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Abstract
Asphaltmixtures show complexmechanical behavior due to their heterogeneous
structure. Traditionally, the mechanical characterization of asphalt mixture is
done through laboratory testing ormicromechanicalmodeling.While laboratory
tests and micromechanical models provide reliable measurements and physical
interpretability, they are often resource-intensive and demand extensive calibra-
tion. Recent advances in machine learning address some of the above issues
by enabling accurate predictions, though often lacking physical interpretability
and stability. Hence, this study aims to present a novel micromechanics-infused
neural network (MINN) framework for predicting asphalt mixture stiffness.
The framework embeds micromechanical principles derived from the modified
Hirschmodel into the neural network’s loss function, allowing themodel to learn
from experimental data while adhering to micromechanics-based constraints.
In this study, feature selection is performed using BorutaShap, and Bayesian
optimization is applied for hyperparameter tuning. Results show that MINN
improves prediction accuracy, interpretability, and robustness.

1 INTRODUCTION

In the pavement community, asphalt mixtures are gen-
erally treated as viscoelastic, which means that their
mechanical characteristics are affected by loading rate
and temperature (Cao et al., 2017). Therefore, to develop
an appropriate mixture design, it is often necessary to
estimate its mechanical properties, such as stiffness, accu-
rately. While laboratory tests are typically carried out
to determine these properties, they are often time- and
resource-intensive (Elseifi et al., 2006; W. Huang et al.,
2019). As an attractive alternative, several studies over
the past few decades have explored theoretical tech-
niques to predict mechanical properties (Rafiei et al., 2017;
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Tang et al., 2019; H. Zhang et al., 2018a). One promis-
ing approach, as proposed by researchers (Mura, 2013;
J. Zhang, 2020; H. Zhang et al., 2020), is the utiliza-
tion of micromechanical models. Researchers (H. Wang
et al., 2021; H. Zhang et al., 2018a) have highlighted
that these micromechanical models can effectively repli-
cate laboratory results without requiring extensive sample
preparation, thereby reducing resource consumption.
Among diverse categories of micromechanical models,

numerical micromechanical models (Zohdi & Wriggers,
2008), which are developed using the finite element
method (FEM; Belytschko et al., 2014) and/or the discrete
element method (DEM; Cundall & Strack, 1979), have
gained popularity among researchers (Dhundup et al.,
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2025; B. Li et al., 2025). However, accurately representing
the complex microstructures of the asphalt mixtures by
these methods demands the generation of a large number
of elements, which necessitates significant computational
resources and extended processing times (Jin et al.,
2021; Yu & Adeli, 1993). Moreover, despite the ability of
FEM and DEM to realistically model asphalt mixtures,
the accuracy of the predictions heavily depends on the
careful calibration of specific input parameters (Kaewnu-
ratchadasorn et al., 2024; Zeng et al., 2020). In contrast,
analytical micromechanical models are anticipated to
offer accurate predictions of a composite’s mechanical
properties without requiring significant computational
resources (H. Wang et al., 2021).
Analytical micromechanical models simplify the repre-

sentation of asphalt mixtures’ microstructure (e.g., aggre-
gates are often modeled as uniform spherical or ellip-
soidal particles; Zeng et al., 2020). The simplification
often enables the derivation of analytical solutions for the
mechanical properties of the mixtures (Yin et al., 2008).
As a result, these models have a reliable capability to
precisely predict the mechanical properties of asphalt mix-
tures (Underwood&Kim, 2013; H. Zhang, 2022). However,
despite their accuracy, analytical models often fall short in
providing a realistic depiction of the actual microstructure
(Luo & Lytton, 2011; H. Zhang et al., 2020).
The trade-off between simplicity and realism, as dis-

cussed above, has led the research on analytical microme-
chanicalmodeling to be often concentrated on continuum-
based micromechanical models (CBMM; Zeng et al.,
2020). These models treat the heterogeneous asphalt mix-
ture as an equivalent homogeneous material with effec-
tive properties (i.e., averaged mechanical properties that
reflect the combined behavior of all constituent mate-
rials; Wiśniewska et al., 2019; C. H. Yang et al., 2005).
In the CBMMs, homogenization techniques (Charalam-
bakis, 2010) are often employed to predict the macroscopic
properties of materials by analyzing their microstructural
features. The technique “averages out” themicroscale vari-
ations to predict the behavior of the material on a larger
scale (Torquato, 2002).
In homogenization techniques, the micromechanical

properties of a mixture are derived from the properties
of its phases (i.e., the distinct material components such
as aggregates, binders, and voids) (Charalambakis, 2010).
The technique allows researchers to calculate the stress
and strain values inside each phase based on the applied
loading conditions (Bornert et al., 2001). Simple homog-
enization models such as Hirsch (1962) and Christensen
models (D. W. Christensen et al., 2003) have been success-
fully used by previous researchers (Dongre et al., 2005;
Pellinen et al., 2007) for predicting mechanical properties
of different asphalt mixtures.

The Hirsch model (Hirsch, 1962) was initially devel-
oped to study the modulus of concrete by considering
the moduli of aggregates and cement. In this model,
the different phases of the composite are assumed to be
arranged in a combination of parallel and series con-
figurations (R. M. Christensen, 2005). The modulus of
the composite is determined by the moduli and volume
fractions of its constituent phases (R. M. Christensen,
2005). Later, D. W. Christensen et al. (2003) modi-
fied the original Hirsch model to be used for asphalt
concrete.
Although simplified homogenization models offer an

intuitive representation of the stiffness via measurable
engineering properties of the mixture (Gong et al., 2022),
many researchers (Behnood & Mohammadi Golafshani,
2021; Ceylan et al., 2009; D. W. Christensen & Bonaquist,
2015) raised concerns regarding their limited ability to
capture the complex interactions in asphalt mixtures.
To address this, several studies (Barugahare et al., 2022;
Moussa & Owais, 2021; Shu & Huang, 2008) have explored
the use of various machine learning (ML; Adeli & Hung,
1994) methods such as neural networks (NNs; Adeli &
Yeh, 1989) as alternatives for predicting stiffness. ML
methods offer significant potential for tackling scientific
problems where the underlying processes are not fully
understood (K. Li et al., 2024; Rafiei & Adeli, 2017).
They are also efficient when running mechanistic mod-
els at the desired spatial and temporal resolutions is
computationally impractical (Willard et al., 2022a). How-
ever, the implementation of even advanced black-box
ML models often faces restricted efficacy in scientific
fields (Kaewnuratchadasorn et al., 2024; Willard et al.,
2022a). The limitation is due to several challenges, such
as large data requirements (Karpatne et al., 2017), produc-
ing physically consistent results (Willard et al., 2020), poor
generalizability (Caldwell et al., 2014), scalability (Alam
et al., 2019), and interpretability (Doshi-Velez & Kim,
2017).
In order to alleviate the limitation of ML models, sev-

eral potential approaches have been recently proposed
for integrating physics within ML (Karpatne et al., 2017).
These approaches are residual modeling, physics-guided
loss function, physics-informed initialization, and physics-
based design of architecture that can be categorized as
″physics-informed machine learning (PIML; Karpatne
et al., 2017). More information about PIML and its appli-
cation in science and engineering can be found elsewhere
(Willard et al., 2022a).
In the last few years, extensive research has been carried

out in various disciplines using PIML, such as compu-
tational physics (Tanaka et al., 2021), material discovery
(Cang et al., 2018; Schleder et al., 2019), geotechnical engi-
neering (G. Wang et al., 2024), climate science (Faghmous
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& Kumar, 2014; O’Gorman & Dwyer, 2018), turbulence
modeling (Mohan & Gaitonde, 2018; Xiao et al., 2019),
and hydrology (Xu & Valocchi, 2015). In the pavement
engineering domain, Deng et al. (2024) used a physics-
guided loss function approach, an autoencoder for feature
selection, and a feedforward NN for rut depth prediction.
The results showed that implementing physics informa-
tion improves the model’s stability and rationality while
maintaining high accuracy. However, the authors con-
cluded the need for further research to effectively model
variables that show varying levels of influence on rut-
ting performance. In another study (Kargah-Ostadi et al.,
2023), researchers used the physics-informed initializa-
tion approach, in which they pre-trained a model using
data derived from the simulation and then optimized spe-
cific parameters of the model based on the international
roughness index measurements. The authors highlighted
that their proposed model had high accuracy and gener-
alizability for pavement sections only with a low level of
roughness.
In a similar study,K. Chen et al. (2025) proposed a frame-

work for predicting the international roughness index by
integrating domain knowledge into NN in two comple-
mentary approaches. The first approach was augmenting
the input space of an NN with outputs from FEM, while
the second approach modified the loss function of the NN
to penalize deviations from physically consistent behavior.
The second approach showed improvements in long-term
prediction accuracy and model stability. However, the
first approach, while adding computational complexity,
resulted in only marginal gains, particularly in short-term
predictions. The author concluded that the selection of
the integration approach is critical in achieving tangible
benefits from PIML.
Xiong et al. (2024) proposed a novel approach for inte-

grating micromechanical knowledge with ML, in which
the model is trained without relying on any labeled
datasets. The proposed framework was applied to vari-
ous non-linearmicromechanical problems like anisotropic
microplasticity. While the proposed framework by the
authors achieved good results, the focus of the study was
still on solving micromechanical problems outside of the
pavement engineering domain.
Given thewide range of approaches used in the reviewed

literature tomodel asphaltmixture properties, Table 1 sum-
marizes their typical methods, along with their strengths
and limitations, to provide a clearer overview. To the
best of the author’s knowledge, no existing studies in
the pavement field have proposed an approach to utilize
micromechanical models as the loss function within ML
to predict pavement mechanical properties.

1.1 Research objective and scope

The goal of the research is to develop a framework to
integrate micromechanical knowledge with ML to pre-
dict the mechanical properties of the asphalt mixture.
The physics-guided loss function approach is used to
develop a framework that achieves an appropriate equi-
librium between accuracy, stability, and interpretability.
The framework is expected to provide better insights
into asphalt mixture characteristics by infusing the
mechanical properties of asphalt mixtures into modeling
processes.
The scope of the study is defined as follows:

1. The stiffness of asphalt mixtures is considered as the
target (output) of the predictive model.

2. The NN is considered as the ML model.
3. The modified Hirsch model is implemented to leverage

micromechanical principles into ML-based predictive
modeling.

4. The stability and interpretability of the model are eval-
uated through comparisons with the micromechanical
model.

1.2 The novelty of the research

The novelty of the study is as follows:

1. The scope of the problem: As discussed in the previous
sub-sections, none of the existing approaches provide
a framework to integrate micromechanical knowledge
with NN.

2. Micromechanically consistent model: Ensuring the
model is rooted in micromechanics principles for reli-
able and scientifically sound predictions.

3. Enhanced transparency and interpretability: Empha-
sizing clear model explanations to improve trust and
understanding of the results.

4. Application: To the best of the author’s knowl-
edge, none of the previous research has proposed
a framework to integrate micromechanical knowl-
edge with ML for predicting visco-elastic material
properties.

2 RESEARCH FRAMEWORK

In order to present an easier understanding, the research
framework is presented in Figure 1. As the correspond-
ing figure shows, the framework is categorized into four
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4 ANUPAM et al.

TABLE 1 Overview of existing approaches for predicting the asphalt mixture properties.

Modeling family Commonmethod(s) Key advantages Main limitations Representative refs.
Laboratory testing Dynamic modulus

tests, four-point
bending, and so forth

Direct
measurement; high
fidelity

Time- and cost-intensive;
limited
temperature/frequency
range

(Cao et al., 2017; Elseifi et al., 2006)

Analytical
micromechanics

Hirsch, Christensen,
and so forth

Closed-form; fast;
interpretable

Simplifying phase geometry (Charalambakis, 2010; R. M. Christensen,
2005; D. W. Christensen & Bonaquist,
2015; D. W. Christensen et al., 2003;
Dongre et al., 2005; Hirsch, 1962; Luo &
Lytton, 2011; Shu & Huang, 2008;
Torquato, 2002; Underwood & Kim, 2013;
Wiśniewska et al., 2019; C. H. Yang et al.,
2005; Yin et al., 2008; Zeng et al., 2020; H.
Zhang et al., 2018a)

Numerical
micromechanics

FEM/DEM RVEs, and
so forth

Captures realistic
geometry; flexible

High computational cost;
parameter calibration

(Belytschko et al., 2014; Cundall & Strack,
1979; Jin et al., 2021; Yu & Adeli, 1993;
Zeng et al., 2020; Zohdi & Wriggers, 2008)

ML NN Learns complex
patterns; no
constitutive
assumptions

Requires large, well-labeled
data; poor physical
interpretability

(Adeli & Yeh, 1989; Barugahare et al.,
2022; Behnood & Mohammadi
Golafshani, 2021; Moussa & Owais, 2021)

PIML Residual modeling,
physics-guided loss
function,
physics-informed
initialization, and
physics-based design of
architecture

Combine data with
physics; better
generalisation and
stability

Extra loss term may raise
training cost; needs an
analytical or partial
differential equation model

(K. Chen et al., 2025; Deng et al., 2024;
Kaewnuratchadasorn et al., 2024;
Kargah-Ostadi et al., 2023; Willard et al.,
2020; Xiong et al., 2024)

Abbreviations: DEM, discrete element method; FEM, finite element method; PIML, physics-informed machine learning.

stages: (1) setting up the micromechanical model, (2)
data preparation, (3) development of the micromechanics-
infused framework, and (4) model evaluation. Stage 1, as
it will be discussed in Section 2.1, provides a process of
selecting an appropriate micromechanical model. In Stage
2 (see Section 2.2), data are prepared, and key features
are selected as input parameters for the model. Using the
data from the previous stage, a micromechanics-infused
NN model (MINN) is set up in Stage 3 (see Section 2.3). In
Stage 4, defined metrics are implemented to evaluate the
MINN.

2.1 Stage 1: Setting up the
micromechanical model

Based on the research needs described in the previous sec-
tion, the first stage of the research framework is selecting
an appropriate micromechanical model. A key aspect of
the selection process is evaluatingwhether the constitutive
relationship can be incorporated as a constraint condition.
A brief discussion of the aspects is provided below.

2.1.1 Stiffness tensor

In the context of linear elasticity, the fundamental consti-
tutive equation describing amaterial’s behavior is typically
expressed as Equation (1) (Mase et al., 2009;H. Zhang et al.,
2020).

𝜎 = 𝐂 ∶ 𝜀 (1)

where “σ” represents the second-order stress tensor, “ε”
denotes the second-order strain tensor, and “C” corre-
sponds to the fourth-order stiffness tensor (H. Zhang et al.,
2020). The sign “:” denotes the double dot product opera-
tion between two tensors. For materials that are isotropic,
the stiffness tensor can be calculated using the bulk mod-
ulus “K” and shear modulus “G” as shown in Equation (2)
(Bonet & Wood, 1997)

𝐶 = 3𝐾𝐼𝑣 + 2𝐺𝐼𝑑 (2)

where “𝐼𝑣” represent volumetric tensor, and “𝐼𝑑” stands
for deviatoric tensors (H. Zhang et al., 2020). These
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ANUPAM et al. 5

F IGURE 1 Research framework.

tensors ensure that “C” correctly captures material behav-
ior in volumetric and shear deformation. Furthermore, for
any fourth-order tensors, “B1” and “B2” are given as Equa-
tions (3) and (4), and their double dot product can be
directly given by Equation (5).

𝐵1 = 𝐵𝑣
1 𝐼𝑣 + 𝐵𝑑

1 𝐼𝑑 (3)

𝐵2 = 𝐵𝑣
2 𝐼𝑣 + 𝐵𝑑

2 𝐼𝑑 (4)

𝐵1 ∶ 𝐵2 = 𝐵𝑣
1 𝐵𝑣

2𝐼𝑣 + 𝐵𝑑
1 𝐵𝑑

2 𝐼𝑑 (5)

The presented equations are essential for analyzing stiff-
ness behavior in complex materials, such as composites,
where multiple phases with different stiffness properties
interact.

2.1.2 Effective stiffness of a composite

In composite materials, the effective stiffness tensor“Ceff”
is calculated by the average stress and strain of the
composite as Equation (6) (Hill, 1963)

⟨𝜎⟩𝑐 = 𝐶ef f ⟨𝜀⟩𝑐 (6)

where “⟨𝜎⟩𝑐” and “⟨𝜀⟩𝑐” represent the volume-averaged
stress and strain, respectively. For a representative volume
element (RVE;Charalambakis, 2010), these averages are
given by Equation (7).

⟨𝜎⟩𝑐 =
1

𝑉
∫
𝑉

𝜎𝑑𝑉, ⟨𝜀⟩𝑐 =
1

𝑉
∫
𝑉

𝜀𝑑𝑉 (7)

At the phase level, the same relations hold for phase
“r” over the volume of this phase “𝑉𝑟” as shown in
Equation (8).

⟨𝜎⟩𝑟 =
1

𝑉𝑟
∫
𝑉𝑟

𝜎𝑑𝑉, ⟨𝜀⟩𝑟 =
1

𝑉𝑟
∫
𝑉𝑟

𝜀𝑑𝑉 (8)

By inserting Equation (8) into Equation (7), the expres-
sions for “⟨σ⟩c” and “⟨ε⟩c” can be reformulated in Equa-
tions (9) and (10).

⟨𝜎⟩𝑐 =

𝑁∑
𝑟=1

𝜙𝑟⟨𝜎⟩𝑟 (9)

⟨𝜀⟩𝑐 =

𝑁∑
𝑟=1

𝜙𝑟⟨𝜀⟩𝑟 (10)

where “𝜙𝑟ε represents the volume fraction of phase “r”
within the RVE, given by Equation (11) (H. Zhang, 2022).

𝜙𝑟 =
𝑉𝑟

𝑉
(11)

Since each phase obeys the constitutive law (Bonet &
Wood, 1997):

⟨𝜎⟩𝑟 = 𝐶𝑟 ⟨𝜀⟩𝑟 (12)

where “Cr” is the stiffness tensor of phase “r” (H. Zhang,
2022). By substituting Equations (6) and (11) into Equa-
tion (9), “Ceff” can be expressed in terms of “Cr” as shown
in Equation (13).

𝐶eff ∶ ⟨𝜀⟩𝑐 =

𝑁∑
𝑟=1

𝜙𝑟𝐶𝑟 ⟨𝜀⟩𝑟 (13)
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6 ANUPAM et al.

The strain localization tensor “Ar” of phase “r” can
then be introduced in Equation (14) to express the relation
between the composite strain and strain.

⟨𝜀⟩𝑟 = 𝐴𝑟 ∶ ⟨𝜀⟩𝑐 (14)

The value of “Ceff” can be further explained by combin-
ing Equations (14) and (13)

𝐶eff =

𝑁∑
𝑟=1

𝜙𝑟𝐶𝑟 ∶ 𝐴𝑟 (15)

By replacing Equation (14) into Equation (10), Equa-
tion (16) can be obtained as follows (H. Zhang, 2022):

𝑁∑
𝑟=1

𝜙𝑟𝐴𝑟 = 𝐼 (16)

The determination or estimation of ″𝜙𝑟, ε “Cr,” and
“Ar” values are essential in order to compute “Ceff” (H.
Zhang, 2022). Typically, the components of a composite
are known, allowing ″𝜙𝑟ε and “Cr” to be experimentally
obtained by laboratory tests. Although “Ar” can be mea-
sured using techniques such as digital image processing
(Gonzales & Wintz, 1987) and smart sensors, these meth-
ods are not widely proven by pavement engineers and
researchers (H. Zhang et al., 2020, 2021). Therefore, the pri-
mary objective of CBMM is to determine the value of such
a parameter (H. Zhang et al., 2020).
Researchers (Hashin, 1983; Nemat-Nasser & Hori, 2013)

proposed several different approaches to calculate “Ceff,”
which can be broadly categorized as geometry-based (R.
M. Christensen & Lo, 1979) and bound-based (Hashin &
Shtrikman, 1963; Paul, 1960). Since the geometry-based
approach is used in themodeling stage in this study, a brief
description of this approach is presented in the following
subsection. It is noted that further information about the
bound-based approach can be found elsewhere (Hashin,
1965; Milton, 1981, 1982; Walpole, 1966).

2.1.3 Geometry-based approach

The geometry-based approach utilizes a predefined geo-
metric model (R. M. Christensen & Lo, 1979) that rela-
tively establishes the spatial arrangement of the individual
phases in composites. By using such an arrangement,
a closed-form solution of “Ceff” can be obtained. The
geometry-based approach can be further classified into
models where the individual phases are arranged in par-
allel, series, or a combination of both. A notable example
of such models is the Hirsch model (Hirsch, 1962), which
is briefly described in the following subsection.

F IGURE 2 Evolution of the Christensen model configuration
for asphalt mixtures: (a) The original configuration showing
sub-phases arranged in parallel (fap, fbp, fvp) and series (fas, fbs,fvs);
(b) a simplified version using only parallel sub-phases (fap, fbp, fv);
(c) the proposed modification by Zhang et al. (2018b), where each
phase (aggregates fa, binder fb, air voids fv) is directly modeled
without sub-phase separation.

Hirsch model
In order to modify the original Hirsch model for applica-
bility to asphalt mixes, D. W. Christensen et al. (2003) pro-
posed several phase arrangements (H. Zhang, 2022). After
extensively evaluating the arrangements, the researchers
concluded that themost accurate predictions of the asphalt
modulus were obtained with the version where sub-
phases were arranged in parallel and series (H. Zhang
et al., 2018b). These sub-phases represent asphalt binders,
aggregates, and air voids (see Figure 2a).
As given in Equation (17), the dynamic Young’smodulus

of an asphalt mixture, denoted as “|E*|mix,” is calculated
based on the volume fractions and moduli of the asphalt
binder, aggregates, and air voids (H. Zhang et al., 2018b).

|𝐸∗|𝑚𝑖𝑥 (𝑓) = 𝑓𝑎𝑝𝐸𝑎 + 3𝑓𝑏𝑝|𝐺∗|𝑏
+ (𝑓𝑎𝑠 + 𝑓𝑏𝑠 + 𝑓𝑣𝑠)

[
𝑓𝑎𝑠

𝐸𝑎
+

(𝑓𝑏𝑠 + 𝑓𝑣𝑠)
2

3𝑓𝑏𝑠|𝐺∗|𝑏 (𝑓)

]−1

(17)

where

1. The terms “p” and “s” refer to the parallel and series
components, respectively.

2. “a,” “b,” and “c” represent aggregate, binder, and air
void phases, respectively,

3. “fa,” “fb,” and “fv” are the aggregate phase volume frac-
tion, asphalt binder phase volume fraction, and air void
phase volume fraction, respectively,
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ANUPAM et al. 7

4. “Ea” and “|G*|b” are Young’s modulus of the aggregate
phase and the dynamic shear modulus of the asphalt
binder phase, respectively.

D. W. Christensen et al. (2003) observed that the series
sub-phases had a much less significant impact on an
asphalt mix’s estimated modulus than the parallel sub-
phases. The observation indicates that the behavior of an
asphalt mixture is well represented by a parallel configura-
tion of its constituent phases. Therefore, D.W. Christensen
and Bonaquist (2015) further simplified the original model
to a straightforward parallel configuration as shown in
Figure 2b and described by Equation (18).

|𝐸∗|𝑚𝑖𝑥 (𝑓) = 𝑓𝑎𝑝𝐸𝑎 + 3 𝑓𝑏𝑝|𝐺∗|𝑏 (𝑓) (18)

Since obtaining “fap” and “fbp” through laboratory and
field tests is challenging (Anderson et al., 2011; Underwood
et al., 2012), researchers D. W. Christensen et al. (2003)
have proposed a further simplification of the equation by
introducing the contact factor (Pc; see Equation 19).

|𝐸∗|𝑚𝑖𝑥 (𝑓) = 𝑃𝑐 (𝑓)
(
𝑓𝑎𝑝𝐸𝑎 + 3 𝑓𝑏𝑝|𝐺∗|𝑏 (𝑓)

)
(19)

In the equation, “Pc” represents the proportion of the
parallel component within the total volume of the compos-
ite, which consequently ranges between 0 and 1 (H. Zhang,
2022).
Equation (19) is derived from Equation (18), assuming

the parallel component is equally distributed across all
phases. This assumption implies that the value of “Pc”
remains constant across all composite phases without
varying between different phases. According to past stud-
ies (D.W.Christensen et al., 2003), the values of “Pc” can be
determined through laboratory tests, and it was reported
that the predictions of the model are found to be aligned
well with the laboratory test results (D. W. Christensen
& Bonaquist, 2015; D. W. Christensen et al., 2003). How-
ever, H. Zhang et al. (2018a) pointed out that the physical
interpretation of “Pc” is challenging for several reasons.
The “Pc” factor specifies the aggregate contact factor,

referring to the contribution of aggregate particles that are
in close contact with one another (H. Zhang et al., 2018b).
Furthermore, it was interpreted by D.W. Christensen et al.
(2003) that higher “Pc” values at elevated frequencies or
lower temperatures suggest increased interaction between
aggregate particles (H. Zhang, 2022). However, this inter-
pretation is inconsistent with the physical behavior of
aggregates, as fewer aggregate particles are expected in
close contact under high-frequency or low-temperature
conditions (H. Zhang et al., 2018b). This behavior is likely
due to the stiffening of the asphalt binder under these
conditions. Conversely, at low frequencies or high temper-
atures, when the asphalt binder becomes softer, aggregate

particles are expected tomovemore freely, leading tomore
pronounced contact among the particles.
Considering the inconsistency mentioned above, H.

Zhang (2022) proposed a revised parallel arrangement
considering the total volume of bitumen, aggregates, and
air voids (see Figure 2c and Equation 20). Additionally,
the author introduced the term “aggregate organization
factor” (Pa) to represent the temperature- and frequency-
dependent influence of the aggregate phase on the pre-
diction of mixture stiffness (see Equation 21; H. Zhang
2022). To identify 𝑃𝑎, a regression model as shown in
Equation (22) was presented (H. Zhang, 2022).

|𝐸∗|𝑚𝑖𝑥 (𝑓) = 𝑓𝑎𝐸𝑎 + 3 𝑓𝑏|𝐺∗|𝑏 (𝑓) (20)

|𝐸∗|𝑚𝑖𝑥 (𝑓) = 𝑃𝑎 (𝑓) 𝑓𝑎 𝐸𝑎 + 3 𝑓𝑏|𝐺∗|𝑏 (𝑓) (21)

where “fa,” “fb,” “Ea,” and “|G*|b ” are described in
Equation (17) (H. Zhang et al., 2018b).

𝑃𝑎 = 𝑎 + (1 − 𝑎)

exp

(
𝑏 +

𝑐𝑙𝑛(𝑓𝑏)

𝑓𝑏+𝑓𝑣)|𝐺∗|𝑏+𝑑(𝑓𝑏+𝑓𝑣)

)
1 + exp

(
𝑏 +

𝑐𝑙𝑛(𝑓𝑏)

𝑓𝑏+𝑓𝑣|𝐺∗|𝑏 + 𝑑 (𝑓𝑏 + 𝑓𝑣)
)

(22)

where “a,” “b,” “c,” and “d” are the regression coefficients.
The Hirsch model has been widely adopted in pave-

ment engineering (Pellinen et al., 2007; Shen et al., 2013;
Yan et al., 2024) due to its reliable performance across
diverse asphalt mixtures and loading conditions. Its for-
mulation links meso-scale material properties, such as
binder and aggregate characteristics to macro-scale stiff-
ness. Owing to its simplicity and computational efficiency,
the Hirsch model is well-suited for integration into data-
driven modeling frameworks, where interpretability and
low computational overhead are essential. As discussed
in this section, the Hirsch model was further modified by
researchers to better capture the micromechanical behav-
ior of asphalt mixtures. Therefore, in this research, the
modified Hirsch model, presented in Equations (20) and
(21), serves as the foundation for developing the MINN. It
is noted that more complicated models, such as the Mori–
Tanaka model (Mori & Tanaka, 1973) and self-consistent
model (Hill, 1965), can be implemented, but it is out of the
scope of the research.

2.2 Stage 2: Data preparation

In order to develop the MINN framework, it is essen-
tial to collect a relevant and representative dataset. The
dataset used for model development and evaluation in
this study was derived from the authors’ previous work

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.70000 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [30/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 ANUPAM et al.

TABLE 2a Overview of the numerical features in the dataset.

Feature name Unit Description
Target density (TD) kg/m3 The bulk density of the asphalt mixture based on

the mix design
Bitumen penetration (BP) 0.1 mm Depth of penetration under standard loading

using penetration test (NEN-EN 1426, 2015)
Bitumen phase angle (δ) Degree (◦) Phase lag between stress and strain (NEN-EN

14770, 2022)
Target sand volume percentage (TSA) % Mass percentage of sand in the mix design
Target filler volume percentage (TF) % Mass percentage of filler in the mixture
Target stone mass percentage (TST) % Mass percentage of coarse aggregate
Target bitumen volume percentage
(fb)

% Design target bitumen volume fraction

Reclaimed asphalt pavement (RAP) % Percentage of reclaimed material used
Age Year Time since the sample preparation
Bitumen softening point (SP) ◦C The temperature at which bitumen softens using

the ring and ball test (NEN-EN 1427, 2015)
Complex modulus (G*) Pa Representing the total resistance of the bitumen

to deformation under sinusoidal loading,
measured using a dynamic shear rheometer
(NEN-EN 14770, 2022)

Density (D) Measured density of the compacted sample
Air void (fv) % Percentage of air volume in the compacted

mixture
Stiffnessa MPa Four-point bending stiffness (EN 12697-26, 2012),

method B
aThe target feature.

TABLE 2b Overview of the categorical features in the dataset.

Categorical features
Feature name Subcategories
Compaction setup
(CD)

Field roller (FR) Hand roller (HR) Mini roller
(MR)

Segment compactor
(SC)

Shear box (SB)

Mixing setup (MS) Planetary mixer (PM) Asphalt plant (AP) Forced action mixer (FAM)
Polymer-modified
bitumen (PMB)

Yes No

(Berangi et al., 2025) and is summarized in Table 2a,b. It
comprises data points collected from six different road con-
struction projects to reduce potential model bias. These
projects were not experimental test sections but rather
real-world road segments constructed for public use. All
samples were aged under controlled laboratory condi-
tions at a constant temperature of 13 ± 2◦C, without
exposure to ultraviolet radiation or moisture. Given the
relatively small geographical size of the Netherlands, it
is reasonable to assume limited variability due to spatial
differences.
The quality of the collected dataset plays a critical role

in determining the accuracy, robustness, and generaliz-
ability of the resulting model (Domingos, 2012). In order

to enhance the quality of the data, key important prepro-
cessing steps such as data cleaning (Rahm & Do, 2000),
encoding categorical features (Kuhn & Johnson, 2013),
feature selection (Guyon & Elisseeff, 2003), and feature
scaling (Kotsiantis et al., 2006) should be carried out
(Zheng & Casari, 2018). The following subsections provide
a brief description of the key preprocessing steps.

2.2.1 Data cleaning

In the data cleaning step, detecting and correcting errors
or inconsistencies in raw data should be carried out
to improve its quality and reliability (Chu et al., 2016).
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ANUPAM et al. 9

Common tasks in data cleaning are handlingmissing data,
reducing noise in the data, eliminating outliers, and resolv-
ing discrepancies in the dataset (Dasu & Johnson, 2003).
Since the dataset in this study was collected from different
construction projects, carrying out the cleaning step is
essential to ensure that subsequent analysis and modeling
are based on accurate and consistent information.

2.2.2 Encoding categorical features

In encoding categorical data, categorical features are con-
verted into a numerical format that ML algorithms can
process (Kotsiantis et al., 2006). Since MINN requires
numeric input, categorical features should be encoded as
numbers.
In this research, one-hot encoding (Okada et al., 2019) is

selected since it can directlymap each category to a unique
vectorwith a binary representation. The binary representa-
tion is particularly well-suited for NN input layers, where
the model can easily interpret the presence or absence of
a category, such as compaction and mixing setups, using
individual neurons (Poslavskaya & Korolev, 2023).
After data cleaning and transformation of categori-

cal features, reducing the dimensionality of the dataset
becomes essential. High-dimensional data such as this
dataset that include bitumen properties (e.g., penetration,
phase angle, and softening point) and mix composition
variables (e.g., sand, filler, and stone volume percentages)
may lead to overfitting and reduced model interpretabil-
ity (Guyon & Elisseeff, 2003). Therefore, maintaining a
lean and relevant input feature set is critical to reducing
the above-mentioned issues (Guyon & Elisseeff, 2003). To
reduce dimensionality, feature selection methods are an
effective solution (Liu & Motoda, 2007). However, prior
to implementing future selection methods, the dataset
should be split into training and testing subsets (Brownlee,
2020).

2.2.3 Feature selection

Feature selection methods can be broadly classified into
three categories (Pandey et al., 2019): filter methods
(Guyon & Elisseeff, 2003), wrapper methods (Kohavi &
John, 1997), and embedded methods (Zou & Hastie, 2005).
In this study, an approach called BorutaShap (Keany,
2020), which integrates elements of both wrapper and
embedded methods, was used to identify the optimal fea-
ture set. The BorutaShapwas selected with the expectation
that it can handle the complex and inter-correlated nature
of the dataset as discussed previously. A brief description
of the BorutaShap methods is presented in the following
subsection.

BorutaShap
BorutaShap extends the original Boruta algorithm (Kursa
& Rudnicki, 2010) by incorporating SHapley Additive
exPlanations (SHAP; Lundberg & Lee, 2017), which
enhances its ability to capture global feature impor-
tance, particularly when dealing with interdependent
and nonlinear relationships. Compared to the traditional
Boruta method, BorutaShap offers a more computa-
tionally efficient and reliable approach while maintain-
ing robust feature selection performance (Yao et al.,
2022).
In the BorutaShap, while the Boruta algorithm is used

to determine the relevant features, SHAP is implemented
to rank them according to their importance. In the Boruta
algorithm, a set of shadow features (Ahmed et al., 2022;
Qiao et al., 2023) is randomly created by permuting each
feature in the dataset. Then, a base model, which is tradi-
tionally a random forest model (Breiman, 2001), is trained
on the original dataset alongside the shadow features. The
importance score of each feature is compared to the scores
of its corresponding shadow features. If a feature is found
to be “more important” than all its shadow features, it is
labeled as “confirmed” and retained in the feature set. Con-
versely, if a feature is not more important than any of its
shadow features, it is labeled as “rejected” and removed
from the feature set. It is noted that in a scenario where
the feature is more important than some of its shadow fea-
tures but not all, it is deemed “tentative,” and the process
is repeated with additional iterations.
Although Boruta is a robust feature selection method,

it relies on the accuracy of feature importance calcula-
tions, which may be biased or insufficient for certain
datasets (Kursa & Rudnicki, 2010). By incorporating SHAP
values as the feature selection method in Boruta, the inter-
pretability of SHAP’s feature explanations is combined
with the robustness of the Boruta algorithm. The combi-
nation ensures that only the most significant features with
the highest contribution are retained in the dataset (Ejiyi
et al., 2024).

Selection of base models for BorutaShap
While SHAP is a “model-agnostic” method (Nordin et al.,
2023; Ribeiro et al., 2016), its effectiveness depends on
the ability of the base model to properly learn feature
interactions and importance (Lundberg & Lee, 2017). Dif-
ferent base models capture feature importance differently,
especially when the dataset exhibits non-linear relation-
ships or varying noise levels. Therefore, it is required to
compare the performance of different models to deter-
mine the most effective model for selecting the feature
based on the dataset. Since tree-based models (Friedman,
2001) are effective for managing non-linear relationships
and high-dimensional data, they often produce more
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10 ANUPAM et al.

F IGURE 3 Termination criteria.

meaningful and stable SHAP values (Kazemitabar et al.,
2017), compared to models like linear regression (Seber &
Lee, 2003) or support vector machine (Cortes & Vapnik,
1995). In this study, the comparison of different tree-based
models, including (a) XGBoost (T. Chen & Guestrin,
2016), (b) CatBoost (Prokhorenkova et al., 2018), and (c)
extra-trees regressor (Geurts et al., 2006) is proposed.

Evaluation of the impact of seed values
In order to avoid overfitting and data leakage, feature selec-
tion should be considered to be carried out entirely within
the training set. The consideration ensures that the test set
remains a truly independent evaluation set, reserved only
for final performance assessment after feature selection is
complete.
The random seed value (Bengio, 2012) used in the train-

test split process (Keany, 2020) influences which data
points end up in the training set, potentially affecting
which features are selected. To assess the stability of Boru-
taShap under different train-test splits, feature selection is
advised to be repeated acrossmultiple seeds, and the result-
ing feature sets should be compared. The comparisonhelps
to verify that the selected features are not overly sensitive
to a particular split.

Establishing a stopping criterion
In order to prevent unnecessary iterations and premature
termination, a stopping criterion should be implemented.
In this study, the feature selection in the BorutaShap is
required to be terminated only when the conditions pre-
sented in Figure 3 are met. Incorporating this condition
can maintain a balance between relevance and stability of
features.

Evaluation of base models via prediction variance
The stability of each basedmodel should be evaluated after
the termination of the feature selection process. There are
several prominent metrics, such as the Jaccard index (Yeh

& Yang, 2016), adjusted Rand index (Santos & Embrechts,
2009), stability index (Nogueira et al., 2018), and selection
frequency (Beinrucker et al., 2012) for stability evaluation.
As summarized in Table 3, pairwise indices such as “Jac-

card” and “adjusted Rand” measure overlap between two

feature sets, so a “k-seed” experiment requires “
(

𝑘

2

)
” com-

parisons that are sensitive to the outliers (Kalousis et al.,
2006; J. Li et al., 2018). “Nogueira’s stability index” aggre-
gates all seeds but penalizes even a single feature’s absence,
leading to deceptively low scores when BorutaShap iter-
ates for many rounds (Jiang et al., 2022; Nogueira et al.,
2018). Likewise, “Selection-frequency” treats each feature
independently, ignoring the “set” structure that matters
when a wrapper selects features jointly (Nouraie &Muller,
2025). Therefore, none of the existing metrics are suitable
to be used in BorutaShap as it focuses on the stability
of confirmed features across all runs. Therefore, a met-
ric is introduced in this study so-called “average common
important feature ratio (ACIF)” (see Equation 21). The
ACIF evaluates the variability of each base model by quan-
tifying the ratio of retained acceptable features across
various random seeds. The ACIF varies from “0” (no fea-
tures retained) to “1” (all features retained), with higher
values signifying less variation.

ACIF𝑖 =
1

𝑛

𝑛∑
𝑗=1

#𝐶𝐼𝐹

#𝐼𝐹𝑖,𝑗
(23)

where

1. 𝐶𝐼𝐹𝑖 refers to the proportion of features that are
frequently identified as important by model “i,”

2. ACIF: average common important feature,
3. IF denotes the set of important features,
4. n is the total number of random seed iterations used for

the base model,
5. 𝐼𝐹𝑖,𝑗 represents the count of features marked as impor-

tant by model “I” during the “jth” seed iteration.

2.2.4 Feature scaling

Feature scaling is required because MINN assumes uni-
form feature scales, and features that vary significantly
in the range may skew the performance of the model
or cause instability. Additionally, scaling makes it easier
to compare and combine features of different units in a
unified manner. Since the features in the collected dataset
(Berangi et al., 2025) have different ranges, scaling these
features within a specific range should be carried out.
In this study, MinMaxScaler (Brownlee, 2016) is chosen
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ANUPAM et al. 11

TABLE 3 Comparison of existing stability metrics and their limitations in the BorutaShap context.

Metric Measurement index Limitation in BorutaShap context
Jaccard index The proportion of overlap

between feature sets
obtained from two different
selection runs

Evaluates only pairwise similarity; does not
reflect overall agreement across multiple
iterations or seeds

Adjusted Rand index Similarity measure that
quantifies the agreement
between two sets, adjusted
for chance

Limited to pairwise comparisons; does not
generalize well to assessing ensemble-level
stability

Stability index (Nogueira et al., 2018) Measures agreement across
multiple runs using an
entropy-based formulation

Highly sensitive to small differences in feature
sets; may over-penalize minor variations in
iterative methods

Selection frequency The proportion of runs in
which each individual
feature is selected

Selection frequency evaluates features
independently and does not capture the
collective stability of the feature set across all
runs

F IGURE 4 Architecture of the proposed neural network
framework incorporating both data-driven and
micromechanics-informed input representations.

due to its ability to preserve binary attributes generated
through one-hot encoding.

2.3 Stage 3: Development of
micromechanics-infused framework

Figure 4 shows the architecture for developing
MINN. The architecture encompasses different com-
ponents, which will be explained in the following
subsections.

2.3.1 NN

The NNs have emerged as a fundamental component
in contemporary ML because they can effectively repre-
sent intricate and non-linear relationships within datasets
(LeCun et al., 2015). During the training process of
NNs, the adjustments of weights and biases are achieved
by utilizing a backpropagation technique (Rumelhart
et al., 1986). The technique calculates error gradients (𝑔𝑡)
through the use of the chain rule (Rumelhart et al., 1986) to
evaluate the loss () (Rumelhart et al., 1986) of the output
data with respect to eachweight and bias (see Equations 24
and 25). The process discussed above supports NNs grad-
ually diminishing the disparity between the predicted and
observed stiffness metrics.

𝑔𝑡 =
𝜕

𝜕𝜃
|𝜃𝑡−1

(24)

The loss function “” is formulated as follows:


(

Ỹ𝑀, Y𝐷

)
=

1

𝑀
| Ỹ𝑀 − Y𝐷|22 (25)

where

1. 𝜃𝑡 represents the model parameters being updated,
including both weights and biases;

2. 𝜃𝑡−1 indicates the values of the parameters at the
previous iteration (i.e., at time step t−1)

3. �̃�𝑀 and 𝑌𝐷 refer to the predicted and actual stiffness
based on the data, respectively;

4. M is the number of samples;
5. The loss function employs the mean squared error

(MSE) to reduce prediction error and adjust themodel’s
weights and biases accordingly.
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12 ANUPAM et al.

Since the loss function in Equation (25) only depends
on “Y𝐷 ,” the input data (XD) plays a crucial role in the
entire learning process. Thus, any issues related to data
quality can directly impact the accuracy and reliability of
the model’s predictions (Deng et al., 2024). As it was dis-
cussed in the introduction, relying solely on data-driven
learning without incorporating physical knowledge may
lead to issues such as overfitting or physically mean-
ingless results (Karpatne et al., 2017). To address these
issues, this study integrates micromechanics into the NN
model, ensuring that predictions are both data-driven and
physics-informed.

2.3.2 Micromechanical model integration

In order to ensure that the predictions are both data
and micromechanical-informed, the interactions between
aggregates and bitumen should be captured. To capture the
interactions, a dataset (𝑋𝑀) that represents the microme-
chanical features linked to the micromechanical stiffness
(𝑌𝑀) should be created. The “𝑌𝑀” should be calculated
directly using the selected micromechanical model. It is
noted that the “𝑋𝑀” and “Ym” works together with “𝑋𝐷”
and “𝑌𝐷” in NN.
Creating “𝑋𝑀” should be followed by making it dimen-

sionally compatible with “𝑋𝐷” via applying a transfor-
mation process using feature masking (Daw et al., 2021;
Willard et al., 2020). The transformation process used in
this study preserves the actual values of each required
micromechanical feature (f) while averaging all other fea-
tures across samples (Deng et al., 2024). The averaging
process removes unnecessary variation from irrelevant fea-
tures, ensuring that the dimensionality of “𝑋𝑀,” matches
“𝑋𝐷” without introducing unnecessary noise (Deng et al.,
2024). The general formulation of the process mentioned
above is shown in Equation (26).

XM, f =

⎡⎢⎢⎢⎢⎣

1

𝑘

∑𝐾

𝑖=1
𝑥𝑜,𝑖 …

1

𝑘

∑𝐾

𝑖=1
𝑥𝑜,𝑖

⋮ ⋱ ⋮

𝑥𝑓,1
1

𝑘

∑𝐾

𝑖=1
𝑥𝑜,𝑖

…

…

𝑥𝑓,𝑘
1

𝑘

∑𝐾

𝑖=1
𝑥𝑜,𝑖

⎤⎥⎥⎥⎥⎦
.

⎡⎢⎢⎢⎢⎣
𝑋𝑜

⋮

𝑋𝑓

𝑋𝑜

⎤⎥⎥⎥⎥⎦
(26)

where

1. 𝑋𝑀.𝑓 ∶ The transformed micromechanical dataset,
where each feature (f) is handled appropriately,

2. “f”: Any required feature for the micromechanical
mode,

3. 𝑋𝑓: The actual values of the required feature (f) across
all samples (retained as-is),

4. 𝑋𝑜: Other features, which are averaged across all sam-
ples,

5. “k”: The total number of samples in the dataset,
6. “i”: The index used to represent each individual sample,

where i∈{1,2,. . . ,k}.

2.3.3 Defining the micromechanics-guided
loss function

In addition to including micromechanically meaning-
ful features (𝑋𝑀), a customized loss function should be
designed to evaluate both the prediction accuracy and
the consistency with the micromechanical relationship.
The customized loss function requires the MINN model
to minimize both the prediction error derived from the
data and the deviation from the micromechanically con-
sistent behavior described by the micromechanical model
(Karpatne et al., 2017). In order to create such a loss
function, data-driven error terms such as MSE should be
combined with a micromechanical penalty term, which
penalizes predictions that violate micromechanical princi-
ples. The loss function used in this research is presented in
Equation (27).

𝐿𝑜𝑠𝑠 = 𝐷 + 𝜆𝑀, (27)

where the training loss𝐷 (see Equation 25), and𝑀 is the
micromechanics-based loss. 𝑀 is weighted by “𝜆 which
is a hyperparameter (J. Chen et al., 2019). The optimum
value for “𝜆 and other hyperparameters in MINN should
be determined using optimization techniques. In the fol-
lowing section, a brief description of model training and
optimization is presented.

2.3.4 Model training and optimization

Hyperparameters control the level of complexity or reg-
ularization (J. Chen et al., 2019) in MINN (Xia et al.,
2017). In this study, different hyperparameters such as
the number of hidden layers, the number of neurons
per layer, the dropout rate (Srivastava et al., 2014), the
learning rate (Kingma & Ba, 2014), and the micromechan-
ics regularization parameter (λ) were considered. These
hyperparameters were considered due to their influence
onmodel complexity (Bianchini & Scarselli, 2014), regular-
ization (Girosi et al., 1995), and convergence (Y. Li & Yuan,
2017), which are critical for balancing predictive accuracy
(Poernomo & Kang, 2018; Sun et al., 2021). The number of
hidden layers and the number of neurons per layer control
model complexity, allowing the network to learn intricate
patterns. However, increasing them excessively can lead
to overfitting. To mitigate overfitting, the dropout hyper-
parameter acts as a regularization mechanism, randomly
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ANUPAM et al. 13

TABLE 4 Possible ranges for hyperparameters of theMINN.

Hyperparameter Possible range
Dropout [0,0.5]
Learning rate [10−7,10−1]
Hidden layers [2,4]
Neurons per layer [4,128]
𝜆 [10−12,10−6]

deactivating neurons during training. In parallel, the learn-
ing rate influences convergence efficiency, where a high
value may cause instability, while a low value slows down
learning.
Since MINN has several hyperparameters as discussed

above, optimization (see Equation 28) plays a critical role
in enhancingmodel performance (L. Yang& Shami, 2020).

𝑥∗ = argmin𝑥∈𝑋 𝑓 (𝑥) (28)

where

1. “f(x)” represents the objective function that needs to be
minimized,

2. “x*” denotes the set of parameters that produce the
minimum value of “f(x),”

3. “x” refers to a hyperparameter that can take any value
from the search space “X.”

There are severalmethods for hyperparameter optimiza-
tions, such as grid search (Liashchynskyi & Liashchynskyi,
2019) and random search (Bergstra & Bengio, 2012). In this
research, Bayesian optimization is selected for hyperpa-
rameter optimization due to its ability to identify optimal
hyperparameters efficiently (L. Yang & Shami, 2020).
Unlike grid search and random search, Bayesian opti-
mization is an informed optimization technique (Kim
et al., 2023), which means that it utilizes prior evalua-
tion knowledge to guide subsequent searches. In Bayesian
optimization, prior knowledge is leveraged by building
a probabilistic model to select the optimum values for
hyperparameters. Detailed information about Bayesian
optimization can be found elsewhere (Snoek et al.,
2012).
A critical step in applying Bayesian optimization is

selecting a search space by defining the possible range of
values for hyperparameters (Snoek et al., 2012). The selec-
tion of an appropriate search space is essential, as a narrow
or broad range may exclude optimal solutions (Snoek
et al., 2012). In this study, the ranges for hyperparame-
ters (see Table 4) are determined based on insights from
the literature (Bengio, 2012; Smith, 2017) and the need for
mitigating overfitting. Bayesian optimization then explores

these defined ranges, using probabilisticmodeling to refine
and narrow the search for optimal hyperparameter values.
Once the search space is defined, the selected hyperpa-

rameters must be evaluated on a properly trained model.
To ensure that the obtained hyperparameters are not
biased by a single train-test split, cross-validation (Anguita
et al., 2012) is recommended. Cross-validation improves
the reliability of hyperparameter selection by averaging
performance across multiple train-test splits. While hyper-
parameter optimization aims to enhance model efficiency
and generalization, it is crucial to evaluate whether these
optimizations translate into improved predictive accuracy
and robustness. Therefore, a comprehensive model eval-
uation is necessary to determine the effectiveness of the
trained MINN.

2.4 Stage 4: Model evaluation

In order to evaluate the accuracy of the MINN, different
accuracy metrics such as the coefficient of determination
(R2), root mean squared error (RMSE), and mean absolute
percentage error (MAPE) are advised to be used (Provost
& Fawcett, 2013). Although these metrics are useful for
assessing accuracy, they are not sufficient for evaluating
the interpretability and stability of the model.
Interpretability is widely recognized as a crucial aspect

of predictive modeling, particularly in scientific and engi-
neering applications where trust in model predictions is
essential (Brundage et al., 2020; Lo Piano, 2020; Thiebes
et al., 2021). In the ML approaches, interpretability is often
assessed using methods such as SHAP (Kazemitabar et al.,
2017) and local interpretable model-agnostic explanations
(LIME; Koli et al., 2024; Zafar & Khan, 2021). These meth-
ods help to quantify the way individual inputs influence a
prediction of the model. While SHAP and LIME methods
provide valuable insights intomodel behavior, they are pri-
marily designed for purely data-driven models and rely on
mathematical relationships within the dataset (Misheva
& Osterrieder, 2023; Salih et al., 2025). As a result, these
methods do not explicitly evaluate whether the predictions
of a model remain consistent with underlying physical
principles. In models where MLmodels integrate domain-
specific knowledge like MINN, interpretability should be
assessed by verifying whether its predictions align with
“𝑌𝑀.”
Stability refers to the extent to which MINN produces

consistent predictions when trained repeatedly under
different initializations (Bousquet & Elisseeff, 2002). Ini-
tialization is the process in which the initial parameters
of the MINN (such as weights and biases) are randomly
assigned before training begins. These parameters serve as
the starting point for learning and are typically initialized
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14 ANUPAM et al.

usingmethods like Xavier’s uniform distribution (Glorot &
Bengio, 2010). Since the initialization is random, different
training runs can start from different initial values, leading
to variations in the final trained parameters (Semmelrock
et al., 2023). The randomness can result in the model con-
verging to different local minima, potentially affecting its
generalization and performance.
To control the randomness, a random seed (Bouthillier

et al., 2019) is often set before training. A random seed is a
fixed starting point for the random number generator used
in parameter initialization. When the same seed is used,
themodel follows the same initialization process, ensuring
reproducibility. However, using only a single seed might
lead to misleading results, as it may represent only a spe-
cific set of initial conditions, and the performance of the
model might not be generalizable. When different seeds
are used, the randomly initialized parameters vary, which
can cause fluctuations in the predictions, highlighting the
need to evaluate the stability acrossmultiple initializations
to ensure consistent performance.
The above issue has been reported in multiple recent

studies using different MLmodels. Reimers and Gurevych
(2017) reported that random seed variability can lead to sta-
tistically significant differences in the performance of nat-
ural language processing models, while Henderson et al.
(2018) showed fluctuations in learning outcomes caused by
stochasticity in the learning process (e.g., random weight
initialization) in reinforcement learning settings. Simi-
larly, Zech et al. (2019) found considerable instability in the
prediction of their image-processing model using different
random seeds. These findings collectively emphasize that
evaluating model stability across multiple initializations is
essential to ensure reproducibility and robustness.
In order to evaluate the stability of the model, the aver-

age coefficient of variation “𝐶𝑉” (Bindu et al., 2019), as
presented in Equation (29), should be calculated over
different random seeds.

𝐶𝑉 =
1

𝑁

𝑁∑
𝑖=1

𝜎𝑖

𝜇𝑖
(29)

where

∙ “𝑖” and ”𝑗” are values from 1 to “𝑁” and satisfy “𝑖≠𝑗,”
∙ “𝑁” refers to the total count of predicted output vectors,
∙ ε𝜎𝑖ε indicates the standard deviation of the “ith” element
across all predicted outputs,

∙ “𝜇𝑖ε denotes the average value of the “ith” element
calculated from all predicted output vectors.

In addition to evaluating predictive accuracy and stabil-
ity, it is important to assess the computational efficiency
of the proposed MINN framework. Several recent studies

reported that PIML models showed longer training time,
compared to traditional ML models (Grossmann et al.,
2023; A. J. Huang & Agarwal, 2023; Kaewnuratchadasorn
et al., 2024). To evaluate the computational cost associ-
ated with the micromechanics-informed loss in this study,
the convergence time of MINN is quantitatively com-
pared to a traditional NN trained under otherwise identical
conditions.

3 RESULTS AND DISCUSSIONS

This section presents the results using the dataset pre-
sented in Table 2 and the framework explained in the
previous section. For the ease of understanding of the
readers, the discussions are structured into subsections,
maintaining the same order as the framework presented
in Figure 1.

3.1 Data preparation

An overview of the dataset after carrying out cleaning and
encoding categorical features is summarized in Table 5a,b,
which resulted in 425 unique data points. Table 5a presents
the numerical input features, including their respective
measurement units, minimum and maximum values, and
standard deviations. The dataset comprises a diverse set
of features, such as “age” and “target density,” which
were incorporated into the model development process.
Each feature represents a specific characteristic of the
asphalt mixture, contributing to a comprehensive under-
standing of its properties. The physicochemical properties
(Le Guern et al., 2010) of bitumen are described through
features such as bitumen penetration and “bitumen phase
angle,” which influence the mechanical behavior of the
material. Additionally, the composition of the asphalt mix-
ture is captured by key features such as the target mass
composition of stone, sand, filler, and bitumen, which
determine the overall mixture structure.
The presented dataset in Table 5a,b required mini-

mal cleaning, as it was generally well-structured. Primary
cleaning steps were standardizing all numerical features
(e.g., converting kPa to MPa) and uniformly labeling cate-
gorical variables such as mixing and compaction methods
to facilitate encoding. Duplicate records and inconsis-
tent entries were then identified and removed using
sample ID tracking. Carrying out the above-mentioned
steps, the dataset contained a few missing values, which
were removed rather than imputed to prevent introducing
potential biases.
Following the removal of the missing values, since the

dataset did not have the required feature of the modified
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ANUPAM et al. 15

TABLE 5a Overview of the numerical features after preprocessing steps.

Numerical features

Feature name Unit Mean Min Max
Standard
deviation

Target density (TD) kg/m3 2380.85 2360.00 2399.00 10.71
Bitumen penetration (BP) 0.1 mm 25.54 11.00 53.00 10.54
Bitumen phase angle (δ) Degree (◦) 58.35 39.96 66.57 8.15
Target sand volume percentage (TSA) % 43.24 38.94 46.63 2.19
Target filler volume percentage (TF) % 6.30 5.76 7.65 0.60
Target stone mass percentage (TST) % 39.54 36.42 42.48 2.10
Target bitumen volume percentage (fb) % 0.11 0.10 0.13 0.01
Reclaimed asphalt pavement (RAP) % 58.28 50.00 65.00 6.19
Age Year 0.54 0.00 6.00 1.23
Bitumen softening point (SP) ◦C 63.32 55.80 82.60 8.02
Complex modulus (G*) Pa 1,140,421.61 194,139.51 6,632,724.39 1,648,476.80
Density (D) 2391.09 2307.81 2453.60 31.67
Paa Unitless 0.51 0.29 0.87 0.16
Volume aggregate fraction (fa)a 0.85 0.82 0.89 0.01
Air void (fv) % 3.61 0.51 6.93 1.60
Stiffness MPa 9737.44 6144.00 17,866.47 2092.53

aRequired features for the micromechanical model.

TABLE 5b Overview of the categorical features in the dataset after one-hot encoding.

Feature
name FRa HRa MRa SCa SBa PMa APa FAMa PMB_Yesa PMB_Noa

CDa 1b 0b 0 0 0 – – – – –
MSa – – – – – 1 0 0 – –
PMBa – – – – – – – – 1 0

aFor acronyms, please refer to Table 2b.
bEach row in the dataset contains binary values (1 or 0) for each encoded feature, indicating the presence (1) or absence (0) of a particular category.

Hirsch model, two features, “𝑃𝑎” (see Equation 22) and
“fa” (seeEquation 17),were developed. Furthermore, itwas
previously discussed that categorical features cannot be
directly used by MINN. Therefore, to make these features
machine-interpretable, they were encoded using one-hot
encoding (Okada et al., 2019) as shown in Table 5b.
As discussed in the methodology, a key aspect of this

study is selecting key features to be incorporated into the
model development. As can be seen from Table 6, four dif-
ferent basemodels (i.e., random forest, XGBoost, CatBoost,
and extra trees) were compared.
Figure 5 shows the significance of each feature quan-

tified by “Z-scores” (Salkind, 2006). The “Z-scores” are
derived from the SHAP values assigned to each feature
in the BorutaShap, indicating their relative contribution
to the output of the model. Therefore, features with
higher “Z-scores” contributed more to the output of the
model.

Although the Z-score highlights the importance of fea-
tures, it does not indicate the stability of their selection.
The boxplots in Figure 5 show the distribution of Z-
scores across multiple BorutaShap runs for each feature.
Narrower boxplots indicate features that are consistently
important, whereas wider boxplots suggest variability
in their importance. These boxplots were further sub-
categorized as “A,” “R,” and “S” to represent the accepted,
rejected, and shadow features, respectively. As it was dis-
cussed in the methodology, features are being selected in
BorutaShap that perform better than pure randomness
represented by shadow features.
As shown in Figure 5, “Pa” and “fa” are among the top

five most important features, as indicated by the dashed
rectangle labeled “M.” These five features exhibit the
highest Z-score values and relatively narrow box plots,
signifying their strong relevance and stability in the anal-
ysis. In contrast, “FR” (highlighted by another dashed
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16 ANUPAM et al.

TABLE 6 BorutaShap results across different base models and seeds.

Base model Seed Iterationsa R2 test Average R2 IFb CIFb ACIFb

Random
forest

0 1600 0.77 0.79 12 9 0.70
7 6400 0.80 15
31 1600 0.84 12
42 1600 0.77 13

XGBoost 0 200 0.77 0.76 7 6 0.76
7 400 0.68 8
31 400 0.86 8
42 400 0.76 9

CatBoost 0 1600 0.77 0.83 18 15 0.88
7 400 0.88 17
31 400 0.84 16
42 1600 0.83 17

Extra-trees 0 1600 0.82 0.84 21 21 0.98
7 1600 0.86 21
31 1600 0.88 21
42 400 0.83 23

Abbreviations: ACIF, average common important feature ratio; R2, coefficient of determination.
aThe number of iterations listed in the table refers to the final run where the count of selected features remained unchanged between the two latest iterations.
bFor acronyms, refer to Equation (23).

F IGURE 5 Results of the BorutaSHAP feature selection (for
acronyms, refer to Table 5).

rectangle) has the lowest Z-score, suggesting it contributes
the least to the predictive model.
The prominent position of “Pa” and “fa” underscores the

critical role of micromechanical properties in governing
asphalt mixture behavior. Their high importance suggests
that the internal mechanical interactions at the microscale
significantly influence the overall material performance.
Furthermore, the observation from the figure is consis-
tent with the concept of physics-aware feature importance,
which argues that the features the model relies on most
should be those that impose the governing physical mech-
anisms (Willard et al., 2022a). Furthermore, the results

F IGURE 6 Results of the correlation analysis (for acronyms,
refer to Table 2).

shown in Figure 5 support the necessity of incorporating
micromechanical features into the evaluation and design
of asphalt mixtures, as these features serve as key indi-
cators of overall pavement performance and enhance the
interpretability of the MINN framework.
Among the top five features in Figure 5, “G*” showed

the highest “Z-score,” which signifies its high influence on
stiffness. This finding aligns with the common knowledge
that a higher “G*” value corresponds to increased stiffness
and enhances the ability of mixtures to endure deforma-
tion under traffic-induced stresses and environmental
conditions (Leng et al., 2021; Sathvik et al., 2024). As
can be observed from the figure, “D” was the second
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ANUPAM et al. 17

most important feature. This observation is consistent
with prior studies demonstrating that higher compaction
results in higher aggregate interlocking and reduced air
voids, leading to enhanced stiffness and durability (Brown
et al., 2001; Tran et al., 2016).
In contrast to the features discussed above, “FR” had

the lowest Z-score, indicating minimal impact on asphalt
stiffness, which is aligned with the previous studies
(Berangi et al., 2025; Plati et al., 2016). These studies
reported that different compaction setups influence the
mechanical performance of the asphalt mixture but do
not significantly dictate final stiffness when compared
to other factors such as mix design and temperature
control.
While BorutaShap identifies the most relevant features

based on their individual contribution to themodel, it does
not account for redundancy or multicollinearity (Guyon
& Elisseeff, 2003; Kursa & Rudnicki, 2010). To reduce
multicollinearity, a correlation analysis using Spearman’s
correlation (De Winter et al., 2016) was carried out as
shown in Figure 6.
As can be seen from the figure, since “fv” and “D” had

high correlations (|ρ|> 0.8)with “fa,” theywere not consid-
ered inMINN for further analysis. Additionally, the feature
“SP”was not selected due to its high correlation (|ρ|= 0.94)
with “BP.”

3.2 Micromechanics-infused
framework

The architecture of the MINN model is presented in
Figure 7a. To obtain the optimum values for the hyper-
parameters presented in the figure, Bayesian optimization
combined with 10-fold cross-validation was applied to the
search space defined in Table 4.
As shown in the corresponding figure, the architecture

of the MINN starts from an input layer consisting of 14
neurons, each representing a feature selected from the
feature selection process. These inputs are then propa-
gated through three fully connected hidden layers, each
comprising 32 neurons. The rectified linear unit (Y. Li
& Yuan, 2017) activation function is applied to each hid-
den layer, enabling the model to capture complex patterns
while mitigating the vanishing gradient (Hochreiter, 1998)
problem, thereby enhancing training at the end of the
architecture. MINN generates its prediction through a
single-neuron output layer, which is dedicated to estimat-
ing the stiffness. Since the goal is to predict a continu-
ous value, the linear activation function (Sharma et al.,
2017) is used in this layer to allow unrestricted output
values.

F IGURE 7 (a) Micromechanics-infused neural network
(MINN) architecture and optimized values for hyperparameters and
(b) training and validation loss versus epochs. ReLU, rectified linear
unit.

3.3 Model evaluation

As discussed in the methodology, the performance of
MINN should be evaluated by considering aspects such
as accuracy, interpretability, stability, and computational
efficiency. However, before evaluating these aspects, the
individual effect of key components of the research frame-
work, such as feature selection and optimization on the
accuracy, is evaluated, and the results are presented in the
following subsection.
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18 ANUPAM et al.

TABLE 7 Ablation results showing the effects of feature selection and hyperparameter tuning on MINN performance.

Experiment Feature selection
Hyperparameter
tuning 𝐑𝟐

𝑻𝒓𝒂𝒊𝒏
𝐑𝟐

𝑽𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏
𝐑𝟐

𝑻𝒆𝒔𝒕

RMSE
(MPa)

MAPE
(%)

E1 (baseline) All input features Manual 0.82 0.74 0.59 999.36 8.51
E2 All input features Bayesian 0.91 0.88 0.74 739.02 6.57
E3 BurotaShap + correlation Manual 0.89 0.87 0.77 741.42 6.61
E4 BurotaShap + correlation Bayesian 0.96 0.94 0.82 672.30 5.17

Abbreviations: MAPE, mean absolute percentage error; RMSE, root mean squared error.

3.3.1 Ablation analysis: Evaluating
framework components

Table 7 presents the results of an ablation study (Meyes
et al., 2019) conducted to quantify the individual and com-
bined contributions of two key components within the
proposed MINN framework: (i) feature selection using
BorutaShap and correlation analysis and (ii) hyperparam-
eter tuning via Bayesian optimization on the accuracy
of MINN. Four experimental configurations (E1 to E4)
were evaluated, systematically varying the use of selected
features and optimization strategies.
In “E1,” all features presented in Table 5 were used with-

out any hyperparameter tuning. As can be seen from the
table, the model yielded relatively lower accuracy, which
can support the negative impact of high dimensionality
on the model’s performance (Guyon & Elisseeff, 2003).
Incorporating Bayesian optimization while retaining all
features in “E2,” led to a noticeable improvement in predic-
tive accuracy, increasing the “R2

𝑇𝑒𝑠𝑡” by 25% and reducing
MAPE by 22%. The improvements can underscore the
importance of hyperparameter tuning (Snoek et al., 2012).
In “E3,” feature selection without Bayesian optimiza-

tion yielded marginally better generalization, compared to
E2, achieving a test R2 of 0.77 and MAPE of 6.61%. The
results show the role of BorutaShap in removing unnec-
essary inputs, which is in line with prior findings (Kursa &
Rudnicki, 2010; Sebastián & González-Guillén, 2024).
The full framework is presented in “E4,” which inte-

grates both feature selection and Bayesian optimization,
achieving the highest accuracy across all subsets, with
an R2 of 0.96, 0.94, and 0.82 for training, validation, and
testing sets, respectively. Considering the wide range of
stiffness values presented in Table 5, the RMSE value of
672.30 MPa for the test set is relatively low, further con-
firming the accuracy of themodel. Additionally, theMAPE
values consistently ranged from 3.21% to 5.17% across
datasets. The consistency can underscore the stability and
reliability of the model in making predictions.
The results in “E4” show the synergistic advantage of

integrating dimensionality reduction with optimization
methodologies reported by previous studies (Binder et al.,
2020). The information presented in Table 7 can validate

the design choice of embedding both dimensionality-
reduction and adaptive-learning modules in the MINN
framework.

3.3.2 Predictive accuracy and
interpretability

As shown in Figure 7b, the validation loss tracks the train-
ing loss without significant divergence and does not show
signs of overfitting. The loss values were stabilized after
approximately 8000 epochs, indicating that the model has
reached convergence. To further evaluate generalization
performance, Figure 8a presents a comparison between the
measured and predicted stiffness values on the test set.
As the corresponding figure shows, the alignment of the
data points along the equality line indicates that themodel
learned patterns from the collected data, and it can make
accurate predictions. It is noted that accuracy metrics
alone do not guarantee the interpretability of themodel. As
discussed in Section 2.4, traditional interpretability meth-
ods assess the influence of input features but do not verify
consistency with physical principles. Therefore, in the
MINN framework, interpretability is assessed by compar-
ing “Ỹ𝑀” against the “YM” (see Figure 8b). The comparison
helps to ensure that the predictions remain anchored to
interpretable domain knowledge principles.
In Figure 8b, the relationship “𝑌𝑀” against the “YM” can

be expressed as an Equation (30):

Ỹ𝑀 = 𝑌𝑀 + Δ𝑁𝑁 (30)

where “Δ𝑁𝑁” represents the residual correction produced
by the NN. As shown in Figure 8b, the strong correla-
tion (R2 ∼ 0.98) indicates that “Δ𝑁𝑁” remains unbiased
and proportionally small across the full stiffness range.
The small value of the “Δ𝑁𝑁” suggests that the majority
of the predictions can be directly traced back to known
physical relationships, thereby maintaining a high level of
interpretability. Furthermore, as shown in Figure 5, the
micromechanical-related features were among the most
influential features, which means that “Δ𝑁𝑁” is guided by
the physically interpretable features.
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ANUPAM et al. 19

F IGURE 8 (a) Comparison between “YD” and “𝑌𝑀”; (b) Comparison between “YM” and “ �̃�𝑀.”

F IGURE 9 The effect of λ on root mean squared error (RMSE) for predicting YD and YM.

3.3.3 Effect of the micromechanics infusion
weighing factor on the accuracy and
interpretability

In the previous section, the impact of incorporating
micromechanics, using the optimizedweighing factor (i.e.,
“λ”), on the accuracy and interpretability of MINN was
presented. However, as discussed in the methodology, the
“λ” can vary from small to large values, which can affect
the accuracy and interpretability of themodel. This section
provides a brief explanation of the way different values of
“λ” influence the model’s accuracy and interpretability.
In order to assess the effect of “λ” on the accuracy

and the interpretability of the proposed model, RMSE
values were plotted for themeasured stiffness and the stiff-
ness obtained from the traditionalmicromechanicalmodel
(see Figure 9). Various curves in the plot represent the

RMSE obtained from different datasets and output targets,
including training, validation, and test sets.
As the corresponding figure shows, a region between

lines “A” and line “B” is labeled as the “Micromechan-
ics Infusion Region,” which spans the interval between
10−11 and 10−8. This region highlights the range of “λ”
values where a balanced model is obtained that inte-
grates micromechanical principles without compromising
its predictive capability. Within the range, “RMSE” val-
ues remain relatively low and stable across all datasets for
“YD” and “YM.” The lowest “RMSE” value is achieved at
3.8 × 10−10, marked by “O,” which is obtained from the
optimization process. It is noted that the obtained value
reflects the best trade-off between learning from data and
respecting micromechanical constraints.
A deeper investigation of Figure 9 shows that on the left

side of the infusion region, where “λ” falls below 10−11, the
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model falls into an “under-regularized” condition (Engl
et al., 1996; Hastie et al., 2009). In this condition, themodel
prioritizes fitting the empirical data closely, potentially
at the expense of violating micromechanical law (Raissi
et al., 2019). Therefore, as can be seen from the figure, the
“RMSE” values for the “YM” increase while the “RMSE”
values for “YD” remain low under this condition.
In contrast, on the right side of the infusion region,

where “λ” increases beyond 10−8, the model shifts into an
“over-regularized” condition (Engl et al., 1996;Hastie et al.,
2009). When the model is over-regularized, the RMSE val-
ues for “YM” remain low, while the “RMSE” for “YD” rises
significantly. The above observation could be explained
by the fact that the proposed model is increasingly con-
strained by the micromechanical law to the point where
it no longer fits the data.
Based on the results shown in Figure 9, it can be con-

cluded that incorporating micromechanical information
into a data-driven model has the potential to enhance its
interpretability. This finding aligns with the conclusions of
a previous study (Karniadakis et al., 2021), which reported
that balancing the relative strength of data and physics
constraints, which are typically controlled by hyperpa-
rameters or regularization parameters, is key for model
interpretability and physical consistency.

3.3.4 Stability evaluation

The stability of the MINN was evaluated using the “𝐶𝑉”
and the results are presented in Figure 10. As shown
in Figure 10a, the “𝐶𝑉” for the base data-driven model
(i.e., without incorporating micromechanics; λ = 0) is
relatively low at 6.49%. However, when micromechan-
ics is infused into the model (see Figure 10b), the “𝐶𝑉”
significantly decreases by “56%,” resulting in a “𝐶𝑉” of
“2.86%.” This reduction reflects enhanced stability and
convergence consistency, which can be attributed to the
regularizing role of the micromechanics-based loss. The
micromechanical constraint acts as a regularizer, narrow-
ing the solution space and flattening sharp directions in the
optimization landscape, thus reducing sensitivity to ran-
dom initializations (Karniadakis et al., 2021; Urbán et al.,
2025).
Further evaluation of Figure 10a shows that when

“λ = 0,” the model relies purely on data-driven corre-
lations, resulting in predictions that deviate noticeably
from the line of equality (as highlighted by arrow “D”).
Slightly higher deviation can be observed at higher stiff-
ness values, suggesting that the model predictive power
might be reduced at the upper end of the input values.
This observation is typical behavior for data-drivenmodels
when attempting to extrapolate beyond well-represented

F IGURE 10 Predictions (Y ̃M) versus target (YM), (a) without
infusing micromechanics and (b) with the micromechanics
infusion.

regions of input space (Karpatne et al., 2017). In contrast,
Figure 10b shows that when “λ = 3.810−10,” the predic-
tions are closer to the line of equality, with a lower “𝐶𝑉,”
suggesting improved generalization and overfitting mit-
igation. The improvement occurs because the microme-
chanical penalty injects physically plausible gradients even
in sparsely sampled regions, limiting parameter (e.g.,
weights and biases) drift and effectively controlling model
complexity (Niu et al., 2025; Willard et al., 2022a).

3.3.5 Computational convergence time
evaluation

This section aims to provide a quantitative comparison
of MINN and traditional NN in terms of computational
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F IGURE 11 Comparison of training time between the
proposed MINN and a traditional neural network.

convergence time. The convergence times were obtained
based on early stopping, where training was halted if
the validation loss did not improve for 500 consecutive
epochs. Themodels were trained and evaluated on a work-
station equipped with an AMD Ryzen 16-Core Processor
(3.90 GHz) and a single NVIDIA Quadro RTX 8000 GPU.
To ensure a fair comparison, all architectural and training
components of the MINN framework were kept identi-
cal for the traditional NN, except that the “λ” was set to
0, effectively disabling the micromechanics-informed loss.
The comparative results are presented in Figure 11.
As shown in Figure 11, MINN took approximately 35.41

s to reach convergence, while the traditional NN (with the
micromechanics-informed component disabled by setting
λ = 0) completed training in 24.73 s. The difference in the
training time can be related to the extra micromechanical-
based loss term incorporated in MINN. This is because
micromechanical-informed loss needs additional forward
passes through the micromechanical model and gradi-
ent calculation, resulting in an overhead in training time.
While the observation from the figure is aligned with
the findings in the literature (Grossmann et al., 2023; A.
J. Huang & Agarwal, 2023; Kaewnuratchadasorn et al.,
2024), researchers (Daw et al., 2021; Willard et al., 2022b)
argued that PIML frameworks trade off an increase in
training complexity for improved model reliability and
interpretability. In this study, the 10-s increase in train-
ing time can be considered as a justifiable expense for
integrating micromechanical consistency.

4 CONCLUSION AND OUTLOOK

Reliable prediction of mechanical characteristics is essen-
tial for more accurately predicting the remaining lifetime
of civil engineering infrastructures, which ultimately will
help researchers and decision-makers to select more ade-
quate materials without the need for conducting extensive
laboratory experiments (Adeli, 2019; Freitag et al., 2009).
In this regard, both micromechanics-based models and

ML-based models seem to be viable alternatives. How-
ever, each comes with inherent strengths and limitations,
which restrict their standalone applicability. This study
proposed a novel computational framework (MINN) that
aims to utilize the benefits of both approaches while seek-
ing to reduce the need for significant data and laboratory
experiments. The proposed framework infuses complex
micromechanical modeling principles into an NN for pre-
dicting the mechanical characteristics of a visco-elastic
material. The infusion enables the NN to learn from
available data while being implicitly guided by microme-
chanical knowledge. This research focuses on usingMINN
to better predict the stiffness of asphaltic materials (i.e.,
viscoelastic in nature), which will help in better mixture
design, structural design, performance evaluation, and
maintenance planning.
Based on the information provided in the previous

sections, the key conclusions are summarized as follows:

1. Integrating the BorutaShap algorithm for automated
feature selection with correlation analysis was shown
to effectively identify the most relevant features for
pavement performance prediction.

2. The proposed MINN model provides high predictive
accuracy across datasets, with consistent R2, RMSE,
andMAPE values, demonstrating strong generalization
capabilities and stable predictive capability.

3. In this research, the optimized value obtained for “λ”
from the Bayesian optimization enhanced the accuracy
and interpretability of the model. Furthermore, the sta-
bility of the model is improved, as highlighted by the
“𝐶𝑉” value, which highlights enhanced consistency
across different random seeds.

4. Themodelwithoutmicromechanics showedwider con-
fidence intervals and deviations from equality, whereas
incorporatingmicromechanics resulted inmore consis-
tent, physically aligned predictions.

5. Incorporating the micromechanics-informed loss
resulted in a slight increase in computational
convergence time relative to the conventional NN.

In summary, the analysis indicated that the proposed
MINN has the capability to synergize the strengths of both
micromechanical modeling and data-driven learning. In
the engineering domain, where datasets on mechanical
properties are often limited in size, MINN, by integrating
micromechanical models, seems to produce better results
with the availability of moderate datasets (see Section 2.2).
This conclusion is in line with the conclusion of previous
papers in other domains (Kaewnuratchadasorn et al., 2024;
Taghizadeh et al., 2025; G. Wang et al., 2024).
Compared to traditional micromechanical models

alone,MINNenables adaptation to variations in real-world
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conditions (e.g., different aggregate types, binder sources,
or compaction methods) by learning subtle patterns
from available data without abandoning the underlying
physics. Compared to purely data-driven models, MINN
improves generalization, interpretability, and stability,
particularly when data are limited, heterogeneous, or
noisy. The advantages mentioned above are expected
to make the MINN framework well-suited for prac-
tical deployment in pavement management systems,
where reliable predictions must often be made across
diverse conditions with limited site-specific calibration
data.

4.1 Future research direction

The modified Hirsch model has been widely used in
various domains (D. W. Christensen & Bonaquist, 2015;
Díaz-Mendoza et al., 2022; Lezgy-Nazargah et al., 2018)
due to its reliable performance across a variety of mate-
rials. However, its embedding in the MINN framework
assumes an idealized combination of parallel/series con-
figuration of asphalt mixture phases. While this assump-
tion enhances interpretability, it might restrict the capacity
of the model for superior prediction accuracy, particularly
in cases where real material behavior deviates from the
simplified micromechanical assumptions. Although the
data-driven component of the MINN partially mitigates
this restriction, the embedded physics term continues to
act as a soft prior, potentially constraining the model from
reaching maximum accuracy.
The MINN framework can be adapted (developed) for

other engineering materials. The key requirement is the
availability of an analytical micromechanical relation that
links phase-level properties tomacro-scale properties. Any
composite for which a closed-form homogenization for-
mula exists can be accommodated by replacing the Hirsch
term and supplying the requisite phase descriptors.
In terms of improvement in the model framework,

another future direction could be to explore the incorpo-
ration of self-supervised learning techniques (Rafiei et al.,
2024) to enhance the synergy betweendata-driven learning
and physical reasoning. Such integration has the poten-
tial to improve model generalization, particularly when
validated against independent datasets generated under
different experimental conditions. Furthermore, the pro-
posed MINN framework in this study can be compared
with other physics-informed models in the literature to
provide a benchmark for researchers.
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