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This thesis conducts a series of interrelated research studies on reach probability estimation of 
rare events for stochastic hybrid systems. Chapter 1 explains that the motivation for these 
studies stems from the need to assess safety and capacity of a design for a future Air Traffic 
Management (ATM) concept of operations (ConOps). The safety/capacity of an ATM ConOps 
can be expressed in terms of the amount of traffic that can be handled in such a way that the 
probability of rare events remains sufficiently low. Chapter 1 also explains that the dynamic 
and stochastic behaviours in an ATM ConOps design can be captured by a General Stochastic 
Hybrid System (GSHS) model, and that the rare events to be studied can be defined as events 
that the state of a GSHS model reaches an unsafe set. In ATM safety studies, an unsafe set often 
considered is the closed subset in the GSHS state space where the physical shapes of two aircraft 
overlap. The state of a GSHS model consists of two components: i) a Euclidean valued 
component, and ii) a discrete valued component. The evolution of these two components 
influence each other; therefore a GSHS model can capture various types of dynamic and 
stochastic behaviours, including Brownian motion and spontaneous jumps. In contrast to forced 
jumps, that happen when the GSHS state reaches a boundary in the hybrid state space, 
spontaneous jumps occur according to a Poisson point process. A mathematically important 
property of GSHS, is that a GSHS execution satisfies the strong Markov property.  

A straightforward approach in estimating the Reach Probability of an unsafe set by a GSHS 
model is to conduct a large amount of Monte Carlo (MC) simulation runs, and calculate the 
fraction of runs in which the unsafe set is reached. For realistic application of such MC based 
rare event estimation approach, there is need for analytical methods that allow to accelerate the 
simulation. Literature on such acceleration distinguishes two main approaches: Importance 
Sampling (IS) and Importance Splitting (ISp). The IS approach is to draw random samples from 
a reference stochastic process model instead of the original process model, and to compensate 
the estimated reach probability through an analytically derived factor to compensate for 
sampling from the reference model instead of the original model. The ISp approach embeds the 
unsafe set by an increasing sequence of nested subsets, and then estimates the Reach Probability 



 
 

of the unsafe set as a product of conditional probabilities of reaching the next inner subset. The 
mathematically best developed ISp approach for a strong Markov process makes use of an 
Interacting Particle System (IPS). For ATM ConOps evaluation, the IPS approach has 
demonstrated that it may yield a very large acceleration factor. However, to also assess the 
effect of GSHS model parameter changes on the reach probability, there is need for further 
improvements. Therefore, the overall aim of this thesis is to develop significant improvements 
in simulation based Reach Probability estimation for a GSHS. 

Chapter 2 investigates a multi-dimensional diffusion process using the IPS framework. In this 
study, the IPS performances is analysed for four splitting strategies: multinomial resampling 
(MR), multinomial splitting (MS), residual multinomial splitting (RMS), and fixed assignment 
splitting (FAS), when employing a finite number of particles. These strategies differ in how 
they sample the new set of particles from the set of successful particles. The study proves that 
IPS using FAS dominates in variance reduction over IPS using MR, MS and RMS.  

Chapter 3 extends the Chapter 2 results, for a multi-dimensional diffusion process, to a GSHS. 
In applying IPS to a GSHS, in literature, there are two simulation approaches. The formal  
approach is to simulate a GSHS according to its formal execution rules. The popular approach 
is to first transform the spontaneous jumps of a GSHS to forced jumps, and then to simulate 
this transformed version. Chapter 3 shows that the popular approach leads to a loss of the strong 
Markov property of the process defined by the original GSHS. Subsequently, Chapter 3 also  
proves that this loss of the strong Markov property has a negative effect on the acceleration 
factor of IPS for a GSHS with spontaneous jumps.  

Chapter 4 studies an improvement of the IPS approach when a GSHS has mode values that 
occur at low probability, such as rare system failure conditions. To improve this situation, IPS 
is incorporated with sampling per mode, denoted as IPSmode. The IPSmode algorithm is 
combined with four mode-directed splitting strategies: MRmode, MSmode, RMSmode, and 
FASmode, each employing a finite number of particles. In contrast to the studies in Chapters 2 
and 3, the mode-directed splitting strategies employing RMS and MS outperform the FAS 
approach. The explanation is that for the FASmode splitting approach it is more demanding to 
take proper account of the effect of particle weights in mode-dependent splitting. 

Chapter 5 studies IS for GSHS. The motivation to do so was triggered by a recent development 
of IS theory for Piecewise Deterministic Markov Process (PDMP), which is a GSHS without 
Brownian motion. First, the optimal IS strategy for a PDMP is extended to a GSHS; this shows 
that Brownian motion plays a key role in the derivation, and in the optimal strategy. Second, 
the approximated IS strategy that has been developed for PDMP is extended to a GSHS. This 
approximated IS strategy assumes that the PDMP/GSHS consists of a number of subsystems in 
parallel redundancy, that are subject to failure and repair; and that the Euclidean valued process 
has no discontinuities. Under these conditions, chapter 5 shows that the approximated IS 
strategy developed for a PDMP also applies to a GSHS, i.e. the influence of Brownian motion 
disappears.  

Chapter 6 draws conclusions regarding the results obtained through the series of studies. First 
conclusions are given from the novel contributions to the literature on rare event estimation for 
stochastic hybrid systems. Secondly, it is explained what this means for specific use in 
modelling and risk assessment of a future ATM ConOps. Finally, directions for follow-on 
research are mentioned. 
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Introduction 

 

 

This chapter introduces rare event simulation, stochastic behaviors and research gaps addressed 
in this thesis. It describes the thesis goal and objectives. Furthermore, the thesis overview will 
be clarified by means of short chapter descriptions which explain how each individual chapter 
is linked to the overall aim. 
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1.1 Motivation 

This PhD thesis studies rare event estimation using Monte Carlo (MC) simulation. The 
motivation for these studies stems from the increased need to evaluate a design of a future Air 
Traffic Management (ATM) Concept of Operations (ConOps) on safety and capacity. 

In 2022, the Federal Aviation Administration (FAA) of the United States served approximately 
16,405,000 flights, averaging over 45,000 flights and 2.9 million passengers per day (FAA, 
2023). The annual growth rate for airline passengers is expected to be 5.5% over the next 20 
years (FAA, 2021). As a result, this exponential growth will lead to more crowded airspace, 
posing challenges for effectively resolving future air traffic congestion. This will be 
exacerbated by the introduction of unmanned aerial vehicles operating at different altitudes. 

Commercial air transportation has attained a very high level of safety, characterized by a 
notably low frequency of accidents, such as mid-air collision. This very high safety level has 
been reached through decades of learning from accidents and subsequent improvement of the 
air transport operations. Complementary to learning from accidents, safety risk assessment 
methods are in use for safety evaluation of changes of sub-systems in the overall air 
transportation system. For instance, the FAA has developed an "Air Traffic Services Safety 
Management Handbook" to conduct a safety risk analysis of changes to sub-systems in use by 
ATM. However, safety evaluation of sub-systems is inadequate to understand the impact of 
interactions between different sub-systems and human actors, such as pilots and air traffic 
controllers. To analyse the safety and capacity effects of these interactions, there is a need for 
systematic modelling and simulation of a design of a future ATM ConOps, and to provide 
feedback on the safety/capacity findings to the design team, as shown in Figure 1.1. Modelling 
and simulation during the design phase of a future ATM ConOps on safety/capacity enable 
designers and engineers to learn unknown behaviour and to develop design improvements 
before system deployment, thereby reducing costly errors and risks.  

 

 

Figure 1.1. Safety/capacity assessment and feedback to ATM design [Blom et al., 2001] 

An illustrative example of safety/capacity assessment through modelling and simulation of a 
design of a future ATM ConOps is found in the work conducted by Blom et al. (2007). They 
considered a given design of a next-generation ATM ConOps, and assessed mid-air collision 
risk as a function of increasing levels of air traffic demand. The modelling and simulation 
covered socio-technical issues such as crew reaction times, the reliability of various sub-
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systems such as GNSS, ADS-B, and ASAS, as well as environmental factors like randomly 
varying wind conditions. 

This illustrative example demonstrates that there are two key challenges. On the one hand, there 
is the modelling of the complex overall socio-technical system as defined by an ATM ConOps 
design. On the other hand, accurate assessment of mid-air collision probability asks for a 
mathematically proven rare event simulation method that applies to the developed model of the 
ATM ConOps design. In mathematics, rare event simulation is studied in terms of proven 
variance reduction methods.  

In the next subsections, these two key challenges in modelling and rare event simulation are 
illustrated for the Free Flight ATM ConOps design studied by [Blom et al., 2007].  

1.2  Socio-technical modelling of a future ATM ConOps Design 

In current ATM ConOps, air traffic controllers on the ground are responsible for keeping 
aircraft well-separated from each other. In a free-flight design, the separation management 
responsibility is moved to pilots [RTCA, 1995]. Pilots flying in free-flight airspace are allowed 
to optimize their trajectories and have greater freedom in choosing paths and flight altitudes. 
Obviously, the safety implications arising from this level of freedom deserve serious attention 
in the design phase. This section illustrates the agent-based simulation model of  [Blom et al., 
2007] that has been developed to assess the safety risk of an early Free Flight design. 

A simulation of a Free Flight operation involves a large number N of aircraft. In the agent-based 
model of [Blom et al., 2007], for each of the N aircraft, there are five active agents: one physical 
aircraft agent, one Pilot-Flying (PF) agent, one Pilot-not-Flying (PNF) agent, one agent for the 
Airborne Guidance, Navigation and Control (AGNC) system, and one agent for the Airborne 
Separation Assistance System (ASAS). As depicted in Figure 1.2, outside of these N aircraft-
related agents, there is one common agent for the Communication, Navigation and Surveillance 
(CNS) systems that facilitate communication between agents for different aircraft. As shown in 
Table 1.1, each agent in Figure 1.2 consists of multiple interacting sub-systems. Table 1.1 also 
shows how the total number of sub-systems increases with the number N of aircraft flights in 
the airspace for which the ATM ConOps has to be evaluated for safety/capacity.  

 

 

Figure 1.2. Agents and their interactions in the Free-Flight model of [Blom et al., 2007]. 
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Table 1.1. Agent Types and number of subsystems in in the free flight operation,  
where N indicates the number of aircraft [Blom et al., 2007] 

Agent Type 
Number of 

agents 
Number of 
subsystems 
per agent 

Total  
number of 
subsystems 

Aircraft N 4 4N 
Pilot-Flying (PF) N 6 6N 

Pilot-Not-Flying (PNF) N 2 2N 
ASAS N 8 8N 
AGNC N 18 18N 

Global CNS 1 3 3 
Total 5N+1 41 38N +3 

 

To properly specify an agent-based model that involves such large number of interacting agents 
and sub-systems, a compositional model specification method has to be used. Such method 
allows one to start with the model specification of each sub-system, followed by the 
specification of the interactions between the sub-systems within an agent, and finally the 
specification of the interactions between subsystems of different agents.  

For the compositional specification of the agent-based model of the Free Flight ConOps design, 
[Blom et al., 2007] has used the compositional specification method of Stochastically and 
Dynamically Coloured Petri Nets (SDCPN) [Everdij et al., 2006]. During the first step of 
SDCPN model specification, for each sub-system a Local Petri Net (LPN) model is specified. 
During subsequent steps, the interactions between LPN’s are specified. For example, the ASAS 
agent is composed of subsystems for: 1) Processing, 2) Alerting, 3)Audio Alerting, 4) 
Surveillance, 5) System mode, 6) Priority switch mode, 7) Anti-priority switch mode, and 8) 
Predictive alerting. Each of these subsystems is modelled as an LPN. Subsequently, within each 
ASAS agent, the ADS-B information received from other aircraft is processed by the 
Surveillance LPN. The Processing LPN subsequently uses the outcome of the Surveillance LPN 
to perform conflict detection and resolution with the own aircraft state, which information is 
provided by the GNC agent. The outcomes from the Processing LPN are subsequently used as 
input by the LPN’s Alerting and Audio Alerting. Non-nominal events are also captured in the 
model. For example, the LPN System mode has three discrete states: i) Nominal working; ii) 
Failed; and iii) Corrupted. If the LPN System mode is Failed or Corrupted, then the performance 
of the Processing LPN is influenced. Once each agent is specified, then the interactions between 
agents are also systematically defined. For example, the PF agent may receive a conflict alert 
from the ASAS agent (Audio Alerting LPN). 

The resulting SDCPN model specification of the Free Flight ConOps considered, is 
subsequently implemented as a Monte Carlo simulator that can run an air traffic scenario 
involving N flights. To accurately estimate the mid-air collision probability for such a Free 
Flight ConOps design, this scenario has to be simulated a large number ( runsN )of times, with 

randomly varying initial traffic conditions. In practice this asks for impractically large computer 
simulation times. To bring the computer simulation down by orders in magnitude, an effective 
rare event simulation method is needed. 
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1.3 Rare Event Simulation 

The mathematical problem setting of rare event simulation is known as Reach Probability 
estimation, e.g., [Prandini et al., 2011]. For a continuous-time stochastic process { }tx , which 
evolves in a state space X , reach probability is the probability that { }tx reaches a rare set 
D X  within a finite time interval [0, ].T  For mid-air collision in ATM, the rare set D  is the 
area where two 3-dimensional aircraft shapes are in overlap. 

A straightforward approach to Reach Probability estimation is to conduct many Monte Carlo 
(MC) runs and calculate the fraction of runs that reached the rare set D . For safety assessment 
of an air traffic scenario involving multiple aircraft, this would take an unrealistically long 
duration of computer simulation time. To reduce the simulation time, there is a need to apply 
mathematically sound variance reduction methods. Particular consideration is required to avoid 
a potential underestimation of the reach probability. For air traffic, heuristic variance reduction 
can easily lead to a systematic underestimation of mid-air collision risk. 

Importance Sampling (IS) and multilevel splitting are the most powerful variance reduction 
approaches. IS allows rare events to occur more frequently by modifying the underlying 
probability distribution and then correcting the biased estimator by multiplying the result by the 
corresponding likelihood ratio [Bucklew, 2004; Glasserman, 2004]. The effectiveness of IS 
depends on finding the correct measure transformation, and improper operation may result in 
worse results than direct simulation. Typically, the rough asymptotic behaviour of the rare event 
probability needs to be determined in order to find the correct measure transformation. In 
complex dynamic models, this type of analysis may be challenging (e.g. Botev and Kroese, 
2008; L’Ecuyer et al., 2009; Rubinstein, 2010; Morio and Balesdent, 2016). 

Multilevel Splitting, also referred to as Importance Splitting (ISp), is a well-developed method 
for estimating the reach probability. The multilevel setting allows one to formulate the 
expression of the Reach probability of the rare set D as a product of larger reach probabilities 
for a sequence of nested subsets D  , e.g. [Glasserman et al., 1999]. Cérou et al. (2005, 2006) 
embed this multilevel factorization in the Feynman-Kac factorization for strong Markov 
processes (Del Moral, 2004). This Feynman-Kac setting subsequently supports the evaluation 
of the Reach probability through sequential Monte Carlo simulation in the form of an 
Interacting Particle System (IPS), including a proof of convergence (Cérou et al., 2006). The 
mathematical background of IPS requires that the stochastic process considered is a strong 
Markov process, i.e., that the Markov property applies not only to fixed times but also to 
stopping times. 

IPS has been used in the Free Flight example [Blom et al., 2007]. Verification that the strong 
Markov property is satisfied has been accomplished as follows. For the SDCPN specification 
method used, [Everdij and Blom, 2006] has proven how the many stochastic variables in the 
complete SDCPN model defines a GSHS, for which the strong Markov property has been 
proven by [Bujorianu and Lygeros, 2006].  

The use of IPS in [Blom et al., 2007] yields a large acceleration factor. However, to also conduct 
sensitivity analysis, i.e., to evaluate the effect of model parameter changes on the estimated rare 
event probabilities, the acceleration factor has to be increased by two extra orders of magnitude. 
Hence, a mathematically formulated motivation of the studies conducted in this PhD thesis is 
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to investigate directions in realizing the two extra orders of the magnitude in variance reduction 
that IPS realizes in the illustrative Free Flight model of [Blom et al., 2007]. 

1.4 Stochastic behaviours in rare event simulation for future ATM 

As has been explained in the previous subsection, the use of the SDCPN specification method 
defines a strong Markov process, which is a requirement the mathematical foundation of the 
IPS method. In a further study of variance reduction, it is also needed to understand which types 
of stochastic behaviours are used in the agent-based modelling of an ATM ConOps design. The 
study of variance reduction tends to be more demanding with the increasing complexity of the 
stochastic behaviours involved.  

The first column in Table 1.2 lists the stochastic behaviour types that are relevant to characterise 
different classes of strong Markov processes [Lygeros and Prandini, 2010]:  

- Hybrid state space: A state space that is a Kronecker product of a discrete set 
and an Euclidean space. For example, the hybrid aircraft state also covers flight 
mode and aircraft type in addition to position and velocity. 

- Ordinary Differential Equation (ODE): The solution of an ODE is a deterministic 
flow. An example is to model the rate of a non-exponential spontaneous jump 
rate as a function of passed delay, that is the solution of an ODE. 

- Stochastic Differential Equation (SDE): In addition to a deterministic flow, there 
also is a random influence by Brownian motion processes. An example is to use 
an SDE model to represent the uncertain and time-varying nature of wind, 
affecting the aircraft's velocity. 

- Forced jumps: Jumps that occur when the Euclidean-valued state reaches the 
boundary of the hybrid state space. An example is a forced jumps from climb 
mode to level flight mode when the aircraft altitude reaches its intended cruise 
level. 

- Spontaneous jumps: Jumps that occur according to a Poisson process and 
therefore are not predictable. An example is a sudden failure of a technical 
aircraft system. 

- Hybrid spontaneity: This means that the rate of spontaneous jumps depends both 
on the discrete-valued mode and on the Euclidean-valued state. For example, the 
failure rate of a technical system also depends on the aircraft's altitude. 

- Hybrid jumps: Jump in the Euclidean-valued state happens simultaneously with 
a transition in the discrete-valued state. An example is an aircraft switching from 
straight flight mode to a turn mode and, at the same time, making a jump in the 
aircraft’s bank angle.  

 

The ATM examples given above for each stochastic behaviour type illustrate that the strong 
Markov process class to be studied should capture all the above stochastic behaviour types. 

The first row in Table 1.2 lists relevant classes of strong Markov processes; e.g. [Lygeros and 
Prandini, 2010; Yin & Zhu, 2010]; these range from Diffusion to General Stochastic Hybrid 
System (GSHS). The increasing complexity of these strong Markov process classes can best be 
described through a description of stepwise extension of stochastic behaviour types, i.e. starting 
with Diffusion, and ending with GSHS: 
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                         Table 1.2. Overview of stochastic behaviour types and 
                    their support in various classes of strong Markov processes 

Stochastic 
Behaviour 

Type 

Diffusi
on 

Jump- 
diffusio

n 
CTMC 

Switchin
g 

Diffusion 

Hybrid 
Switching 
Diffusion 

Hybrid 
Switching 
Diffusion / 

hybrid 
jumps 

PDMP GSHS 

Hybrid State - - - X X X X X 
ODE - - - - - - X X 
SDE X X - X X X - X 

Forced 
Jumps 

- - - - - - X X 

Spontaneous 
Jumps 

- X X X X X X X 

Hybrid 
spontaneity 

- - - - X X X X 

Hybrid 
jumps 

- - - - - X X X 

 

- A Diffusion is an Euclidean-valued solution of an SDE driven by Brownian motion.  
- A Jump-diffusion is a Euclidean-valued solution of an SDE driven by Brownian motion 

and Poisson random measure [Glassermann, 2004; Oksendal and Sulem, 2005], where 
the Poisson random measure triggers spontaneous jumps.  

- A Continuous Time Markov Chain (CTMC) is a discrete-valued process that makes 
spontaneous jumps in its discrete state space.  

- A Switching Diffusion is the solution of an SDE, the coefficients of which are a function 
of an independent CTMC [Ghosh et al., 1997; Mao and Yuan, 2006]. Hence a switching 
diffusion has a hybrid state space.  

- Hybrid Switching Diffusion [Yin & Zhu, 2010]: Relative to a Switching Diffusion, the 
extra stochastic behaviour is that the transition rates in the CTMC are now a function of 
the Euclidean-valued state component.  

- Hybrid Switching Diffusion with Hybrid Jumps [Hespanha, 2005]: Relative to Hybrid 
Switching Diffusion, the extra stochastic behaviour is that a jump in the Euclidean state 
component can happen simultaneously with a transition in the discrete-valued state 
component.  

- Piecewise Deterministic Markov Process (PDMD) [Davis, 1984]. Relative to Hybrid 
Switching Diffusion, the extra stochastic behaviour is forced hybrid jumps that occur 
when the Euclidean-valued state hits predefined boundaries in the Euclidean sub-space. 
In a PDMP, this extension could be handled under the limitation that the flow within 
the Euclidean sub-space is deterministic. This implies restriction to an ODE instead of 
SDE.  

- General Stochastic Hybrid System (GSHS) [Bujorianu and Lygeros, 2006]: Relative to 
PDMP, an SDE now replaces the ODE.  

 

Based on the comprehensive understanding of the stochastic behaviours employed in agent-
based modelling for the Free Flight example provided by [Blom et al., 2007], it is evident that 
the GSHS framework emerges as the most suitable formalism. The GSHS framework has the 
ability to effectively capture all stochastic behaviours, including the strong Markov property. 
Therefore, GSHS can be confidently recommended as the appropriate formalism for addressing 
the intricate stochastic behaviours encountered in future ATM ConOps designs. 
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1.5 Research Gaps in Variance Reduction for Stochastic Behaviours in GSHS 

1.5.1. Need for a better understanding of IPS based variance reduction 

IPS is a variance reduction method that makes use of multi-level splitting. This allows to 
express the small reach probability of the inner level set as a product of larger reach probabilities 
for the sequence of enclosing subsets, e.g. (Glasserman et al. 1999). Cérou et al. (2005, 2006) 
embedded this multi-level splitting approach within the Feynman-Kac factorization equation 
for strong Markov processes (Del Moral, 2004). 

In the IPS approach, multiple particles are simultaneously simulated to estimate the reach 
probability of the next level (or subset), if started from the preceding level (or subset). Once a 
particle enters a subset in between, it splits/copies into many independent sub-paths. Many 
splitting implementations are available in the literature: a fixed-splitting implementation 
(L’Ecuyer et al., 2006); a fixed-effort implementation (L’Ecuyer et al., 2007); a fixed success 
implementation (Le Gland and Oudjane, 2006); a fixed probability of success (Cérou and 
Guyader, 2007). Moreover, (Gerber et al., 2019; Garvels, 2000) compared different splitting 
strategies. (Garber and Chopin, 2015) introduced a method to improve the efficiency of Monte 
Carlo methods by combining quasi-random sequences to improve convergence. Cérou et al. 
(2005, 2006) embedded this multilevel splitting in the Feynman-Kac factorization equation for 
strong Markov processes (Del Moral, 2004). The IPS approach seems to be the most suitable 
for rare event estimation in stochastic dynamical systems (Krystul, 2006). 

In spite of these results on the analysis of multilevel splitting and IPS, relevant issues remain 
for a better understanding. One issue is that in order to simplify the problem, researchers assume 
that each sequence is independent (e.g., Garvels, 2000). However, this assumption does not 
hold in practice. Another issue is that IPS variance estimate is based on the assumption that the 
number of simulated particles tends to infinity. Also this assumption is impossible to realize in 
practice.  

1.5.2. Understanding the effect of modelling spontaneous jumps as forced jumps 

The continuous-time executions of a GSHS evolve in a hybrid state space under influence of 
combinations of diffusions, spontaneous jumps and forced jumps. As explained by Lygeros and 
Prandini (2010), a spontaneous jump in a GSHS can be transformed to a forced jump. This is 
done as follows. An auxiliary Markov state component tq , starts at each exit time as an 
exponentially distributed random variable, subsequently evolves as ( , )t ttdq x dt    and 
defines a new exit time upon reaching value zero. Replacement of spontaneous jumps in { , }t tx 
with forced jumps when 0tq    and resampling of 'q  from an exponential distribution with 
rate 1 upon reaching the extended exit boundary at stopping time ' . Common practice in 
GSHS model specification is to adopt this transformation. As a result the GSHS model specified 
has no or fewer spontaneous jumps. [Blom et al., 2018] has demonstrated through IPS 
simulations, for example, that the transformation of a spontaneous jump to a forced jump may 
have negative effect on the variance reduction performance of IPS. The specific example 
considered was the probability of a car hitting a wall scenario, and involved a random reaction 
delay by a human. Two ways in modelling this human reaction delay have been simulated: i) 
direct simulation of a GSHS execution and ii) transforming the spontaneous jumps of a GSHS 
into forced jumps, followed by simulating the executions of this transformed version.  
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The findings for this example show there is a need for a better understanding of the effect of 
transforming spontaneous jumps in GSHS to forced jumps. 

1.5.3. Error Analysis of Sampling per mode strategies in IPS 

Switching Diffusion is a subclass of GSHS. It has received increasing attention recently. A 
prominent feature of these systems is the coexistence of continuous dynamics and discrete 
events. Applying the multilevel splitting method to Switching Diffusion cannot produce 
reasonable estimates within reasonable simulation time. The reason is that there may be very 
few particles in a mode of low probability (such mode is referred to as a "light" mode). This 
happens because each resampling step tends to make particle copies for modes with high 
probabilities, as a result of which few or no particle copies are made for "light" modes. 
Increasing the number of particles should improve but at the cost of significantly increasing 
simulation time. 

To avoid this situation, (Krystul, 2006) proposed the sampling per mode algorithm, which 
draws a fixed number of Nj particles in each mode j. Using the law of large numbers and the 
central limit theorem, (Krystul, 2006) have analyzed the convergence of the sampling per mode 
algorithm. However, the law of large numbers or the central limit theorem only holds when the 
number of simulated particles tends to infinity. This theoretical issue can have an unpredictable 
impact on accuracy. 

1.5.4. Importance Sampling in Estimation of Reach Probability for GSHS 

In the literature, IS has been studied for CTMC [Shahabuddin, 1994] and Diffusions 
[Glasserman, 2004; Dupuis et al., 2012; Zhang et al., 2014]. Only recently, IS has been 
developed for PDMP [Chraibi et al., 2019]. This invaluable development has been identified 
thanks to participation of Dr. Chraibi in a benchmark competition between tools and methods 
for rare event estimation for stochastic hybrid systems (Abate et al., 2021). The research 
question to be addressed is if and how these IS results for PDMP can be extended to GSHS, i.e. 
a PDMP that involves Brownian motion.    

1.6. Research Objectives 

The above identified research gaps have inspired the overall aim of this thesis and it is:  

 
To develop significant improvements in rare event simulation for GSHS 

 
 

The following four research objectives are addressed in this thesis to address this statement. 
These objectives will be solved in each of the chapters of this thesis. 

Objective 1. Error Analysis of Multilevel Splitting 

Garvels (2000) has proven that fixed assignment splitting works better or is equal to 
multinomial resampling by assuming that the sets of particles at different levels are independent 
of each other. Objective 1 is to prove that using fixed assignment splitting in reach probability, 
IPS dominates in variance reduction over the random assignment methods, Multinomial 
Resampling, Multinomial Splitting, and Residual Multinomial Splitting without making use of 
the independence assumption. 
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Objective 2. Understanding the Effect of Transforming Spontaneous Jumps to 
Forced Jumps 

There are two approaches to simulating GSHS execution: direct simulation and transformation 
of spontaneous jumps into forced jumps, followed by simulation of the transformed version. 
Blom et al. (2018) found that the latter approach can produce unexpected effects, such as 
particle impoverishment. However, the mechanisms behind these effects needed to be 
sufficiently understood to make a meaningful contribution to simulating a GSHS. Therefore, 
Objective 2 is to investigate the effects of using the transformed version in an arbitrary GSHS. 

Objective 3. Error Analysis of sampling per mode within IPS 

Straightforward application of the IPS approach of (Cérou et al., 2002) to rarely switching 
diffusions has certain limitations, particularly for a few particles in a mode with small 
conditional probability, i.e., a “light” mode. In such a case, the possible switching between 
modes is not properly taken into account, which badly affects estimator performance. In order 
to improve this, (Krystul, 2006) developed the sampling per mode algorithm to cope with large 
differences in mode weights and proved the accuracy through asymptotic analysis. 

Objective 3 is to develop an error analysis approach for IPS that uses sampling per mode and 
to use this to develop an improvement of sampling per mode strategy within IPS. 

Objective 4. Extending Chraibi’s IS results for PDMP to GSHS 

IS has been well studied in the field of rare event estimation for CTMC and diffusions. These 
studies address three main issues. The first issue is to characterize the optimal IS strategy. The 
second issue is to use the characterization of the optimal IS strategy for the development of a 
parametric family of approximated IS strategies. The third issue is to optimize the parameter 
values in this family through a minimization of the Kullback-Leibler divergence between the 
probability laws of the optimal and the approximated IS strategies. Recently, Chraibi et al. 
(2019) addressed these three steps for a PDMP, which is a GSHS without diffusion. Therefore, 
Objective 4 is to extend the IS developments by (Chraibi et al., 2019) to a GSHS. 

1.7 Thesis Overview 

The thesis consists of six chapters. The contents of the remaining chapters are briefly 
summarized below. 
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Chapter 1
Introduction

Chapter 2
Continuous-Time State Space

Chapter 3
Continuous-Time Hybrid State Space

Chapter 5
IS for GSHS

Chapter 6
Conclusion

IPS for GSHS

Chapter 4
Switch Diffusion Process

ARCH Competition

 

Figure 1.3. The overview of the thesis 

Chapter 2 reviews the background of IPS based reach probability estimation for a multi-
dimensional diffusion process and characterizes the conditional variances of IPS-based reach 
probability estimation under four different splitting strategies: multinominal resampling, 
multinominal splitting, residual multinominal splitting, and fixed assignment splitting. 
Subsequently, the variance estimates of these four strategies are compared. Numerical 
evaluations and comparisons of four splitting strategies within IPS are shown. This chapter is 
based on Ma and Blom (2021). 

Chapter 3 examines the effect of transforming spontaneous jumps in a GSHS to forced jumps 
(referred to as "the transformed version" for convenience). This chapter begins with an 
overview of the IPS setting for a GSHS. Two methods for simulating GSHS execution are 
presented: direct simulating GSHS execution and the transformed version. These approaches 
are then formulated within the IPS framework. The comparison of these two approaches reveals 
the mechanisms behind the unexpected effects of the transformed version. This chapter is based 
on the work by Ma and Blom (2022a) 

Chapter 4 focuses on the analysis of the sampling per mode strategy for reach probability in 
GSHS. Firstly, the IPS setting for a GSHS is summarized, followed by the representation of the 
sampling per mode algorithm within IPS (Krystul et al., 2012). Next, a slightly improved 
version of Krystul’s algorithm is developed, which ensures that the total particle number 
remains same. This improved version is then compared with the classical IPS approach. 
Furthermore, several improved versions of the sampling per mode algorithm using different 
splitting strategies are analysed and compared. This chapter is based on the work by Ma and 
Blom (2022b). 
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Chapter 5 extends the optimal IS strategy by Chraibi et al. (2019) for a PDMP to a GSHS. This 
chapter formulates the reach probability estimation for a GSHS using IS and characterizes the 
optimal IS strategy. However, this strategy is only of theoretical use in practice. As a result, a 
parametric family of approximated IS strategies for a GSHS is developed using this 
characterization . With the Kullback-Leibler divergence, the best parameter value in this family 
is determined. This chapter is based on Ma and Blom (2023). 

Finally, Chapter 6 presents conclusions and possible directions for future research. 
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2 

Random Assignment vs. Fixed Assignment in Multilevel 
Importance Splitting for Estimating Stochastic Reach Probabilities 

 

 

This chapter focuses on estimating Reach Probability of a closed unsafe set by a stochastic 
process. A well-developed approach is to make use of multi-level MC simulation, which 
consists of encapsulating the unsafe set by a sequence of increasing closed sets and conducting 
a sequence of MC simulations to estimate the reach probability of each inner set from the 
previous set. An essential step is to copy (split) particles that have reached the next level (inner 
set) prior to conducting an MC simulation to the next level. The aim of this chapter is to prove 
that the variance of the multi-level MC estimated reach probability under fixed assignment 
splitting is smaller than or equal to that under random assignment splitting methods. The 
approaches are illustrated for a geometric Brownian motion example. 
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2.1. Introduction 

Evaluating the reach probability of an unsafe set is well-studied in the domains of control and 
safety verification of complex safety critical system designs. In the control domain, the focus 
is on synthesizing a control policy such that a safety critical systems stays away from the unsafe 
set with a high probability (Alur et al., 2000; Prandini and Hu, 2007). From this control 
synthesis perspective, it makes good sense to adopt model abstractions in combination with an 
over-approximation of the unsafe set (Julius and Pappas, 2009; Abate et al., 2011; Di Benedetto 
et al., 2015). In safety verification of complex safety critical system design, reach probability 
of the unsafe set is commonly evaluated using statistical simulation techniques, e.g. air traffic 
(Blom et al., 2006, 2007a), actuarial risks (Asmussen, and Albrecher, 2010), random graphs 
(Bollobás, 2010), communication network reliability (Robert, 2003). 

To evaluate very small reach probabilities, common practice is to make use of methods to 
reduce variance for a given computational effort. Literature on variance reduction distinguishes 
two main approaches: Importance Sampling (IS) and Importance Splitting (ISp). IS draws 
samples from a reference stochastic system model in combination with an analytical 
compensation for sampling from the reference model instead of the intended model. Bucklew 
(2004) gives an overview of IS and analytical compensation mechanisms. For complex models, 
analytical compensation mechanisms typically fall short and multi-level ISp is the preferred 
approach (e.g. Botev and Kroese, 2008; L’Ecuyer et al., 2009; Rubinstein, 2010; Morio and 
Balesdent, 2016). 

In multi-level splitting, the safe set, or target set, i.e. the set for which the reach probability has 
to be estimated, is enclosed by a series of strictly increasingly (nested/enclosing) subsets. This 
multi-level setting allows one to express the small reach probability of the inner level set as a 
product of larger reach probabilities for the sequence of enclosing subsets (see e.g. Glasserman 
et al, 1998, 1999). Cérou et al. (2005, 2006) embedded this multi-level splitting in the Feynman-
Kac factorization equation for strong Markov processes (Del Moral, 2004). This Feynman-Kac 
setting subsequently supported the evaluation of the reach probability through sequential Monte 
Carlo simulation in the form of an Interacting Particle System (IPS), including characterization 
of asymptotic behaviour (Cérou et al., 2006).  

Particle splitting (copying) of SN  successful particles to P SN N  particles can be done in 
multiple ways (e.g. Garvels and Kroese, 1998; Cérou et al., 2006; L'Ecuyer et al., 2007; 
L'Ecuyer et al., 2009). The classical approach is Multinomial Resampling, i.e. drawing the PN

particles at random, with replacement, from the sN  successful particles. Cérou et al. (2006) 
propose the alternative of adding to the set of SN  successful particles, P SN N  random drawings 
(with replacement) from the SN  successful particles; this we refer to as Multinomial Splitting. 
A third approach is fixed assignment splitting, i.e. copying each of the SN successful particles 
as much as possible the same number of times. Following (L’Equyer et al., 2009), fixed 
assignment splitting is accomplished in two steps. During the first step each successful particle 
is copied /p sN N    times. During the second step, the residual /p s p sN N N N     particles are 
randomly chosen (without replacement) from the set of successful particles, and these are added 
to the set of copies from the first step. A fourth approach is residual multinomial splitting, i.e. 
after the first step of fixed assignment splitting, the residual /p s p sN N N N     particles are 
randomly chosen (with replacement) from the SN  successful particles. 

Under restrictive assumptions, Garvels (2000) has proven that fixed assignment splitting works 
better or equal to multinomial resampling. The key assumption is that the sets of particles at 
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different levels are independent of each other. In IPS for filtering studies, e.g. (Del Moral et al., 
2001; Gerber et al., 2019), multi-level Feynman-Kac analysis has been used to make variance 
comparisons between different particle resampling methods. Through mapping the filtering IPS 
results of Del Moral et al. (2001) to the reach probability IPS, Cérou et al. (2006) argue that 
multinominal resampling adds extra randomness to multinomial splitting, as a result of which 
the multinomial splitting has a variance advantage over multinomial resampling. Through 
mapping the filtering IPS results of Gerber et al. (2019) to the reach probability IPS, it is clear 
that residual multinomial splitting has a variance advantage over multinomial resampling. 
Gerber et al. (2019) also conclude that existing multi-level Feynman-Kac analysis falls short in 
handling random drawings without replacement, as is done in the second step of fixed 
assignment splitting.  

The main objective of this chapter is to prove that using fixed assignment splitting in reach 
probability IPS dominates in variance reduction over the random assignment methods: 
Multinomial Resampling, Multinomial Splitting and Residual Multinomial Splitting. These 
proofs do not make use of the independence assumption of Garvels (2000). The stochastic 
process considered is a multi-dimensional diffusion process that is pathwise continuous. The 
effect of different splitting methods is also illustrated in reach probability estimation for a 
geometric Brownian motion example. 

This chapter is organized as follows. Section 2.2 reviews the background of IPS based reach 
probability estimation for a multi-dimensional diffusion process. Section 2.3 characterizes the 
conditional variances of IPS based reach probability estimation under multinominal resampling, 
multinominal splitting, residual multinominal splitting and fixed assignment splitting. Section 
2.4 proves that fixed assignment splitting has a variance advantage over these other three ways 
of splitting. Section 2.5 presents a case study based on a geometric Brownian motion for 
evaluating and comparing multinominal resampling, multinomial splitting and fixed 
assignment splitting. Section 2.6 draws conclusions. 

2.2. IPS based reach probability estimation 

2.2.1. Reach probability of multi-dimensional diffusion 

For the rest of the chapter, we define all stochastic processes on a complete probability space 
( , , ) F . The problem is to estimate the probability   that a n -valued pathwise continuous 
diffusion process { }tx  reaches a closed subset nD  within finite period [0, ]T , i.e. 

 ( )P T    (2.1) 

with   the first hitting time of D  by { }tx :  

 inf{ 0, }tt x D     (2.2) 

 

Remark: Cérou et al. (2006) and L’Equyer et al. (2009) also address the more general situation 
that T is a P-a.s. finite stopping time. 

2.2.2. Multi-level factorization 

If the reach probability   in (2.1) is too small, then a straightforward MC estimator requires a 
considerable amount of samples. To overcome this, we introduce a nested sequence of closed 
subsets kD  of n  to factorize the reach probability ,  such that 
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1 1 0
n

m mD D D D D        and 0 1{ } 0.P x D   Let k be the first moment in time that 
{ }tx  reaches kD , i.e. 

 inf{ 0;   }k t kt x D t T       (2.3) 

Then, we define {0,1}-valued random variables { , 0, .., }k k m   as follows:  

 1,   if   or 0

    0,   else
k k T k   


 (2.4) 

By using this k  definition, the factorization becomes (Cérou et al, 2006): 

 

1

m

k
k

 


  (2.5) 

with 1 1P( 1 1) P( )k k k k kT T          . 

2.2.3. Recursive estimation of the multi-level factors 

By using the strong Markov property of { },tx  we can develop a recursive estimation of  using 
the factorization in (2.5). First, we define ( , )

kk k x  , (0 ) ,k kQ T D   for 1, , ,k m   and the 
following conditional probability measure ( )k B  for an arbitrary Borel set B  of 1n : 

( ) ( | )k k k kB P B Q     

Cérou et al. (2006) show that k  is a solution of the following recursion of transformations: 

I. mutation III. selection
1

II. conditioning

( ) ( ) ( )

   

k k k

k

p



      


 

where ( )kp B  is the conditional probability measure of k B   given 1 1k kQ    i.e.  

1 1( ) ( | )k k k kp B P B Q      

Because { }tx  is a strong Markov process, { }k  is a Markov sequence. Therefore the mutation 
transformation (I) satisfies a Chapman-Kolmogorov equation prediction for k : 

 
1 1

1
| 1( ) ( | ) ( ) for all ( )

n k k

n
k kp B p B d B     

 


    (2.6) 

For the conditioning transformation (II) this means: 

 
11 { }

P( ) 1 ( )
n

k
k k k kQ

T T p d


   
 

       (2.7) 

Hence, selection transformation (III) satisfies: 

 

1

{ }

{ }

{ }

1 ( )
( ) [ 1 ( )] /

1 ( )
k

k

n
k

kQB
k k kQB

kQ

p d
B p d

p d







  








 





 (2.8) 

With this, the k  terms in (2.5) are characterized as solutions of a recursive sequence of 
mutation equation (2.6), conditioning equation (2.7), and selection equation (2.8).  

2.2.4. IPS algorithmic steps 

Following Cérou et al (2006), equations (2.5)-(2.8) yield the IPS algorithmic steps for the 
numerical estimation of :  
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I. mutation III. selection IV. splitting
1

II. conditioning

( ) ( ) ( ) ( )

   

k k k k

k

p



         





 

A set of PN  particles is used to form empirical density approximations k  kp  and k of k  kp  
and k  respectively. By increasing the number PN  of particles in a set, the errors in these 
approximations will decrease. When simulating particles from 1kQ   to kQ , a fraction k of the 
simulated particle trajectories only will reach kQ  within the time period [0, ]T  considered; these 
particles form .k  Prior to starting the next IPS cycle with PN  particles, ( )

kP SN N copies (also 
called splittings) from the 

kSN successful particles in k  are added to .k In the next sections, 
we consider four ways of splitting: multinominal resampling, multinominal splitting, residual 
multinominal splitting and fixed assignment splitting. 

Under Multinomial Splitting, Cérou et al. (2006) prove that   forms an unbiased  estimate, 

i.e.  

   
1 1 1

m m m

k k k
k k k

    
  

 
    

 
      (2.9) 

Moreover, Cérou et al. (2006) derive second and higher order asymptotic bounds for the error
( )  based on multi-level Feynman Kac analysis, e.g. Del Moral (2004; Theorem 12.2.2). 

2.3. Conditional variance characterizations 

In this section, conditional characterizations of the variance of k are developed for IPS using 

multinomial resampling (MR), multinomial splitting (MS), residual multinomial splitting 
(RMS) and fixed assignment splitting (FAS), respectively.  

2.3.1. IPS using multinomial resampling 

In IPS using multinomial resampling, PN  offspring are cloned randomly from k . The 
resulting algorithm of IPS with multinomial resampling, starting from 1

i
k  , is described in 

Algorithm 2.1 below.  

In order to gain a better understanding of the probabilistic characteristics of the particles that 
reached a level, we now characterize the conditional distribution of particles that reach level 
k+1, given that at level k the i-th successful particle i

k  is copied i
kK  times, 1,.., .

kSi N  

Proposition 2.1: If 0
kSN   and i

kK , with =1,2,...,
kSi N , denote the number of particles that 

copies i

k  at level k. Then the number ,
1

k i
kY  , of the i

kK  particle copies of i
k  that reach level k+1, 

has a conditional Binomial distribution of size i
kK  and success probability 1 ( )k

i
k 
 , i.e. 

 
,
1

1| ,
( )( ; , ) Bin( ; , )k i i i

k kk
k

i i i i
k k k kY K

p n K n K


 



   (2.10) 

with  

 
1 1( ) P( | )k

i i
k k k kT          (2.11) 

Proof: See Appendix 2.A. 
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Algorithm 2.1. IPS using multinomial resampling 

Input: Initial measure 0 , end time T , decreasing sequence of closed subsets  ,n
k tD x 

1 ,k kD D  1,.., .k m  Also 0 ,nD   (0 )k kQ T D   and number of particles .PN  

Output: Estimated reach probability   collects  

0. Initiation: Generate PN particles
0 0~ ,  1, .., ,i

Pi N    i.e., 
0

1
{ }10 ( ) ( ),p

i
p

N

Ni 



   with Dirac . Set 

1.k   

I. Mutation: 1

1 { }
(.) ( )p

i
p k

k

N

Ni
p





  , where 

i

k
  is obtained through simulating the strong Markov process 

starting from 1

i

k  . 

II. Conditioning: 
1
1( )p

k

N i

S k ki
QN 


   and 

Sk

pk

N

N  . If 0,
kSN   then ' 0,  ' { ,.., }k k k m   and go to 

Step V. 

III. Selection: 1
{ }

1

(.) ( )
Sk

i
S kk

N

k N
i


 



   , with 1{ } Sk
Nj

k j 
 the collection of i

k kQ  , 1,.., Pi N .  

IV. Splitting: 1

1 { }
(.) (.)p

i
p k

N

k Ni 
 


 , with ~ (.)i

k k  . 

V. If k m , then : 1k k  and go to Step I, else 
1

m

k
k

 


  

 

Theorem 2.1: If 1
k

S
N   and ,  1,.. ,

k

i

k S
K i N  denotes the number of copies made of the i-th 

successful particle i
k  during the splitting step at level k of the IPS algorithm, then 

    1 1

1 1

1

1
| ,..., | ,..., ( )

Sk
S Sk k

k k

N
N Ni i

k k k k k k
ip

K
N

      


          (2.12) 

 
     

 

 

1 1 1

1

1 1

1 1
2

1

1 2
2

1

1
2

' 11
'

1
1

Var | ,..., | ,..., ( ) ( )

1
Var | ,..., ( )

1
Cov , | ,..., ( ) (

Sk
S Sk k

Sk
Sk

S Sk k
Sk

k k k

k

k k

N
N Ni i i

k k k k k k k
ip

N
Ni i

k k k k
ip

N N
Ni i i

k k k k k
iip
i i

K
N

K
N

K K
N

  



 

     

  

   

  



 










   

   

 







     

  

   



)i
k
 

 (2.13) 

Proof: See Appendix 2.A. 

Proposition 2.2: If 1,
kSN  and we use multinomial resampling at IPS level k then 

 1 1

1

1

1
| ,..., ( )

Sk
Sk

k

k k

N
N i

k k k
iSN

     


     (2.14) 

   

   

1 1 1

1 1 1

1

1

2

1 1 ' 1

1
1

Var | , ..., ( ) ( )

1 1
( ) ( ) ( )

Sk
Sk

k

S S Sk k k

k k

k k k

k k k

N
N i i

k k k k
ip S

N N N
i i i
k k k

i i ip S S

N N

N N N

  

  

   

  

  

  





  

   

           



 

   

  
 (2.15) 
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Proof: See Appendix 2.A. 

2.3.2. IPS using multinomial splitting 

IPS using multinomial splitting follows the steps of Algorithm 2.1, except for splitting step IV. 
Now each particle in ( )k   is first copied once, and then  

kp SN N  offspring are cloned 
randomly from ( )k  (Cérou et al., 2006, Section 3.2, p189). This multinomial splitting in IPS 
step IV is specified in Algorithm 2.2. 

Algorithm 2.2. Multinomial Splitting in IPS step IV 

IV. Splitting: 
i i

k k    for 1,...,
kSi N ; then ~ (.)i

k k   for 

1,...,
kS pi N N  . Each particle receives weight 1/ pN .  

 

In IPS using multinomial splitting, all particles have the same weight at any given level. Each 
particle is simulated until it reaches the first subset 1Q . Then 1 11

1( )pN i

i
Q


  is the number of 

particles that have reached the first subset 1Q . The fraction 1
1 1 11

1( )p

p

N i

Ni
Q 


   is an unbiased 

estimate of 1 1P( )T   . To maintain a sufficiently large population of particles, in IPS step 
IV ( )

kP SN N  copies of these 1 11
1( )pN i

i
Q


  successful particles are added to the set of 

kSN  
successful particles. During the next IPS cycle each new particle is simulated until it reaches 
the second subset 2 .Q Again, the fraction 1

2 2 21
1( )p

p

N i

Ni
Q 


   of 2 21

1( )pN i

i
Q


  particles that 

reach the second subset 2Q  is a natural estimate of 2 2 1P( ).T T       This cycle is repeated 
until particles reach the last subset mQ . The fraction 1

1
1( )p

p

N i

k k kNi
Q 


   of particles that have 

timely reached the k-th subset from the preceding subset is an unbiased estimate of 

1P( )k k kT T       . From eq. (2.9) we know that the product of these m fractions is an 
unbiased estimate of P( )m T   . 

It is straightforward to verify that Proposition 2.1 and Theorem 2.1 also hold true using 
multinomial splitting in IPS step IV. 

Proposition 2.3: If 1,
kSN  and we use multinomial splitting at IPS level k then 

 1 1

1

1

1
| ,..., ( )

Sk
Sk

k

k k

N
N i

k k k
iSN

     


     (2.16) 

   

   

1 1 1

1 1 1

1

1

2

2
1 1 ' 1

1
1

Var | ,..., ( ) ( )

1
( ) ( ) ( )

Sk
Sk

k

S S Sk k k
k

k k

k k k

k k k

N
N i i

k k k k
ip S

N N N
p S i i i

k k k
i i ip S S

N N

N N

N N N

    

  

 

  

  

  





  

   

            



 

   

  
 (2.17) 

Proof: See Appendix 2.A. 

2.3.3. IPS using residual multinomial splitting 

IPS using residual multinomial splitting follows the steps of Algorithm 2.1 with a new Step IV. 
Now each successful particle is first copied 

kk p SN N      times, and then residual   mod 
kp SN N  

particles are randomly drawn from ( ).k   The residual multinomial splitting step IV is specified 
in Algorithm 2.3 below. 
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Algorithm 2.3. Residual multinomial splitting in IPS step IV 

IV. Splitting: i i

k k    for 1,...,
kSi N ; 

Sk
i N i

k k     for 1,...,
kSi N ; 

… 

1 Sk

p

Sk

i N
i

k k

N

N
 


 

 
      for 1,...,

kSi N ; 

~ (.)
Sk

p

Sk

i N

k k

N

N
 


 
 
     for 1,...,

k

k

p
p S

S

N
i N N

N

 
   

  
. 

       Each particle receives weight 1/ pN .  

 

Straightforward verification shows that Proposition 2.1 and Theorem 2.1 also hold true when 
using residual multinomial splitting in IPS step IV. 

Proposition 2.4: If 1,
kSN  and we use residual multinomial splitting at IPS level k then 

 1 1

1

1

1
| ,..., ( )

Sk
Sk

k

k k

N
N i

k k k
iSN

    


     (2.18) 

   

     

1

1

1 1
1

2

1 1 12
1 1 ' 1

Var | , ...,
1

( ) 1 ( )

 mod 1
. ( ) ( ) ( )

Sk

k

Sk

k

S S Sk k k
k

k k

N

k k

N
i i

k k k k
ip S

N N N
p S i i i

k k k k k k
i i ip S S

N N

N N

N N N

      

     

  



  

  

   

           



 

   

  
 (2.19) 

Proof: See Appendix 2.A. 

2.3.4. IPS using fixed assignment splitting 

When using fixed assignment splitting, each particle in ( )k   is copied as much as possible the 
same number of times. This is applied by first copying each particle 

kp SN N    times, and then 
making   mod 

kp SN N  copies from distinct particles chosen at random (without replacement). So 
the chosen particles would be copied 1

kp SN N     times (L'Ecuyer et al., 2006; L'Ecuyer et al., 
2007). The Fixed Assignment splitting Step IV is specified in Algorithm 2.4 below. 

Algorithm 2.4. Fixed assignment splitting in IPS step IV 

IV. Splitting: 1{ } Sk
Nj

k j 
 is a random permutations of 1{ } Sk

Nj
k j 
 . 

       Copy:       i i

k k    for 1,...,
kSi N ; 

Sk
i N i

k k     for 1,...,
kSi N ; 

… 

1 Sk

p

Sk

i N
i

k k

N

N
 


 

 
      for 1,...,

kSi N ; 

Sk

p

Sk

i N
i

k k

N

N
 


 
 
      for 1,...,

k

k

p
p S

S

N
i N N

N

 
   

  
. 

       Each particle receives weight 1/ pN .  
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Straightforward verification shows that Proposition 2.1 and Theorem 2.1 also hold true using 
fixed assignment splitting in IPS step IV. 

Proposition 2.5: If 2,
kSN  and we use fixed assignment splitting at IPS level k then 

 1 1

1

1

1
| ,..., ( )

Sk
Sk

k

k k

N
N i

k k k
iSN

    


     (2.20) 

   

   
   

1 1 1

1 1 1

1

1

2

2
1 1 ' 1

1
1

Var | ,..., ( ) ( )

 mod  mod 1
. ( ) ( ) ( )

1

Sk
Sk

k

S S Sk k k
k k k

kk k

k k k

k k k

N
N i i

k k k k
ip S

N N N
p S S p S i i i

k k k
i i iSp S S

N N

N N N N N

NN N N

    

  

 

  

  

  





  

   

                



 

   

  
 (2.21) 

with mod representing modulo operation. 

Proof: See Appendix 2.A. 

2.4. Comparison of variances 

This section proves that IPS using fixed assignment splitting has variance advantage over IPS 
under each of the three Random assignment splitting methods MR, MS and RMS. This is 
accomplished through a sequence of three of Theorems. Theorem 2.2 compares the four 
splitting strategies at a single level only. Theorem 2.3 considers multiple levels, with difference 
in splitting strategies at a single level and no differences in splitting strategy at the other levels. 
Theorem 2.4 uses Theorem 2.3 to complete the comparison of IPS under different ways of 
splitting. 

Theorem 2.2: Given successful particles 1 , ..., Sk
N

k k    at IPS level k with 1
kSN  . The dominance 

of the four splitting methods (MR, MS, RMS, FAS) in terms of  1

1Var | ,..., Sk
k

N

k k  
  is: 

V V V Vk k k k
FAS RMS MS MR    (2.22) 

Theorem 2.3: If IPS levels 1 to k-1 make use of the same type of splitting (either MR, MS, 
RMS or FAS), then the dominance of the four splitting methods at level k, in terms of 

1

Var
k

k
k

 


 
 
 
  satisfies: 

_ _ _ _V V V VFAS k RMS k MS k MR k    (2.23) 

Theorem 2.4: Under the same type of Splitting (either MR, MS, RMS or FAS) at all levels, 
then the dominance of the four splitting methods in terms of  Var   satisfies: 

V V V VFAS RMS MS MR    (2.24) 

Proof of Theorem 2.2: 

From inequality of arithmetic and geometric means we know: 
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 1 1

2
2

1 1

1
( ) ( )

S Sk k

k

k k

N N

i i

k k
i iSN

  
 

 

 
  

 
     (2.25) 

The right hand term equals: 

1

2

1
1 1

1 1

( ) ( ) ( )
Sk

k

S Sk kN

i

k
i

N N
i i

k k k k
i i

     





 

 

 
 

 
      (2.26) 

Substituting this in (2.25) yields: 

 1 1 1

2

1 1 ' 1

1
( ) ( ) ( ) 0

S S Sk k k

k

k k k

N N N
i i i
k k k

i i iSN
      



  

           
     (2.27) 

If 1
kSN  , then all four splitting methods do the same. If 2

kSN  , we have to compare variances 
in Propositions 2.2, 2.3, 2.4 and 2.5. Due to (2.27) for Var VarMS MR , Var VarRMS MS   and 
Var VarFAS RMS this means we have to verify: 

  1k

k k

p S

p S S

N N

N N N


  (2.28) 

    mod  
k kp S p SN N N N   (2.29) 

   
   

 mod  mod 
 mod  

1

k k k

k

k

p S S p S

p S

S

N N N N N
N N

N

   


 (2.30) 

From 1 1 1
S p Sk k

N N N   follows that inequality (2.28) holds true. 

Substituting   mod 
k kk S p S pN N N N    in       mod  mod 1

k k kp S p S S kN N N N N     and subsequent 
rearrangement of terms proves (2.29). 

Because    2
 mod  mod 

k kp S p SN N N N  we get: 

       mod  mod  mod 1
k k k k kp S S p S p S SN N N N N N N N      

Dividing both sides by  1
kSN   proves (2.30).                   Q.E.D. 

Proof of Theorem 2.3: 

By defining the notation 
1

k

k kk

   , we can write 1.k k k
      By also defining the sigma 

algebra kC ''{ ; 1,..., , ' 1,.., }
k

i
k Si N k k    , we can subsequently derive: 

 1 1
1 1{ | } { | }

a
k k

k k k kC C 
     

     (2.31) 

where equality (a) holds because 1kC
  1{ }k

   .  

If 0
kSN  , then we have 0kS

k
p

N

N
    and 
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   1 1Var Var 0 0k k k
        (2.32) 

Thus if 0
kSN  , then  Var k

  is the same under any of the four splitting methods. 

If 1
kSN  , we can derive as follows by using the law of total variance: 

         
       

1 1
1 1 1

2 1 1
1 1

Var Var Var | Var |

Var | Var |

k k
k k k k k k k

k k
k k k k

C C

C C

   
 

 
 

      

   

 
  

 
 

  

 

 

 

 

 

 (2.33) 

By using       22Var X X X   , (2.33) becomes: 

            222 1 1 1
1 1 1Var Var | | |k k k

k k k k k k kC C C   
          

  
                (2.34) 

Using the property of the conditional expectation, we can derive: 

            2 22 1 1
1 1 1Var Var | |k k

k k k k k k kC C   
        

  
          (2.35) 

Further evaluation of (2.35) yields: 

 
           

          

           

    
 

1

1

22 2 21 1
1 1

22 2 21 1
1 1

22 2 21 1
1 1

2 1 1

2

Var

Var | |

Var | |

Var | |

Var | |

|

k

k

k

k k
k k k k k

k k
k k k k k

k k
k k k k k

k k
k

k

C C

C C

C C

p y y C y dy

p y y C







  
 

  
 

  
 







    

    

    

 







 
 

 
 

 
 

 

    

    

    

 





  

 

  



 

 

 

 



    
2 21 1|  k k

ky dy       

 (2.36) 

To complete the proof we have to compare (2.36) under the four splitting methods.  1
|

k

kC    
equals under each of the four splitting methods. To compare the variance term we denote by 
Vk

FAS , Vk
RMS , Vk

MS and Vk
MR  the  1Var | k

k C 
  under FAS, RMS, MS and MR respectively. From 

Theorem 2.2, we know V V V Vk k k k
FAS RMS MS MR    at level k. Due to the monotonicity of conditional 

expectation, this implies      1 1 1V | V | V |k k k
FAS k RMS k MS ky y y              1V |k

RMS k y   . 
For (2.36) this means  that if 1

kSN  , then  Var k
  under FAS, RMS, MS and MR satisfy 

inequality (2.24).                      Q.E.D. 

Proof of Theorem 2.4: 

Theorem 2.3 shows that it is advantageous to use FAS at level k, whatever splitting types are 
used at level 1 to level k-1. For k=m, this implies an advantage to use FAS at level m. The same 
reasoning shows that it also is advantageous to use FAS at level k=m-1. This reasoning can be 
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repeated for level m-2, m-3, …, k=2. At level k=1, there is no difference between the two 
splitting strategies. Therefore, we can conclude that if all levels make use of FAS, then  Var   

is less than or equal to that when all levels make use of RMS, i.e. V VFAS RMS . This reasoning is 

also be applied for RMS relative to MS and MR, which yields V VRMS MS . Finally this reasoning 

is applied to MS relative to MR, which yields V VMS MR .                                    Q.E.D. 

2.5. Simulation example 

2.5.1 Geometric Brownian motion example 

Following Krystul (2006, pp. 22-26) in this section we apply IPS for the estimation reach 
probability for a Geometric Brownian motion, and compare the results under Fixed Assignment 
splitting versus those under multinomial splitting versus those under multinomial resampling. 
The SDE of Geometric Brownian motion satisfies: 

 2

( )
2t t t tdX X dt X dW
     (2.37) 

where 0  , 0   and 0 1X  . We want to estimate the probability { }T   with 

inf{ 0 : }tt X L   . 

2.5.2. Analytical and MC simulation results 

Thanks to (Tuckwell and Wan, 1984; Karlin and Taylor, 1975, p363, Theorem 5.3), we can use 
the following equation to evaluate reach probabilities: 

2
0 0

22 30

ln( / ) (ln( / ) )
= ( ) exp

22

T L X L X t
T dt

tt

 


  
   

 
  (2.38) 

For this example, we use (2.38) to set the levels { , 1,..., }kL k m , such that the conditional 

probabilities between successive levels are equal to 1/10 for Table 2.1. Table 2.1 shows the 
resulting kL  level values for k=1,2,…, as well as the analytical k  and   results for these 

levels. The right columns in Table 2.1 also show the MC  results obtained through 

straightforward Monte Carlo (MC) simulation using 10000 runs with numerical integration time 
step 32 10 s   . The results in Table 2.1 show that straightforward MC simulation based 
estimation of   fails to work beyond k=4. Instead of stopping the simulation of the i-th particle 

at each stopping times i
k , we stop it at i

kt , i.e. the end of the first integration time step that i
k

i

t
x  

is at or has passed level k. The implication is that it remains to be verified if the numerical time 
step   of the IPS simulation is small enough. 
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Table 2.1. Analytical and MC estimated   and 1..10,,k k  for geometric Brownian motion example, with 

1  , 1  , 0 1X  , =1T s  and 1717.25L  . The MC estimated MC  used 10000 runs with 32 10 s    

k kL  k    MC  

1 12.27 0.09998 0.09998 0.0957 

2 33.038 1.000×10-1 1.000×10-2 0.0085 

3 69.09 1.000×10-1 1.000×10-3 6.000×10-4 

4 127.45 1.001×10-1 1.001×10-4 1.000×10-4 

5 217.5 1.000×10-1 1.000×10-5 0 

6 351.445 1.000×10-1 1.000×10-6 0 

7 545.14 1.000×10-1 1.000×10-7 0 

8 818.935 1.000×10-1 1.000×10-8 0 

9 1198.75 1.000×10-1 1.000×10-9 0 

10 1717.25 1.000×10-1 1.000×10-10 0 

2.5.3. IPS simulation results 

In this subsection we apply IPS under Multinomial resampling, under multinomial splitting and 
under fixed assignment splitting. By repeating IPS IPSN  times estimates of the rate of surviving 
IPS, S , and Normalized root-mean-square error, ˆ,ˆ NRMSEc . The results are shown in Table 2.2 
with 32 10 s    and Table 2.3 with 44 10 s   , for 1000pN   and 1000IPSN  . The 
measures ̂ , S  and ˆ,ˆ NRMSEc  are defined as follows: 

 
1ˆ
IPSN i

i

IPSN


   (2.39) 

 
01

1IPS

i

N

i
S

IPSN
 


 (2.40) 

 
ˆ,ˆ 100%NRMSE

RMSE
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   (2.41) 

with 
0

1,  if   0
1

0, if   0
i

i

i





  


 and 

 2

1
( )IPSN i

i

IPS

RMSE
N

 



   (2.42) 

where i  denotes the estimated reach probability for the i-th IPS simulation. 
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Table 2.2 Multiple times IPS simulation results under Multinomial Resampling vs. Multinomial splitting vs. 
Fixed Assignment splitting for the setting of Table 2.1, 32 10 s   , 1000pN   and 1000IPSN   

 Multinomial Resampling Multinomial splitting Fixed Assignment splitting 

k ̂  S  ˆ,ˆ NRMSEc  ̂  S  ˆ,ˆ NRMSEc  ̂  S  ˆ,ˆ NRMSEc  

1 9.51×10-2 100% 11% 9.60×10-2 100% 10% 9.51×10-2 100% 11% 

2 9.29×10-3 100% 19% 9.33×10-3 100% 19% 9.31×10-3 100% 18% 

3 9.17×10-4 100% 30% 9.21×10-4 100% 29% 9.11×10-4 100% 28% 

4 9.10×10-5 100% 46% 9.11×10-5 100% 46% 9.04×10-5 100% 43% 

5 8.96×10-6 100% 71% 8.95×10-6 100% 69% 8.89×10-6 100% 65% 

6 8.90×10-7 100% 110% 8.85×10-7 100% 102% 8.67×10-7 100% 95% 

7 9.07×10-8 99% 176% 8.67×10-8 99% 158% 8.42×10-8 100% 134% 

8 9.31×10-9 96% 292% 8.60×10-9 95% 253% 8.06×10-9 97% 182% 

9 9.72×10-10 86% 488% 8.59×10-10 88% 398% 7.81×10-10 88% 243% 

10 1.10×10-10 69% 912% 8.36×10-11 73% 559% 7.29×10-11 73% 292% 

 
Table 2.3 Multiple times IPS simulation results under Multinomial Resampling vs. Multinomial splitting vs. 

Fixed Assignment splitting for the setting of Table 2.1, 44 10 s   , 1000pN   and 1000IPSN   

 Multinomial Resampling Multinomial splitting Fixed Assignment splitting 

k ̂  S  ˆ,ˆ NRMSEc  ̂  S  ˆ,ˆ NRMSEc  ̂  S  ˆ,ˆ NRMSEc  

1 9.81×10-2 100% 10% 9.77×10-2 100% 10% 9.78×10-2 100% 10% 

2 9.75×10-3 100% 18% 9.73×10-3 100% 17% 9.70×10-3 100% 17% 

3 9.63×10-4 100% 29% 9.72×10-4 100% 29% 9.58×10-4 100% 28% 

4 9.49×10-5 100% 46% 9.76×10-5 100% 46% 9.43×10-5 100% 44% 

5 9.47×10-6 100% 74% 9.81×10-6 100% 73% 9.18×10-6 100% 66% 

6 9.56×10-7 100% 114% 9.95×10-7 100% 112% 8.98×10-7 100% 94% 

7 9.86×10-8 99% 173% 1.00×10-7 99% 169% 8.65×10-8 100% 131% 

8 1.03×10-8 95% 261% 1.02×10-8 96% 241% 8.23×10-9 96% 179% 

9 1.09×10-9 86% 390% 1.04×10-9 89% 376% 7.68×10-10 89% 235% 

10 1.14×10-10 72% 554% 1.02×10-10 74% 498% 7.17×10-11 75% 301% 

 

The results in Table 2.2 and Table 2.3 show that the Normalized Root-Mean-Square Error, 

ˆ,ˆ NRMSEc , is under Fixed Assignment splitting better than under Multinomial splitting which is 
better than under Multinomial Resampling. This difference in ˆ,ˆ NRMSEc  increases with the k. 

2.6. Conclusion 

This chapter has studied the estimation of the reach probability of an unsafe set by a multi-
dimensional diffusion process using the Interacting Particle System (IPS) framework of Cérou 
et al. (2006). More specifically it has been proven that IPS using fixed assignment splitting 
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dominates in variance reduction over IPS using multinomial resampling (MR), multinomial 
splitting (MS), residual multinomial splitting RMS), or fixed assignment splitting (FAS). 

First, in section 2.3, a novel characterization has been derived for the conditional variance at 
level k in Theorem 2.1. This has been elaborated in  Propositions 2.2, 2.3, 2.4 and 2.5 for MR, 
MS, RMS and FAS respectively. Subsequently, the conditional variances are compared in 
section 2.4 through Theorems 2.2, 2.3 and 2.4. Theorem 2.2 proves the aimed results for an 
arbitrary single level k, given the same set of survived particles at the beginning of this level. 
Subsequently Theorem 2.3 proves the aimed results for an arbitrary single level k, under the 
condition that there are no differences in splitting strategy used at all earlier levels. Finally 
Theorem 2.4 completes the proof by induction using Theorem 2.3. 

The difference in IPS performances under different splitting methods has been illustrated for a 
one-dimensional geometric Brownian motion example for which the reach probabilities are 
analytically known. 
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Appendix 2.A. Conditional variance derivations 

Proof of Proposition 2.1 

If we consider the particles j

k  copies from i
k  as a group, then for IPS step II in Algorithm 2.1 

at level 1k  , 1k   can be written as follows: 

 
1

,
1 1 1

1 1

1 1
1( )

Sp k

k

NN
i k i

k k k
i ip p

Q Y
N N

    
 

     (2.43) 

with ,
1

k i
kY   the number of particles that have reached level k+1 after mutation of the i

kK  copies 
from i

k . Hence, ,
1

k i
kY   has a conditional Binomial distribution with size i

kK  and success 
probability 1( )k

i
k 
  given i

kK  and i
k . Therefore, the pdf of ,

1
k i

kY   can be expressed as (2.10) and 
(2.11).                        Q.E.D. 

Proof of Theorem 2.1 

Let us define kC  and 
,

k

K
C  as follows: 
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  (2.45) 

Substitution of (2.43) in  1 |k

kC    and subsequent evaluation yields: 
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where equality (a) holds because 
,

k

K
C 

kC  and     | | , |X Y X Y Z Y   . 

In a similar way, we can derive: 
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 (2.47) 

where equality (a) holds because of the law of total conditional variance (Bowsher and Swain, 
2012). 

Further evaluation of (2.47) yields: 
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where equality (a) holds because ,
1

k i
kY   and ,

1
k i

kY 
  are conditionally independent given 

,

k

K
C . 

Since each ,
1

k i
kY   has a conditional Binomial distribution with size i

kK  and success probability 

1 ( )k

i
k 
 . Then, by using Binomial distribution properties, we get: 
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where equality (a) holds because ,
1

k i
kY   is conditionally dependent of i

kK  and i
k , but 

conditionally independent of i
kK   and i

k
  for i i  . 

Substituting (2.49) into (2.46) and subsequent evaluation yields: 
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where equality (a) holds because   |f Z Y Z     |f Z Y Z  ; equality (b) holds because of 

Markov property of { }i
k . 

Similarly, substituting (2.49) and (2.50) into (2.48) and subsequent evaluation yields: 
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where equality (a) is thanks to kC -conditional independence of i
k and i

kK .  

Further evaluation of (2.52) yields: 
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Due to the strong Markov property of { }i
k , the kC  conditioning in (2.53) can be replaced by 

the condition 1{ ,..., }.Sk
N

k k                    Q.E.D. 

Proof of Proposition 2.2 

For multinomial resampling, the vector ,..., )1 2( , Sk
N

k k kK K K  follows a multinomial distribution with 

the number of trials equal to pN , which means +...+ =1 2 Sk
N

k k k pK K K N , and with equal success 

probabilities 1

Sk
N

. Using multinomial distribution properties, we know for =1,2,...,
kSi N : 
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kK  and i

kK   ( i i  ), we can derive: 
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Substituting (2.54) into (2.51) and substituting (2.54), (2.55) and (2.56) into (2.53) yield: 
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Elaboration of (2.57) and (2.58) yields the equations of Proposition 2.2.            Q.E.D. 

Proof of Proposition 2.3 

For Multinomial Splitting, the vector ,..., )1 2( 1, 1 1Sk
N

k k kK K K    follows a multinomial distribution 
with the number of trials equal to 

kp SN N , which means 
     1 21 1 ... 1Sk

k

N

k k k p SK K K N N        , and with equal success probabilities 1

Sk
N

. Using 
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From (2.59) and (2.60), we can derive: 
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where equality (a) holds because of the multinomial distribution property on the covariance. 

Substituting (2.61) into (2.51) and substituting (2.61), (2.62) and (2.63) into (2.53) yield: 
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 (2.65) 

Elaboration of (2.64) and (2.65) yields the equations of Proposition 2.3.            Q.E.D.  

Proof of Proposition 2.4 

For residual multinomial splitting, the vector ,...,1 2( , )Sk
N

k k k k k kK K K      follows a 
multinomial distribution with the number of trials equal to   mod 

kp SN N , and with equal success 
probabilities 1

Sk
N

. Using multinomial distribution properties, we know: 

 1
 mod 

| , ..., S kk

k

N p Si
k k k k

S

N N
K

N
     (2.66) 

   1
 mod 1

Var | ,..., (1 )kSk

k k

p SNi
k k k k

S S

N N
K

N N
      (2.67) 

From (2.66) and (2.67), we can derive: 
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   1
 mod 

| ,..., kSk

k k

p SN pi
k k k k

S S

N N N
K

N N
       (2.68) 

and 

 
   1

 mod 1
Var | ,..., (1 )kSk

k k

p SNi
k k k

S S

N N
K

N N
      (2.69) 

For i
kK  and i

kK   ( i i  ), we can derive: 

    1 1 1
Cov | ,...,  mod Sk

k

k k

Ni i
k k k k p S

S S

K K N N
N N

      (2.70) 

Substituting (2.68) into (2.51) and substituting (2.68), (2.69) and (2.70) into (2.53) yield: 
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 (2.72) 

Elaboration of (2.71) and (2.72) yields the equations of Proposition 2.4.           Q.E.D. 

Proof of Proposition 2.5 

To evaluate i
kK , =1,2,...,

kSi N , we define scalar parameter k as follows: 

 

k

p
k

S

N

N


 
 
  

  (2.73) 

with floor function max{ | }x i i x      . 

For Fixed Assignment Splitting, the vector ,..., )1 2( , Sk
N

k k k k k kK K K      follows a multivariate 
hypergeometric distribution with the number of trials equal to   mod 

kp SN N , and with equal 
success probabilities 1

Sk
N

. Using multivariate hypergeometric distribution properties, we know 
for =1,2,...,

kSi N : 

 1
 mod 

| ,..., S kk

k

N p Si
k k k k

S

N N
K

N
      (2.74) 

     

   

1
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From (2.74) and (2.75), we can derive: 

  1
 mod 

| ,..., S kk

k k

N p S pi
k k k k

S S

N N N
K

N N
        (2.76) 

and 

     
1

 mod  mod 
Var | ,..., k kkSk

k k

S p Sp SNi
k k k

S S

N N NN N
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N N
 

     (2.77) 

For i
kK  and i

kK   ( i i  ), we derive: 
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 mod 1 1
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1
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k k

k
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N Ni i i i
k k k k k k k k k k

a S p S
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 (2.78) 

where equality (a) holds because of the multivariate hypergeometric distribution property on 
the covariance. 

Substituting (2.76) into (2.51) and substituting (2.76), (2.77) and (2.78) into (2.53) yield: 
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(2.80) 

Elaboration of (2.79) and (2.80) yields the equations of Proposition 2.5.            Q.E.D. 
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3 

Interacting Particle System based Estimation of Reach Probability 
of General Stochastic Hybrid Systems 

 
 

For diffusions, a well-developed approach in rare event estimation is to introduce a suitable 
factorization of the reach probability and then to estimate these factors through simulation of 
an Interacting Particle System (IPS). This chapter studies IPS based reach probability 
estimation for General Stochastic Hybrid Systems (GSHS). The continuous-time executions of 
a GSHS evolve in a hybrid state space under influence of combinations of diffusions, 
spontaneous jumps and forced jumps. In applying  IPS to a GSHS, simulation of the GSHS 
execution plays a central role. From literature, two basic approaches  in simulating GSHS 
execution are known. One approach is direct simulation of a GSHS execution. An alternative 
is to first transform the spontaneous jumps of a GSHS to forced transitions, and then to simulate 
executions of this transformed version. This chapter will show that the latter transformation 
yields an extra Markov state component that should be treated as being unobservable for the 
IPS process. To formally make this state component unobservable for IPS, this chapter also 
develops an enriched GSHS transformation prior to transforming spontaneous jumps to forced 
jumps. The expected improvements in IPS reach probability estimation are also illustrated 
through simulation results for a simple GSHS example. 
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3.1. Introduction 

A Stochastic Hybrid System (SHS) as defined by (Hu et al., 2000) involves two dynamically 
interacting state components, i.e. a discrete-valued t  and a continuous-valued tx . The t  
component may switch when tx hits a t -dependent boundary. The tx component evolves under 
influence of t -dependent Brownian motion and forced jumps at moments of hitting a t -
dependent boundary. Bujorianu and Lygeros (2006) define a General SHS (GSHS) by 
extending an SHS with spontaneous jumps, the rate   of which depends on the joint state
( , ).t tx   Well-known sub-classes of GSHS executions are solutions of SDE’s driven by 
Brownian motion and spontaneous jumps generated by Poisson random measure. Specific 
subclasses are Markov switching diffusions (Mao and Yuan, 2006), hybrid switching diffusions 
(Yin and Zhu, 2010) and hybrid switching jump-diffusions (Kunwai and Zhu, 2020). These 
developments include methods for the numerical integration of both spontaneous jumps and 
Brownian motion. Teel et al. (2014) provide an in-depth survey regarding stability analysis of 
GSHS and various sub-classes.  

A GSHS can be transformed to an SHS of (Hu et al., 2000) by capturing each spontaneous jump 
as a forced jump at an exit time condition (Lygeros and Prandini, 2010). More specifically, an 
auxiliary state component tq , representing “remaining local time”, starts at each exit time as an 
exponentially distributed random variable, subsequently evolves as ( , ) ,t ttdq x dt    and 
defines a new exit time upon reaching value zero. As shown in the stochastic hybrid systems 
survey by Lygeros and Prandini (2010), the mainstream of stochastic hybrid control 
developments address diffusion and forced jumps only; e.g. Bensoussan and Menaldi (2000), 
Koutsoukos (2004). A key exception is  optimal control of a Markov switching diffusion via its 
SDE coefficients and spontaneous jump rate (Ghosh et al., 1993). 

As will be shown in this chapter, there may be unexpected effects when transforming 
spontaneous jumps in a GSHS to forced jumps in an SHS. This chapter studies the role played 
by these unexpected effects in estimating stochastic reach probability for a GSHS using the 
Interacting Particle System (IPS) approach of Cérou et al. (2006). The objective is to understand 
the effect on IPS of transforming spontaneous jumps to forced jumps.   

Bujorianu (2012) provides an in-depth overview of stochastic reachability analysis for hybrid 
systems, including  GSHS. Stochastic reach probability estimation is a safety verification 
problem (e.g. Prandini and Hu, 2007; Abate et al., 2009; Lavaei et al., 2021) that has been well 
studied in the control systems domain and in the safety domain. In the control domain the focus 
is on developing an (approximate) abstraction of the system for which it can be shown that the 
reach probability problem is sufficiently similar (Alur et al., 2000; Julius and Pappas, 2009). 
Approximate abstractions typically make use of a finite partition of the state space (e.g. Prandini 
and Hu, 2007; Abate et al., 2011; Di Benedetto et al., 2015).  

In the safety domain, reach probability is evaluated using a finite partition method or statistical 
simulation. For realistic applications, the latter requires support from analytical methods to 
reduce variance. Literature on such variance reduction distinguishes two main approaches: 
importance sampling (IS) and multi-level importance splitting (ISp). IS draws samples from a 
reference stochastic system model in combination with analytical compensation for sampling 
from the reference model instead of the intended model. Bucklew (2004) gives an overview of 
IS and analytical compensation mechanisms. For complex models analytical compensation 
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mechanisms typically fall short and multi-level ISp is the preferred approach (e.g. Botev and 
Kroese, 2008; L’Ecuyer et al., 2009; Rubinstein, 2010; Morio and Balesdent, 2016). 

The basic idea of multi-level ISp is to enclose the target set, i.e., the set for which the reach 
probability has to be estimated by a series of nested/enclosing subsets. Each time a simulated 
particle hits one of the nested subsets, the particle may be split into multiple copies. This multi-
level setting allows one to express the small reach probability of the inner level set as a product 
of larger reach probabilities for the sequence of nested subsets (see, e.g., Glasserman et al, 
1999). Cérou et al. (2005, 2006) embedded this multi-level factorization in the Feynman-Kac 
factorization equation for strong Markov processes (Del Moral, 2004). This Feynman-Kac 
setting subsequently supported the evaluation of the reach probability through sequential Monte 
Carlo simulation in the form of an Interacting Particle System (IPS), including proof of 
convergence (Cérou et al., 2006). Krystul et al. (2012) have used the Feynman-Kac setting to 
prove convergence of IPS using sampling per mode for a switching diffusion. 

Because the theoretical setting of IPS (Cérou et al., 2006) includes strong Markov processes, 
and a GSHS execution is strong Markov (Bujorianu and Lygeros, 2006), IPS theory applies to 
GSHS. Blom et al. (2006, 2007a) apply IPS to rare event estimation for an SHS model of an 
advanced air traffic scenario, which is obtained through applying a Lygeros and Prandini (2010) 
type of transformation to the underlying GSHS. The hybrid state space of this SHS model is 
very large, i.e., 490 discrete states and a 28-dimensional Euclidean state space. To prevent 
particle depletion or impoverishment, a very large number of particles is used. In an attempt to 
improve the quality of the set of particles, Blom et al. (2007b, 2009) develop and apply a further 
IPS extension for an SHS with a large number of modes. Complementarily, Prandini et al. (2011) 
investigate the integration of air traffic complexity model with IPS. For a true GSHS setting, 
Blom et al. (2018) showed that the use of different numerical integration methods in applying 
IPS to a true GSHS may have unexpected effects on reach probability estimation. However, 
these studies did not lead to a basic understanding of the underlying mechanisms. This chapter 
aims to close this gap in basic understanding. 

This chapter is organized as follows. Section 3.2 presents background of GSHS and the 
transformation to SHS. Section 3.3 reviews IPS theory and presents the algorithmic steps and 
particle splitting options for an arbitrary GSHS. Section 3.4 specifies  three IPS-FAS algorithms 
for GSHS, two of which make use of the transformation to SHS of Hu et al. (2000). Section 3.5 
illustrates results of IPS-FAS algorithms from Section 3.4 applied to a simple GSHS example. 
Section 3.6 draws conclusions. 

3.2. General Stochastic Hybrid System (GSHS) 

Throughout this and the following sections, all stochastic processes are defined on a complete 
stochastic basis ( , , , , ) F T  with ( , , ) F  being a complete probability space and   an 
increasing sequence of sub--algebras on the time line T  ,i.e.,  ),t ,t  ,(J F F  , with 
J  containing all P-null sets of F  and s t  J F F F  for every s t . 

3.2.1  GSHS definition 

(Bujorianu and Lygeros, 2006) formalized the concept of GSHS or general stochastic hybrid 
automata as follows: 

Definition 1 (GSHS). A GSHS is a collection ( , , ,  , , , , )d X f g In it R  where 
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   is a countable set of discrete-valued variables; 

 :d     is a map giving the dimensions of the continuous state spaces; 

  ( ): dX     maps each     into an open subset X   of  ( )d  ; 

  ( ): df   is a vector field, where { } X 






  ; 

 dim ( ): d mg    is an ( )X  -valued matrix, dimm ; 

 Init : ( ) [0,1]    an initial probability measure on  ; 

  :     is a transition rate function; 

 : ( ) [0,1]R     is a transition measure. 

3.2.2  GSHS execution 

Definition 2 (GSHS Execution). A stochastic process ,{ }t tx  is called a solution of GSHS 

execution if there exists a sequence of stopping times 0 1 20s s s     such that: 

 0 0( , )x  is a  -valued random variable satisfying the probability measure Init; 

 For 1 , ,  1,j jt s s j  { , }t tx  is a solution of the SDE: 

 

( , ) ( ,

 0

)

=

t t t t t t

td

dx f x dt g x dW


  

 (3.1) 

with tW  m -dimensional standard Brownian motion; 

 js  is the minimum of the following two stopping times: i) first hitting time 1js   of the 
boundary of 1s jX


  by the phase process { }tx ; and ii) first moment 1js   of a transition event 

to happen at rate ( , )t tx  . 

 At stopping time js  the novel hybrid state { , }
j js sx satisfies the conditional probability 

measure , | , ( | , ) (( , ), )
j j j js s s sx xp A x R x A   

 
  for any ( )A   . 

In order to assure that a GSHS execution has a solution the following assumptions are adopted:  

A1 (non-Zeno property): 1{ } 0j jsE s   ,  -a.s. 

A2: For each 0 0( , )x   , equation (3.1) has a pathwise unique solution on a finite time 
interval [0, ]T . 

A3   is measurable and finite valued. 

A4 ( ) 1,Init    and (( , ), ) 1R x   for each ( , )x  . 

Bujorianu and Lygeros (2006) show that the stochastic process ,{ }t tx  generated by execution 

of a GSHS satisfies the strong Markov property.  

3.2.3  Stochastic analysis background of GSHS execution  

Complementary to the probabilistic characterizations of GSHS (Bujorianu and Lygeros, 2006; 
Bujorianu, 2012), various subclasses of GSHS have been studied as solutions of stochastic 
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differential equations on a hybrid state space that are driven by Brownian motion and Poisson 
random measure. These studies derive conditions for the existence of pathwise unique solutions, 
continuity of solutions relative to initial condition (Feller property), and convergent numerical 
integration schemes.  

The best known subclass is Markov switching diffusion (Mao and Yuan, 2006); which forms a 
GSHS subclass satisfying the following restrictions:  

i)  There are no boundary hittings, i.e. X    ( )d  ;  

ii) Transition measure R does not support jumps in { }tx , i.e. ( , ; , )) 0R x dy    if { } 0;x dy   and  

iii) Transition rate function ( , )x   is x  invariant.  

By dropping the third restriction, we get the subclass of hybrid switching diffusions [Yin and 
Zhu, 2010]. As is well addressed by Yin and Zhu (2010), the dependency of the mode process 
{ }t on the phase process { }tx asks for complementary derivations regarding existence of 

pathwise unique solutions and Feller property. (Yin and Zhu, 2010) also show weak converge 
of an adapted Euler-Maryuama integration scheme to hybrid switching diffusions.  

By dropping both restriction ii) and iii), the subclass of hybrid switching diffusions emerges. 
Pathwise unique solutions have been derived by (Blom, 2003; Ghosh and Bagchi, 2004; Xi et 
al., 2019). Feller property has been derived by (Krystul et al., 2011; Xi et al., 2019; Kunwai and 
Zhu, 2020; Blom, 2022). Convergent numerical integration has been addressed by (Krystul, 
2006, chapter 4), including approximation of the first hitting time of a boundary. The final step 
is to also drop restriction i). This allows the generation of instantaneous jumps upon hitting 
boundaries of X  ; pathwise unique solutions have been addressed by (Krystul et al., 2007).  

3.2.4  Probabilistic transformation to an SHS 

As explained by Lygeros and Prandini (2010) a GSHS can be transformed to an SHS of Hu et 
al. (2000). This transformation consists of the following four changes: i) An auxiliary state 
component tq , representing “remaining local time”, starts at an applicable stopping time  at 
initial condition ~ exp(1),q and subsequently evolves as ( , )/ t ttd xq dt    ; ii) The exit 
boundary of X

 is extended with an extra boundary of the form 0tq   ; and iii) Spontaneous 
probabilistic jumps in { , }t tx  are replaced by forced probabilistic jumps at moment 0tq   ; 
and iv) Upon reaching the extended exit boundary at stopping time '  the “remaining local 
time” is resampled, i.e. ' ~ exp(1).q   

Hence, transformation of GSHS ( , , ,  , , , , )d X f g Init R  to SHS ( *, *, *,  *, *, *, *)d X f g Init R  

works as follows: 

 *     

 * 1d d    

 * (0, )X X     

  *( , ,.) ( , ) ( , )
T

f x f x x       

  *( , ,.) ( , ) 0
T

g x g x    

  0Init*= Init
T

q with 0 ~ exp(1)q ; 
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 *(( , ,.); ) (( , ); ) e qR x A dq R x A dq      

Execution of this SHS yields the SHS execution process *,{ *, *}t t tx q , which is a strong Markov 
process relative to its underlying increasing sequence of sigma algebras 

*,{ *, *; [0, ]}s s sx q s t   , t T.  

It should be noticed that from a stochastic perspective the process *,{ *}t tx differs from the 
process ,{ }.t tx The key difference is that the sigma algebra *,{ *, *; [0, ]}s s sx q s t    includes 
“remaining local time”, which implies (partial) information about the next hitting time of the 
boundary 0 of (0, ) , while  the sigma algebra ,{ ; [0, ]}s s tx s t   F , i.e. it does not include 
any information about such future event. To avoid abusing the extra information, the 
“remaining local time” component { *}tq  should be treated as being unobservable for other 
processes that depend on the GSHS execution.  

3.3. IPS based reach probability estimation 

3.3.1. GSHS reach probability 

The problem is to estimate the probability   that { , }t tx  reaches a closed subset D    

within finite period [0, ]T , i.e.  

( )P T                (3.2) 

with   being the first hitting time of D  by { , }t tx :  

 inf{ 0,( , ) }t tt x D     (3.3) 

 

Remark: Cérou et al. (2006) and L’Equyer et al. (2009) also address the more general situation 
that T is a P-a.s. finite stopping time. 

Cérou et al. (2006) developed the IPS theory and algorithmic steps for estimating reach 
probability for a strong Markov process on a general Polish state space. Thanks to the strong 
Markov property of the process { , }t tx defined by the execution of the GSHS in section 3.2, 

the IPS approach applies to the estimation of GSHS reach probability. 

3.3.2. Multi-level factorization of reach probability 

The principle in factorizing the reach probability ( )P T    is to introduce a sequence 
,  0,.., ,kD k m of nested closed subsets of  , i.e. 1 1 0 ,m mD D D D D       with

1D such that  0 0 1{ ( , ) } 0P x D   .  Let k be the first moment in time that { , }t tx  reaches kD
, i.e. 

 inf{ 0;  ( , ) }k t t kt x D t T       (3.4) 

Next, we define {0,1}-valued random variables { , 0, .., }k k m   as follows:  

 1,   if  or 0

    0,   else
k k T k   


 (3.5) 

By using this k  definition we get the desired factorization. 
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Proposition 3.1:  

The reach probability satisfies the factorization: 

  
1

m

k
k

 


            (3.6) 

where 1 1{ 1 1} P( ).k k k k kE T T            

Proof: Because 1k kD D  we have: 

1inf{ 0;  ( , ) } inf{ 0;  ( , ) }t t k t t kt x D t T t x D t T           

Substituting (3.4) at left and at right yields: 1 .k k     

Hence we can derive: 

 
   
   

   

 

1 1

1 1

1 0
1

1
1

1
1 1

P P

P   

( )

1}

 P  

P

P

{ 1

m

m m m m m

m m m

m

k k
k

m

k k
k

m m

k k k
k k

T

T T T

P T T P T

T

T

T T P T

T

E

 

    

  

  



 







 

 








 



    

   

   





 





  



 





 

∣

∣

∣

∣

    

                  Q.E.D. 

3.3.3. Recursive estimation of the multi-level factors 

By using the strong Markov property of { , },t tx  we develop a recursive estimation of   using 
the factorization in (3.6). First we define ' ,   ,( , ),

k kk k x     (0 ) ,k kQ T D   for 
1 ,k … m    and the following conditional probability measure ( )k B for an arbitrary Borel set 

B  of ' : 

( ) ( | )k k k kB P B Q               

Cérou et al. (2006) show that k  is a solution of the following recursion of transformations: 

I. mutation III. selection
1

II. conditioning

( ) ( ) ( )

    

k k k

k

p



      


 

where ( )kp B  is the conditional probability measure of k B   given 1 1k kQ   , i.e., 

1 1( ) ( | )k k k kp B P B Q      
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Because { , }t tx  is a strong Markov process, { }k  is a Markov sequence. Hence, the mutation 

transformation (I) satisfies a Chapman-Kolmogorov equation prediction for k : 

1| 1'
( ) ( | ) ( ) for all ( ')

k kk kp B p B d B     
 

                 (3.7) 

For the conditioning transformation (II) this means: 

 
1 { }'

P( ) 1 ( )
k

k k k kQ
T T p d


    

       (3.8) 

Hence, selection transformation (III) satisfies: 

 
{ }

{ }

{ }'

1 ( )
( ) [ 1 ( )] /

1 ( )
k

k

k

kQB
k k kQB

kQ

p d
B p d

p d







  








 





                          (3.9) 

With this, the k  terms in (3.6) are characterized as solutions of a recursive sequence of 

mutation equation (3.7), conditioning equation (3.8) and selection equation (3.9).  

3.3.4. IPS algorithmic steps for a GSHS 

Following Cérou et al. (2006), equations (3.6)-(3.9) yield the IPS algorithmic steps for the 
numerical estimation of :  

I. mutation III. selection IV. splitting
1

II. conditioning

( ) ( ) ( ) ( )

    

k k k k

k

p



         




 

A set of PN  particles is used to form empirical density approximations k  kp  and k of k 

kp  and k  respectively. By increasing the number PN  of particles in a set, the errors in these 
approximations decrease. When simulating particles from 1kQ   to kQ , only a fraction k of 
the simulated particle trajectories will reach kQ  within the time period [0, ]T  considered; these 
particles form .k  In order to start the next IPS cycle with PN  particles, the classical way is to 
perform a multinomial resampling (MR) of k to produce .k  More effective splitting methods 
are: multinomial splitting (MS), residual multinomial splitting RMS) and fixed assignment 
splitting (FAS). MS generates k by starting with the particles in ,k and subsequently adding 
randomly selected particles from k  (with replacement). RMS first makes 1 / k   copies from 
each particle in ,k and subsequently complements the residual number  1 1/P k kN       by 
randomly selected particles from k  (with replacement). FAS also follows the two step 
approach of RMS, though during the second step the random selection from k is done without 
replacement. 

Cérou et al. (2006) prove that using IPS with multinomial splitting (MS) for a strong hybrid 
state Markov process,   forms an unbiased  estimate, i.e. 

   
1 1 1

m m m

k k k
k k k

    
  

 
    

 
      (3.10) 

Moreover, Cérou et al. (2006) derive second and higher order asymptotic bounds for the error
( )   based on the multi-level Feynman Kac analysis, e.g. Del Moral (2004; Theorem 
12.2.2). 
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For a diffusion process { },tx  Ma and Blom (2022) have proven that IPS using FAS yields a 

lower or equal variance in the estimated reach probability   than IPS using MR, MS or RMS. 
In the next section we extend these results for an IPS applied to a GSHS. 

3.4. IPS algorithmic steps for GSHS  

3.4.1. IPS application for a GSHS. 

The algorithmic steps of IPS application for a GSHS are specified in Algorithm 3.1 below. For 
the splitting step IV, use is made of FAS. 

Algorithm 3.1; IPS-FAS algorithmic steps for a GSHS 

Input: Initial measure , end time , decreasing sequence 

of closed subsets {( , ) }, k t tD x   1 ,k kD D   1,.., .k m  Also 0 ,D   

and number of particles  

Output: Estimated reach probability  

0. Initiation: Generate particles  i.e. 

with Dirac Set  

I. Mutation: , where  is obtained by simulating the 

GSHS execution starting from . 

II. Conditioning:  with . If  then 

0, { ,..., }k k k m     and go to Step V. 

III. Selection: , with the collection of , 

.  

IV. Splitting: is a random permutations of . 

       Copy:                    for ; 

         for ; 

                 … 
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N N i
 

       for ; 
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k k
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       for 1,..., /

k kp p S Si N N N N     . 

       Each particle receives weight . 

V. If , then and go to step I, else  

 

By extending the results of (Ma and Blom, 2022) for IPS application to a diffusion, in Appendix 
3.A we proof the following regarding the use of different splitting methods in IPS application 
to GSHS. 

Theorem 3.1: Replacing the FAS splitting step IV in algorithm 3.1 by RMS splitting, MS 

splitting or MR splitting has the following effects on the variance  V  : 
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       V V V VFAS RMS MS MR       (3.11) 

Proof: See Appendix 3.A. 

Next we address the details of mutation step I of Algorithm 3.1, i.e. the Monte Carlo simulation 
of the GSHS from particle state 

1

i

k  to particle state i

k . Subsection 3.4.2 addresses simulation 

of the execution of an SHS transformed version of GSHS within IPS. Subsection 3.4.3 develops 
an algorithm that takes into account that the “remaining local time” process *{ }tq  should be 

unobservable for the IPS process. For reference purpose, subsection 3.4.3 addresses the more 
demanding direct simulation of the execution of a GSHS, i.e. without using the transformation 
to SHS. 

3.4.2. Simulation of execution of SHS transformed version of GSHS in mutation step I 

The process { , }t tx is assumed to be the SHS transformed version of the GSHS, i.e. 
* * *{ , } { , , }t t t t tx x q  as defined in subsection 3.2.3. Then in step I of Algorithm 3.1, the evolution 

of * * *{ , } { , , }t t t t tx x q  is executed on interval 1[ , ]i i
k k  , starting with 1

i
k  and delivering i

k . 
Mutation step I is conducted using Euler-Maruyama integration of eq. (3.1) along small time 
steps  , i.e. 

( , ) ( , )( )

= 

t t t t

t

t t

t

tx f x g x W W

 
 



   


 
 (3.12) 

 
The algorithm for the execution of an SHS transformed version of GSHS within mutation step 
I is specified below. 

Remark: Convergence of the Euler-Maruyama integration scheme (3.12) is guaranteed iff the 
SDE coefficients satisfy certain Lipschitz conditions, e.g. Hutzenthaler et al. (2011).     

Algorithm 3.2. Simulating the execution of SHS transformed version of GSHS in step I of Algorithm 3.1 

Input: i-th particle vector
* * *

1 1 1 1 1( , , , )i i i i i
k k k k kx q       , and the 

SHS elements ( *, *, *, *, *, *, *)d X f g Init R and
* .k kQ Q   

Output: Estimated particle 
* * *( , , , )i i i i i

k k k k kx q    

1. Set 1: i
kt    and 

* * *
1 1 1: ( , , )i i i

k k kx q      

2. Evaluate equation (1) and ( , )/ t ttd xq dt   from  at t  

until min{ , , }t kt t s    ; this yields  . Here ts  is the first 

time t  that this solution hits the boundary of *X ; and k  

is the first time that this solution hits 
*
kQ .  

3. If kt   then stop with output 
* * *( , , ),,i i i

kk
i

k k kx q 

where 
* * *( , , ) *( ,.)i i i

k k kx q R   if ,t ks  else 
* * *( , , ) : .i i i

k k kx q    

4. If tt s   then *( ,.)R  ,  set :t t and repeat from 

step 2. 
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If during any of the small time steps   one of the boundaries of *X  or *
kQ is passed, then 

additional MC simulation steps may be conducted to get a better approximation ts  or k  of the 
first hitting time. As an alternative for using a lower  value, Glasserman (2004, p. 367) 
proposes an interpolation of the solution of equation (3.1) on the   interval considered, by 
simulating a Brownian bridge between the already simulated Brownian motion points tW  and 

.tW  The resulting Brownian bridge yields a more accurate approximation of the first hitting 
time.  

3.4.3 Accounting for unobservability of remaining local time 

As has been identified at the end of subsection 3.2.4, the “remaining local time” process *{ }tq  of 
the SHS transformed version of a GSHS should be treated as being unobservable for the IPS 
process. To formalize this, the transformation  to SHS is applied to a enriched version of the 
original GSHS. The GSHS enrichment consists of adding IPS hitting levels , 1,.., ,kQ k m  to the 
original GSHS, with reset ( , ) ( , ),

k k k k
x x       at a hitting time .k  Thanks to the continuity of the 

latter reset, the execution of the enriched GSHS yields the same pathwise solutions as execution 
of the original GSHS does. Subsequent application of the transformation of Prandini and 
Lygeros (2010) to this enriched GSHS yields a SHS, that also resets the remaining local time 
upon reaching an IPS hitting level ,  1,.., .kQ k m  For algorithm 3.2 this means that it can be 
improved by adding a reset of local remaining time at the beginning of each IPS cycle; this is 
specified in algorithm 3.3 below. Hence, at the begin of mutation step I within an IPS cycle, the 
remaining local time value of each particle is freshly sampled from exp(1).  

Algorithm 3.3. Simulating execution of SHS version of modified GSHS in step I of Algorithm 3.1 

Input: i-th particle vector
* * *

1 1 1 1 1( , , , )i i i i i
k k k k kx q       , and the 

SHS elements ( *, *, *, *, *, *, *)d X f g Init R and
* .k kQ Q   

Output: Estimated particle 
* * *( , , , )i i i i i

k k k k kx q    

1. Set 1: i
kt    and 

* *
1 1: ( , , )i i

k kx q    , with ~ exp(1)q  

2. = step 2 in algorithm 3.2. 
3. = step 3 in algorithm 3.2. 
4. = step 4 in algorithm 3.2. 

 

The combination of algorithms 3.1&3.3 starts at each IPS cycle with pN  particles, each of which 
has a different sample of remaining local time *

1,  1,.. .i
kq k m   This differs significantly from the 

combination of algorithm combination 3.1&3.2, where the pN  particles having different 
remaining local time *

0
iq  applies at the start of the first IPS cycle only. Hence, with increasing 

IPS level k, under algorithm combination 3.1&3.3 particle diversity will gain relative to particle 
diversity under algorithm combination 3.1&3.2. 

3.4.4. Simulation of original GSHS execution in mutation step I 

For reference purpose, we also specify an algorithm for the simulation of the original GSHS 
execution. For this we follow the numerical integration scheme of Krystul (2004, Chapter 4). 
In addition to fixed small time steps  , random time steps are generated at which potential 
jumps may happen. Realizations of the these random time steps are obtained through Monte 
Carlo sampling of an in-homogeneous Poisson process on ,[0, ] 0,T      with ( , )sup ( , ).x x  

Subsequently the potential Poisson points are thinned by rejecting points that lie above the 
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graph of ( , )t tx  . The remaining points, i.e., those at or below the graph of ( , )t tx  , are 
projected onto the time-axis [0, ].T  The resulting execution of the GSHS within an IPS cycle, 
starting from 1

i
k  , on the interval 1[ , ]i i

k k  is specified in algorithm 3.4. 

Algorithm 3.4. Simulating GSHS execution (step I of algorithm 3.1) 

Input: i-th particle vector 1 1 1 1( , , )i i i i
k k k kx      , kQ , the 

GSHS elements ( , , ,  , , , , )d X f g Init R , and the transition 

rate maximum  .  

Output: Estimated particle ( , , )i i i i
k k k kx    

1. Set 1
i
kt    and 1 1: ( , )i i

k kx     

2. Generate  U 0,1u  , and set : (ln /)t u    

3. Evaluate equation (3.1) from   at t  until 

min{ , , , }t t kt t t s     ; this yields . Here ts  is the first 

time t  that this solution hits the boundary of X ; and k  is 

the first time that this solution hits kQ .  

4. If kt    then stop with output ( , , ),i i i i
k k k kx    where 

( , ) ( ,.)i i
k kx R  if   t ks  , else ( , ) :i i

k kx   

5. If tt s  then ( ,.)R  , set :t t and repeat from step 2 

6. If tt t   then generate  U 0,1v   

7. If   ,v     then generate ( ,(.,.))R  , else :   

8. Set :t t  and repeat from step 2.  
 

In case of a stop during step 4 of GSHS algorithm 3.4, there is a “remaining integration time” 
.t kt    Because this “remaining integration time” does not make part of the Markov state 

k
 , it does not influence the GSHS execution during the next IPS cycle. The latter coincides 
with ignoring “remaining local time” in algorithm 3.3. Hence it is expected that algorithm 
combination 3.1&3.4 estimates reach probability similarly well as algorithm combination 
3.1&3.3 does.  

3.5. Application of IPS to GSHS example 

3.5.1. Hypothetical car example 

A car driver in dense fog is heading to a wall at position walld . If the car is at distance fogd  from 
the wall, then the driver sees the wall for the first time. Then, it takes the driver a random 
reaction delay to start braking, with a density ( ).delayp s  During the reaction delay, the velocity of 
the car does not change; after the reaction delay, the car decelerates at constant value min.a The 
aim is to estimate the probability   that the car hits the wall. 

From the moment that the car reaches distance fogd  from the wall at velocity 0v , it takes the 
sum of reaction delay delayT  and the time of deceleration 0 min/decT v a  until the car is at a 
standstill. This implies 

 21
0 0 min2P{   }delay dec dec fogv T v T a T d      (3.13) 

Elaboration of (3.13) yields: 
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1
0 min 02P{ / / }delay fogT v a d v                  (3.14) 

If we assume a Rayleigh density 
2 2/ (2 )

2
( ) s

delay

s
p s e 


 , and we write 1

0 min 02 / /C fogT v a d v  , 

evaluation of (3.14) yields: 

 2 2 2 2 2 2/(2 ) /(2 ) /
2

(2 ) |
C

C
C

t t t
t T

t T
T

dt e
t

e e  


 
  




     (3.15) 

Table 3.1 gives the analytically obtained   results for various mean reaction delays , and 

parameter settings 300 ,walld m 120 ,fogd m 0 72 20 ,km m
h sv    2min 4 .m

s
a   

Table 3.1 Analytical   results for various   

  (s)   

0.9 5.19976×10-4 
0.8 6.97696×10-5 
0.7 3.72665×10-6 
0.6 4.08284×10-8 

For this example, subsection 3.5.2 specifies the GSHS model and the transformation of 
subsection 3.2.4 to an SHS model. Subsection 3.5.3 estimates   using straightforward MC 
simulation and IPS-FAS algorithm combinations 3.1&3.2, 3.1&3.3 and 3.1&3.4. 

3.5.2. GSHS model and transformation to SHS model  

For this example, the discrete set of the GSHS is: 

 { 1,0, , , }delay stop hit   (3.16) 

where -1 indicates decelerating mode, 0 indicates uniform mode, delay  is a reaction delay mode, 

sto p  indicates stopping mode, and hit  indicates the wall has been hit. A transition diagram 

representing the transitions between these modes is given in Figure 3.1. 

 

Figure 3.1. State transition diagram of GSHS model.  

The continuous state components are ( , , )t t t tx Col z y v , where tz  is the amount of time passed 
since the driver could see the wall for the first time, ty  is the position of the car at time t , and 

tv  is the velocity at time t . Hence, the dimension of the continuous state space is ( . ) 3d  . The 
subsets X   are defined as follows: 
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(3.17) 

The initial measure Init  generates 0 0 00, z 0, y 0.     Between switching moment of { }t , tx  
evolves as (3.1) with   min,[ , , ] 11, 1[ } ], {T Tf vz y v a     and   2[,. 0, ,0]Tg g   if {0, , 1},delay   else
  [0,0,0] .,. Tg    The analytical results in Table 3.1 apply for 2 0,g  i.e. no Brownian motion.  

The instantaneous transition rate ( ,( , , ))t t t tz y v   satisfies: 

 ( ,( , , )) ( ) ( ) / ( )delay delayz
z y v delay p z p s ds   


    (3.18) 

The transition measure (( ,( , , )),(.,.))R z y v satisfies: 

(( 1,( , , )),{ } {0, , }) 1R z y v stop y v    iff 0v   

((0,( , , )),{ } {0, , }) 1R z y v delay y v   iff wall fogy d d   

(( ,( , , )),{ 1} {0, , }) 1,R delay z y v y v   iff  generates a point, 

(( ,( , , )),{ } {0, ,0}) 1, iff  wallR delay z y v hit y y d    

(( 1,( , , )),{ } {0, ,0}) 1, iff wallR z y v hit y y d    . 

IPS-FAS algorithm combination 3.1&3.4 makes use of this GSHS model. By applying the 
transformation from subsection 3.2.3, the above GSHS model transforms to an SHS model. The 
resulting SHS has continuous state components ( , , , ),t t t tz y v q with { }tq evolving as 

( ,( , , ))t t t t tdq z y v dt   in between discontinuities, and  ~exp(1)sq  at a mode switch and if tq hits 
0.  

IPS-FAS algorithm combinations 3.1&3.2 and 3.1&3.3 make use of this SHS transformed 
version of the GSHS model. Though algorithm combination 3.1&3.3 also refreshes the 
“remaining time” 

k
q   at the start of a mutation during the next IPS cycle. 

3.5.3. Simulation results 

By conducting each of the approaches N   times we get , 1,.., .i i N   These results are used to 

assess the mean ˆ, the percentage S  of successful IPS runs, and the normalized root-mean-
square error (RMSE), i.e. 

 
1

1
ˆ

N i

iN




 


   (3.19) 

 
1

1
1( 0)

N i
S iN





 


   (3.20) 
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   (3.21) 
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In the subsequent IPS cycles the following levels are used: 
{0, , } [ , ) { 1, } [ , ) ,k k wallD delay hit L stop d               with the  -dependent kL  values shown in 

Table 3.2.  

 

Table 3.2 Values of Lk for various  values 

   

k


 0.9s  0.8s  0.7 s  0.6s  

1 181 181 181 181 

2 217 215 210 205 

3 230 230 220 215 

4 240 241 230 223 

5 300 300 237 230 

6   244 236 

7   300 243 

8    300 

 
Table 3.3. Simulation results for MC and IPS-FAS algorithm combinations 3.1&3.2, 3.1&3.3 and 3.1&3.4 

applied to the GSHS example 2 0g   at simulation settings 0.01s  , 1000pN  , and .100N   

0.9s   ̂  S  /RMSE   

MC (m=1) 5.300×10-4 44% 137.2% 

IPS-FAS combination 1&2 3.859×10-4 33% 116.7% 

IPS-FAS combination 1&3 5.096×10-4 100% 13.4% 

IPS-FAS combination 1&4 5.125×10-4 100% 15.2% 

0.8s   ̂  S  /RMSE   

MC (m=1) 4.000×10-5 4% 284.1% 

IPS-FAS combination 1&2 3.811×10-5 4% 271.7% 

IPS-FAS combination 1&3 6.968×10-5 100% 20.6% 

IPS-FAS combination 1&4 6.948×10-5 100% 19.8% 

0.7s   ̂  S  /RMSE   

MC (m=1) / / / 

IPS-FAS combination 1&2 / / / 

IPS-FAS combination 1&3 3.605×10-6 100% 20.9% 

IPS-FAS combination 1&4 3.757×10-6 100% 20.4% 
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0.6s   ̂  S  /RMSE   

MC (m=1) / / / 

IPS-FAS combination 1&2 / / / 

IPS-FAS combination 1&3 4.055×10-8 100% 28.30% 

IPS-FAS combination 1&4 4.029×10-8 100% 28.47% 

 

Table 3.4. Simulation results for MC and IPS-FAS algorithm combinations 3.1&3.2, 3.1&3.3 and 3.1&3.4 

applied to the GSHS example 2 1g   at simulation settings 0.01s  , 1000pN  , and .100N   

0.9s   ̂  S  ˆ/RMSE   

MC (m=1) 7.000×10-4 50% 120.37% 

IPS-FAS combination 1&2 6.306×10-4 94% 110.11% 

IPS-FAS combination 1&3 6.829×10-4 100% 13.95% 

IPS-FAS combination 1&4 6.832×10-4 100% 15.60% 

0.8s   ̂  S  ˆ/RMSE   

MC (m=1) 4.000×10-5 3% 604.15% 

IPS-FAS combination 1&2 1.266×10-4 49% 244.33% 

IPS-FAS combination 1&3 1.027×10-4 100% 18.62% 

IPS-FAS combination 1&4 1.022×10-4 100% 17.37% 

0.7s   ̂  S  ˆ/RMSE   

MC (m=1) 1.000×10-5 1% 994.99% 

IPS-FAS combination 1&2 1.316×10-5 14% 666.32% 

IPS-FAS combination 1&3 6.921×10-6 100% 16.52% 

IPS-FAS combination 1&4 7.021×10-6 100% 18.93% 

0.6s   ̂  S  ˆ/RMSE   

MC (m=1) / / / 

IPS-FAS combination 1&2 / / / 

IPS-FAS combination 1&3 1.199×10-7 100% 28.34% 

IPS-FAS combination 1&4 1.140×10-7 100% 25.39% 

 

For 2 0g   and 2 1g  , Table 3.3 and Table 3.4 respectively show simulation results of 
straightforward MC and of IPS-FAS using algorithm combinations 3.1&3.2, 3.1&3.3 and 
3.1&3.4. These results show that IPS-FAS combination 3.1&3.2 performs similar or slightly 
better than straightforward MC simulation. Both in Table 3.3 and in Table 3.4, IPS-FAS 
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combinations 3.1&3.3 and 3.1&3.4 perform far better than MC and IPS-FAS combination 
3.1&3.2. 

For 2 0g  and 0.8s  , Tables 3.5, 3.6 and 3.7 present average counts of particles per IPS 
level, over successful IPS-FAS runs of algorithm combinations 3.1&3.2, 3.1&3.3 and 3.1&3.4 
respectively. Comparison of Tables 3.5 and 3.6 show a steady increase in particle diversity 
under algorithm combination 3.1&3.3 relative to combination 3.1&3.2. Comparison of Tables 
3.6 and 3.7 show that diversity of particles after mutation step I is similar under algorithm 
combinations 3.1&3.3 and 3.1&3.4.  

 

Table 3.5. Average counts of particles per level over successful IPS-FAS runs of combination 3.1&3.2, for 

2 0.80, g s  .  

k 
No. of 

particles 
at start 

of Step I 

No. of 
different 
particles 
at start of 

Step I 

No. of 
different 
particles 

after 
Step I 

No. of 
survived 
particles 

after 
Step III 

No. of 
different 
particles 

after 
Step III 

% of 
successful 
IPS runs 
through 
level k 

1 1000 1 999.99 997.96 997.96 100% 

2 1000 997.96 971.46 92.84 92.62 100% 

3 1000 92.62 92.15 82.58 7.59 100% 

4 1000 7.59 13.26 184.40 1.41 49% 

5 1000 1.41 18.51 592.16 1 6% 
 

Table 3.6. Average counts of particles per level over successful IPS-FAS runs of combination 3.1&3.3, for 

2 0.80, g s  .  

k 
No. of 

particles 
at start of 

Step I 

No. of 
different 
particles 
at start of 

Step I 

No. of 
different 
particles 

after 
Step I 

No. of 
survived 
particles 

after 
Step III 

No. of 
different 
particles 

after 
Step III 

% of  
successful  
IPS runs 
through  
level k 

1 1000 1 999.98 998.25 998.25 100% 

2 1000 998.25 974.03 92.14 92.14 100% 

3 1000 92.14 929.76 82.10 82.10 100% 

4 1000 82.10 906.45 92.28 92.28 100% 

5 1000 92.28 889.19 100.17 98.80 100% 
 

Table 3.7. Average counts of particles per level over successful IPS-FAS runs using combination 3.1&3.4, 

for 2 0.80, g s  .  

k 
No. of 

particles 
at start of 

Step I 

No. of 
different 
particles 
at start of 

Step I 

No. of 
different 
particles 

after Step I 

No. of 
survived 

particles after 
Step III 

No. of 
different 

particles after 
Step III 

% of  
successful  
IPS runs 
through  
level k 

1 1000 1 3.15 997.85 1 100% 

2 1000 1 909.74 91.26 1 100% 

3 1000 1 917.58 83.42 1 100% 

4 1000 1 908.38 92.62 1 100% 

5 1000 1 999.41 99.01 98.42 100% 
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For the GSHS example 2 0.80, g s  ,  the differences in particle diversity in Tables 3.5-3.7 
correspond with the theory-based expectations in subsections 3.4.3 and 3.4.4.  

For the GSHS example 2 0.81, g s  , in addition to random delays, Brownian motion creates 

small differences in the position component of particles, as a result of which almost all particles 
will differ from each other. As shown in Table 3.4, in spite of this Brownian motion effect, 
algorithm combination 3.1&3.2 falls short in capturing proper effect on particle diversity and 
reach probability by the spontaneous jumps in the original GSHS. 

 

3.6. Conclusion 

In many application domains, processes have a hybrid state space and their evolution involves 
diffusion as well as forced and spontaneous jumps. This explains why GSHS and its subclasses 
play a key role in formal modelling and analysis. However in simulation and control of such 
systems, common practice is to use an SHS model, i.e. a hybrid system that involves diffusion 
and forced jumps, though no spontaneous jumps. Hence a relevant question is: “Can a GSHS 
model be transformed to an SHS model without changing process behavior that is relevant for 
the application considered?” This chapter has addressed this question in using the Interacting 
Particle System (IPS) framework of Cérou et al. (2006) for numerically estimating the reach 
probability   of an unsafe set D in a GSHS model. 

In section 3.2 stochastic process executions of GSHS have been defined, as well as their relation 
to solutions of SDE’s on a hybrid space. Also explained is that the transformation of  GSHS to 
an SHS by Lygeros and Prandini (2010) has as side-effect that it produces “remaining local 
time” information that should be treated as being not observable for other process(es) than the 
GSHS execution considered.  

Section 3.3 explains the IPS setting for a GSHS, by adopting a nested sequence of increasing 
subsets of D, and an implied factorization of the reach probability .  Because a GSHS may 
jump over a subset boundary it is shown that this does not hinder the factorization (Proposition 
3.1).  

Section 3.4 develops IPS algorithms for application to GSHS. First, subsection 3.4.1 specifies 
the IPS algorithm cycles for a GSHS using Fixed Assignment Splitting (FAS). Theorem 3.4.1 
proves that this yields lower or equal variance than using  other IPS with splitting options. 
Subsections 3.4.2 addresses IPS evaluation of a GSHS by using an SHS version, that follows 
from the Lygeros and Prandini (2010) transformation. The side-effect is that each IPS cycle 
makes use of the “remaining local time” information that is non-existing in the original GSHS. 
Subsection 3.4.3 mitigates this side-effect, by an enrichment of the original GSHS, prior to 
applying the transformation of Lygeros and Prandini (2010) with the first hitting times of the 
IPS subsets. Thanks to this enrichment, the resulting SHS refreshes “remaining local time” at 
the start of each next IPS cycle. The latter refreshment induces a significant improvement in 
particle diversity at the start of each IPS cycle. As a result of this improved particle diversity 
IPS performance in reach probability estimation is expected to significantly improve when 
reach probability estimation becomes a challenge. For purpose of comparison, in subsection 
3.4.4 an algorithm for the direct simulation of a GSHS execution within IPS cycles is specified. 
Based on theory, use of this algorithm in IPS for GSHS will yield similar good performance as 
the algorithm of subsection 3.4.3. In section 3.5, the expected differences in IPS performance 
have been illustrated for a GSHS example. 

The findings in section 3.4 mean that for IPS based reach probability estimation for an arbitrary 
GSHS model, can be applied to a properly derived SHS version of the GSHS model. The proper 
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way in deriving such SHS consists of three steps. The first step is to specify a GSHS model of 
the practical system. The second step is to enrich this GSHS with the first hitting times of the 
IPS subsets, without affecting the pathwise behavior of the GSHS execution. The third step is 
to apply the transformation by Lygeros and Prandini (2010) to the enriched GSHS from step 2.  

In view of this positive finding for the limited scope of IPS application to GSHS, a logical 
follow-on question is if there also exists an improved transformation of a GSHS to SHS for 
stochastic control problems. Such transformation would make optimal control policies 
developed for SHS applicable to GSHS. 
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Appendix 3.A: Proof of Theorem 3.4.1 

In this appendix we compare the variance of applying IPS to GSHS under FAS versus 
multinomial resampling (MR), multinomial splitting (MS), and residual multinomial splitting 
(RMS). In doing so it becomes clear that the earlier comparison by Ma and Blom (2022) for 
diffusion process extends to GSHS executions.  

The first proof starts with a characterization of the conditional distribution of particles that reach 
level k+1, given that at level k the i-th successful particle i

k  is copied i
kK  times, 1,.., .

kSi N  

Proposition 3.A.1: If 0
kSN   and i

kK , with =1,2,...,
kSi N , denote the number of particles that 

copies i

k  at level k. Then the number ,
1

k i
kY  , of the i

kK  particle copies of i
k  that reach level k+1, 

has a conditional Binomial distribution of size i
kK  and success probability 1 ( )k

i
k 
 , i.e. 
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Proof: Similar to the proof of Proposition 1 in (Ma and Blom, 2022). 

Theorem 3.A.1: If 1
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Proof: Similar to the proof of Theorem 1 in (Ma and Blom, 2022). 

Proposition 3.A2: If 1,
kSN  and we use multinomial resampling at IPS level k then 
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Proof: Similar to the proof of Proposition 2 in (Ma and Blom, 2022). 

Proposition 3.A3: If 1,
kSN  and we use multinomial splitting at IPS level k then  
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Proof: Similar to the proof of Proposition 3 in (Ma and Blom, 2022). 

Proposition 3.A4: If 1,
kSN  and we use residual multinomial splitting at IPS level k then 
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Proof: Similar to the proof of Proposition 4 in (Ma and Blom, 2022). 

Proposition 3.A5: If 2,
kSN  and we use fixed assignment splitting at IPS level k then 
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Proof: Similar to the proof of Proposition 5 in (Ma and Blom, 2022). 
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Theorem 3.A2: Given successful particles 1,..., Sk
N

k k    at IPS level k with 1
kSN  . The dominance 

of the four splitting methods (MR, MS, RMS, FAS) in terms of  1

1Var | ,..., Sk
k

N

k k  
  is: 

V V V Vk k k k
FAS RMS MS MR    (3.38) 

Proof: Similar to the proof of Theorem 2 in (Ma and Blom, 2022). 

Theorem 3.A3: If IPS levels 1 to k-1 make use of the same type of splitting (either MR, MS, 
RMS or FAS), then the dominance of the four splitting methods at level k, in terms of 

1

Var
k

k
k

 


 
 
 
  satisfies: 

_ _ _ _V V V VFAS k RMS k MS k MR k    (3.39) 

Proof: Similar to the proof of Theorem 3 in (Ma and Blom, 2022). 

 

Theorem 3.A4: Under the same type of Splitting (either MR, MS, RMS or FAS) at all levels,  
then the dominance of the four splitting methods in terms of variance  V=Var   satisfies: 

V V V VFAS RMS MS MR    (3.40) 

Proof: Similar to the proof of Theorem 4 in (Ma and Blom, 2022). 
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4 

Sampling per mode strategies in rare event simulation of stochastic 
hybrid systems 

 

 

This chapter studies sampling per mode strategies in a multi-level splitting approach to 
estimating reach probability for stochastic hybrid systems. In the literature, the theoretical 
framework of multi-level splitting based rare event simulation for diffusions has been well 
extended to stochastic hybrid systems. A critical issue is potential particle depletion for safety-
critical modes of a hybrid stochastic system; then a multi-level splitting approach may run out 
of relevant particles prior to reaching the unsafe set. To improve this situation, Krystul et al. 
(2012) incorporate sampling per mode in the theoretical framework of multi-level splitting for 
switching diffusions. The objective of the current chapter is twofold. Firstly, to develop more 
efficient sampling per mode strategies. Secondly, to characterize and compare these sampling 
per mode strategies in terms of mean and variance of estimated reach probability. The novel 
results are also illustrated through rare event simulations for a simple rare event simulation 
example.   

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been submitted to Statistics and Computing, as H. Ma and H.A.P. Blom, 
Sampling per mode strategies in rare event simulation of stochastic hybrid systems. 
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4.1. Introduction 

In a multi-level splitting approach to rare event simulation, the set for which a reach probability 
has to be estimated, is enclosed by a series of strictly increasingly (nested/enclosing) subsets. 
This allows one to express the small reach probability of the inner level set as a product of 
larger reach probabilities for the sequence of enclosing subsets (Glasserman et al, 1999; Au and 
Beck, 2003; Botev and Kroese, 2008; Rubinstein, 2010). Embedding of this multi-level setting 
in the Feynman-Kac framework (Del Moral, 2004) has enabled a systematic evaluation of reach 
probability through sequential Monte Carlo simulation of an interacting particle system (IPS), 
including characterization of asymptotic behaviour (Cérou et al., 2006). Cérou et al. (2012, 
2019) provide overviews of rare event simulation developments.  

A well known issue of IPS is the possibility of particle depletion prior to reaching the unsafe 
set. To mitigate such particle depletion, LeGland and Oudjane (2006) develop an IPS version 
that keeps the particle system alive, at the possible cost of having to make a too large number 
of particle copies. The issue of particle depletion typically plays an even larger role for safety-
critical modes in stochastic hybrid systems. A possible reason is that there may be few or no 
particles in modes (discrete-valued state components) with small probabilities (i.e., “light” 
modes). This happens because each splitting step tends to sample more “heavy” particles from 
modes with higher probabilities, thus, “light” particles in the “light” modes tend to be discarded. 
To address this problem, for switching diffusions, Krystul et al. (2012) extend IPS with a 
sampling per mode strategy, including the embedding in the Feynman-Kac framework.  

The objective of the current chapter is twofold: i) to develop more efficient sampling per mode 
strategies; and ii) to characterize and compare these strategies in terms of mean and variance of 
estimated reach probability.   

For the realization of the first objective, use is made of the sampling strategy background from 
literature on rare event simulation (Garvels and Kroese, 1998; Cérou et al., 2006; L'Ecuyer et 
al., 2007; L'Ecuyer et al., 2009) and on particle filtering (Del Moral et al., 2001; Gerber et al., 
2019). This yields four main splitting strategies for use in IPS: i) Multinomial Resampling 
(MR); ii) Multinomial Splitting (MS); iii) Remainder Multinomial Splitting (RMS); and iv) 
Fixed Assignment Splitting (FAS). MR is the classical method of drawing 

P
N  random samples, 

with replacement, from the set of 
S

N  successful particles. MS adds to the set of 
S

N successful 
particles, 

P S
N N  random samples, with replacement from the set of 

S
N successful particles. 

RMS makes of each succesfull particle /
P S

N N    copies, and subsequently adds 
/

P P S
N N N     random samples, with replacement, from the set of successful particles. FAS 
also makes of each succesfull particle /

P S
N N    copies, though subsequently adds 

/
P P S

N N N     random samples, without replacement, from the set of successful particles. In 
(Ma and Blom, 2023), it is shown that for rare event estimation, in multi-dimensional diffusions, 
in terms of variance of the estimated reach probability, FAS tends to score best, RMS second, 
MS third, and MR last. Subsequently, (Ma and Blom, 2023) have extended this result to general 
stochastic hybrid systems (GSHS).   

The sampling per mode strategy developed by Krystul et al. (2012) is of Multinomial 
Resampling (MR) type. In contrast to classical IPS, in IPS using sampling per mode the weights 
of the copied particles have to be taken into account in such a way that the reach probability 
estimator is unbiased. The current chapter develops novel IPS sampling per mode versions of 
MR MS, RMS and FAS and corresponding weighting mechanisms such that this unbiasedness 
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condition is satisfied. In realizing the second objective, i.e. characterizing mean and variance 
of reach probability estimates, the corresponding weighting mechanisms will explicitly be taken 
into account.   

The remainder of this chapter is organized as follows. Section 4.2 summarizes IPS setting for a 
General Stochastic Hybrid System (GSHS), and presents the algorithmic steps in the sampling 
per mode IPS algorithm of Krystul et al. (2012).  Section 4.3 develops a slightly improved 
version of this algorithm, and compares mean and variance of estimated reach probability with 
those from normal IPS. Section 4 specifies MS, RMS and FAS versions of sampling per mode 
IPS and characterizes mean and variance of estimated reach probabilities. Section 4.5 compares 
means and variances, and proves performance dominance relations under specific conditions. 
Section 4.6 compares simulation results for the various sampling per mode versions for a simple 
GSHS example. Section 4.7 draws conclusions. 

4.2. IPS based reach probability estimation 

4.2.1. Reach probability of GSHS 

Throughout this and the following sections, all stochastic processes are defined on a complete 
stochastic basis ( , , , , ) F T  with ( , , ) F  being a complete probability space and   an 
increasing sequence of sub--algebras on the time line T  ,i.e.,  ),t ,t  ,(J F F  , with J  
containing all P-null sets of F  and s t  J F F F  for every s t . 

Following (Bujorianu and Lygeros, 2006), we consider the execution process { , }t tx of a 
General Stochastic Hybrid System (GSHS). The latter is a 8-tuple ( , , ,  , , , , )d X f g Init R  where 
  is a countable set of discrete-valued variables, :d     is a map giving the dimensions of 
the continuous state spaces, 

 ( ): dX   maps each     into an open subset X   of  ( )d  , 
 ( ): df   is a vector field, where { } X

   , dim ( ): d mg    is an 
( )X 

-valued matrix, 

dimm  , Init : ( ) [0,1]    an initial probability measure on  , :   is a transition rate 
function, : ( ) [0,1]R     is a transition measure. 

The problem is to estimate the probability   that { , }t tx  reaches a closed subset D    
within finite period [0, ]T , i.e.  

( )P T                (4.1) 

with   being the first hitting time of D  by { , }t tx :  

 inf{ 0, ( , ) }t tt x D     (4.2) 

 

4.2.2. Multi-level factorization of reach probability 

The principle in factorizing the reach probability ( )P T    is to introduce a sequence 
,  0,.., ,kD k m of nested closed subsets of  , i.e. 1 1 0 ,m mD D D D D        with 1D

such that 0 0 1{ ( , ) } 0P x D   . Let k  be the first moment in time that { , }t tx reaches kD , i.e. 

 inf{ 0;  ( , ) }k t t kt x D t T       (4.3) 

Next, we define {0,1}-valued random variables { , 0, .., }k k m   as follows:  
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 1,   if  or 0

    0,   else
k k T k   


 (4.4) 

By using this k  definition, reach probability  satisfies the factorization, e.g. (Ma and Blom, 

2021, Proposition 3.1): 

  
1

m

k
k

 


                 (4.5) 

where 1 1{ 1 1} P( ).k k k k kE T T            

4.2.3. Recursive estimation of the multi-level factors 

First we define ' ,  ,( , ),
k kk k x     (0 ) ,k kQ T D   for 1 ,k … m    and the following 

conditional probability measure ( )k B  for an arbitrary Borel set B of ' : 

( ) ( | )k k k kB P B Q     

Following Cérou et al. (2006) a recursive scheme in evolving k  and estimating the fractions 

k involves the following transformations: 

I. mutation III. selection
1

II. conditioning

( ) ( ) ( )

    

k k k

k

p



      


 

where ( )kp B  is the conditional probability measure of k B   given 1 1k kQ   , i.e., 

 
1 1( ) ( | )k k k kp B P B Q       

Because { , }t tx  is a strong Markov process, { }k  is a Markov sequence. Hence, the mutation 

transformation (I) satisfies a Chapman-Kolmogorov equation prediction for k : 

1| 1'
( ) ( | ) ( ) for all ( ')

k kk kp B p B d B     
 

                        (4.6) 

For the conditioning transformation (II) this means: 

 
1 { }'

P( ) 1 ( )
k

k k k kQ
T T p d


    
       (4.7) 

Hence, selection transformation (III) satisfies: 

{ }

{ }

{ }'

1 ( )
( ) [ 1 ( )] /

1 ( )
k

k

k

kQB
k k kQB

kQ

p d
B p d

p d







  









 





 (4.8) 

With this, the k  terms in (4.5) are characterized as solutions of a recursive sequence of 

mutation equation (4.6), conditioning equation (4.7) and selection equation (4.8).  
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If a set of PN  particles is used to form empirical density approximations k  kp  and k of k 

kp  and k  respectively, then equations (4.5)-(4.8) yield the following recursion of the IPS 

algorithmic steps for the numerical estimator 
1

m

kk
 


 of :  

I. mutation III. selection IV. splitting
1

II. conditioning

( ) ( ) ( ) ( )

    

k k k k

k

p



         




 

Cérou et al. (2006) prove that using IPS with multinomial splitting (MS),   forms an unbiased 

 estimator, i.e. 

   
1 1 1

m m m

k k k
k k k

    
  

 
    

 
      (4.9) 

Moreover, Cérou et al. (2006) derive second and higher order asymptotic bounds for the error
( )   based on the multi-level Feynman Kac analysis, e.g. Del Moral (2004; Theorem 

12.2.2). 

4.2.4. Multinomial resampling per Mode 

To cope with large differences in mode weights, (Krystul et al. 2012) propose an IPS that 
applies sampling per mode. The resulting algorithm is specified as Algorithm 4.1 below, and 
referred to as the IPSmode algorithm.  

Algorithm 4.1. IPSmode (Krystul et al., 2012) 

Input: Initial measure , end time , decreasing sequence of 

closed subsets {( , ) }, k t tD x   1 ,k kD D   1,.., .k m  Also 

0 ,D   and number of particles  

Output: Estimated reach probability  

0. Initiation: Generate 0 P
N N M
   particles for each   : 

 , , , , ,
0 0 0 0 0( , , ,0 ,)j j j j jx x         for 1,.., ,PN

Mj   with 

   0 0

,
0 ~ 0, , 0, ,jx x dx      and 

 0 0, ,,
0 p

x dx

N M
j  

  , i.e. 

   ,
0

/
,

0 0
1

](0, , ) [ 0, ,
P

j

N M
j

j





    


    with Dirac .   Set 1.k   

I. Mutation: 
1

,

,

{ }1 1(.) ( ),
k

k

j
k

N

j k
j

p






 

     where , j

k

 is 

obtained by simulating GSHP execution starting at 
,

1

j

k

  .  

II. Conditioning:  1 , ,
11
1 .k

k k

N j j
k kj

Q


 


 

 
  

     

If 0k   then ' 0, ' { ,.., }k k k m   and go to Step V. 

III. Selection:   1
, ,{ [1, ]; , }., j

kk
j

k k kJ Qj N         

     ,

,

{ }( , )
(.) ( )

k j
k k

k
j

j J 


 
  

 
    and ,

( , )

( )
k

kj J
k

j






  



   

0
 T

(0 )k kQ T D   .PN
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      with  ,, ,
1 .1 /jj j

k k k k kQ        

      For each ,   collect  , ,

( , )
,

k
k k J

j j

j 

 


 


in 

 | |, ,

1
, .

k

k i

Ji i
k


  


   

IV. Splitting: For each mode ; 0},{ kJ       draw 

/pN M  samples , ( , , )

( )~ k

k

j

k 

  
  

 . Set PkN N M
   and 

,

/ ,

{ }1
(.) ( )

k

p

j
k

N M

k
j

j 



  

 
    with 

( )

/
,

p

kj
Nk M
  


.  

V. If , then and go to step I, else  

 

In this algorithm, kJ  is the set of particles that successfully arrive at the k-th level under mode
.   Hence at the end of splitting after reaching the k-th level, for each ,   for which 0,kJ  

there are k p
N N M

   multinomial samples, with M   .  

Krystul et al. (2012) prove that the IPSmode algorithm applied to a switching diffusion yields an 
estimated reach probability   that is unbiased, and asymptotically converges to .   

4.3. IPSmode-MRmode vs. IPS-MR 

In this section, the IPSmode algorithm 4.1 is slightly improved, and the conditional variance of 
the  estimator of this improved IPSmode version is compared to the variance of   from the 
basic IPS algorithm.  

Firstly, in subsection 4.3.1, an improved version of algorithm 4.1 is proposed. Next,  in 

subsection 4.3.2, the conditional variance of k at the k-th level of this improved IPSmode 
algorithm is evaluated. Next in subsection 4.3.3 this conditional variance is compared to 
conditional variance if at the k-th level a normal MR is used instead of sampling per mode.  

4.3.1. Improvement of splitting step in algorithm 4.1  

The splitting step of Krystul et al. (2012), implicitly assume that for each mode there are 
particles that successfully reach the next level. However if the number kM  of modes that 
successfully reach the k-th level is M , then the number of samples drawn in the splitting step 
IV of algorithm 4.1 is .pN

k pMM N  Hence a straightforward improvement of the splitting step IV 
is to generate /p kMN  samples per successful mode. This improved splitting step is specified in 
Algorithm 4.1* below; and referred to as MRmode splitting. Together with the other steps of 
IPSmode algorithm 4.1, this specifies IPSmode-MRmode. 

Algorithm 4.1*. MRmode splitting step IV in Algorithm 4.1  

IV.  MRmode splitting: Set : 1{ 0}k kM J






   

      For each mode ; 0},{ kJ      draw /p kN M  

samples , ( , , )

( )~ k

k

j

k 

  
  

 . Set /k p kN N M   and 

,

,

{ }1
(.) ( )

k

k

j
k

k

N j

j







  

 
    with 

(

/

),

k

k

p
k N M

j    


.  

k m : 1k k 
1

m

k
k
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4.3.2. Conditional variance under IPSmode-MRmode 

For the IPSmode in algorithm 4.1, the conditional mean and variance of the factor 1k   for 

reaching at the k+1-th level, we derive the following characterization. 

Theorem 4.1: If we use the IPSmode algorithm of Krystul et al. (2012) as specified in Algorithm 
4.1. Then 
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, , ,
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                    (4.10) 
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              (4.11) 

where   indicates { : 0},kJ   and ,  
kC     the sigma-algebra   ,  , ,, ;  1,...,| |,  .j j

k k k kC j J             

Proof: See Appendix 4.A.1.  

 

By replacing M  by kM in Appendix 4.A.1, we get a similar result for IPSmode-MRmode. 

Theorem 4.1*: If we use the MRmode splitting of algorithm 4.1* in step IV of Algorithm 4.1. 
Then 
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                        (4.12) 
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              (4.13) 

 

Comparison of eqs. (4.11) and (4.13) shows that  ,
1Var |k kC  

   is under IPSmodeMRmode 

smaller than or equal to that under IPSmode of Krystul et al. (2012). 

4.3.3. Comparison of IPSmode-MRmode versus normal IPS  

For completeness, we first specify in Algorithm 4.2 below a normal MR splitting step to replace 
step IV in Algorithm 4.1. Together with steps I, II, III and V of Algorithm 4.1, this defines 

IPSmode-MR. Derivation of the conditional mean and variance of the fraction 1k   for IPSmode-
MR yields Theorem 4.2. 
 

Theorem 4.2: If we use a normal MR splitting step IV within an IPSmode cycle and assume 
| | 0kJ   for all    , then 
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            (4.14) 
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       (4.15) 

Proof: See Appendix 4.A.2. 

 

Algorithm 4.2; MR splitting step IV of Algorithm 4.1 

IV. MR splitting:  

     Draw PN  samples  ,

,

1
~ (.),  1,.., ,

k

k

ik

j J i
pi k j N




 
  

 
  

   

{ }
(.) ( )

k

p

k
j

jN

kj 
   

  with 1

p

j
k N   

     Count
1
1{ }pN j

k kj
N   


   and map the elements in 

 
1

,
p

k

N
j j

k
j




 one-on-one to  , ,, ; , 1,.., ,i
k kk

i i N         

 

Next, we will prove that under specific conditions, the conditional variances of k at the k-th 
level is larger under IPS-MR than it is under IPSmode-MRmode. To accomplish this, we start with 

a comparison of conditional variances of k  at the k-th level under IPSmode-MR and IPSmode-

MRmode, in Theorem 4.3. 

Theorem 4.3: Given  , , ,,  , , 1,...,| |j j
k k k kC j J             at IPSmode level k. Let ( )

k
  and 

  1

| |
, ,

1

k

kk k

J
i i

k
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     satisfy for    : 
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, f
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(  )  i
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     (4.C1) 

 ,
1 |

, f
1

(  )  i
k

k k

k
k kM M
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     (4.C2) 

Then the dominance of the IPSmode-MR and IPSmode-MRmode methods in terms of  1

,Var |k kC  

 

is: 

    1 1

, ,
IPSmode-MRmode IPSmode-MRVar | Var |k kk kC C           (4.16) 

Proof: See Appendix 4.B. 

Following the kind of reasoning in Ma and Blom (2022), we first extend the results of Theorem 
3 to a comparison of IPSmode-MRmode versus IPS-MR. This is accomplished in Theorems 4.4 
and 4.5 below.  
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Theorem 4.4: Suppose IPSmode levels 1 to k-1 make use of the same type of splitting (either 
MR or MRmode), and conditions (4.C1-4.C2) hold true. Then the dominance of the IPSmode-MR 

and IPSmode-MRmode methods at level k, in terms of 
1

V =Var
k

k
k

k

 


 
 
 
  satisfies: 

IPSmode-MRmode IPSmode-MRV Vk k             (4.17) 

Proof: Apply the reasoning in the proof of Theorem 3 in (Ma and Blom, 2022) to the results in 
Theorems 4.1-4.2.  
 

Theorem 4.5: Suppose the same type of Splitting (either MR or MRmode) is used at all levels, 
and conditions (4.C1-4.C2) hold true for all levels. Then the dominance of the basic IPS-MR 
and IPSmode-MRmode methods in terms of variance  V=Var   satisfies:  

  IPSmode-MRmode IPS-MRV V                   (4.18) 

Proof: Application of the reasoning in the proof of Theorem 4 in (Ma and Blom, 2022) to the 
result in Theorem 4.4 yields 

IPSmode-MRmode IPSmode-MRV V         (4.19) 

It is straightforward to show that application of MR splitting at all levels of IPSmode coincides 
with the basic IPS-MR algorithm. Hence inequality (4.19) implies inequality (4.18). 

4.4. MS, RMS AND FAS Splitting per Mode 

This section studies version of Algorithm 4.1, where step IV is replaced by particle splitting per 
mode, i.e. of each successful particle one or more copies are being made. Subsection 4.4.1 
develops three versions of splitting per mode: MSmode, RMSmode and FASmode. 
Subsequently, subsection 4.4.2 characterizes conditional mean and variance for each of these 
three versions.   

4.4.1. Splitting per mode versions for step IV 

We study replacement of step IV in Algorithm 4.1 by the Algorithms 4.3, 4.4 and 4.5 for 
MSmode, RMSmode and FASmode respectively. The resulting IPSmode algorithms are 
indicated as IPSmode-MSmode, IPSmode-RMSmode  and  IPSmode-FASmode respectively.  

In Algorithm 4.3, for IPSmode-MSmode, each successful particle in ( )
k

   is first copied once. 
This yields : kkN J





  particles. Subsequently, p kN N  additional particles are cloned 

randomly with replacement from the conditional measure ( , , )

( )
k

k







 


. Hence the total number of 
particles satsifies: 

  (1 ) 1 .k
p k p k p

k
k

k k k p
k kkk
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N N N
J

N N N
N M N

M MM
J J
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Algorithm 4.3. MSmode in splitting step IV of Algorithm 4.1 

IV. Set : kkN J






  and : 1{ 0}k kM J






  . 

     For    , set .p k
k

k k

N N

M J






 else 0.k

   

     Splitting: For    , 0kJ  ; hence
, 0.j

k
   For    : 

               , ,

,
,

,, ,   1,..,
(1 )

j j

k k

j
j k

k k
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j J 


 




  


 

   

   

     The total number of these particles is .kN            

     For    , draw k kJ  additional multinomial samples: 

        
, ( , , )
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k
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for 1,., k kj J   

    Total number of particles is then  (1 )k pk NJ 
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In Algorithm 4.4, for IPSmode-RMSmode, each successful particle in ( )
k

   is first copied as 

much as possible the same number of times, and then the rest offspring are cloned randomly 

with replacement from the conditional measure ( , , )

( )
k

k







 
 . 

Algorithm 4.4. RMSmode in splitting step IV of Algorithm 4.1 

IV. Set : kkN J






  and : 1{ 0}k kM J






  . 

     For    , set .p k
k

k k

N N

M J






 else 0.k

  Set .k k
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     The total number of these particles:  (1 ) kk J 






 . 

   For ,   draw ( )k k kJ    additional multinomial 

samples:  
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The total number of particles is then  (1 ) .k pk NJ
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In algorithm 4.5, for IPSmode-FASmode, each successful particle in ( )
k

   is first copied as much 

as possible the same number of times, and then the rest offspring are cloned randomly without 
replacement from the set of successful particles. Hence the difference of FASmode with 
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RMSmode is that the remainder particles are obtained without replacement. As shown in 
Algorithm 4.5, the latter leads to a significant change in the evaluation of the particle weights. 

Algorithm 4.5. FASmode in splitting step IV of Algorithm 4.1 

IV. Set : kkN J






  and : 1{ 0}k kM J






  . 

     For    , set .p k
k

k k

N N

M J






 else 0.k

   Set .k k
       

     Splitting: For    , 0kJ  ; hence
, 0.j

k
   For :    

             ,
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, ,   1,..,
j i
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k
kJ j

k kj J







  




    

     The total number of these particles:  (1 ) kk J 






 . 

     For    , draw ( )k k kJ    additional samples without 

replacement from the set ,{ ,  1, .., }j
k kj J   . This yields 

additional copies:
, (1 )

,k k j

k

J  


 
1,., ( )k k kj J     . 

     The total number of copies is then  (1 ) .k pk NJ






   

     Adaptation of the weights (assuming
, , 'i i
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4.4.2. Characterization of conditional mean and variance 

This subsection derives characterizations of the conditional mean and variance of 1k  , given 

the information known at the begin of splitting step IV of IPSmode-MSmode, IPSmode-
RMSmode and IPSmode-FASmode. First the derivation is done for  IPSmode-RMSmode in 
Theorem 4.6.  

Theorem 4.6: If we use RMSmode splitting step (Algorithm 4.4) at level k of the IPSmode 
algorithm. Then 
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 (4.21) 

Proof: See Appendix 4.C.1. 

By setting 0k
   in Theorem 4.6, we immediately get the conditional mean and variance for 

MSmode in the Corollary below. 
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Corollary 4.7: If we use MSmode splitting step (Algorithm 4.3) at level k of the IPSmode algorithm. 
Then 
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Subsequently the characterization for IPSmode-FASmode follows in Theorem 4.8.  

Theorem 4.8: If we use FASmode splitting step (Algorithm 4.5) at level k of the IPSmode 
algorithm, then 
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Proof: See Appendix 4.C.2. 

Comparison of Th. 4.1, Th. 4.6, Corollary 4.7 and Th. 4.8 shows that  ,
1 |k kC  

  is the same (i.e. 
unbiased), whereas  ,

1Var |k kC  
   changes under different splitting steps IV. 

4.5. Comparison of variances 

This section compares relative dominance in terms of variances obtained under IPSmode-
MRmode, IPSmode-MSmode, IPSmode-RMSmode and IPSmode-FASmode. First, subsection 
4.5.1 compares, under specific conditions, the conditional variances when applying MRmode, 
MSmode, RMSmode and FASmode respectively at level k. Next, subsection 4.5.2 elaborates 
what this means for the relative dominance.  

4.5.1. Comparison of conditional variances 

We perform pairwise comparisons of the conditional variances at level k. Theorem 4.9 does so 
for RMSmode versus MSmode. Subsequently Theorem 4.10 does so for MSmode versus 
MRmode; and Theorem 4.10* for MSmode versus FASmode. 

Theorem 4.9: Given  , , ,,  , , 1,...,| |j j
k k k kC j J             at IPSmode level k. If for every 
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Then the dominance of IPSmode-RMSmode and IPSmode-MSmode methods in terms of 
 1

,Var |k kC  

 
 satisfies: 

   1 1

, ,
IPSmode-RMSmode IPSmode-MSmodeVar | Var |k kk kC C       

 (4.27) 

Proof: See Appendix 4.D.1. 

Theorem 4.10: Given  , , ,,  , , 1,...,| |j j
k k k kC j J             at IPSmode level k. Let the 

conditions (4.C1-4.C2) of Theorem 4.3 and conditions (4.C3-4.C4) of Theorem 4.9 hold true, 
and let kJ   and ( )

k
   satisfy for    : 

,    if  
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kk
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         (4.C6) 

Then the dominance of IPSmode-MSmode and IPSmode-MRmode methods in terms of 

 1

,Var |k kC  

 
is: 

   1 1

, ,
IPSmode-MSmode IPSmode-MRmodeVar | Var |k kk kC C                          (4.28) 

Proof: See Appendix 4.D.2. 

Theorem 4.10*: Given  , , ,,  , , 1,...,| |j j
k k k kC j J             at IPSmode level k. Let conditions 

(4.C3-4.C4) of Theorem 4.9 hold true. Then the dominance of IPSmode-MSmode and IPSmode-
FASmode methods in terms of  1

,Var |k kC  

 
is: 

   1 1

, ,
IPSmode-MSmode IPSmode-FASmodeVar | Var |k kk kC C              (4.29) 

Proof: See Appendix 4.D.3. 

Ma and Blom (2022) have shown that, in terms of conditional variance, IPS-FAS dominates 
both IPS-MS and IPS-RMS. It is remarkable to see from Theorems 4.10 and 4.10* that, in terms 
of conditional variance, both IPSmode-MSmode and IPSmode-RMSmode dominate IPSmode-



 

80 
 

 

FASmode. The explanation is that for FASmode it is more demanding to take proper account 
if the effect of particle weigths in splitting step IV.  

4.5.2. Comparison of variances 

Finally we perform pairwise comparisons of the overall variances, i.e. using the same splitting 
strategy at each level. Theorem 4.11 considers difference in splitting strategies at the k-th level 
only, and no differences in splitting strategy at the preceding levels.  Subsequently Theorem 
4.12 extends the results of Theorem 4.11 to cases of using the same splitting strategy at all 
levels. 

Theorem 4.11: Suppose IPSmode levels 1 to k-1 make use of the same type of splitting (either 
RMSmode or MSmode or MRmode), and conditions 4.C1-4.C6 hold true. Then the dominance 

of the two splitting methods at level k, in terms of 
1

V =Var
k

k
k

k

 


 
 
 
  satisfies: 

mode mode mode mode mode modeIPS -RMS IPS -MS IPS -MRV V Vk k k   (4.30) 

Proof: Apply the reasoning in the proof of Theorem 3 in (Ma and Blom, 2022) to the results of 
Theorems 4.9 and 4.10. 
 

Theorem 4.12: Suppose the same type of Splitting (either RMSmode or MSmode or MRmode) 
is used at all levels, and conditions 4.C1-4.C6 hold true for levels 1 to m. Then the dominance 
of the two splitting methods in terms of variance  V=Var   satisfies: 

mode mode mode mode mode modeIPS -RMS IPS -MS IPS -MRV V V   (4.31) 

Proof: Apply the reasoning in the proof of Theorem 4 in (Ma and Blom, 2022) to the result of 
Theorem 4.11. 

4.6. Rare event simulation example 

4.6.1.  Hypothetical car example 

A car driver in dense fog is heading to a wall at position walld . If the car is at distance fogd  from 

the wall, then the driver sees the wall for the first time. Then, it takes the driver a random 
reaction delay to start braking, with a density ( ).delayp s  During the reaction delay, the velocity of 

the car does not change; after the reaction delay, the car decelerates at constant value min.a We 
apply IPSmode to estimate the probability   that the car hits the wall. 

From the moment that the car reaches distance fogd  from the wall at velocity 0v , it takes the 
sum of reaction delay delayT  and the time of deceleration 0 min/decT v a  until the car is at a 
standstill. This implies 

 21
0 0 min2P{   }delay dec dec fogv T v T a T d      (4.32) 

Elaboration of (4.32) yields: 
1

0 min 02P{ / / }delay fogT v a d v                   (4.33) 
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If we assume a Rayleigh density 
2 2/(2 )

2
( ) s

delay

s
p s e 


 , and we write 1

0 min 02 / /C fogT v a d v  , 

evaluation of (4.33) yields: 

 2 2 2 2 2 2/(2 ) /(2 ) /
2

(2 ) |
C

C
C

t t t
t T

t T
T

dt e
t

e e  


 
  




    (4.34) 

Table 4.1 gives the analytically obtained   results for various mean reaction delay values ,

and parameter values 300 ,walld m 120 ,fogd m  0 72 20 ,km m
h sv    and 2min 4 .m

s
a   

Table 4.1 Analytical   results for various   

  (s)   

0.9 5.19976×10-4 
0.8 6.97696×10-5 
0.7 3.72665×10-6 
0.6 4.08284×10-8 

4.6.2.  GSHS model 

For this example, the discrete set of the GSHS is: 

 { 1,0,1, , , }delay stop hit   (4.35) 

where -1 indicates decelerating mode, 0 indicates uniform mode, 1 indicates accelerating mode, 
delay  is a reaction delay mode, s to p  indicates stopping mode, and h it  indicates the wall has 
been hit. A transition diagram representing the transitions between these modes is given in 
Figure 4.1. 

The continuous state components are ( , , )t t t tx Col z y v , where tz  is the amount of time passed 
since the driver could see the wall for the first time, ty  is the position of the car at time t , and 

tv  is the velocity at time t . Hence, the dimension of the continuous state space is ( .) 3d  . The 
subsets X   are defined as follows: 

 0

1
max

1

3

( , )

( , ) (0, )

( , ) (0, )

( , )

( 0, )

wall fog

wall fog

wall

delay
wall

stop
wall

hit

X d d

X d d v

X d

X d

X d

X



    

    

    

   

   



 




 
 


 

 

(4.36) 

Between switching moment of { }t , tx  evolves as follows: 

 

min max( 1) / 2 ( 1) / 2

t

t t

t t t t t

dz dt

dy v dt

dv a a   




   
 (4.37) 

where mina  is the deceleration value and maxa  is the acceleration value. The initial measure Init  

generates 0 0 00, z 0, y 0.    .  
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Figure 4.1. State transition diagram of car example GSHS. 

The instantaneous transition rate ( ,( , , ))t t t tz y v   satisfies: 

 ( ,( , , )) ( ) ( ) / ( )delay delayz
z y v delay p z p s ds   


    (4.38) 

The transition measure (( ,( , , )),(.,.))R z y v satisfies: 

((1,( , , )),{0} {0, , }) 1R z y v y v   iff maxv v  

(( 1,( , , )),{ } {0, , }) 1R z y v stop y v    iff 0v   

((0,( , , )),{ } {0, , }) 1R z y v delay y v   iff wall fogy d d   

((1,( , , )),{ } {0, , }) 1R z y v delay y v   iff wall fogy d d   

(( ,( , , )),{ 1} {0, , }) 1,R delay z y v y v   iff  generates a point, 

(( ,( , , )),{ } {0, ,0}) 1, iff  wallR delay z y v hit y y d    

(( 1,( , , )),{ } {0, ,0}) 1, iff wallR z y v hit y y d    . 

4.6.3.  Simulation results 

We adopt the following levels, {0,1, , } [ , ) { 1, } [ , ) ,k k wallD delay hit L stop d             
with kL  values shown in Table 4.2. 

Table 4.2. Values of Lk for various  values 

   

k

  0.9 s  0.8s  0.7 s  0.6 s  

1 181 181 181 181 

2 217 215 210 205 

3 230 230 220 215 

4 240 241 230 223 

5 300 300 237 230 

6   244 236 

7   300 243 

8    300 
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By conducting IPSmode IPSN  times we get , 1,.., .i
IPSi N   These results are used to assess the mean 

,̂ the percentage S  of successful IPSmode runs, and the normalized root-mean-square error 
(RMSE), i.e. 

 
1

1
ˆ IPSN i

i
IPSN

 


   (4.39) 

 
1

1
1( 0)IPSN i

S i
IPSN

 


   (4.40) 

 
2

1

1
( )IPSN i

i
IPS

RMSE
N

 


   (4.41) 

Table 4.3 shows the estimation simulation results for straightforward MC, IPS-MR, IPSmode, 
IPSmode-MRmode, IPSmode-MSmode, IPSmode-RMSmode, and IPSmode-FASmode, for 
mean reaction delay ranging from  =0.9s till  =0.6s.  

Table 4.3. Simulation results for MC, IPS-MR, IPSmode-MRmode, IPSmode-MSmode, IPSmode-RMSmode and 
IPSmode-FASmode applied to  GSHS model for Rayleigh mean delay for the Lk and  values in Table 4.2, 

and 0.01s  , 1000PN   and 100IPSN   

 

0.9s   ̂  S  ˆ/RMSE   

MC 5.300×10-4 44% 134.61% 

IPS-MR 5.124×10-4 100% 17.30% 

IPSmode (Krystul et al.) 4.537×10-4 100% 45.77% 

IPSmode-MRmode 5.113×10-4 100% 16.86% 

IPSmode-MSmode 5.087×10-4 100% 15.00% 

IPSmode-RMSmode 5.135×10-4 100% 14.61% 

IPSmode-FASmode 5.105×10-4 100% 15.41% 

0.8s   ̂  S  ˆ/RMSE   

MC 4.000×10-5 4% 495.54% 

IPS-MR 7.074×10-5 100% 23.19% 

IPSmode (Krystul et al.) 6.742×10-5 100% 53.41% 

IPSmode-MRmode* 6.985×10-5 100% 21.13% 

IPSmode-MSmode 6.897×10-5 100% 19.36% 

IPSmode-RMSmode 6.910×10-5 100% 19.27% 

IPSmode-FASmode 6.946×10-5 100% 19.43% 

0.7s   ̂  S  ˆ/RMSE   

MC 0 0%   

IPS-MR 3.673×10-6 100% 22.06% 

IPSmode  (Krystul et al.) 3.309×10-6 100% 53.47% 

IPSmode-MRmode 3.642×10-6 100% 20.44% 

IPSmode-MSmode 3.686×10-6 100% 19.33% 

IPSmode-RMSmode 3.669×10-6 100% 18.27% 

IPSmode-FASmode 3.682×10-6 100% 19.57% 
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0.6s   ̂  S  ˆ/RMSE   

MC 0 0%  

IPS-MR 4.094×10-8 100% 34.20% 

IPSmode (Krystul et al.) 3.820×10-8 100% 69.49% 

IPSmode-MRmode 4.061×10-8 100% 27.92% 

IPSmode-MSmode 4.113×10-8 100% 27.02% 

IPSmode-RMSmode 4.008×10-8 100% 26.77% 

IPSmode-FASmode 4.023×10-8 100% 27.89% 

 

The results in Table 4.3 show that for this GSHS example, all IPS versions outperform 
straightforward MC simulation. IPSmode-RMSmode yields lowest RMSE value, second is 
IPSmode-MSmode, third is IPSmode-FASmode, fourth is IPSmode-MRmode, fifth is normal IPS (IPS-
MR), and last is IPSmode of (Krystul et al., 2012). We also verified that conditions 4.C1-4.C6 
were satisfied for each simulated particle, and at each level. This sequence corresponds with 

the comparison of the variances for IPSmode-RMSmode, IPSmode-MSmode, IPSmode-FASmode, and 
normal IPS (IPS-MR) in Theorem 4.5 and Theorem 4.12.  

4.7. Conclusion 

This chapter has developed novel sampling per mode strategies for use in IPS based estimation 
of reach probability for a general stochastic hybrid system (GSHS). The starting point is formed 
by the IPSmode algorithm of Krystul et al. (2012); this has been described in Section 4.2. In 
Section 4.3, IPSmode-MRmode has been proposed as a straightforward improvement of this 
IPSmode algorithm. In addition, it has been shown that under specific conditions, IPSmode-
MRmode yields a variance of estimated reach probability that is lower or equal than those of 
basic IPS.  In Section 4.4, three additional sampling per mode strategies have been developed, 
yielding: IPSmode-MSmode, IPSmode-RMSmode and IPSmode-FASmode. The crucial part was to 
capture the effect of particle weights in each sampling per mode strategy such that the estimated 
reach probability remains unbiased. In section 4.5, it is shown that, under specific conditions, 
IPSmode-RMSmode performs best, IPSmode-MSmode performs second, while both dominate 
IPSmode-FASmode as well as IPSmode-RMSmode. In section 4.6, the various IPS versions have been 
simulated for a simple GSHS example; the simulation results obtained show similar relative 
performance of the different IPS versions.  
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Appendix 4.A.1: Proof of Theorem 4.1  

For IPSmode step II at level 1k  , 1k   is defined as follows: 
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                            (4.42) 

where underlining of   indicates  0.kJ    

If 0kJ   in step IV at level k, , j
k
 , satisfies: 
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k p kM N j N 
     

Substitution in (4.42) yields: 
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where ()M  represents the mutation at Step I. 

If we let , ,
1

k i
kY 

  with 1,..., ki J  be the number of the ,i

kK  particle copies from ,i
k
  that reach 1kQ

after mutation, then we have  

 , , ,
1

,
1 ( )1k i i i

k k k kY KQ      M  
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/

, , ,

1

1
pN M

i j i
k k k

j
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Combining the above three equations yields: 
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                      (4.43) 

Using eq. (4.43) yields: 
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In a similar way, we derive: 

 

    

 

,
1

| || |
, , , , ,
1 1

1 1

2| || |
, , , , ,
1 12

1 1

2

V

(

|( ) / ( )

ar |

Cov ,

Cov

/

) ( )

( ) (

, |

)

k k

k

k k

k k

k k

k

k k

JJ
k i k j

p k p k k
i j

JJ
k i k j

k k k
i j p

C

M N Y M N Y C

M
Y Y C

N

N

M

 



 

  




   












 







  

 

   



 
   





 
   

       









 

 

 

  

 
 

       
| || |

, , , , , , , , , , ,
1 1 1 12

1 1

| | |
k kJJ

k i k j k i k j
k k k k k k k

i j p

Y Y C Y C Y C



       






  




   

       
          

   (4.45) 

Each , ,
1

k i
kY 

  has a conditional Binomial distribution with success probability  1

,
k

i
k
 
  and size 

,i
kK . 

Let us define ,  ,K
kC    as follows: 

 ,  , , , ,, , ; 1,...,| |,K j j j
k k k k kC K j J              

Then we also get: 
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Substituting (4.47) in eq. (4.44) yields: 

       1

| |
, , , , 

1
1

( ) /| |
k

k k

J
i i

k k p k k k
i

N K CMC


    




   
 

           (4.50) 

If   , then , ,
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  and , ,
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  are conditionally independent given ,

kC    , and eq. (4.45) 
becomes: 
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If    and i j  then , ,
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Substitution of (4.46) yields: 
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Because   |f Z Z   f Z the latter simplifies to: 
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If    and i j  then eq. (4.45) becomes: 
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Substitution of (4.49) yields: 
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Combining (4.51), (4.54) and (4.56) yields: 
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For ,   the vector ,..., )
,,1 ,2( , kJ

k k kK K K
   has a multinomial distribution with number of trials 

equal to ,pN M  and with success probabilities / ( ).
k

i
k   Multinomial distribution properties 

yields 
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Inserting (4.58)-(4.60) into eqs. (4.50) and (4.57) and subsequent evaluation yields eq. (4.10) 
in Theorem 4.1, and: 
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(4.61) 

Rewriting the latter yields eq. (4.11) in Th. 4.1.                                      Q.E.D. 

Appendix 4.A.2: Proof of Theorem 4.2 

For IPSmode Step II at level 1k  , 1k   becomes: 
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1 11
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     (4.62) 

For     in step IV at level k, we have: 
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j
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 one-on-one to  , ,, ; , 1,..,i i
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Thus, , j
k
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Substitution in (4.62) yields:     



 

91 
 

 

       

   

, , , , ,
1

1 1
1

1 1

1
, , ,

1

1 1

1 1 ( )

( ) (

1 1 1
1 1 ( ) 1 1

1 1
1 1 1

kk k k

kk

JN N N
j j j j i

k k k k k

k

k k k
j j j iP P P

JN
j j i

k k
j

k

P
k

i P

Q Q

Q
N

Q
N N N

N

  





    

  

  





  

  

     





      

   

                   

 
   

 

  



   

 









M

M M

M

   

       

, , ,

1 1

, , , , , ,

1 1 1 1
1

1

1

)

( ) ( )

1

1 1
1 1 1 1

kk

kk k k

JN
i j i

k k k
j i

J J NN
i j i i j i

k k k k k k
i j i jP P

k

k k

Q

Q Q
N N







 

  



     

 





  

     

  

 





     

 
 

 

  
     

  




 






 

 

   

 

   M M

 

where ( )M  represents the mutation at Step I. 

If we let , ,
1

k i
kY 

  with 1,..., ki J  be the number of the ,i

kK  particle copies from ,i
k
  that reach 

1kQ after mutation, then we have: 
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Combining the above three equations yields: 
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Using eq. (4.64) yields: 
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In a similar way, we derive: 
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Let us define ,  ,K
kC    as follows: 
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Then we also get: 
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Substituting (4.68) in eq. (4.65) yields: 
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Let us define a set  , { [1, ];   }, | or   |j kS j J j i
      , then eq. (4.66) can be written as: 
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If    and i j , i.e., ,( , ) ,jj S   then we obtain: 
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Substitution of (4.70) yields: 
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If ,( , ) jj S  , then we obtain: 
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where equality (a) holds because of the law of total expectation, equality (b) holds because , ,
1

k i
kY 

  

and , ,
1

k j
kY 

  are conditional independent given ,  ,K

kC    . 

Substitution of (4.67) yields: 
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Combing (4.72), (4.74) and (4.76) yields: 
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For any ,   the vector ,..., )
,,1 ,2( , kJ

k k kK K K
   has a multinomial distribution with number of trials 

equal to ,pN which means | | ,
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  , and with success probabilities , .i
k
 Multinomial 

distribution properties yields  
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Insertion into eqs. (4.71) and (4.77), yields eq. (4.14) of Th. 4.2, and 
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Further evaluation yields: 
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    (4.81) 

Rewriting the latter eq. yields eq. (4.15) in Th. 4.2.             Q.E.D. 

Appendix 4.B: Proof of Theorem 4.3 

We have to proof that the variance in eq. (4.15) of Th. 4.2 (MR-normal) is larger or equal to the 
variance in eq. (4.13) of Th. 4.1*, i.e. 
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By using 1,( )
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  we can write: 
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Stepwise evaluation yields: 
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From inequality of arithmetic and quadratic means we get: 
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Together with (4.83) this yields: 
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Step-wise evaluation of this inequality yields 
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Division by pN , and taking into account that , 0i
k
   for    , yields inequality (4.82).     Q.E.D. 

Appendix 4.C.1: Proof of Theorem 4.6 

In IPSmode step II at level 1k  , 1k   is defined as follows: 
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For    in step IV at level k, we have: 
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(4.85) 

where ()M  represents the mutation at Step I. 

Evaluation of the second term yields: 
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If we let , ,
1

k j
kY 

  with 1,..., kj J  be the number of the  1k

   particle copies from , j
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  that reach 

1kQ  after mutation, and , ,
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  with 1,..., kj J  be the number of additional multinomial samples 
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kK  from , j
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  that reach 1kQ after mutation, then we have 
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Eq. (4.86) shows that , ,
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  are conditionally independent given ,
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Inserting (4.86) and (4.87) into (4.85) yields: 
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Using eq. (4.89) yields: 
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In a similar way, we derive: 
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Further evaluation yields: 
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Evaluation of  , , ,
1 |k i

k kY C  


  and  , , ,
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Substituting (4.93a) and (4.95) in eq. (4.90) yields: 
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If   , then , ,
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  and , ,
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  are conditionally independent given ,

kC    , and eq. (4.92) 
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 (4.99) 

If   and i j  then , ,
1

k i
kY 

  and , ,

1
k j

kY 

  are conditionally independent given ,  ,K

kC   . Hence eq. 

(4.92) becomes: 
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Further evaluation yields: 
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Substitution of (4.93a) and (4.94) yields: 
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If    and i j  then eq. (4.92) becomes: 
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Substitution of (4.93b) and (4.97) yields: 
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Combining (4.99), (4.101) and (4.103) yields: 
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For ,   the vector ,..., )
,,1 ,2( , kJ

k k kK K K
       has a multinomial distribution with number of trials 

equal to   ,k k kJ     and with success probabilities / ( ).
k

i
k   Multinomial distribution 

properties yields: 
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Inserting (4.105)-(4.107) into (4.98) and (4.104) and subsequent evaluation yields eqs. (4.20) 
and (4.21) of Th. 4.6.                                         Q.E.D. 

Appendix 4.C.2: Proof of Theorem 4.8 

In IPSmode step II at level 1k  , 1k   is defined as follows: 
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If 0kJ   , then , 0,j
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For     in step IV at level k, we have: 

, , ,,

1

,1{ } / ,  1,.., .
k

j i

J

j i i
k k k k k

i
k K j N



      


      

with the ,i
kK  particle copies from ,i

k
  and , ,

1

, 1{ },  1,.., .
kN

j i
k k k k

j

iK i J


   


     

Replacing , j
k
  in (4.109) and subsequent evaluation yields: 
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   (4.110) 

where , ,
1

k i
kY 
  is the number of the ,i

kK  particle copies from ,i
k
  that reach 1kQ after mutation, 

()M  represents the mutation at Step I. 

Using eq. (4.110) yields: 

  
,| |

, , , ,
1 1,

1

, ,| |
, ,1

,
1

, ,
, , , ,1

,
1

| |

|

| |

k

k

iJ
k ik

k k k ki
i k

k iJ
i k

k ki
i k

k ia
i Kk

k k ki
i k

C Y C
K

Y
C

K

Y
C C

K






    





  





    










 
 



 









    
  

      
    

           
      





  

 

  







 



 

 

| |

| |
, , , , , ,

1,
1

1
| |

k

k

J

J
i k i K

k k k ki
i k

Y C C
K







     














      
    



     

 (4.111) 

where equality (a) holds because , ,K
kC  
  ,

kC    and     | | , |X Y X Y Z Y   . 

In a similar way, we can derive: 
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Each , ,
1

k i
kY 
  has a conditional Binomial distribution with success probability  1

,
k

i
k
 
  and size 

,i
kK . 

Let us define ,  ,K
kC    as follows:  

 ,  , , , ,, , ; 1, ..., | |,K j j j
k k k k kC K j J              

Then we also get: 
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Substituting (4.113) in (4.111) and subsequent evaluation yields: 
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where equality (a) holds because   |f Z Z  f Z . 

If   , then , ,
1

k i
kY 


 and , ,
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  are conditionally independent given ,

kC   , ,i
kK  and , j

kK  are also 

conditionally independent given ,
kC   , and eq. (4.112) becomes: 
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If   , i j  then , ,
1
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kY 


 and , ,
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  are conditionally independent given , ,K

kC   . Hence eq. 

(4.112) becomes: 
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If   , i j  then eq. (4.112) becomes: 
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where equality (a) is due to the law of total variance. 
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Substitution of (4.113)-(4.115) yields: 
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Further evaluation yields: 
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 (4.119) 

For FASmode splitting, we have:  

,{ 1} 1k k k
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kP K                    (4.120a) 

,{ 2}k k
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By using (4.120a,b), we derive: 
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Inserting (4.121) into (4.119) yields: 
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Q.E.D. 

Appendix 4.D.1: Proof of Theorem 4.9 

We denote  ,
1Var |k kC   

   under IPSmode-RMSmode and IPSmode-MSmode by IPSmode-RMSmode
1Vk  

and IPSmode-MSmode
1Vk . Hence we have to prove IPSmode-MSmode IPSmode-RMSmode

1 1V V 0.k k    From Theorem 4.6 and 
Corollary 4.7 we get: 
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Evaluation of k
  as defined by eq. (4.26) yields: 
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By using conditions (4.C3) and (4.C4) this yields: 
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Rewriting yields: 
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Inequality of Arithmetic and Quadratic Means yields: 
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Combining this with inequality (4.123) yields: 
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Rewriting yields: 
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Further rewriting yields: 
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Multiplication by 
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 and subsequent summation over     yields: 
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 (4.125) 

Q.E.D. 

Appendix 4.D.2: Proof of Theorem 4.10 

We have to proof that the variance in eq. (4.13) of Th. 4.1* is larger or equal to the variance in 
eq. (4.23) of Corollary 4.7, i.e. 
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 (4.126) 

For k
  defined in Theorem 4.3 applies: 

1 1
1( ) 1( )

k k k k k k

k k k k k
k kk p k k p k k p

k k k

k kk k

M N M N M N

M MM N N M N

J J J

J J N M NJN
   



 





  




 
   

            
                
                         

       

Rewriting yields:  
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Thanks to conditions (4.C5) and (4.C6) this yields: 
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Thanks to (4.C1) and (4.C2) this yields: 
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In the proof of Th. 4.9 (RMSmode vs. MSmode), the following has shown to hold true under 
conditions (4.C3) and (4.C4): 
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From inequality of arithmetic and quadratic means: 
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These two, together with the previous inequality, yields: 
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This confirms inequality (4.126).                                                                                      Q.E.D. 

 

Appendix 4.D.3. Proof of Theorem 4.10* 

To compare the variances we denote  ,
1Var |k kC   

   under MSmode and FASmode by
IPSmode-MSmode

1Vk  and IPSmode-FASmode
1Vk  respectively. Then from Corollary 4.7 and Theorem 4.8 we get: 
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Hence, to show mod mod
1 1V VMS e FAS e

k k  we have to show:  
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Evaluation of the double summation term yields: 
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Inequality of Arithmetic and Quadratic Means yields: 
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From inequality (4.123) in the proof of Theorem 4.9 we know that due to conditions (4.C3) 
and (4.C4): 
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Substitution of the last two inequalities in (4.129) yields: 
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Substitution in (4.128) yields sufficient condition: 
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This yields as sufficient condition: 
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This confirms that inequality (4.128) holds true.                                                             Q.E.D. 
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5 

Importance Sampling in Rare Event Estimation for General 
Stochastic Hybrid Systems 

 
 

In the field of rare event estimation of continuous time stochastic processes, the use of 
Importance Sampling (IS) within statistical simulation has been well studied for Continuous 
Time Markov Chains (CTMC) and for diffusions. These studies address three main issues. The 
first issue is to characterize the optimal IS strategy. By the very nature of optimal IS, this 
strategy cannot be used in practice. Hence the second issue is to use the characterization of the 
optimal IS strategy for the development of a parametric family of approximated IS strategies. 
The third issue is to optimize the parameter values in this family through a minimization of the 
Kullback-Leibler divergence between the probability laws of the optimal and the approximated 
IS strategies. These three issues have been well studied for continuous time Markov chains 
(CTMC) as well as for Diffusion processes. More recently, these three steps have been 
addressed for a Piecewise Deterministic Markov Process (PDMP), which is a general class of 
hybrid stochastic processes, though without diffusion. This chapter develops an extension of 
these IS results to a PDMP that is enriched with diffusion, which is studied as a pathwise unique 
solution of a General Stochastic Hybrid System (GSHS). This IS extension is illustrated to work 
well for IS based statistical simulation of an GSHS example that has multiple subsystems in 
parallel redundancy, each of which is subject to failure and repair. 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been submitted to Methodology in Computing and Applied Probability, as H. 
Ma and H.A.P. Blom, Importance Sampling in Estimation of Reach Probability of General 
Stochastic Hybrid Systems. 
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5.1. Introduction 

A Piecewise Deterministic Markov Process (PDMP) is defined by Davis (1984) as a 
continuous-time hybrid state Markov process that involves a large variety of stochastic 
behaviours, except Brownian motion. A PDMP involves two dynamically interacting processes, 
a discrete-valued mode process { }t  and an Euclidean-valued process { }.tx A PDMP generates 

an increasing series of stopping times { ; 0,..},js j   and in between two consecutive stopping 

times the mode { }t  does not change, while the process { }tx  evolves according to a mode-

dependent flow. [Bujorianu and Lygeros, 2006] have defined a General Stochastic Hybrid 
Systems (GSHS) as an extension of a PDMP by replacing the mode-dependent deterministic 
flow by a solution of a mode-dependent Stochastic Differential Equation (SDE) which is driven 
by Brownian motion. This chapter studies rare event estimation for a GSHS using Importance 
Sampling (IS) as a variance reduction approach. 

As has been explained well by Glasserman (2004, p. 277), IS is a variance reduction approach 
that has the highest potential in rare event estimation, though also is the most complex. The IS 
idea is to modify the probability law of the process considered, such that the reach probability 
of the rare event increases. To compensate the increased reach probability value, it has to be 
multiplied by the likelihood ratio of the rare event to happen under the original process relative 
to the modified process. Studies of IS for rare event estimation commonly address three main 
issues. The first issue is to characterize the optimal IS strategy. Because this characterization 
involves the rare event probability to be estimated, it is of theoretical use only. Hence the second 
issue is to use the characterization of the optimal IS strategy for the development of a parametric 
family of approximated IS strategies. The third issue is to optimize the parameter values in this 
family through a minimization of the Kullback-Leibler divergence between the probability laws 
of the optimal and the approximated IS strategies. In literature, these three IS issues have mainly 
be studied for three classes of continuous-time stochastic processes: i) Continuous Time 
Markov Chains (CTMCs);  ii) Diffusions; and iii) Piecewise Deterministic Markov Processes 
(PDMPs).  

IS of CTMC is studied for highly dependable systems, in which multiple subsystems may be 
subject to failures as well as repairs. In literature, IS studies of such CTMC’s typically reduce 
the problem to IS of the underlying Discrete Time Markov Chain (DTMC), e.g. [Goyal et al. 
1992; Shahabuddin, 1994; Heidelberger, 1995; Papadopoulos and Limnios, 2002; Nakayama 
and Shahabuddin, 2004; Juneja and Shahabuddin, 2006; L’Ecuyer et al., 2010; L’Ecuyer and 
Tuffin, 2011; Reijsbergen et al., 2012]. A consequence of this approach is that in these studies, 
IS only modifies the transition probability matrix of the underlying DTMC, though not the rate 
of leaving the current mode.  

IS of Diffusions is well studied in various domains, ranging from finance, e.g. [Glasserman et 
al., 1999; Glasserman, 2004] to computational physics, e.g. [Dupuis et al., 2012; Zhang et al., 
2014]. The IS modification concerns the drift coefficient of a diffusion, in a direction that 
involves Brownian motion. 

Recently, [Chraibi et al., 2019] have studied IS for application to safety and reliability 
assessment of complex industrial systems. Such systems typically involve Euclidean valued 
process components (e.g. temperature of a liquid in a  tank), the evolution of which satisfies an 
ordinary differential equation, the coefficients of which depend on multiple subsystems that are 
subject to failure and repair. As has been well explained by these authors, these complex 
industrial systems can be modelled well as a PDMP. [Chraibi et al, 2019] have developed 
solutions for each of the three IS issues. A key novelty is that their optimal and approximate IS 
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strategies do not only modify the transition probabilities but also the rate of leaving the current 
mode.  

For rare event simulation of advanced air traffic designs, these IS developments for Diffusions, 
CTMC’s and PDMP’s fall short. The reason is that air traffic involves uncertainty from wind 
as well as dependency on technical systems that are subject to failure [Blom et al., 2007]. These 
stochastic effects are well captured by a GSHS, i.e. a PDMP hat is enriched with diffusion. The 
aim of this chapter is to extend the IS developments by [Chraibi et al., 2019] to GSHS. 

This chapter is organized as follows. Section 2 presents background of  General Stochastic 
Hybrid System (GSHS). Section 3 studies reach probability estimation under IS for a GSHS 
and derives an optimal IS characterization. Section 4 develops an IS approximation strategy for 
GSHS with failing subsystems in parallel redundancy. Section 5 presents simulation results for 
this IS approximation strategy for a simple GSHS example. Section 6 draws conclusions. 

5.2. Rare event estimation for General Stochastic Hybrid System 

Throughout this and the following sections, all stochastic processes are defined on a complete 
stochastic basis ( , , , , ) F T  with ( , , ) F  being a complete probability space and   an 
increasing sequence of sub--algebras on the time line T ,i.e.,  ),t ,t  ,(J F F , with 
J  containing all P-null sets of F  and s t  J F F F  for every s t . 

5.2.1 GSHS definition 

(Bujorianu and Lygeros, 2006) formalized the concept of GSHS or general stochastic hybrid 
automata as follows: 

Definition 5.2.1 (GSHS). A GSHS is a collection ( , , ,  , , , , )d X f g Init R  where 

   is a countable set of discrete-valued variables; 

 :d   is a map giving the dimensions of the continuous state spaces; 

  ( ): dX   maps each    into an open subset X  of  ( )d  ; 

  ( ): df     is a vector field, where { } X 






   ; 

 dim ( ): d mg      is an ( )X  -valued matrix, dimm ; 

 Init : ( ) [0,1]    an initial probability measure on  ; 

  :   is a transition rate function; 

 : ( ) [0,1]R      is a transition measure. 

Without loss of generality, transition measure : ( ) [0,1]R     is assumed to have a transiton 
density , ( , )xQ y  , ( , , , ) ,  x y    such that for ( )B X  : 

, ,( ) ( , ) ( )x xB
R B Q y d y       

where (.)  is Lebesgue measure.  

5.2.2 GSHS execution 

Definition 5.2.2 (GSHS Execution). A stochastic process ,{ }t tx  is called a solution of GSHS 

execution if there exists a sequence of stopping times 0 1 20s s s     such that: 
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 0 0( , )x  is a -valued random variable satisfying the probability measure Init; 

 For 1, ,  1,j jt s s j  { , }t tx  is a solution of the SDE: 

 

( , ) ( ,

 0

)

=

t t t t t t

td

dx f x dt g x dw


  

 (5.2.1) 

       with { }tw  m -dimensional standard Brownian motion; 

 js  is the minimum of the following two stopping times: i) first hitting time 1js   of the 
boundary of 1s jX


  by the phase process { }tx ; and ii) first moment 1js   of a transition event 

to happen at rate ( , )t tx  . 

 At stopping time js  the hybrid state { , }
j js sx satisfies the conditional probability measure 

, | , ,( , | , ) ({ } ),  ( ).
j j j js s s sx x xp A x R A A X 

     
 

     

In order to assure that a GSHS execution has a solution the following assumptions are adopted:  

A1 (non-Zeno property): 1{ } 0j jsE s   ,  -a.s. 

A2: For each 0 0( , )x  , equation (1) has a pathwise unique solution on a finite time interval 

[0, ]T . 

A3   is measurable and finite valued. 

A4 ( ) 1,Init    and , ( ) 1xR   for each ( , )x  . 

Bujorianu and Lygeros (2006) show that the stochastic process ,{ }t tx  generated by execution 

of a GSHS satisfies the strong Markov property.  

5.2.3 Transition rates between mode values  

Whereas ( , )x   specifies the overall jump rate if t    and tX x  , we can also define for 

each mode transition the rate ( )x  as follows: 

,( ) ( , ) ({ } )xx x R X
      .                 (5.2.2) 

This implies:  

,( ) ( , ) ({ } ) ( , )xx x R X x
 

 

     
 

             (5.2.3) 

Remark 5.2.3: If , ({ } ( /{ })) 0xR X x
    , then ( ) 0x  . In this case, at arbitrary GSHS jump 

time js  there may be a jump in { }tx  only, i.e. 
j js s    and 

j js sx x  .  

Remark 5.2.4: If , ({ } ( /{ })) 0xR X x
    , then ( ) 0x   and , ( { }) 1.xR x   In this case, at 

arbitrary GSHS jump time js  there may be a jump in { }t  only, i.e. 
j js s    and 

j js sx x  . 
Then the process { , }t tx is a hybrid switching diffusion [Yin and Zhu, 2010], and common 
practice is to work with transition matrix ( )x    with ( ) ( ), for x x      ,  and 

( ) ( )x x  
 


  . 

Remark 5.2.5: If ( )x is x-invariant for each ,  , then a hybrid switching diffusion is a 

Markov switching diffusion  
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5.2.4 Rare event estimation  

The problem is to estimate the probability   that { } { , }t t tz x  reaches a closed subset 
 ( ){ ; }dD      within finite period [0, ]T , i.e.  

( )P T             (5.2.4) 

with   being the first hitting time of D  by { , }t tx :  

inf{ 0,( , ) }t tt x D        (5.2.5) 

To analyse rare event estimation for GSHS, without loss of generality, we adopt the following 
condition: 

C0. The discrete-valued process { }t embeds the rare event indicator process 1{ }t t   , 
which implies D  , and  the process { , }t tx stops evolving upon hitting D , i.e. 

( , ) ( , ) ( , ) 0,x f x g x       if 1.t t
    

Together with assumptions A1-A4, condition C0 is assumed to hold true throughout the 
remainder of this chapter.  

5.3  Importance Sampling of GSHS 

In a GSHS, there are four candidate components for Importance Sampling (IS): the diffusion 
components f and g, the transition rate function  , and the transition measure Q . In this chapter 
we restrict our attention to IS modification of the latter two only. 

5.3.1  Importance sampling modification of   and Q  

Let  and Q  be IS modified to * and  *Q  , in such a way that the modified process *{ }tz has a 
significant higher rare event probability * *( )P T   , with *  being the first hitting time of D  
by *{ }tz .  

Between successive stopping times *
js  and *

1js  , the process *{ }tz  evolves according to a W -
adapted flow: * *

* *

,
( )

j s j

W
t js z

z t s   , where * *

*

,
( )

j s j

W
js z

t s  is the solution of SDE (5.2.1) , starting at 
*

* *( , ),
j

j s
s z  and given .W  Thanks to Assumption A2, this solution exists and is pathwise unique.  

Hence, the evolution of *{ }tz on [0, ]T is embedded in * * *
0 1

* * * * * * *
1 0 1{ , , ( ), , ....., ( ), }

n
n ns s s

W z s s z s s z  , 
with *

ns  the last switching time prior to .T  Because *{ }tz does not evolve when * 1,t   we know  
*

* 0
js

   for each j n , and during the period *( , ]ns T  no  jump happens.  

The above embedding is subsequently used to characterize the likelihood ratio to compensate a 
biased reach probability estimate that is obtained by conducting Monte Carlo simulation of a 

GSHS with the modified * and *Q . 

Proposition 5.3.1 

Let  and  Q  be modified to * and  *Q respectively. Conducting a Monte Carlo simulation of 

runsN  for this modified process yields the unbiased estimator of   

,
, 1

1

1
{ } 1{ 1} ( , )

run

n i

N

n i i i z
irun

E z L Z W
N







               (5.3.1) 

with likelihood ratio: 
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,1 1

,1 1 1 1 11 1

,1 1
1 1

1 1 1 1

1 11 1

1{ }

, ,,

* 1{ }* *
,

, ,

( , ) ( , ,....., , )

( ) exp{ ( )}exp{ ( )}
. .

exp{ ( )} ( ) exp{ ( )}

n n

W
j s zj j

s zj j j j jn n
W

j s zj j
n n

j j j j

n nz z

t tW WW
s z j s z js z n

W t tW W
s z n

s z j s z j

L Z W L t z t z W

Qt tt

t t t

 





 

     

 
 

   

 











 

1

,1 1

1 ( )

*
1 ( )

( )

( )

W
jj

W
s z jj j

n jt

j jt

z

Q z


 



 

 
 
 
  


  (5.3.2) 

where:  

, ,( ) ( ( )),
j j j j

W W
s z s zt t   * *

, ,( ) ( ( ))
j j j j

W W
s z s zt t         (5.3.3) 

        * *
, , , ,0 0

( ) ( ) ,   ( ) ( )
j j j j j j j j

t tW W W W
s z s z s z s zt s ds t s ds                  (5.3.4) 

         , ,inf{ 0;  ( ) }.
j j j j

W W
s z s zt t t                                 (5.3.5) 

Proof: 

Because the IS modification influences GSHS elements  and Q  only, the process *{ }tz  has 
the following similarities with { }:tz  i) *

00
(.) (.)zz

p p ; ii) *(.) (.)f f ; and iii) *(.) (.)g g .  
Hence, the conditional joint probability density of * *{ , [0, ]}t nz t s  , given W , satisfies: 

* * * * * * * * * * * * * * *
* 1 0 * 1 * * 1 * * 1 *
0 1 0 1 1

0 1 1 0 1 1,( ), ,.....,( ), ( )| |( ),
1

( , , ,.., , ) ( ) ( | , ) ( | , , )   
n n j j j js s s s s s sn j j j

n

n n j j j j jz s s z s s z z s s z z s s z
j

p z t z t z W p z p t z W p z t z W
  

 
    



    
  

(5.3.6) 

A similar joint probability density holds for { }tz . Hence, for 0 1 1{ , , ,..., , },n nZ z t z t z  the Radon 
Nikodym derivative ( , )L Z W  equals a quotient between the conditional probability densities of 
{ }tz and *{ }tz , given W : 

11 1 1

* * * * * * *
1 * * 1 *

1 1

1 1

11 |( ),( )|

1 1 1( )| |( ),

( )
( , ) ( ) ( ) ( , ,....., , )

( )

( | , , )( | , )
.  

( | , ) ( | , , )

j jj j s s sj j j

j j j js s sj j j

W
n n

W

n j j jj j z s s zs s z

j j j j j js s z z s s z

p W
L Z W L Z W L Z W L t z t z W

p W

p z t z Wp t z W

p t z W p z t z W

  

 
 

 

   

  

 
   
  


 

By conducting a Monte Carlo simulation of runN  runs for the process *{ }tz yields realizations 

{ , ,  1,.., }i i runW Z i N . Hence, an unbiased estimator of   then is: 

,
1

1
{ } 1{ 1} ( , )

runN

n i i i
irun

E z L Z W
N




   

Because ( , )i iL Z W  only plays a role in { }E   if , 1n iz  , this  yields eq. (5.3.1) with: 

1 1

* * *
1 *

1

11 1 1

* * * *
1 * *

1

1( )|

1 11 1
1( )|

11 |( ),( )|

1( )| |(

( | , )
( , ) ( , ,....., , ) .

( | , )

( | , , )( | , )
. .

( | , )

n n sn

n n

n n sn

j jj j s s sj j j

j j s sj j

n ns s z

n nz z
n ns s z

j j jj j z s s zs s z

j js s z z

p t z W
L Z W L t z t z W

p t z W

p z t z Wp t z W

p t z W p

 

 




  






 


 



 

* * *
1 *

1

1

1 1),
( | , , )

j j s j

n

j j j js s z
z t z W






 

 
 
 
  



    (5.3.7) 

The terms in (5.3.7) are characterized as follows: 
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1 ,1
1 1| ,( ) ( )

( | , , ) ( )W
j j s z js s j jj j

j j j jz z s s t
p z z t W Q z


  

  

1

,

, , ,

( )|
, ,

( ) exp{ ( )},  for   
( | , )

( ) exp{ ( )},  for   
j j j j j j

j j s j W
j j j js zj j

W W W
s z j s z j j s z

W Wj js s z
j s z j j s zt

t t t t
p t z W

t t t t



 

     
 

Substituting these characterizations in (5.3.7), and subsequent evaluation, yields eq. (5.3.2). 

 Q.E.D. 

5.3.2 Optimal IS for a GSHS  

This section develops an optimal IS strategy for   and Q  of a GSHS, under the condition that 
coefficients f and g are not modified. This extends the optimal IS development by Chraibi et al. 
[2019] for a PDMP to a GSHS, i.e. for the case 0g   in (5.2.1) to 0g  . 

Definition 5.3.2: IS strategy that modifies   and Q .     

     

*

*
( )

( , ) ( )
( )

j

j

W
s

j W
s

U z
Q s z Q z

U
 

  , all ( , ) .z                 (5.3.8) 

** *
* 11

,

( )( )

( ( ))
( , ) ( , )

( , )
j j

j js s ssj j jj

W W
s u s z

W s s zs s z
j

U u
p u z W p u z W

c s z 







    (5.3.9) 

with:  

* ( ) { , }W
s sU z P T z z W           (5.3.10) 

          
*( ) ( , ) ( , ) ( )W W

s s

X

U U y Q y d y
 




   


              (5.3.11) 

1
, ( )

0

( , ) ( ( )) ( , ) ( )
jj j j s j

WW W
j s zs u s s z

c s z U u p u z W d u





 
 ,    (5.3.12) 

where , ( )
j

W
s z u is the solution of SDE (5.2.1) at moment js u  given W  and ( , ) .

j js sx z    

Theorem 5.3.3 

If GSHS coefficients f and g are not modified, then the IS strategy of Definition 5.3.2 is optimal. 

To prepare for the proof of Theorem 5.3.3, we first derive  Lemmas 5.3.4 and 5.3.5 below. 

Lemma 5.3.4: ( )W
sU 

, ,   is the conditional hit probability given sz   , sz  , and W
, i.e. 

     ( ) { , }.W
s s sU P T z z W  

       (5.3.13) 

Proof: Evaluation of ( )W
sU  in (5.3.11) yields: 
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*( ) ( , ) ( , ) ( )

{ ( , ) , } ( , ) ( )

{ , ( , ) { } , }

{ , }       

W W
s s

X

s

X

s s s s

X

s s

U U y Q y d y

P T z y W Q y d y

P T x dy z z W

P T z z W



 

 









   

   

   

 














    

       

   

 

 

 
 

Q.E.D. 

Lemma 5.3.5: For all :z  

** *
* 11

,

* ( )( )

( ( ))
( , ) ( , )

( )
j j

j js s ssj j jj
j

W W
s u s z

W s s zs s z
s

U u
p u z W p u z W

U z 







   (5.3.14) 

Proof: From Lemma 5.3.4 we get:  

, ,( ( )) { ( ), }
j j j j j

W W W
s u s z s u s u s zU u P T z z u W
         

Substituting this in eq. (5.3.12) yields:  

1

1 1 1

1 1

1

+ + , ( - )
0

, 1

0

, 1

, 1

( , ) { < = ( ), } ( , ) ( )

= { < = ( - ), } ( , ) ( )

{ ( - ), }

{ ( ), }

{

j j j j j s j

jj j j j s j

jj j

jj

W W
j s u s u s z s s z

W
s z j js s s s z

W
s z j js s

W
s z j js

c s z P T z z u W p u z W d u

P T z z s s W p u z W d u

P T z z s s W

P T z s s W

P

 

 









  

 









 





  

 

    

    







*, } ( )                                     
j j

W

s s
T z z W U z  

 

Substituting this in eq. (5.3.9) yields (5.3.14).                           Q.E.D. 

Proof of Theorem 5.3.3: The IS strategy of Definition 5.3.2 yields the process *{ }tz  with 
transition density: 

1

* * * *
1 , 1 , 11

1

*
1*

1 1 1 1 1| ,( ) ( ) ( )
, 1

( )
( | , , ) ( , ) ( )

( ( )
j

W W
s s j j s z j s z jj j j j j j

j j j j

W
s j

j j j j j j jWz z s s t tW
s t s z j

U z
p z z t W Q s t z Q z

U t


  



      

 

  


 

Substituting this together with eq. (5.3.14) in eq. (5.3.6), yields: 
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*

* * * * * * * *
1 110 1

1 1 1

*
1 10

1

{ }

0 1 1( )| |( )
1

,

0 1* ( )|
1 1

*

( )=

= ( ) ( | , ) ( | , , )

( ( ))
( ) ( | , )

( )

( )
.

t

j j s j js j s sj j

j j j j

j j ss j

j

j

z

n

j j j j jz s s z z s s z
j

W Wn
s t s z j

j jWz s s z
j s j

W
s j

p Z W

p z p t z W p z t z W

U t
p z p t z W

U z

U z

U

  

  

 


  






 

 
  

 
 
  





1 1
1 1 1

1 1 1

1 1 1 1

1|( ),
1 ,

*
,

* { }
1 1 ,

( | , , )
( ( ))

( ( )) ( )
. ( )

( ) ( ( ))

j js sj j
j j j j

j j j j j

t

j j j j j

n

j j jW z s s zW
j s t s z j

W WWn
s t s z j s j

W W zW
j s j s t s z j

p z t z W
t

U t U z
p Z W

U z U t

 
  

  

   

 
 





  

 
 

  
 
 

  





 

Subsequent evaluation yields: 

*

1 0

0

0

* *

* *{ } { } { }
1 1 0

{ }
0

{ }
0

( ) ( )
( )= . ( ) . ( )

( ) ( )

{ , }
( )

{ , }

{ 1 , }
( ) 

{ , }

j n

t t t

j

n

t

n

t

W Wn
s j s n

W Wz z z
j s j s

s n

z
s

n s n

z
s

U z U z
p Z W p Z W p Z W

U z U z

P T z z W
p Z W

P T z z W

P z z z W
p Z W

P T z z W










 

 
  
  

 


 

 


 



  (5.3.15) 

where nz denote the   component of nz . 

Eq. (5.3.15) implies that IS of Definition 5.3.2 is optimal.             Q.E.D. 

5.3.3 Characterizing the optimal IS for a GSHS 

This Section develops a characterization of the optimal IS strategy of Theorem 5.3.3. Of this IS 

strategy, *( , )jQ s z  satisfies eqs. (5.3.8) and (5.3.10), from Definition 5.3.2, while 

** *
*1

( )
( , )

s s sj j j
s s z

p u z W



 satisfies eqs. (5.3.14) and (5.3.13) from Lemmas 5.3.5 and 5.3.4 

respectively.  

Theorem 5.3.6: For *
zt t , given W: 

         
|

*|
*|,

( ( ))
( ) ( )

( ( ))
j

j

j

W W
s t zW W

zW Ws z
s t z

U t
t t

U t
 










          (5.3.16) 

Proof: The jump rate *

*|

,
( ),

j

W

s z
t  given W, satisfies for * :zt t  

* ** * * *
* *1 1

*

* * * * * *
1 * 1 *

( ) ( )
*|

,

( ) ( )
0

( , ) ( , )
( )

1 ( , ) ( , )

j j j js sj j

j

j j j js sj j

s s z s s z
W

ts z

s s z s s z
t

p t z W p t z W
t

p u z W du p u z W du


 

 

 



 

 
  

 

Substitution of eq. (5.3.14) yields: 
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1 1

11

|

|
*| ( ) ( )

*|
|,

|

( )*| ( )

( ( ))
( , ) ( ( )) ( , )

( )
( )

( ( ))
( ( )) ( , )( , )

( )

j

j j j j js j sj j

j

j

j j jj j s js jj

W W
s t z

W W
W s s z s t z s s z

sW
W Ws z

W Ws u z
s u z s s zW s s z

tst

U t
p t z W U t p t z W

U z
t

U u
U u p u z W dup u z W du

U z


 







  

 

 




 



 

Using 
1( )|

( | , ) ( ) exp{ ( )}
j j s j

W W
z zs s z

p t z W t t
 

   yields:  

1

|

*|

,
|

( )

( ( )) ( ) exp{ ( )}
( )

( ( )) ( , )

j

j

j j j
s j

W W W W
s t z z zW

s z
W W

s u z s s z
t

U t t t
t

U u p u z W du











 

 



 

Hence, it remains to be proven that, given W, for * :zt t  

1

| *|

( )
( ( )) ( , ) ( ( )) exp{ ( )}

j jj j
s j

W W W W W
s u z s t z zs s z

t

U u p u z W du U t t




 

     

This remaining proof is accomplished as follows.  

From eq. (5.3.13), we get: 

| ( ( )) { ( ), }
j j j

W W W
s u z s u s u zU u P T z z u W
         

Substitution and subsequent evaluation, yields for * :zt t  

 

 

 

1

1

1 1 1

1 1 1

|

( )

( )

( )

( )

( ( )) ( , )

( ), ( , )

( ), ( , )

, ( ), ( , )

j j j
s j

j j j j
s j

j j j j
s j

j j j j j
s j

j

W W
s u z s s z

t

W
s u s u z s s z

t

W
s s z s s z

t

W
s s s t z s s z
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P T z z u W p u z W du
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Corollary 5.3.7 

* *

*| * | *( ( )) ( ( ))
j z j z

W W W W
z z z zs t s t

U t U t
  

       (5.3.17) 

Proof: From eqs. (5.3.10) and (5.3.13) we get: 
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* *

* * *

*| * *

* | *

( ( )) { ( ), }

{ ( ), } ( ( ))                     Q.E.D.

j z j z

j z j z j z

W W W
z z z zs t s t

W W W
z z z zs t s t s t

U t P T z t W

P T z z t W U t





   


   

    

      
 

Corollary 5.3.8: Given W, for * :zt t  
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( ( )) ( ( )) ( )j
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W W
s t z W W W W W

s t z s t z z
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      (5.3.18) 

Proof: From the proof of Theorem 5.3.6, given W, for * :zt t  

*|

1

|
( )

( ( )) exp{ ( )} ( ( )) ( , )
j

W W W
s t z z j jj s j

W W
s u z s s z

t

U t t U u p u z W du




 

     

Partial derivation w.r.t. *
zt t  yields the result.                       Q.E.D. 

Remark 5.3.9: [Chraibi et al., 2019, Theorems 4.4-4.6] derived PDMP versions of Theorem 
5.3.6 and Corollaries 5.3.7 and 5.3.8. The next Theorem provides additional insight. 

Theorem 5.3.10: Given W, for * :j zt t  

*|
1*| *

( ) 1 1 1*|, ( )

( )
( ) ( , ) ( ) ( )

( ( ))
j j

W
z j jjj j z jj

j j j

W
s t jW W

j t j j z j jW Ws z t
s t z j

U z
t Q s z t Q z

U t
  

   





     (5.3.19) 

Proof: We start from eq. (5.3.16), for *( , ) ( , ),   :j j j zz t z t t t    

|
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( ( ))
j j j
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Multiplication of the left and right hand sides by *
1( )

( , )W
z jj

j j jt
Q s t z 

  yields:  
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From (5.3.8) we get: 
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1*
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W W
z j z jj j

j j j
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Substituting this in the preceding eq. yields: 
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           Q.E.D.
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5.4. Approximation of Optimal IS  

This section studies an approximation of the Optimal IS for a GSHS which has failing 
subsystems in parallel redundancy, and the Euclidean valued { }tx  is pathwise continuous, i.e.: 

C1. GSHS consists of a number of subsystems in parallel redundancy that are subject to failure 
and repair;  

C2. ( , ) ( , )( , ) ( ) ( )x x xQ y Q y    , for all ( , ),( , ) .x y       

First, subsection 5.4.1, follows the idea of [Chraibi et al., 2019] in adopting a family of 

approximated 
* ( )W
sU z . Next, subsection 5.4.2 evaluates this family for a GSHS. Subsection 

5.4.3 shows what this means for a CTMC.   

5.4.1 Family of approximated 
* ( )W
sU z  for a GSHS 

We propose to approximate the optimal 
* ( )W
sU z  by a family of functions ( )aW

sU z , .aa S  The 

best setting for parameter a  can be determined through minimizing the Kullback-Leibler 

distance (or cross-entropy) between the laws of the GSHS under the optimal IS of 
* ( )W
sU z and 

the approximate IS of ( )aW
sU z . 

Similar to the characterization of the optimal IS in Section 5.3.3, an approximate ( )aW
sU z yields 

the following IS strategy: 

    
,

( ( ))
( ) ( )

( ( ))
j j j

jj j

j j j

a W W
s t z jaW W

j z ja Ws z W
s t z j

U t
t t

U t
 










, for *

j zt t                               (5.4.1) 

1

1 1( ) ( )

( , ( ))
( , ) ( )

( ( ))
j j j

W W
z j z jj j

j j j

a W W
s t j z ja

j j j ja Wt tW
s t z j

U t
Q s t Q

U t

 
   

  


 


                           (5.4.2) 

where ,( , ) ( , ) ( )a W a W
s s xU x U x Q



   



 .  

For a PDMP that satisfies C1 and C2, the ( , )a
sU x family proposed by [Chraibi et al., 2019] is: 

        ( , ) , ( ) ( , )a
s iU x H a b F s x                           (5.4.3) 

         2, ( ) exp{ . ( )}i iH a b a b                                 (5.4.4) 

where index 1i   if ( , )x   and 2i   if ( , )x  , ( )b   is the number of failing sub-
systems under mode  , and ( , )F s x  is a function of time s and Euclidean-valued state x.  

To take the W-dependence into account for a GSHS, the ( , )aW
sU x  family we adopt is: 

        ( , ) , ( ) ( , )a W W
s iU x H a b F s x             (5.4.5) 

2exp{ . ( )}ia b              (5.4.9) 
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where  , ( )iH a b  satisfies (5.4.4) and ( )WF   is a W   conditional function of time s and 

Euclidean-valued state  x.  

5.4.2 Approximated IS strategies for GSHS 

The family proposal (5.4.4)-(5.4.5) is characterized in Theorems 4.4 and 4.5. 

Theorem 5.4.4: Under C1 and C2, for :j

jy X   
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                      (5.4.6) 

where 
,

(0)( )
j j

a

s z

Wa
jz  . 

Proof: By multiplication of (5.4.1) and (5.4.2), and subsequent cancelling of ( ( ))
j j j

a W W
s t z jU t
  in 

nominator and denominator:  
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           (5.4.7) 

Substitution of (5.4.5) and (5.4.4) in (5.4.7) for ( , )s x   yields: 
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Straightforward elaboration yields for ( , )s x  : 
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1 1( )1 ,1 2 ( ) ( ) ( ),   if  ( ) ( ) 1
j j
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j xj j
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j j j j jtxb t Q b ba


    
 

   









                 (5.4.8) 

This means that the product Q  is multiplied by factors that are W-invariant. To make this 
explicit we define:  

,, ( )( ( ))
j jj j

a

s z

Wa W
s z j jtt    
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By definition in subsection 5.3.1, we also know: 
, ,( ) ( ( )).

j j j js z

W W
j s z jt t    

Substituting both in (5.4.12) yields for ( , )s x  : 
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                   (5.4.9) 

Now we define , , ( ) j

j j j

W
j s x jy t X 

 ; substituting this in (5.4.9) yields (5.4.6).                         Q.E.D. 

Theorem 5.4.5: Under C1 and C2, for each jy X  :  

( , ) 1*
( , ) 1 2 2

2 1 ( , )

( )
( , )

exp{ [ ( ) ( ) ]} ( )

j

j

j

y ja
y j z j

j y

Q
Q s t

a b b Q




 




 
  










  
  (5.4.10) 

Proof: For *
j zt t , only the Kernel transition applies.  

From (5.4.2) we get: 

* *

*

* *

*
1 1( )*

1( ) *

( )

( , ( )) ( )
( , )

( , ( )) ( )

W
jj z z zj

W
z zj

W
jj z z zj

a W W
j z z js t ta

j z j a Wt W
z zs t t

U t Q
Q s t

U t Q


  


  


  

 
 



 


 

Substitution of (5.4.5) and (5.4.4) yields: 
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Division by 2
2 1exp{ ( ) }ja b    , and elaboration yields: 
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Finally, we substitute *( ) ( , ),
j

W
z z jt y   where *( ) j

j

W
z zy t X   . This yields (4.10) for .jy X   

Q.E.D. 

Theorems 5.4.4 and 5.4.5 imply that under conditions C1 and C2, the Brownian motion does 
not play a role anymore in the approximated IS strategy. Hence, if 0g  ,then Theorems 5.4.4 
and 5.4.5 coincide with the characterizations by [Chrabi et al., 2019, Subsection 5.1]. 
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5.4.3 Approximated IS strategy for CTMC 

In earlier proposed IS strategies for CTMC’s, e.g. [Reijsbergen et al., 2012], the IS factors apply 
to transition probabilities of .Q  From Theorem 5.4.4, we get an IS strategy for CTMC in which 
IS factors apply to the transition rates of .Q  

Corollary 5.4.6: For a CTMC, i.e. 0,d  satisfying C1: 

  

  

1

1 1

1 1

1 1

1

1

( )

exp 1 2 ( ) ( ) ( ),   if  ( ) ( ) 1 

( ) ( ),                                    if  ( ) ( )    

exp 1 2 ( ) ( ) ( ),   if  ( ) ( ) 1

( )

j

j

j

j

a

j

j j j j j

j j j j

j j j j j

a
j Q

b Q b b

Q b b

b Q b b

a

a









 

     

    

     

 


 


 


 

   

 

   







 

5.5. Application to GSHS Example 

In this section we apply IS for the reach probability estimation of a modified version of the 
heated room example of Charibi et al. (2019, pp. 901-902). In the original example, the room 
is losing heat to the environment, which has a constant temperature. The extra complication 
considered is that the external temperature is no longer fixed, though evolves according to a 
Geometric Brownian motion (GBM). The latter changes the original PDMP into a GSHS 
example. 

5.5.1. Heated room system example 

The heated room example is about a room whose temperature ,R tx  is influenced by three 
identical heaters, and the energy flow to the exterior of the room. The challenge is to estimate 

{ }T   with  , 0inf 0 : R tt x   , for 100T   hour. 

The Euclidean valued state includes the room temperature ,R tx  at time t, and the exterior 
temperature ,E tx  at time t.  Hence, the Euclidean valued state space is 2-dimensional.The room 
temperature ,R tx  evolves according to the differential: 

  
,

3

,
1

, 1 , 2[ 1 ]
i ttR t R E Nt O

i

d tx x dx 


       (5.5.1) 

with 1  the rate of heat transition to the exterior, 2  the heating rate capacity of a heater that is 
ON, and ,E tx  is the exterior temperature. , 0E tx   evolves according to SDE:  

 , ,E t E t E td x x dW                                    (5.5.2) 

where tW  is standard Brownian motion, ,0 0,Ex  and E  is a volatility parameter. Given initial 

value ,0 0Ex  , eq. (5.5.2) has the following solution: 

   2

, ,0 2exp E

E t E E tx x t W         (5.5.3) 

The discrete-valued state t  consists of a product of the discrete-valued states of the three 
heaters, i.e.  1, 2, 3,, ,t t t t    . Each of the three heater may switch between three mode values: 
ON, OFF, and Failed (F). Each Failed heater may be repaired at a spontaneous rate R . Each 
non-failed heater may switch to mode F at spontaneous rate: 

                       , ,RF t O T tc c x   .              (5.5.4) 
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Non-failed heaters make forced switches if the temperature of the room, , ,R tx  becomes too high 
or too low. The forced switching laws of the heaters are: 

- Switching law 1: If m n, iR tx x , the second heater activates only if the first one is failed, and 
the third one activates only if the two other heaters are failed.  

- Switching law 2: If m n, iR tx x , and repair of heater i occurs, then the heater status is set to ON 
only if all other heaters are failed, otherwise the repaired heater is set to OFF. 

- Switching law 3: If switching law 1 selects heater i as the heater to be turned on, then this 
heater may fail on demand with probability FP . 

- Switching law 4: If m x, aR tx x , then all non-failed heaters are switched to mode OFF with 
probability 1.   

Table 5.1 lists the parameter values for this example. Parameter values are from (Charibi et al., 
2019), except those for the novel parameter E  in eq. (5.5.2). 

Table 5.1. Parameter values 

Parameter Value Unit 

1  0.1 h-1 

2  5 oC/h 

Oc  0.0021 h-1 

Tc  0.00015 (h·oC)-1 

E  0.  ...  0.5 - 

D  ( ,0]  oC 

FP  0.01 - 

T  100 h 

,0Ex  -1.5  oC 

maxx  5.5 oC 

minx  0.5 oC 

,0Rx  7.5 oC 

1,0  OFF - 

2,0  OFF - 

3,0  OFF - 

R  0.2 h-1 

5.5.2. IS strategy for Heated room example  

The IS approach to be demonstrated for the Heated room example is the approximated IS 
strategy that has been developed in section 5.4.2 for a GSHS. In the heated room example, 
spontaneous switchings are: i) spontaneous failure of a heater which is in the ON or OFF mode; 
and  ii) spontaneous repair of a failed heaters. The forced switchings are defined by the 
switching laws of the heaters. Next we explain how application of Theorems 5.4.4 and 5.4.5 to 
the spontaneous and forced switchings, yields the IS factors in Table 5.2.   

Application of Theorem 5.4.4 to spontaneous failure of a heater yields the IS factor 

1[1 2 ( )]exp{ }a b  . Application of Theorem 5.4.4 to spontaneous repairs yields the IS factor 

1[1 2 ( )]exp{ }a b  . Following law 3, if heater i is selected to be switched to ON, then it switches 
to ON with probability 1 FP , and it switches to Failure (F) with probability FP . Applying this 
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to Theorem 5.4.5 yields as denominators     21 1 2 ( )expF FP aP b     and 
    2 1 2 (exp ) 1F FbaP P    respectively.  

Table 5.2. IS Factors for spontaneous failure/repair rates, and for failure/non-failure probabilities of forced 
switchings  

Transition 
Rate or 

Probability 

IS Factor, 

given joint mode  

Spontaneous 
Failure ,F t   1 1 2 ( )a be   

Spontaneous 
Repair R   1 1 2 ( )ja b

e


 

Failure of 
forced 

switching 
FP  

    2 )exp

1

1 1 2 (F FP aP b   
 

Non-Failure 
of forced 
switching 

1 FP  
    2

1

1 2 (exp ) 1F FaP b P  
 

 

As is shown in Section 5.4, the same approximated IS strategy applies if 0g  , i.e. 0E  . 
Hence the minimization of the Kullback-Leibler divergence also coincides. Charibi et al. (2019) 
obtained optimal values by minimizing the Kullback-Leibler divergence (or cross-entropy); the 
resulting values are: 1 0.915a   and 2 1.197.a   The minimization of the  Kullback-Leibler 
divergence for 0E   yields the same values for the parameters 1a  and 2a . 

5.5.3. Importance Sampling and MC simulation results  

For the Heated room example, we estimate   by conducting IS and MC simulations that consist 
of 100,000.runN  To also estimate the standard deviation, we conduct both each IS and each MC 
simulation N  times. Hence we get , 1,.., .i i N   These results are used to assess the mean ˆ, the 
percentage S  of successful IS runs, and the normalized root-mean-square error (RMSE), i.e. 

1

1
ˆ

N i

iN




 


        (5.5.5) 

         
1

1
1( 0)

N i
S iN





 


               (5.5.6) 

2

1

1
ˆ( )

N i

i
RMSE

N




 


           (5.5.7) 

In addition, we estimate the acceleration factor that is obtained by using IS instead of MC: 
2

MC MC
IS

IS IS

RMSE CPU
F

RMSE CPU

 
  
 

       (5.5.8) 

The results obtained are collected in Table 5.3. The results in Table 5.3 show that IS 
outperforms straightforward MC simulation by about a factor 4 ,10 for this GSHS example. 
Without Brownian motion, i.e. 0E  , the acceleration factor is slightly lower than 410 . The 
acceleration factor is slightly higher than 410 , when Brownian motion influences the rare event 
probability. 
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Table 5.3. Simulation results for MC and IS applied to the Heated room example for 0.01s  , 100, 000runN  , 

.50N   

 E  ̂  S  ˆ/RMSE   CPU 
time ISF  

MC 

0 1.22×10-5 74% 94.07% 0.92s 1 

0.001 1.23×10-5 72% 94.67% 1.41s 1 

0.01 - 0% - - 1 

IS 

0 1.29×10-5 100% 0.54% 2.71 s 9,215 

0.001 1.29×10-5 100% 0.51% 3.90 s 11,326 

0.01 1.24×10-5 100% 0.54% 4.02 s >> 

0.5 1.25×10-5 100% 0.52% 4.24 s >> 

 

5.6. Conclusion 

This chapter studied IS for rare event for a GSHS, i.e. a PDMP that involves Brownian motion, 
i.e. 0.g   As outcome of this study, the IS developments by Chraibi et al., 2019 for PDMP have 
been extended to GSHS. Section 5.2 has defined GSHS and its execution process. Section 5.3 
has characterized the optimal IS strategy for a GSHS; Brownian motion plays a key role in 
these derivations. Section 5.4 has developed an approximated IS strategy for a GSHS that 
consists of a number of subsystems in parallel redundancy, that are subject to failure and repair. 
Under the additional assumption that the Euclidean valued process has no discontinuities, this 
approximated IS strategy has shown to be invariant to the Brownian motion in a GSHS. Thanks 
to the latter, the minimization of the Kullback-Leibler distance works for a GSHS from this 
class the same as it works for its corresponding PDMP [Chraibi et al., 2019]. For a simple 
GSHS example the approximated IS strategy has been demonstrated to work well.  

Follow-on research is to extend the developed approximated IS strategy to a GSHS where the 
Euclidean-valued process involves discontinuities. A complementary extension is to study 
optimal and approximated IS strategies for GSHS that not only modify lambda and Q, though 
also the drift coefficient f.   
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6 

Conclusion and Future Research 

 
 
This Ph.D. thesis studied rare event estimation using MC simulation. The motivation for these 
studies stems from the increased need to evaluate a design of a future ATM ConOps on safety 
and capacity. With a focus on the GSHS method and Monte Carlo acceleration techniques, the 
overall aim of this thesis is: 

To develop significant improvement in rare event simulation for GSHS 

The overall aim has been achieved through a series of interconnected works conducted in this 
thesis. The comprehensive findings and results will be discussed in this chapter. The structure 
of this chapter is as follows: Section 6.1 addresses the results from rare event simulations of 
GSHS, Section 6.2 discusses the contributions of these results, and Section 6.3 proposes several 
directions for future work. 
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6.1 Results from rare event simulations of GSHS 

This section explains the results obtained for each objective identified in the introduction. 

Objective 1: Error Analysis of Multilevel Splitting. 

Objective 1 has been studied in Chapter 2 for a multi-dimensional diffusion process using the 
IPS framework of Cérou et al. (2006). More specifically, the IPS performances have been 
analysed for four splitting strategies: MR, MS, RMS, and FAS, when employing a finite number 
of particles. These strategies differ in how they sample the new set of particles from the set of 
successful particles. It has been proven that the dominance of the four splitting methods in terms 
of variance satisfies: 

V V V VFAS RMS MS MR    

where V ,V ,V ,VFAS RMS MS MR  the variance used by IPS-MR, IPS-MS, IPS-RMS and IPS-FAS, 
respectively. The proof of this inequality has been extended to GSHS in Chapter 3.  

These proofs have been realized in a step-wise approach. During the first step, a novel 
characterizations have been derived for the conditional variances at splitting level k, given the 
set of survived particles at the beginning of the k-th IPS cycle; this is done for all four splitting 
strategies. Subsequently, these conditional variances are compared for the different splitting 
strategies, and their relative dominance is proven. Then this dominance proof is extended to the 
variance given that only during the k-th IPS cycle different splitting strategies are used. The 
final step has used the latter result in an inductive way to complete the proof of variance 
dominance.  

The difference in IPS performance under the four splitting strategies has been illustrated for a 
one-dimensional geometric Brownian motion example for which the reach probabilities are 
analytically known. 

Objective 2: Understanding Effect of Transforming Spontaneous Jumps to Forced Jumps. 

Chapter 3 has studied the question: “Can a spontaneous jump in a GSHS model be transformed 
to a forced jump without changing process behavior that is relevant for IPS based rare event 
estimation?” The transformation proposed by Lygeros and Prandini (2010) produces a GSHS 
version that includes an auxiliary Euclidean-valued state component. Chapter 3 first reveals that 
the execution of such transformed GSHS version no longer satisfies the strong Markov 
Property. Subsequently it is proven that the effect of the above transformation has a negative 
effect on the performance of IPS for a GSHS.  

To maintain the strong Markov property, the extra state component should be treated as being 
unobservable for other process(es) than the GSHS execution considered. To formalize this in 
applying IPS, prior to applying the transformation by Lygeros and Prandini (2010), the original 
GSHS should be enriched with the first hitting times of the IPS subsets, and the extra state 
component should be refreshed at these hitting times. The latter refreshment induces a 
significant improvement in particle diversity at the start of each IPS cycle. As a result of this 
improved particle diversity, IPS performance in reach probability estimation is expected to 
significantly improve when reach probability estimation becomes a challenge. For purpose of 
comparison, in Chapter 3, an algorithm for the direct simulation of a GSHS execution within 
IPS cycles is specified. Based on theory, use of this algorithm in IPS for GSHS will yield similar 
good performance as applying IPS to the original GSHS model, though significantly better than 
applying IPS in combination with the original transformation of Lygeros and Prandini (2010). 
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The expected IPS performance for the three IPS versions have been illustrated for a GSHS 
example. 

The findings of Chapter 3 mean that for IPS based reach probability estimation for an arbitrary 
GSHS model, there are two equally well working approaches, The first approach is to apply 
IPS to the original GSHS model with spontaneous jumps. The second approach is to apply IPS 
to a GSHS that is obtained through the following two steps: i) To enrich the original GSHS 
with the first hitting times of the IPS subsets, without affecting the pathwise behavior of the 
GSHS execution; and ii) To apply the transformation by Lygeros and Prandini (2010) to this 
enriched GSHS.  

Objective 3: Error Analysis of sampling per mode within IPS 

Objective 3 has been studied in Chapter 4 for sampling per mode strategies within IPS based 
rare event simulation for a GSHS. The resulting IPSmode algorithm has been combined with 
four mode-directed splitting strategies: MRmode, MSmode, RMSmode, and FASmode, each 
employing a finite number of particles. These mode-directed splitting strategies differ in how 
they sample a new set of particles from the set of successful particles. It has been proven that 
under certain conditions the following inequalities satisfy: 

IPSmode-RMSmode IPSmode-MSmode IPSmode-FASmode IPSmode-MRmode IPS-MRV V V V V     

where IPSmode- modeV Z  denotes the variance for the algorithm IPSmode-Zmode, for 
{RMS, MS, FAS, MR}Z , and IPS-MRV  denotes normal IPS with multinomial resampling. 

The crucial part in these proofs was to capture the effect of particle weights in each sampling 
per mode strategy such that the estimated reach probability remains unbiased. In contrast to 
normal IPS (in Chapters 3), the mode-directed splitting strategies employing RMS and MS 
outperform the FAS approach. The explanation is that for the FASmode splitting approach it is 
more demanding to take proper account of the effect of particle weights in mode-dependent 
splitting. 

The various IPSmode versions and IPS-MR have been simulated for a simple GSHS example; 
the simulation results obtained show similar relative performance of the different IPS versions. 

Objective 4: Extending Charibi’s IS results for PDMP to GSHS. 

Chapter 5 has extended the IS developments by Chraibi et al., (2019) for a PDMP to a GSHS, 
i.e. a PDMP that involves Brownian motion. First, an optimal IS strategy has been characterized 
for a GSHS; this showed that  Brownian motion plays a key role in the optimal IS strategy for 
a GSHS. Next, the approximated IS strategy of Chraibi et al. (2019) for a PDMP has been 
evaluated for application to a GSHS; in both cases the Euclidean valued state is assumed to 
have no discontinuities. This revealed that this approximated IS strategy does not depend on 
the Brownian motion in a GSHS, and is therefore equal to the approximated IS strategy for a 
PDMP. The latter equality implies that the minimization of the Kullback-Leibler divergence of 
the approximated IS strategy, yields the same parameter values for a GSHS as it yields for its 
corresponding PDMP. 

For a simple GSHS extension of the PDMP example of Chraibi et al. (2019), the approximated 
IS strategy has been demonstrated to work well. 
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6.2 Contributions to safety and capacity assessment of Future ATM ConOps 
Designs 

This section explains the contributions to safety and capacity assessment of future ATM 
ConOps designs for each chapter. 

Objective 1. Error Analysis of Multilevel Splitting 

For the IPS based rare event simulation of a GSHS model for an advanced ATM ConOps,  
[Blom et al., 2007] used the MS splitting strategy as a heuristic improvement of the MR splitting 
strategy. In the MS strategy, the set of successful particles is copied once, and then the 
remaining particles are selected according to an MR strategy. 

Thanks to the IPS splitting strategy results derived in chapter 3, for an arbitrary GSHS, the 
following two improvements can be realized for the rare event simulation of a GSHS for an 
ATM ConOps design: 1) It has formally been proven that the use of MS instead of MR will 
yield a lower variance; and 2) Further reduction of variance will be obtained by using FAS 
instead of MS. In the practice of rare event simulation of a GSHS model of an ATM ConOps 
design, the use of IPS-FAS makes it possible to significantly reduce the number of particles 
that have to be simulated to get the desired level of accuracy in risk estimation. 

Objective 2: Understanding Effect of Transforming Spontaneous Jumps to Forced 
Jumps. 

For the IPS-based rare event simulation of an advanced ATM ConOps, common practice, e.g. 
Blom et al. (2007), is to model non-exponential time delays as forced jumps. The results of 
Chapter 3 have shown that direct application of IPS to a GSHS with these forced jumps may 
undermine particle diversity.  

To apply the two well working IPS approaches from chapter 3, the given GSHS model has to 
be transformation in the opposite direction to the transformation of Lygeros and Prandini (2010); 
i.e., to transform each forced jump model of a random time delay to a spontaneous jump model. 
This is done as follows for each random delay model. First, an auxiliary state component *

tq , 
representing “passed time” starts at an applicable stopping time   at initial condition * 0,q 
and subsequently evolves as * .tdq dt  Second, let ( )delayp s  denote the probability density of the 
random time delay, then the spontaneous jump rate is increased from ( , )t tx   to *( , ) *( )t t tx q  
, with * ( ) ( ) / ( )

delay delayq
q p q p s ds



  . Third, the “remaining time” state component tq  should be deleted. 

After this transformation in opposite direction, chapter 3 has shown that there are two equally 
well working approaches in applying IPS to the resulting GSHS. The first approach is to apply 
IPS to the resulting GSHS model with spontaneous jumps. The second approach is to apply IPS 
to a GSHS that is obtained through the following two steps: i) To enrich the resultng GSHS 
with the first hitting times of the IPS subsets, without affecting the pathwise behavior of the 
GSHS execution; and ii) To apply the transformation by Lygeros and Prandini (2010) to this 
enriched GSHS. In contrast to the first approach, the second approach depends on the adopted 
IPS levels. For this reason, the first approach often will be preferred in application to a GSHS 
model of an ATM ConOps design.  

Objective 3. Error Analysis of Multilevel Splitting 

For IPS based rare event simulation of a GSHS model of an advanced ATM ConOps design, 
[Blom et al., 2007] uses IPS-MR or IPS-MS. Thanks to the results derived in Chapter 4, it has 
become clear that the variance in estimated reach probability can be reduced by replacing IPS-
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MR or IPS-MS by IPSmode-RMSmode. Although it is reasonable to expect that IPSmode-
RMSmode will outperform IPS-FAS of chapter 3, formally this has not been proven. Therefore 
it is recommended to both implement IPS-FAS and IPSmode-RMSmode for the GSHS model 
considered, and then to compare the two methods through conducting computer simulations. 

Objective 4: Extending Charibi’s IS results for PDMP to GSHS. 

In rare event simulation for a GSHS model of an advanced ATM ConOps, Blom et al. (2007) 
used IPS.  

The question is how the IS results of chapter 5 can be used for rare event simulation of this 
GSHS model? 

Because the optimal IS has no direct practical value, the advantage has to come from the 
approximated IS strategy for GSHS. Unfortunately, the assumption that Euclidean valued state 
should evolve pathwise continuous, is a condition often not satisfied by a GSHS model of an 
ATM Conps. For example, a mode switch from level flight mode to a climb or descent mode 
involves a simultaneous jump in the climb or descent rate, which invalidates the pathwise 
continuity assumption. The latter means that the conditions assumed in the given proofs are not 
satisfied for the approximated IS strategy of chapter 5. However, this does not mean that the 
approximated IS strategy does not work. 

Therefore it is a worthwhile to give it a try, i.e. to adopt the approximated IS strategy for the 
PDMP version of the GSHS considered. To evaluate how well this IS based rare event 
simulation works in practice, a simulation based comparison with an IPS based rare event 
simulation should be conducted. 

6.3 Follow-on research 

There are several directions for follow-on research on rare event simulation for a GSHS model 
of an ATM ConOps design. Based on the studies conducted within this PhD thesis, the 
following five are of special interest.  

Performance comparison of IPSmode-RMSmode versus IPS-FAS 

In section 6.2, under Objective 3, it was explained that IPSmode-RMSmode will outperform 
IPS-FAS. To be sure in case of a specifc GSHS model of an ATM CnOps desig, it was 
recommend to verify this expectation by comparing the two methods through conducting 
simulations. To avoid the need of such verification, relevant follow-on research is to conduct 
for GSHS a theoretical comparison of the variances in the estimated reach probabilities under 
IPS-FAS and IPSmode-RMSmode. 

Approximated IS strategy when Euclidean-valued component of GSHS is discontinuous 

In section 6.2, under Objective 4, it was identified that the chapter 5 adopted continuity 
condition of the approximated IS strategy, does not satisfy for a GSHS model of a given ATM 
ConOps design. It was also explained that it remains worthwhile to give it a try, i.e. to adopt 
the approximated IS strategy for the PDMP version of the GSHS considered. To evaluate how 
well this IS based rare event simulation works in practice, a simulation based comparison with 
an IPS based rare event simulation should be conducted. Obviously, a more powerful approach 
would be to study the development of an approximated IS strategy for an arbitrary GSHS where 
the Euclidean-valued process involves discontinuities. 

Sensitivity Analysis and IPS 
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A GSHS model of a given ATM ConOps design involves a large number of parameters, e.g. 
the mean and variance of the delay in a response of a pilot or air traffic controller to specific 
events. In safety risk assessment it is important to assess the sensitivity of the estimated reach 
probability to changes in these parameter values. The most simple sensitivity analysis varies 
one parameter value at a time, i.e. conduct two rare event simulations: one for the assumed 
parameter value  , and another one for a parameter value .   The estimated sensitivity then 
[ ( ) ( )] /Risk Risk    satisfies. The straightforward approach is to use independent 
random samples during each of the two assessments; this however leads to a large error in the 
numerator [ ( ) ( )]Risk Risk   . As explained by Glasserman (2003, pp. 380-381), this 
error in the numerator can be largely reduced by using the same random numbers during both 
simulations. The challenge that remains to be studied is how to accomplish the use of the same 
randomly generated numbers in conducting IPS for a GSHS.  

IS strategy that modifies the drift coefficient f 

Chraibi's IS results have been expanded for PDMP to GSHS, i.e. a PDMP that involves 
Brownian motion. The addition of Brownian motion opens the opportunity to use an IS strategy 
that is based on modifying the drift coefficient f  , e.g.[Glasserman, 2003, section 4.6]. For 
example, if two aircraft are fly near each other, then the normal Brownian motion model for 
wind may give rise to an extremely small probability of mid-air collision. By modifying f  such 
that the two aircraft models evolve on collision course, then the mid-air collision risk may go 
up by multiple orders of magnitude. To get an unbiased reach probability estimate, the latter 
has to be compensated by the corresponding likelihood ratio. This example shows that there is 
high potential for developing an IS strategy  for a GSHS that can not only modify ( , )Q  though 
also f. 

IPS x IS  

This thesis studied IPS and IS separately from each other. The complexity of a GSHS model of 
an ATM ConOps design makes it very challenging to develop an IS strategy for such given 
GSHS model. The advantage of the IPS approach is that is provides a means to decompose the 
rare event simulation problem into a sequence of rare event simulation cycles. During each IPS 
cycle the next set to be reached is reduced in size. This also gives the possibility to use different 
IS strategies during different IPS cycles. For example, to use an IS strategy for rare failures 
during an IPS cycle where aircraft remain well separated, and to use an IS strategy that modifies 
drift coefficient f during an IPS cycle where aircraft are flying at a potential unsafe distance 
from each other. 
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