minimum distance factor
MDF , a scalar hyperparameter that controls the importance given to the minimum distance in the se-
mantic sampling procedure. All of these lead to equation 5.22, which describes the formula for the final
semantic probability logits used to sample codewords from the subcodebooks.
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L(j) := (1− γ) ·A(j) + γ ·MDF · OneHot(SelectMinDist(R
(j) · C(j), ηd(di)

(j)))

L(j) − final semantic probability logits for codeword sampling
γ − interpolation parameter between pure selection by semantic sampling and selection by minimum distance
MDF − hyperparameter controlling the reliance on selection by minimum distance

(5.22)

WhileMDF is a hyperparameter, which means that it is chosen by the user before the training process
even begins, γ is learned during training. However, since γ is used to perform linear interpolation, it is
important that its values remain constrained in the interval [0, 1]. To guarantee this, γ is modelled as
the output of a logistic function applied on a learned parameter ξ, as shown in equation 5.23. Hence,
the equation for the final semantic probability logits becomes equation 5.24, with ξ being the actual
parameter learned during training.

γ = 1
1+e−ξ

ξ − trainable parameter
(5.23)

L(j) := (1− 1
1+e−ξ ) ·A(j) + 1

1+e−ξ ·MDF · OneHot(SelectMinDist(R
(j) · C(j), ηd(di)

(j)))

L(j) − final semantic probability logits for codeword sampling in subspace j
ξ − trainable parameter
MDF − hyperparameter controlling the reliance on selection by minimum distance

(5.24)

Having obtained the final semantic probability logits for each of the subspaces, the last step of WolfPQ
is to use the logits to sample a codeword from each of the subcodebooks associated with each of the
subspaces. In other words, we need to turn each vector of logits L(j) into an index sji for each subcode-
book C(j). Since the feedforward neural network and the parameter ξ are trainable, we need to perform
this operation in a differentiable way. One technique that can be applied to perform differentiable sam-
pling from a categorical probability distribution is gumbel-softmax [35, 50]. Since gumbel-softmax has
also been employed by CQ [70] to add differentiability to their algorithm, it also became our design
choice for WolfPQ, as indicated by equation 5.25.

sji = argmax1≤k≤K
exp(log(L

(j)
k +ϵk)/τ)∑K

k′=1
exp(log(L

(j)

k′ +ϵk′ )/τ)

ϵk ∼ Gumbel(0, 1)

ϵk − noise sampled from a gumbel distribution
τ − temperature parameter
sji − sampled codeword index

(5.25)

While gumbel-softmax is useful during training due to its property of making sampling differentiable,
it also adds stochasticity to the final result, which is not ideal for reproducibility and stability during
inference. As a result of this, the method for obtaining the codebook indices sji described in equation
5.25 is only used during training. During inference, WolfPQ simply takes the index of the maximum
logit, as described by equation 5.26, which is not a differentiable procedure, but it is deterministic.

sji = argmax1≤k≤K L
(j)
k

(5.26)

As in the case of selection by minimum distance, the index obtain in either equation 5.25 or equation
5.26 is used to select a codeword from the subcodebook of the current subspace as part of the definition
of the subcodebook ϕ(j) for the subspace j, as indicated by equation 5.27.
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ϕ(j)(ηd(di)
(j)) := R(j) · C(j) · OneHot(sji) =

= R(j) ·
[
c
(j)
1 , ..., c

(j)
sji , ..., c

(j)
K

]
·
[
0, ..., 1, ..., 0

]
= R(j) · c(j)sji

(5.27)

Figure 5.4: Diagram illustrating selection by semantic sampling. The output of minimum distance selection is linearly
interpolated with the output of the neural network extracting purely semantic information, to obtain L(j), a vector of logits
proportional to the sampling probability for the subcodebook associated to subspace j. The codeword is sampled from the
probability distribution described by L(j) using either the differentiable gumbel-softmax, during training, or the deterministic

argmax, during inference.

5.3.4. Pre-training procedure
The previous subsections have provided a deep theoretical overview of the architecture of our proposed
supervised quantizer, WolfPQ. Building on this knowledge, the current subsection and the next will
tackle technical details regarding the process of training WolfPQ. Not unlike many other deep-learning
models, WolfPQ is trained in two stages, pre-training and fine-tuning. Thus, this section will give a
description of the pre-training procedure, while the next will move on to fine-tuning.

The entire design process of WolfPQ followed the idea that in order to obtain a quantizer that outper-
forms PQ, it is essential to start with a differentiable quantizer with a similar base performance as PQ
and then further train it in a supervised fashion to make it adapt to the re-ranking task. Following this
idea, the aim of pre-training is to obtain an instance of WolfPQ with a similar base performance as PQ
while the adaptation to the re-ranking task is performed during fine-tuning.

Since the goal is to obtain a version of WolfPQ that works similarly to PQ, WolfPQ will be pre-trained
with the same goal as PQ, i.e. minimizing the distortion between the original vector and its quantized
version, as shown in equation 5.28 indicating the loss function used during pre-training. One interesting
aspect to notice is that since WolfPQ aims to reconstruct its original input, WolfPQ can be seen as an
auto-encoder [12] in its pre-training phase.

L(D) := 1
|D|

∑
d∈D∥ηd(d)− WolfPQ(ηd(d))∥2 (5.28)

One other aspect that is important to mention is parameter initialisation, more specifically, the initialisa-
tion of the learnable subcodebooks and associated rotation matrices. While random initialisation would
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be possible, empirical experiments lead to the conclusion that using the subcodebooks of a trained PQ
instance and initialising the rotation matrices with the identity matrix, leads to faster convergence than
random initialisation. The empirical results make sense intuitively, since we already know that PQ is a
decent algorithm for the task.

5.3.5. Fine-tuning procedure
Having seen an overview of pre-training in the previous subsection, we will now move on to fine-tuning.
As previously mentioned, the role of fine-tuning is to make WolfPQ adapt to the re-ranking task in the
hope of obtaining better performance. Hence, the core idea behind fine-tuning is to perform the training
of the quantizer in an end-to-end fashion using a goal that is better aligned to re-ranking than mean dis-
tortion (equation 5.28). In addition to this, having seen that sparse interpolation benefits quantization,
a secondary aim is to increase how much WolfPQ gains from sparse interpolation compared to clas-
sical PQ. To accommodate both of these objectives, instances of WolfPQ were trained on end-to-end
settings, both with and without interpolation, and the results were compared.

The loss function chosen to train WolfPQ was borrowed from the paper introducing CQ [70]. Experi-
ments on CQ have shown that the training method which leads to the best results involves knowledge
distillation. More specifically, a non-quantized version of the dual-encoder is used as the teacher model,
while the student model is the same dual-encoder combined with WolfPQ. This leads to the MarginMSE
loss function [32] in equation 5.29.

LMarginMSE(q) :=
∑

d+,d−∈S(q)[(fqd+ − fqd−)− (f̂qd+ − f̂qd−)]2

fqd+ := ηq(q) · ηd(d+)
fqd− := ηq(q) · ηd(d−)
f̂qd+ := ηq(q) · WolfPQ(ηd(d+))
f̂qd− := ηq(q) · WolfPQ(ηd(d−))

S(q)− pairs of positive and negative samples for query q

(5.29)

One problem that one might notice with the loss function in equation 5.29 is that it is not influenced at
all by the introduction of sparse interpolation. This is due to the fact that for both the quantized and
non-quantized instances of the dual-encoder, the sparse scores remain the same, which would make
them cancel out during the computations. Thus, if our aim is to make WolfPQ benefit more from sparse
interpolation than PQ, we need to train it using a loss function which is sensitive to sparse interpolation.
Since sparse interpolation ultimately influences the final ranking of the documents, one such loss would
be a listwise loss, which compares the rank outputted by the model with the expected, ideal rank. While
many types of listwise losses exist, we chose to use RankNet [8] due to its popularity.

From a theoretical perspective, good arguments can bemade for both theMarginMSE loss function [32],
due to its good performance on CQ [70], as well as for RankNet [8], due to its potential to make WolfPQ
more adapted to sparse score interpolation. Hence, we have decided to train WolfPQ by merging both
losses via linear interpolation, as shown in equation 5.30.

L(q, rank) := (1− lip) · LMarginMSE(q) + lip · LRankNet(q, rank)

lip ∈ [0, 1]− loss interpolation parameter
(5.30)

A final aspect that needs to be discussed is negative sampling, or more specifically, how are the docu-
ment pairs (d+, d−) used during training for the computation of the loss function obtained. It turns out
that, according to information retrieval literature, negative sampling is still an area under research, with
many alternatives possible [69, 60]. Since negative sampling is out of the scope of our research, we
decided to go for the simple form of sampling, which involves taking the lowest-ranked documents in
the top 100 BM25 results. Hence, it is very much possible that better sampling techniques could be
used, and what is the best sampling technique for training quantizers is a research question that is still
unanswered.



6
Experimental setup

The role of this chapter is to provide the reader with an overview of all the relevant details behind the
experiments that were performed to pursue the research questions. To this end, the first section will
review themetrics used to evaluate passage ranking. Following that, the second section will present the
datasets used for experimentation. In contrast, the third section will give some core implementation
details to guarantee the reproducibility of results. Finally, the last section will expose the reasoning
behind choosing the experimental baselines.

6.1. Metrics for evaluation
As passage ranking is a well-studied and well-defined problem in the field of information retrieval, there
are a couple of evaluation metrics that have become a field standard [71]. Naturally, our research
adopted the same metrics in order to guarantee that our results are comparable. This section will
provide the mathematical details behind the chosen evaluation metrics while explaining why these
metrics are suitable.

As already mentioned in the previous chapters of the thesis, the goal of passage ranking is to order
passages with respect to their relevancy to a query. This means that a passage ranker performs well
if it generally ranks relevant documents higher than non-relevant ones. To be able to quantify that, it
is important that we formally define relevancy. It is to this end that we introduce the rel(q, d) function
in equation 6.1, which measures relevancy either on a binary (relevant, non-relevant) or, more rarely,
ternary (highly relevant, relevant, non-relevant) scale, depending on the specific dataset.

rel(q, d) =

{
1 document d is relevant for query q

0 document d is not relevant for query q
(6.1)

The rel(q, d) function forms the basis for the definition of many evaluation metrics, a common one being
precision, as defined in equation 6.2.

Precision(R, q) =
∑

(i,d)∈R rel(q,d)

|R|

R− ranked list of documents
i.e. list of tuples (i, d) where i is the rank(position) and d is the document

(6.2)

It is prevalent that the precision is evaluated at a cut-off point k, which means that only the first k
elements of the ranked list are considered, as shown in equation 6.3. One considerable disadvantage
of the precision metric is that it does not take into account the rank positions beyond the cut-off point k.
This led to the definition of the average precision, as indicated in equation 6.4. As the reader will see
in the results section, average precision was one of the metrics chosen for evaluation.
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Precision@k(R, q) =
∑

(i,d)∈R,i≤k rel(q,d)

k
(6.3)

AP@k(R, q) =
∑

(i,d)∈R,i≤k Precision@i(R,q)·rel(q,d)∑
d∈D rel(q,d)

(6.4)

Another simple yet common evaluation metric that we used for our experiments was reciprocal rank.
The reciprocal rank is computed by taking the inverse of the rank corresponding to the first relevant
document, as shown in equation 6.5.

RR(R, q) = 1
rank(R,q)

rank(R, q) = min{i|(i, d) ∈ R ∧ rel(q, d) > 0}
(6.5)

A well-known evaluation metric we adopted is normalized discounted cumulative gain (nDCG). Unlike
the other metrics, nDCGwas explicitly created to fit relevance functions with several grades. A quantity
needed to define nDCG is the discounted cumulative gain (DCG), which is a measure of the value the
user gets from a particular ranking result, as indicated by equation 6.6.

DCG@k(R, q) =
∑

(i,d)∈R,i≤k
2rel(q,d)−1
log2(i+1)

(6.6)

As the name suggests, nDCG is obtained fromDCG by introducing normalization. This translates into
dividing DCG by an ideal discounted cumulative gain IDCG (equation 6.7), computed on a ranked list
that is rearranged to always begin with the most relevant documents.

nDCG@k(R, q) = DCG@k(R,q)
IDCG@k(R,q) (6.7)

6.2. Dataset
The experiments of this research were performed on the MSMARCO passage dataset [5, 11]. This is
a very well-known dataset in the information retrieval community that is representative of web search.
The dataset contains the following:

• a corpus of roughly 8.8 million passages extracted from web documents.
• sets of search queries or questions
• relevance judgements indicating which passages are relevant for which queries

The MSMARCO passage dataset is complemented by the TREC DL 19 [17] and TREC DL 20 [18],
which contain sets of queries that can be used as training and testing datasets for deep learning models.

Given the considerable size of the MSMARCO passage dataset, it can be assumed that an information
retrieval that performs well on it will also do well as a real-life search engine.

6.3. Implementation details
The implementation of the experiments relied on the libraries and dependencies listed below.

• Faiss [21] - Faiss is an open-source vector similarity search library developed by Meta’s research
team. The library contains, among other things, implementations of many popular vector quanti-
zation algorithms. Our experiments relied on faiss’s implementation of PQ.

• Lucene search [48] - Lucene search is a high-performance open-source search engine written in
Java but having Python wrappers. The experiments made use of Lucene search’s implementation
of BM25.
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• Hugging face transformers [33] - Hugging face transformers is a widely popular library for natu-
ral language processing. It contains architectures and trained instances of many neural language
models. The experimental setup relied on hugging face transformers as a provider for our target
dual encoders, i.e. TCT-ColBERT and Aggretriever.

• HDF5 [31] - HDF5 is an open-source file format for storing large amounts of heterogeneous data.
Since the encoded MSMARCO Passage corpus ended up being 27.5GB, the use of HDF5 for
efficient storage and random access of semantic vectors became necessary.

• PyTorch [59] - WolfPQ was implemented in PyTorch, one of the most popular deep-learning
frameworks.

• ir-measures [34] - Ir-measures was the Python library that was used for the evaluation metrics of
the experiments, as it contains implementations for many metrics commonly used in information
retrieval.

The codebase used for the evaluation of the quantization algorithms relied to a large extent on the fast-
forward-indexes library [23, 44], which was extended to support quantized indices of various types. The
quantization of the dense indices was done on Delft Blue [19], TU Delft’s SLURM computer cluster, due
to its high parallelism capabilities. The training of WolfPQ was achieved with the help of the premium
version of Google Colab [29], which gave us access to fast, high-memory GPUs, specifically Tesla T4
and L4. The full codebase used in this research can be found on the associated open source GitHub
repository1.

6.4. Data pre-processing
The time-efficient fine-tuning of WolfPQ required a lot of data pre-processing, the steps of which are
summarized below.

1. The queries without any associated relevant documents were filtered out of the training set.
2. For each query in the remaining training set, the top 100 most relevant documents, according to

BM25, were fetched.
3. Out of each set of 100 retrieved documents, the least 32 relevant documents were selected as

negative samples.
4. For each training query, 32 pairs of positive-negative (d+, d−) document samples with their asso-

ciated BM25 scores were formed. For queries with only one relevant document, all 32 irrelevant
documents were used in pair-forming. For queries with more than one positive document, the
pair were formed by uniformly sampling the irrelevant documents.

5. The full 27.5GB TCT-ColBERT dense index encoding all the MSMARCO passages was loaded
in the memory of a high-performance Google Colab machine to facilitate fast access.

6. For each training query, tensors containing the vector encodings of the formed positive-negative
document samples were constructed.

7. The pre-processed dataset containing the queries (with their associated encodings), positive-
negative pairs of document ids, their associated vector encodings, as well as the BM25 scores
was saved on the hard-disk in chunks of roughly 1.8GB each.

8. A data structuremapping query ids to chunks was constructed and saved on the hard disk together
with the chunks.

9. WolfPQ was trained with the help of a simple caching system that kept the most recently used
chunk in memory until a new chunk needed to be accessed.

6.5. Baselines
The final results were obtained by performing re-ranking with the help of PQ-quantized and WolfPQ-
quantized dense indices, which were compared against the baselines specified below

1https://github.com/catalinlup/Quantization-for-compact-neural-passage-re-ranking

https://github.com/catalinlup/Quantization-for-compact-neural-passage-re-ranking
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• BM25 - widely used sparse retrieval method [61]. Having BM25 as part of the baselines is crucial
since any dense re-ranking setup that is outperformed by BM25 is useless, as the purpose of
re-ranking is defeated.

• BM25 + TCT-ColBERT and BM25 + Aggretriever - original, non-quantized, single-vector dual-
encoder re-ranking setups [61, 46, 47]. They induce the upper bound for our results and enable
us to measure the relative performance drop caused by quantization.

• BM25 + ColBERT-PQ - the baseline was taken from the contextual quantization paper [70]. Its
relevancy comes from the fact that it enables us to compare the effectiveness of PQ on single-
vector dual-encoders (our experiments) against its effectiveness on ColBERT.

• BM25 + ColBERT-CQ - the model proposed by the contextual quantization paper [70]. This
baseline is important because it represents the only attempt of developing a supervised quantizer
for re-ranking. Hence, it is the only model that is directly comparable to WolfPQ.

• TCT-ColBERT-PQ - dense retrival using a PQ-quantized [36] TCT-ColBERT [47] index. Having
it as a baseline enables us to highlight the importance of the sparse retrieval component of our
setup.

• JPQ and RepCONC - state-of-the-art quantization techniques for dense retrieval [22, 72]. They
are useful since they enable us to compare our re-ranking-oriented setup with a quantized dense
retrieval setup.



7
Results

This chapter will provide the reader with a presentation of the experimental results of the research, as
well as a discussion of how these results relate to and answer our research questions. To this end, this
chapter is structured in a way that mirrors our research questions, objectives and contributions. Hence,
the first section describes the results obtained from the application of product quantization (PQ) on
single-vector dual-encoders to answer the first research question. The following section dives into
the results obtained while investigating the second research question related to the intersectionality
between quantization and sparse-score interpolation. Last but not least, the third section presents the
results obtained from the evaluation of WolfPQ, our proposed novel quantization algorithm, establishing
its performance and capabilities with respect to relevant baselines.

7.1. Unsupervised quantization
• RQ1: How well does product quantization work with single-vector dual encoders, specifically
TCT-ColBERT and Aggretriever?

To answer the first research question, we applied product quantization (PQ) [36] to the dense indices
obtained by encoding the MSMARCO Passage corpus [5, 11] with the TCT-ColBERT [47] and the
Aggretriever [46] dual-encoders. The original index size for both dual-encoders was 27.2GB. Multiple
compressed indices were obtained by applying PQ with different numbers of subspace divisions M
and codebook sizes K. The passage re-ranking performance of the setups built on top of the various
compressed indices was evaluated in an end-to-end fashion by looking at the RR@10, AP@1000 and
NDCG@10metrics on the MSMARCO PASSAGE DEV [5, 11], TREC DL 2019 [17] and TREC DL 2020
[18]datasets.

7.1.1. Hyperparameter exploration
As specified above, various initializations of the number of subspaces M and codebook sizes K were
tried to assess the impact of PQ at various levels of compression. More specifically, we varied K from
256 to 4096 andM from 8 to 96. To obtain an optimum bit-level representation of the codebook indices,
it was necessary that the chosen values ofK were a power of 2. Similarly, since the size of the vectors
outputted by both dual-encoders is 768, the values of M needed to be divisors of 768. Both M and K
influence the size of the quantized index, with higher values corresponding to larger, less compressed
indices, as indicated by figure 7.1.

As one would normally expect, higher levels of compression of the dense index correspond to lower
re-ranking scores. As the degree of compression decreases, the re-ranking performance increases,
converging asymptotically to the performance of the original, non-compressed index. This behaviour
is shown in figure 7.2, which illustrates the re-ranking performance of PQ-quantized dense indices with
respect to the index size.

One interesting aspect to notice is that the performance of the Aggretriever index seems to be impacted
less by compression, as shown by both figure 7.2 and table A.1. For instance, while the RR@10 score

47
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measured on the dev set of the Aggretriever is only roughly 2.5% higher than the one of TCT-ColBERT
(0.368 vs. 0.359), the differences between Aggretriever-PQ and TCT-ColBERT-PQ at a compression
factor of x163.85 is 70%. As the degree of compression decreases, so does the difference between
the Aggretriever-PQ and TCT-ColBERT-PQ, but this phenomenon can be observed at all degrees of
compression. Hence, we can conclude that the Aggretriever is a more quantizable than TCT-ColBERT,
at least when it comes to applying PQ. The reasons for this need to be investigated by future research.

Figure 7.1: The influence of M (number of subspaces) and K (codebook size) on the size of the PQ-quantized index for
TCT-ColBERT (left) and Aggretriever (right) on the MSMARCO Passage Corpus.

Figure 7.2: Performance of TCT-ColBERT-PQ (left) and Aggretriever-PQ (right) at different index sizes, measured on
MSMARCO Passage Dev

7.1.2. Model Comparison
Figure 7.3 illustrates the differences in index size and re-ranking performance between our PQ-quantized
single-vector dual-encoders on one side and ColBERT-PQ on the other side. What we can observe is
that while the compressed TCT-ColBERT consistently performs worse than the compressed ColBERT
index, the quantized Aggretriver outperforms ColBERT-PQ on the 2019 test dataset.

Having said that, the difference in size between the quantized single-vector indices and the ColBERT-
PQ index is stark. While the sizes of the former are around 1.2GB for the chosen quantization param-
eters, the latter index has a size of roughly 10.2GB, which is x10 more.
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In contrast, as indicated in the tables A.2 and A.3, even our worse performing PQ-quantized index
achieves re-ranking scores, which are only roughly 10% lower than ColBERT-PQ. And, as already men-
tioned, Aggretriever-PQ outperforms ColBERT-PQ on the 2019 dataset, and it obtains an NDCG@10
score that is only 2% worse on the 2020 test dataset.

Thus, we can firmly claim that re-ranking using quantized single-vector dual encoders achieves a better
memory-performance trade-off than approaches relying on compressed token-level dual-encoders, like
the one introduced in the contextual quantization paper [70].

Figure 7.3: Diagrams illustrating the memory-performance differences trade-off differences between BM25+Aggretriever-PQ,
BM25+TCT-ColBERT-PQ and BM25+ColBERT-PQ. The index size is measured in GB, while the re-ranking performance uses
NDCG@10. The diagram above shows performance measured on the 2019 test dataset, while the one below relies on the

more recent 2020 dataset. The dotted lines indicate baseline performances of non-quantized versions of the setup.
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7.2. Unsupervized quantization with interpolation
• RQ2: Can we increase the compression rate of product quantization, while maintaining the re-
ranking performance, by introducing interpolation with sparse scores to the re-ranking score func-
tion?

An approach similar to the one for the first research question has been taken to answer the second re-
search question. Specifically, we performed a set of experiments that mirrors the ones done for the first
question. This time, the system used in the experiments included the sparse-score interpolation aug-
mentation presented in chapter 5. The results for interpolated PQ-quantized re-ranking were compared
against the results shown in the previous section.

7.2.1. Alpha optimization
We performed experiments on the dev set to determine the optimal sparse-interpolation parameter α (al-
pha) for both quantized dual-encoder re-rankers. Figure 7.4 illustrates the performers of the re-rankers
at various values of α. Optimum performance is achieved for α = 0.3 in the case of Aggretriever-PQ
and α = 0.1 for TCT-ColBERT-PQ. The optimum values of α are the same across all three evaluation
metrics, as illustrated by figure 7.4.

Figure 7.4: Diagram illustrating the re-ranking performance of BM25 + Aggretriever-PQ (left) and BM25 + TCT-ColBERT-PQ
(right) at various values of α.

One useful aspect to notice is that, despite the fact that the same optimum α holds for both quantized
and non-quantized indices, the behaviour of the two differs as we vary α. This is illustrated by figure
7.5, which illustrates the performance gained by applying sparse score interpolation to both quantized
and non-quantized indices. What we can see is that, across both dual-encoder models, the quantized
dual-encoders gain more from interpolation than their uncompressed counterparts. This insight is one
of the things that contributed to the idea of training WolfPQ using a listwise loss function.
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Figure 7.5: Diagram illustrating how much the re-ranking performance of BM25 + Aggretriever-PQ (left) and BM25 +
TCT-ColBERT-PQ (right) gains from interpolation at various values of α.

7.2.2. Analysis of quantization with interpolation
In an analogous fashion to figure 7.2, figure 7.6 illustrates the re-ranking performance of the quantized
dual-encoder indices with respect to their size for both the interpolated (α > 0) and non-interpolated
(α = 0) cases. One aspect that we can notice is that the interpolated quantized indices manifest the
same asymptotic convergence towards the original score of their non-quantized counterparts. What’s
more important, however, is the fact that at low index sizes (high compression rates), the quantized
indices benefit hugely from interpolation. This is especially visible in the case of TCT-ColBERT, which,
in cases of very high degrees of compression, can make jumps of over 200% just by leveraging sparse-
score interpolation, as shown in table A.4.

Figure 7.6: Diagram showing the re-ranking performance of BM25 + TCT-ColBERT-PQ(-I) (left) and BM25 +
Aggretriever-PQ(-I) (right) at various index sizes (compression rates) with and without interpolation.

The core insight is that the jumps in performance seem to always bring quantized indices that were
performing worse than bare BM25 above the BM25 line. This is very important since re-ranking systems
that perform under the BM25 baseline are useless, as they can just be substituted by plain BM25.
Hence, sparse-score interpolation can be leveraged to perform extreme levels of compression while
still keeping the compressed dense index useful.
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Another way to look at things is that sparse score interpolation can be used to obtain amore compressed
index, provided that you want to remain within a certain re-ranking performance range. This is illustrated
by figures 7.7 and 7.8, which highlight how much smaller an interpolated quantized dense index can be
to obtain a similar or higher performance than the plain non-interpolated index. For instance, a 170MB
quantized TCT-ColBERT interpolated index achieves a similar re-ranking performance as a 339MB non-
interpolated quantized index, which means that interpolation enables us to reduce the size of the index
by almost two times. However, as shown by the diagrams, as we move into the space of larger, less
compressed quantized indices, the positive effects of sparse-score interpolation diminish.

Figure 7.7: Re-ranking performance of BM25+Aggretriever-PQ(-I) measured on MSMARCO Dev, with and without
interpolation, at various index sized (compression rates).

Figure 7.8: Re-ranking performance of BM25+TCT-ColBERT-PQ(-I) measured on MSMARCO Dev, with and without
interpolation, at various index sized (compression rates).

7.2.3. Model comparison
The diagrams in figure 7.9 showcase the NDCG@10 score of the two of our best-performing PQ-
quantized sparse-score interpolated indices. As opposed to the non-interpolated case illustrated in
figure 7.3, we can notice a very high jump in the performance of the TCT-ColBERT index. On the
2019 dataset, both re-rankers perform better than their ColBERT counterpart. Having said this, since
sparse-score interpolation has no impact on the dense index size, the observations made in the previ-
ous subsection hold. Specifically, the single-vector quantized re-rankers achieve a better performance-
memory tradeoff than their ColBERT counterpart. This is even more true in the case of the interpolated
re-rankers since interpolation leads to higher performances for free. While it would have been interest-
ing to see a comparison with the interpolated ColBERT index, the huge size of ColBERT made such
experiments unfeasible, provided our available hardware, time and cost limitations.
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Figure 7.9: Diagrams illustrating the memory-performance differences trade-off differences between BM25+Aggretriever-PQ-I,
BM25+TCT-ColBERT-PQ-I and BM25+ColBERT-PQ. The index size is measured in GB, while the re-ranking performance
uses NDCG@10. The diagram above shows performance measured on the 2019 test dataset, while the one below relies on

the more recent 2020 dataset. The dotted lines indicate baseline performances of non-quantized versions of the setup.

7.3. Supervized quantization for reranking
• RQ3: Can we train a quantizer in a supervised fashion to optimize its behaviour for dense re-
ranking? If so, can we train the quantizer in a way that enables it to adapt to sparse score
interpolation achieving even higher performance improvements over product quantization?

As a way to answer the last research question, many experiments were performed onWolfPQ, the novel
supervised quantizer for re-ranking that this paper proposes. This involved pre-training and fine-tuning
many configurations of WolfPQ and then evaluating the performance of the full quantized re-ranking
system on the MSMARCO dataset. Since training WolfPQ is a lengthy process, the experiments fo-
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cused on three configurations corresponding to high, medium and low compression rate settings. In
addition to that, only the final models were trained on the full dataset. Hyperparameter optimization
was done on partially trained models.

7.3.1. Pre-training
Figure 7.10 highlights the performance of WolfPQ after only pre-training as compared to the perfor-
mance of PQ. While developing the model, one of the aims was to achieve similar results to PQ after
the pre-training phase. The intuition behind this aim was that supervised fine-tuning would undoubt-
edly improve re-ranking performance to a certain degree. Hence, starting the fine-tuning process with
a model that already performs similarly to PQ will increase the chances of the final model outperform-
ing PQ. As the diagram shows, the aim was achieved since WolfPQ has a re-ranking performance
that’s only slightly worse for the high and medium levels of compression and slightly better for low
compression.

Figure 7.10: Re-ranking performance of BM25+TCT-ColBERT-WolfPQPre (WolfPQ after only pre-training) at various index
size, i.e. 0.166GB (left), 0.283GB (middle), 0.824GB (right)

7.3.2. Listwise loss vs. pointwise loss
As already mentioned in chapter 5, one of the design trade-offs that went into WolfPQ was choosing
to train it using the MarginMSE [32] loss function (pointwise loss) or RankNet [8] (listwise loss). The
trade-off is resolved by introducing LIP , a parameter that controls the linear interpolation between the
two. The impact of this training parameter in WolfPQ is explored in figure 7.11.

The left diagram of figure 7.11 corresponds to instances of WolfPQ trained using fully dense (non-
interpolated scores). In contrast, the right diagram shows the performance of WolfPQ trained using
sparse-interpolated scores (abbreviatedWolfPQI). What we can notice is that for the fully dense training
case, the optimum value for the LIP parameter is 0, which is translated to training the model using
MarginMSE only. In contrast, when training WolfPQ with interpolated scores, the performance peaks
at LIP = 0.7, suggesting that the listwise loss function is beneficial.

The experimental results confirm our design intuition that listwise training is useful in getting the quan-
tizer to adapt to sparse interpolation. However, leaving sparse interpolation aside, MarginMSE seems
to be the superior loss function, as indicated by the fact that for LIP = 1 (full listwise training), the
model always underperforms.
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Figure 7.11: Re-ranking performance of BM25 + TCT-ColBERT-WolfPQ-I (left, trained without sparse interpolation) and BM25
+ TCT-ColBERT-WolfPQI-I (right, trained with sparse interpolation) for versions of WolfPQ trained using various values for LIP

(loss interpolation parameter)

7.3.3. Exploration of semantic sampling
Another core design trade-off involved in WolfPQ is the decision between selection by minimum dis-
tance and selection by semantic sampling, both techniques having been described in great detail in
chapter 5. As already mentioned in the chapter, selection by semantic sampling still relies on minimum
distance, whose degree of contribution is controlled by the MDF hyperparameter. Pure semantic
sampling would correspond to MDF = 0, while pure selection by minimum distance to MDF → ∞
(conceptually only, as it is, of course, not implemented like that).

Figure 7.12 showcases the re-ranking performance of WolfPQ with selection by semantic sampling (ab-
breviated WolfPQSem) for various values of MDF . As we can see, pure semantic sampling performs
poorly. This confirms our intuition that selection by minimum distance is already a good baseline strat-
egy and that the optimal selection mechanism does not differ too much from it. As we increase MDF ,
so does the re-ranking performance of WolfPQSem. The performance peaks close toMDF = 30, after
which it approaches the baseline performance of selection by minimum distance asymptotically, indi-
cated by the red line. This matches the intuition that semantic sampling withMDF →∞ is essentially
selection by minimum distance.

Figure 7.12: Re-ranking performance of BM25 + TctColBERT-WolfPQSem-I trained with various values for the MDF
parameter.
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7.3.4. WolfPQ compared to PQ
Having determined the optimal parameters of WolfPQ on the dev set, a few final configurations were
tested on TREC DL 2019 and TREC DL 2020. The abbreviations and explanations are listed below.
The suffix -I indicates that re-ranking with interpolation was done to measure the performance.

• WolfPQ - classical version of WolfPQ that uses selection by minimum distance and was trained
using fully dense scores and LIP = 0 (purely pointwise loss).

• WolfPQSem - same as WolfPQ, but using selection by minimum distance with MDF = 30

• WolfPQI - same as WolfPQ, but trained using sparse-interpolated scores and LIP = 0.7 (mixed
pointwise-listwise loss training)

• WolfPQSemI - same as WolfPQI, but using selection by minimum distance with MDF = 30

For WolfPQI and WolfPQSemI only the results of applying re-ranking with interpolation are reported.
The reason is that it does not make sense to train the models using sparse-scores and then avoid
applying sparse interpolation during inference.

Figures 7.13, 7.14 and 7.15 showcase the performance of the various configurations of WolfPQ as
compared to classical PQ on the 2019 and 2020 test sets for the three levels of compression, high,
medium and low. One of the first aspects to notice is that irrespective of the test set and level of
compression, WolfPQ outperforms PQ in the case of non-interpolated re-ranking. This conforms to
our hypothesis that there is a goal mismatch between quantization for approximate nearest neighbour
search (ANN), for which unsupervised quantizers like PQ are close to optimum, and quantization for
re-ranking. As indicated by the experimental results, the goal mismatch can be mitigated by training a
vector quantizer in a supervised way, specifically on the re-ranking problem.

Another insight that we can get by looking at the results in the two figures is that supervised quanti-
zation induces higher performance gains over PQ at a higher level of compression since, for lower
compression, normal PQ already performs quite well. For instance, on TREC DL 19, at the medium
compression level (index size of 0.283GB), WolfPQ outperforms PQ by roughly 19%. In contrast, at
the low compression setting, the gain of WolfPQ over PQ is only 3%. This insight follows a common
trend that we have encountered in the research so far, i.e. improvements of quantized re-ranking
systems have most of the impact at very high degrees of compression, since for very low degrees of
compression, any decent algorithm will do acceptably well.

Moving on to the results of re-ranking with interpolation (the blue bars), we notice that sparse inter-
polation levels the playing field between PQ and WolfPQ to a certain degree. In other words, poor-
performing quantizers, like PQ, gain more from interpolation than higher-performing quantizers. While
WolfPQ generally maintains its superiority over PQ in the interpolated setting, the discrepancy between
the two becomes much lower. In addition to that, certain configurations of WolfPQ are sometimes out-
performed by PQ once interpolation comes into play. For instance, in the high compression setting,
PQ-I outperforms WolfPQ-I by 5.1% despite performing much worse without interpolation. The best
result for that setting is achieved by WolfPQI-I, which is trained to adapt to an interpolated setting.

The inconsistency between which configuration works best once interpolation comes into play, regard-
less of the non-interpolated results, suggests that a large part of the differences in re-ranking perfor-
mance between the interpolated quantizers can be accounted for by the stochasticity of the hyperpa-
rameter initialization and training. Hence, while WolfPQ might learn to adapt to interpolation, as some
of our best results come from the interpolated training setting, there seems to be a lot of room for
improvement when it comes to this aspect.
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Figure 7.13: Comparison between various configurations of WolfPQ and PQ, on the 2019 test set (left) and on the 2020 test
set (right), at a small index size, i.e. 0.166GB

Figure 7.14: Comparison between various configurations of WolfPQ and PQ, on the 2019 test set (left) and on the 2020 test
set (right), at a medium index size, i.e. 0.283GB

Figure 7.15: Comparison between various configurations of WolfPQ and PQ, on the 2019 test set (left) and on the 2020 test
set (right), at a large index size, i.e. 0.824GB
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7.3.5. Comparison to other systems
Having seen how WolfPQ compares to classical PQ in both the non-interpolated and interpolated set-
tings, it is time to look into how our best performing model compares to other methods found in the
literature, which were taken as baselines.

Figure 7.16 illustrates the performance of our sparse retrieval dense re-ranking system quantized with
the best configuration of WolfPQ (BM25 + TCT-ColBERT-WolfPQI-I) compared to other retrieval sys-
tems.

First of all, one of the first aspects to notice is that our WolfPQ-based system is slightly outperformed by
our main competitor, which combines ColBERT-based re-ranking together with contextual quantization
(BM25 + ColBERT-CQ). As shown in table A.13, BM25 + ColBERT-CQ achieves an NDCG@10 score
of 0.704 on TREC DL 2019, while our model achieves 0.697, which is 1% worse. Having said that,
the ColBERT-CQ index has a size of 10.2GB, while our WolfPQ-based index is only 0.824GB, which
is x12.37 less. Thus, we can firmly claim that our proposed solution achieves a better performance-
memory trade-off. While the difference between the performance of the two systems is higher on the
TREC DL 2020 dataset (roughly 6%), the large difference in memory size would likely still make our
solution more appealing for a plethora of memory-sensitive applications.

In addition to the above, WolfPQ manages to outperform JPQ [22], a close to state-of-the-art quantized
dense retrieval system, by a significant margin. For a similar index size of 0.83GB, our WolfPQ-based
setup achieves an NDCG@10 score of 0.697, while JPQ achieves only 0.677, which is a 2.9% difference.
Unlike JPQ, the WolfPQ-based setup also has the advantage of not having to retrain the query encoder,
which might not always be possible due to a lack of computational resources or cost.

When compared to RepCONC [72], the state-of-the-art quantized dense retrieval model, our method
achieves higher NDCG@10 performance but at the downside of a slightly higher index size (0.393GB vs
0.824GB). Since the NDCG@10 performance of RepCONC at our exact index sizes is not reported in its
paper, we cannot firmly say which of the two setups achieves the best performance-memory trade-off.
However, RepCONC has certain disadvantages that would still make our solution more appealing in
many situations. On the one hand, RepCONC involves the joint training of a full dual-encoder together
with product quantization (PQ), which requires a lot of processing power and large datasets. On the
other hand, RepCONC is a dense retrieval system, which is likely to be slower than our BM25 sparse
retrieval, given a large enough corpus. In addition to all of these, WolfPQ can be applied to any new
dual-encoder that might become state-of-the-art in the future, as our solution is decoupled from the
dense index.

Finally, the diagram in figure 7.16 and table 7.1 highlight the big performance difference between
sparse-retrieval combined with quantized dense re-ranking and quantized dense-retrieval using plain
PQ. Hence, it can be claimed that sparse retrieval quantized re-ranking is likely a superior setup than
quantized retrieval.
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Figure 7.16: Final comparison between the best WolfPQ configuration (BM25 + TCT-ColBERT-WolfPQI-I) and relevant
baselines, measured on the 2019 test set.

Model M K Index Size (GB) NDCG@10 (2019) NDCG@10 (2020)
BM25 - - - 0.497 0.488
TCT-ColBERT - - 27.2 0.670* -
JPQ - - 0.83* 0.677* -
RepCONC - - 0.393* 0.668* -
BM25 + TCT-ColBERT - - 27.2 0.699 0.680
BM25 + TCT-ColBERT-I - - 27.2 0.719 0.693
BM25 + ColBERT-CQ 16 256 10.2* 0.704* 0.716*
TCT-ColBERT-PQ 96 256 0.824 0.608 0.544
BM25 + TCT-ColBERT-WolfPQI-I 96 256 0.824 0.697 0.673

Table 7.1: Re-ranking performence on MSMARCO Passage TREC DL 2019 and 2020



8
Conclusion and future work

The purpose of this chapter is provide the reader with the conclusions of the research, summarizing the
contributions, discussing the limitations of the proposed methods, as well as speculating about possible
future work. To this end, the first section will go over the answers to the research questions presented in
relation to the methodology and the results. Building on that, the second section will discuss limitations
of WolfPQ. Finally, the third section will provide a brief commentary on how the research could be
continued.

8.1. Research conclusions
As mentioned above, we will go over the answers to the questions that have been at the core of this
research and thesis. The section is structured in three subsections, each presenting the findings and
contributions related to one of the research questions listed below.

• RQ1: How well does product quantization work with single-vector dual encoders, specifically
TCT-ColBERT and Aggretriever?

• RQ2: Can we increase the compression rate of product quantization, while maintaining the re-
ranking performance, by introducing interpolation with sparse scores to the reranking score func-
tion?

• RQ3: Can we train a quantizer in a supervised fashion to optimize its behaviour for dense re-
ranking? If so, can we train the quantizer in a way that enables it to adapt to sparse score
interpolation achieving even higher performance improvements over product quantization?

8.1.1. Research question 1
In the previous chapter, we have seen that to answer the first research question, the two targeted
single-vector dual encoders (TCT-ColBERT [47] and Aggretriever [46]) have been compressed using
various configurations of PQ [36]. The results have been plotted and analyzed, as well as compared
with the results of ColBERT-PQ experiments done in the contextual quantization paper [70].

What we have observed is that, at the cost of slightly worse re-ranking performance, TCT-ColBERT-PQ
and Aggretriever-PQ use roughly x10 less memory than ColBERT-PQ. Hence, it can be concluded that
PQ-quantized single-vector dual-encoders achieve a better memory-performance trade-off than their
multi-vector counterparts. Thus, we can firmly say that PQ achieves promising results when applied to
TCT-ColBERT and Aggretriver in the context of re-ranking.

8.1.2. Research question 2
To answer the second research question a similar experimental design has been used as for the first
research question. The same compressed single-vector dual encoder indices obtained by applying PQ
have been evaluated in a setting in which re-ranking is done by applying sparse-interpolation.

The outcomes of the experiments have shown that gains of up to 224.6% can be achieved by lever-
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aging sparse interpolation. The gains obtained from sparse interpolation are the largest at very high
compression ratios and tend to decrease as the compression ratio becomes lower. Regardless of
that, the experimental data has shown that the intersection of sparse-score interpolation with PQ is an
extremely powerful technique that can make the difference between a highly compressed re-ranking
index being viable (having performance above the BM25 baseline) or not. Thus, it can be affirmed with
a high degree of certainty that sparse-score interpolation is a technique with no drawbacks that can be
used to compensate to a great extent for the performance drop resulting from applying PQ.

In addition to the above, the thesis has highlighted that quantization with sparse interpolation is a
highly effective way to maintain the re-ranking performance above a certain threshold while decreasing
the memory usage of the dense index as much as possible. For instance, a 339MB PQ-quantized
TCT-ColBERT index can be substituted with an equivalent 170MB index that uses sparse interpolation.
Hence, we can conclude that the answer to the second research question is definitely positive.

8.1.3. Research question 3
The main contribution of the thesis consists of having answered the third and last research question.
To explore whether or not a supervised quantizer can be trained to optimize re-ranking, our thesis
proposes WolfPQ.

As seen in chapter 5, WolfPQ is a novel quantization technique that is trained in an end-to-end set-
ting with the purpose of adapting quantization to re-ranking. This was achieved by adopting a design
methodology with the aim of mitigating the objective gap between the training of unsupervised quan-
tizers like PQ and the goals of passage re-ranking. Multiple configurations and training procedures for
WolfPQ have been tried and tested with the objective of obtaining a quantizer that achieves higher inter-
polation gains. In addition to that, two codeword selection methods have been explored, i.e. selection
by minimum distance and selection by semantic sampling.

The results of the experiments have shown that WolfPQ is able to outperform PQ by a large margin
in the non-interpolated setting. The differences in performance between the two quantization methods
tend to be larger at high degrees of compression. The higher performance ofWolfPQwhen compared to
PQ shows that the before-mentioned objective gap can be mitigated by training a quantizer specifically
for the task of passage re-ranking.

When it comes to the design choice between selection by minimum distance and selection by semantic
sampling, the final results are inconclusive. Selection by semantic sampling seems to perform better
on the 2019 test set, while the minimum distance approach is superior on the 2020 dataset. Further
research would be necessary to tell with certainty which approach is the best or if the choice between
the two is a hyperparameter that needs to be tuned on each individual training dataset.

When introducing sparse score interpolation, the performance difference between PQ and WolfPQ is
reduced. In other words, quantizers with a worse base performance tend to benefit more from sparse
interpolation. As one would expect, configurations of WolfPQ trained using sparse-interpolated scores
and a mixed pointwise-listwise loss function tend to outperform the other configurations once interpo-
lation comes into play. Having said that, this does not happen under all settings and datasets.

The great variability when it comes to which quantization configuration performs best in a setting in-
volving sparse-interpolation could be explained by the stochasticity of initialization and training. It also
suggests that there is room for improvement when it comes to how well WolfPQ adapts to interpolation.

When comparing our best WolfPQ configuration with representative baselines such as JPQ [22], BM25
+ColBERT-CQ [70] or dense retrieval by TCT-ColBERT-PQ, it becomes apparent thatWolfPQmanages
to achieve a better memory-performance trade-off.

In contrast to the above, further experiments are needed to determine with certainty whether or not
RepCONC [72], a state-of-the-art quantized retrieval model, is inferior or superior to WolfPQ in terms
of memory-performance trade-off. Despite this, we can firmly claim that WolfPQ has certain usability
advantages over RepCONC. On the one hand, RepCONC, unlike WolfPQ, requires the joint training of
a dual-encoder and product quantizer, which might not be feasible due to either lack of a large enough
dataset, computational resources or cost. On the other hand, RepCONC relies on dense retrieval,
rather than sparse-retrieval and dense-reranking, as our proposed setup, which is likely to be slower
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given large enough corpora [44]. Finally, WolfPQ is completely decoupled from the dual-encoder, which
means that it has the potential to be applied to future improved dense ranking models.

Taking all of the above into account, one could argue that WolfPQ is a strong candidate for a state-of-
the-art technique. However more experiments would be necessary to determine that for certain.

When it comes to answering the third research question, we can state with confidence that supervised
quantization is a viable way to achieve a superior performance-memory trade-off in a quantized single-
vector dual-encoder. When it comes to training the quantizer to better adapt to sparse-interpolation,
further research would be necessary. However, our slight performance increases resulting from our
training with sparse-interpolated scores, as well as the variability of results once interpolation is added,
provides some evidence that getting a quantizer to leverage interpolation to a higher degree is within
the realm of possibility.

8.2. Limitations of the proposed techniques
The main limitation of WolfPQ is the lack of training scalability with respect to the parameters M (the
number of subspace divisions) andK (the codebook size). As a consequence of the fact that inWolfPQ,
the codebook is trainable, the number of trainable parameters explodes for high values of M and K.
This makes it difficult to train WolfPQ for configurations involving lower levels of compression, as GPUs
with a lot of RAM are needed.

Another noteworthy limitation is pre-processing the training data. As WolfPQ relies on BM25 negative
sampling, preparing the training data in the context of large corpora might induce some time overhead.
Of course, this is highly dependent on the available hardware.

Finally, as already established, there is plenty of room for improvement when it comes to the ability of
WolfPQ to adapt to sparse-score interpolation in order to benefit from higher performance gains than
the PQ baseline. Tackling this limitation would be key to developing even better quantization methods
for re-ranking.

8.3. Future work
A clear general direction for future work would be tackling the limitations of WolfPQ. An idea that could
be leveraged to improve training scalability would be to avoid training a full quantizer. As our experi-
ments have shown, a relatively good re-ranking performance can already be achieved by applying the
simple PQ algorithm. Hence, one solution that has potential is to train an adapter on top of PQ. To be
more specific, one could train a neural network to perform a transformation of the quantized vectors
outputted by PQ to make them more prone towards giving high re-ranking performance. The architec-
ture of such a neural network would not be dependent on the parameters of PQ (M andK) but only on
the dimension of the semantic vectors.

As mentioned a couple of times already, a promising direction for improving quantization for re-ranking
would be finding a way to learn a quantizer that can leverage interpolation better. One way of achieving
this could be the development of a new loss function that takes into account the vocabulary mismatch
between documents. In essence, since documents with greater vocabulary mismatch will likely have
different BM25 scores, the dense scores are more important in distinguishing between documents with
greater vocabulary similarity. Hence, it is important to make it less likely for the quantizer to assign
documents with very close vocabulary similarity to the same codeword.

An alternative to the idea presented above would be the use of the BM25 scores directly as input data
into the quantizer in the hope that the quantizer would learn a better assignment strategy that takes the
scores into account.

Another research direction would be exploring the application of compression in a non-uniform manner
across the semantic space. As of right now, the entire semantic space is compressed using the same
configuration of the quantizer. However, since certain areas of the semantic space are more likely to be
retrieved than others, it makes sense to apply more compression to the less popular regions and less
compression to more popular regions. In this way, we minimize the information lost about the important
documents in the corpus at the expense of losing information about less important documents.



References

[1] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. “The k-means algorithm:
A comprehensive survey and performance evaluation”. In: Electronics 9.8 (2020), p. 1295.

[2] Perplexity AI. How does perplexity work? 2024. url: https://www.perplexity.ai/hub/faq/how-
does-perplexity-work (visited on 06/14/2024).

[3] Akiko Aizawa. “An information-theoretic perspective of tf–idf measures”. In: Information Process-
ing & Management 39.1 (2003), pp. 45–65.

[4] Artem Babenko and Victor Lempitsky. “Additive quantization for extreme vector compression”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014,
pp. 931–938.

[5] Payal Bajaj et al. MS MARCO: A Human Generated MAchine Reading COmprehension Dataset.
2018. arXiv: 1611.09268.

[6] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning: A review and new
perspectives”. In: IEEE transactions on pattern analysis and machine intelligence 35.8 (2013),
pp. 1798–1828.

[7] Antal van den Bosch, Toine Bogers, and Maurice de Kunder. “Estimating search engine index
size variability: a 9-year longitudinal study”. In: Scientometrics 107.2 (May 2016), pp. 839–856.
issn: 1588-2861. doi: 10.1007/s11192-016-1863-z. url: https://doi.org/10.1007/s11192-
016-1863-z.

[8] Chris Burges et al. “Learning to rank using gradient descent”. In: Proceedings of the 22nd inter-
national conference on Machine learning. 2005, pp. 89–96.

[9] Christopher Burges, Robert Ragno, and Quoc Le. “Learning to rank with nonsmooth cost func-
tions”. In: Advances in neural information processing systems 19 (2006).

[10] Luis Cabrera-Cordon. Introducing semantic search: Bringing more meaningful results to Azure
Cognitive Search. 2021. url: https: / / techcommunity .microsoft . com / t5/ ai - azure- ai -
services - blog / introducing - semantic - search - bringing - more - meaningful - results -
to/ba-p/2175636 (visited on 03/02/2021).

[11] Daniel Campos et al. MS MARCO. 2024. url: https://microsoft.github.io/msmarco/ (visited
on 06/16/2024).

[12] Shuangshuang Chen and Wei Guo. “Auto-encoders in deep learning—a review with new per-
spectives”. In: Mathematics 11.8 (2023), p. 1777.

[13] Ting Chen, Lala Li, and Yizhou Sun. “Differentiable Product Quantization for End-to-End Embed-
ding Compression”. In: Proceedings of the 37th International Conference on Machine Learning.
Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research.
PMLR, 13–18 Jul 2020, pp. 1617–1626. url: https://proceedings.mlr.press/v119/chen20l.
html.

[14] Houssem-Eddine Chihoub et al. “Exploring energy-consistency trade-offs in cassandra cloud
storage system”. In: 2015 27th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE. 2015, pp. 146–153.

[15] Wenxiao Chu et al. “Review of Hot Topics in the Sustainable Development of Energy, Water, and
Environment Systems Conference in 2022”. In: Energies 16.23 (2023), p. 7897.

[16] Lorenzo Ciampiconi et al. “A survey and taxonomy of loss functions in machine learning”. In:
arXiv preprint arXiv:2301.05579 (2023).

[17] Nick Craswell et al. “Overview of the TREC2019 deep learning track”. In: arXiv preprint arXiv:2003.07820
(2020).

63

https://www.perplexity.ai/hub/faq/how-does-perplexity-work
https://www.perplexity.ai/hub/faq/how-does-perplexity-work
https://arxiv.org/abs/1611.09268
https://doi.org/10.1007/s11192-016-1863-z
https://doi.org/10.1007/s11192-016-1863-z
https://doi.org/10.1007/s11192-016-1863-z
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/introducing-semantic-search-bringing-more-meaningful-results-to/ba-p/2175636
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/introducing-semantic-search-bringing-more-meaningful-results-to/ba-p/2175636
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/introducing-semantic-search-bringing-more-meaningful-results-to/ba-p/2175636
https://microsoft.github.io/msmarco/
https://proceedings.mlr.press/v119/chen20l.html
https://proceedings.mlr.press/v119/chen20l.html


References 64

[18] Nick Craswell et al. “Overview of the TREC 2020 deep learning track”. In: arXiv e-prints (2021),
arXiv–2102.

[19] DelftBlue: the TU Delft supercomputer. 2024. url: https://www.tudelft.nl/dhpc/system
(visited on 06/16/2024).

[20] Shiv RamDubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. “Activation functions in deep
learning: A comprehensive survey and benchmark”. In: Neurocomputing 503 (2022), pp. 92–
108. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2022.06.111. url: https:
//www.sciencedirect.com/science/article/pii/S0925231222008426.

[21] Faiss. 2024. url: https://ai.meta.com/tools/faiss/ (visited on 06/16/2024).
[22] Yan Fang et al. “Joint Optimization of Multi-vector Representation with Product Quantization”. In:

Natural Language Processing and Chinese Computing. Ed. by Wei Lu et al. Cham: Springer
International Publishing, 2022, pp. 631–642. isbn: 978-3-031-17120-8.

[23] fast-forward-indexes. 2024. url: https://pypi.org/project/fast-forward-indexes/ (visited
on 06/16/2024).

[24] Thibault Formal et al. “SPLADE v2: Sparse lexical and expansion model for information retrieval”.
In: arXiv preprint arXiv:2109.10086 (2021).

[25] George W. Furnas et al. “The vocabulary problem in human-system communication”. In: Com-
munications of the ACM 30.11 (1987), pp. 964–971.

[26] Tiezheng Ge et al. “Optimized product quantization”. In: IEEE transactions on pattern analysis
and machine intelligence 36.4 (2013), pp. 744–755.

[27] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural networks”. In:
Proceedings of the fourteenth international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings. 2011, pp. 315–323.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearni
ngbook.org. MIT Press, 2016.

[29] Google Colab. 2024. url: https://colab.research.google.com/ (visited on 06/16/2024).
[30] Jiafeng Guo et al. “A Deep Look into neural ranking models for information retrieval”. In: Informa-

tion Processing Management 57.6 (2020), p. 102067. issn: 0306-4573. doi: https://doi.org/
10.1016/j.ipm.2019.102067. url: https://www.sciencedirect.com/science/article/pii/
S0306457319302390.

[31] HDF5. 2024. url: https://www.hdfgroup.org/solutions/hdf5/ (visited on 06/16/2024).
[32] Sebastian Hofstätter et al. “Improving Efficient Neural Ranking Models with Cross-Architecture

Knowledge Distillation”. In: (2020).
[33] Hugging Face Transformers. 2024. url: https://huggingface.co/docs/transformers/en/

index (visited on 06/16/2024).
[34] ir-measures. 2024. url: https://ir-measur.es/en/latest/ (visited on 06/16/2024).
[35] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with gumbel-softmax”.

In: arXiv preprint arXiv:1611.01144 (2016).
[36] Herve Jégou, Matthijs Douze, and Cordelia Schmid. “Product Quantization for Nearest Neigh-

bor Search”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 33.1 (2011),
pp. 117–128. doi: 10.1109/TPAMI.2010.57.

[37] Euna Jung, Jaekeol Choi, and Wonjong Rhee. “Semi-siamese bi-encoder neural ranking model
using lightweight fine-tuning”. In: Proceedings of the ACMWeb Conference 2022. 2022, pp. 502–
511.

[38] Sato Kaz and Shi Guangsha. Your RAGs powered by Google Search technology, part 2. 2024.
url: https://cloud.google.com/blog/products/ai-machine-learning/rags-powered-by-
google-search-technology-part-2 (visited on 02/14/2024).

[39] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. “Bert: Pre-training of deep
bidirectional transformers for language understanding”. In: Proceedings of naacL-HLT. Vol. 1.
2019, p. 2.

https://www.tudelft.nl/dhpc/system
https://doi.org/https://doi.org/10.1016/j.neucom.2022.06.111
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://ai.meta.com/tools/faiss/
https://pypi.org/project/fast-forward-indexes/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://colab.research.google.com/
https://doi.org/https://doi.org/10.1016/j.ipm.2019.102067
https://doi.org/https://doi.org/10.1016/j.ipm.2019.102067
https://www.sciencedirect.com/science/article/pii/S0306457319302390
https://www.sciencedirect.com/science/article/pii/S0306457319302390
https://www.hdfgroup.org/solutions/hdf5/
https://huggingface.co/docs/transformers/en/index
https://huggingface.co/docs/transformers/en/index
https://ir-measur.es/en/latest/
https://doi.org/10.1109/TPAMI.2010.57
https://cloud.google.com/blog/products/ai-machine-learning/rags-powered-by-google-search-technology-part-2
https://cloud.google.com/blog/products/ai-machine-learning/rags-powered-by-google-search-technology-part-2


References 65

[40] Omar Khattab and Matei Zaharia. “Colbert: Efficient and effective passage search via contextual-
ized late interaction over bert”. In: Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 2020, pp. 39–48.

[41] Solomon Kullback and Richard A Leibler. “On information and sufficiency”. In: The annals of
mathematical statistics 22.1 (1951), pp. 79–86.

[42] Maurice de Kunder. The size of the World Wide Web (The Internet). 2024. url: https://worldw
idewebsize.com/ (visited on 06/15/2024).

[43] Phong Le and Willem Zuidema. “Quantifying the vanishing gradient and long distance depen-
dency problem in recursive neural networks and recursive LSTMs”. In: arXiv preprint arXiv:1603.00423
(2016).

[44] Jurek Leonhardt et al. “Efficient Neural Ranking using Forward Indexes”. In: Proceedings of the
ACM Web Conference 2022. WWW ’22. <conf-loc>, <city>Virtual Event, Lyon</city>, <coun-
try>France</country>, </conf-loc>: Association for Computing Machinery, 2022, pp. 266–276.
isbn: 9781450390965. doi: 10 . 1145 / 3485447 . 3511955. url: https : / / doi . org / 10 . 1145 /
3485447.3511955.

[45] Minghong Lin et al. “Online algorithms for geographical load balancing”. In: 2012 international
green computing conference (IGCC). IEEE. 2012, pp. 1–10.

[46] Sheng-Chieh Lin, Minghan Li, and Jimmy Lin. “Aggretriever: A Simple Approach to Aggregate
Textual Representations for Robust Dense Passage Retrieval”. In: Transactions of the Associa-
tion for Computational Linguistics 11 (2023), pp. 436–452.

[47] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. Distilling Dense Representations for Rank-
ing using Tightly-Coupled Teachers. 2020. arXiv: 2010.11386.

[48] Lucene search. 2024. url: https://lucene.apache.org/ (visited on 06/16/2024).
[49] Emil Sauer Lynge. “Recurrent neural networks for language modeling”. In: (2016).
[50] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. “The concrete distribution: A continuous

relaxation of discrete random variables”. In: arXiv preprint arXiv:1611.00712 (2016).
[51] Antonio Mallia et al. “Learning passage impacts for inverted indexes”. In: Proceedings of the 44th

International ACM SIGIR Conference on Research and Development in Information Retrieval.
2021, pp. 1723–1727.

[52] MaryamahMaryamah et al. “Chatbots in Academia: ARetrieval-AugmentedGeneration Approach
for Improved Efficient Information Access”. In: 2024 16th International Conference on Knowledge
and Smart Technology (KST). 2024, pp. 259–264. doi: 10.1109/KST61284.2024.10499652.

[53] YusukeMatsui et al. “A survey of product quantization”. In: ITE Transactions onMedia Technology
and Applications 6.1 (2018), pp. 2–10.

[54] Bonan Min et al. “Recent Advances in Natural Language Processing via Large Pre-trained Lan-
guage Models: A Survey”. In: ACM Comput. Surv. 56.2 (Sept. 2023). issn: 0360-0300. doi: 10.
1145/3605943. url: https://doi.org/10.1145/3605943.

[55] Zahra Monfared, Jonas Magdy Mikhaeil, and Daniel Durstewitz. “How to train RNNs on chaotic
data?” In: (2021).

[56] Rodrigo Nogueira et al. “Multi-stage document ranking with BERT”. In: arXiv preprint arXiv:1910.14424
(2019).

[57] Mohammad Norouzi and David J. Fleet. “Cartesian K-Means”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). June 2013.

[58] Matthew E. Peters et al. “Deep Contextualized Word Representations”. In: Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). Ed. by Marilyn Walker, Heng Ji, and
Amanda Stent. New Orleans, Louisiana: Association for Computational Linguistics, June 2018,
pp. 2227–2237. doi: 10.18653/v1/N18-1202. url: https://aclanthology.org/N18-1202.

[59] PyTorch. 2024. url: https://pytorch.org/ (visited on 06/16/2024).

https://worldwidewebsize.com/
https://worldwidewebsize.com/
https://doi.org/10.1145/3485447.3511955
https://doi.org/10.1145/3485447.3511955
https://doi.org/10.1145/3485447.3511955
https://arxiv.org/abs/2010.11386
https://lucene.apache.org/
https://doi.org/10.1109/KST61284.2024.10499652
https://doi.org/10.1145/3605943
https://doi.org/10.1145/3605943
https://doi.org/10.1145/3605943
https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/N18-1202
https://pytorch.org/


References 66

[60] Thilina C Rajapakse, Andrew Yates, and Maarten de Rijke. “Negative Sampling Techniques for
Dense Passage Retrieval in a Multilingual Setting”. In: (2024).

[61] Stephen Robertson, Hugo Zaragoza, et al. “The probabilistic relevance framework: BM25 and
beyond”. In: Foundations and Trends® in Information Retrieval 3.4 (2009), pp. 333–389.

[62] Hojjat Salehinejad et al. “Recent advances in recurrent neural networks”. In: arXiv preprint arXiv:1801.01078
(2017).

[63] Peter H Schönemann. “A generalized solution of the orthogonal procrustes problem”. In: Psy-
chometrika 31.1 (1966), pp. 1–10.

[64] Simple Sharma and Supriya P Panda. “Efficient information retrieval model: overcoming chal-
lenges in search engines-an overview”. In: Indonesian Journal of Electrical Engineering and
Computer Science 32.2 (2023), pp. 925–932.

[65] Stefano Squartini, Amir Hussain, and Francesco Piazza. “Preprocessing based solution for the
vanishing gradient problem in recurrent neural networks”. In: Proceedings of the 2003 Interna-
tional Symposium on Circuits and Systems, 2003. ISCAS’03. Vol. 5. IEEE. 2003, pp. V–V.

[66] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing
systems 30 (2017).

[67] Jingdong Wang and Ting Zhang. “Composite Quantization”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 41.6 (2019), pp. 1308–1322. doi: 10.1109/TPAMI.2018.2835
468.

[68] Shuai Wang, Shengyao Zhuang, and Guido Zuccon. “Bert-based dense retrievers require in-
terpolation with bm25 for effective passage retrieval”. In: Proceedings of the 2021 ACM SIGIR
international conference on theory of information retrieval. 2021, pp. 317–324.

[69] Lanling Xu et al. Negative Sampling for Contrastive Representation Learning: A Review. 2022.
arXiv: 2206.00212.

[70] Yingrui Yang, Yifan Qiao, and Tao Yang. “Compact Token Representations with Contextual Quan-
tization for Efficient Document Re-ranking”. In: Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics. 2022.

[71] Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. “Pretrained Transformers for Text Ranking:
BERT and Beyond”. In: Proceedings of the 14th ACM International Conference on Web Search
and Data Mining. WSDM ’21. Virtual Event, Israel: Association for Computing Machinery, 2021,
pp. 1154–1156. isbn: 9781450382977. doi: 10.1145/3437963.3441667. url: https://doi.org/
10.1145/3437963.3441667.

[72] Jingtao Zhan et al. “Learning Discrete Representations via Constrained Clustering for Effective
and Efficient Dense Retrieval”. In: Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining. WSDM ’22. Virtual Event, AZ, USA: Association for Computing
Machinery, 2022, pp. 1328–1336. isbn: 9781450391320. doi: 10.1145/3488560.3498443. url:
https://doi.org/10.1145/3488560.3498443.

[73] Qin Zhang et al. “A survey for efficient open domain question answering”. In: arXiv preprint
arXiv:2211.07886 (2022).

[74] Xu Zhang et al. “Correlation encoder-decoder model for text generation”. In: 2022 International
Joint Conference on Neural Networks (IJCNN). IEEE. 2022, pp. 1–7.

[75] Le Zhao and Jamie Callan. “Term necessity prediction”. In: Proceedings of the 19th ACM In-
ternational Conference on Information and Knowledge Management. CIKM ’10. Toronto, ON,
Canada: Association for Computing Machinery, 2010, pp. 259–268. isbn: 9781450300995. doi:
10.1145/1871437.1871474. url: https://doi.org/10.1145/1871437.1871474.

[76] Wayne Xin Zhao et al. “Dense Text Retrieval Based on Pretrained Language Models: A Survey”.
In: ACM Trans. Inf. Syst. 42.4 (Feb. 2024). issn: 1046-8188. doi: 10.1145/3637870. url: https:
//doi.org/10.1145/3637870.

https://doi.org/10.1109/TPAMI.2018.2835468
https://doi.org/10.1109/TPAMI.2018.2835468
https://arxiv.org/abs/2206.00212
https://doi.org/10.1145/3437963.3441667
https://doi.org/10.1145/3437963.3441667
https://doi.org/10.1145/3437963.3441667
https://doi.org/10.1145/3488560.3498443
https://doi.org/10.1145/3488560.3498443
https://doi.org/10.1145/1871437.1871474
https://doi.org/10.1145/1871437.1871474
https://doi.org/10.1145/3637870
https://doi.org/10.1145/3637870
https://doi.org/10.1145/3637870


A
Raw & extra results

A.1. Unsupervised quantization
A.1.1. Hyperparameter exploration

Figure A.1: Performance of TCT-ColBERT-PQ at different index sizes, measured on MSMARCO Passage Dev

Figure A.2: Performance of TCT-ColBERT-PQ at different index sizes, measured on MSMARCO Passage Dev
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Figure A.3: Performance of TCT-ColBERT-PQ at different index sizes, measured on MSMARCO Passage Dev

Figure A.4: Performance of TCT-ColBERT-PQ at different index sizes, measured on MSMARCO Passage Dev

A.1.2. Model comparison
Model M K Index Size (GB) Compression RR@10 Drop
BM25 (sparse retrieval) - - - - 0.170 -
BM25 + ColBERT - - 143* - 0.355* -
BM25 + TCT-ColBERT - - 27.2 - 0.359 -
BM25 + Aggretriever - - 27.2 - 0.368 -
BM25 + ColBERT-PQ 16 256 10.2* x14.01 0.290* -18.3%
BM25 + TCT-ColBERT-PQ 16 256 0.166 x163.85 0.061 -83.0%
BM25 + Aggretriever-PQ 16 256 0.166 x163.85 0.205 -44.3%
BM25 + TCT-ColBERT-PQ 64 2048 0.763 x36.64 0.290 -19.2%
BM25 + Aggretriever-PQ 32 512 0.330 x82.42 0.287 -22.0%
BM25 + TCT-ColBERT-PQ 64 4096 0.834 x32.61 0.296 -17.54%
BM25 + Aggretriever-PQ 64 512 0.627 x43.38 0.301 -18.2%
BM25 + TCT-ColBERT-PQ 96 2048 1.13 x24.07 0.31 -13.6%
BM25 + Aggretriever-PQ 96 4096 1.23 x22.11 0.336 -8.7%

Table A.1: Reranking performence on MSMARCO Passage Dev (rounded to 3 decimals) (RR@10 used, since 1 judgement
label per query is too sparse for nDCG@10)
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Figure A.5: Diagrams illustrating the memory-performance differences trade-off differences between BM25+Aggretriever-PQ,
BM25+TCT-ColBERT-PQ and BM25+ColBERT-PQ. The index size is measured in GB, while the re-ranking performance uses
RR@10. The performance is measured on the dev set. The dotted lines indicate baseline performances of non-quantized

versions of the setup
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Model M K Index Size (GB) Compression NDCG@10 Drop
BM25 - - - - 0.497 -
BM25 + ColBERT - - 143* - 0.701* -
BM25 + TCT-ColBERT - - 27.2 - 0.699 -
BM25 + Aggretriever - - 27.2 - 0.707 -
BM25 + ColBERT-PQ 16 256 10.2* x14.01 0.684* -2.3%
BM25 + TCT-ColBERT-PQ 96 2048 1.13 x24.07 0.636 -9.0%
BM25 + TCT-ColBERT-PQ 96 4096 1.23 x22.11 0.648 -7.29%
BM25 + Aggretriever-PQ 96 4096 1.23 x22.11 0.696 -1.55%

Table A.2: Reranking performence on MSMARCO Passage TREC DL19

Model M K Index Size (GB) Compression NDCG@10 Drop
BM25 - - - - 0.488 -
BM25 + ColBERT - - 143* - 0.723* -
BM25 + TCT-ColBERT - - 27.2 - 0.680 -
BM25 + Aggretriever - - 27.2 - 0.704 -
BM25 + ColBERT-PQ 16 256 10.2* x14.01 0.714* -1.24%
BM25 + TCT-ColBERT-PQ 96 2048 1.13 x24.07 0.635 -6.61%
BM25 + TCT-ColBERT-PQ 96 4096 1.23 x22.11 0.621 -8.67%
BM25 + Aggretriever-PQ 96 4096 1.23 x22.11 0.7 -0.5%

Table A.3: Reranking performence on MSMARCO Passage TREC DL 2020
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A.2. Unsupervised quantization with interpolation

Figure A.6: Diagram illustrating how much the re-ranking performance of BM25 + Aggretriever-PQ-I (left) and BM25 +
TCT-ColBERT-PQ-I (rights) gains from interpolation at different values of α.

Figure A.7: Performance comparison between TCT-ColBERT and TCT-ColBERT-PQ, with BM25 interpolated scores, at
various values of alpha, measured on MSMARCO Passage Dev
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Figure A.8: Performance gain comparison between Aggretriever and Aggretriever-PQ, with BM25 interpolated scores, at
various values of alpha, measured on MSMARCO Passage Dev

Figure A.9: Reranking performance comparison between Aggretriever and Aggretriever-PQ, with BM25 interpolated scores, at
various values of alpha, measured on MSMARCO Passage Dev

Model M K Index Size (MB) Alpha RR@10 Interp. Gain
BM25 - - - - 0.170 -
BM25 + TCT-ColBERT-PQ 32 512 339 0 0.187 -
BM25 + TCT-ColBERT-PQ 16 256 170 0 0.061 -
BM25 + TCT-ColBERT-PQ-I 16 256 170 0.1 0.198 +224.6%
BM25 + TCT-ColBERT-PQ 48 512 491 0 0.228 -
BM25 + TCT-ColBERT-PQ 24 1024 290 0 0.142 -
BM25 + TCT-ColBERT-PQ-I 24 1024 290 0.1 0.229 +61.3%
BM25 + TCT-ColBERT-PQ 96 512 946 0 0.278 -
BM25 + TCT-ColBERT-PQ 64 1024 712 0 0.252 -
BM25 + TCT-ColBERT-PQ-I 64 1024 712 0.1 0.278 +10.32%
BM25 + TCT-ColBERT - - 27852.8 0 0.359
BM25 + TCT-ColBERT-I - - 27852.8 0.1 0.357 -0.55%

Table A.4: Relationship between alpha and index size for TCT-ColBERT on MSMARCO Passage Dev
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Figure A.10: Performance gain comparison between TCT-ColBERT and TCT-ColBERT-PQ, with BM25 interpolated scores, at
various values of alpha, measured on MSMARCO Passage Dev

Model M K Index Size (MB) Alpha RR@10 Interp. Gain
BM25 - - - - 0.170 -
BM25 + Aggretriever-PQ 8 2048 133 0 0.210 -
BM25 + Aggretriever-PQ 8 256 102 0 0.151 -
BM25 + Aggretriever-PQ-I 8 256 102 0.3 0.218 +44.4%
BM25 + Aggretriever-PQ 24 1024 290 0 0.267 -
BM25 + Aggretriever-PQ 16 2048 225 0 0.259 -
BM25 + Aggretriever-PQ-I 16 2048 225 0.3 0.268 +3.5%
BM25 + Aggretriever - - 27852.8 0 0.368 -
BM25 + Aggretriever-I - - 27852.8 0.3 0.354 -3.8%

Table A.5: Relationship between alpha and index size for Aggretriever on MSMARCO Passage Dev

Model M K Index Size (GB) Alpha Compression NDCG@10 Drop
BM25 - - - - 0.497 -
BM25 + ColBERT - - 143* - 0.701* -
BM25 + TCT-ColBERT - - 27.2 - 0.699 -
BM25 + Aggretriever - - 27.2 - 0.707 -
BM25 + TCT-ColBERT-I - - 27.2 - 0.719 -
BM25 + Aggretriever-I - - 27.2 - 0.703 -
BM25 + ColBERT-PQ 16 256 10.2* x14.01 0.684* -2.3%
BM25 + TCT-ColBERT-PQ-I 96 2048 1.13 x24.07 0.685 -4.72%
BM25 + TCT-ColBERT-PQ-I 96 4096 1.23 x22.11 0.680 -5.42%
BM25 + Aggretriever-PQ-I 96 4096 1.23 x22.11 0.698 -0.71%

Table A.6: Reranking performence on MSMARCO Passage TREC DL19
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Model M K Index Size (GB) Alpha Compression NDCG@10 Drop
BM25 - - - - 0.488 -
BM25 + ColBERT - - 143* - 0.723* -
BM25 + TCT-ColBERT - - 27.2 - 0.680 -
BM25 + Aggretriever - - 27.2 - 0.704 -
BM25 + TCT-ColBERT-I - - 27.2 - 0.693 -
BM25 + Aggretriever-I - - 27.2 - 0.717 -
BM25 + ColBERT-PQ 16 256 10.2* x14.01 0.714* -2.3%
BM25 + TCT-ColBERT-PQ-I 96 2048 1.13 x24.07 0.667 -3.75%
BM25 + TCT-ColBERT-PQ-I 96 4096 1.23 x22.11 0.672 -3.0%
BM25 + Aggretriever-PQ-I 96 4096 1.23 x22.11 0.705 -1.67%

Table A.7: Reranking performence on MSMARCO Passage TREC DL 2020
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A.3. Supervized quantization for re-ranking
A.3.1. Pre-training
Model (pre-trained only) M K Index Size (GB) RR@10
BM25 - - - 0.170
BM25 + TCT-ColBERT-PQ 16 256 0.166 0.061
BM25 + TCT-ColBERT-PQ 24 1024 0.283 0.142
BM25 + TCT-ColBERT-PQ 96 256 0.824 0.284
BM25 + TCT-ColBERT-WolfPQPre 16 256 0.166 0.053
BM25 + TCT-ColBERT-WolfPQPre 24 1024 0.283 0.123
BM25 + TCT-ColBERT-WolfPQPre 96 256 0.824 0.310

Table A.8: Reranking performence on MSMARCO Passage Dev

A.3.2. Listwise loss vs. Pointwise loss
Model M K Index Size (GB) Alpha LIP #Epochs RR@10 Drop
BM25 - - - - - - 0.170 -
BM25 + TCT-ColBERT - - 27.2 0 - - 0.359 -
BM25 + TCT-ColBERT-I - - 27.2 0.1 - - -
BM25 + TCT-ColBERT-PQ 16 256 0.0 - - 0.061
BM25 + TCT-ColBERT-PQ-I 16 256 0.1 - - 0.198
BM25 + TCT-ColBERT-WolfPQ 16 256 0.166 0 0 25 0.168
BM25 + TCT-ColBERT-WolfPQ 16 256 0.166 0 0.3 25 0.159
BM25 + TCT-ColBERT-WolfPQ 16 256 0.166 0 0.5 25 0.168
BM25 + TCT-ColBERT-WolfPQ 16 256 0.166 0 0.7 30 0.161
BM25 + TCT-ColBERT-WolfPQ 16 256 0.166 0 1.0 30 0.140
BM25 + TCT-ColBERT-WolfPQ-I 16 256 0.166 0.1 0 25 0.225
BM25 + TCT-ColBERT-WolfPQ-I 16 256 0.166 0.1 0.3 25 0.220
BM25 + TCT-ColBERT-WolfPQ-I 16 256 0.166 0.1 0.5 25 0.215
BM25 + TCT-ColBERT-WolfPQ-I 16 256 0.166 0.1 0.7 0.219
BM25 + TCT-ColBERT-WolfPQ-I 16 256 0.166 0.1 1.0 30 0.186
BM25 + TCT-ColBERT-WolfPQI-I 16 256 0.166 0.1 0 25 0.225
BM25 + TCT-ColBERT-WolfPQI-I 16 256 0.166 0.1 0.01 25 0.212
BM25 + TCT-ColBERT-WolfPQI-I 16 256 0.166 0.1 0.05 30 0.211
BM25 + TCT-ColBERT-WolfPQI-I 16 256 0.166 0.1 0.1 25 0.229
BM25 + TCT-ColBERT-WolfPQI-I 16 256 0.166 0.1 0.3 30 0.235
BM25 + TCT-ColBERT-WolfPQI-I 16 256 0.166 0.1 0.5 30 0.236
BM25 + TCT-ColBERT-WolfPQI-I 16 256 0.166 0.1 0.7 30 0.242
BM25 + TCT-ColBERT-WolfPQI-I 16 256 0.166 0.1 1.0 30 0.212

Table A.9: Reranking performence on MSMARCO Passage Dev

A.3.3. Exploration of semantic sampling
Model M K Index Size (GB) Alpha MDF #Epochs RR@10
BM25 + TCT-ColBERT-WolfPQ-I 16 256 0.166 0.1 - 25 0.225
BM25 + TCT-ColBERT-WolfPQSem-I 16 256 0.166 0.1 5.0 40 0.129
BM25 + TCT-ColBERT-WolfPQSem-I 16 256 0.166 0.1 25.0 25 0.222
BM25 + TCT-ColBERT-WolfPQSem-I 16 256 0.166 0.1 30.0 30 0.258
BM25 + TCT-ColBERT-WolfPQSem-I 16 256 0.166 0.1 35.0 25 0.241
BM25 + TCT-ColBERT-WolfPQSem-I 16 256 0.166 0.1 55.0 30 0.237

Table A.10: Reranking performence on MSMARCO Passage Dev
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Model M K Index Size (GB) Alpha MDF RR@10
BM25 + TCT-ColBERT-WolfPQ 16 256 0.166 - - 0.168
BM25 + TCT-ColBERT-WolfPQSem 16 256 0.166 - 30.0 0.172
BM25 + TCT-ColBERT-WolfPQ-I 16 256 0.166 0.1 - 0.225
BM25 + TCT-ColBERT-WolfPQSem-I 16 256 0.166 0.1 30.0 0.258

Table A.11: Reranking performence on MSMARCO Passage Dev

A.3.4. Comparison to other re-ranking models
Model M K Index Size (GB) NDCG@10 (2019) NDCG@10 (2020)
BM25 - - - 0.497 0.488
TCT-ColBERT - - 27.2 0.670* -
JPQ - - 0.83* 0.677* -
RepCONC - - 0.393* 0.668* -
BM25 + TCT-ColBERT - - 27.2 0.699 0.680
BM25 + TCT-ColBERT-I - - 27.2 0.719 0.693
BM25 + ColBERT-CQ 16 256 10.2* 0.704* 0.716*
TCT-ColBERT-PQ 16 256 0.166 0.085 0.046
TCT-ColBERT-PQ 24 1024 0.283 0.268 0.169
TCT-ColBERT-PQ 96 256 0.824 0.608 0.544
BM25 + TCT-ColBERT-PQ 16 256 0.166 0.203 0.220
BM25 + TCT-ColBERT-PQ 24 1024 0.283 0.424 0.339
BM25 + TCT-ColBERT-PQ 64 1024 0.694 0.623 0.597
BM25 + TCT-ColBERT-PQ 96 256 0.824 0.636 0.604
BM25 + TCT-ColBERT-WolfPQ 16 256 0.166 0.380 0.387
BM25 + TCT-ColBERT-WolfPQ 24 1024 0.283 0.522 0.537
BM25 + TCT-ColBERT-WolfPQ 96 256 0.824 0.668 0.627
BM25 + TCT-ColBERT-WolfPQSem 16 256 0.166 0.402 0.373
BM25 + TCT-ColBERT-WolfPQSem 24 1024 0.283 0.541 0.528
BM25 + TCT-ColBERT-WolfPQSem 96 256 0.824 0.656 0.614
BM25 + TCT-ColBERT-PQ-I 16 256 0.166 0.549 0.558
BM25 + TCT-ColBERT-PQ-I 24 1024 0.283 0.603 0.548
BM25 + TCT-ColBERT-PQ-I 64 1024 0.694 0.679 0.659
BM25 + TCT-ColBERT-PQ-I 96 256 0.824 0.685 0.658
BM25 + TCT-ColBERT-WolfPQ-I 16 256 0.166 0.521 0.535
BM25 + TCT-ColBERT-WolfPQ-I 24 1024 0.283 0.608 0.590
BM25 + TCT-ColBERT-WolfPQ-I 96 256 0.824 0.696 0.660
BM25 + TCT-ColBERT-WolfPQSem-I 16 256 0.166 0.532 0.519
BM25 + TCT-ColBERT-WolfPQSem-I 24 1024 0.283 0.626 0.612
BM25 + TCT-ColBERT-WolfPQSem-I 96 256 0.824 0.674 0.659
BM25 + TCT-ColBERT-WolfPQI-I 16 256 0.166 0.552 0.511
BM25 + TCT-ColBERT-WolfPQI-I 24 1024 0.283 0.6 0.58
BM25 + TCT-ColBERT-WolfPQI-I 96 256 0.824 0.697 0.673
BM25 + TCT-ColBERT-WolfPQSemI-I 16 256 0.166 0.519 0.485
BM25 + TCT-ColBERT-WolfPQSemI-I 24 1024 0.283 0.637 0.591
BM25 + TCT-ColBERT-WolfPQSemI-I 96 256 0.824 0.666 0.669

Table A.12: Reranking performence on MSMARCO Passage TREC DL 2019 and 2020 (the WolfPQ models are only trained
on a small sample)
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Model M K Index Size (GB) RR@10 (2019) RR@10 (2020)
BM25 - - - 0.682 0.655
BM25 + TCT-ColBERT - - 27.2 0.840 0.815
BM25 + TCT-ColBERT-I - - 27.2 0.860 0.815
TCT-ColBERT-PQ 16 256 0.166 0.136 0.107
TCT-ColBERT-PQ 24 1024 0.283 0.485 0.326
TCT-ColBERT-PQ 96 256 0.824 0.8 0.731
BM25 + TCT-ColBERT-PQ 16 256 0.166 0.295 0.388
BM25 + TCT-ColBERT-PQ 24 1024 0.283 0.616 0.544
BM25 + TCT-ColBERT-PQ 96 256 0.824 0.793 0.794
BM25 + TCT-ColBERT-WolfPQ 16 256 0.166 0.596 0.538
BM25 + TCT-ColBERT-WolfPQ 24 1024 0.283 0.708 0.745
BM25 + TCT-ColBERT-WolfPQ 96 256 0.824 0.8 0.782
BM25 + TCT-ColBERT-WolfPQSem 16 256 0.166 0.598 0.558
BM25 + TCT-ColBERT-WolfPQSem 24 1024 0.283 0.728 0.713
BM25 + TCT-ColBERT-WolfPQSem 96 256 0.824 0.853 0.778
BM25 + TCT-ColBERT-PQ-I 16 256 0.166 0.762 0.707
BM25 + TCT-ColBERT-PQ-I 24 1024 0.283 0.799 0.727
BM25 + TCT-ColBERT-PQ-I 96 256 0.824 0.864 0.813
BM25 + TCT-ColBERT-WolfPQ-I 16 256 0.166 0.677 0.681
BM25 + TCT-ColBERT-WolfPQ-I 24 1024 0.283 0.757 0.721
BM25 + TCT-ColBERT-WolfPQ-I 96 256 0.824 0.81 0.772
BM25 + TCT-ColBERT-WolfPQSem-I 16 256 0.166 0.768 0.716
BM25 + TCT-ColBERT-WolfPQSem-I 24 1024 0.283 0.8 0.766
BM25 + TCT-ColBERT-WolfPQSem-I 96 256 0.824 0.832 0.82
BM25 + TCT-ColBERT-WolfPQI-I 16 256 0.166 0.767 0.697
BM25 + TCT-ColBERT-WolfPQI-I 24 1024 0.283 0.75 0.722
BM25 + TCT-ColBERT-WolfPQI-I 96 256 0.824 0.838 0.824
BM25 + TCT-ColBERT-WolfPQSemI-I 16 256 0.166 0.719 0.688
BM25 + TCT-ColBERT-WolfPQSemI-I 24 1024 0.283 0.847 0.788
BM25 + TCT-ColBERT-WolfPQSemI-I 96 256 0.824 0.816 0.783

Table A.13: Reranking performence on MSMARCO Passage TREC DL 2019 and 2020 (the WolfPQ models are only trained
on a small sample)
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