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A scalable optimization approach to the intervention planning of complex 
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A B S T R A C T   

The functioning of infrastructure networks is vital for modern communities. Maintenance should be planned to 
ensure infrastructure’s functionality and safety at the lowest cost. Interconnected infrastructure networks can 
affect each other’s functionality, and maintenance on one network can impact the serviceability of others. 
Planned intervention grouping across infrastructures reduces set-up costs and service interruption, improving 
infrastructure availability and serviceability at lower costs. 

Finding the best grouping strategy is a known NP-hard problem, with several optimization strategies have 
been proposed, mainly based on nonlinear models which are computationally expensive and do not guarantee 
scalability. Furthermore, infrastructure intervention planning models mostly focus on grouping of interventions 
which are considered as given. In this paper, we propose a new efficient optimization model to optimize 
intervention grouping for interconnected infrastructure networks. We develop a scalable two-step optimization 
model where we first plan each individual intervention type based on a preventive maintenance policy ac-
counting for the degradation behavior of objects, then group interventions to minimize the net costs, considering 
dependencies within and accross infrastructure networks. 

We formulate the grouping problem as an Integer Linear Program, which can be solved exactly with standard 
solvers. The model accounts for interactions between infrastructure networks and considers the impact on all 
stakeholders. It also accommodates various intervention types like maintenance, removal, and upgrading. 

Using a demonstrative application, we show that our model significantly reduces net costs and outperforms 
alternative nonlinear formulations and related heuristics in terms of both solution quality and computation 
performance. Additionally, the optimal intervention plan shows repetitive patterns, which suggests that a rolling 
horizon strategy could be used where the optimization problem is solved for shorter time horizons, leading to 
significant computational benefits.   

Nomenclature  

Cprev
j,k ∈ R+: preventive intervention cost of object j within intervention type k 
Cprev

1×K: vector of preventive intervention costs whose kth component Cprev
k ∈ R+

indicates the cost of preventive intervention k, which is equivalent to the summation 
of the preventive intervention costs of all objects within intervention type k 

Ccorr
j ∈ R+: cost of a corrective repair of object j 

Cshut
1×N: vector of service interruption costs whose jth component Cshut

j ∈ R+ indicates the 
cost of suspending the jth object 

Csetup
1×E : vector of set-up costs whose eth component Csetup

e ∈ R+ indicates the set-up cost 
of the eth intervention group 

Cprev
tot ∈ R+: total costs of preventive interventions 

(continued on next column)  

(continued ) 

E ∈ N: number of intervention groups 
GE×K: matrix whose component Ge,k ∈ {0,1} indicates if intervention type k belongs to 

intervention group e 
IN×N: matrix whose component Ii,j ∈ [0,1] indicates the degree of interdependency 

between object i and object j 
Jk: set of objects j targeted by intervention k 
K ∈ N: number of intervention types 
MK×T : matrix whose components Mk,t ∈ {0, 1} indicates whether intervention type k is 

executed at time step t. 
N ∈ N: number of objects 
RN×K : relation matrix whose component Rj,k ∈ {0, 1} indicates if intervention type k 

intervenes on object j 

(continued on next page) 
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(continued ) 

Stot ∈ R+: total set-up costs 
Tmin,k ∈ N : minimum time steps between any two interventions of type k 
Tmax,k ∈ N: maximum time steps between any two interventions of type k 
T ∈ N: number of time steps considered 
Topt

j,k ∈ N: the optimal interval for preventive intervention type k on object j 
Topt,k ∈ N: optimal interval for preventive intervention type k, which is the minimum 

value of Topt
j,k across all objects targeted by intervention k 

Utot ∈ R+: total service interruption costs caused by the interventions 
UN×T: matrix whose components Ui,t ∈ {0,1} indicates if object j is directly or 

indirectly affected by at least one intervention activity at time step t 
VE×T: : matrix whose component Ve,t ∈ {0, 1} indicates if intervention group e contains 

at least one intervention activity executed at time step t 
αj ∈ R+: scale parameter of the Weibull distribution of an object j 
βj ∈ R+: shape parameter of the Weibull distribution of an object j 
δ(.): Kronecker delta function 
λj(t): the failure rate of an object j at time t 
χ2: Chi square-error 

Notes: Bold characters 
refer to matrices and 
vectors (e.g., AB×C is a 
matrix with B rows and C 
columns and A1×C de-
notes a Vector with C 
columns). Non-bold 
characters refer to scalar 
values.  

1. Introduction 

Infrastructure networks continuously degrade over time due to age 
and wear. Degradation ultimately leads to failures which affects the 
service quality and causes safety issues and physical damages. In-
terventions are executed to ensure the continuous fulfillment of the in-
frastructure’s functional goals and quality of service (e.g., water 
protection, traffic flow, etc.). To increase infrastructure availability 
while minimizing intervention costs, a shift from a corrective to a pre-
ventive approach is needed [1]. Unlike corrective interventions, pre-
ventive maintenance allows activities to be adequately planned in 
advance, thus facilitating their grouping which can be highly beneficial 
as it enables intervention and disruption costs to be reduced by taking 
advantage of the economy of scale. The execution of maintenance ac-
tivities causes service interruption to the network targeted by the 
intervention as well as to other networks which are at spatial proximity 
or have a topological or functional connection with the infrastructure 
object(s) being maintained. 

Grouping of interventions enables set-up costs to be shared and 
service interruptions to be reduced. To achieve the maximum benefit, 
grouping should not be limited to objects within the same network (e.g. 
only water pipes or only road sections), but also across interconnected 
infrastructure networks. In addition, grouping should be optimized not 
only based on the spatial proximity, topological, and functional 
connection between assets, but also based on the time at which each 
asset will need maintenance depending on their degradation and failure 
processes. If preventive thresholds for objects replacement are not 
optimized and taken into account in the grouping strategy, there can be 
negative economic consequences due to either the increased frequency 
of some activities and the waste of remaining useful life for early 
replacement, or an increased risk of failure if maintenance is not 
executed on time [2,3]. 

1.1. Literature review 

The existing literature on maintenance optimization for multi-item 
systems has shown a growing interest in opportunistic maintenance 
policies and grouping strategies as the two main approaches to address 
the simultaneous maintenance of multiple components to further 
minimize maintenance costs. The former approach mainly focuses on 

the optimization of thresholds-based rules which trigger maintenance of 
components if an opportunity arises due to a preventive or, more often, a 
corrective replacement of another component. The latter usually focuses 
on the clustering of interventions to be executed at either predetermined 
or optimized moments. Recent contributions on opportunistic mainte-
nance models are [4–6]. In [6] a system of multiple machines in series is 
considered; the opportunistic thresholds are determined for each ma-
chine via Genetic Algorithm, while a search method is developed to 
determine the optimal schedule for the entire system. In [4,5], with 
particular focus on economic and structural dependencies, the inspec-
tion interval and the preventive and opportunistic thresholds are 
determined by first calculating the long-run maintenance cost rate via 
Montecarlo simulation and then by optimizing via Particle Swarm 
Optimization. In [7] the authors develop a nonlinear optimization 
model solved via Genetic Algorithm to determine the number of in-
spections and the preventive and opportunistic thresholds which mini-
mize the total maintenance costs for a multi-component repairable 
system over a finite planning horizon. In that work, only economic de-
pendencies are considered. The optimization of opportunistic mainte-
nance policies for multi-component systems are very challenging to 
solve exactly, thus simulation and heuristics are often implemented. 

Grouping was addressed early in 1991 by Dekkert et al. [8] who 
developed a set partitioning optimization model to combine mainte-
nance activities at an operational level with the aim to minimize 
maintenance costs for multi-component systems. Later on in [9], the 
same authors proposed a dynamic grouping algorithm to minimize 
intervention cost and introduced an optimization approach that can help 
set up an elicitation procedure which is especially useful when deteri-
oration modeling is based on expert judgment rather than statistical data 
analysis. Wildeman et al. [10] developed a dynamic grouping policy 
based on a rolling horizon approach which takes a long-term (station-
ary) tentative planning per component and then deviate from it at sys-
tem level to group activities. 

Grouping strategies for complex systems whose components are ar-
ranged into series and parallel configurations are developed and opti-
mized with respect to maintenance costs by [11,12] in stationary 
contexts, and by [13–16] in a dynamic contexts using a rolling horizon 
approach and solved via Genetic algorithm. Dynamic grouping is also 
addressed in [12], where two optimization approaches are proposed to 
solve the grouping problem: Particle Swarm Optimization which is 
applicable only to small-medium size systems, and a constrained clus-
tering approach formulated as a mathematical programming model 
more suitable for larger systems and solved via a dedicated simulator. 

Similarly, Chalabi et al. [17] implement Particle Swarm Optimiza-
tion to group preventive maintenance interventions for series produc-
tion systems with the aim to minimize the cost of the preventive 
intervention schedule while maximizing the system’s availability. Moi-
nian et al. [3] developed a genetic algorithm to solve the grouping 
problem for multi-component systems with application to gas turbines, 
to find the optimal balance between the maintenance costs and system 
unavailability. More recently, grouping has been considered in [18] for 
a series system of eight components. First the optimal maintenance 
period for each individual component is determined, then the optimal 
group structure is optimized in a rolling horizon setting by implement-
ing a heuristic which imposes that each group includes only a sequence 
of consecutive activities within a given shorter horizon for which dy-
namic programming is implemented. Mathematical programming is 
adopted in [19], where a mixed integer linear program is proposed to 
determine groups of interventions for a single multi-component ma-
chine; the aim is to minimize the number of stoppages based on a given 
predefined schedule of individual activities and time windows toler-
ances within which interventions can be shifted. However, dependencies 
between components are not explicitly modeled, and groups of in-
terventions which can be possibly clustered are input to the model. The 
model is solved exactly via standard solvers, which makes it accessible 
for real applications. The abovementioned papers focus on generic 
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multi-component systems and are not specifically developed for appli-
cation to infrastructure systems and their peculiarities. Because of the 
complexity of the resulting optimization problems, heuristic and 
meta-heuristic approaches are used rather than exact solution algo-
rithms. The combinatorial explosion of grouping optimization problem 
is even more relevant when grouping is considered in the context of 
infrastructure networks, where one usually deals with large scale sys-
tems with dependencies across objects. 

With specific focus on papers targeting intervention planning for 
infrastructure networks, most contributions deal with single networks 
while much less research has been devoted to grouping and intervention 
programs optimization for multiple interconnected infrastructures as 
pointed out in [20,21]. In the terminology used in the field of infra-
structure asset management, the problem of grouping optimization is 
often referred to as work zone(s) optimization, where work zones 
correspond to groups of infrastructure objects which are maintained 
simultaneously. The problem of grouping road sections into work zones 
for road infrastructures is addressed in [22] where an integer linear 
program is developed and solved via an ad hoc heuristic based on 
enumeration. Grouping into work zones is optimized on net benefit 
accounting for both infrastructure owner and users costs; dependencies 
across objects, however, are not modeled and the feasibility of groups is 
based on the maximum length that a work zone can reach and the 
minimum distance between different work zones. In [2], the optimiza-
tion of repair and grouping policies for road pavement systems is 
addressed, where both spatial proximity and temporal aspects related to 
the deterioration of individual pavement sections are considered. The 
authors develop a dynamic programming approach to solve the problem 
exactly for small systems, and a rule-based heuristic for larger scale 
systems. A maintenance grouping and prioritization method for net-
works of bridges is presented in [23]. Bridges’ criticality is evaluated 
based on complex networks centrality measures and used to prioritize 
maintenance, while grouping is contemplated at bridge level to combine 
maintenance of bridge’s components. A penalty cost for shifting activ-
ities is associated to grouping, which is performed only if the benefit of 
shared set-up costs and reduced operational disruption exceeds the 
penalty cost. 

The authors in [20,24] address the optimization of work programs by 
grouping maintenance activities for multiple interconnected networks. 
In [20], two grouping methodologies are proposed for multiple infra-
structure networks, one static based on spatial proximity only, and the 
other one dynamic based also on topological connections between ob-
jects and their failure probability. Based on some predefined thresholds 
imposed by the infrastructure operators, objects are classified into two 
levels of urgency depending on whether they are in an unacceptable 
state and an intervention is justified on its own (level 1), or they are not 
yet in need of maintenance but an intervention will be needed in the 
near future (level 2). Level 2 objects can be grouped with level 1 objects 
which trigger an intervention. Groups are then ranked based on the 
consequences that execution of the interventions has on service inter-
ruption. Temporal factors related to the scheduling of interventions are 
not considered by the authors. A Genetic Algorithm is developed in [24] 
where objects are first grouped into an intervention program, and then 
the related costs and service disruption are calculated. A decision sup-
port tool which employs a Genetic Algorithm to plan intervention pro-
grams for water distribution and sewer networks is developed also in 
[25]. Predefined groups of objects (e.g., all pipes in a street) rather than 
individual objects are considered as replacement units, and coordination 
of interventions between groups which can be performed simulta-
neously is optimized via a Genetic Algorithms procedure based on 
different parameters reflecting replacement priority, intervention costs, 
the length of the street affected by the intervention. An integer nonlinear 
optimization model is developed in [26,27] to group intervention ac-
tivities for multiple interconnected infrastructures. Based on an initial 
predefined schedule which is given as input, interventions are grouped 
to minimize service disruption. Due to the model complexity, a genetic 

algorithm procedure is implemented to obtain an approximate solution. 
Only the direct cost of interventions are minimized while set-up costs are 
not explicitly considered. 

The optimization approaches and methods mentioned above are 
mainly based on nonlinear models which are computationally expensive 
and do not guarantee scalability. Moreover, most of these approaches 
are project-based and focus on single infrastructures rather than multi-
ple interconnected networks. Little effort has been devoted so far to the 
optimization of intervention programs for interconnected infrastructure 
networks, where interventions targeting one network may impact the 
functionality of the other networks too. When planning interventions for 
multiple interconnected infrastructures, not only one has to account for 
those dependencies across the assets which determine the cascading 
effects of failures and interventions across the system, but also for the 
role played by multiple stakeholders involved in the decision process. In 
the available literature however, the complex dependencies across 
multiple infrastructures and the perspective of multiple stakeholders are 
not adequately tackled. Furthermore, in the literature on infrastructure 
intervention planning there is a lack of exact methods to determine long- 
term grouping (or work zones) policies which incorporate both the 
economies of scale to save costs, and the deterioration processes of the 
objects. Most of the times grouping is based on a predefined set of in-
terventions to be executed within a given time window and which can be 
rearranged to be grouped. The formulation of the grouping problem is 
often such that heuristic approaches are implemented to find approxi-
mate solutions which often lack a quality check with respect to 
optimality. 

1.2. Contribution of the paper 

This paper contributes to the scientific literature on intervention 
planning and grouping optimization for multiple interconnected in-
frastructures. We cover some of the shortcomings in the existing scien-
tific literature discussed above by introducing a scalable optimization 
approach for grouping interventions in such a way to minimize direct 
intervention costs, set-up costs, and service interruptions. Grouping 
feasibility is formulated based on spatial proximity and functional and 
topological dependencies between infrastructure objects, which are 
modeled via adjacency matrices, but also on temporal aspects related to 
the degradation and failure processes of the infrastructure objects. We 
develop a two-stage approach where we first determine the optimal 
planning for each intervention type based on the object’s failure prob-
ability and then use these as tentative plannings based on which 
grouping is optimized, taking advantage of time window tolerances, 
which is an approach commonly used in practice [19]. The grouping 
problem is formulated as a nonlinear integer problem, which we then 
linearize and solve exactly. As computational complexity is a notorious 
feature of combinatorial problems and often a barrier towards model 
scalability, we conduct an extensive numerical analysis to investigate 
how computation time changes with the number of objects, in-
terventions, and the length of the planning horizon. We also compare 
our results in terms of solution performance and computational effi-
ciency with the ones obtained (1) with an alternative model where 
optimal intervention timing based on failure and degradation modeling 
is not considered and a nonlinear formulation of the grouping problem is 
solved via Genetic Algorithm, and (2) when coordination between in-
terventions is disregarded. The main contributions of the paper are 
summarized as follows: 

1. We propose an efficient and effective approach to modeling inter-
connected infrastructures, including both the interdependencies 
within a single infrastructure network and those across multiple 
infrastructure networks.  

2. We develop a two-step linear optimization model for the grouping 
problem that is computationally inexpensive and ensures scalability. 
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3. We formulate the grouping problem as an Integer Linear Program, 
enabling exact and rapid solutions using standard solvers.  

4. We integrate infrastructure degradation into the first step of the 
optimization problem to optimize the preliminary intervention pro-
gram of each object. The initial intervention program serves as the 
starting point for the second stage of the optimization. 

The rest of the paper is organized as follows. Section 2 presents the 
problem description and the developed intervention planning approach. 
Section 3 introduces the multi-system optimization model. Section 4 
presents an example to illustrate the proposed optimization model. 
Finally, conclusions and future work are drawn in Section 5. 

2. Problem description and system modelling 

In this paper, we consider a system of multiple interconnected 
infrastructure networks (e.g. railroad, water distribution, highway). 
Each network consists of multiple objects; for example, the railroad 
network consists of multiple track sections while the water distribution 
network consists of multiple pipe sections. Infrastructure operators can 
be responsible for managing intervention plannings for one or multiple 
networks. Different types of dependencies (economic, physical, 
geographical, functional [28]) exist between objects within the same 
network and/or across different networks. Interventions can be of 
different types, from routine maintenance to replacing and upgrading. 
The same intervention type can target one or more objects of the same 
type simultaneously (e.g. multiple road sections or multiple pipe sec-
tions). Intervention types can be classified into two macro-categories: 
central and non-central interventions. The former must occur at 
pre-established time moments that cannot be re-scheduled. The latter 
instead can be re-scheduled if a suitable opportunity arises to be com-
bined with a central intervention. Based on a preliminary schedule of 
both central and non-central interventions, we pursue an optimal 
grouping of these activities to minimize the total net costs while 
respecting necessary constraints related to the timing of interventions 
and their “compatibility” based on objects interdependencies. 

Grouping intervention activities results in broad economic and so-
cietal benefits. Three elements contribute to the net cost of an inter-
vention plan: (1) direct preventive intervention cost, which constitutes 
all costs that are directly linked to the intervention activity (e.g., 
replacement parts, specialized crew, etc.), (2) Set-up cost, which con-
stitutes generic costs needed to execute an intervention but can be 
shared by several intervention activities (e.g., cost of crew traveling, 
excavation, scaffolding, etc.), and (3) system interruption cost, due to 
objects (i.e., component of a network) unavailability while under 
maintenance (e.g., extra travel time due to road disruption, low water 
pressure, etc.). It is not unusual that the direct intervention costs may 
increase in the optimal intervention plan due to the higher frequency of 
some activities based on the optimal grouping. However, in this case, the 
global benefits achieved by the intervention grouping will be due to less 
system interruption and set-up costs. The interruption cost of the service 
must be monetized to be able to combine it with the intervention cost 
into one utility function. Several methods to monetize the impact of 
service interruption have been recently developed [1,29,30]. 

2.1. System modelling 

We model the system as a set of objects N := {j : j = 1, 2, …, |N|}, 
subject to a set of intervention types K := {k : k = 1, 2, …, |K|}. We 
assume that objects are subject to wear and aging and thus they exhibit 
an increasing failure rate; we therefore adopt a Weibull distribution to 
model the reliability behavior of the objects. The flexibility of the 
Weibull distribution which, by suitably varying the values of the shape 
and scale parameters, can cover a wide variety of lifetime behaviors for 
components subject to wear and age over time. Its generalizations and 
modifications allow for a wide range of applications, including lifetime 

behavior. For this reason the Weibull distribution is widely and 
commonly used for similar applications in the scientific literature [31, 
32] as well as in practice. In this paper, we use the Weibull distribution 
to describe the failure behavior of an object j, with corresponding failure 

rate function given by λj(t) =
βj
αj

⋅
(

t
αj

)βj − 1
, where αj > 0 and βj > 1 are 

the scale and shape parameters respectively. An intervention type k in K 
can target one or more objects in N. We discretize the planning horizon 
into a finite number of time steps of equal length, which we consider as 
the time unit in our analysis. The length of the planning horizon T ∈ N 

is therefore equal to the total number of time steps considered. We 
define Tmax,k as the maximum interval between two consecutive in-
terventions of type k. The failure risk of an object increases as the time 
from the last intervention increases [33,34]. Various methods can be 
used to compute Tmax,k, such as block replacement models [35], 
delay-time models [36], and degradation models [37–39]. Here, we 
adopt a block replacement policy with minimal repair. Block replace-
ment policy with minimal repair is a strategy used to manage the 
maintenance of a system that can fail. It aims to minimize repair costs 
while maintaining system reliability. The system/component is brought 
to as-good-as-new condition at predetermined intervals, regardless of its 
current condition. This ensures the system/component is less likely to 
fail before the next maintenance. If the system/component fails before 
the scheduled maintenance, a minimal repair is performed instead. This 
minimal repair restores the system/component to working condition, 
but it does not necessarily address the underlying cause of the failure. 
The key benefit of this policy is reducing unnecessary costs since mini-
mal repairs are often cheaper and faster than full repairs. 

In this paper, we use block replacement policy with minimal repair 
and determine Tmax,k accordingly (See Section 3.1 for more details). 
While the interval for central interventions remains fixed, non-central 
interventions can be rescheduled to allow grouping. Therefore, for 
non-central interventions we assign a minimum interval Tmin,k in addi-
tion to Tmax,k, to ensure that an intervention is not performed too 
frequently (which can be unfeasible for various reasons). The time in-
terval for a non-central intervention can therefore vary between Tmin,k 

and Tmax,k to enable grouping with central interventions. 
Similarly to [40–42], we use adjacency matrices to model de-

pendencies. The matrix allows for modeling dependencies among com-
ponents within and across multiple systems, and for any number of 
components. Additionally, it can represent both direct and indirect in-
teractions among these components. In our work, the dependencies 
between the objects are represented by interaction matrix IN×N where 
the interaction coefficients Ii,j ∈ [0,1] indicates the level at which an 
intervention executed on object j affects functionality of object i. In-
teractions between any number of objects can be modeled. The inter-
action between objects is not necessarily binary, because an intervention 
on object j can also only partially affect object i. This is captured by 
setting the value of the interaction coefficients between 0 (no interac-
tion) and 1 (full interaction). The diagonal terms are all equal to 1. IN×N 
can be asymmetric due to the non-reciprocal interaction behavior 
among the objects. The values of the interaction coefficients can be 
obtained from experts judgment [41,42]. Along with the dependencies 
between objects, we also model dependencies between interventions 
and objects by defining matrix RN×K to indicate which objects are 
directly subject to which intervention type. Its components Rj,k ∈ {0, 1}
are binary and indicate whether intervention k is executed on object j (1) 
or not (0). Some intervention types can be grouped and executed 
together to share set-up costs which are therefore only incurred once. 
We, therefore, define groups of interventions that can potentially be 
clustered together, and collect these groups in set E = {e = 1, 2, …,

|E|}. We then introduce matrix GE×K whose components Ge,k ∈ {0,1}
takes the value 1 if intervention type k belongs to group e, and 
0 otherwise. 
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3. Mathematical formulation of the intervention grouping 
optimization problem 

This section presents the mathematical formulation of the proposed 
intervention optimization model. We adopt a bottom-up approach 
where we first (stage 1) determine tentative planning for each individual 
intervention type k separately based on a block replacement policy with 
minimal repair. Then (stage 2), based on these tentative plannings, we 
optimize the intervention program for the entire network by grouping 
interventions to minimize the total net cost. 

3.1. Stage 1: tentative planning for individual intervention type 

An intervention k can target one or multiple objects of the same type. 
We indicate as Jk the set of objects j targeted by intervention k. We adopt 
a block replacement policy with minimal repair according to which all 
objects subject to intervention k are preventively maintained simulta-
neously at a fixed interval. This maintenance policy is designed to 
restore the objects to a state as close to new as possible. If an object fails 
between two scheduled maintenance intervals, it is repaired to a state 
comparable to its condition immediately prior to the failure, known as 
"as bad as old" conditions. We first determine the optimal preventive 
maintenance interval for each object j targeted by intervention k inde-
pendently, by minimizing the long-run expected maintenance cost. 

Let Cprev
j,k denote the cost of preventive intervention k for object j, Ccorr

j 

the cost of a corrective repair of object j. According to the block 
replacement policy with minimal repair [16], the expected intervention 
cost during time interval [0,t] if preventive intervention k is performed 
at time t is givcentralen by: 

E
[
Cj,k(t)

]
= Cprev

j,k + Ccorr
j ⋅

∫t

0

λj(t)dt = Cprev
j,k + Ccorr

j ⋅
(

t
αj

)
βj , (1)  

where the second term in the sum denotes the expected cost of minimal 
repair during time interval [0,t], namely between two consecutive 
preventive interventions. By taking the first derivative of the expected 
cost per time unit and imposing it equal to zero, we obtain the optimal 
interval for preventive intervention k on object j which minimize the 
expected maintenance cost per unit time: 

Topt
j,k = αj⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Cprev

j,k

Ccorr
j ⋅

(
βj − 1

)
βj

√

. (2) 

At this point, we need to determine the interval for preventive 
intervention k. As indicated before, an intervention k targets the set of 
objects Jk . However, each of the objects in Jk has a different optimal 
intervention interval. Therefore, we consider the interval for preventive 
intervention k to be equal to that of the component with the shortest 
optimal interval. Though considered conservative, a larger interval 
would exceed the allowable failure probability of the critical object with 
the shortest optimal interval. This, in turn, would lead to more correc-
tive interventions, ultimately increasing net costs. We, therefore, take as 
an interval for preventive intervention k, the minimum value of Topt

j,k 

across all objects targeted by intervention k: 

Topt,k = min
j∈Jk

{
Topt

j,k

}
. (3)  

3.2. Stage 2: final grouping intervention scheduling for the global system 

The global optimization problem introduced in this section aims at 
grouping interventions in such a way to minimize the net cost which 
includes the direct intervention costs, set-up costs, and the compound 
costs of service interruption. The grouping of interventions implies 
rescheduling of (some of) the non-central interventions with respect to 
the tentative planning obtained in stage 1. The decision is whether to 

perform intervention k at time step t or not; we therefore introduce 
decision variables Mk,t ∈ {0,1} which takes value 1 if intervention k is 
performed at time step t, and 0 otherwise. We collect all decision vari-
ables in matrix MK×T . The objective is to minimize the net cost: 

min
MK×T

(
Cprev

tot +Utot + Stot
)
, (4)  

where Cprev
tot , Utot and Stot are the total preventive cost, the total service 

interruption cost, and the total set-up cost, respectively. In the following 
we define each cost function separately. 

The preventive cost Cprev
tot is given by: 

Cprev
tot =

∑T

t=1
Cprev

1×K ×Mt
K×T, (5)  

where Cprev
1×K is the vector of preventive intervention costs whose kth 

component Cprev
k indicates the cost of performing preventive interven-

tion type k, and Mt
K×T is the tth column of the matrix MK×T . It is assumed 

that every intervention activity is performed within a single time 
interval. 

The total service interruption cost Utot, caused by the interventions, 
is: 

Utot =
∑T

t=1
Cshut

1×N × δ
(
IN×N ×RN×K ×Mt

K×T
)
, (6)  

where Cshut
1×N is the vector of service interruption costs whose jth 

component Cshut
j indicates the service cost due to unavailability of object 

j, δ(.) represents the Kronecker delta function, which is applied to each 
component of the vector. By using the Kronecker delta function, we can 
avoid double-counting the service cost associated with the unavailabil-
ity of an object that is affected by multiple interventions scheduled at the 
same time step. The Kronecker delta function is defined as follows: 

δ(x) =
{

0 ifx = 0
1 ifx ∕= 0 . (7) 

Finally, the total set-up costs of the interventions Stot is: 

Stot =
∑T

t=1
Csetup

1×E × δ
(
GE×K ×Mt

K×T
)
, (8)  

where Csetup
1×E is vector of set-up costs whose eth component Csetup

e is the set- 
up cost associated to group e in set E. 

The minimization of the net cost is subject to the following con-
straints: 

0 ≤
∑t+Tmin,k − 1

t
Mk,t ≤ 1for∀k = 1,2, ...,K, ∀t = 1,2, ...,T − Tmin,k + 1, (9)  

∑t+Topt,k − 1

t
Mk,t ≥ 1for∀k = 1, 2, ...,K, ∀t = 1, 2, ...,T − Topt,k + 1. (10) 

Constraint (9) and (10) ensure that the time interval between any 
two successive interventions of the same type k is no less than a mini-
mum value Tmin,k and no larger than a maximum value Topt,k, respec-
tively. Topt,k is the optimal interval obtained for each intervention type in 
stage 1 of the optimization procedure while Tmin,kis an externally 
imposed parameter. 

The use of the Kronecker delta function makes the set-up cost and 
service interruption cost functions nonlinear. The resulting optimization 
problem is therefore a nonlinear integer programming model, and as 
such, computational complexity can virtually increase with the size of 
the problem instance. 
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3.3. Solution approach: linearization of original problem 

One of the paper’s objectives is to propose a scalable optimization 
model. The non-linear model in Section 3.2 is computationally expen-
sive and does not guarantee scalability (and so are several existing 
intervention optimization models the literature). Here, we propose a 
linearization approach that enables us to transform a nonlinear problem 
into a linear one without any loss of generality. Because of this, we could 
employ a solution algorithm which solves the optimization problem to 
optimality. 

To guarantee the scalability of the optimization problem, we refor-
mulate the nonlinear model as a binary linear programming model as 
follows. We introduce two new sets of decision variables based on which 
we reformulate the expression of the service interruption and set-up 
costs. Decision variables Ui,t ∈ {0,1} collected in matrix UN×T , take 
value 1 if object i is affected (directly or indirectly) by at least one 
intervention executed at time t, and 0 otherwise. The service interrup-
tion cost Utot is reformulated as: 

Utot =
∑T

t=1
Cshut

1×N ×Ut
N×T , (11)  

where Ut
N×T is the tth column of the matrix UN×T . 

We further define decision variables Ve,t ∈ {0, 1}, which indicates 
whether at least one intervention in group e is executed at time step t 
(Ve,t = 1) or not (Ve,t = 0), and collect them in matrix VE×T. The total 
set-up cost Stot can be rewritten now as: 

Stot =
∑T

t=1
Csetup

1×E × Vt
E×T , (12)  

where Vt
E×T is the tth column of the matrix VE×T. 

We add the following constraints: 

∑N

j=1

∑K

k=1
Ii,j Rj,k Mk,t ≤ δ1 × Ui,t for ∀i = 1,2,…,N, ∀t = 1, 2,…,T, (13)  

∑K

k=1
Ge,k Mk,t ≤ δ2 × Ve,t for ∀e = 1,2,…,E, ∀t = 1, 2,…,T, (14) 

Constraint (13) helps avoid double-counting of interruption costs. 
That is, if an object is directly or indirectly affected by more than one 
intervention activity, its service interruption cost will only be considered 
once. Constraint (14) helps avoid double-counting of set-up costs. That 
is, if two or more intervention activities belonging to a specific group are 
executed at the same time step, the corresponding set-up cost will only 
be considered once. Parameters δ1 and δ2 are two integer numbers 
whose value is set equal to N × K and K, respectively. The formulation of 
the total preventive cost Cprev

tot in Eq. (5) and the constraints (9) and (10) 
defined in the previous section, remain unchanged. 

4. Numerical example: application to an infrastructure network 

In this section, we demonstrate the applicability of the proposed 
intervention planning model with an illustrative example of an infra-
structure network. 

4.1. Case description 

For the sake of comparison and to show the benefits of our proposed 
approach with respect to computational efficiency and performance of 
the solutions obtained, we use the system depicted in Fig. 1 as a test 
instance, and compare our results with the ones obtained with the model 
presented in [26]. The latter does not account for the deterioration and 
failure process of objects in the optimization and does not explicitly 
minimize set-up costs (which can affect the grouping substantially). In 
addition, its nonlinear formulation and solution procedure does not 
enable finding an optimal solution given its heuristic nature. We also 
investigate the performance of the solution obtained by implementing 
our grouping model with respect to a standard approach where in-
terventions are planned for each network separately, thus overlooking 
the possibility to share set-up costs and the cascading effect of service 
interruptions. We refer to this standard approach as “individual inter-
vention program”, and the interval between interventions of the same 
type k is simply given by Topt,k (Table 2). This is a common approach to 

Fig. 1. Infrastructure networks with preventive interventions to be planned.  
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interventions planning in real life [1] because there is usually minimal 
or no coordination between the operators of different networks. 

The system considered in our numerical analysis consists of three 
individual infrastructure networks: a water network, a highway 
network, and a railway network (Fig. 1). The original data for this 
example were obtained from experts in the NGInfra organization (Next 
Generation Infrastructure, which brings together representatives of all 
major infrastructure operators in the Netherlands). However, to protect 
data sensitivity, the data has been translated for demonstrative purposes 
while maintaining realistic proportions and relationships. While the 
translated data used in this example does not directly relate specific 
units (euros, months, etc.), it reflects reality and serves well for the 
objective of this example. This approach allows us to focus on the core 
relationships and trends relevant to the example. 

In this example, each network is managed by an independent oper-
ator which we refer to as W for the water network, H for the highway 
network, and R for the railway network. There are in total seven inter-
vention types to be planned. The objects intersect each other at different 
locations. This determines interdependencies between objects such that 
an intervention on one object could disrupt the intersecting objects. 

The service disruption costs incurred by each object j, Cshut
j , are listed 

in Table 1. Service interruption costs are assumed to be significantly 
larger than the intervention cost based on [43–45]. The relations among 
the objects which are needed to feed the interaction matrix I, are listed 
in Table 1. The service interruption cost occurs every time an object is 
directly or indirectly affected by one of the interventions. For example, 
Int2 is performed on water pipe W1 and requires the excavation (and 
therefore closure) of highway H1 as well as the closure of water pipe W2 
which is an extension object of W1. In this case, W1 is assumed to be 
directly affected by Int2, while H1 and W2 are indirectly affected. The 
service interruption costs of W1, W2, and H1 are thus applied. The 
interaction matrix for the system is given by Eq. (15): 

IN×N =
[
Iij
]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W1 W2 W3 W4 W5 W6 H1 H2 H3 H4 R1 R2
W1 1 1 0 0 0 0 0 0 0 0 0 0
W2 1 1 0 0 0 0 0 0 0 0 0 0
W3 0 0 1 0 0 0 0 0 0 0 0 0
W4 0 0 0 1 0 0 0 0 0 0 0 0
W5 0 0 0 0 1 1 0 0 0 0 0 0
W6 0 0 0 0 1 1 0 0 0 0 0 0
H1 1 0 0 0 0 0 1 0 0 0 0 0
H2 0 0 0 0 0 1 0 1 0 0 0 0
H3 0 0 1 0 0 0 0 0 1 0 1 0
H4 0 0 0 1 1 0 0 0 0 1 0 1
R1 0 1 0 0 0 0 0 0 1 0 1 1
R2 0 0 0 0 1 0 0 0 0 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(15) 

The intervention types are listed in Table 2, along with the minimum 

(Tmin,k) and maximum (Topt,k) time intervals between two consecutive 
interventions of the same type k. Tmin,k is a given parameter set to avoid 
unnecessarily frequent interventions; without loss of generality it is 
assumed to be equal to one time step for all intervention types. Topt,k is 
optimized in stage 1 of the proposed approach (see Section 3.1) based on 
the deterioration parameters (Table 2) of the targeted objects, to mini-
mize the risk of unexpected failures. Intervention type Int3 is a central 
intervention which is executed every 5 time steps. Column 8 shows the 
cost of executing the intervention types, Cprev

k , which includes direct costs 
such as replacement parts, mobilizing resources, etc. Table 2 also con-
tains a list of objects targeted by each intervention. For example, the 
crossing joint of highway H3 and railway R1 are both targeted by Int5. In 
this case, two operators (i.e., operators H and R) are responsible for the 
costs of the shared intervention. The relations between the objects and 
the intervention types, are modelled with the relation matrix RN×K in Eq. 
(16), which indicates upon which object j each intervention type k 
intervenes. 

RN×K =
[
rj,k

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Int1 Int2 Int3 Int4 Int5 Int6 Int7
W1 0 1 0 0 0 0 0
W2 0 0 1 0 0 0 0
W3 0 0 0 0 0 1 0
W4 0 0 0 0 0 1 0
W5 0 0 0 0 0 1 0
W6 0 0 0 0 0 0 0
H1 1 0 0 1 0 0 0
H2 0 0 0 1 0 0 0
H3 0 0 0 1 1 0 0
H4 0 0 0 1 0 0 0
R1 0 0 0 0 1 0 0
R2 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(16) 

Finally, Table 3 indicates feasible groups of intervention types and 
corresponding shared the set-up cost. The relations between the in-
terventions and the groups, derived from Table 3, are represented by the 
relation matrix GE×K in Eq. (17), which indicates the intervention groups 
to which the intervention types belong. 

GE×K =
[
Ge,k

]
=

⎡

⎢
⎢
⎢
⎢
⎣

Int1 Int2 Int3 Int4 Int5 Int6 Int7
G1 0 1 1 0 0 0 0
G2 1 0 0 1 0 0 0
G3 0 0 0 0 1 0 1
G4 0 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦
.

(17)  

4.2. Results 

The optimal intervention program is obtained by solving the opti-
mization problem described in Section 3. The optimization problem has 
been solved using the CPLEX Mixed Integer Linear programming solver 

Table 1 
Data of the analyzed objects.  

Object Index (j) Service interruption cost of object j, Cshut
j 

(monetary unit) 
× 103 

Deterioration parameters 
αj, βj 

Interaction with other objects (j) Start joint End joint 

W1 1 15 4.3, 2 2 (W2), 7 (H1) J4 J5 
W2 2 7,5 4.8, 2.2 1 (W1), 11 (R1) J5 J6 
W3 3 12 4.1, 1.9 9 (H3) J6 J8 
W4 4 13.5 4.4, 2.1 10 (H4) J8 J13 
W5 5 9 4.2, 1.9 6 (W6), 10 (H4), 12 (R2) J9 J10 
W6 6 16.5 3.6, 2.1 5 (W5), 8 (H2) J10 J11 
H1 7 9 3.5, 2 - J1 J2 
H2 8 15 2.7, 1.9 - J2 J3 
H3 9 7,5 2.8, 2.1 11 (R1) J2 J7 
H4 10 12 3.2, 2.2 12 (R2) J2 J12 
R1 11 13,5 2.6, 2.2 9 (H3), 12 (R2) J13 J15 
R2 12 9 2.7, 1.9 10 (H4), 11 (R1) J15 J16  
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in Matlab© [46]. The optimization problem was solved on a mobile 
workstation with the following specifications: Windows 10, Intel Core 
i7-9750H CPU @2.60 GHz, and installed memory (RAM) of 16 GB. The 
results of the optimization problem are presented below. 

4.2.1. Optimal intervention program 
Fig. 2 shows the optimal intervention program obtained for a period 

of 60 time steps obtained by implementing our proposed model and the 
approach in [26], respectively. The vertical axis on the left indicates the 
cumulative net cost, and the vertical axis on the right shows the different 
intervention types to be planned. Every row on the graph (i.e., a set of 

bars with the same color) represents the schedule of one intervention 
type. Every bar is an execution of an intervention type. As can be 
observed, the intervention frequencies obtained in stage 1 of our 
methodology and reported in Table 2, which are optimal for the indi-
vidual interventions, are not necessarily optimal when the entire system 
is considered due to dependencies across objects. This demonstrates that 
finding the optimal intervention plan is not intuitive, and decision tools 
are needed especially when large networks are involved. The imple-
mentation of our model results in a program where patterns with in-
tervals of fixed length can be observed for all intervention types. These 
patterns, or cycles, repeat themselves every 30 timesteps. This indicates 
that the optimization can be run for just one cycle regardless of the 
length of the planning horizon, with consequent computation advan-
tages. The interval for intervention type k = 5 remains the same as it is 
the smallest among all Topt,k. Intervention types k = 1, 4 and 7 are 
grouped with intervention type 5, while intervention type 3 is shifted to 
be grouped with intervention type 2. Intervention type 6 cannot be 
grouped with any other intervention. Fig. 3 shows the intervention 
program obtained by implementing the approach in [26] for 30 time 
steps; here no clear pattern can be recognized and the interval for the 
same intervention type can vary within the time horizon. 

Along with the optimal intervention program, the cumulative direct 

Table 2 
Description of the intervention types.  

Intervention 
type 

Index 
(k) 

Description on Objects directly 
affected (j) 

Tmin,k (time 
steps) 

Topt,k (time 
steps) 

Intervention cost per time 
unit Cprev

k 
(monetary unit) 
× 103 

Operator 
responsible 
(W,H,R) 

Int1 (1) 1 Intervention on highway H1 7 1 4 5 H 
Int2 (2) 2 Intervention on water pipe W1 1 1 6 2,5 W 
Int3 (3) 3 Intervention on water pipe W2 2 1 5 4 W 
Int4 (4) 4 Intervention on the highway intersection 

J2 
7, 8, 9, 10 1 4 4,5 H 

Int5 (5) 5 Intervention on crossing joint of the 
highway H3 and railway R1 

9, 11 1 3 3 H&R 

Int6 (6) 6 Intervention on water joint J9 3, 4, 5 1 6 5,5 W 
Int7 (7) 7 Intervention on the railway R2 12 1 4 3 R  

Table 3 
Intervention groups and set-up costs.  

Intervention 
group 

Index 
(e) 

Intervention types 
included in the group 

Shared set-up cost Csetup
e 

(monetary unit) 
× 102 

G1 1 Int2, Int3 7 
G 2 2 Int1, Int4 5.5 
G 3 3 Int5, Int7 8 
G 4 4 Int6 6.4  

Fig. 2. Optimal intervention program with the corresponding cumulative cost for T = 60 time steps.  
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costs of preventive interventions f1, the cumulative set-up cost f2 and the 
cumulative cost of service interruption f3, are plotted. It can be observed 
that our proposed model yields lower total costs than the model in [26]; 
we can also observe that, while the cost of interventions (direct and 
set-up costs) are similar, the service interruption cost resulting from our 
proposed model is much lower. This means that our grouping strategy 
enables interventions to be rearranged in such a way to reduce the total 
frequency of interventions, thus resulting in less service interruptions. In 
general, however, the service interruption cost makes up for most of the 

total costs. If we want to further decrease the impact on service, then a 
penalty factor could be added to Utot in objective function (7). 

A comparison of Figs. 2 and 3 reveals that our model facilitates a 
reduction in total costs compared to the model in [26] despite consid-
ering the set-up cost. Therefore, the solution obtained by [44] is far from 
optimal. This comparison focuses on the initial 30 time steps, corre-
sponding to the time horizon depicted in Fig. 3. A longer time horizon 
could not be considered for that model due to computational limitations, 
as the model utilizes Genetic Algorithm (GA) for optimization. At the 

Fig. 3. Near-optimal intervention program and corresponding cumulative cost for T = 30 time steps, obtained from the model in [26].  

Fig. 4. Stakeholder cost analysis: comparison between the individual and the optimal intervention programs for the three operators.  
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30th time step, the total cost associated with the optimal program 
derived from our approach (Fig. 2) amounts to 1.41× 106, whereas the 
near-optimal program from [26] has a total cost of 1.79 × 106. This 
represents a 21% reduction in cost. 

4.2.2. Multistakeholder analysis 
Fig. 4 illustrates the cost distribution among the three operators for 

both the individual and optimal programs, which is attributed to the 
increased frequency of executing preventive interventions. 

In terms of preventive intervention costs, all three operators are 
expected to incur higher expenses in the optimal plan compared to the 
individual plan. Conversely, the setup costs for all operators are pro-
jected to be lower in the optimal program, as grouping intervention 
activities allows for shared setup costs. Likewise, all three operators 
would experience reduced interruption costs in the optimal program 
compared to the individual program. 

Considering direct costs, which encompass preventive intervention 
and setup costs, all three operators are anticipated to have to pay more 
in the optimal program relative to the individual program. This is 
because the optimal plan typically requires most operators to increase 
the frequency of their interventions, leading them to perform more in-
terventions than usual and consequently placing them at a disadvantage. 
Several strategies can be employed to alleviate the extra costs borne by 
the operators. One approach involves selecting a sub-optimal interven-
tion program that ensures an equitable distribution of additional costs 
among all operators. However, this method results in a potential loss of 
net benefit. An alternative strategy entails distributing the extra costs 
across all operators proportionally to the amount they would pay if they 
planned their intervention programs individually. 

Also, it appears that there is a negative relationship between the 
direct (intervention + setup) and indirect costs (interruption). The two 
bottom subplots show that the higher the costs that the operators stand, 
the lower the costs for the users. 

Ultimately, the optimal plan proves more favorable in terms of total 
cost. As the total cost is primarily influenced by interruption costs, it 
exhibits similar behavior. 

4.2.3. Computation performance of the proposed model 
To verify the scalability characteristics of our optimization model, 

we analyze how the computation time varies with the size of the prob-
lem instance, and compare it with the computational performance of the 
grouping approach proposed in [26]. Specifically, we study the effects 
on computation time of the length of the planning horizon T (and 
therefore the number of time steps), the number of intervention types | 
K| and the number of objects |N|. We run three numerical experiments 

where we vary T, |K| and |N| one at a time. Fig. 5 shows a linear trend 
between computation time for our model and the length of the time 
horizon T (number of time steps), while the number of intervention 
types and number of objects are fixed. Computation time remains below 
90 seconds when T is increased up to 2900 time steps. Similarly, in 
Fig. 6, the computation time for the model in [26] is depicted as a 
function of T, showing a strongly nonlinear behavior and an increase up 
to 12 × 104 seconds when T is increased up to 300. 

Similarly, Fig. 7 shows a linear trend between the computation time 
and the number of intervention types while Fig. 8 exhibits a strong 
exponential behavior. 

Figs. 9 and 10 depict the relationship between the computation time 
and the number of objects for the proposed model and the model in [26], 
respectively. For the proposed model, results show that the number of 
objects has little effect on the computational complexity. This is an ex-
pected result because in our model there is no direct one-to-one corre-
spondence between on object and a decision variable. Instead, decision 
variables are linked to interventions, and each intervention is linked to 
multiple objects, thus leading to reduced model complexity and a better 
representation of reality. This also constitutes one advantage of the 
proposed model compared to the more common assumption made in 
other models in the literature where an intervention activity can only 
target one object at a time. 

4.2.4. Rolling horizon for long term planning 
From Fig. 2, it can be observed that altering the time horizon (i.e., the 

number of time steps in a single optimization run) does not significantly 
impact the intervention program patterns. In fact, the interval for each 
individual intervention type remains consistent regardless of the time 
steps. If this holds true, the analysis can be performed over a shorter time 
horizon and the results can be replicated across a longer horizon, 
resulting in substantial computational advantages. In this section, we 
examine the effects of time horizon length on the structure of the 
optimal intervention program. To achieve this, we compare the out-
comes of 19 optimization runs, each featuring different time horizons 
ranging from 12 to 120 time steps, with increments of 6 time steps. We 
evaluate the optimization runs in pairs by calculating the Chi-square 
error between the intervention programs of the two optimization runs 
corresponding to pairs of time horizons Ti, Tj ∈ {12, 18, 24, …, 120}, 
as follows: 

χ2 =
∑k=|K|

k=1

∑min(Tj ,Tj)

t=1

(
MTi

k,t − MTj
k,t

)2

2
×

1
min

(
Ti,Tj

)× 100 ∀ Ti, Ti

∈ {12, 18, 24, …, 120} (18) 

Fig. 5. Computation time as function of the number of time steps T resulting 
from our model. 

Fig. 6. Computation time as function of the number of time steps T obtained 
from implementation of model in [26]. 
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whereMT(.)
k,t indicates whether intervention type k is executed at time step 

t in the intervention program with time horizon T(.). As we use the chi- 
square error method to compare intervention programs, the term "error" 

is replaced from now on by "difference" which is more appropriate for 
our case. 

Fig. 11 presents the results of the analysis. Each circle symbolizes the 
percentage difference between two intervention programs optimized 
over distinct time horizons. The figure can be interpreted as a sym-
metrical matrix with a zero diagonal, as an intervention program should 
exhibit no difference when compared to itself. 

To illustrate the results, consider the node at the intersection of co-
ordinates T1 = 24 and T2 = 30. The difference between the two inter-
vention programs is 1 %, indicating that these programs are nearly 
identical for the initial 24 time steps, which corresponds to the smaller 
time horizon. 

Apart from the first row and first column, the percentage differences 
are negligible, with a maximum of only 6 %. This indicates that if a long 
time horizon is desired, the analysis can be conducted over a shorter 
time horizon, and the resulting program can then be replicated (or rol-
led) across the extended horizon. This approach offers considerable 
computational benefits while maintaining the effectiveness of the 
intervention program. 

Regarding the first row and first column, it becomes evident that 12 
time steps are inadequate for the program to develop a discernible 
pattern. Consequently, it is advisable to select a sufficiently large base 
time horizon to ensure the program’s effectiveness and reliability. In this 
particular instance, a base time horizon of 18 time steps is 
recommended. 

A comparable analysis was conducted to assess costs associated with 
the intervention programs. The objective was to determine whether 
altering the time horizon would have a significant impact on cost out-
comes. Interestingly, this cost comparison also produced similar results 
to the previous analysis. The consistency in cost patterns across varying 
time horizons further reinforced the observation that the structure of 
optimal intervention programs remains largely unaffected by the length 
of the time horizon. This consistency provides an opportunity for re-
searchers and decision-makers to conduct analyses over shorter time 
horizons, replicate the results over longer horizons, and achieve sub-
stantial computational advantages without compromising the quality 
and effectiveness of the intervention programs. 

5. Conclusions and remarks 

Dependencies among interconnected infrastructure networks imply 
that interventions performed on objects of one network can directly or 
indirectly affect the functionality of (part of) other networks. Although 
in the current practice these dependencies are not considered and in-
terventions are planned for each network individually, it is widely 
recognized that there is a need for coordinating interventions across 

Fig. 7. Computation time of different optimization runs with varying number 
of intervention types (obtained from the proposed optimization problem). 

Fig. 8. Computation time of different optimization runs with varying number 
of intervention types obtained from implementation of model in [26]. 

Fig. 9. Computation time of different optimization runs with varying number 
of objects (obtained from the proposed optimization problem). 

Fig. 10. Computation time of different optimization runs with varying number 
of objects obtained from implementation of model in [26]. 
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different networks within interconnected systems to reduce net costs. 
However, this is a challenging task that calls for tools to support a sys-
tematic and collaborative approach to intervention planning. 

To address this challenge, we have proposed a novel two-stage 
optimization model for planning interventions for systems of multiple 
interconnected networks. Starting from an optimal plan for individual 
intervention types, grouping of interventions is based on the de-
pendencies between the different networks and is optimized against the 
total net cost which includes the direct intervention costs incurred by 
different infrastructure operators and service disruption costs. Through 
application to a representative system, we have shown that the optimal 
arrangement of interventions may significantly reduce the net costs 
mainly due to the shared set-up costs as well as shared maintenance 
windows, which lead to a reduction in service interruptions. The scal-
ability of our model is demonstrated empirically by showing that the 
computation time is roughly proportional to the number of decision 
variables rather than growing exponentially as in most of the existing 
models. This is a significant advantage from a modeling perspective 
which is reflected in a more practical implementation of our model to 
large-scale systems. Moreover, the analysis of the optimization results 
conducted for a range of different planning horizons has shown that 
repetitive patterns can be identified in the planning. These patterns can 
be exploited to reduce computation time as the intervention plan can be 
optimized simply over the pattern length. 

It should be noted that while this paper focuses on minimizing net 
costs, additional factors such as environmental impact and noise 
pollution can be incorporated into the objective function. This makes the 
problem a multi-objective optimization problem. The customary way to 
solve such problems is the weighted sum of the objectives, where 
everything is translated again into a single objective optimization 
problem. 

Also, the proposed model optimizes decisions at the tactical level by 
determining groups of interventions that can be performed together. The 
results of the model can then inform decisions to be further optimized at 
the operational level, where more detailed consideration of the main-
tenance duration can be considered to guide the execution of activities. 

One of the main observations is that there exists a negative rela-
tionship between direct costs incurred by operators (i.e., intervention 
and setup costs) and indirect costs incurred by users (i.e., service in-
terruptions). This conflict makes it challenging to adopt the optimal 
solution that minimizes net costs. However, it is important to note that 
operators are not solely concerned with direct costs, as service avail-
ability is a crucial factor indicating the quality of their service. This 

highlights the need for proper coordination when planning in-
terventions. Infrastructure managers should prioritize clear communi-
cation, as coordination based on grouping would significantly benefit all 
stakeholders. 

We aim to further extend our work by (1) accounting for a more 
complex structure of dependencies among infrastructure objects (e.g. 
stochastic dependencies), (2) including the uncertainty of interventions 
occurrence, and (3) by relaxing the assumption that an intervention is 
completed during a single time interval and considering duration of 
interventions. The last point would most likely lead to additional con-
straints to the model to account for maintenance duration when in-
terventions are grouped. 
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