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In their CommentPhys. Rev. E62, 8842 (2000] Szalaiet al. use the “Fourier-transform-convolution
method” to correct the two three-body integrals entering our algebraic perturbation theory for polar fluids
[Phys. Rev. E59, 5085(1999]. We present an alternative analytical calculation of these integrals that is more
transparent than that of Szalkii al. Compared with the original expression for the dielectric condtahys.

Rev. E59, 5085(1999] the corrected one demonstrates a better agreement with the simulation data for low
and moderate values of the coupling constant.

PACS numbsgps): 61.20.Gy, 77.22.Ch, 75.50.Mm

The Comment by Szalat al. [1] corrects calculations of implying that the coefficient 5/3 in the free energy expansion
the two three-body integrals in ER0) of Ref.[2] using the  (25) of Ref.[2] should be replaced by 1/9:
“Fourier-transform-convolution method” of Bye and Stell
[3]. In this paper, | want to show that the same results can be
obtained in a more transparent way.

The b$? in Eq. (20) of Ref.[2] can be expressed &§”
=bp+b, with imposing the corresponding correction of the third-order

term in Eq.(26) of Ref. [2] for the dielectric constant:
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yD:f dri(1—3cog0,)ap, Compared with the original expression the corrected one
demonstrates a better agreement with the simulation data for
both low and moderate values of the coupling constant
04(123), (2) < 2.5 as follows from Fig. 1 of Ref1].
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APPENDIX
and

In this appendix we present an alternative calculation of
1 5o 4T 2 the three-body integralgy andy, given by Eqs(2) and(4).

bA=§p(ﬁS ) EWRLY (3 since both of them are dimensionless we scale all distances

with the hard-sphere diametelr Placing the origin of the
3co@ a1 coordin_ate system in the center of particle 1 we repléce
——————04(123. by dr3:

(r1af23
4

04(123) is the three-body correlation function of hard
spheres andw;, a,, ag are the angles of the triangle
formed by the three particles.
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'}/D:J' dr12(1—3 CO§®12)aD, (Al)

II o(r—-1),

1+ 3 cosa, COSa, COSary
ap= s

The detailed derivation ofp and y,, presented in the (r1g29)° i<

Appendix, is more transparent than the “Fourier-transform- (A2)
convolution method” used ifl]. It yields

3272 172 Ya= f driay, (A3)

Y=~ g YT g 5
B 3cofaz—1

in agreement with the results pf]. Thus, in the low-density aA—f dris (Pl 29)° L[] O(rij—1), (A4)
limit

) where®(x) is the Heaviside step function. It is important to
(2)_} 4m 2\2 } 2 note that if a dependence on particle separation is short

by = p(BsH) | =7/, (6) N - " . .
3\ 3 9 range, it is possible to replace integration over a cylinder
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FIG. 1. Three-particle configuration.

(which is an assumed form of the containby integration

over a sphere. To simplify notations we set

ro=R, Tr43=r, ry3=X, COSai=pu

and choose the axis alongrq, (see Fig. 1 Thendr;=dr
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1<r<R+1, if 1<R<2.

So,

'}/D:f dRaD(R)(1_3 CO§ HR)
1<R<2

+f dRap(R)(1—3 cog 6R). (A9)
R>2

Integration in the first term is over a finite domain, and there-
fore can be performed in spherical coordinates yielding zero.
Thus, the only nontrivial contribution comes from the second
term in which

R+1 1 (h 87 1
dr—f dufp(r,Ru)=——, R>2.
. . mfp( M) 3 R3

ap(R)= 27Tf ;
(A10)

R

Substituting it into Eq(A9) we get

=—2zr2drdu and the elements of the 123-triangle are ex-

pressed in terms dr, r, andu:

x=VR%+r?-2rRu, (A5)
R—r

COoSay,= < M, (AB)
r-rR

COSaz= " 'u. (A7)

We start with the functiorap, which, after substitution of

Egs.(A5)—(A7), reads

1
aD=27-rf drFf dufp(r,R,u)®(R—-1)
-1

XOr—1)OX(r,R,u)—1)

with
1
fo=—2[(r*+R?)(1—3u?) + urR(1+3u?%)].
X

The conditionx>1 can be presented using H&5) as

rP+R? -1

2rR (A8)

,u,<hE

Since bothr and R are larger than unityh is always
positive. Recall that by definition the values gfare limited
by —1<u<1. Two cases are possiblét) h>1 implying
that integration oveg is from —1 to 1, and(2) h<1 im-
plying that integration ove is from —1 to h.

Performing the standard algebraic integration it is easy to
verify that fl_ld,ufD=O implying that the first case gives

zero contribution toyy. Thus, h<1, or equivalently;|r

—R|<1. For a fixedR it determines the domains of varia-

tion of r:

R-1<r<R+1, if R>2,

_811'

1
=3 dR%(1—3 cog 6R),

R>1

where the integration domain is extendedRo 1 (the con-
tribution of the interval KR<2 is zerg yielding [cf. Eq.
(21) of Ref.[2]]

32
Yo=— 3772. (A11)

The functiona, in Eq. (A4) reads

1
aA=27rf drFJ' dufa(r,R,u)®(R-1)0
-1

X(r=21)0x(r,R,u)—1)

with
1
fa=—[2r—4rRu+R*(3u*-1)].
X

Again the conditiorx>1 can be expressed in the fol8).
We begin with dividing theR domain into <R<2 andR
>2.

Short-ranged part1<R<2. As previously we proceed
by discussing the two possibilitigs>1 andh<1. The case
h>1 corresponds to>R+ 1. Integration ovep gives

Jld for =2 Ry A12
4 ,bL A(ry !M)_rg r._R 3 ( )
which forr>R+1 results in
1 4
f d,qu(r,R,,u,)=—3, r>R+1.
—1 r
Its contribution toa, is
1 8=« 1
(1<R<2)_ _
a =8 f dr—=— . Al13
An=1 T e 4 3 (Re1)° (AL3)
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The opposite cask<1 corresponds to <r<R+1 and in- r>R+1 andlor Kr<R—-1
tegration overu gives

According to Eq.(A12) integration overnu results in

h
f dufA(r,R u)= (—3+42r2+4r4+8R—6R2
-1

4r3R 4
1 = for r>R+1
—2r’R%2+R%). (A14) fld,qu(r,R,,u): r (A17)

The contribution toa, becomes 0 for 1<r<R-1,

R+1 1 (h yielding
aglﬁffﬂ:zwf dr—f duf,
' 1 rJ-1
AR =ali A=
h> h> .
=27 ——(36+12R— 19R? 3 (R+1)®
12(1+R)3
_9R3+ 3R*+ RY). (A15) For h<1 we use Eq(A14) to obtain
So, R+1 1 (h sr 1
(R>2) _ - _
a —wa dr—f dufy=—— .
R A,h<1 Y A 3 (R+1)°

4
oD ai a2 R
Thus, the long-ranged quantitie§ %} anda{{;2) cancel:

and the corresponding contribution 4q reads
R>2 R>2) _
17 a(A,h>>g.+a(A,h><%._o’
y(Al<R<2):_7T2' (A16)

9 yielding the final result:

Long-ranged part 2<R<«~., We follow the same route
studying first the cask>1, which now can be realized for :1_77-,2 (A18)
belonging to one of the two domains: YaTg T
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