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In their Comment@Phys. Rev. E62, 8842 ~2000!# Szalai et al. use the ‘‘Fourier-transform-convolution
method’’ to correct the two three-body integrals entering our algebraic perturbation theory for polar fluids
@Phys. Rev. E59, 5085~1999!#. We present an alternative analytical calculation of these integrals that is more
transparent than that of Szalaiet al. Compared with the original expression for the dielectric constant@Phys.
Rev. E59, 5085~1999!# the corrected one demonstrates a better agreement with the simulation data for low
and moderate values of the coupling constant.

PACS number~s!: 61.20.Gy, 77.22.Ch, 75.50.Mm
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The Comment by Szalaiet al. @1# corrects calculations o
the two three-body integrals in Eq.~20! of Ref. @2# using the
‘‘Fourier-transform-convolution method’’ of Ho”ye and Stell
@3#. In this paper, I want to show that the same results can
obtained in a more transparent way.

The b2
(2) in Eq. ~20! of Ref. @2# can be expressed asb2

(2)
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3 cos2 a321

~r 13r 23!
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~4!

gd(123) is the three-body correlation function of ha
spheres anda1 , a2 , a3 are the angles of the triangl
formed by the three particles.

The detailed derivation ofgD and gD , presented in the
Appendix, is more transparent than the ‘‘Fourier-transfor
convolution method’’ used in@1#. It yields

gD52
32p2

9
, gD5

17p2

9
~5!

in agreement with the results of@1#. Thus, in the low-density
limit
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implying that the coefficient 5/3 in the free energy expans
~25! of Ref. @2# should be replaced by 1/9:
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9
p2rd3l2D , ~7!

imposing the corresponding correction of the third-ord
term in Eq.~26! of Ref. @2# for the dielectric constant:

e2153yF11y1
1

16
y2G . ~8!

Compared with the original expression the corrected o
demonstrates a better agreement with the simulation data
both low and moderate values of the coupling constanl
,2.5 as follows from Fig. 1 of Ref.@1#.

APPENDIX

In this appendix we present an alternative calculation
the three-body integralsgD andgD given by Eqs.~2! and~4!.
Since both of them are dimensionless we scale all distan
with the hard-sphere diameterd. Placing the origin of the
coordinate system in the center of particle 1 we replacedr3
by dr13:

gD5E dr12~123 cos2 Q12!aD , ~A1!

aD5E dr13

113 cosa1 cosa2 cosa3

~r 13r 23!
3 )

i , j
Q~r i j 21!,

~A2!

gD5E dr12aD , ~A3!

aD5E dr13

3 cos2 a321

~r 13r 23!
3 )

i , j
Q~r i j 21!, ~A4!

whereQ(x) is the Heaviside step function. It is important
note that if a dependence on particle separation is s
range, it is possible to replace integration over a cylind
8851 ©2000 The American Physical Society
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~which is an assumed form of the container! by integration
over a sphere. To simplify notations we set

r125R, r135r , r235x, cosa15m

and choose thez axis alongr12 ~see Fig. 1!. Thendr135dr
522pr 2drdm and the elements of the 123-triangle are e
pressed in terms ofR, r , andm:

x5AR21r 222rRm, ~A5!

cosa25
R2rm

x
, ~A6!

cosa35
r 2Rm

x
. ~A7!

We start with the functionaD , which, after substitution of
Eqs.~A5!–~A7!, reads

aD52pE dr
1

r E21
dm f D~r ,R,m!Q~R21!

3Q~r 21!Q„x~r ,R,m!21…

with

f D5
1

x5
@~r 21R2!~123m2!1mrR~113m2!#.

The conditionx.1 can be presented using Eq.~A5! as

m,h[
r 21R221

2rR
. ~A8!

Since bothr and R are larger than unity,h is always
positive. Recall that by definition the values ofm are limited
by 21,m,1. Two cases are possible:~1! h.1 implying
that integration overm is from 21 to 1, and~2! h,1 im-
plying that integration overm is from 21 to h.

Performing the standard algebraic integration it is easy
verify that *21

1 dm f D50 implying that the first case give
zero contribution togD . Thus, h,1, or equivalently;ur
2Ru,1. For a fixedR it determines the domains of varia
tion of r:

R21,r ,R11, if R.2,

FIG. 1. Three-particle configuration.
-

o

1,r ,R11, if 1,R,2.

So,

gD5E
1,R,2

dRaD~R!~123 cos2 uR!

1E
R.2

dRaD~R!~123 cos2 uR!. ~A9!

Integration in the first term is over a finite domain, and the
fore can be performed in spherical coordinates yielding ze
Thus, the only nontrivial contribution comes from the seco
term in which

aD~R!52pE
R21

R11

dr
1

r E21

h

dm f D~r ,R,m!5
8p

3

1

R3
, R.2.

~A10!

Substituting it into Eq.~A9! we get

gD5
8p

3 E
R.1

dR
1

R3
~123 cos2 uR!,

where the integration domain is extended toR.1 ~the con-
tribution of the interval 1,R,2 is zero! yielding @cf. Eq.
~21! of Ref. @2##

gD52
32

9
p2. ~A11!

The functionaD in Eq. ~A4! reads

aD52pE dr
1

r E21
dm f D~r ,R,m!Q~R21!Q

3~r 21!Q„x~r ,R,m!21…

with

f D5
1

x5
@2r 224rRm1R2~3m221!#.

Again the conditionx.1 can be expressed in the form~A8!.
We begin with dividing theR domain into 1,R,2 andR
.2.

Short-ranged part: 1,R,2. As previously we proceed
by discussing the two possibilitiesh.1 andh,1. The case
h.1 corresponds tor .R11. Integration overm gives

E
21

1

dm f D~r ,R,m!5
2

r 3 S ur 2Ru
r 2R

11D , ~A12!

which for r .R11 results in

E
21

1

dm f D~r ,R,m!5
4

r 3
, r .R11.

Its contribution toaD is

aD,h.1
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`
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1
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8p

3
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~R11!3
. ~A13!
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The opposite caseh,1 corresponds to 1,r ,R11 and in-
tegration overm gives

E
21

h

dm f D~r ,R,m!5
1

4r 3R
~2312r 21r 418R26R2

22r 2R21R4!. ~A14!

The contribution toaD becomes

aD,h,1
(1,R,2)52pE

1

R11

dr
1

r E21

h

dm f D

52p
R

12~11R!3
~36112R219R2

29R313R41R5!. ~A15!

So,

aD
(1,R,2)5aD,h.1

(1,R,2)1aD,h,1
(1,R,2)52pS 4

3
2R1

R3

12D
and the corresponding contribution togD reads

gD
(1,R,2)5

17

9
p2. ~A16!

Long-ranged part: 2,R,`. We follow the same route
studying first the caseh.1, which now can be realized forr
belonging to one of the two domains:
e

r .R11 and/or 1,r ,R21.

According to Eq.~A12! integration overm results in

E
21

1

dm f D~r ,R,m!5H 4

r 3
for r .R11

0 for 1,r ,R21,

~A17!

yielding

aD,h.1
(R.2) 5aD,h.1

(1,R,2)5
8p

3

1

~R11!3
.

For h,1 we use Eq.~A14! to obtain

aD,h,1
(R.2) 52pE

R21

R11

dr
1

r E21

h

dm f D52
8p

3

1

~R11!3
.

Thus, the long-ranged quantitiesaD,h.1
(R.2) andaD,h,1

(R.2) cancel:

aD,h.1
(R.2) 1aD,h,1

(R.2) 50,

yielding the final result:

gD5
17

9
p2. ~A18!
@1# I. Szalai, K.-Y. Chan, and D. Henderson, preceding pap
Phys. Rev. E62, 8842~2000!.
r, @2# V.I. Kalikmanov, Phys. Rev. E59, 5085~1999!.
@3# J.S. Ho”ye and G. Stell, J. Chem. Phys.63, 5342~1975!.


