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SUMMARY

The goal of this thesis is to investigate theoretical results in the field of semi-supervised
learning, while also linking them to problems in related subjects as class probability esti-
mation.

As it is known that semi-supervised methods can decrease the performance compared
to supervised methods, the thesis starts by answering the following related questions. What
can one guarantee about the performance of semi-supervised learners, and of what kind of
type are those guarantees? What assumptions do different methods use and how do they
relate? What are the open questions in the field? We answer those questions in Chapter
2 along, and with the help of, an overview of the field. In the discussion of Chapter 2
we elaborate on two open questions that we believe are important to investigate in the
future. First, most semi-supervised learning methods are based on assumptions. Can we
use those methods effectively in cases where we a priori do not know if the assumption
is true or not? Second, some impossibility results show that semi-supervised learners can
outperform supervised methods by at most a constant in terms of sample complexity. But,
how important can those constants be in practice?

We find a partial answer to the latter question in Chapter 3. The original motivation for
the third chapter comes from a different question though: What are the theoretical guar-
antees of manifold regularization? This question was triggered by the fact that on the one
hand manifold regularization is well motivated and widely known in the field, but on the
other hand there were no sample complexity bounds for this method prior to this work, to
the best of our knowledge. This was in particular surprising, as the method itself is a kernel
method and has thus a rich framework to draw from. We discuss two complexity analy-
ses, one based on the notion of pseudo-dimension, which can be seen as an extension of
the Vapnik-Chervonenkis dimension to real valued function classes, and the other based on
Rademacher complexities. The pseudo-dimension dimension analysis reveals a setting in
which manifold regularization can offer, up to logarithmic factors, only a constant improve-
ment over its supervised counterpart, so it essentially obeys an impossibility result that we
discuss in Chapter 2. We then present a computationally feasible method to derive an upper
bound on the Rademacher complexity for manifold regularization. This potentially also has
practical implications, as we speculate that the Rademacher complexity can be useful to
choose an adequate hyperparameter for the regularization term in the method, when labeled
data is very sparse. Finally we come back to the question of how good constant improve-
ments can be in practice. In the discussion of our review we show, with the help of the
findings of Chapter 3, that the constant can be arbitrarily large.

In Chapter 4 we propose a novel method of self-learning. This project took place during
the early stages of this work and the results can be seen as preliminary. Nevertheless, we
show that in a self-learning setting it can be beneficial to use soft-labels1 over hard labels.

1Soft-labels can be thought in this context of the probability that an object belongs to a certain class.

xi



xii SUMMARY

In the most simple version, self-learning adds the unlabeled data, together with labels that
come from the prediction of a previously trained model, to the training set. A new model
is then trained with this enriched training set, and the procedure may be iterated. More
complex versions only add the unlabeled data on which the model has a high confidence in
the label prediction. We propose a version of self-learning, where one adds directly all of the
unlabeled data, but takes the confidences, in form of the soft-labels, into account. This leads
to a method that can be seen as a generalization of the renowned expectation-maximization
algorithm, and we show that this method performs better on many datasets than the standard
procedure with hard labels. The work is nevertheless preliminary in the sense that Chapter
5 throws a new light on how to choose the soft-labels, and it is also not yet clear how our
method compares to other, more sophisticated versions, of self-learning. In the discussion
we elaborate, however, that an extension of our method can lead to a theoretically well
motivated version of self-learning. It would be theoretically well motivated in the sense,
that we can precisely state what the assumptions of the method are.

We then move in Chapter 5 to the topic of estimating class probabilities P (Y | X ) with
classification methods. As we were working mostly with discriminative binary classifi-
cation methods, for example support vector machines, we ask the more precise question
if one can retrieve class probability estimates with those methods. We answer this ques-
tion for different loss functions embedded in an empirical risk minimization method. We
show that the squared loss, squared hinge loss and the logistic loss are suitable for class
probability estimation, while the hinge loss is not. Furthermore, we derive point-wise L1-
convergence rates for the estimate. In addition, we point out that the squared loss can be
easily used the wrong way, something that we believe many people are not aware of. This
chapter of the thesis also opens new possibilities to investigate class probability estimation
with asymmetric loss functions.

In Chapter 6 we ask a fundamental question about supervised learning, which was
triggered by problems we observe in semi-supervised learning: Semi-supervised learning
sometimes degrades performance, so can we come up with methods that guarantee that
adding unlabeled data will improve the performance? We decided, however, to take a step
back and try to answer the question if we can give those guarantees when we add labeled
data. We came to the surprising conclusion, that we cannot guarantee monotonic improve-
ment without further assumptions, even not in expectation over the sampling process. In
particular, we design in Chapter 6 a simple regression example where adding labeled data
degrades the performance.

In Chapter 7 we conclude this thesis and discuss the relations between the chapters.
We start by discussing our analysis of manifold regularization from Chapter 3 in view of
our review from Chapter 2. We then connect Chapters 4 and 5, and present a potential
extension of the method proposed in Chapter 4. Finally we discuss the relation between
the open problem presented in Chapter 6 and semi-supervised learning and how one can
interpret this thesis in the view of current trends in semi-supervised learning.

Overall, this thesis investigates existing literature on semi-supervised learning, adds
new insights to it, unravels a few open problems and formalizes the possibility of class
probability estimation which can be used in semi-supervised learning methods and many
other applications.



SAMENVATTING

Het doel van dit proefschrift is om theoretische resultaten in het veld van semi-supervised
learning te onderzoeken en tegelijkertijd deze resultaten te verbinden aan gerelateerde on-
derwerpen zoals klasse posterior schatting.

Omdat bekend is dat semi-supervised methodes de prestaties kunnen verminderen ten
opzichte van supervised methodes, begint dit proefschrift met het beantwoorden van de vol-
gende vragen: ten eerste, wat kan men garanderen over de prestaties van semi-supervised
methodes en van welke aard zijn deze garanties? Ten tweede, welke aannames maken ver-
schillende methodes en hoe verhouden deze zich? Ten derde, wat zijn de open vragen in het
vakgebied? Dit proefschrift beantwoordt deze vragen in Hoofdstuk 2 en geeft een overzicht
van de belangrijke werken in het vakgebied. We hopen dat het verzamelen en bestuderen
van bestaande resultaten, zoals we dat hebben gedaan in dit hoofdstuk, zal leiden tot een
strommversnelling en stimulering van onderzoek in dit vakgebied. In Hoofdstuk 2 gaan we
dieper in op twee open vragen die belangrijk zijn voor toekomstig onderzoek. Ten eerste:
zijn de meeste semi-supervised methodes gebaseerd op aannames? Kunnen we deze metho-
des effectief gebruiken in gevallen waarin we a priori niet weten of de aanname waar zijn
of niet? En ten tweede; sommige onmogelijkheidsresultaten tonen aan dat semi-supervised
methodes de supervised methodes kunnen overtreffen met hoogstens een constante in ter-
men van het aantal benodigde objecten voor meen bepaalde error rate. Maar hoe belangrijk
kunnen die constantes in de praktijk eigenlijk zijn?

We geven een gedeeltelijk antwoord op de eerste vraag in Hoofdstuk 3. De oorspronke-
lijke motivatie voor het derde hoofdstuk komt van een andere vraag: wat zijn de theoretische
garanties van variëteitsregularisatie? Deze vraag werd kwam op omdat variëteitsregularisa-
tie goed gemotiveerd en algemeen bekend is in het vakgebied, maar er aan de andere kant
geen theoretische garanties voor deze methode bestaan wat betreft de fout van de schatters.
Dit was verrassend, omdat de methode zelf een kernelmethode is en dus een rijk theoretisch
kader heeft om uit te putten. We bespreken twee complexiteitsanalyses, ‘e’en op basis van
de notie van de pseudodimensie en de andere op basis van de Rademacher-complexiteit.
De analyse van de pseudodimensie laat zien dat variëteitsregularisatie, ten opzichte van be-
geleide methoden en op logaritmische factoren na, slechts een constante verbetering kan
bieden. Daarmee valt deze bevinding feitelijk binnen het onmogelijkheidsresultaat dat we
in Hoofdstuk 2 bespreken. Vervolgens presenteren we een voor de computer berekenbare
methode om een bovengrens af te leiden voor de Rademacher complexiteit voor varië-
teitsregularisatie. Dit heeft mogelijk een praktische toepassing, omdat we de Rademacher
complexiteit nuttig kan zijn om een geschikte hyperparameter te vinden voor de regularisa-
tieterm in de methode wanneer gelabelde data zeer schaars is. Ten slotte komen we terug op
de vraag hoe goed de constante verbeteringen in de praktijk kunnen zijn. In de bespreking
van ons overzicht laten we met behulp van de bevindingen van Hoofdstuk 3 zien dat deze
constantes willekeurig groot kunnen zijn.

In Hoofdstuk 4 introduceren we een nieuwe self-learning methode voor. Dit project

xiii



xiv SAMENVATTING

vond plaats aan het begin van de promotie en de resultaten moeten als voorlopig worden
beschouwd. Met de huidige kennis zouden we enkele keuzes anders hebben gemaakt. Des-
alniettemin laten we zien dat het nuttig kan zijn om soft-labels2 te gebruiken in plaats van
harde labels voor self-learning. In de meest eenvoudige versie neemt self-learning voor
niet-gelabelde gegevens de labels over van de voorspellingen van een eerder getraind mo-
del. Een nieuw model wordt vervolgens getraind met deze verrijkte trainingsset en de
procedure kan meerdere malen worden herhaald. Meer geavanceerde versies voegen alleen
de niet-gelabelde gegevens toe waarvan het model een hoog vertrouwen in de voorspelling
heeft. We stellen een versie van self-learning voor die rekening houdt met de zekerheid
van de voorspelde labels in de vorm van de soft-labels. Dit leidt tot een methode die kan
worden gezien als een generalisatie van het expectation-maximization algoritme. We laten
zien dat deze methode in veel situaties betere prestaties levert dan de standaardprocedure
met harde labels. Het werk is niettemin voorlopig in de zin dat Hoofdstuk 5 een nieuw licht
werpt op hoe de soft-labels het beste gekozen kunnen worden. Daarnaast is het nog niet
duidelijk hoe onze methode zich verhoudt tot andere, meer geavanceerde versies van self-
learning. In de discussie lichten we echter toe dat een uitbreiding van onze methode kan
leiden tot een theoretisch goed gemotiveerde versie van self-learning. Het zou theoretisch
goed gemotiveerd zijn in de zin dat we precies kunnen aangeven wat de aannames van de
methode zijn die nodig zijn voor succesvol leren.

In Hoofdstuk 5 bespreken we het schatten van kansdichtheden, zoals het schatten van
de posterior P (Y | X ). We werken voornamelijk met discriminative binaire classificatieme-
thoden zoals de support vector machine. Voor zulke modellen onderzoeken we de vraag
of deze een schatting kunnen maken van P (Y | X ). We beantwoorden deze vraag voor
verschillende loss-functies voor Empirical Risk Minimization (ERM). We laten zien dat
kwadratische loss, kwadraat-hinge-loss en logistic loss geschikt zijn voor het schatten van
de posterior, terwijl kwadraat-hinge-loss dat niet is. Voor praktische doeleinden wijzen we
erop dat het kwadratische loss gemakkelijk op de verkeerde manier kan worden gebruikt.
Waarschijnlijk zijn veel mensen zich hier niet van bewust. Dit hoofdstuk van het proef-
schrift opent nieuwe mogelijkheden voor het onderzoeken van het schatten van P (Y | X )
met asymmetrische loss-functies.

In Hoofdstuk 6 stellen we een fundamentele vraag over supervised learning. Deze vraag
kwam op omdat in semi-supervised learning soms meer ongelabelde data de prestaties ver-
slechtert. Dat leidde ons tot de vraag of we kunnen garanderen dat het toevoegen van
ongelabelde gegevens de prestaties zal verbeteren? Deze vraag bleek erg lastig. We heb-
ben toen besloten een stap terug te doen en we hebben geprobeerd de volgende simpelere
vraag te beantwoorden: kunnen we een garantie geven dat de prestaties verbeteren als we
gelabelde gegevens toevoegen voor een supervised methode? We kwamen tot de conclusie
dat we geen monotone verbetering kunnen garanderen zonder verdere aannames, zelfs niet
in verwachting over de trainingsdata. In het bijzonder ontwerpen we in Hoofdstuk 6 een
eenvoudig regressievoorbeeld waarbij het toevoegen van gelabelde gegevens de prestaties
verslechtert.

In Hoofdstuk 7 sluiten we dit proefschrift af en bespreken we de relaties tussen de
hoofdstukken. We beginnen met het bespreken van onze analyse van variëteitsregularisatie

2Soft-labels kunnen in deze context worden gezien als de waarschijnlijkheid dat een object tot een bepaalde klasse
behoort (oftewel de posterior).
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uit Hoofdstuk 3 met het oog op ons overzicht van Hoofdstuk 2. We verbinden vervolgens de
Hoofdstukken 4 en 5, en presenteren een mogelijke uitbreiding van de methode voorgesteld
in Hoofdstuk 4. Dan bespreken we de relatie tussen het open probleem gepresenteerd in
Hoofdstuk 6 en semi-supervised learning. We sluiten af met hoe men dit proefschrift kan
interpreteren in het licht van de huidige trends in semi-supervised learning.

In het kort; dit proefschrift vat de bestaande literatuur samen, geeft daarin nieuwe in-
zichten en formaliseert het schatten van de posterior, wat onder andere toepassingen kan
vinden in semi-supervised learning en andere toepassingen.





1
INTRODUCTION

This chapter introduces the concept of semi-supervised learning. The introduction will be
brief and informal, as the chapter thereafter is a survey of theoretical results in the semi-
supervised learning literature. We introduce the basic idea of learning in general, motivate
the utility of unlabeled data, identify potential problems and finally give an outline of the
rest of this thesis.
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1.1. LEARNING FROM DATA
The core question of machine learning and pattern recognition is how one can learn from
past experience. On a even more fundamental note we start with the question if we can
learn from the past experience, and thus machine learning is a part of inductive reasoning
[1]. The essential idea of this reasoning is that we collect evidential support for a hypothe-
sis. If I walk past a dog every day and it does not bite me, how high is the chance it will bite
me tomorrow? If I saw 42 white swans and never any black, how big is the chance that the
next swan I see is black? These observations at least seems to support the hypothesis that
the dog does not bite, and all swans are white, although those are certainly no guarantees.
For this type of reasoning to work, the world cannot be chaotic. A common assumption for
machine learning is that our data comes from a certain distribution, which in a way guaran-
tees that a dog does tomorrow not suddenly look like a octopus, and so there is some order.
If a dog does tomorrow still look like a dog, then it can be possible to learn from previously
collected data, i.e. observations. In this thesis this assumption will be captured in a statisti-
cal framework, where one assumes that the data is collected identically and independently
from a stationary distribution. Although every actual machine learning method is based on
inductive reasoning, most of this thesis is concerned with its counterpart, namely deductive
reasoning. Mathematical reasoning is in nature deductive. Instead of gathering evidence
for a claim, one starts with (not necessarily proven) premises, and deducts from multiple
premises new conclusions. For example: Swans are always black. Klaus is a swan. Klaus
is therefore black. This is a valid deduction, even though the actual content of the premises
can be wrong. This thesis focuses on theoretical possibilities and impossibilities of various
learning scenarios, with speculations on real world impact. While our results are always
valid, inductive inference will still be needed to test the premises and to decide if our result
is relevant in specific scenarios, or not.

1.2. WHY SEMI-SUPERVISED LEARNING?
Data is at the core of every machine learning method, and for a classification task this data
carries a label, like the picture of a dog comes along with the information that there is
indeed a dog in the picture. But someone has to annotate the picture and this costs time. In
particular the very successful deep neural networks often rely on a large amount of these
annotated training examples to come to a good performance [2]. This can be problematic
for tasks where labeling data costs a lot of resources as money or time, as for example the
annotation of social actions in video data [3]. The problem of not having sufficient training
examples does extend to other scenarios, for example when you need an expert to label the
data. This is in particular the case in medical settings, as, for instance, in medical image
analysis. For that reason one wishes in many settings to reduce the amount of labeled data
one needs to train a machine with good performance. Semi-supervised learning offers a
possibility to do so, i.e. to reduce the amount of labeled data needed for machine learning.
The idea is to guide the learning process with unlabeled data. As described above, the
bottleneck of labeled data is often the labeling process, while gathering unlabeled data can
be easy. As an additional example, think about the task of classifying documents into a
finite set of different topics. Gathering documents is no problem, the Internet, for example,
offers this in abundance. Reading a document and classifying it, on the other hand, takes
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Red class
Blue class
Supervised solution

(a) The purely supervised case. We train a
Gaussian mixture model based on one point
per class.

Red class
Blue class
Supervised solution

Unlabeled points

Semi-supervised solution

(b) The semi-supervised cased. To train the
Gaussian mixture model we have now also
unlabeled data available.

Figure 1.1: The resulting decision boundaries when we train a Gaussian mixture model with two mixture compo-
nents. Each component is assumed to have equal weight of 1

2 and we fix the covariance matrix of each component
to be uniform.

enormously much more time. From an information theoretical point of view, unlabeled data
offers more information about the underlying problem, so why not try to use it?

1.3. HOW SEMI-SUPERVISED LEARNING?
The first question a reader might ask is: How to use this unlabeled data? One simple
answer to this can be given when we think about unlabeled data in the following way. Let
us assume that our objects x, for example the documents, come from a set X . The label y , in
the previous example the type of the document, belongs to a set Y . It is often assumed that
we draw training examples from a distribution P over X ×Y . A possible way of training a
machine is to try to model the distribution P with a family of distributions p(x, y | θ), which
is parametrized with a parameter θ ∈Θ. In this setting, gathering labeled data corresponds
to gathering information about the full distribution P (X ,Y ), while we gather information
about the marginal distribution P (X ) := P (X ,Y ∈ Y) with unlabeled data. We can then
try to find a model from p(x, y | θ) that fits the labeled and the unlabeled data well. The
expectation-maximization method for example is one way to do that [4]. The next section
illustrates this method on a simple example. There are of course many more methods, some
of which we will cover in the remainder of this thesis.

1.4. CHALLENGES IN SEMI-SUPERVISED LEARNING
Consider a scenario where we want to train a two class classification method. More pre-
cisely, we assume we observe objects x ∈R2 and for each x we have to decide if it belongs
to the red, or the blue class. Figure 1.1 (a) shows two labeled training samples, one from
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Red class
Blue class
Supervised solution
Semi-supervised solution

Figure 1.2: The supervised model performs better than the semi-supervised model, because the underlying data
does not fit the assumption that each class comes from a Gaussian distribution.

the red and one from the blue class. Figure 1.1 (b) shows in addition unlabeled objects
in black, so objects we want to assign to class red or blue. We chose to use a Gaussian
mixture model with equal class priors and fixed uniform covariance matrix to do so. As we
have labeled and unlabeled data available, we chose to use the expectation-maximization
procedure to also make use of the unlabeled data. Figure 1.1 (a) and (b) show the result-
ing decision boundaries of this model when we use respectively only the labeled data and
when we also incorporate the unlabeled data. Assume now further that we reveal the labels
of the previously unlabeled data according to Figure 1.2. Comparing the supervised and
the semi-supervised solution, we actually observe that the purely supervised found model
performs better than the semi-supervised model. This is essentially the case because the
semi-supervised model makes wrong assumptions. Informally stated, the model assumes
that the data consists out of two clusters, and each cluster belongs to a particular class.
The actual data violates this assumption. Now, wrong model assumptions can always hap-
pen, but this is in particular a problem in semi-supervised learning. This is because even
under model misspecification, we typically assume in supervised learning that if we add
more labeled data, we will find a better model nevertheless. In face of Chapter 6, see the
next section for details, this might be a bolt statement, but practice shows that it is more
often the case than not. One of the big challenges in semi-supervised learning is to try
to never be worse than their supervised counterparts. This is because there is a real risk
that semi-supervised learning will reduce the performance [5, Chapter 4]. In the beginning
of the previous section we asked the question, how to do semi-supervised learning. The
above example shows that one of the more fundamental questions might be: Should we use
semi-supervised learning at all?

1.5. ORGANIZATION OF THIS THESIS
In the previous sections we pointed out two question about using unlabeled data. How
do you use unlabeled data, and should we use it at all? There are a many methods in
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semi-supervised learning. Co-training [6], graph based methods [7], EM [4], entropy reg-
ularization [8], manifold regularization [9], just to name a few. Theoretical results, on the
other hand, are in comparison sparse. We believe, however, that it is in particular in semi-
supervised learning of great importance to understand the methods, also from a theoretical
point of view, as good as possible. Theoretical results can help to set a right expectation
on the method, and understand the underlying assumptions. This can ultimately reduce
the risk of using semi-supervised learning in the wrong situation and thus degrading the
performance.

We start in Chapter 2 with a review of existing theoretical results in semi-supervised
learning. The review mostly collects and relates results from the statistical learning theory.
In particular, we use the framework of probabilistic approximately correct learning, in short
PAC-learning. This rigorous framework analyses the amount of labeled data one needs to
obtain solutions that have a small error with a high probability. We then collect results
that study the question how much less labeled data one needs when also unlabeled data is
available. Besides that we also look at impossibility results, transductive learning and some
asymptotic results.

In Chapter 3 we add our own contribution to the existing literature on theoretical results
in semi-supervised learning. We analyse a well known semi-supervised technique, manifold
regularization [9, 10]. Our analysis focuses, like our review, on the PAC-learning frame-
work. We use and extend existing literature to derive learning guarantees using two dif-
ferent complexity notions, the pseudo-dimension and Rademacher complexity [11, Chap-
ter 3]. The essential difference between the two complexity notions is that the pseudo-
dimension gives learning guarantees that are independent of the domain distribution, while
the Rademacher complexity takes the distribution into account. That is in particular useful
in semi-supervised learning, as the unlabeled data effectively contains knowledge about the
domain distribution. We then speculate and motivate that the Rademacher complexity can
be informative for choosing a suitable hyperparameter for manifold regularization.

In Chapter 4 we propose a novel formulation of self-learning that uses class probability
estimates to reweigh the unlabeled samples. We compare this to the most simple version of
self-learning, where one adds the unlabeled data together with pseudo-labels to the training
set, and show that reweighing can increase the performance on many datasets.

In Chapter 5 we investigate the possibility to retrieve class probability estimates within
the framework of empirical risk minimization, as for example with support vector machines.
We investigate with which loss functions one can retrieve consistent class probability esti-
mates and what the rate of convergence for finite sample sizes is. To some degree one can
consider this work as a standalone project, but our motivation for this investigation was still
based on understanding how to learn with unlabeled data and was a follow-up project from
the work presented in Chapter 4.

In Chapter 6 we go back to the roots of learning and present a, for us surprising, finding,
which lead to a fairly general open question. We show that in a simple regression setting
adding labeled samples can actually degrade the performance, even in expectation over
the sampling process. This leads to the open question under which circumstances one can
guarantee that adding more labeled data will improve the performance.

Chapter 7 concludes the thesis. There we discuss how our findings relate, their impact
on the field, open questions and possible extensions of our work.
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2
A REVIEW OF THEORETICAL

RESULTS

Semi-supervised learning is a setting where one has labeled and unlabeled data available.
In this chapter we explore different types of theoretical results when one uses unlabeled data
in classification and regression tasks. Most methods that use unlabeled data rely on certain
assumptions about the data distribution. When those assumptions are not met in reality,
including unlabeled data may actually decrease performance. Studying such methods, it
therefore is particularly important to have an understanding of the underlying theory. In
this review we gather results about the possible gains one can achieve when using semi-
supervised learning as well as results about the limits of such methods. More precisely,
this review collects the answers to the following questions: What are, in terms of improving
supervised methods, the limits of semi-supervised learning? What are the assumptions of
different methods? What can we achieve if the assumptions are true? Finally, we also
discuss the biggest bottleneck of semi-supervised learning, namely the assumptions they
make.
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2.1. INTRODUCTION AND SCOPE
In various applications gathering unlabeled data is easier, faster and/or cheaper than gath-
ering labeled data. The goal of semi-supervised learning (SSL)1 is to combine unlabeled
and labeled data to design classification or regression rules that outperform schemes that
are only based on labeled data. SSL does come, however, with an inherent risk. It is
well-known that including unlabeled data can degrade the performance [1, 2]. Studying
and understanding SSL from a theoretical point of view allows us to exactly formulate the
assumptions we need and the improvements we can expect, as well as the limitations of
said methods. With this one can formulate recommendations for using SSL with the aim
of avoiding a decrease in performance as good as possible. In this review, we collect and
present theoretical results concerning SSL, study the relevant papers in detail, present their
main result and point out connections to other works.

This review targets two groups of audience. The first group we target are interested
practitioners and researchers working on experimental SSL. While they may not be inter-
ested in all the details we present, we believe that the introduction in each of our sections
gives a good high level understanding of the types of theoretical results in SSL and the main
insights they provoke. The second target audience is everyone working on the theoretical
side of SSL. We hope that, especially researchers starting in this field, can find inspiration
and connections to their own work in our overview. We mostly present results that describe
the performance of semi-supervised learners, often, but not exclusively, in the language of
the PAC-learning framework.2 We interpret the results, draw connections between them
and point out what one has to assume for them to be valid. Next to theoretical guarantees
of some specific SSL we also present results on the limits of SSL.

2.1.1. OUTLINE
In the next section we introduce the formal learning framework which is also assumed for
the majority of the work we present. In Section 2.3 we present results on the limits of SSL,
which often arise due to specific assumptions on the model or the data generation process.
Opposing to the settings where the improvements of SSL are provably limited, we present in
the same section three settings where the improvements of SSL are unlimited. With unlim-
ited we mean here that a SSL can PAC-learn the problem, while no supervised learner (SL)
can. In Section 2.4 we investigate methods that try to exploit unlabeled data, without hav-
ing further assumptions on the data distribution. In Section 2.5 we present semi-supervised
learners that make weak assumptions on the data distribution. Those assumptions are weak
in the sense that the resulting learner cannot get a learning rate faster than the standard
learning rate of 1p

n
,3 where n is the number of labeled samples. The improvements are

1We overload the abbreviation of SSL to stand either for semi-supervised learning or semi-supervised learner.
2PAC-learning stands for Probabilistically Approximately Correct-learning. In this framework one can study how
far a trained classifier is off of the best classifier from a given class, given a certain amount of labeled data. The
rate at which we approach the best classifier is called learning rate. Nice introductions to this framework can
be found in [3] and [4]. We also refer to Definition 1, where we introduce the notion of sample complexity.
PAC-learnable means that the sample complexity is always finite.

3The learning rate is the rate in which we converge to the best classifier from a given class in number of the labeled
samples. That the standard rate is in order of 1p

n
follows from classic results as shown for example by Vapnik

[5].
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instead given by a constant. In Section 2.6 we present learners that use strong assumptions
under which one can converge exponentially fast to the best classifier in a given class, i.e.
the learning rate is in order of e−n . In Section 2.7 we present results in the transductive
setting, a setting where one is only interested in the labels of the unlabeled data. In the
same section we also present a line of research that tries to construct semi-supervised learn-
ers that are never worse than their supervised counterparts. In Section 2.8 we discuss the
overall results and point out what the current challenges in the field are. In Section 2.8.4
we furthermore explain in more detail what is formally meant by using assumptions in SSL
and the problems that occur with that.

2.2. PRELIMINARIES
Unless further specified all results are presented in the standard statistical learning frame-
work. This means that we are given a feature space X and a label space Y together with
an unknown distribution P on X ×Y . Overloading the notation we write P (X ) and P (Y )
for the marginal distributions on X and Y and similar for conditional distributions. We
observe a labeled n-sample Sn = ((x1, y1), ..., (xn , yn)) and an unlabeled m-sample Um =
(xn+1, ..., xn+m), where each (xi , yi ) for 1 ≤ i ≤ n and each x j for n +1 ≤ j ≤ n +m is iden-
tically and independently distributed according to P . One then choses a hypothesis class
H , where each h ∈ H is a mapping h : X → Y , and a loss function l : Y ×Y → R. Unless
specified otherwise we assume for classification that Y = {−1,+1} and the loss is the 0-1
loss, l (y, ŷ) = I{y 6=ŷ}. In the regression task we assume that Y = R and l (y, ŷ) = (y − ŷ)2.
Based on the n labeled and m unlabeled samples we then try to find a h ∈ H such that
the risk R(h) := EX ,Y [l (h(X ),Y )] is small. Finally, whenever we have any quantity A that
depends on the distribution P , we write Â for a empirically estimated version of A. For
example, given a labeled sample Sn we write R̂(h) = 1

n

∑n
i=1 l (h(xi ), yi ) for the empirical

risk of h ∈ H measured on Sn . If not clear from context we will clarify on which sample
we measure. In Table 2.1 on page 41 we present a complete list of the notation we use.

2.3. POSSIBILITY & IMPOSSIBILITY OF SEMI-SUPERVISED

LEARNING
In SSL we want to use information about the distribution on X to improve learning, but it
is not necessarily clear that this information can be useful at all. Some authors formalize
this idea and then present situations where unlabeled data can help or where it cannot. This
section follows the same division. In Subsection 2.3.1 we present different settings where
authors could show that unlabeled data cannot help, while In Subsection 2.3.2 we present
three specific settings where unlabeled data can give unlimited improvements. By unlimited
we mean that no supervised learner can PAC learn in those settings while a semi-supervised
learner can.

The negative results often assert an independence between the posterior probability
P (Y | X ) and the marginal distribution P (X ). This does, however, not directly mean that
unlabeled data is useless, as we are usually not only interested in P (Y | X ) but on the com-
plete risk of a classifier h, EX ,Y [l (h(X ),Y )], which does depend on P (X ) [6, 5.1.2]. In
Section 2.4.1 and 2.4.2, for example,we present work that show risk improvements even
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when P (Y | X ) and P (X ) are independent.

2.3.1. IMPOSSIBILITY RESULTS
IMPOSSIBILITY BECAUSE OF THE DATA GENERATION PROCESS
Seeger [7] looks at a simple data generation model and investigates how prior information
about the data distribution changes our posterior belief about the model if the prior informa-
tion is included in a Bayesian fashion. To use the Bayesian approach, the data is assumed to
be generated in the following manner. We assume now that the distribution P comes from a
model class with parameters µ and θ. First values µ∼ Pµ and θ ∼ Pθ are sampled indepen-
dently and then the data is generated by gathering samples x ∼ P (X |µ) with corresponding
labels y ∼ P (Y | X ,θ) as shown in Figure 2.1. The goal in this setting is to infer θ from a
finite labeled sample Sn = (xi , yi )1≤i≤n . Using a Bayesian approach it can be easily shown
that P (θ | Sn) is independent of any finite unlabeled sample and µ itself. In other words:
Unlabeled information does not change the posterior belief about θ given the labeled data
Sn . A possible solution presented is to assume a dependency between µ and θ, so drawing
an additional arrow between µ and θ in Figure 2.1.

IMPOSSIBILITY BECAUSE OF THE MODEL ASSUMPTIONS
Hansen [8] investigates when unlabeled data should change our posterior belief about a
model. In comparison to [7] no data generation assumptions are made, but rather assump-
tions about the model we use. He looks at solutions derived from the expected squared loss
between this given model and the true desired label output. Splitting the joint distribution
P (X ,Y | θ) of our model as P (X ,Y | θ) = P (Y | X ,θ1,θ2)P (X | θ2,θ3) he concludes that un-
labeled data can be discarded if θ2, the shared parameter between the label and marginal
distribution, is empty.

Earlier work by Zhang and Oles [9] distinguishes the same type of models, but the
impossibility is about the asymptotic efficiency of semi-supervised classifiers. The paper
as well considers two types of joint probability models:

1. Parametric: P (X ,Y |α) = P (X |α)P (Y | X ,α)

2. Semi-Parametric: P (X ,Y |α) = P (X )P (Y | X ,α)

One can show that the Fisher information I (α̂)unlabeled + labeled of an MLE estimator α̂ that
takes labeled an unlabeled data into account can be decomposed as I (α̂)unlabeled +labeled =
I (α̂)unlabeled + I (α̂)labeled. So, as long as unlabeled data is available, the Fisher information
of the semi-supervised learner is bigger compared to the supervised learner, which is shown
to have a Fisher information given by I (α̂)labeled. It follows that the SSL is asymptotically

µ θ

X Y

Figure 2.1: The data generation process used in the analysis of Seeger.
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Figure 2.2: Simple functional causal model used by Schölkopf et al. [10]. The effect E is caused by C given a
deterministic mapping %. Both E and C are influenced by a noise variables NE and NC .

more efficient, although not necessarily strictly. In the parametric case we observe that
I (α̂)unlabeled = 0 and the semi-supervised and supervised estimator have the same asymptotic
behavior. In Section 2.4.1 we will present a method that allows for asymptotic efficiency of
a SSL even when using a discriminative model P (Y | X ,α).

IMPOSSIBILITY BECAUSE OF THE CAUSAL DIRECTION
Schölkopf et al. [10, Sections 2 and 3] analyze a functional causal model shown as in Figure
2.2. They analyze different learning scenarios under the assumption that the label is the
cause C and the feature is the effect E and vise versa. This model introduces an asymmetry
in cause and effect, since it leads to the fact that P (C ) and P (E |C ) are independent, while
P (E) and P (C | E) are not independent. Assuming now that X is the cause of the label
Y , we find that the prediction P (Y | X ) is algorithmically independent of newly gained
information about P (X ). The situation changes though if we assume that the label Y was
caused by X . One problem with this is, that we do not necessarily know if the feature is a
cause or an effect. But for example in medical settings this might not be too difficult, as we
can identify causal features as those that do actually cause an illness, while effect features
are the symptoms of an illness. The work of von Kügelgen et al. [11] uses this knowledge
to derive a SSL method which only takes the unlabeled data of effect features into account.

IMPOSSIBILITY TO ALWAYS OUTPERFORM A SUPERVISED LEARNER
Inspired by a successful minimax approach for a generative linear discriminant model
of Loog (see Section 2.7.2), Krijthe and Loog [13] investigate a similar approach to find
semi-supervised solutions for discriminative models that are never worse than their super-
vised counterparts. They use a setting where the discriminative models are derived with a
monotonously decreasing loss function. The setting is also transductive, so where one is
only interested in the performance of our model on the unlabeled data Um , see also Section
2.7. They essentially show that, under some mild conditions, there is always a labeling of
the unseen data Um such that a semi-supervised learner will perform worse on Um than
the supervised solution. In this sense it is impossible to guarantee that the semi-supervised
solution will always outperform the supervised solution.

IMPOSSIBILITY IF WE ONLY KNOW THE MANIFOLD
Lafferty and Wasserman [14, Section 3] show that knowledge of the manifold alone, without
additional assumption, is not sufficient to outperform a purely supervised learner. They
work in a regression setting and extend work of Bickel and Li [15] to show that there is
a supervised learner that can adapt to the dimension of the manifold and thus can achieve
minimax rates equivalent to a learner that directly works on the lower dimensional manifold.
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We note that Lafferty and Wasserman [14] also show that we can essentially achieve
faster rates if we also assume a semi-supervised smoothness assumption. We do not cover
more details at this point, but offer a qualitatively very similar analysis in Section 2.6.4.

IMPOSSIBILITY IF WE DON’T HAVE ADDITIONAL ASSUMPTIONS
Ben-David et al. [1] started a series of investigations by conjecturing that SSL is, in some
sense, generally not possible without any assumptions. In particular we assume that a
given domain distribution does not restrict the possible labeling functions, similarly to the
data generation process in Figure 2.1. They hypothesize that a semi-supervised learner
can’t have essentially better sample complexity bounds (see Definitions 1 and 2) than a SL,
without any additional assumptions at least. This is different from the previous sections, as
there are no further restrictions on the model or the data generation process.

In the following two sections we want to illustrate the precise idea of those conjectures,
why they do not hold generally and in which scenarios they are true.

We start with the contributions of Ben-David et al. [1]. They hypothesize that the worst-
case sample complexity for any semi-supervised learner improves over a supervised learner
at most by a constant which only depends on the hypothesis class. The first conjecture
states that for the realizable case.

Conjecture 1 (Conjecture 4). 4 For any hypothesis class H , there exists a constant c(H)
such that for any domain distribution D on X

sup
h∈H

m(H ,Dh ,ε,δ) ≤ sup
h∈H

c(H)mSSL(H ,Dh ,ε,δ), (2.1)

for ε and δ small enough, where Dh is the distribution on X ×Y with marginal distribution
D and conditional distribution Dh(Y = h(x) | X = x) = 1.

The second conjecture states the same for the agnostic case, so where we replace Dh

for any arbitrary distribution P .

Conjecture 2 (Conjecture 5). For any hypothesis class H , there exists a constant c(H) such
that for any domain distribution D

sup
P∈ext(D)

m(H ,P,ε,δ) ≤ sup
P∈ext(D)

c(H)mSSL(H ,P,ε,δ), (2.2)

for ε and δ small enough and where ext(D) is the set of all distributions P on X ×Y such
that the marginal distribution fulfills P (X ) = D.

In other words: The paper conjectures that if we are given a fixed domain distribution,
one can always find a labeling function on it such that for this labeling function the sam-
ple complexity gap between SL and SSL can only be a constant. The paper proofs these
conjectures for smooth distributions on the real line and threshold functions in the real-
izable case and for threshold functions and unions of intervals in the agnostic case. The
sample complexity comparison is by construction a worst case analysis, in cases where the
target hypothesis behaves benign we might still get non-constant improvements. We ex-
plore those cases in Section 2.6. On another note, one can also ask the question how good

4In brackets we note under which name the statement can be found in the original paper.



2.3. POSSIBILITY & IMPOSSIBILITY OF SEMI-SUPERVISED LEARNING

2

13

a constant improvement by itself can already be. We will elaborate on this in the discussion.

The Conjectures 1 and 2 are essentially true in the realizable case when the hypothesis
class has finite VC-dimension. Darnstädt et al. [16] showed that Conjecture 1, the realiz-
able case, is true with a small alteration: the supervised learner is allowed to be twice as
inaccurate and for the finite VC-dimension case we get an additional term of log( 1

ε ). In
Chapter 3 we take this idea, in a certain way, a step further, and we present a setting in
which a manifold regularization scheme obeys the limits stated by the conjecture, again up
to logarithmic factors, even though in this case the domain distribution carries information
about the labeling function. Darnstädt et al. [16] prove the following version of Conjecture
1.

Theorem 1 (Theorem 1). Let H be a hypothesis class such that it contains the constant
zero and constant one function. Then for every domain distribution D and every h ∈ H ,

1. If H is finite then

m(H ,Dh ,2ε,δ) ≤O(ln |H |)mSSL(H ,Dh ,ε,δ). (2.3)

2. If H has finite VC-dimension then

m(H ,Dh ,2ε,δ) ≤O(VC(H)) log(
1

ε
)mSSL(H ,Dh ,ε,δ). (2.4)

First note that this statement holds for all Dh , so in particular if we take the supremum
over all h ∈ H as in Conjecture 1. Golovnev et al. [17] show that if the hypothesis class H
is given by the projections over {0,1}d , there is a set of domain distributions such that any
supervised algorithm needsΩ(VC(H)) as many samples as the semi-supervised counterpart,
which has knowledge of the full domain distribution. So in particular Inequality (2.4) is
tight up to logarithmic factors. This actually shows that the constant improvement can
be arbitrarily good, as we can increase the VC-dimension by increasing the dimension
Golovnev et al. [17, Proposition 4]. The agnostic version of Theorem 1 is an open problem.

In the case of a hypothesis class with infinite VC-dimension, however, the conjecture
ceases to hold, also for the slightly altered formulations. This is essentially the case because
we can start with a class that has infinite VC-dimension, and thus cannot be learned by a
supervised learner. A semi-supervised learner, however, can restrict this class in a way
such that it has finite VC-dimension. This will become clearer in the next section where
we collect three different setups in which a semi-supervised learner can PAC-learn, while a
supervised learner cannot.5

IMPOSSIBILITY IF WE DON’T RESTRICT THE POSSIBLE LABELING FUNCTIONS
Golovnev et al. [17] show that if the domain X is finite and we allow all deterministic
labeling functions on it, no semi-supervised learner can improve in the realizable PAC-
learning framework even by a constant over a consistent supervised learner. Consistent
means here that the learner achieves 0 training error. The supervised learner is, however, to
be allowed twice as inaccurate and twice as unsure.
5In this context PAC-learnability means that m(H ,ε,δ) is finite for all ε,δ> 0.
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Theorem 2 (Theorem 8). Let X be a finite domain, and let Hall = {0,1}X be the set of all
deterministic binary labeling functions on X . Let A be any consistent supervised learner,
P a distribution over X and ε,δ ∈ (0,1). Then

m(A, Hall,P,2ε,2δ) ≤ mSSL(Hall,P,ε,δ). (2.5)

While the more general Theorem 1 states that a semi-supervised can still be better by
a constant depending on the hypothesis class, we find that in the previous setting one even
loses this advantage.

A similar result can be found for the agnostic case. Theorem 2 of [18] essentially
states that Conjecture 2 (the agnostic case), is true for the finite VC-dimension case, if
there are no restrictions on the labeling function. The difference is that they consider in
an in-expectation and not a high probability framework and there is a condition on the
domain distribution D, while Conjecture 2 is formulated to hold for all distributions D.
This condition is, however, very mild, the essential assumption of the theorem is that there
are no restrictions on the labeling function.

The intuition for both of the previous results is the same: If we allow all labeling func-
tions, there is no label information about the support of X that we did not observe yet.
Finding the labels for this part is equally slow for supervised and semi-supervised learners.
In the next section we present hypothesis classes on which semi-supervised learners can be
effective. Following the previous result, it is not surprising that those classes are carefully
chosen.

2.3.2. PROOFS ABOUT THE POSSIBILITY OF SEMI-SUPERVISED LEARN-
ING

We consider three specific settings in which it can be shown that a SSL can learn, while
a SL cannot. We first present the work of Darnstädt et al. [16] and Globerson et al. [19],
these aim to answer Conjectures 1 and 2 covered in the previous subsection. They show
that there is a hypothesis class H∗ and a collection of domain distributions D∗ such that
no supervised learner can learn H∗ under the distributions of D∗. Given, however, any
P ∈D∗, a semi-supervised learner that has access to a finite, but depending on P arbitrarily
large, amount of unlabeled data can learn H∗ with the same rate of convergence. Next we
present the work of Niyogi [20] as it gives the best example to illustrate how a shift from
not learnable to learnable is possible when going from SL and SSL.

PROVING THE REALIZABLE CASE WITH A DISCRETE SET

Darnstädt et al. [16] give the first example that shows that Conjecture 1 does not generally
hold. This is captured in the following theorem, and the other results of this section will be
very similar.

Theorem 3 (Theorem 2). There exists a hypothesis class H∗ and a family of domain dis-
tributions D∗ such that

1. For every D ∈D∗,

mSSL(H∗,D,ε,δ) ≤O(
1

ε2 + 1

ε
log(

1

ε
)).
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2. For all ε< 1
2 and δ< 1,

m(H∗,ε,δ) = sup
D∈D∗

m(H∗,D,ε,δ) =∞.

In order for the SSL to be able to PAC-learn for all D ∈D∗ it needs knowledge of the
full distribution D. (Although for each fixed D ∈ D∗ a finite amount of unlabeled data
suffices). Since the supervised learner can only collect labeled samples it will never be
able to achieve this knowledge with a finite number of samples, and thus has an infinite
sample complexity. The construction of H∗ and D∗ can be considered rather artificial. We
discuss papers that show similar behavior with a hypothesis class which is loosely based
on the manifold assumption in the next two subsections. We nevertheless want to give the
intuition for the given example, as it, as well as the other examples, use the same trick.

Darnstädt et al. [16] set the example up as follows. The domain X consists of all se-
quences x = (x1, x2, ..., xl ) of arbitrary finite length and xi ∈ {0,1}. The distributions D ∈D∗
on X are such that there is a sequence D(xσ(1) = 1) > D(xσ(2) = 1) > ..., which drops suffi-
ciently quick6, where σ is a random permutation on the length of x. The hypothesis class
H∗ contains all hypotheses hi with hi (x) = xi and the constant 0 hypothesis. Note that
although the class has infinite VC-dimension it still takes some effort to show that no super-
vised learner can learn it w.r.t to all distributions in D∗. This is because the VC-dimension
might not be infinite over D∗. We want to sketch how the SSL can learn it. After fixing a
D ∈D∗ and ε,δ> 0 we draw enough unlabeled samples to identify all positions i ∈N such
that xi is with a high probability 0. For all those indices i we can remove hi from H∗ as the
constant 0 hypothesis will be good enough for predicting accurately. They then show that
the remaining hypotheses in H∗ can be learned from finitely many samples. Note that it is
important that the admissible domain distributions are restricted. If D∗ would also include
distributions that essentially put equal weight on all positions i , unlabeled data could not
help to restrict H∗. In short: this example, and also the following, are essentially set up
such that H and D have a certain link, and in those cases knowledge about D can actually
give knowledge about H . Note, however, that the knowledge about D did not restrict the
set of possible labeling functions from H . It was rather that D helped to identify which
hypotheses we can safely ignore.

PROVING THE AGNOSTIC CASE USING ALGEBRAIC VARIETIES
Globerson et al. [19] provide a different example using a hypothesis class which loosely fol-
lows the manifold assumption. Using the same example one can also show that Conjecture
2, so the impossibility conjecture for the agnostic case, is not true in general.

The theorem is very similar to Darnstädt et al. [16], the difference is in the construction
of the hypothesis set and the set of distributions.

Theorem 4 (Theorem 5). There exists a hypothesis class Halg and a set of distributions
Dalg such that.

1. For every D ∈Dalg,

mSSL(Halg,D,ε,δ) < 2

ε
log

2

δ
. (2.6)

6Note that with xσ(i ) = 1 we mean the subset V ⊂X with V := {x = (x1, x2, ..., xl ) ∈X | xσ(i ) = 1}.
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2. The supervised sample complexity is infinite,

sup
D∈Dalg

m(Halg,D,ε,δ) =∞. (2.7)

The hypothesis class Halg consists of all hypotheses that have class label 1 on an alge-
braic set, so essentially a type of manifold, and 0 outside of that algebraic set. This is still
a very expressive set with infinite VC dimension. But if we restrict the set of admissible
domain distributions Dalg also to be (a certain type of) algebraic sets, a semi-supervised
learner with knowledge of D ∈Dalg can learn efficiently: we can think of Dalg as the set
of distributions that have support on a finite combination of distinguishable algebraic sets
V1, ...,Vk . Once we know that the distribution has support on V1, ...,Vk , we only have to
figure out which of those algebraic sets have label 1 and which have label 0. A SSL can
thus reduce the class Halg by only considering the hypotheses that have class label 1 on
combinations from V1, ...,Vk . Since the set of all possible combinations is finite, a SSL can
learn them with a sample complexity bounded by Inequality (2.6). Note that although the
true labeling function does not have to be part of this restricted set, one can show that it
is anyway always optimal to predict with a hypothesis from it. The argument for that is
similar to the explanation of the agnostic case below.

The paper also discusses that this argumentation can be extended to the agnostic case,
so when the true target function is not in Halg. This extension might appear problematic at
first, because the semi-supervised algorithm restricts the hypothesis set Halg, and to guar-
antee PAC-learnability we need to know that the best predictor from the Halg is still in this
restricted set. But this is indeed the case, because the set of domain distributions Dalg was
exactly created for that to hold. To show that, assume that the distribution is supported
on an irreducible algebraic set V0. Our SSL can now chose to label it completely 1 or 0,
while both options might lead to non-zero error. But labeling it completely as either 1 or
0 is already ideal, as using any other algebraic set V1 ∈ Halg will lead to one of those two
labelings. This is because, by construction, V1 is either equal to V0 (which leads to label ev-
erything as 1) or has an intersection of zero mass (which leads to labeling almost everything
as 0).

This seems to contradict the findings in 2.3.1, as Lafferty and Wasserman [14] show
that a supervised learner can also adapt to the underlying manifold. This discrepancy is
not easy not analyze as Lafferty and Wasserman [14] work in the regression setting, while
Globerson et al. [19] analyse classification. The intuition, however, is that Globerson et al.
[19] present the supervised learner with an impossible, meaning not PAC-learnable, task.
Lafferty and Wasserman [14] on the other hand restrict the target functions to be smooth,
and thus the supervised learner is presented with a sufficiently easy problem.

USING THE MANIFOLD ASSUMPTION TO MAKE A CLASS LEARNABLE
Niyogi [20] provides another setup in which a semi-supervised learner can effectively learn
while a supervised learner cannot. The motivation, however, was independent of Ben-David
et al. [1] and was meant as a general theoretical analysis of the manifold learning framework
as introduced in Belkin et al. [21]. Also, their results are in-expectation, while the previous
papers give PAC bounds, which means that they hold with high probability. Although
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Figure 2.3: The shapes shown in (a) and (b) are two different embeddings of a circle in the Euclidean plane. One
half of the circle is labeled as 1, while the other half is labeled as −1, while we assume that everything outside the
circle is labeled as 1.

the paper presents the results in an in-expectation framework we slightly alter the setup
and present it in the PAC learning framework. We believe this is sufficient to understand
the ideas and allows us to draw better connections to the previous papers. Although this
work is based on the manifold assumption, so a given domain distribution does limit the
possible labeling functions, we believe that it is the most intuitive setting to understand
why a supervised learner cannot learn, while a semi-supervised learner can.

The example is built as follows. First it is assumed that the admissible domain dis-
tributions are given by the class Pc which have support on embeddings of a circle in the
Euclidean plane, see also Figure 2.3. The hypothesis class Hc consists of all possible bi-
nary labelings of half circles, while everything outside the circle is labeled as 1,7 see also
Figure 2.3. The SSL that knows the specific embedding of the circle, only needs to find
two thresholds on the given circle, a class with VC-dimension of 2, so the SSL can learn
efficiently. In Figure 2.4 we schematically show why Hc has an infinite VC dimension and
thus cannot be learned by any supervised learner.

2.4. LEARNING WITHOUT ASSUMPTIONS
As argued in the previous section it can be difficult to use unlabeled data without any ad-
ditional assumptions, and in some situations one can show that unlabeled data cannot help
at all. As already mentioned in the introduction of Section 2.3, this impossibility stems
sometimes from the fact that we only consider improvements of the estimate of the condi-
tional probability P (Y | X ). The work we present in this section looks at the complete risk
EX ,Y [l (h(X ),Y )], a quantity which is always influenced by the marginal distribution P (X ).
Furthermore no additional assumptions about the distribution P are made, and the theoret-
ical guarantees are accordingly weak. We first present the work of Sokolovska et al. [22]
who use the unlabeled data to reweigh the labeled points, and show improvements in terms

7The labeling outside of the circle is a formality to ensure that the supervised learner makes predictions for the
whole circle, as the learner does not a priori know in which part of the space the circle is embedded.
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(a) Assume we are given 7 points that are labeled
as depicted above.

(b) The circle above labels the points correctly. The
upper half assigns points the label −1, while the
lower half labels points as +1.

Figure 2.4: A schematic proof why the hypothesis set Hc has an infinite VC dimension. Given the points in (a)
we can label them correctly with the circle given in (b).

of asymptotic efficiency. Interestingly, one needs that the model is misspecified to show this
result. Second we present the work of Kääriäinen [23] who uses the unlabeled data to pick
the center of the version space. The best possible improvements are bounded by a factor of
2. Finally we present the work of Leskes [24] who uses unlabeled data to combine differ-
ent hypothesis spaces and shows that the learning rates depend on the highest Rademacher
complexity amongst those hypothesis spaces.

2.4.1. REWEIGHING THE LABELED DATA BY THE MARGINAL DISTRI-
BUTION

Sokolovska et al. [22] proposed a semi-supervised learner that uses knowledge of the
marginal distribution P (X ) in a re-weighing scheme. To avoid difficulties for the theoretical
analysis they restrict the feature space X to contain only finitely many points and assume
that the SSL has access to the full marginal distribution P (X ).8 They consider models that
directly estimate class probabilities p(y | x,θ), while they measure performance by the neg-
ative log-likelihood l (x, y | θ) = − ln p(y | x,θ). They then analyze asymptotic behavior, in
particular the asymptotic variance of the model estimation. They compare two models, the
classical maximum log-likelihood estimate based on the labeled data only

θSL = argmin
θ∈Θ

∑
(x,y)∈Sn

l (x, y | θ) (2.8)

and a semi-supervised learner that also takes the marginal P (x) into account

θSSL = argmin
θ∈Θ

∑
(x,y)∈Sn

P (x)∑
z∈Xn I{x=z}

l (x, y | θ). (2.9)

Again, note that the semi-supervised learner weighs each feature with the true, instead of
the empirical, distribution. Let us first state the results about θSSL and then discuss them.
8The work is continued by Kawakita and Kanamori [25] and extended to non-discrete features spaces.
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Theorem 5 (Theorem 1). Let θ∗ ∈ argmin
θ∈Θ

E[l (x, y | θ)] and define the following matrices

H(θ∗) = EX
[
VY |X [∇θl (X ,Y | θ) | X ]

]
(2.10)

I (θ∗) = EX ,Y
[∇θl (X ,Y | θ)∇T

θ l (X ,Y | θ)
]

(2.11)

J (θ∗) = EX ,Y
[∇T

θ∇θl (X ,Y | θ)
]

, (2.12)

where VY |X is the variance over the conditional random variable Y | X . Then θSL and θSSL

are consistent and asymptotically normal estimators of θ∗ with
p

n(θSL −θ∗) →N (0, J−1(θ∗)I (θ∗)J−1(θ∗)) (2.13)
p

n(θSSL −θ∗) →N (0, J−1(θ∗)H(θ∗)J−1(θ∗)) (2.14)

and θSSL is asymptotically efficient, meaning that it achieves asymptotically the smallest
variance of any unbiased estimator.

Asking now when θSSL asymptotically dominates θSL we get the somewhat surprising
answer that we need the model to be misspecified. From a statistical point of view it is
maybe not so surprising, since in the well-specified case (along with some other regularity
conditions) the MLE θSL is already asymptotically efficient itself. Specifically, we have
that then H(θ∗) = J (θ∗) = I (θ∗), and we recover the classical result that the MLE is asymp-
totically normal with a variance of the inverse Fisher information matrix I (θ∗). The paper
then examines, with the logistic regression model, when the difference between I (θ∗) and
H(θ∗) is particularly big. It is shown that this is the case the more P (Y | X ) is bounded away
from 1/2, so in particular when the Bayes error is small. This is very similar to Tsybakov’s
low noise [26], which is used in statistical learning to show fast learning rates. In Sections
2.6.1 and 2.6.2 similar assumptions are made to show that some semi-supervised learners
can converge exponentially fast to the Bayes error.

2.4.2. USING THE UNLABELED DATA TO PICK THE CENTER OF THE
VERSION SPACE

Kääriäinen [23] introduces a method for bounding the risk by using unlabeled data to collect
information about the agreement of two classifiers. A semi-supervised estimator is then
derived as the hypothesis that minimizes this bound. Unfortunately the idea only works
really in the realizable case. Although we do not get a new algorithm for the agnostic case,
the paper still presents new bounds based on the unlabeled data.

REALIZABLE CASE
The idea for the realizable case is to consider the version space, so the space that contains
all hypotheses that have no training error. The unlabeled data gives rise to a pseudo-metric
on this space by measuring the disagreement of the hypotheses on it. We are going to pick
the hypothesis that has the lowest worst-case disagreement to all other hypothesis, of which
one must be the true one as we assume realizability. Let us make this more precise. Given
two hypotheses f , g ∈ H we define the disagreement pseudo-metric d( f , g ) as

d( f , g ) = P ( f (X ) 6= g (X )). (2.15)
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This metric is specifically useful in the semi-supervised case since is does not depend on
labels. We can approximate it with the empirical version by

d̂( f , g ) = 1

m

n+m∑
i=n

I{ f (xi )=g (xi )}. (2.16)

The version space is defined as H0 = {h ∈ H | R̂(h) = 0}. Let h0 be the true hypothesis, then
we know that h0 ∈ H0 and one can show that R(h) = d(h,h0) for all h ∈ H . This allows us
to bound

R(h) = d(h,h0) = d̂(h,h0)+ (d̂ −d)(h,h0) ≤ sup
g∈H0

d̂(h, g )+ sup
g ,g ′∈H0

(d̂ −d)(g , g ′). (2.17)

As Inequality (2.17) bounds the true risk of a hypothesis h, we try to minimize this risk
by choosing the hypothesis that minimizes the right-hand side of Inequality (2.17). More
precisely, we choose the semi-supervised estimator as the empirical center of the version
space, so we set

hSSL = arg inf
h∈H0

sup
g∈H0

d̂(h, g ). (2.18)

With this we can of course only control the first term on the right-hand side of Inequality
(2.17). We can bound the second term, however, with concentration inequalities derived
from a Rademacher Complexity for the space G = {x 7→ I{ f (x)=g (x)} | f , g ∈ H0}. It is then
true that with probability at least 1−δ [23, Theorem 3]

R(hSSL) ≤ inf
h∈H0

sup
g∈H0

d̂(h, g )+empRad(G)+ 3p
2

√
ln 2

δ

m
. (2.19)

Note the two terms on the right hand-side of Inequality (2.19) go to 0 for increasing m
and note that in this case also d̂( f , g ) → d(g , g ). So ignoring for a minute that we only have
finitely many unlabeled data we can compare the SSL (2.18) to purely supervised solutions.
Note that in the realizable case a purely supervised method would also choose a hypothesis
in H0. As the supervised learner hSL has no further information we can always find a target
hypothesis h∗ such that R(hSL) = supg∈H0

d(hSL, g ) = d(hSL,h∗). So the best bound for
any supervised learner hSL is given by R(hSL) ≤ supg∈H0

d( f , g ). The SSL bound (2.19) on
the other hand allows us to bound R(hSSL) ≤ infh∈H0 supg∈H0

d(h, g ), at least for m going
to infinity. From a geometrical viewpoint supg∈H0

d(hSL, g ) is the diameter of H0, while,
infh∈H0 supg∈H0

d(h, g ) is the radius. As the difference between the radius and the diameter,
with respect to d , is at most 2, we find that the differences in the SSL and SL risk bounds
is at most a constant factor of 2.

BOUNDS FOR THE GENERAL CASE
In the general case we do not assume that the target hypothesis is part of our hypothesis
class. To still make use of the considered metric, the author proposes the following general
recipe for bounds in that case. The starting point is the observation that bounds for ran-
domized classifiers are generally tighter when compared to their deterministic counterparts
[27, 28]. The idea is now to use such a randomized classifier frand as an anchor, similarly
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to the target hypothesis in the realizable case. To get a bound for a classifier f we then
can use the bound for the randomized classifier together with a slack term that includes
d̂( frand, f ). Depending on which kind of randomized classifier we take, we obtain different
bounds. This includes for example PAC-Bayesian bounds as well as bounds based on cross-
validation and bagging methods. They explicitly derive a cross-validation bound, where the
randomized classifier is given by a uniform distribution over the classifiers obtained in the
multiple cross-validation rounds.

2.4.3. USING UNLABELED DATA TO COMBINE MULTIPLE HYPOTHESIS
SPACES

Leskes [24] presents another scheme that relies on measuring the classification agreement
between hypotheses on unlabeled data. The idea here is to use a boosting scheme, so we
start with L ∈N different hypothesis classes H 1, ..., H L . We want to find the best fitting hy-
pothesis over all L hypothesis classes H 1, ..., H L . As that would generally lead to an overly
increased complexity, the paper reduces the set of possible hypotheses by only considering
those that agree sufficiently on the unlabeled data. In this context sufficiently means that
we switch to a new hypothesis class Hv for a v > 0 that is defined as

Hv = {(h1, ...,hL) ∈ H 1 × ...×H L |V (h1, ...,hL) ≤ v},

where

V (h1, ...,hL) := EX [
1

L

∑
i

hi (X )2 − (
1

L

∑
i

hi (X ))2].

The term V (h1, ...,hL) essentially measures the variance of disagreement within L different
hypotheses and is approximated with the unlabeled data. The hypothesis class Hv only
keeps those collections of hypotheses that have a sufficiently small variance of disagree-
ment. The paper then presents a generalization bound that holds for all hl with 1 ≤ l ≤ L
simultaneously and the bound depends on the maximum Rademacher complexity of the L
base hypothesis classes H 1, ..., H L .

2.5. LEARNING UNDER WEAK ASSUMPTIONS
In the previous two sections we investigated what is possible for semi-supervised learners
when we do not have any additional assumptions. Now we investigate what a SSL can
achieve under what we call weak assumptions. With weak assumptions we mean those
that cannot essentially change the learning of O( 1p

n
), but rather gives improvements by

a constant which can depend on the hypothesis class. In Section 2.6 we will investigate
what we have to assume to escape the 1p

n
regime. We first cover the work of Balcan and

Blum [29], as it is a general framework that allows us to analyze the learning guarantees for
multiple semi-supervised learners. They show that semi-supervised learners that fall in this
framework learn by a constant faster than supervised learners, where the constant depends
on the hypothesis class and the semi-supervised learner we use.

We then cover in more detail the idea of co-training. Although co-training can also be
viewed in the framework of Balcan and Blum [29] we want to present a few more details on
it. In particular we present the work of Sridharan and Kakade [30] who formulate the as-
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sumption of co-training in an information theoretical framework, which allows to precisely
quantify the bias-variance trade-off.

2.5.1. A GENERAL FRAMEWORK TO ENCODE WEAK ASSUMPTIONS
We start with the work done by Balcan and Blum [29], as it offers an elegant way to for-
malize different assumptions in a general framework. Many existing methods can be cast
in this framework; transductive support vector machines [31, 32], Multi-View assumptions
[24, 30, 33] and transductive graph-based methods [34]. The idea is to introduce a func-
tion χ that measures the compatibility between a hypothesis h and the marginal distribution
P (X ). Compatibility can mean many different things in this context. As a simple example
we could call a hypothesis h compatible with a marginal distribution P (X ) if its decision
boundary goes through low density regions. As we usually only observe a finite sample
size, the function χ needs to be defined for each point in the feature space, so one sets

χ : H ×X → [0,1]. (2.20)

The compatibility measure χ gives then rise to the function

Runl(h) := 1−EX∼P (X )[χ(h, X )], (2.21)

which we will call the unsupervised loss. We will try to optimize it in addition to the
loss measured on the labeled sample. The paper states several more theorems in the same
flavor as the one presented here. The differences are mostly in the realizability assumptions
(regarding the unsupervised and the supervised error) and the bounding technique. They
present bounds derived from uniform convergence as well as bounds based on covering
numbers. The following theorem is the double agnostic case (neither the labeled nor the
unlabeled loss have to be zero).

Theorem 6 (Theorem 10). Let h∗
t = argmin

h∈H
[R(h) | Runl(h) ≤ t ]. Then, given an unlabeled

sample size of at least

O
(

max[V C (H),V C (χ(H))

ε2
ln

1

ε2
+ 1

ε2
2

ln
1

δ

)

we have that

m(hSSL, H ,ε,δ) ≤ 32

ε2

[
V C (H(t +2ε2))+ ln

2

δ

]
, (2.22)

where hSSL is the hypothesis that minimizes R̂(hSSL) subject to R̂unl(hSSL) ≤ t + ε and
H(t ) := {h ∈ H | Runl(h) ≤ t }. Here R̂ is the empirical risk measured with the sample Sn

and R̂unl is the empirical unlabeled risk measured on the sample Um .

We note that the original paper uses a different measure of complexity, so the term
V C (H(t +2ε2)) is different. We use the standard VC-dimension instead to avoid additional
notation and to allow for an easier comparison to other results. They use a complexity
notion that in Vapnik [5] could be found under (the exponentiated) annealed entropy and
has the advantage to be distribution dependent.
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We now compare Theorem 6 to the results of the previous section, in particular to Con-
jecture 1 and the answers to this as found in Theorems 3 and 4. We know that in the
purely supervised case we can achieve a similar sample complexity as (2.22) by replacing
V C (H(t +2ε2)) with V C (H). As we know that the sample complexity given by (2.22) is
tight up to constants (compare Chapter 6 from [3]), we know that the sample complexity
between a purely supervised learner and the semi-supervised learner as defined in this paper
cannot differ by more than O

(
V C (H)

V C (H(t+2ε2)

)
. So the gap in the learning rates is indeed given

by a constant that only depends on the hypothesis class as postulated by Conjecture 2. This
constant can, however, be infinite if V C (H) is infinite but V C (H(t +2ε2)) is finite. This is
exactly the type of example that refuted the conjecture and which we presented in Section
2.3.2.

Theorem 6 quantifies to some degree the fundamental bias-variance trade-off in SSL
when we use assumptions. Employing a semi-supervised compatibility function we reduce
the variance of the training procedure as we effectively restrict the original hypothesis space
H . If, however, the compatibility function does not match the underlying problem, we bias
the procedure away from good solutions.

2.5.2. ASSUMING THAT THE FEATURE SPACE CAN BE SPLIT
In multi-view learning, also sometimes called co-regularization or co-training, one assumes
that the feature space X can be decomposed as X =X 1×X 2, and each partial feature space
X 1,X 2 is already enough to learn. In the early work on co-training Blum and Mitchell
[33] use the idea in a web page classification set. One part of the features, say X 1, is
given by the text on the web page itself, while the other one, X 2, is given by the anchor
text of hyperlinks pointing to the web page. The idea is that if both partial features spaces
have sufficient information about the correct label, we would expect that a correct classifier
predicts the same label given any of the two partial features. We can thus discard classifiers
that disagree on the two views.

There are multiple theoretical results about this approach, it can be for example analyzed
in the framework of the previous section. Rosenberg and Bartlett [35] and Farquhar et al.
[36] analyze a Rademacher complexity term under the multi-view assumption. Sindhwani
and Rosenberg [37] define a kernel that directly includes the assumption as a regularization
term, and thus find a RKHS where co-regularization automatically happens.

Here we detail the work of Sridharan and Kakade [30], as this ties in best with the other
results we present. In addition their information theoretic framework allows to also analyze
the penalty one suffers if the assumption is not exactly true. We split the random variable X
which takes values in X into X = (X 1, X 2). In their framework the multi-view assumption
can be formalized as follows.

Multi-View Assumption Let I (A;B |C ) be the mutual information between random vari-
ables A and B , conditioned on knowing already the random variable C . Then there exists
an εinfo such that

I (Y ; X 2 | X 1) ≤ εinfo (2.23)

and
I (Y ; X 1 | X 2) ≤ εinfo. (2.24)
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Intuitively this states that once we know one of the features, the other feature will not tell
us much more about Y .

Comparing this to co-training we can see it as a relaxation. In co-training one assumes
that each view is already sufficient to fully learn, which corresponds here to εinfo = 0. If,
however, εinfo > 0, we cannot learn perfectly from one view. (But this is fine in this frame-
work). We assume then, that we have for each view X 1 and X 2 a corresponding hypoth-
esis set H 1 and H 2. We will do predictions with pairs of hypotheses ( f1, f2) ∈ H 1 × H 2.
The paper uses the notion of compatibility functions (2.20). In particular they define a
compatibility function χ : H := H 1 × H 2 → [0,1] as χ(h1,h2, x) := d( f1(x1), f2(x2)), where
d : Y ×Y → [0,1] is some sort of distance measure that fulfills a relaxed triangle inequality
and x = (x1, x2) is a sample. The distance d measures in essence how much f1 and f2 agree
on a sample x. For a given threshold t ∈R we find now the best pair of hypotheses with the
constrained empirical risk minimization problem

min
(h1,h2)∈H

n∑
i=1

l (h1(x1
i ), yi )+ l (h2(x2

i ), yi ) subject to R̂unl(h1,h2) ≤ t . (2.25)

Recall the definition of Runl(h) from Equation (2.21). The main theorem, which gives
guarantees on the solution found by the procedure above, needs the following notation. Let
β∗, β1∗ and β2∗ be the Bayes error, measured with the loss l , when learning from X 1 × X 2,
X 1 and X 2 respectively. We also set εbayes = max{R( f 1∗ )−β1∗,R( f 2∗ )−β2∗}, where f i∗ is the
best predictor from H i . Finally we set Ĥ(t ) = {(h1,h2) ∈ H | R̂unl(h1,h2) ≤ t }.

Theorem 7. Assume that the loss l is bounded by 1. There exists an t ∈ R (depending
among other on εinfo, εbayes and m), such that under some further regularity conditions on
χ= d and the loss l , and given at least m(Ĥ(t ),ε,δ) labeled samples, with probability 1−δ

R(ĥ1)+R(ĥ2)

2
≤β∗+ε+εbayes +p

εinfo. (2.26)

We see now that the information theoretic assumption allows us to explicitly describe
the bias introduced when switching from the full hypothesis set H to the restricted one
Ĥ(t ). This bias is given by

p
εinfo.

2.6. LEARNING UNDER STRONG ASSUMPTIONS
In the previous section we analyzed assumptions that only could give us a constant im-
provement, and did not allow us to escape the general learning rate of 1p

n
. Now we analyze

assumptions which allow us to escape this regime, and can even give exponentially fast
convergence. The following example illustrates the basic idea behind that. Assume we are
given a set of unlabeled data and we use it to cluster the data. If we assume that the clus-
tering is correct, meaning that each cluster corresponds to a class, we essentially need only
enough labeled data to identify which cluster belongs to which class. The work we present
in this section extends this idea in various ways and answers the following questions. What
if we have class overlap? What if there is noise in the clusters? What about regression?
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2.6.1. ASSUMING THAT THE MODEL IS IDENTIFIABLE
One of the classic works in semi-supervised learning, that deals with a topic closely related
to sample complexity, was done by Castelli and Cover [38]. The setting is very restricted
but can give exponentially fast convergence rates to the Bayes risk in the number of labeled
samples n. This is very powerful considering that the results of the previous sections could
often not essentially fasten the rate of 1p

n
(compare for example Inequality (2.22) after

solving for ε).
The first key assumption to obtain those results lies in the data generation process. First

the label is drawn with P (y = 1) = η and P (y = 0) = η̄ and then a feature is drawn according
to a density fy (x). Unlabeled data is thus drawn from the mixture η f1 + η̄ f2. The second
key assumption is that the class of mixture models is identifiable, i.e. that we can infer
the mixture model uniquely given only unlabeled data. After observing enough unlabeled
data to identify the mixture we only have to figure out how to label each part of the two
mixture components. As we thus have only to decide between two alternatives we can find
a classifier h by a simple likelihood ratio test, which converges exponentially fast to the
Bayes risk in the number of the labeled samples n:

R(h)−min
h∈H

R(h) ≤ exp

(
n ln(2

√
µµ̄

∫ √
f1(x) f2(x)d x)+o(n)

)
(2.27)

For the analysis it is necessary to assume that one has an infinite amount of unlabeled
data. The work is continued in [39], where the authors consider cases where we already
have knowledge about the densities fy . Sinha and Belkin [40] extend a similar framework
to the case where the marginal distribution P (x) is unknown. They assume instead that
P (x) can be well estimated with a mixture of two spherical Gaussian distributions with
density functions f1(x) and f−1(x). In particular they assume that || f1 −P (·|Y = 1)||S and
|| f−1 −P (·|y =−1)||S can be bounded with a small number, where || · ||S is a Sobolev norm.
Finally we want to mention the work of Ratsaby and Venkatesh [41], where exponential
decay of excess risk is achieved under the assumptions of well-specification and the model
class are mixtures of two spherical Gaussian distributions.

2.6.2. ASSUMING THAT CLASSES ARE CLUSTERED AND SEPARATED
In [42] we are presented explicit bounds on the generalization error using another formu-
lation of the cluster assumption. It closely resembles the work of the previous section and
under their assumption we again obtain exponentially fast convergence. Their first and sim-
ple setup is that we are given a collection of pairwise disjoint clusters C1,C2, ... and we make
a cluster assumption, i.e we assume that the labeling function x 7→ sign(P (Y = 1 | X = x)− 1

2 )
is constant on each cluster Ci . So the clusters have a label-purity of some degree, which we
can specify by

δi =
∫

Ci

|2P (Y = 1|X = x)−1|dP (x), (2.28)

where the cluster Ci is pure iff δi is either 1 or 0. Assuming that we know the clusters, we let
hSSL

n (x) be the majority voting classifier per cluster. More formally, given a labeled sample
Sn let X +

i := {(x, y) ∈ Sn | x ∈ Ci , y = 1} and similarly X −
i := {(x, y) ∈ Sn | x ∈ Ci , y = −1}.

Then given a new data point x ∈Ci we set
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hSSL(x) =
{

1 if |X +
i | ≥ |X −

i |
−1 if |X +

i | < |X −
i |. (2.29)

Note that this defines only a function on the clusters. The paper argues, however, that
unlabeled data cannot help where no unlabeled data was observed. Consequently it only
analyses the possible gain from unlabeled data on the clusters. Thus the excess risk is now
restricted to the set C :=⋃

Ci , so we set the excess risk as

EC (h) =
∫

C
|2P (Y = 1|X = x)−1|I{h(x)6=h∗(x)}dP (x),

where h∗ is the Bayes classifier. The following theorem describes the gain one can make
with respect to the expected cluster excess risk.

Theorem 8 (Theorem 3.1). Let (Ci )i∈I be a collection of sets with Ci ⊂X for all i ∈ I such
that this collection fulfills the above defined cluster assumption. Then the majority voting
classifier hSSL

n as defined above satisfies

ESn ,Um

[
EC (hSSL

n )
]
≤ 2

∑
i∈I
δi e

−nδ2
i

2 . (2.30)

So knowing the clusters we recover the exponential convergence in the labeled sample
size as in [38]. The biggest effort of the paper goes, however, in the definition of clusters and
the finite sample size estimation of such. The derivations are rather long and here we limit
ourselves to describe the underlying intuition. First we assume that the marginal distribution
P (X ) allows for a density function p(x) with respect to the Lebesgue measure. With that one
can define the density level sets of X w.r.t. a parameter λ> 0 as Γ(λ) := {x ∈X | p(x) ≥λ}.
For a fixed λ> 0 we think of a clustering essentially as path-connected components of the
density level sets Γ(λ), where it is ensured that pathological cases are excluded. Estimating
the set Γ(λ) with finitely many unlabeled samples adds a slack term to Inequality (2.30)
that drops polynomially in the unlabeled sample size. So, to ensure that we still can learn
exponentially fast, the number of unlabeled samples has to grow exponentially with the
number of labeled samples.

2.6.3. ASSUMING THAT THE CLASSES ARE CLUSTERED BUT NOT NEC-
ESSARILY SEPARATED

Singh et al. [43] propose a different formalization of the cluster assumption, one that allows
to distinguish cases where SSL does help and where not. This is done by restricting the class
of distributions P and then investigating which of those distributions allow for successful
semi-supervised learning. The class P is constructed such that the marginal distributions
are constituted of different clusters that are sometimes easy to distinguish and sometimes
not. The marginal densities p(x) from P are given by mixtures of K densities pk . So
p(x) =∑K

i=1 ak pk (x) with ak > 0 and
∑K

i=1 ak = 1 and each pk has support on a set Ck ⊂X
which fulfills some regularity conditions. We call the sets Ck clusters, and each one is
assumed to have its own smooth label distribution function pk (y | x). So with probability
ak we draw from pk (x) and then label x according to pk (y | x). We further only consider
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distributions that lead to clusters with margin, with our without overlap, of at least γ (see
also Figure 2.5), and denote the resulting class of distributions by P(γ). In this formulation
the clusters are not of the main interest, but rather what the authors call the decision sets.

To define a decision set we denote with C c
k the complement of Ck and define C¬c

k :=Ck .
A set D ⊂X is called a decision set if it can be written as

D = ⋂
k∈K

C ik
k

for ik ∈ {c,¬c}, see Figure 2.5 (b) for an example. The advantage of the decision sets over
the clusters are that the full distribution p(x, y) is not necessarily smooth on each cluster,
as they might exhibit jumps at the borders. On the decision sets, however, p(x, y) will be
smooth, if each pk (y | x) is smooth. Thus, if we would know the decision sets we could use
a semi-supervised learner that uses the smoothness assumption.

The main theorem answers the question whether or not one can learn the decision sets
from finitely many unlabeled points.

Theorem 9 (Corollary 1). Let E(h) = R(h)−R∗ be the excess risk with respect to the Bayes
classifier R∗. Assume that E is bounded and that there is a learner hD

n that has knowledge
of all decision sets D and fulfills the following excess risk bound.

sup
P∈P(γ)

EP [E(hD
n )] ≤ ε2(n) (2.31)

Assume that |γ| > 6
p

dκ0( (lnm)2

m )
1
d , where κ0 is a constant, then a semi-supervised learner

(a) The clusters C1 and C2 are separated
with margin γ. The different decision
regions are here just the clusters.

(b) The clusters C1 and C2 are have an
overlap (light blue) with margin γ. The
three colors also constitute three differ-
ent decision sets.

Figure 2.5: Picture (a) shows the concept of a positive γ-margin, while (b) shows a negative γ-margin.
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hSSL
n,m exists such that

sup
P∈P(γ)

EP [E(hSS
n,m)] ≤ ε2(n)+O

 1

m
+n

(
(lnm)2

m

) 1
d

 . (2.32)

Note the following. If the learner hD
n that knows the decision sets has a convergence

rate of ε2(n), it follows from Inequality (2.32) that the unlabeled data needs to increase with
a rate of ε2( 1

n ) to ensure that the semi-supervised learner has the same convergence rate as
hD

n . For example, if hD
n converges exponentially fast, we need a exponentially much more

unlabeled then labeled data, which is the same finding as in the previous section.
The intuition here is fairly simple. The bigger γ the less unlabeled samples we need

to estimate the decision sets D, and once we know those, we can perform as well as hD
n .

To analyze if a semi-supervised learner that first learns the decision sets empirically has an
advantage over all supervised learners, they first find minimax lower bounds for all fully
supervised learners. They then give upper bounds for a specific semi-supervised learner
and the conclusions are intuitive: For SSL to be useful, the parameter γ and the number of
unlabeled samples should be such that the fully supervised learner cannot distinguish the
decision sets, while the semi-supervised learner can. So γ should not be too big, as then the
supervised learner can also distinguish the decision sets. And, of course, the unlabeled data
should not be too little, as then the semi-supervised learner cannot distinguish the decision
sets.

To present specific differences between SSL and SL the authors assume that X = [0,1]d

and that the conditional expectations EY ∼pk (Y |X=x)[Y |X = x] are Hölder-α smooth functions
in x. Depending on γ the paper presents a table for cases when SSL can be essentially faster
than SL. In those cases the SL has an expected lower bound for the convergence rate of n− 1

d

while the convergence rate of the SSL is upper bounded by n− 2α
2α+d .

2.6.4. ASSUMING THE REGRESSION FUNCTION IS SMOOTH ALONG A
MANIFOLD

As we will elaborate further in the discussion section, an issue in SSL is that most methods
are based on assumptions on the full distribution. The problem is that we usually cannot
verify whether the assumptions holds or not. This is crucial to know, since in case the
assumption does not hold, it is quite likely that we want to use a supervised learner in-
stead. The work of Azizyan et al. [44] is one of the few papers that touches on that topic
as they introduce a semi-supervised learner that depends on a parameter α, where α = 0
recovers a purely supervised learner. The paper then gives generalization bounds for the
semi-supervised learner when we cross-validate α. As this work uses the regression setting,
while most other presented papers deal with classification, and gives a clean formalization
of the SSL, we present here the details. The authors use a version of the manifold assump-
tion, so we enforce our estimated regression function hSSL(x) to behave smoothly in high
density regions. The density of the marginal distribution P (X ) is measured with a smoothed
density function pσ(x)

pσ(x) :=
∫

1

σd
K

( ||x −u||
σ

)
dP (u), (2.33)
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where K is a symmetric kernel on Rd with compact support and σ > 0. Let Γ(x1, x2) be
the set of all continuous paths γ : [0,L(γ)] → Rd from x1 ∈ R to x2 ∈ R with unit speed
and where L(γ) is the length of γ. With this we can define a new metric (the so-called
exponential metric) on Rd that depends on a parameter α ≥ 0 and the smoothed density
pσ(x).

D(x1, x2) = inf
γ∈Γ

∫ L(γ)

0
e−αpσ(γ(t ))d t (2.34)

First note that α = 0 corresponds to the Euclidean distance. Second, note that high values
of pσ(x) on the path between two points x1 and x2 lead to shorter distances between those
points in the new metric, and this is emphasized with large α. If we assume that Q is another
kernel and we set Qτ(x) := 1

τd Q( x
τ ) we can define the semi-supervised estimator as

hSSL(x) :=
∑n

i=1 yi Qτ(D̂(x, xi ))∑n
i=1 Qτ(D̂(x, xi ))

. (2.35)

The estimator is thus a nearest-neighbor regressor, where neighbors are weighted according
to their distance in the D-metric. The following theorems gives bounds on the squared risk
of hSSL under the assumption that sup

y∈Y
|y | = M <∞.

Theorem 10 (Theorem 4.1). Let P(α,σ,L) be a class of probability measures that fulfill
certain regularities depending on parameters α,σ,L ≥ 0 (more details after the Theorem).
Assume that for all P ∈P we have P (||p̂σ−pσ|| ≥ εm) ≤ 1

m , then

ESn ,Um [R(hSSL] ≤ L2(τeαεm )2 + 1

n
M 2(2+ 1

e
)NP,α,σ(e−αεm

τ

2
)+ 4M 2

m
. (2.36)

In this notation NP,α,σ(ε) is the covering number of P in the D-metric: The minimum
number of closed balls in X of size ε w.r.t to the D-metric necessary to cover the support
of P (X ), see also Shalev-Shwartz and Ben-David [3, Chapter 27]. In the Euclidean case,
so when α = 0, we can bound NP,α,σ(ε) ≤ ( C

ε )d with a constant C . The covering number
can be much smaller when α > 0 and P (X ) is concentrated on a manifold with dimension
smaller than d . The regularity conditions on P(α,σ,L) are essentially the following. First
we assume that P (X ) has compact support. Second, all regression functions fP (x) = EP (Y |
X = x) : Rd → R are L-Lipschitz continuous, where the domain Rd is equipped with the
exponential metric D and the co-domain R is equipped with the Euclidean distance.

As the previous Theorem might be quite difficult to parse, the paper offers a simplified
corollary, under some further regularity conditions.

Corollary 1 (Corollary 4.2). Assume that NP,α,σ(δ) ≤ ( C
δ )ξ for some certain range of δ.

Furthermore assume that m is large enough and that τ(n,α,εm ,ξ) is well chosen. Then for
all P ∈P(α,σ,L)

ESn ,Um [R(hSSL] ≤
(

C

n

) 2
2+ξ

. (2.37)

The paper then analyzes the additional penalty we occur in trying to find the best α. This
is done by discretizing the parameter space Θ = T ×A×Σ such that θ = (τ,α,σ) ∈ Θ and
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|Θ| = J <∞. Assume that we have in addition to the training sample Sn also a validation set
V = {(v1, z1), ..., (vn , zn)}, for convenience also of size n. Let hSSL

θ
be the semi-supervised

hypothesis trained on Sn with the parameters θ. We then choose the final hypothesis hSSL

by choosing θ with cross-validation

hSSL := argmin
hSSL
θ

n∑
i=1

(hSSL
θ (vi )− zi )2. (2.38)

Theorem 11 (Theorem 6.1). Let E(h) := R(h)−R(h∗) be the excess risk, where h∗ is the
true regression function. There are constants [not universal, depend to some degree on the
problem] 0 < a < 1 and 0 < t < 15

38(M 2+σ2)
such that

ESn ,Um ,V [E(hSSL)] ≤ 1

1−a

(
min
θ∈Θ

ESn ,Um [E(hSSL
θ )]+ ln(nt4M 2)+ t (1−a)

nt

)
, (2.39)

This is particularly interesting since we implicitly compare to the supervised solution,
as long as we include α= 0 ∈A. From Inequality (2.39) we see that the validation process
introduces a penalty term of O( ln(n)

n ). In the worst case this can be seen as an additional
error term if we use the semi-supervised method, but the assumption is actually not true.

Finally the authors identify a case where the semi-supervised learning rate can be
strictly better than the supervised learning rate, much like we have seen in Section 2.3.2. In
particular, they construct a set of distributions Pn , which depends on the number of labeled
samples, such that

1. the estimator hSSL(x)τ,α,σ, as defined in Equation (2.35), fulfills

sup
P∈Pn

ESn [R( f̂τ,α,σ)] ≤
(

C

n

) 2
2+ξ

,

under the assumption that m ≥ 2
2

2+ξ .

2. for all purely supervised estimators hSL we have that

sup
P∈Pn

ESn [hSL] ≥
(

C

n

) 2
d−1

.

To obtain essentially different learning rates we need that ξ< d −3, which is the case if P is
concentrated on a set with dimension strictly less than d −3 [44, Lemma 1]. It is also worth
noting that the construction of Pn works by concentrating the distributions more for bigger
n. If Pn does not concentrate, and remains smooth for bigger n, the labeled data is already
enough to approximate the marginal distribution.

This is similar to the work presented in Section 2.6.3, as they also show that SSL can
only work if the marginal distribution P (X ) is not too easy to identify. We can also draw
parallels to the work presented in Section 2.3.2; if we would restrict the domain distributions
such that only smooth circle embeddings would be allowed, a supervised learner could also
learn efficiently. This is because then a finite number of labeled samples would be sufficient
to learn the domain distribution uniformly, so the semi-supervised learner would loose its
benefits.
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2.7. LEARNING IN THE TRANSDUCTIVE CASE
While many methods use unlabeled data to find better classification rules, some consider
schemes where one only cares about the labels of the unlabeled data. Those methods are
often called transductive [5, Chapter 8]. We present the most important theoretical results.
A more detailed survey on theoretical and practical transductive learning can be found
in Chapter 2 of Pechyony [45]. In Subsection 2.7.1 we present learning bounds in the
transductive case. They often arise as direct extension of the inductive case and related
concepts. In Subsection 2.7.2, which cannot be found as part of [45], we present two papers
that touch on the topic of so-called safe semi-supervised learners. Their aim is to construct
semi-supervised learners that are never worse than their supervised counterparts.

One can distinguish two transductive settings, where the essential difference is that in
one setting we sample without replacement, so the samples become dependent. The work
about transductive learning which we present here deals with Setting 1, mostly because of
convenience. We note, however, that one can transform bounds from Setting 1 to bounds
from Setting 2 [5, Theorem 8.1].

Setting 1

1. We start with a fixed set of points Xn+m = {x1, ..., xn+m}.

2. We reveal the labels Yn of a set Xn ⊂ Xn+m which is uniformly selected at random.
For notational convenience we usually assume w.l.o.g that Xn are the first n and Xm

are the last m points of Xn+m .

3. Based on Sn = (Xn ,Yn) and Xm we try to find a classifier h with good performance
on Rm(h) :=∑n+m

i=n l (xi , yi ).

Setting 2

1. We start with a fixed distribution P on X ×Y .

2. We draw n i.i.d. samples according to P to obtain a training set Sn . We draw m i.i.d.
samples according to P (X ) to obtain a test set Xm .

3. Based on Sn = (Xn ,Yn) and Xm we try to find a classifier h with good performance
on ESn ,Xm

[ 1
m

∑n+m
i=n l (h(xi ), yi )

]
.

Note that in this section our test error is denoted by Rm(h) and the training error by
Rn(h). This reflects that the test is of size m while the training set of size n. We will
not use the hat notation here, as in the transductive setting we do not necessarily have an
underlying distribution.

2.7.1. TRANSDUCTIVE LEARNING BOUNDS
VAPNIK’S IMPLICIT TRANSDUCTIVE BOUND
Transductive inference goes back to Vapnik [46]. We present the result found as Equation
(8.15) in Theorem 8.2. from Vapnik [5]. Assume that we are given n +m samples and we
pick at random n samples on which we can train. We then want to estimate the error we
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make on the leftover m samples. Vapnik shows that a hypergeometric distribution describes
the probability that the observed error on the train and test set is bigger than ε

P

(
|Rm(h)−Rn(h)|√

Rn+m(h)
> ε

)
.

Let ε∗ be the smallest ε> 0 such that

P

(
|Rm(h)−Rn(h)|√

Rn+m(h)
> ε}

)
≤ 1−δ.

Using a uniform bound9 and substituting Rn+m = m
n+m Rm + n

n+m Rn one can derive the
following result.

Theorem 12. For all h ∈ {−1,1}n+m the following inequality holds with a probability of
1−δ

Rm(h) ≤ R(h)+ (ε∗)2m

2(m +n)
+ε∗

√
R(h)+

(
ε∗m

2(m +n)

)2

(2.40)

The problem of this inequality is that the term ε∗ is an implicit function of n,m,δ and h
and thus it is unclear what the learning rates are that we can actually achieve. This problem
is addressed in the paper presented in the next section.

BOUNDS AS A DIRECT EXTENSION OF INDUCTIVE BOUNDS

The transductive bound of Inequality (2.40) is difficult to interpret as it contains a func-
tion which can only be implicitly calculated. Derbeko et al. [47] find explicit transductive
bounds in a PAC-Bayes framework. We present a bound from the paper which is essentially
a direct extension of an inductive bound from [48]. To present the result they use a Gibbs
classifier. For that, let q be any distribution over the hypothesis set H . The Gibbs classifier
Gq classifies a new instance x ∈X with an h ∈ H drawn accordingly to q . The risk of Gq

over the set Sn is then Rn(Gq ) = Eh∼q [ 1
n

∑n
i=1 l (h(xi ), yi )].

Theorem 13 (Theorem 17). Let p be any (prior) distribution on H , which may depend
on Sn+m , and let δ > 0. Then for any randomly selected subset Sn ⊂ Sn+m and for any
distribution q on H , it holds with probability at least 1−δ that

Rm(Gp ) ≤ Rn(Gp )+ m +n

m

√
2Rn(Gp )(KL(q ||p)+ ln n

δ )

n −1
+ 2(KL(q ||p)+ ln n

δ )

n −1

 . (2.41)

This theorem is indeed a direct extension of the inductive supervised case as found
under Equation (6) in [48], the only difference is that the term m+n

m is missing. Although
McAllester [49] showed that under certain conditions one can select the prior p after having
seen Sm , this is generally not allowed in inductive PAC-Bayesian theory. In the transduc-
tive setting this is allowed, as we only care about the performance on the points from the

9Note that in the transductive case we effectively can have only finitely many different hypotheses.
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set Sn+m . In a way this is the same as learning with a fixed distribution when our fixed
distribution has only mass on finitely many points [50] .

Derbeko et al. [47] exploit this by choosing a prior p with a cluster method. More
precisely, after observing the dataset Xn+m one constructs c different clusterings on it. Each
clustering leads to multiple classifiers by assigning all points in a cluster to the same class.
One then puts essentially a uniform prior p on those classifiers and we select a posterior
distribution q over the classifiers by minimizing Inequality (2.41), and obtain the Gibbs
classifier Gq .

Comparing this approach to the fully supervised (and thus necessarily inductive) case,
we realize that the possible performance improvements have the same flavor as the improve-
ments one can gain in semi-supervised learning with assumptions, as analyzed in Sections
2.5 and 2.6. Using the clustering approach from above will reduce the penalty in Inequal-
ity (2.41) which is coming from KL(q||p). In other words: We reduce the variance of the
classifier. On the other hand, using a clustering approach will bias our solution, and we
will degrade over a supervised solution if clusterings have a high impurity, meaning that
the clusterings don’t have clear majority classes.

BOUNDS BASED ON STABILITY
In [51] transductive bounds are explored under the notion of stability, the assumption that
the output of a classifier does not change much if we perturb the input a bit. The transductive
bounds are an extension of the inductive bounds that use the notion of uniform stability [52]
and weak stability [53, 54]. We present the simpler transductive bound based on uniform
stability and explain the difference to weak stability.

Assume that htrans ∈ H is a transductive learner, so a hypothesis that we (determinis-
tically) choose based on a labeled set Sn and an unlabeled set Xm . Furthermore define
Si j

n := (
Sn \ {(xi , yi )}

)∪ {(x j , y j )} and X i j
m := (

Xm \ {x j }
)∪ {xi }. So Si j

n is the set we obtain
when we replace in Sn the i -th example from the training set with the j -th example from
the test set. We say that htrans is β-uniformly stable if for all choices Sn ⊂ Sn+m and for all
1 ≤ i , j ≤ n +m such that (xi , yi ) ∈ Sn and x j ∈ Xm it holds that

max
1≤k≤n+m

|htrans
(Sn ,Xm )(xk )−htrans

(S
i j
n ,X

i j
m )

(xk )| ≤β. (2.42)

In words: The transductive learner htrans is β-uniformly stable if the output changes less
than β if we exchange two points from the train and test set. The bounds are formulated
using a γ-margin loss. For γ> 0 we set

lγ(y1, y2) = max(0,min(1,1− y1 y2

γ
)). (2.43)

Consequently we write Rγ(h) for the risk of h when measured with the loss lγ. Note that
for γ→ 0 the lγ loss converges to the 0−1 loss.

Theorem 14 (Theorem 1). Let htrans be a β-uniformly stable transductive learner and
γ,δ > 0. Then, with probability of at least 1−δ over all train and test partitions, we have
that

Rm(htrans) ≤ Rγ
n(htrans)+ 1

γ
O

β
√

mn ln 1
δ

m +n

+O

(√
(

1

m
+ 1

n
) ln

1

δ

)
. (2.44)
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Note that β will depend on n and m, and we would expect that the bigger our training
set is, the less our algorithm changes if we exchange two samples from the train and test set.
In the transductive bounds based on Rademacher complexities, in the section further below,
one can achieve a convergence rate of 1p

min(m,n)
. To obtain the same rate with Inequality

(2.44) we need that β behaves as O
(√

( 1
n + 1

m ) 1
min(n,m)

)
. This stability rate can be indeed

achieved for regularized RKHS methods as demonstrated by Johnson and Zhang [55].

BOUNDS BASED ON TRANSDUCTIVE RADEMACHER COMPLEXITIES

Rademacher complexities are a well studied and established tool for risk bounds in the
inductive case [56]. El-Yaniv and Pechyony [57] introduce a transductive version of these
quantities. While in the inductive case we have to chose our hypothesis class before seeing
any data, the transductive case allows us to chose the hypothesis class data-dependent.
The definition of the transductive Rademacher complexity of a hypothesis class H follows
closely the inductive case and will be denoted by tRad(H). Utilizing the γ-margin loss
function (2.43) and the corresponding empirical risk Rγ(h), the paper shows then that for
all h ∈ H

Rm(h) ≤ Rγ
n(h)+ tRad(H)

γ
+O

(
1p

min(m,n)

)
.

Examining the inequality on first sight, it seems somewhat surprising that the labeled
and unlabeled data play an equivalent role in terms of convergence. While slow conver-
gence for n ¿ m is not really surprising one has to realize that in the case where m ¿ n
the transductive risk has a very high variance and thus we have large intervals for high-
confidence estimations. This bound can be used to directly estimate the trandsuctive risk
for transductive algorithms.

Maximov et al. [58] make different use of Rademacher complexities to derive risk
bounds for a specific multi-class algorithm. Their algorithm uses a given clustering based
on the full data to find a hypothesis which is in some way compatible with the found clus-
tering. The transductive multi-class Rademacher complexities then make direct use of this
clustering. With this algorithm the authors show that if we have K initial classes one can
achieve a learning rate in the order of Õ(

p
Kp
n
+ K 3/2p

m
) [58, Corollary 4]. Not surprisingly the

learning rates are essentially the same as in the binary transductive cases, although we note
that this analysis was done with Setting 2.

BOUNDS BASED ON LEARNING A KERNEL

As a direct extension of the inductive case [59], Lanckriet et al. [60] propose to use the
unlabeled data to learn a kernel that is suitable for transductive learning. The idea is to use
a kernel method that allows to choose from a certain class of kernels in order to optimize
the objective function. The presented PAC-bound shows that good (transductive) perfor-
mance is achieved with a good trade-off between the complexity of the kernel class and the
empirical error. Their exemplary kernel classes are designed as follows. Given an initial set
of kernels {K1, ...,Kk }, that are defined on the labeled and unlabeled data, they define

Kc := {K =
k∑

j=1
µ j K j | K < 0,µ j ∈R, trace(K ) ≤ c}
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and

K +
c := {K =

k∑
j=1

µ j K j | K < 0,µ j ∈R,µ j ≥ 0,trace(K ) ≤ c}.

Every class of kernels K give rise to the hypothesis set

HK = {h(x j ) :=
2n∑
j=1

αi Ki j | K ∈K,α= (α1, ...,α2n) ∈R2n ,αt Kα≤ 1

γ2 }.

The error bound found in this paper reads then as follows.

Theorem 15 (Theorem 24). For every γ> 0, with probability at of at least 1−δ over every
training and test set of size n (so m = n) uniformly chosen from (X ,Y ), every function
h ∈ HK has

Rm(h) ≤ R̂hinge
n (h)+ 1p

n

(
4+

√
2log(

1

δ
)+

√
comp(K)

nγ2

)
,

where R̂hinge(h) is the empirical hinge loss of h and comp(K) is a complexity measure of
K defined as

comp(K) = Emax
K∈K

σt Kσ

with σ being a vector of 2n Rademacher variables. The complexity measure for the previ-
ously defined kernel classes Kc and K+

c can be computed and bounded by

Kc = cEmax
K∈K

σt K

traceK
σ≤ cn,

and

K+
c ≤ c min

(
k,n max

1≤ j≤k

λ j

trace(K j )

)
,

where λ j is the largest eigenvalue of K j .

Note that since m = n we find that this bound gives the same learning rate of O( 1p
m+n

)

as also found in Sections 2.7.1 and 2.7.1.
The effect the unlabeled data has on this procedure depends on the initial kernel guesses

{K1, ...,Kk }, but is of no further interested in this paper. We can find extensions in [61](p.
282, bottom), where the Ki are chose in a particular way: If we assume that ψi is the
i -th eigenvector of the graph Laplacian L we can set Ki = ψiψi

t . As described in [61]
(p. 280) we can then enforce classifiers found by this procedure to be smooth along the
data manifold, if we enforce that µi is small when the eigenvalue of ψi is large. Similar
results are obtained by Johnson and Zhang [62], where the biggest difference are the kernels
that are used. Instead of using an initial set of kernels, Johnson and Zhang [62] use the
spectral decomposition of a given kernel and shrinks it, where the shrinkage depends on the
unlabeled data.
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2.7.2. SAFE TRANSDUCTIVE LEARNING
In the semi-supervised learning community it is well known that using a semi-supervised
procedure often comes with a risk of performance degradation [61, Chapter 4]. This prob-
lem led some authors to ask the question whether it is possible to do semi-supervised learn-
ing in a safe way, which means that one can guarantee that the SSL will not be worse than
a supervised counterpart. So far we compared mostly SSL and SL risk bounds. But, even
if the assumptions of the risk bounds are true, a smaller bound still does not guarantee im-
provements. We will specifically look at work from Li and Zhou [63] and Loog [12]. The
results from both works are based on a minimax formulation and show that, under some
assumptions, one can indeed guarantee improvements by doing SSL. The analysis is also
done in the transductive Setting 1. This means that we have a training set Sn and a test set
Xm .

A MINIMAX APPROACH FOR SVMS

The baseline for the model proposed by Li and Zhou [63] is the S3V M [64], which takes the
unlabeled data into account by finding a low-margin solutions. The proposed model S4V M
finds a few diverse low-margin solutions, and then picks amongst these within a minimax
framework to hedge against possible worst case scenarios. Assume we found a set of a few
proposed solutions Hp = {h1, ...,hT }. The idea is to contrast those solutions to the supervised
solutions hSV M . Assume for now that we know the true labels Ym = (yn , ..., yn+m) of Xm .
With this we can calculate the gain and loss in performance when comparing the supervised
hSV M to any other classifier h.

gain(h,Ym ,hSV M ) :=
n+m∑
i=n

I{h(xi )=yi }I{hSV M (xi )6=yi } (2.45)

loss(h,Ym ,hSV M ) :=
n+m∑
i=n

I{h(xi )6=yi }I{hSV M (xi )=yi } (2.46)

If we define our objective as to be the difference of those two

J (h, y,hSV M ) = gain(h,Ym ,hSV M )− loss(h,Ym ,hSV M ), (2.47)

we can define a semi-supervised model hSSL as the maximizer of this difference. Since we
actually don’t know the true labeling, we assume a worst-case scenario that leads to the
following max-min formulation.

hSSL = arg max
h∈Hp

min
Y ∈Yp

J (h,Y ,hSV M ) (2.48)

Here Yp = {(h(u1), ...,h(um)) | h ∈ Hp } is the set of all possible labelings that we can achieve
with Hp . To guarantee that our SSL is not worse than the SL it is important to assume that
the true labels Ym are part of the set Yp , because only then we can guarantee the following.

Theorem 16 (Theorem 1). If Ym ∈ Yp , the accuracy of hSSL is never worse than the accu-
racy of hSV M , when performance is measured on the unlabeled data Xm .
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Again, the crucial assumption is that Ym ∈ Yp , which corresponds in this case exactly
to a low-density assumption. This is because the set Yp contains possible labelings that
come from classifiers that fulfill the low density assumption. One can imagine to use the
same procedure also for different assumptions as we can encode them by Yp , the set of all
labelings that we consider possible. While this paper still needs some assumptions, Loog
[12] shows a case where we get guaranteed improvements assumption-free. This, however,
comes at the cost of measuring the improvements in terms of likelihood, and not in terms
of accuracy.

A MINIMAX APPROACH FOR GENERATIVE MODELS
The second paper in this line of research is to our knowledge possibly the only paper in
semi-supervised learning that considers a completely assumption-free case. This of course
comes at a cost, more on that later. The starting point is a family of probability density
functions p(x, y | θ) on X ×Y , where θ ∈Θ is a parametrization. First we set θSL to be the
supervised maximum likelihood estimator for the model p(x, y | θ), so

θSL = argmin
θ∈Θ

[ ∑
(x,y)∈Sn

ln p(x, y | θ)

]
.

Assume for now that we know the true conditional probabilities p = (p1, ..., pm+n) ∈
[0,1]m+n with pi = P (Y = 1 | X = xi ) for xi ∈ Sn ∪ Xm . If we would know this we would
actually rather optimize the expected log-likelihood of the model p(x, y | θ) evaluated on
the complete dataset Xn+m = {x1, ..., xn+m},

L(θ | Xn+m , p) = EY ∼p

[ ∑
x∈Xn+m

ln p(x,Y | θ)

]
. (2.49)

To be better than the supervised model θsup on the complete (transductive) likelihood (2.49)
we would like to maximize the likelihood gain over it. So we want to find the θ that
maximizes the likelihood gain

C (θ,θSL | Xn+m , p) = L(θ | Xn+m , p)−L(θSL | Xn+m , p). (2.50)

We cannot maximize (2.50) directly, since we do not know the class true probability dis-
tribution p. We instead set p(yi | xi ) = 1 for all labeled points (xi , yi ) ∈ Sn which gives us
the vector pn = (p(1 | x1), ..., p(1 | xn)) and for the unlabeled points Xm we consider a worst
case, which leads to the following max-min formulation.

θSSL = argmax
θ∈Θ

min
pm∈[0,1]m

C (θ,θSL | Xn+m , (pn , pm)) (2.51)

Note that the vector pm can be the true labels Ym of the unlabeled data Xm . Note also that
C (θSSL,θSL | Xn+m , (pn , pm) ≥ 0 for all pm ∈ [0,1]m , so in particular if pm = Ym , as we can
always chose θSSL = θSL. That means that the following theorem holds.

Theorem 17 (Lemma 1). Let θSSL be a solution found in Equation (2.51), then

L(θSL | Xn+m ,Yn+m) ≤ L(θSSL | Xn+m ,Yn+m), (2.52)
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and for some specific choices for the model p(x, y | θ) the previous inequality is almost
surely strict. So we are guaranteed that the transductive likelihood of our semi-supervised
model is larger than of the supervised model.

An important difference between this work and the previous section is that for this
paper one employs a generative model p(x, y), while the SVM used by Li and Zhou [63]
is a discriminative model that inherently optimizes the class probability p(y | x). Krijthe
and Loog [13], see also Subsection 2.3.1, show that to some degree it is actually necessary
to use a generative model: The semi-supervised estimator of Equation (2.51) will coincide
with the supervised estimator for a large class of discriminative models. There are several
explanations why a joint model p(x, y) helps out in the situation. The intuitive and obvious
one is that the likelihood of this model takes the marginal distribution P (X ) into account, a
quantity that can be measured from unlabeled data.

2.8. DISCUSSION
We covered the main theoretical ideas and results that have been put forward over the past
four decades in the field of semi-supervised learning. Specifically, we focused on results
that inform us about its potential and the lack of such potential. We covered the answers to
the questions: What are the limits of semi-supervised learning? What are the assumptions
of different methods? What can we achieve if the assumptions are true? We like to wrap up
our survey and mention a few realizations that, we think, get to the core of it.

2.8.1. ON THE LIMITS OF ASSUMPTION FREE SSL
In Section 2.3 we reviewed work that analyzes the limits of semi-supervised learning when
no particular assumptions about the distribution are made, which a semi-supervised learner
can exploit. The most general formulation of this is captured in Conjecture 1 and 2. They
essentially state that a semi-supervised learner can beat all supervised learners by at most
a constant. We then presented work that shows that the conjectures do not hold in full
generality, but in particular situations. They essentially hold for the realizable case and hy-
pothesis classes of finite VC-dimension, while they do not hold in the realizable or agnostic
case for infinite VC-dimension. It remains to investigate the case of agnostic PAC-learning
with a finite VC-dimension.

2.8.2. HOW GOOD CAN CONSTANT IMPROVEMENT BE?
The question studied in Section 2.3.1 and the previous Subsection is whether a semi-
supervised learner can offer more than a constant improvement, in terms of sample com-
plexity. One can, however, also ask the question how good already a constant improvement
can be in practice. The answer to that can be seen through a thought experiment. Assume
that we have two classes given by two concentric d-dimensional spheres. Assume that we
have enough unlabeled data for a manifold regularization scheme to identify the spheres.
With this the semi-supervised learner needs only one labeled sample per class to give a per-
fect classification, while every supervised learner needs for good generalization a labeled
sample size which increases in the dimension d . In this case manifold regularization is
very effective even though we will see in the next chapter that, depending on the setting, it
might only have a constant improvement in terms of sample complexity. This seems con-
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tradictory, but recall that the constant can depend on the hypothesis class. If the supervised
classifier uses a hypothesis class H , we can interpret manifold regularization as switching
to a restricted space H̃λ. This space only contains hypotheses that fulfill a manifold as-
sumption, where the regularization parameter λ indicates to which degree this assumption
is enforced. With this we can keep the VC-dimension of the restricted class fixed, while the
VC-dimension of H will increase with the dimension. This in turn means that the constant
improvement can be arbitrarily high. While this example uses the manifold assumption,
Golovnev et al. [17] give a example with a semi-supervised learner that has the full knowl-
edge of the domain distribution. We explain the particular example in Section 2.3.1. This
shows that the constant improvement can be arbitrarily high if we have further assumptions,
like the manifold assumption, or full knowledge of the marginal distribution. It is an open
question if one can have arbitrarily high constants without assumptions and with limited
unlabeled data.

2.8.3. THE AMOUNT OF UNLABELED DATA WE NEED
In Section 2.3.2 we presented three settings, in which a semi-supervised learner can PAC-
learn, while no supervised learner can. For that we need, in principle, an infinite amount
of unlabeled data and we also cannot create an example where that is not the case. If a
fixed finite amount of unlabeled data would be enough to learn under any given distribu-
tion P we could just use the same strategy to learn in a supervised way as we can always
chose to ignore the label. The way those examples work is that for each fixed P a finite
amount of unlabeled data is sufficient, but this amount can be arbitrarily large. This has the
consequence that if we want to learn over all possible distributions we need an arbitrarily
large amount (= ∞) of unlabeled data. The improvements that semi-supervised learning
can offer which we present in Sections 2.4, 2.5 and 2.6 do not necessarily need an infinite
amount of unlabeled data, although it sometimes assumed for convenience. The difference
is that in those settings supervised learner are also able to PAC-learn, but a semi-supervised
learner is able to do this with fewer labeled samples. In Sections 2.6.2 and 2.6.3 we saw two
instantiations of a cluster assumption, and the authors showed that the amount of unlabeled
data needs to increase exponentially with the amount of labeled data to make use of this
assumption. This is because the error in finding the clusters decreases only polynomially in
the number of unlabeled points as shown in Inequality 2.32.

2.8.4. USING ASSUMPTIONS IN SEMI-SUPERVISED LEARNING
In Sections 2.5 and 2.6 we investigate what a semi-supervised learner can achieve once as-
sumptions are made. A semi-supervised assumption is a link between the domain distribu-
tion and the labeling function. In particular we assume that we can ignore certain labeling
functions after we have seen a specific domain distribution. The cluster assumption, for
example, would exclude labeling functions that do not assign the same label to points be-
longing to the same cluster. The obvious, but real problem with this is that we do not know
if such assumptions do hold or not. We speculate that testing if such an assumption is true
or not consumes as many labeled points as learning directly a good classification rule with
a supervised learner. To make this statement precise we define an assumption as a property
of the distribution P on X ×Y . Let P A be a set of distributions on X ×Y . We say that
P fulfills assumption A iff P ∈P A . For example P A could only contain distributions such
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that the marginal distributions P (X ) have always support on clusters, and each cluster has
a unique label. Then P fulfills this particular cluster assumption A iff P ∈P A . The crucial
thing to note is, that the assumption A is a property on P , so we need labeled samples to
test whether its true or not. It is thus of interest to compare the consumption of labeled data
for reducing the uncertainty about the assumption to the consumption of labeled data for
the convergence of the semi-supervised learner. We might of course know a priori that the
assumption is true and do not need to test it, but what if not?

One of the few works that analyze this is reviewed in Section 2.6.4. Azizyan et al.
[44] show that one can get essentially faster rates if the assumption is true, but we pay a
penalty of O( ln(n)

n ) if it is not true. Balcan et al. [65] investigates how one can test for a
property in an active way, so when we can choose which samples we want to label. The
implications of this testing procedure for semi-supervised learning are, however, not clear.
Of course, we may claim that it is not even necessary to test if the assumption is true or not,
following Vapnik’s principle: Why should we test if the assumption is true or not, when we
are ultimately only interested whether the semi-supervised learner performs better or not?
We believe that this is an important open question in semi-supervised learning.

2.9. DEFINITIONS
Definition 1. Supervised Sample Complexity Given a learning problem (P, l , H) and ε,δ>
0 we define the sample complexity m(B , H ,P,ε,δ) ∈ N of a supervised learner B as the
smallest natural number k such that with probability at least 1−δ over all possible draws
of a labeled sample Sk it holds that

R(B(Sk ))− inf
h∈H

R(h) ≤ ε.

Or in short

m(B , H ,P,ε,δ) = {mink ∈N | P

(
R(B(Sk ))− inf

h∈H
R(h) ≤ ε)

)
≥ 1−δ}.

Although not explicitly mentioned in the definition above, if B is semi-supervised it has
additional input in form of either P (X ), or a random draw from it. Sometimes we drop the
learner B from the sample complexity notation m(B , H ,P,ε,δ), and write either m(H ,P,ε,δ)
or mSSL(H ,P,ε,δ) if there exists a supervised or semi-supervised learner respectively that
achieves the sample complexity.

Definition 2. Semi-Supervised Sample Complexity Given a learning problem (P, l , H) and
ε,δ> 0 we define the sample complexity mSSL(B , H ,P,ε,δ) ∈N of a semi-supervised learner
B , which has information about the marginal in the form of U ∈ {Um ,P (X )}, as the smallest
natural number k such that with probability at least 1− δ over all possible draws of a
labeled sample Sk it holds that

R(B(Sk ,U ))− inf
h∈H

R(h) ≤ ε.

Or in short

mSSL(B , H ,P,ε,δ) = {mink ∈N | P

(
R(B(Sk ),U )− inf

h∈H
R(h) ≤ ε)

)
≥ 1−δ}.
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symbol explanation
X Feature space, for example X =Rn

Y Label space. Classification: Y = {−1,1}. Regression: Y =R.
P Distribution on X ×Y
P A set of distributions on X ×Y
X ,Y Random variables distributed according to P

P (X ) Marginal distribution of P w.r.t to X
P (Y ) Marginal distribution of P w.r.t to Y
D Domain distribution on X
D A set of domain distributions on X
I{Boolean expression} Indicator function (equals 1 if expression is true and 0 else)
l (ŷ, y) Loss function, if not specified otherwise l (ŷ, y) = I ŷ=y

H Hypothesis class, where each h ∈ H is a map h :X →Y
R(h) The risk of h ∈ H . Precisely: R(h) = EX ,Y [l (h(X ), y)]

(xi , yi ) A realization of (X ,Y )

Sn A labeled sample set of size n, Sn = ((x1, y1), ..., (xn , yn))

Um A unlabeled sample set of size m, usually Um = {xn+1, ..., xn+m}

R̂n(h) = R̂(h) Empirical risk of h w.r.t Sn , R̂(h) = 1
n

∑n
i=1 l (h(xi ), yi )

hSSL Model trained on Sn and Um or P (X ), where hSSL :X →Y
hSL Model trained on Sn , where hSL :X →Y
m(H ,ε,δ) Supervised sample complexity, see Definition 1
mSSL(H ,ε,δ) Semi-supervised sample complexity, see Definition 2

Table 2.1: Complete list of notations used in this chapter.

We usually drop the learner B from the sample complexity notation m(B , H ,P,ε,δ), and
write either m(H ,P,ε,δ) or mSSL(H ,P,ε,δ) if there exists respectively a supervised or semi-
supervised learner that achieves this sample complexity. Similarly we drop the distribution
P from the notation and write m(H ,ε,δ) or mSSL(H ,ε,δ) if we can achieve this sample
complexity for all distributions P .
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3
MANIFOLD REGULARIZATION

Manifold regularization is a commonly used technique in semi-supervised learning. It en-
forces the classification rule to be smooth with respect to the data-manifold. Here, we derive
sample complexity bounds based on pseudo-dimension for models that add a convex data
dependent regularization term to a supervised learning process, as is in particular done in
Manifold regularization. We then compare the bound for those semi-supervised methods
to purely supervised methods, and discuss a setting in which the semi-supervised method
can only have a constant improvement, ignoring logarithmic terms. By viewing Manifold
regularization as a kernel method we then derive Rademacher bounds which allow for a
distribution dependent analysis. Finally we illustrate that these bounds may be useful for
choosing an appropriate manifold regularization parameter in situations with very sparsely
labeled data.

47
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3.1. INTRODUCTION
In many applications, as for example image or text classification, gathering unlabeled data
is easier than gathering labeled data. Semi-supervised methods try to extract information
from the unlabeled data to get improved classification results over purely supervised meth-
ods. A well-known technique to incorporate unlabeled data into a learning process is man-
ifold regularization (MR) [1, 2]. This procedure adds a data-dependent penalty term to the
loss function that penalizes classification rules that behave non-smooth with respect to the
data distribution. This chapter presents a sample complexity and a Rademacher complex-
ity analysis for this procedure. In addition it illustrates how our Rademacher complexity
bounds may be used for choosing a suitable Manifold regularization parameter.

We organize this chapter as follows. In Sections 3.2 and 3.3 we discuss related work
and introduce the semi-supervised setting. In Section 3.4 we formalize the idea of adding
a distribution-dependent penalty term to a loss function. Algorithms such as manifold,
entropy or co-regularization [1, 3, 4] follow this idea. Our formalization of this idea is
inspired by Balcan and Blum [5] and allows for a similar sample complexity analysis. Sec-
tion 3.5 reviews the work from Balcan and Blum [5] and generalizes a bound from their
paper. We use this to derive sample complexity bounds for the proposed framework, and
thus in particular for MR. For the specific case of regression, we furthermore adapt a sample
complexity bound from Anthony and Bartlett [6], which is essentially tighter than the first
bound, to the semi-supervised case. In the same section we sketch a setting in which we
show that if our hypothesis set has finite pseudo-dimension, and we ignore logarithmic fac-
tors, any semi-supervised learner (SSL) that falls in our framework has at most a constant
improvement in terms of sample complexity. This and related behavior has been observed
and investigated before [7, 8] for assumption free SSL and we relate our results to this pre-
vious work. In Section 3.6 we show how one can obtain distribution dependent complexity
bounds for MR. We review a kernel formulation of MR [9] and show how this can be used
to estimate Rademacher complexities for specific datasets. In Section 3.7 we illustrate on
an artificial dataset how the distribution dependent bounds could be used for choosing the
regularization parameter of MR. This is particularly useful as the analysis does not need an
additional labeled validation set. The practicality of this approach requires further empirical
investigation. In Section 3.8 we discuss our results and speculate about possible extensions.

3.2. RELATED WORK
There are currently two related analyses of MR that show, to some extent, that a SSL can
learn efficiently if it knows the true underlying manifold, while a fully supervised learner
may not. In [10] we find an investigation of a setting where distributions on the input space
X are restricted to ones that correspond to unions of irreducible algebraic sets of a fixed size
k ∈N, and each algebraic set is either labeled 0 or 1. A SSL that knows the true distribution
on X can identify the algebraic sets and reduce the hypothesis space to all 2k possible label
combinations on those sets. As we are left with finitely many hypotheses we can learn them
efficiently, while they show that every supervised learner is left with a hypothesis space of
infinite VC dimension.

The work in [2] considers manifolds that arise as embeddings from a circle, where the
labeling over the circle is (up to the decision boundary) smooth. They then show that a
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learner that has knowledge of the manifold can learn efficiently while for every fully super-
vised learner one can find an embedding and a distribution for which this is not possible.

The relation to this chapter is as follows. They provide specific examples where the
sample complexity between a semi-supervised and a supervised learner are infinitely large,
while we explore general sample complexity bounds of MR and sketch a setting in which
MR can not essentially improve over supervised methods.

3.3. THE SEMI SUPERVISED SETTING
We work in the statistical learning framework: we assume we are given a feature domain
X and an output space Y together with an unknown probability distribution P over X ×Y .
In binary classification we usually have that Y = {−1,1}, while for regression Y = R. We
use a loss function φ : R×Y → R, which is convex in the first argument and in practice
usually a surrogate for the 0-1 loss in classification, and the squared loss in regression
tasks. A hypothesis f is a function f : X → R. We set (X ,Y ) to be a random variable
distributed according to P , while small x and y are elements of X and Y respectively.
Our goal is to find a hypothesis f , within a restricted class F , such that the expected loss
Q( f ) := E[φ( f (X ),Y )] is small. In the standard supervised setting we choose a hypothesis
f based on an i.i.d. sample Sn = {(xi , yi )}i∈{1,..,n} drawn from P . With that we define
the empirical risk of a model f ∈ F with respect to φ and measured on the sample Sn as
Q̂( f ,Sn) = 1

n

∑n
i=1φ( f (xi ), yi ). For ease of notation we sometimes omit Sn and just write

Q̂( f ). Given a learning problem defined by (P,F ,φ) and a labeled sample Sn , one way to
choose a hypothesis is by the empirical risk minimization principle

fsup = argmin
f ∈F

Q̂( f ,Sn). (3.1)

We refer to fsup as the supervised solution. In SSL we additionally have samples with un-
known labels. So we assume to have n+m samples (xi , yi )i∈{1,..,n+m} independently drawn
according to P , where yi has not been observed for the last m samples. We furthermore
set U = {x1, ..., xxn+m}, so U is the set that contains all our available information about the
feature distribution.

Finally we denote by mL(ε,δ) the sample complexity of an algorithm L. That means
that for all n ≥ mL(ε,δ) and all possible distributions P the following holds. If L outputs a
hypothesis fL after seeing an n-sample, we have with probability of at least 1−δ over the
n-sample Sn that Q( fL)−min

f ∈F
Q( f ) ≤ ε.

3.4. A FRAMEWORK FOR SEMI-SUPERVISED LEARNING
We follow the work of Balcan and Blum [5] and introduce a second convex loss function
ψ : F ×X → R+ that only depends on the input feature and a hypothesis. We refer to ψ as
the unsupervised loss as it does not depend on any labels. We propose to add the unlabeled
data through the loss function ψ and add it as a penalty term to the supervised loss to obtain
the semi-supervised solution

fsemi = argmin
f ∈F

1

n

n∑
i=1

φ( f (xi ), yi )+λ 1

n +m

n+m∑
j=1

ψ( f , x j ), (3.2)
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where λ> 0 controls the trade-off between the supervised and the unsupervised loss. This is
in contrast to [5], as they use the unsupervised loss to restrict the hypothesis space directly.
In the following section we recall the important insight that those two formulations are
equivalent in some scenarios and we can use [5] to generate sample complexity bounds for
the here presented SSL framework.

For ease of notation we set R̂( f ,U ) = 1
n+m

∑n+m
j=1 ψ( f , x j ) and R( f ) = E[ψ( f , X )]. We

do not claim any novelty for the idea of adding an unsupervised loss for regularization. A
different framework can be found in Chapelle et al. [11, Chapter 10]. We are, however, not
aware of a deeper analysis of this particular formulation, as done for example by the sample
complexity analysis in this chapter. As we are in particular interested in the class of MR
schemes we first show that this method a fits our framework.

Example: Manifold Regularization Overloading the notation we write now P (X ) for
the distribution P restricted to X . In MR one assumes that the input distribution P (X ) has
support on a compact manifold M ⊂X and that the predictor f ∈F varies smoothly in the
geometry of M [1]. There are several regularization terms that can enforce this smoothness,
one of which is

∫
M ||∇M f (x)||2dP (x), where ∇M f is the gradient of f along M . We know

that
∫

M ||∇M f (x)||2dP (x) may be approximated with a finite sample of X drawn from P (X )
[12]. Given such a sample U = {x1, ..., xn+m} one defines first a weight matrix W , where
Wi j = e−||xi−x j ||2/σ. We set L then as the Laplacian matrix L = D−W , where D is a diagonal
matrix with Di i = ∑n+m

j=1 Wi j . Let furthermore fU = ( f (x1), ..., f (xn+m))t be the evaluation
vector of f on U . The expression 1

(n+m)2 f t
U L fU = 1

(n+m)2

∑
i , j ( f (xi )− f (x j ))2Wi j converges

to
∫

M ||∇M f ||2dP (x) under certain conditions [12]. This motivates us to set the unsuper-
vised loss as ψ( f , (xi , x j )) = ( f (xi )− f (x j ))2Wi j , and this is indeed a convex function in
f .

3.5. ANALYSIS OF THE FRAMEWORK
In this section we analyze the properties of the solution fsemi found in Equation (3.2). We
derive sample complexity bounds for this procedure, using results from [5], and compare
them to sample complexities for the supervised case. In [5] the unsupervised loss is used
to restrict the hypothesis space directly, while we use it as a regularization term in the em-
pirical risk minimization as usually done in practice. To switch between the views of a
constrained optimization formulation and our formulation (3.2) we use the following clas-
sical result from convex optimization [13, Theorem 1].

Lemma 1. Let φ( f (x), y) and ψ( f , x) be functions convex in f for all x, y . Then the fol-
lowing two optimization problems are equivalent:

min
f ∈F

1

n

n∑
i=1

φ( f (xi ), yi )+λ 1

n +m

n+m∑
i=1

ψ( f , xi ) (3.3)

min
f ∈F

1

n

n∑
i=1

φ( f (xi ), yi ) subject to
n+m∑
i=1

1

n +m
ψ( f , xi ) ≤ τ (3.4)

Where equivalence means that for each λ we can find a τ such that both problems have the
same solution and vice versa.
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For our later results we will need the conditions of this lemma are true, which we believe
to be not a strong restriction. In our sample complexity analysis we stick as close as possible
to the actual formulation and implementation of MR, which is usually a convex optimization
problem. We now first turn to our sample complexity bounds.

The next subsection introduces the sample complexity bound and shows how it can be
used to give theoretical guarantees for the presented framework.

3.5.1. SAMPLE COMPLEXITY BOUNDS
Sample complexity bounds for supervised learning use typically a notion of complexity of
the hypothesis space to bound the worst case difference between the estimated and the true
risk. As our hypothesis class allows for real-valued functions, we will use the notion of
pseudo-dimension Pdim(F ,φ), an extension of the VC-dimension to real valued loss func-
tions φ and hypotheses classes F [14, 15]. Informally speaking, the pseudo-dimension is
the VC-dimension of the set of functions that arise when we threshold real-valued func-
tions to define binary functions. Note that sometimes the pseudo-dimension will have as
input the loss function, and sometimes not. This is because some results use the concate-
nation of loss function and hypotheses to determine the capacity, while others only use the
hypotheses class. This lets us state our first main result, which is a generalization of [5,
Theorem 10] to bounded loss functions and real valued function spaces.

Theorem 18. Let Fψ
τ := { f ∈ F | E[ψ( f , x)] ≤ τ}. Assume that φ,ψ are measurable loss

functions such that there exists constants B1,B2 > 0 with ψ( f , x) ≤ B1 and φ( f (x), y) ≤ B2

for all x, y and f ∈F and let P be a distribution. Furthermore let f ∗
τ = arg min

f ∈Fψ
τ

Q( f ). Then

an unlabeled sample U of size

m ≥ 8B1
2

ε2

[
ln

16

δ
+2Pdim(F ,ψ) ln

4B1

ε
+1

]
and a labeled sample Sn of size

n ≥ max

(
8B2

2

ε2

[
ln

8

δ
+2Pdim(Fψ

τ+ ε
2

,φ) ln
4B2

ε
+1

]
,

h

4

)
is sufficient to ensure that with probability at least 1−δ the classifier g ∈F that minimizes
Q̂(·,Sn) subject to R̂(·,U ) ≤ τ+ ε

2 satisfies

Q(g ) ≤Q( f ∗
τ )+ε. (3.5)

Proof. The result will be shown by combining three partial results with the union bound.
First we show that the unlabeled sample size is big enough to guarantee that with probability
at least 1− δ

4 it holds that R̂( f ∗
τ ) ≤ τ+ ε

2 . For h = Pdim(F ,ψ) Theorem 5.1 from [14] states
that

P

[
sup
f ∈F

(R̂( f )−R( f )) > ε

2

]
≤ 4e

h(ln 2m
h +1)− m

B1
2 ( ε2 − 1

m )2

.

Bounding

4e
h(ln 2m

h +1)− m
B1

2 ( ε2 − 1
m )2

≤ δ

4
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and rewriting this gives us that

m ≥ 4B1
2

ε2

[
ln

16

δ
+h ln

2em

h

]
= 4B1

2

ε2

[
ln

16

δ
+h lnm +h ln

2e

h
+1

]
is sufficient to ensure that R̂( f )−R( f ) < ε

2 for all f ∈F with probability at least 1− δ
4 . Using

the inequality ln x ≤αx − lnα−1 with x = m and α= ε2

8hB1
2 we can conclude that a sample

of size

m ≥ 4B1
2

ε2

[
ln

16

δ
+h(

ε2

8hB1
2 m + ln

8hB1
2

ε2 −1)+h ln
2e

h
+1

]
= m

2
+ 4B1

2

ε2

[
ln

16

δ
+h ln

16B1
2

ε2 +1

]
⇐⇒

m ≥ 8B1
2

ε2

[
ln

16

δ
+2h ln

4B1

ε
+1

]
is sufficient to guarantee R̂( f )−R( f ) < ε

2 for all f ∈ F with probability at least 1− δ
4 . In

particular choosing f = f ∗
τ and noting that by definition R( f ∗

τ ) ≤ τ we conclude that with
the same probability

R̂( f ∗
τ ) ≤ τ+ ε

2
. (3.6)

For the second part we use the classical Hoeffding inequality with a labeled sample size
of n

P
[
Q̂( f ∗

τ )−Q( f ∗
τ ) ≥ θ]≤ e

−2θ2n
B2

2 .

Choosing θ = B2

√
ln( 4

δ ) 1
2n lets us conclude that with probability at least 1− δ

4 it holds that

Q̂( f ∗
τ ) ≤Q( f ∗

τ )+B2

√
ln(

4

δ
)

1

2n
. (3.7)

For the third part we use again Theorem 5.1 from [14] with h = Pdim(Fψ
τ ,φ), which states

that

n ≥ 4B2
2

ε2

[
ln

8

δ
+h ln

2en

h
+1

]
(3.8)

is sufficient to guarantee with probability at least 1− δ
2 that

Q( f )−Q̂( f ) ≤ ε

2
for all f ∈Fψ

τ+ ε
2

. (3.9)

With the same reasoning as for the first part we obtain the same guarantee with a labeled
sample of size

n ≥ 8B2
2

ε2

[
ln

8

δ
+2h ln

4B2

ε
+1

]
.
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Putting everything together with we get, using the union bound, that with probability 1−δ
the classifier g that minimizes Q̂(·, X ,Y ) subject to R̂(·,U ) ≤ τ+ ε

2 satisfies

Q(g ) ≤ Q̂(g )+ ε

2
≤ Q̂( f ∗

τ )+ ε

2
≤Q( f ∗

τ )+ ε

2
+B2

√
ln( 4

δ )

2n
.

The first inequality follows from Inequality (3.9). The second inequality follows because g
is the empirical minimizer. Note that we also need Inequality (3.6), i.e. that R̂( f ∗

τ ) ≤ τ+ ε
2 ,

to make sure that f ∗
τ was in the search space. The third inequality follows from Inequality

(3.7). To obtain the final inequality we use the labeled sample size to show that

ε

2
≥

√
B2

2

n

[
ln

8

δ
+h ln

2en

h
+1

]
≥ B2

√
ln( 4

δ )

2n
.

The first inequality holds by assumption of the labeled sample size from Inequality (3.8),
while the second inequality is shown by reducing it to

h ln
2en

h
+1 ≥ 1

2
ln(

1

2
)

which holds as the right-hand side is negative, while the left-hand side is positive as 2en > h
since by our assumptions 4n > h.

The next subsection uses this theorem to derive sample complexity bounds for MR.
First, however, a remark about the assumption that the loss function φ is globally bounded.
If we assume that F is a reproducing kernel Hilbert space there exists an M > 0 such that
for all f ∈ F and x ∈ X it holds that | f (x)| ≤ M || f ||F . If we restrict the norm of f by
introducing a regularization term with respect to the norm ||.||F , we know that the image
of F is globally bounded. If the image is also closed it will be compact, and thus φ will be
globally bounded in many cases, as most loss functions are continuous. This can also be
seen as a justification to also use an intrinsic regularization for the norm of f in addition
to the regularization by the unsupervised loss, as only then the guarantees of Theorem 18
apply. Using this bound together with Lemma 1 we can state the following corollary to give
a PAC-style guarantee for our proposed framework.

Corollary 2. Let φ and ψ be convex supervised and an unsupervised loss function that
fulfill the assumptions of Theorem 18. Then fsemi (3.2) satisfies the guarantees given in
Theorem 18, when we replace for it g in Inequality (3.5).

Recall that in the MR setting R̂( f ) = 1
(n+m)2

∑n+m
i=1 Wi j ( f (xi )− f (x j ))2. So we gather

unlabeled samples from X ×X instead of X . Collecting m samples from X equates m2−1
samples from X ×X and thus we only need

p
m instead of m unlabeled samples for the

same bound.
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3.5.2. COMPARISON TO THE SUPERVISED SOLUTION
In the SSL community it is well-known that using SSL does not come without a risk [11,
Chapter 4]. Thus it is of particular interest how those methods compare to purely supervised
schemes. There are, however, many potential supervised methods we can think of. In many
works this problem is avoided by comparing to all possible supervised schemes [7, 8, 10].
The framework introduced in this chapter allows for a more fine-grained analysis as the
semi-supervision happens on top of an already existing supervised methods. Thus, for
our framework, it is natural to compare the sample complexities of fsup with the sample
complexity of fsemi. To compare the supervised and semi-supervised solution we draw
from Anthony and Bartlett [6, Chapter 20], where one can find lower and upper sample
complexity bounds for the regression setting. To use this we have to restrict to the square
loss, so in this section we set φ( f (x), y) = ( f (x)− y)2. The main insight from [6, Chapter
20] is that the sample complexity depends in this setting on whether the hypothesis class
is (closure) convex or not. As we anyway need convexity of the space, which is stronger
than closure convexity, to use Lemma 1, we can adapt Theorem 20.7 from [6] to our semi-
supervised setting.

Theorem 19. Assume that Fψ
τ+ε is a closure convex class with functions mapping to [0,1]1,

that ψ( f , x) ≤ B1 for all x ∈X and f ∈F and that φ( f (x), y) = ( f (x)− y)2. Assume further
that there is a B2 > 0 such that ( f (x)− y)2 < B2 almost surely for all (x, y) ∈ X ×Y and
f ∈Fψ

τ+ε. Then an unlabeled sample size of

m ≥ 2B1
2

ε2

[
ln

8

δ
+2Pdim(F ,ψ) ln

2B1

ε
+2

]
and a labeled sample size of

n ≥O
(

B 2

ε

(
Pdim(Fψ

τ+ε) ln

p
B

ε
+ ln

2

δ

))
(3.10)

is sufficient to guarantee that with probability at least 1−δ the classifier g that minimizes
Q̂(·) w.r.t R̂( f ) ≤ τ+ε satisfies

Q(g ) ≤ min
f ∈Fψ

τ

Q( f )+ε. (3.11)

Proof. As in the proof of Theorem 18 the unlabeled sample size is sufficient to guarantee
with probability at least 1− δ

2 that R( f ∗
τ ) ≤ τ+ ε. The labeled sample size is big enough to

guarantee with at least 1− δ
2 that Q(g ) ≤ Q( f ∗

τ+ε)+ ε [6, Theorem 20.7]. Using the union
bound we have with probability of at least 1−δ that Q(g ) ≤Q( f ∗

τ+ε)+ε≤Q( f ∗
τ )+ε.

Note that the previous theorem of course implies the same learning rate in the supervised
case, as the only difference will be the pseudo-dimension term. As in specific scenarios this
is also the best possible learning rate, we obtain the following negative result for SSL.

1In the remarks after Theorem 18 we argue that in many cases |f(x)| is bounded, and in those cases we can always
map to [0,1] by re-scaling.
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Corollary 3. Assume that F maps to the interval [0,1] and Y = [1−B ,B ] for a B ≥ 2. If F
and Fψ

τ are both closure convex, then for sufficiently small ε,δ> 0 it holds that msup(ε,δ) =
Õ(msemi(ε,δ)), where Õ suppresses logarithmic factors, and msemi,msup denote the sample
complexity of the semi-supervised and the supervised learner respectively. In other words,
the semi-supervised method can improve the learning rate by at most a constant which may
depend on the pseudo-dimensions, ignoring logarithmic factors. Note that this holds in
particular for the manifold regularization algorithm.

Proof. The assumptions made in the theorem allow is to invoke Equation (19.5) from [6]
which states that msemi =Ω( 1

ε +Pdim(Fψ
τ )).2 Using Inequality (3.10) as an upper bound

for the supervised method and comparing this to Eq. (19.5) from [6] we observe that all
differences are either constant or logarithmic in ε and δ.

3.5.3. THE LIMITS OF MANIFOLD REGULARIZATION
We now relate our result to the conjectures published in Shalev-Shwartz and Ben-David
[16]: A SSL cannot learn faster by more than a constant (which may depend on the hy-
pothesis class F and the loss φ) than the supervised learner. Theorem 1 from [7] showed
that this conjecture is true up to a logarithmic factor, much like our result, for classes with
finite VC-dimension, and SSL that do not make any distributional assumptions. Corollary
3 shows that this statement also holds in some scenarios for all SSL that fall in our pro-
posed framework. This is somewhat surprising, as our result holds explicitly for SSLs that
do make assumptions about the distribution: MR assumes the labeling function behaves
smoothly w.r.t. the underlying manifold.

3.6. RADEMACHER COMPLEXITY OF MANIFOLD REGULAR-
IZATION

In order to find out in which scenarios semi-supervised learning can help it is useful to also
look at distribution dependent complexity measures. For this we derive computational fea-
sible upper and lower bounds on the Rademacher complexity of MR. We first review the
work of Sindhwani et al. [9]: they create a kernel such that the inner product in the cor-
responding kernel Hilbert space contains automatically the regularization term from MR.
Having this kernel we can use standard upper and lower bounds of the Rademacher com-
plexity for RKHS, as found for example in [17]. The analysis is thus similar to [4]. They
consider a co-regularization setting. In particular [9, p1] show the following, here infor-
mally stated, theorem.

Theorem 20 ([9, Propositions 2.1, 2.2]). Let H be a RKHS with inner product 〈·, ·〉H . As
before let U = {x1, ..., xn+m}, f , g ∈ H and fU = ( f (x1), ..., f (xn+m))t . Furthermore let 〈·, ·〉Rn

be any inner product in Rn . Let H̃ be the same space of functions as H , but with a newly
defined inner product by 〈 f , g 〉H̃ = 〈 f , g 〉H +〈 fU , gU 〉Rn . Then H̃ is a RKHS.

Assume now that L is a positive definite n-dimensional matrix and we set the inner
product 〈 fU , gU 〉Rn = f t

U LgU . By setting L as the Laplacian matrix (Section 3.4) we note

2Note that the original formulation is in terms of the fat-shattering dimension, but this is always bounded by the
pseudo-dimension.
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that the norm of H̃ automatically regularizes w.r.t. the data manifold given by {x1, ..., xn+m}.
We furthermore know the exact form of the kernel of H̃ .

Theorem 21 ([9, Proposition 2.2]). Let k(x, y) be the kernel of H , K be the gram matrix
given by Ki j = k(xi , x j ) and kx = (k(x1, x), ...,k(xn+m , x))t . Finally let I be the n + m
dimensional identity matrix. The kernel of H̃ is then given by k̃(x, y) = k(x, y)− k t

x (I +
LK )−1Lky .

This interpretation of MR is useful to derive computationally feasible upper and lower
bounds of the empirical Rademacher complexity, giving distribution dependent complexity
bounds. With σ = (σ1, ...,σn) i.i.d Rademacher random variables (i.e. P (σi = 1) = P (σi =
−1) = 1

2 .), recall that the empirical Rademacher complexity of the hypothesis class H and
measured on the sample labeled input features {x1, ..., xn} is defined as

Radn(H) = 1

n
Eσ sup

f ∈H

n∑
i=1

σi f (xi ).

Theorem 22 ([17, p. 333]). Let H be a RKHS with kernel k and Hr = { f ∈ H | || f ||H ≤ r }.
Given an n sample {x1, ..., xn} we can bound the empirical Rademacher complexity of Hr

by
r

n
p

2

√
n∑

i=1
k(xi , xi ) ≤ Radn(Hr ) ≤ r

n

√
n∑

i=1
k(xi , xi ). (3.12)

The previous two theorems lead to upper bounds on the complexity of MR, in particular
we can bound the maximal reduction over supervised learning.

Corollary 4. Let H be a RKHS and for f , g ∈ H define the inner product 〈 f , g 〉H̃ = 〈 f , g 〉H+
fU (µL)g t

U , where L is a positive definite matrix and µ ∈R is a regularization parameter. Let
H̃r be defined as before, then

Radn(H̃r ) ≤ r

n

√
n∑

i=1
k(xi , xi )−k t

xi
(

1

µ
I +LK )−1Lkxi . (3.13)

Similarly we can obtain a lower bound in line with Inequality (3.12).

The corollary allows us to compute upper bounds of the Rademacher complexity for
MR and shows in particular that the difference of the Rademacher complexity of the super-
vised and the semi-supervised method is given by the term k t

xi
( 1
µ In+m +LK )−1Lkxi . This

can be used for example to compute generalization bounds [15, Chapter 3]. We can also use
the kernel to compute local Rademacher complexities which may yield tighter generaliza-
tion bounds [18]. Here we illustrate the use of our bounds for choosing the regularization
parameter µ without the need for an additional labeled validation set.

3.7. EXPERIMENT: CONCENTRIC CIRCLES
We illustrate the use of Eq. (3.13) for model selection. In particular, it can be used to
get an initial idea of how to choose the regularization parameter µ. The idea is to plot the
Rademacher complexity versus the parameter µ as in Figure 3.1. We propose to use an
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Figure 3.1: The behavior of the Rademacher complexity when using manifold regularization on circle dataset with
different regularization values µ.

heuristic which is often used in clustering, the so called elbow criteria [19]. We essentially
want to find a µ such that increasing the µ will not result in much reduction of the complex-
ity anymore. We test this idea on a dataset which consists out of two concentric circles with
500 datapoints in R2, 250 per circle, see also Figure 3.2. We use a Gaussian base kernel
with bandwidth set to 0.5. The MR matrix L is the Laplacian matrix, where weights are
computed with a Gaussian kernel with bandwidth 0.2. Note that those parameters have to
be carefully set in order to capture the structure of the dataset, but this is not the current
concern: we assume we already found a reasonable choice for those parameters. We add a
small L2-regularization that ensures that the radius r in Inequality (3.13) is finite. The pre-
cise value of r plays a secondary role as the behavior of the curve from Figure 3.1 remains
the same.

Looking at Figure 3.1 we observe that for µ smaller than 0.1 the curve still drops steeply,
while after 0.2 it starts to flatten out. We thus plot the resulting kernels for µ = 0.02 and
µ = 0.2 in Figure 3.2. We plot the isolines of the kernel around the point of class one,
the red dot in the figure. We indeed observe that for µ = 0.02 we don’t capture that much
structure yet, while for µ = 0.2 the two concentric circles are almost completely separated
by the kernel. If this procedure indeed elevates to a practical method needs further empirical
testing.

3.8. DISCUSSION AND CONCLUSION
This chapter analysed improvements in terms of sample or Rademacher complexity for a
certain class of SSL. The performance of such methods depends both on how the approx-
imation error of the class F compares to that of Fψ

τ and on the reduction of complexity
by switching from the first to the latter. In our analysis we discussed the second part. The
first part depends on a notion the literature often refers to as a semi-supervised assumption.
This assumption basically states that we can learn with Fψ

τ as good as with F . Regarding
our example of the two concentric circles, this would mean that each circle actually corre-
sponds to a class. Without prior knowledge, it is unclear whether one can test efficiently if
the assumption is true or not. Or is it possible to treat just this as a model selection problem?
The only two works we know that provide some analysis in this direction are [20], which
discusses the sample consumption to test the so-called cluster assumption, and [21], which
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Figure 3.2: The resulting kernel when we use manifold regularization with parameter µ set to 0.02 and 0.2.

analyzes the overhead of cross-validating the hyper-parameter coming form their proposed
semi-supervised approach.

As some of our settings need restrictions, it is natural to ask whether we can extend the
results. First, Lemma 1 restricts us to convex optimization problems. If that assumption
would be unnecessary, one may get interesting extensions. Neural networks, for example,
are typically not convex in their function space and we cannot guarantee the fast learning
rate from Theorem 19. But maybe there are semi-supervised methods that turn this space
convex, and thus could achieve fast rates. In Theorem 19 we have to restrict the loss to be
the square loss, and [6, Example 21.16] shows that for the absolute loss one cannot achieve
such a result. But whether it is possible for the hinge loss, which is a typical choice in
classification, is unknown to us. Corollary 3 considers regression and one can wonder if
similar results hold for classification, e.g. when we use the hinge loss. We speculate that
this is indeed true, as at least the related classification tasks, that use the 0−1 loss, cannot
achieve a rate faster than 1

ε [16, Theorem 6.8].
Finally, we sketch a scenario in which sample complexity improvements of MR can be

at most a constant over their supervised counterparts, ignoring logarithmic factors. This
may sound like a negative result, as we saw in the previous chapter that other methods,
that seem to have similar assumptions, can achieve learning rates that are exponential in
the number of labeled samples. But constant improvement can still have significant effects,
if this constant can be arbitrarily large. For that consider again the example of the two
concentric circles. If we set the regularization parameter µ high enough, the only possible
classification functions will be the one that classifies each circle uniformly to one class,
while the pseudo-dimension of the supervised model can be arbitrarily high, and thus also
the constant in Corollary 3. In conclusion, one should realize the significant influence
constant factors in finite sample settings can have.
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4
A SOFT-LABELED

SELF-TRAINING APPROACH

In this chapter we propose a self-training method that uses the notion of soft-labels, which
can be thought of as a class probability estimate. We show that a self-training approach
with soft-labeling is preferable in many cases in terms of expected loss (risk) minimization.
The main idea is to use the soft-labeling to minimize the risk on labeled and unlabeled data
together, in which the hard-labeled self-training is an extreme case. This method is related
to the well-known expectation-maximization method and can be seen as an extension to
discriminative models.

Parts of this chapter have been published in the proceedings of the 23rd International Conference on Pattern
Recognition [1].
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4.1. INTRODUCTION

The challenge of semi-supervised learning (SSL) is to handle situations where obtaining
labeled samples is time-consuming or expensive, but unlabeled data is easy to get. Typical
examples would be document classification [2], image classification [3] and gene function
prediction [4]. A simple approach to SSL is the so-called self-training or self-learning. In
this setting one first trains a classifier with the available labeled data, and then labels the
unlabeled data using the classifier. The classifier is then retrained with the whole data and
this process can be iterated. Triguero et al. [5] conduct a survey on self-training where
they compare different methods on different classifiers. One of the better known methods,
called co-training [6], splits the feature space in two different subspaces and tries to train
two distinct classifiers that label new data for each other. This new labeled data is then used
to retrain each classifier. Other methods retrain only with the unlabeled data of its own most
confident predictions [7].
The aim of this chapter is to show that a soft-labeled self-training approach can improve
the overall risk of a classifier compared to its hard-labeled counterpart in most settings.
In Section 4.2 we are going to provide some elementary definitions that we use through-
out the chapter. Section 4.3.1 will address the problem that most loss based classifiers do
not automatically give a posterior class probability given the observation, and we propose
soft labels (posterior probabilities) for loss based classifiers. It should be kept in mind that
the aim of this chapter is not to define the best soft-labeling. We rather define a reason-
able soft-labeling to show that in most cases it is preferred to take a soft-labeling over a
hard-labeling for self-training in terms of risk minimization. A different comparison be-
tween soft and hard-labeling for the case of the least squares classifier is also done in [8].
The derivation of the soft-labeled method is done by including the unlabeled data together
with variables for their soft-labels in the objective function, and then minimizing the ob-
jective function in terms of the linear model and the soft-labels. An explanation of the
hard-labeling method will be found in Section 4.3.2, where we draw a comparison to our
own work. One of the results of [8] is that the hard-labeled variant is more prone to get
stuck in local optima. The rest of Section 4.3 will focus on the expectation minimization
framework that we use and how this translates for the nearest mean classifier (NMC) and
the least squares classifier. One can compare the idea to the expectation maximization (EM)
algorithm [9] which tries to maximize the likelihood on the complete data, a concept that
is closely related to self-training. The similarities and differences between EM and the
proposed method will be shown in Section 4.3.2. Another similarity can be drawn to Con-
trastive Pessimistic Likelihood Estimation [10], where a worst case labeling of unlabeled
data is considered to improve in a semi-supervised manner the likelihood in LDA. Our pro-
posed soft labels follow a similar worst case consideration. However the very strong result
of [10] gives a guaranteed likelihood improvement, our concept of risk minimization holds
only in expectation. As we will show in Section 4.3.3 our solution can be understood as the
minimizer of the expected loss over all possible labelings of the unlabeled data, with a prior
over the possible labelings found by our supervised classifier. In Section 4.4 we describe
the experiments done on artificial and real world data. Section 4.5 will present the results
of the experiments. Testing our method on the NMC we find that in most cases the accu-
racy deteriorates even though we achieve the goal of a better risk minimization. We create
and display an artificial example with similar behavior in order to try to understand this
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phenomenon. The least squares classifier benefits from the soft-labeling in all measured
categories on all real world datasets. In Section 4.6 we will give the conclusion and discuss
possible future work.

4.2. PRELIMINARIES
Let f :X →R be a classifier with an input space X and and output space of numerical values
R. In the following we are going to consider classifiers f that are based on optimizing a
loss function L :R×Y →R where Y is the set of possible labels. We will furthermore only
consider binary classification problems, i.e. Y = {0,1}. In particular: Given a sample set
(X ,Y ) := {(xi , yi )}N

i=1 we obtain the classifier of choice by the minimization:

f ∗ = arg
f

min
N∑

i=1
L( f (xi ), yi ). (4.1)

4.3. THE EXPECTATION MINIMIZATION FRAMEWORK
In this section we provide the framework of our method. Given a supervised trained classi-
fier we are going to derive a conservative posterior probability for unseen data, which will
be related to the loss function. Then we use these probabilities to define the objective func-
tion which we use to find the semi-supervised solution. After that we give an alternative
view of the objective function. We then introduce a more flexible approach that will allow
us to smoothly vary the soft-labels to hard-labels. We conclude the section by making the
framework explicit for the least squares classifier and the NMC.

4.3.1. THE CHOICE OF PROBABILITY
In order to define the expectation minimization framework we first need to define a soft-
labeling, or, in other terms, a probability distribution over the possible labels given an ob-
servation. What we want in detail is the following: Let x ∈X be a feature vector and f a
fixed classifier. We then want a p ∈ [0,1] that serves as an estimate of P (Y = 1 | X = x). In
some cases the classifier itself will give us a reasonable choice for p, for example in the
case of logistic regression or naive Bayes, but for a general loss function this is not the case
and thus p has to be found in a different way.

The proposed choice of p is motivated by the idea to minimize the maximum possible
loss we can incur when using the loss function L. That means our p for each x ∈X is found
by the following min-max equation:

p∗ = arg
p∈[0,1]
minmax{pL( f (x),1), (1−p)L( f (x),0)} (4.2)

One can think about this as a game where we will suffer a loss for x, depending on what the
true label is. We do not know which label it will be, but we are allowed to weigh the loss.
And we do the weighing in such a way that we reduce the maximum loss. Since L( f (x),1)
and L( f (x),0) are constant for each x we find that the solution of the equation is given when
p equalizes both terms, i.e.

pL( f (x),1) = (1−p)L( f (x),0) (4.3)



4

64 4. A SOFT-LABELED SELF-TRAINING APPROACH

which is solved by

p = L( f (x),0)

L( f (x),0)+L( f (x),1)
. (4.4)

4.3.2. THE SEMI-SUPERVISED SOLUTION & RELATED WORK
In the following we are going to present the main idea in how to derive the semi-supervised
solution. Assume that we have additionally to the labeled data (X ,Y ) := {(xi , yi )}N

i=1 also a
set of M unlabeled data points U . In this semi-supervised setting we are trying, similarly to
the expectation maximization algorithm in the likelihood setting, to update our classifier by
minimizing the expected risk on the labeled and unlabeled data together. The idea is to train
a classifier fsup with the labeled data first and use this to find the probability distributions
over the labels for each unlabeled data point as defined in the previous subsection. Note
that for every labeled sample xi ∈ X we set p(Y = yi | X = xi ) = 1 since we actually made
the observation. With this we can define a risk for a classifier f using these probabilities:

R(V , f ) := E
[ ∑

v∈V
L( f (v),k)

]
= ∑

v∈V
p(0|v)L( f (v),0)+p(1|v)L( f (v),1) (4.5)

where V = X ∪U . Our semi-supervised solution fsemi is now simply found by mini-
mizing this risk:

fsemi = arg
f

minR(V , f ) (4.6)

The new solution can than be used to get better estimates of the posterior probabilities, and
the procedure can be iterated. We want to remark that the same objective function is found
in [8]. The difference there is that the posterior probabilities (there named responsibilities),
are part of the minimization task, and thus can be seen as an optimistic label estimate.
For this specific formulation, however, the optimistic approach degrades to hard-label self-
learning. In contrast to that Loog [10] introduces a pessimistic approach, which essentially
minimizes the objective for the worst case posterior label distribution p(Y | X ) and can give
strong improvement guarantees. This was done, however, with a generative model, and
Krijthe and Loog [11] actually show that for a large class of discriminative models such a
pessimistic approach is impossible. While [8] and [10] can be seen as an optimistic and a
pessimistic approach respectively, this work can be seen as an in-between approach as it
deals with an average case with respect to posterior estimates.

At this point the similarity to EM also becomes clear. While the EM makes use of a
likelihood function to maximize the expected log-likelihood we make use of a loss function
to minimize the expected loss. The biggest difference is that the posterior probabilities
are given by the probabilistic model in the case of EM, while we have to create them in a
heuristic manner.

4.3.3. AN ALTERNATIVE VIEW
In this subsection we give an alternative description of the risk in Equation (4.5) to get an
intuition in what this risk is minimizing. For this we define a probability distribution over
all possible labelings Θ= {θ : V →Y}. For θ ∈Θ we set p(θ) = 1

2N+M−1(N+M)

∑
v∈V

p(θ(v) | v).
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This is indeed a probability distribution:∑
θ∈Θ

p(θ) = 1

2N+M−1(N +M)

∑
k∈Y

∑
v∈V

2N+M−1 ·p(k | v)

= 1

2N+M−1(N +M)

∑
v∈V

2N+M−1 ·1 = 1

The first equality holds since a specific label of a single observation appears exactly 2N+M−1

times in the sum over all possible labelings, the cardinality of all possible labelings of all
other observations. The second equation holds since each p(· | v) is a probability distribu-
tion itself. We also set for a particular labeling θ ∈Θ the loss of a classifier f to be

L( f ,θ) = ∑
v∈V

L( f (v),θ(v)). (4.7)

This allows us to formulate the risk (4.5) up to a constant as an expectation over all possible
labelings:

EΘ
[
L( f ,θ)

]= ∑
θ∈Θ

p(θ)L( f ,θ)

= 1

2N+M−1(N +M)

∑
v∈V

∑
k∈K

2N+M−1p(k|v) ·L( f (v),k)

= 1

(N +M)

∑
v∈V

E
[
L( f (v),k)

]
So up to a constant this is equivalent to (4.5) and thus gives the same solution by min-

imizing. That means that our solution is derived by minimizing the expected loss over all
possible labelings, with a probability distribution derived from our initial classifier.

4.3.4. A MORE FLEXIBLE APPROACH
Adding a parameter α to the proposed soft-label as follows gives us a more flexible ap-
proach and lets us smoothly move between soft-labeling and hard-labeling. We achieve this
by modifying the min-max expression as follows:

arg
p∈[0,1]
minmax{pL( f (x),1)α, (1−p)L( f (x),0)α} (4.8)

The solution of this is for the same reasoning as in Section 4.3.1 given by

p = L( f (x),0)α

L( f (x),0)α+L( f (x),1)α
. (4.9)

Choosing for example α big enough corresponds to the decision that a hard-labeled self-
training approach is the best. This might be the case when classes are properly separated as
we will see in the experiments. The effects of this parameter will be shown in a controlled
setting and then tested on real world data.

The proposed method can be used for every classifier which is based on minimizing a
loss function. To keep things simple we chose to test the proposed method on the near-
est mean (NMC) and the least squares classifier. We will describe in the following how
equation Equation (4.5) translates in both of these cases.
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4.3.5. LEAST SQUARES CLASSIFICATION
The least squares classifier (see for instance [11, section 3.4.3]) tries to optimize the least
square criterion L( f (v),k) = || f (v)−k||2 for linear classifier f . Setting Y = {−1,1} expres-
sion (4.5) becomes ∑

v∈D
p(k|v)|| f (v)−1||2 + (1−p(v,k))|| f (v)+1||2. (4.10)

Setting π = (p(1 | v))v∈V and π− = (p(−1 | v))v∈V as the vectors of probabilities we get
similarly to the supervised case the following closed form solution.

fsemi = (DT D)−1(DTπ−DTπ−). (4.11)

4.3.6. NEAREST MEAN CLASSIFICATION

Choosing the loss as L( f (v),k) = ||v −m f
k ||2 for k ∈ K and minimizing this for the model

(m f
1 ,m f

−1) will give us the nearest mean classifier, i.e. the vector (m f
1 ,m f

−1) will correspond
to the two class means. Assigning a new unseen data point to the class of its minimum loss
is in this case equivalent to assigning it to the class with the nearest mean. Thus this loss
defines the nearest mean classifier [12]. Using expression (4.5) for the semi-supervised
case, the solution becomes a weighted mean:

mk =
∑

v∈D
p(k|v)v∑

v∈D
p(k|v)

(4.12)

4.4. EXPERIMENTS
This section is devoted to test the proposed method on the nearest mean and the least squares
classifier. First, we examine the behavior in a controlled environment and then on 11 real
world datasets for the nearest mean classifier and on 8 real world datasets for the least
squares classifier. The datasets were taken from UCI Machine Learning Repository [13],
all having 2 classes. Specifications can be found in Table 4.1. We did not perform the least
square classification on the full 11 datasets since in 3 cases the structure and dimension
of the data led to unstable behavior of the matrix (DT D)−1. To keep things simple we
furthermore used only one iteration of our algorithm.

4.4.1. CONTROLLED SETTING
The first experiments were done on two normally distributed classes of dimension two with
same covariance (given by the identity matrix), different means, and with equal class priors.
The dataset Gauss 1 has class means (0,0) and (0,1), Gauss 2 has class means (0,0) and (0,2)
and Gauss 5 has class means (0,0) and (0,5). We initially created 100,000 points per class
on which we then did 1000 test runs. In each run we randomly chose in total 4 labeled
samples, where we made sure that at least 1 point per class is included, and 100 unlabeled
points to train the classifier, and used the rest to test the classifier. All experiments were
done with the parameter α being 0.1 and 1 and we compared this to a hard-labeling, i.e.
α =∞, as well as to the supervised trained classifier. The measurements based on which
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Table 4.1: Specifications of the datasets

Data Dimension Objects Lowest class prior
ad 1558 2359 0.1615
Haberman 3 306 0.2647
ionosphere 33 351 0.3590
Parkinson 22 195 0.2462
Pima 8 768 0.3490
sonar 60 208 0.4663
spambase 57 4601 0.3940
spect 22 267 0.2060
spectf 44 349 0.2722
transfusion 3 748 0.2380
wdbc 30 569 0.3726

we evaluate the methods are the mean accuracy improvement compared to the supervised
solution (MAI), the percentage of in how many initiations the semi-supervised classifier
had a worse accuracy than the supervised classifier (%neg) and the risk (the mean loss with
respect to the loss we used) on the test set (Risk). We also show the mean accuracy from the
supervised solution (acc). Note that in the evaluation one should in particular pay attention
to Risk, since this is the value that the proposed method tries to optimize (cf. [14, 15]).
This value shows if the soft-labeled approach minimizes expression (4.5) in our experiments
better than a hard-labeled approach and whether it will improve it at all compared to the
supervised solution.

4.4.2. REAL WORLD DATA

In the case of the nearest mean classifier we took 4 labeled points and only 50 unlabeled
points to make the test set as big as possible. To make sure that the matrix DT D from
the closed form solution of the least square classifier is invertible, we chose the number of
labeled samples N (also indicated in the tables) for each dataset individually, depending on
the dimension and the structure of the data. To have still enough points to test on, we took
2N unlabeled points to train the semi-supervised classifier. The evaluation is the same as in
the controlled setting.

4.5. RESULTS

The results are presented in Tables 4.3, 4.4, 4.5 and 4.6. Table 4.3 and 4.4 show the results
from the controlled settings while Tables 4.5 and 4.6 present the results from the real world
data. Each table contains the results for α= 0.1, α= 1 and the hard-labeled approach. The
best performing method is highlighted in bold for each criterion on each dataset.



4

68 4. A SOFT-LABELED SELF-TRAINING APPROACH

Figure 4.1: An artificial example for the failure of NMC. The black crosses show the class means. The black,
yellow, green and white dots show respectively the estimated means from the supervised solution, a hard labeled
self-training and a self-training with α= 1 and α= 0.1. Although the hard labeled self-training (yellow dots) gives
a better estimate for the mean, it deteriorates in accuracy

4.5.1. CONTROLLED SETTING
In the controlled setting both classifier show the expected behavior: the harder the problem
is (meaning the bigger the Bayes error), the better the soft-labeled approach is. For Gauss
1 we get improvements in MAI and Risk for both choices of α in comparison to the hard-
labeling. In the case of Gauss 5 the hard labeling gives the best results. This was to be
expected since the classification problem is in this case rather easy and one can assume
that most of the predicted labels will be correct. This is given in this case, since the NMC
converges in this setting fast to the Bayes classifier. This is supported by the accuracy of
the NMC in the supervised solution.

In case of the least squares we see strict improvements for both α on Gauss 1 and 2
compared to the hard-labeling. In Gauss 1 we manage to switch an average deterioration
to an average improvement by choosing α= 0.1. An interesting behavior can be found for
Gauss 5. Although the setting for α= 0.1 gives the best MAI we get a worse performance in
terms of %neg and Risk. A similar behavior is also seen on three of the real world datasets
(Haberman, spect, wdbc). Remarkable is that even on Gauss 5 our method for α= 1 gives
similar (MAI, Risk) or better results (%neg) compared to hard-labeling.

4.5.2. REAL WORLD DATA
For the NMC the results are mixed in terms of %neg and MAI, but only on one dataset
(wdbc) the hard-labeling outperforms our method in terms of the risk. Interestingly this is
the dataset where we find the biggest improvement in terms of %neg and MAI of our method
compared to the hard-labeling. That suggests that the actual loss we are minimizing might
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Table 4.2: NMC on banana-shaped data

Method %neg MAI Risk Risk SV Acc
α= 0.1 0.599 0.004 5.295 5.207 0.762
α= 1 0.62 0 4.87 5.207 0.762
hard label 0.594 -0.007 4.695 5.207 0.761

not be the best choice in this case. The NMC for these datasets seem in general not to be
a good choice together with the self-training approach. The hard-labeling manages to give
only in two cases a positive MAI, and similar results hold for the soft-labeling. In terms of
Risk we find on the other hand that we get good improvements over the supervised solution
and the hard-labeled approach. In Figure 4.1 we provide an artificial example that illustrates
this behavior, that despite the improved risk minimization we deteriorate in accuracy. We
used a two-dimensional banana-shaped dataset where the nearest mean classifier is a clear
model misspecification. We trained on eight labeled and 100 unlabeled points and did 1000
test runs to evaluate. The results are noted in Table 4.2. In this setting only the hard labeling
gave improvements on Risk, but had the biggest deterioration in terms of accuracy. This
is due to the misspecification and the fact that a better class mean estimate does not give a
higher accuracy on this dataset. We expect that similar misspecification happens on the real
world data, where the dataset wdbc shows the most similar behavior.

The results for the least squared classifier are clearer. The hard-labeled approach is
outperformed on every dataset in every criterion by one of the soft-labeled counterparts. We
find in this setting a more direct influence from the risk to the MAI. This can be explained
by the fact that the loss of least squares classifier models the actual 0-1 loss. The loss used
for the NMC classifier merely measures how good we are estimating the actual class mean,
and thus can suffer heavily from misspecification. Note that on some datasets (pima, sonar,
spectf, wdbc) the improvement in risk of the semi-supervised methods are fairly big. This
can be explained by the fact that the least square loss is strongly affected by outliers. Adding
unlabeled data to the training gives a higher chance to catch those outliers, and minimize
the expected loss on them.

4.6. CONCLUSION
Our aim was to show that a soft-labeled self-training is in many cases to be be preferred
over a hard-labeled self-training approach, at least in terms of risk minimization. In the
controlled setting we could show that for Gaussian data, a soft-labeled approach is to be

Table 4.3: NMC on artificial data

α= 0.1 α= 1 hard label Supervised
Data %neg MAI Risk %neg MAI Risk %neg MAI Risk Risk Acc
Gauss 1 0.225 0.018 1.3254 0.223 0.015 1.310 0.272 0.009 1.449 1.566 0.593
Gauss 2 0.089 0.041 1.515 0.052 0.044 1.392 0.067 0.036 1.369 1.574 0.703
Gauss 5 0.192 0.009 2.48 0.116 0.01 1.586 0.049 0.0105 1.269 1.586 0.983
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Table 4.4: Least Squares classifier on artificial data

α= 0.1 α= 1 hard label Supervised
Data %neg MAI Risk %neg MAI Risk %neg MAI Risk Risk Acc
Gauss 1 0.397 0.006 0.241 0.526 -0.002 0.295 0.544 -0.002 0.351 2.66 0.573
Gauss 2 0.316 0.018 0.218 0.388 0.003 0.205 0.427 0.000 0.234 2.178 0.703
Gauss 5 0.186 0.027 0.173 0.0460 0.024 0.067 0.061 0.024 0.068 0.295 0.925

Table 4.5: NMC on real world data

α= 0.1 α= 1 hard label Supervised
Data %neg MAI Risk %neg MAI Risk %neg MAI Risk Risk Acc
ad 0.796 -0.071 109.4 0.787 -0.044 101.6 0.410 0.009 105.4 111.9 0.772
Haberman 0.639 -0.032 11.7 0.662 -0.035 11.8 0.609 -0.015 13.8 14.2 0.563
ionosphere 0.476 -0.026 2.796 0.410 -0.027 2.775 0.485 -0.017 3.064 3.433 0.637
Parkinson 0.718 -0.050 87.6 0.682 -0.04 87.4 0.468 -0.012 102.0 100.9 0.631
pima 0.676 -0.029 97.4 0.689 -0.033 99.2 0.608 -0.0289 123.1 119.3 0.570
sonar 0.423 0.006 1.3 0.558 -0.01 1.30 0.645 -0.02 1.41 1.58 0.542
spambase 0.478 0.009 319.5 0.584 0.000 349.7 0.677 -0.006 464.3 362.1 0.585
spect 0.673 -0.053 2.096 0.685 -0.054 2.092 0.688 -0.022 2.151 2.419 0.631
spectf 0.536 -0.006 55.96 0.539 -0.006 55.9 0.786 -0.037 63.257 66.9 0.583
transfusion 0.611 -0.024 22.6 0.615 -0.027 23.3 0.668 -0.026 28.1 27.1 0.536
wdbc 0.14 0.043 472.0 0.226 0.030 367.3 0.566 0.003 363.1 396.8 0.86

Table 4.6: Least Squares on real world data

α= 0.1 α= 1 hard label Supervised N
Data %neg MAI Risk %neg MAI Risk %neg MAI Risk Risk Acc
ad - - - - - - - - - - - -
Haberman 0.369 0.015 0.233 0.314 0.01 0.307 0.372 0.009 0.349 0.758 0.637 8
ionosphere 0.141 0.042 0.189 0.18 0.035 0.243 0.176 0.031 0.305 1.70 0.771 51
Parkinson - - - - - - - - - -
pima 0.262 0.043 0.236 0.314 0.031 0.314 0.269 0.022 0.388 2.791 0.608 11
sonar 0.147 0.112 0.226 0.189 0.088 0.271 0.190 0.056 0.413 28.2 0.55 62
spambase - - - - - - - - - - - -
spect 0.381 0.005 0.177 0.337 0.003 0.178 0.413 0.001 0.198 0.208 0.748 60
spectf 0.188 0.047 0.232 0.33 0.017 0.328 0.367 0.01 0.443 3.665 0.588 52
transfusion 0.361 0.012 0.213 0.366 0.007 0.263 0.425 0.004 0.297 0.447 0.677 10
wdbc 0.160 0.062 0.173 0.075 0.052 0.227 0.115 0.041 0.295 1.344 0.759 36
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preferred if the class overlap gets bigger. The real world data shows that in terms of risk
minimization our method is clearly to be preferred over a hard-labeling. In all datasets we
report only one where the hard-labeling actually outperforms the soft-labeling in terms of
the risk. In the case of the least squares classification we find that our method outperforms
the hard-labeling in all presented criteria, meaning that it is also preferred in terms of 0-1
loss in this case.

In Chapter 7 we discuss possible extensions of this work, in particular in view of the
other chapters of this thesis.
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5
POSTERIOR ESTIMATION

In this work we investigate to which extent one can recover class probabilities within the
empirical risk minimization (ERM) paradigm. The main aim of this chapter is to extend
existing results and emphasize the tight relations between empirical risk minimization and
class probability estimation. Based on existing literature on excess risk bounds and proper
scoring rules, we derive a class probability estimator based on empirical risk minimization.
We then derive fairly general conditions under which this estimator will converge, in the L1-
norm and in probability, to the true class probabilities. Our main contribution is to present
a way to derive finite sample L1-convergence rates of this estimator for different surrogate
loss functions. We also study in detail which commonly used loss functions are suitable for
this estimation problem and finally discuss the setting of model-misspecification.
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5.1. INTRODUCTION

In binary classification problems we try to predict a label y ∈ {−1,1} =Y based on an input
feature vector x ∈X . Since optimizing for the classification accuracy is often computation-
ally too complex, one typically measures performance through a surrogate loss function.
Such methods are designed to achieve good classification performance, but often we are
also interested in the classifier’s confidence or a class probability estimate as such. We
may, for instance, not only want to classify a tumor as benign or malignant, but also know
an estimated probability that the predicted label is wrong. Also various methods in active
or semi-supervised learning rely on such class probability estimates. In active learning they
are, for instance, used in uncertainty based rules [1, 2] while in semi-supervised learning
they can be used for performing entropy regularization [3].

In this chapter we derive necessary and sufficient conditions under which classifiers,
obtained through the minimization of an empirical loss function, allow us to estimate the
class probability in a consistent way. More precisely, we present a general way to derive fi-
nite sample bounds based on those conditions. While the use of class probability estimates,
as argued before, finds a broad audience, the necessary tools to understand the behavior,
especially the literature on proper scoring rules, is not that broadly known. So next to our
contribution on finite sample behavior for class probability estimation we present a con-
densed introduction to this, in our opinion, under-appreciated field.

A proper scoring rule is essentially a loss function that can measure the class probability
point-wise. We investigate in which circumstances those loss functions make use of this
potential and lift this point-wise property to the complete space. Next to proper scoring
rules we use excess risk bounds to come to our results. Excess risk bounds are essentially
inequalities that quantify how much an empirical risk minimizer is off from the true risk.

Combining those two areas, our main contributions are the following. Based on the
existing literature, we define in Section 5.4, Equation (5.8), a probability estimate η̂ derived
from an empirical risk minimizer. Based on this we analyze in Section 5.5 to which extent
commonly used loss functions are suitable for the task of class probability estimation. Fol-
lowing this and the analysis thereafter, we argue in Section 5.6.5 that the squared loss is, in
view of this chapter, not a particular good choice. In Section 5.6 we derive conditions that
ensure that the estimator η̂ converges in probability towards the true posterior. In the same
section we present a general way to analyze the finite sample behavior of the convergence
rate for different loss functions. The idea is to bound the L1-distance between the estimated
and the true class probability by the excess risk and then use bounds on the excess risk
together with the properties of proper scoring rules to show convergence. In the same sec-
tion we discuss the behavior of the estimator when it is misspecified. In this case one can
in general not recover the true class probabilities, but instead find the best approximation
with respect to a Bregman divergence. In Section 5.7 we conclude and discuss our analysis.
In particular we discuss how one can extend this work to asymmetric loss functions and
analyze their convergence behavior per class label. The following two sections start with
related work and some preliminaries.
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5.2. RELATED WORK

Many results on posterior estimation in the context of non-parametric regression can be
found in [4]. The main differences from our results to those type of results is twofold. First,
to obtain meaningful convergence rate guarantees, the results of [4] make usually assump-
tions on the distribution. We shift this burden from the distribution to the hypothesis set
used. The difference is, that while we always have meaningful finite sample guarantees,
our estimation procedure is not consistent in the case of model misspecification. The meth-
ods used by [4] are always consistent, but may have arbitrarily slow convergence on some
distributions. Second, as we assume that the excess risk bounds we use are true with high
probability over drawn samples, our convergence results hold also with high probability,
while [4] makes those statements in expectation over the sampling process.

The starting point of our analysis follows closely the notation and concepts as described
by Buja et al. [5] and Reid and Williamson [6, 7]. While Buja et al. [5] and Reid and
Williamson [6] deal with the inherent structure of proper scoring rules, Reid and Williamson
[7] make connections between the expected loss in prediction problems and divergence
measures of two distributions. In contrast to that we investigate under which circumstances
proper scoring rules can make use of their full potential in order to estimate class probabil-
ities.

Telgarsky et al. [8] perform an analysis similar to ours as they also investigate conver-
gence properties of a class probability estimator, their start and end point are very different
though. While we start with theory from proper scoring rules, their paper directly starts
with the class probability estimator as found in [9]. The problem is that the estimator in [9]
only appears as a side remark, and it is unclear to which extent this is the best, only or even
the correct choice. This chapter contributes to close this gap and answers those questions.
They show that the estimator converges to a unique class probability model. In relation to
this one can view this chapter as an investigation of this unique class probability model and
we give necessary and sufficient conditions that lead to convergence to the true class prob-
abilities. Note also that their paper uses convex methods, while our work in comparison
draws from the theory of proper scoring rules.

Agarwal and Agarwal [10] look at the problem in a more general fashion. They connect
different surrogate loss functions to certain statistics of the class probability distribution,
e.g. the mean, while we focus on the estimation of the full class probability distribution.
This allows us to come to more specific results, such as finite sample behavior.

The probability estimator we use also appears in [11] where it is used to derive excess
risk bounds, referred to as surrogate risk bounds, for bipartite ranking. The methods used
are very similar in the sense that these are also based on proper scoring rules. The differ-
ence is again the focus, and even more so the conditions used. They introduce the notion
of strongly proper scoring rules which directly allows one to bound the L2-norm, and thus
the L1-norm, of the estimator in terms of the excess risk. We show that convergence can
be achieved already under milder conditions. We then use the concept of modulus of con-
tinuity, of which strongly proper scoring rules are a particular case, to analyze the rate of
convergence.
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5.3. PRELIMINARIES
We work in the classical statistical learning setup for binary classification. We assume that
we observe a finite i.i.d. sample (xi , yi )1≤i≤n drawn from a distribution P on X ×Y . Here
X denotes a feature space and Y = {−1,1} denotes a binary response variable. We then
decide upon a hypothesis class F such that every f ∈F is a map f :X →V for some space
V . Given the space V we call any function l : {−1,1}×V → [0,∞) a loss function. The
interpretation of the loss function is that we incur the penalty l (y, v) when we predicted
a value v while we actually observed the label y . Our goal is then to find a predictor
fn ∈F based on the finite sample such that E[l (Y , fn(X )] is small, where X ×Y is a random
variable distributed according to P . In other words, we want to find an estimator fn that
approximates the true risk minimizer f0 well in terms of the expected loss, where

f0 := argmin
f ∈F

E[l (Y , f (X ))]. (5.1)

The estimator fn is often chosen to be the empirical risk minimizer

fn = argmin
f ∈F

n∑
i=1

l (yi , f (xi )).

As we show in this chapter, finding such an fn implicitly means to find a good estimate
for p(y | x) := P (Y = y | X = x) in many settings. Since we regularly deal with p(y | x)
and related quantities we introduce the following notation. To start with, we define η(x) :=
P (Y = 1 | X = x). Depending on the context we drop the feature x and think of η ∈ [0,1] as a
scalar. Accepting the small risk of overloading the notation we sometimes also think of η as
a Bernoulli distribution with outcomes in Y and parameter η, as in the following definition.
We define the point-wise conditional risk as

L(η, v) := EY ∼η[l (Y , v)] = ηl (1, v)+ (1−η)l (−1, v), (5.2)

the optimal point-wise conditional risk as

L∗(η) := min
v∈V

L(η, v), (5.3)

and we denote by v∗(η) the set of values that optimize the point-wise conditional risk

v∗(η) := argmin
v∈V

L(η, v). (5.4)

Finally we define the conditional excess risk as

∆L(η, v) := L(η, v)−L∗(η). (5.5)

5.3.1. PROPER SCORING RULES
If we chose V = [0,1], we say that l : {−1,1}×V → R is a CPE loss, where CPE stands for
class probability estimation. The name stems from the fact that if V = [0,1] it is already
normalized to a value that can be interpreted as a probability. If l is a CPE loss we call
it a proper scoring rule or proper loss if η ∈ v∗(η) and we call it a strictly proper scoring
rule or strictly proper loss if v∗(η) = {η}. In other words, l is a proper scoring rule if η is a
minimizer of L(η, ·) and this is strict if η is the only minimizer. In case l is strict we drop
the set notation of v∗, so that v∗(η) = η.
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5.3.2. LINK FUNCTIONS
As we will see later strictly proper CPE losses are well suited for class probability estima-
tion. In general, however, we cannot expect that V = [0,1], but we may still want to use
the corresponding loss function for class probability estimation. To do that we will use the
concept of link functions [5, 6]. A link function is a map ψ : [0,1] → V , so a function that
indeed links the values from V to something that can be interpreted as a probability. Com-
bining such a link function with a loss l : {−1,1}×V → [0,∞) one can define a CPE loss lψ
as follows.

lψ : {−1,1}× [0,1] → [0,∞)

lψ(y, q) := l (y,ψ(q))

We call the combination of a loss and a link function (l ,ψ) a (strictly) proper composite
loss if lψ is (strictly) proper as a CPE loss.

To distinguish between the losses l and lψ we subscript the quantities (5.2)-(5.5) with a
ψ if we talk about lψ instead of l . For example we define Lψ(η, q) := L(η,ψ(q)) for q ∈ [0,1]
and in the same way we define v∗

ψ(η), L∗
ψ(η) and ∆Lψ(η, q). Note that if (l ,ψ) is a strictly

proper composite loss, we know that v∗
ψ(η) are single element sets, but the same does not

need to hold for v∗(η).

5.3.3. DEGENERATE LINK FUNCTIONS
To ask a composite loss (l ,ψ) to be proper is not a strong requirement, one can check that
choosing ψ as constant function already fulfills this. This is because a composite loss (l ,ψ)
is proper, iff the true posterior η is a minimizer of the conditional risk Lψ(η, ·), i.e. η ∈ v∗

ψ(η).
If ψ is constant, then so is the conditional risk Lψ(η, ·) and then every value is a minimizer,
so in particular η is a minimizer. We want to avoid this degenerate behavior for the task of
probability estimation and will ask ψ to cover enough of V in the following sense. We call
a composite loss (l ,ψ) non-degenerate if for all η ∈ [0,1] we have that Imψ∩ v∗(η) 6= ;,
where Imψ ⊂ V is the image of ψ on [0,1]. This does not directly exclude constant link
functions for example, but consider the following. If ψ is constant and non-degenerate,
then there is a single v = Imψ such that v ∈ v∗(η) for all η. Thus v would always minimize
the loss, and we would, irrespectively of the input, always predict v . This is of course a
property that no reasonable loss function should carry.

5.4. BEHAVIOR OF PROPER COMPOSITE LOSSES
For our convergence results we will need a loss function to be a strictly proper CPE loss. In
this section we investigate how to characterize those loss functions.

We start by investigating proper CPE loss functions. Our first lemma states that the link
functions that turns the loss l into a proper composite loss is already defined by the behavior
of v∗.

Lemma 2. Let l : {−1,1}×V → [0,∞) be a loss function and ψ be a link function. The
composite loss function (l ,ψ) is then proper and non-degenerate if and only if ψ ∈ v∗,
meaning that ψ(η) ∈ v∗(η) for all η ∈ [0,1].

Proof. First we show that if (l ,ψ) is proper and non-degenerate, then ψ ∈ v∗. Let (l ,ψ) be a
proper composite loss, so η ∈ v∗

ψ(η), i.e. η minimizes L(η,ψ(·)). As (l ,ψ) is non-degenerate
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there exists at least one η1 such that ψ(η1) ∈ v∗(η). If ψ(η) 6∈ v∗(η) we would find that η
can not be a minimizer of L(η,ψ(·)) as then L(η,ψ(η1)) < L(η,ψ(η)).

Now we show that (l ,ψ) is a proper non-degenerate composite loss if ψ ∈ v∗. By defini-
tion, (l ,ψ) is proper if η ∈ v∗

ψ(η). This is the case if and only if L(η,ψ(η)) = min
q∈[0,1]

L(η,ψ(q)).

But this is the case if ψ ∈ v∗ since v∗(η) is defined as the set of minimizers of L(η, ·). The
non-degenerate follows directly by definition.

This lemma gives thus necessary and sufficient condition on our link ψ to lead to a
proper loss function. The result is very similar to Corollary 12 and 14 found in [6]. Their
corollaries state necessary and sufficient conditions on the link function, using the assump-
tion that the loss has differentiable partial losses, which is an assumption we don’t require.

In Section 5.6.2 we show that strictly proper losses, together with some additional as-
sumptions, lead to consistent class probability estimates. So it is useful to know how to
characterize those functions. The following lemma shows that a link function that turns
a loss into strictly proper and non-degenerate CPE loss can be characterized again by the
behavior of v∗.

Lemma 3. Let l : {−1,1}×V → [0,∞) be a loss function and ψ a link function. A composite
loss function (l ,ψ) is then strictly proper and non-degenerate if and only if ψ ∈ v∗ and
v∗(η1)∩ v∗(η2)∩ Imψ=; for all pairwise different η1,η2 ∈ [0,1].

Proof. By definition the composite loss is strictly proper if and only if η= v∗
ψ(η). First we

show that (l ,ψ) is strictly proper and non-degenerate if ψ ∈ v∗ and v∗(η1)∩ v∗(η2) =; for
all η1,η2 ∈ [0,1]. From Lemma 2 we know already that η ∈ v∗

ψ(η), we only have to show
that η is the only element in the set. For that assume that it is not the only element, so that
there is a γ ∈ [0,1] such that γ ∈ v∗

ψ(η). As in the proof of Lemma 2 one can conclude that
ψ(γ) ∈ v∗(η). But we also know, again from Lemma 2, that ψ(γ) ∈ v∗(γ). That means that
ψ(γ) ∈ v∗(η)∩ v∗(γ)∩ Imψ 6= ;, which is a contradiction to our assumption.

Now we show that ψ ∈ v∗ and v∗(η1)∩ v∗(η2)∩ Imψ=; for all η1,η2 ∈ [0,1] if (l ,ψ)
is strictly proper and non-degenerate. The relation ψ ∈ v∗ follows again from Lemma 2.
We prove the second claim by contradiction and assume that there exist η1,η2,η3 ∈ [0,1],
all pairwise different, such that ψ(η3) ∈ v∗(η1)∩ v∗(η2). With this choice and using that ψ
is strictly proper it follows that η3 = v∗

ψ(η1) and η3 = v∗
ψ(η2). That means that η1 = η3 = η2

which is a contradiction.

So if (l ,ψ) is a strictly proper composite loss it will fulfill some sort of injectivity con-
dition on the sets v∗(η). With this we will be able to define an inverse ψ−1 on those sets,
and this will be essentially our class probability estimator. With Lemma 3 we can connect
every v ∈V to a unique ηv by the unique relation v ∈ v∗(ηv ) if we assume that v∗ disjointly
covers V in the sense that⋃

η∈[0,1]
v∗(η) =V and (5.6)

v∗(η1)∩ v∗(η2) =; ∀ η1,η2 ∈ [0,1], η1 6= η2. (5.7)
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Figure 5.1: The way we generally think of the mapping ψ, ψ−1 and the sets v∗ if (l ,ψ) is non-degenerate and
strictly proper. In those cases we can extend ψ−1 to the sets v∗. This is well defined as the sets v∗(ηv ) and
v∗(ηw ) have empty intersection for different ηv ,ηw ∈ [0,1]. Note that Lemma 3 guarantees that ψ(ηv ) ∈ v∗(ηv ).

Note that we know from Lemma 3 that for strict properness it is sufficient for (l ,ψ) that the
disjoint property (5.7) only holds on Imψ, the image of ψ. This is merely a technicality
and we will assume from now on that every strictly proper composite loss will satisfy (5.7).
The covering property (5.6) on the other hand can be violated. This happens for example if
we use the squared loss together with V =R. For the squared loss v∗(η) = 2η−1, so it only
covers the space [−1,1].

If we assume, however, that the regularity properties (5.6) and (5.7) hold for a strictly
proper non-degenerate composite loss (l ,ψ) we can extend the domain of ψ−1 from Imψ

to the whole of V , see also Figure 5.1 and the examples in Table 5.2.

Definition 3. Let (l ,ψ) be a strictly proper, non-degenerate composite loss and assume that
v∗ disjointly covers V . We define, by abuse of notation, the inverse link function ψ−1 :V →
[0,1] by ψ−1(v) = ηv , where ηv is the unique element in [0,1] such that v ∈ v∗(ηv ).

The requirements from the previous definition is what we consider the archetype of a
composite loss that is suitable for probability estimation, although not all of the require-
ments are necessary. This motivates the following definition.

Definition 4. We call a composite loss (l ,ψ) a natural CPE loss if ψ is non-degenerate, v∗
fulfills the disjoint cover property (5.6) and (5.7) and (l ,ψ) is strictly proper.

We now have all the necessary work done to make the following observation.

Corollary 5. If (l ,ψ) is a natural CPE loss, then ψ−1 = v∗−1.

Proof. Let v ∈ V and η ∈ [0,1] such that v ∈ v∗(η). Then v∗−1(v) = η. As by the previous
lemmas we know that ψ(η) ∈ v∗(η) we have by Definition 3 that ψ−1(v) = η.
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The corollary tells us that we can optimize our loss function over V to get v∗(η) and
then map this back with the inverse link ψ−1 to restore the class probability η. For this we
once more refer to Figure 5.1. Remember that the set v∗(ηv ) is the set of all v ∈ V that
minimize the loss if the true posterior probability was ηv . If we use a natural CPE loss
(l ,ψ) we know then that ψ−1 maps all those points back to ηv .

Given a predictor f :X →V this motivates to define an estimator of η(x) as

η̂= η̂(x) =ψ−1( f (x)). (5.8)

In Section 5.6 we give conditions under which η̂(x) converges in probability towards
η(x) when using an empirical risk minimizer fn as a prediction rule. More formally; Given
any ε> 0 we show that under certain conditions η̂n(x) :=ψ−1( fn(x)) satisfies

P (|η̂n(X )−η(X )| > ε)
n→∞−−−−→ 0, (5.9)

where the probability is measured with respect to P . In the next section, however, we want
to investigate first v∗ and v∗−1 for some commonly used loss functions.

5.5. ANALYSIS OF LOSS FUNCTIONS
We now give examples of some commonly used loss functions and analyze whether they
are strictly proper or not, with the aid of Lemma 3. In Table 5.1 we summarize the loss
functions we consider and a link function that turns the loss function into a strictly proper
composite loss, if possible. Table 5.2 shows the corresponding functions v∗ and v∗−1. That
the link functions indeed fulfills the requirements can be checked with Lemma 3 . The
behavior of the squared and squared hinge loss seems to be very similar. In Section 5.6.5,
however, we point out an important difference.

Table 5.1: The different loss functions we consider in this chapter together with their link functions that turn them
into CPE losses (if possible).

Loss Function l (y, v) ψ(η)

Squared (1− y v)2 2η−1

Logistic ln(1+e−v y ) ln η
1−η

Squared Hinge max(0,1− v y)2 2η−1

Hinge max(0,1− v y) -

0-1 I{sign(v y)6=1} -

As already noted by Buja et al. [5], also Table 5.2 shows that the hinge loss is not
suitable for class probability estimation. We observe that the intersections of v∗(η) for
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different η ∈ [0,1] are not disjoint. By Lemma 3 we can conclude that there is no link ψ

such that (l ,ψ) is strictly proper. One way to fix this, proposed by [12] and similar by Platt
[13], is to fit a logistic regressor on top of the support vector machine. Bartlett and Tewari
[14] investigate the behavior of the hinge loss deeper by connecting the class probability
estimation task to the sparseness of the predictor. The hinge loss is of course classification
calibrated (essentially meaning that we find point-wise the correct label with it), so between
our considered surrogate losses it is the only one that really directly solves the classification
problem without implicitly estimating the class probability.

Table 5.2: The functions v∗ and v∗−1 for different loss functions, as well as the rate of convergence (5.14) when
calculated with Corollary 7.

Loss Function v∗−1(v) v∗(η) δ(ε)

Squared v+1
2 2η−1 ε2

Logistic 1
1+e−v ln η

1−η 2ε2

Squared Hinge T ( v+1
2 )


2η−1, η ∈ (0,1)

[1,∞), η= 1

(−∞,−1], η=−1

ε2

Hinge



1
2 v ∈ (−1,1)

(0, 1
2 ) v =−1

( 1
2 ,1) v = 1

1, v > 1

0, v <−1


sign(2η−1), η ∈ (0,1) \ 1

2

[−1,1] η= 1
2

[1,∞), η= 1

(−∞,−1], η=−1

-

0-1


[ 1

2 ,1] if v ∈ (0,∞)

[0, 1
2 ], v ∈ (−∞,0)

1
2 , v = 0


(0,∞), η ∈ ( 1

2 ,1]

(−∞,0), η ∈ [0, 1
2 )

R, η= 1
2

-

5.6. CONVERGENCE OF THE ESTIMATOR
We now prove that the estimator η̂(x) as defined in Equation (5.8) converges in probabil-
ity and in the L1-norm to the true class probability η whenever we use an empirical risk
minimizer, for which we have excess risk bounds, as a prediction rule.

5.6.1. USING THE TRUE RISK MINIMIZER FOR ESTIMATION
Before we can investigate under which conditions an empirical risk minimizer can (asymp-
totically) retrieve η(x) we need to investigate under which conditions the true risk minimizer
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can retrieve it. In this subsection we formulate a theorem that gives necessary and sufficient
conditions for that. Not surprisingly we basically require that our hypothesis class is rich
enough so as to contain the class probability distribution already. Bartlett et al. [15] and
similar works often avoid problems caused by restricted classes by assuming from the be-
ginning that the hypothesis class consists of all measurable functions. This theorem relaxes
this assumption for the purpose of class probability estimation.

In this setting we assume that we use a hypothesis class F where f ∈F are functions
f :X →V . If we want to do class probability estimation we rescale those functions by com-
posing them with the inverse link ψ−1 : V → [0,1] so that we effectively use the hypothesis
class ψ−1(F ) := {ψ−1 ◦ f | f ∈F }. We then get the following theorem about the possibility
of retrieving the posterior with risk minimization.

Theorem 23. Assume that (l ,ψ) is a natural CPE loss function. Let

f0 = argmin
f ∈F

E[l (Y , f (X )].

Then ψ−1( f0(x)) = η(x) almost surely if and only if η ∈ψ−1(F ).

Proof. If ψ−1( f0(x)) = η(x) then η ∈ψ−1(F ) by the definition of that space.

For the other direction assume that η ∈ψ−1(F ). First observe that

EX [L(η(X ),ψ( f (X ))] = EX ,Y [l (Y ,ψ( f (X )))].

Since (l ,ψ) is a natural CPE loss we know that η(x) is the unique minimizer of L(η(x),ψ(·)).
Since f0(X ) is a minimizer of EX ,Y [l (Y , ·)] = E[L(η(X ), ·)] it follows that f0 = ψ(η) almost
surely. As (l ,ψ) is regular, the inverse ψ−1 is well-defined and thus ψ−1( f0) = η.

Following Theorem 23 we need to assume that our hypothesis class is flexible enough
for consistent class probability estimation. We formulate this assumption as follows.

Assumption A Given a natural CPE loss (l ,ψ) we assume that η ∈ψ−1(F ) = {ψ−1◦ f | f ∈
F }. In Subsection 5.6.3 we will deal with the case of misspecification, i.e. when η ∉ψ−1(F ).

5.6.2. USING THE EMPIRICAL RISK MINIMIZER FOR ESTIMATION
In the previous section we considered the possibility of retrieving class probability estimates
with the true risk minimizer. To move on to empirical risk minimizers we need the notion
of excess risk bounds.

Definition 5. Let fn :X →R be any estimator of f0 ∈F , which may depend on a sample of
size n. We call

BF (n,γ) :N→ [0,∞) (5.10)

an excess risk bound for fn if for all γ > 0 we have BF (n,γ) → 0 for n → ∞ and with
probability of at least 1−γ over the n − sample we have

EX [∆L(η(X ), fn(X ))] = EX ,Y [l (Y , fn(X ))− l (Y , f0)] ≤ BF (n,γ). (5.11)
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Excess risk bounds are typically in the order of
(

comp(F )
n

)β
, where β ∈ [0.5,1] and

comp(F ) is a notion of model complexity. Common measures for the model complex-
ity are the VC dimension [16], Rademacher complexity [17] or ε-cover [18]. The existence
of excess risk bounds is tied to the finiteness of any of those complexity notions. A lot
of efforts in this line of research are made to find relations between the exponent β and
the statistical learning problem given by F , the loss l and the underlying distribution P .
Conditions that ensure β > 1

2 are often called easiness conditions, such as the Tsybakov
condition [19] or the Bernstein condition [20]. Intuitively those conditions often state that
the variance of our estimator gets smaller the closer we are to the optimal solution. For a
in-depth discussion and some recent results we refer to the work of Grünwald and Mehta
[21].

Excess risk bounds allow us to bound the expected value of ∆L(η(x), fn(x)) for a loss l ,
so in particular we can bound ∆Lψ(η(x), η̂(x)) for a composite loss (l ,ψ). We will show L1-
convergence by connecting the behavior of ∆Lψ(η(x), η̂(x)) to |η(x)− η̂(x)|. The following
lemma introduces a condition that allows us to draw this connection.

Lemma 4. Let (l ,ψ) be a natural CPE loss. Assume that for all η ∈ [0,1] the maps

L0
ψ(η, ·) := Lψ(η, ·) �[0,η]: [0,η] →R

and
L1
ψ(η, ·) := Lψ(η, ·) �[η,1]: [η,1] →R

are strictly monotonic, where Lψ(η, ·) �I refers to the restriction of the mapping Lψ(η, ·) to
an interval I . This is the case iff Lψ(η, ·) is strictly convex with η as its minimizer. Then
there exists for all ε> 0 a δ= δ(ε) > 0 such that for all η, η̂ ∈ [0,1]

|∆Lψ(η, η̂)| < δ⇒|η− η̂| < ε. (5.12)

Proof. With the assumptions on L0
ψ(η, ·) and L1

ψ(η, ·) those maps have a well defined inverse
mapping with their image as the domain and those inverse mappings are continuous [22].
That means in particular that for every l , l̂ ∈ ImL0

ψ(η, ·) and for all ε> 0 there exists a δ> 0
such that

|l̂ − l | < δ⇒|L0
ψ
−1

(η, l̂ )−L0
ψ
−1

(η, l )| < ε (5.13)

and similar for L1
ψ(η, ·). W.l.o.g assume now that η̂ < η so that η̂ ∈ [0,η]. Then we set

l = L0
ψ(η,η) and l̂ = L0

ψ(η, η̂). Plugging this into (5.13) we get the following relation.

|∆Lψ(η, η̂)| = |L0
ψ(η, η̂)−L0

ψ(η,η)| < δ
⇒|η̂−η| = |L0

ψ
−1

(η, l̂ )−L0
ψ
−1

(η, l )| < ε

The map L0
ψ(η, ·) captures the behavior of the loss when η is the true class probability

and we predict a class probability less than η. Similarly L1
ψ(η, ·) captures the behavior

when we predict a class probability bigger than η, see also Figure 5.2. In Corollary 7,
further below, we draw a connection between δ(ε) and the modulus of continuity of the
inverse functions of L1

ψ(η, ·) and L0
ψ(η, ·). The function δ(ε) plays an important role in the

convergence rate of the estimator η̂(x) as described in the next theorem.
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(a) The map Lψ(η, ·) for η= 0.2 and l
being the squared loss.
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(b) The map Lψ(η, ·) for η = 0.2 and l being the logistic
loss.

Figure 5.2: The map Lψ(η, ·) for the squared and the logistic loss. The two maps L0
ψ(η, ·) and L1

ψ(η, ·) split it into
the parts left and right of η.

Theorem 24. Let (l ,ψ) be a natural CPE loss and assume Assumption A holds. Further-
more let BF (n,γ) be an excess risk bound for fn and assume that Lψ(η, ·) is strictly convex
with η as its minimizer. Then there exists a mapping
δ(ε) : [0,1] →R such that for η̂n(x) :=ψ−1( fn(x)) we have with probability of at least 1−γ
that

P (|η(X )− η̂n(X )| > ε) ≤ BF (n,γ)

δ(ε)
. (5.14)

Proof. Using Lemma 4 for the first inequality, Markov’s Inequality for the second and the
excess risk bound for the third inequality it follows that

P (|η(X )− η̂n(X )| > ε) ≤ P (∆Lψ(η(X ), η̂n(X )) > δ)

= P (∆L(η(X ), fn(X )) > δ) ≤ E[∆L(η(X ), fn(X ))]

δ(ε)
≤ BF (n,γ)

δ(ε)
.

This theorem gives us directly the earlier claimed asymptotic convergence result.

Corollary 6. Under the assumptions of Theorem 24 we have that η̂n(x) =ψ−1( fn(x)) con-
verges in probability and L1-norm to η(x) with probability 1.

We do not have to restrict ourselves to asymptotic results though. Theorem 24 can also
be used to derive rate of convergences as we will see in Subsection 5.6.4. But before that
we briefly want to address the case of misspecification, i.e. the case when Assumption A
does not hold.
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5.6.3. MISSPECIFICATION
The case of misspecification can be dealt with once we assume that L∗

ψ has a gradient. If
this holds then Reid and Williamson [6] show the identity

∆Lψ(η, η̂) = D−L∗
ψ

(η, η̂) (5.15)

where D−L∗
ψ

(η, η̂) is the with −L∗
ψ associated Bregman divergence between η and η̂. Excess

risk bounds on ∆Lψ(η, η̂) translate then into bounds on the Bregman divergence between η
and η̂ and asymptotically we approach the best class probability estimate in terms of this
divergence.

5.6.4. RATE OF CONVERGENCE
For the rate of convergence it is crucial to investigate the function δ(ε) from Inequality
(5.14). One way to analyze this is to study the modulus of continuity of the inverse functions
of L0

ψ(η, ·) and L1
ψ(η, ·):

Definition 6. Let ω : [0,∞] → [0,∞] be a monotonically increasing function. Let I ⊂ R be
an interval. A function g : I →R admits ω as a modulus of continuity at x ∈ I if and only if

|g (x)− g (y)| ≤ω(|x − y |)

for all y ∈ I .

For example Hölder and Lipschitz continuity are particular moduli of continuity. This
notion allows us a to draw the following connection between ε and δ(ε).

Corollary 7. Let (l ,ψ) be a natural CPE loss and let ω : [0,∞] → [0,∞] be a monotonically
increasing function. Assume that for all η ∈ [0,1] the mappings L0

ψ
−1

(η, ·) and L1
ψ
−1

(η, ·)
admit ω as a modulus of continuity at η. Then δ(ε) :=ω−1(ε) is a mapping such that Impli-
cation (5.12) holds.

Proof. W.l.o.g. assume that η̂ ∈ [0,η]. Let l̂ = L0
ψ(η, η̂) and l = L0

ψ(η,η). By using that

L0
ψ
−1

(η, ·) admits ω as a modulus of continuity we have

|L0
ψ
−1

(η, l )−L0
ψ
−1

(η, l̂ )| ≤ω(|l − l̂ |).

Plugging in the definition of l̂ and l this means that

|η̂−η| ≤ω(∆Lψ(η, η̂)).

Using the monotonicity of ω it follows that if ∆Lψ(η, η̂) ≤ δ(ε) =ω−1(ε), then

|η− η̂| ≤ω(∆Lψ(η, η̂)) ≤ω(ω−1(ε)) = ε.

This is exactly the Implication (5.12).
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Note that it follows from the proof that finding a modulus of continuity ω for L0
ψ
−1

(η, ·)
and L1

ψ
−1

(η, ·) can be done by showing the bound |η̂−η| ≤ω(∆Lψ(η, η̂)). We will use that
in the following examples, where we analyze δ(ε) for the squared (hinge) loss and the
logistic loss. We show that those loss functions lead to a modulus of continuity given by the
square root times a constant. [11] calls loss functions that admit this modulus of continuity
strongly-proper loss functions. The following analysis can thus be found there in more
detail and for a few more examples. We will use for simplicity versions of the losses that
do not need a link function, and are already CPE losses, the results are summarized in Table
5.2.

Example: Squared Loss and Squared Hinge Loss Let l (y, η̂) be given by the partial
loss functions l (1, η̂) = (1− η̂)2 and l (−1, η̂) = η̂2. We can derive that ∆L(η, η̂) = (η− η̂)2.
With this we can directly bound

|η̂−η| ≤
√
∆L(η, η̂)

and thus choose δ(ε) as the inverse of the square-root function, so that δ(ε) = ε2. The
analysis for the squared hinge loss is the same as this version of the squared loss is already
a CPE loss.

Example: Logistic Loss Let l (y, η̂) be given by the partial loss functions l (1, η̂) =− ln(η̂)

and l (−1, η̂) =− ln(1− η̂). One can derive that ∆L(η, η̂) =−η ln( η̂η )−(1−η) ln( 1−η̂
η ). One can

show the bound |η− η̂| ≤
√

1
2∆L(η, η̂), so that we can choose δ(ε) = 2ε2.

5.6.5. SQUARED LOSS VS SQUARED HINGE LOSS
In this section we will subscript previously defined entities with S and SH for the squared
and square hinge loss respectively. When using squared loss vs the squared hinge loss for
class probability estimation there is one big difference in the inverse of the link function,
namely its domain. The inverse link function is a map ψ−1

S :V → [0,1]. If we use the square
loss we implicitly chose V = [−1,1] since this is the range of ψS . The range of ψSH on the
other hand is V =R. That means that if we want to use the squared loss for class probability
estimation we really have to parametrize our prediction functions f : X → [−1,1], a simple
linear model for example would usually not fit this assumption as the range of those models
can be outside of [−1,1]. For the squared hinge loss on the other hand we can allow for
functions f :X →R.

[23] proposes to just truncate the inverse link for the squared loss, so using the same
inverse link as for the squared hinge loss. This is fine as long as our hypothesis class
is flexible enough, but leads to problems if that is not the case as the following example
shows.

Assume we are given three one-dimensional data points x1 =−1, x2 = 0, x3 = 3 together
with their true class probabilities η(x1) = 0,η(x2) = 1/3,η(x3) = 1. We want to learn this
classification with linear models, which are two-dimensional after including a bias term.
That means that F = { f : X → R | ∃w1, w2 ∈ R : f (x) = w1x +w2}. One can check that in
case of the squared hinge loss function we can recover the true class probabilities with the
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linear function given by (w1, w2) = (2,− 1
4 ). By Theorem 23 we know then that an optimal

solution f0 is also able to recover the true class probabilities.
The squared loss has after truncating the following problem. Although the linear func-

tion (w1, w2) = (2,− 1
4 ) is part of ψ−1

S (F ), after truncating, it will not be found back as
an optimal solution f0. One can instead check that for the given example the true risk
minimizer is given by f0 = ( 19

39 ,− 17
39 ). And this hypothesis does not recover the true class

probabilities. This might appear as a contradiction to Theorem 23. But the problem arises
because we use a different link function than the one associated to the square loss.

5.7. DISCUSSION AND CONCLUSION
The starting point of this chapter is the question if one can retrieve consistently a class
probability estimate based on ERM in a consistent way. To answer this question we draw
from earlier work on proper scoring rules and excess risk bounds. Lemmas 2 and 3, our first
results, characterize strictly proper composite loss functions in terms of their link function.
Based on those lemmas, we subsequently derive necessary and sufficient conditions for
retrieving the true class probability with ERM as formulated in Theorem 23. Next to some
regularity conditions on the loss function, we show that to retrieve the true probabilities we
essentially need that they are already part of our hypothesis class F , which, in a way, is not
surprising.

In Section 5.6 we use the results from the previous sections and theory about excess
risk bounds to state our main consistency and finite sample size results. We show that con-
sistency arises whenever we use strictly proper (composite) loss functions, our hypothesis
class is flexible enough, and we have excess risk bounds. This is the case, for example,
whenever one of the complexity notions mentioned in Section 5.6 is finite. We then dis-
cuss the relation between the finite sample size behavior of the excess risk bound and the
probability estimate and examine this relation for two example loss functions.

In Lemma 4 we introduce fairly general conditions under which a composite loss func-
tion (l ,ψ) leads to a consistent class probability estimator. In particular we have a condition
on the conditional risk Lψ(η, ·), see also Figure 5.2. Based on that we derive in Corollary 7
conditions which allow us to analyze the convergence rate for different loss functions. In
the corollary we don’t distinguish between L0

ψ(η, ·) and L1
ψ(η, ·), which leads to the same

convergence rate for predicting values left and right from η. But the modulus of continuity
for those two functions can be really different, especially when using asymmetric proper
scoring rules [24]. We believe that by analyzing L0

ψ(η, ·) and L1
ψ(η, ·) individually one can

extend our work to analyze the convergence behavior of asymmetric scoring rules in more
detail.

As stated from the outset, one of our main goals is to emphasize the tight relationships
between empirical risk minimization and class probability estimation in a distilled and com-
pact version. The concepts of link functions and the relation between them and empirical
risk minimization do not get the attention they deserve and are thus reinvented from time to
time. Many of those concepts appear for example in the great analysis of Zhang [9] without
any explicit reference to proper scoring rules.
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6
OPEN PROBLEM:

MONOTONICITY OF LEARNING

This chapter poses the question to what extent a learning algorithm behaves monotonically
in the following sense: does it perform better, in expectation, when adding one instance to
the training set? We focus on empirical risk minimization and illustrate this property with
several examples, two where it does hold and two where it does not. We also relate it to the
notion of PAC-learnability.

Parts of this chapter have been published in the proceedings of the 32nd Annual Conference on Learning Theory
[1].
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6.1. INTRODUCTION.
Recently, there has been an increasing amount of attention on machine learning algorithms
that are presently referred to as robust or safe, meaning that even when assumptions are vi-
olated, performance will not degrade significantly [2]. The focus is mostly on settings that
are slightly different from supervised learning such as online learning [3], domain adap-
tation [4] and semi-supervised learning [5]. The open problem presented here makes the
point that such robustness and safety properties are not even fully understood for standard
supervised learning and density estimation.

We focus on what we will refer to as the monotonicity of a learner’s performance: given
one additional training instance, to what extent can we expect a learner to improve? Or,
equivalently, when is the so-called learning curve monotone [6]? While this property is
undoubtedly desirable, and most of us expect such behavior, there are surprising counterex-
amples. This open problem asks to unravel this behavior.

6.2. PRELIMINARIES AND RELATED WORK.
Let Sn = (z1, . . . , zn) be a training set of size n, sampled i.i.d. from an (unknown) distribution
D over a domain Z . The learner A we consider performs empirical risk minimization
(ERM). Its output is A(Sn), i.e., a hypothesis h from a prespecified set H that minimizes
the empirical risk over Sn based on a loss function L : H×Z → R. In statistical learning,
performance is measured through this loss and the aim is to minimize the true risk

LD (h) = E
z∼D

L(h, z).

One can define classification problems, regression, and density estimation in such terms.
Before we formally introduce the concept of monotonicity, we mention related works

that already report on non-monotone learning behavior. Duin [7] and Opper and Kinzel [8]
describe the so-called peaking phenomenon for classification: when the dimensionality is
approximately equal to the size of the training set, the risk in terms of the zero-one loss
and mean squared error has a maximum (it peaks). This happens for models that require
estimates of the (pseudo-)inverse of the covariance matrix [9], such as linear regression.

Loog and Duin [10] describe what they call dipping: the evaluation risk attains a global
minimum for some finite n. Even for n →∞ the risk never recovers. This phenomenon
can occur when there is a mismatch between target (e.g. zero-one) and surrogate loss (e.g.
hinge). Ben-David et al. [11] analyze this mismatch between surrogate and zero-one loss
in more detail.

We focus on the setting where the loss the learner optimizes matches the loss it is eval-
uated with. Thus the observed behavior in our examples cannot be explained through the
dipping phenomenon. This makes our findings more unexpected and the open problem
more appealing. Note, indeed, that our learner A (performing ERM) is implicitly associ-
ated with a specific loss L and set H.

6.3. THE MONOTONICITY PROPERTY
The idea is that with an additional instance a learner should improve its performance in
expectation over the training set. We need the following building block.
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Definition 7 (local monotonicity). A learner A is locally or (D,n)-monotone with respect
to a distribution D and an n ∈N if

E
Sn+1∼Dn+1

LD (A(Sn+1)) ≤ E
Sn∼Dn

LD (A(Sn)).

Now we can construct stronger desired properties. We generally want monotonicity for
all n. Since the distribution D is unknown, we want local monotonicity to hold for any D
on the domain Z .

Definition 8 (Z-monotonicity). A learner A is Z-monotone if, for all n ∈N and distribu-
tions D on Z , it is (D,n)-monotone.

6.4. EXAMPLES
We now turn to some illustrations and consider to what extent they are Z-monotone. In the
remainder, we refer to Z-monotone as monotone. It will be clear from the context what Z
is.

Example I: mean estimation of a normal distribution (monotone). We perform density
estimation with a normal distribution with fixed variance σ2 > 0 and unknown mean. The
hypothesis class is Hσ =

{
h : z 7→ 1p

2πσ2
exp

(
− (z−µ)2

2σ2

)
| µ ∈R

}
. We choose the domain Z ⊂

[−1,1]. This choice ensures that any distribution D has a finite mean and finite variance.
We use negative log-likelihood as loss. Thus ERM is equivalent to maximum likelihood
(ML) estimation for this setting. The optimum that ERM finds is µ= 1

n

∑
i zi . The expected

risk equals

E
Sn∼Dn

LD (A(S)) = 1

2
log(2πσ2)+ σ2

D

2σ2

(
1+ 1

n

)
,

where σ2
D is the true variance of D. So the expected risk decreases monotonically in n.

Proof. For brevity the expectations are now only indicated with the random variable, but
not its distribution. We use negative log-likelihood as the loss and with this the expected
risk can be computed to

ESnEZ

(
−log (

1p
2πσ2

)+ (Z −µ(Sn))2

2σ2

)
=− l og (

1p
2πσ2

)+ 1

2σ2 ESnEZ
(
Z −µ(Sn)

)2

=− l og (
1p

2πσ2
)+ 1

2σ2 ESnEZ
(
Z 2 +µ(Sn)2 −2Zµ(Sn)

)
.

Here Z is D-distributed random variable. We solve the double expectation on the right
hand side term by term. The first term can be computed to

ESnEZ Z 2 = EZ Z 2 =VZ Z + (EZ Z )2 =σ2
D +µ2,

where V indicates the variance. Note that for the last step we use that µ(Sn) is unbiased.
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0 10 20 30 40

Figure 6.1: Non-monotone behavior as observed in Example III.

The second term can be computed to

ESnEZµ(Sn)2 = ESnµ(Sn)2 =VSnµ(Sn)+ (ESnµ(Sn))2 = σ2
D

n
+µ2. (6.1)

The third term finally is then computed as

−ESnEZ 2Zµ(Sn) =−(ESnµ(Sn))(EZ 2Z ) =−µ(2µ) =−2µ2. (6.2)

Combining all the above we obtain:

ESnEZ

(
−l og (

1p
2πσ2

)+ (x −µ(Sn))2

2σ2

)
=− log (

1p
2πσ2

)+ 1

2σ2

(
σ2

D

n
+µ2 +VZ Z +µ2 −2µ2

)

=− log (
1p

2πσ2
)+ σ2

D

2σ2

(
1

n
+1

)

Example II: variance estimation of a normal distribution (not monotone). We take the
same domain and loss function as in Example I, but now estimate the variance, while keep-
ing the mean fixed to 0. The hypothesis set is Hµ=0 =

{
h : z 7→ 1p

2πσ2
exp

(
− z2

2σ2

)
| σ> 0

}
and the ML estimate equals σ = 1

n

∑
i z2

i . This example does not obey the monotone prin-
ciple. Consider a distribution D that only has support on {1, 1

10 }. Let D be given by the
probability mass function p(1) = α and p( 1

10 ) = 1−α. For 0 < α < 0.0235 one can then
compute that LD (A(S1)) < LD (A(S2)), demonstrating that the monotonicity property does
not hold.
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Example III: linear regression (not monotone). Take H= {h 7→ w x|w ∈R} as hypothe-
sis set and use the mean squared error as loss function. We choose the domain Z =X ×Y ,
with X ⊂ [−1,1] and Y ⊂ [0,1]. We define D through a probability mass function p(x, y).
Take p( 1

10 ,1) = 1−α and p(1,1) =α, and p(x, y) = 0 otherwise. An exact numerical calcu-
lation shows that ES1 LD (A(S1)) < ES2 LD (A(S2)) for 0 <α< 0.0047. This shows this learner
is not monotone.

Figure 6.1 plots a rescaled version of the expected risk against the sample size n for
several settings. The thick lines correspond to ERM. First of all, observe that by changing
α, we can shift the peak. This shows that the behavior is unrelated to the peaking behavior
[7], since peaking would occur at n ≈ d = 1. Second, if we add λI to the empirical covari-
ance matrix, which corresponds to L2-regularization of w , we still observe non-monotone
behavior, now even for larger values of α (see the dashed lines in Figure 6.1).

Example IV: the memorize algorithm (monotone). This binary classifier was intro-
duced by Ben-David et al. [12]. This learner, when evaluated on a test input object x that
is also present in the training set, returns the label of said training object. In case multiple
training examples share the same x, the majority voted label is returned. In case the test
object is not present in the training set, a default label is returned. This learner is monotone
for any distribution under the zero-one loss as it only updates its decision on points that it
observes.

6.5. RELATION TO LEARNABILITY
Definition 9 (Agnostic PAC Learnability [6]). H is agnostic PAC learnable if there exist a
function mH : (0,1)2 →N and a learning algorithm with the following property: for every
ε,δ ∈ (0,1) and for every distribution D over Z , when running A on n ≥ nH(ε,δ) i.i.d.
samples, with probability of at least 1−δ (over the choice of Sn),

LD (A(Sn))− min
h∗∈H

LD (h∗) ≤ ε.

From learning theory we know that if the hypothesis class has finite VC-dimension
(or other appropriate complexity), the excess risk of ERM is bounded. This bound will
be tighter given a larger training set size n. PAC bounds hold with a particular probability,
while we are concerned with the risk in expectation over the sample. However, even bounds
that hold in expectation over the training sample will not rule out non-monotone behavior.
The expected risk can go up as long as the expected risk stays below the upper bound. Thus
high probability or expected risk bounds are insufficient to guarantee monotonicity.

This is illustrated by our examples: Example VI is monotone but is not learnable [6].
Example III is learnable if a regularizer is added to the objective of ERM or if the hypothesis
space H is restricted such that the norm of w is bounded. However, as we have seen in
Figure 6.1, we still can observe non-monotone behavior in that case.

6.6. OPEN PROBLEM(S)
First and foremost, we are interested to identify, especially for commonly employed learn-
ers, on which domains Z they will or may not act monotonically. In view of the peaking
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behavior, Z-monotonicity for all n may be too strong for some settings. Perhaps mono-
tonicity is only possible if n is larger than some N that may depend on Z and A. For
Examples II and III it is an open problem whether they satisfy this weaker notion, and for
which (smallest) N this notion is satisfied. Other related notions of monotonicity may also
be of interest. For example, instead of demanding a lower loss, we may require that the loss
does not degrade too much. Or we can demand the property to hold with high probability
with respect to both samples.

More generally, we may ask: why and how does this behavior occur? And maybe more
importantly: how can we provably avoid non-monotone behavior? What conditions does a
learner need to satisfy to be monotone? Perhaps particular loss functions lead to monotone
learners? What if we allow for learning under regularization or other strategies deviating
from strict ERM, for example improper learners or randomized decision rules?

Perhaps it is always possible to find a D for a given Z on which learners are non-
monotone. In that case, is it possible to avoid non-monotone behavior under some assump-
tions on D? Realizability or well-specification could be good candidate-assumptions on D.
In fact, this raises the issue to what extent well-specified statistical models can actually be
proven to behave monotonically. For instance, is Example II monotone if the problem is
well-specified?

All in all, we believe the question of monotonicity of learning offers various tantalizing
questions to study, some of which may yet have to be formulated.
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7
CONCLUSION

Concluding the thesis we discuss possible extensions of, and relations between, our work
as well as its implications for the field. We will start with a work in progress that tries to
include knowledge of a causal structure for enhanced semi-supervised learning. We then
discuss the implications of our complexity analysis of manifold-regularization from Chapter
3, in view of our survey from Chapter 2, as well as some open problems left by the analysis.
After that we connect the findings of Chapters 4 and 5. We then relate the open problem
of Chapter 6 to the field of semi-supervised learning and discuss extensions of this work.
Finally we discuss the current trends in semi-supervised learning and how they relate to this
thesis.

7.1. FURTHER WORK USING CAUSAL KNOWLEDGE
In our review in Section 2.3.1 we briefly discuss the impossibility of semi-supervised learn-
ing in case that the labels Y are caused by the features XC within the framework of a simple
functional causal model, see also Figure 2.2. As this is not the case for features XE that are
caused by the label, we made use of this observation to construct a model in cases where
one can split the feature space into causal features XC and effect features XE [1]. The idea is
to use a model that jointly models XE ,Y but only conditionally models Y |XC . This reflects
that want to take P (XE ) into account for predictions, but not P (XC ). In a current research
direction we are relating this type of modeling to semi-supervised assumptions [2], as for
example the cluster assumption, which in this context roughly means that two points that are
close in the feature space should carry the same label. While in the naive case we assume
that this property holds for the joint observation XE , XC , we assume in our extension [2] that
it holds for the conditional distribution XE |XC . For that we assume that there are functional
relationships f0, f1 between XC and XE , with this relationship depending on the labels 0 and
1. Given this relationship one can define a new notion of proximity between points from
XE , see also Figure 7.1. The difficulty in practice is to find a good representation for the
functional relationships f0 and f1.
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Figure 7.1: In this scenario we consider two points close to each other if both are close to the same regression
model. If we would consider the joint space XE , XC we would consider the left two clusters close to each other.
But with the depicted model the cluster on the bottom left is closer to the one on the top right than to the one on
the top left. This is because in this model we consider points close to each other, if they are close to the same
regression function. The figure is taken from [2].

7.2. IMPLICATIONS OF CHAPTER 3
First we recall that our review starts with a few impossibility results, and we discuss, in
particular in Section 2.3, the hypothesis that a semi-supervised learner can improve the
learning rate by at most a constant, unless we have some specific distributional assumptions.
The first implication of Chapter 3 is that this hypothesis also holds in some settings for
manifold regularization, which operates under, the arguably strong, assumption that the
labeling function behaves smooth with respect to the data distribution. This was surprising
to some degree, considering that in Section 2.6 we show that, under the seemingly similar
cluster assumption, one can achieve exponential fast learning rates. If, for example, the
data manifold consists out of two clusters, those two assumptions are just reformulations of
each other.

One way to possibly explain why manifold regularization has only constant improve-
ment, while the cluster assumption can lead to exponential learning rates, is that the constant
can grow arbitrarily big as we show and discuss in Section 2.8.2. This means that at least
in practice, and for small sample sizes, a constant improvement could be as much or more
impactful than an exponential learning rate. To analyze this in more detail, one would need
to study the precise relation of Pdim(H) and Pdim(H̃λ), where H is an initial hypothesis
space, and H̃λ is the resulting hypothesis space when we use hypotheses from H , and add
a manifold regularization method with parameter λ. It would be in particular interesting to
study the behavior of Pdim(H̃λ) wrt λ. With this we could for example find out how much
we have to regularize to obtain a certain sample complexity improvement.
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7.3. EXTENSIONS OF CHAPTER 3
In Chapter 3 we theoretically analyze manifold regularization via the pseudo-dimension and
the Rademacher complexity. While the pseudo-dimension analysis gives a fairly complete
picture of the worst case difference between semi-supervised and supervised learning, one
can consider the Rademacher complexity analysis rather as a stepping stone for further the-
oretical investigations. We give instructions how to compute the Rademacher complexity,
and this might already be useful in practice, but this does not answer the question how big
the difference in Rademacher complexity compared to models without manifold regular-
ization can be. Can they be essentially different, or could one also get negative results for
that, and show that also this can only differ by a constant? To answer these questions one
would have to find distributions on which one can analyze the actual Rademacher terms, at
least to a degree that makes them comparable as functions in the sample size. From a prac-
tical point of view we would certainly expect that the Rademacher complexity terms can
be essentially smaller on benign distributions, as manifold regularization is very effective
whenever its assumption holds.

7.4. SEMI-SUPERVISED LEARNING AND CLASS PROBABIL-
ITY ESTIMATES

We shortly summarize our findings of Chapters 4 and 5 and then discuss their connections
and possible extensions.

7.4.1. FINDING CLASS PROBABILITY ESTIMATES VIA CLASSIFICATION
In Chapter 5 we explore the possibility to retrieve a class probability estimate from methods
that are designed for binary classification. Assume for example that a trained linear support
vector machine results in a prediction function f : X → R. Typically we then say that we
predict that x ∈ X belongs to class 1 ∈ Y = {−1,1} iff f (x) ≥ 0. But what if we also want
to know a confidence of this prediction, as for example given by an estimate of the class
probability P (Y = 1 | X = x). In Chapter 5 we explored conditions under which such an
estimate is consistently possible and how fast one can point-wise converge to the true class
probability.

7.4.2. A SIMPLE IDEA
The motivation to investigate consistent class probability estimates stems from the algo-
rithm proposed in Chapter 4. As a reminder, the essential idea of the method is to note that
one can decompose the true risk of a classifier f :X →Y = {−1,1} as

EX ,Y
[
l ( f (X ),Y )

]= EX
[
P (Y =−1 | X )l ( f (X ),−1)+P (Y = 1 | X )l ( f (X ),1)

]
, (7.1)

where l :Y×Y →R is a loss function. Note that the expectation on the right-hand side of the
equation only depends on X , so can be estimated with the unlabeled data. The bottleneck
is then the inner part, in particular we don’t know the true class probabilities P (Y | X ). If
we assume, however, that we can obtain decent estimates of the class probabilities we can
try to use them in Equation (7.1) for a, hopefully, better approximation of the true risk.
We can also think of this idea as extending the EM algorithm [3], which is as such only
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defined for generative models, to discriminative models. In Chapter 4 we used a heuristic
to define those class probabilities, but Chapter 5 offers a principled way to do so. In the next
subsection we briefly summarize the heuristic we proposed in Chapter 4 and subsequently
discuss what happens when one replaces the heuristic class probability estimate with the
consistent one from Chapter 5.

7.4.3. AN IMPOSSIBILITY RESULT
We first summarize the algorithm of Chapter 4.

Algorithm 1

1. Gather some labeled and unlabeled data.

2. Train a discriminative model based on the labeled data.

3. Obtain estimates of P (Y | X ).

4. Estimate the right-hand side of Equation (7.1) with the labeled data, the unlabeled
data and the class probability estimates.

5. Train a new model based on the previous estimate of the true risk, Equation (7.1).

In Chapter 4 we use a heuristic for step 3, but what if we use the consistent estimate of
Chapter 5 there? One can show that in this case, most models will actually not change
the solution found in step 2, i.e. the supervised solution. A proof of that is presented
in Appendix A. This result is to some degree actually not surprising and ties in with the
impossibility results we collected in the review, see Subsection 2.3. Those impossibility
results sketch certain scenarios in which unlabeled data cannot help. Some of those results
rely on the fact that discriminative models do not inherently carry any information about the
marginal distribution, and collecting information about the marginal distribution in form of
unlabeled data can thus not help to update the model. We observe the same behavior for
our proposed Algorithm 1.

7.4.4. ADDING PRIOR KNOWLEDGE
The previous two subsections seem paradoxical. In Chapter 4 we showed that one can use
Algorithm 1 to improve supervised classification, when using a certain heuristic to esti-
mate class probabilities in step 3. On the other hand we also argued, that using in step 3
the consistent class probability estimates from Chapter 5 will leave the supervised solution
unchanged. This discrepancy is explained by noting that the heuristic class probability esti-
mate used in Chapter 4 has a hyperparameter which allowed us to push the class probability
estimate to either 0 or 1 or to 1

2 . The result of our investigation from Chapter 4 is then
straightforward: By pushing the estimate for example to 0 or 1, we effectively assume that
the complete data distribution is well separated and thus we add prior knowledge to the
method. Consequently, if the data is indeed well separated, pushing the estimate to 0 or 1
will improve the performance.
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7.4.5. ADDING PRIOR KNOWLEDGE, BUT METHODICALLY

We believe that the previous findings can be combined into a well motivated new semi-
supervised learning method. The idea is to use Algorithm 1 with a modified version of the
consistent class probability estimates η̂(x). We modify them, such that all class probability
estimates that are too close to 1

2 are pushed towards a threshold which corresponds to our
expected noise level. A simple example: Assume we have data with two classes, and
we know that the noise level is bounded by P (Y = 1 | X = x)∨P (Y = −1 | X = x) ≤ 0.2.
We then use Algorithm 1, but with the following modified version of η̂(x). Whenever
0.2 < η̂(x) < 0.5 we set η̂(x) = 0.2 and whenever 0.5 < η̂(x) < 0.8 we set η̂(x) = 0.8. We
believe that using Algorithm 1 with those probability estimates one can show, under certain
assumptions, that the class probability estimates are still consistent and we converge to a
solution such that η̂(x) < 0.2∨η̂(x) > 0.8 for all x ∈X in our training set. In other words, we
believe that with this method one could encode an assumption similar to Tsybakov’s low
noise condition [4] through the unlabeled data, a condition that also found a connection to
the work we presented in Section 2.4.1.

7.5. SAFE SEMI-SUPERVISED LEARNING

In Section 2.7.2 we discussed a line of research that tries to identify semi-supervised meth-
ods which can guarantee to be better than their supervised counterparts. While this always
seemed to be an ambitious goal, it is more so in the light of the findings of Chapter 6. We
showed that in a simple regression setting, adding labeled data can decrease the perfor-
mance for finite sample sizes, even in expectation over the training samples. Considering
this, it seems much harder to guarantee that adding unlabeled samples will increase the per-
formance. We thus expect that any method that can guarantee improvements must be very
conservative. Subsequently we expect that to achieve practically relevant improvements,
one has to take the risk that comes with many semi-supervised methods.

7.6. EXTENSIONS OF CHAPTER 6
In [5] we extend the non-monotonicity results found in Chapter 6. Most of the non-
monotonic behavior shown in Chapter 6 was a result of (exact) computations on a specific
data-distribution. In [5] we introduce a technical lemma that let us also formally prove the
observed behavior. This lemma specifies a sufficient condition on the loss function which
will lead to non-monotonic behavior. Our main theorem then proceeds to show that this
condition holds for the squared, absolute and the hinge loss. Furthermore this work also
formally shows that for any given sample size n one can construct a distribution such that
the risk increases when we use n +1 instead of n samples with an ERM algorithm.

But the technical lemma itself is also of interest. As we elaborate in the discussion of
[5], the lemma seems to indicate that the learning rate of an algorithm would have to be
linear or faster to avoid non-monotonic behavior in our setting. As the lemma is actually
independent of the specific learning algorithm chosen and we know that in many settings, as
for example agnostic learning, there are no learners that learn with a linear rate, one could
imagine to extend the result of Example III from Chapter 6 to any learning algorithm.
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7.7. CURRENT TRENDS IN SEMI-SUPERVISED LEARNING
This thesis is fairly independent of current trends in semi-supervised learning. As already
mentioned in the introduction, the currently successful deep learning models need a large
amount of labeled data, and therefore it is natural to try to mitigate this by replacing part
of the labeled data with unlabeled data. The two paradigms that have been adopted for
deep learning models are entropy and consistency regularization. The main idea of entropy
regularization [6] is that we try to enforce low entropy predictions on the unlabeled data,
which means that our decision boundary should be in a low density region. In the deep
learning community this idea became known under the term pseudo-labeling [7] and is
effectively a reinvention of self-learning.

Consistency regularization [8–10] has the underlying idea, that if we transform an unla-
beled data point u in a meaningful way into û, then the predictions f (u) and f (û), if f is a
classifier, should be similar. The idea is thus to add a regularizer of the form d( f (u), f (û))
to the loss term, where d is some sort of distance function. Regarding pseudo-labeling,
that there are few theoretical analyses, and the situation is not improved by the fact that the
method is embedded in a deep model. As for deep learning models themself, there are only
a few recent advances towards a theoretical understanding [11, 12].

Consistency regularization on the other hand is related to manifold regularization. The
difference is that in manifold regularization, as defined and analyzed in Chapter 3, the
data manifold is solely defined by the unlabeled data and the distance measure between
them. Consistency regularization adds prior knowledge to that, by additionally altering
the unlabeled data in meaningful ways1, and we thus create our own data manifold. With
this reasoning we believe that the analysis of Chapter 3 can be extended to consistency
regularization. The bottleneck, however, could still be that the underlying models are deep
learning models and for those we cannot draw from a rich literature of theoretical results,
as opposed to the kernel models which we used in Chapter 3.

7.8. FINAL REMARKS
The aim of this thesis has been to investigate the theoretical foundations of semi-supervised
learning. We started this with an extensive review of existing results, and added our own
complexity analysis of manifold regularization. We then investigated the possibility to ob-
tain class probability estimates with classification methods, and discussed how this investi-
gation can lead in future work to a new well-motivated semi-supervised learner. We hope
that anyone starting in this field can find inspiration for their own work from this thesis.

1If we for example have images of a digit, we know that a certain amount of rotation will still result in the same
digit.
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In the following we want to investigate the impossibility of semi-supervised learner from
another view. We show that it is impossible to use Expectation-Minimization (EM) as a
tool to integrate unlabeled data in a discriminative model. With impossible we mean here,
that the found solution will be the same as the supervised solution. As this is a result of our
analysis from Chapter 5 we adopt the same notation.

A.1. EM WITH GENERATIVE MODELS
To define an EM approach with discriminative models, we first present the rough idea
of SSL with the EM algorithm for generative models. We start with a probability model
p(x, y | f ) parametrized in some f ∈F . In the supervised case this model is typically fitted
to the observed samples (Xn ,Yn) = {xi , yi }1≤i≤n with a maximum (log-)likelihood method,
i.e.

fsup = argmax
f ∈F

ln p(Xl ,Yl | f ).

With some additional unlabeled data Um = {u1, ...,um} ∈Xm we can get an improved max-
imum likelihood estimate of the complete model. With Zm we denote the random vector of
unknown labels of Um .

fsemi = argmax
f ∈F

ln p(Xn ,Yn ,Um | f )

Using the independence assumption of the sampling process we can rewrite this as:

ln p(Xn ,Yn ,Um | f ) = ln p(Xn ,Yn | f )+ ln p(Um | f ) (A.1)

This in turn can be rewritten as:

ln p(Xn ,Yn ,Um | f ) = ln p(Xn ,Yn | f )+ ln p(Um | f ) (A.2)

= ln p(Xn ,Yn | f )+
∫

Zm∈Ym
ln p(Um , Zm | f )d Zm (A.3)
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The integral over all possible labelings of the unlabeled data on the right hand side of Equa-
tion (A.2) can be complicated to calculate. The EM algorithm avoids the exact calculation
by doing it only in expectation over the labels, with an estimated label distribution from the
model of the last iteration. We then find a new model by maximizing this expectation in the
model parameters. More formally EM iterates the following two steps.

1. Compute G( fi , f ) = EZm∼p(Zm |Um , fi )[ln p(Xn ,Yn ,Um , Zm | f )]

2. Set fi+1 = argmax
f ∈F

G( fi , f )

The EM algorithm can be shown to find a local maximum of the complete log-likelihood
(A.2). In Section A.2 we derive a formulation of this algorithm for discriminative models
and show that this approach will leave the supervised solution unchanged in many situa-
tions.

A.2. EM WITH DISCRIMINATIVE MODELS
We recreate the EM algorithm in the discriminative setting as follows. The log-likelihood
used in Equation (A.2) can be viewed as a negative loss function. Generalizing the negative
log-likelihood to an arbitrary loss function l ( f (x), y) the EM algorithm becomes:

1. Compute J ( fi , f ) = EZ∼p(Yu |Xu , fi )[
∑n

i=1 l ( f (xi ), yi )+∑m
i=1 l ( f (ui ), zi ]

2. Set fi+1 = argmin
f ∈F

J ( fi , f )

Note that by switching from a likelihood formulation in the generative case to a loss func-
tion formulation in the discriminative case, we also switch from an expectation maximiza-
tion to an expectation minimization.

The main problem to address in this formulation are the posteriors p(Zm |Um , f ) that
are used to update the current model. While in generative models posteriors are defined
through the joint probability distribution, discriminative models do not generally define a
posterior probability directly. From now on we assume that our classifiers f : X → R map
the input to the real numbers. From Chapter 5 we know that the to the loss associated func-
tion v∗−1 : R→ [0,1] (5.4), is the only one that makes (l , v∗−1) a natural class probability
estimation loss 1, and thus leads to consistent posterior estimates2. So, in particular, we will
set in the later stage p(Y = 1 | X = x, f ) := v∗−1( f (x)).

A.3. EM FAILS WITH DISCRIMINATIVE MODELS
In this section we analyze the resulting algorithm. To do so we define the type of solution
that EM will find.

Definition 10. We call a hypothesis f0 ∈ F faithful w.r.t to the data (Xn ,Yn),Um if the
following inequality holds for all f ∈F .

EZm∼p(Zm |Um , f0)[Q̂( f0)] ≤ EZm∼p(Zm |Um , f0)[Q̂( f )]
1See Corollary 5
2See Theorem 23
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The interpretation of faithful solutions is the following. A solution is not faithful if
even under that assumption that it is true (as we use the class probability estimates from the
solution), the seen data disagrees with it so much that we prefer to change the solution. It
is easy to see that the EM algorithm makes sure that we end up with a faithful solution and
stops as soon as it found one. The next theorem reveals the problem of the procedure by
showing that the purely supervised solution is already a faithful solution.

Theorem 25. Assume v∗−1 is defined on the whole of R (possibly a one to many mapping).
Then the supervised solution fsup (3.1) is faithful.

Proof. First set f1 = fsup. The posterior estimate of the model f1 is given by

p(z | u, f1) = v∗−1( f1(u)). (A.4)

To show that f1 is faithful we need to show that it minimizes

EZm∼p(Zm |Um , f1)[Q̂( f ,Um ∪Xn , Zm ∪Yn)]. (A.5)

Since f1 is by definition minimizing the risk of the labeled samples in F it is enough to
show that f1 also minimizes the sum coming from the unlabeled samples Xu . We will do
that by showing that f1 minimizes each term of the sum individually. So for each unlabeled
point u ∈Um we look at the value in R that minimizes the term in the sum, and show that
f1 is already a valid solution for that. Given the posterior estimates (A.4), the value that
minimizes the expected loss on u is given by

f2(u) = argmin
v∈R

p(Y = 1 | X = u, f1)l ( f (u),1)+ (1−p(Y =−1 | X = u, f1))l ( f (u),−1).

With the definition of v∗ we can rewrite this as

f2(u) = v∗(p(Y = 1 | X = u, f1)) = v∗(v∗−1( f1(u))).

Note that either v∗−1 or v∗ might be set function, but we know that f1(u) ∈ v∗(v∗−1( f1(u))).
So f1 is a minimizer for each u. With the previous argumentation this suffices to show that
f1 = fsup is a minimizer of (A.5) and thus a faithful solution.

One assumption of the theorem is that the domain of v∗−1 is R. This holds for a lot
of typical loss functions like hinge loss and logistic loss. In the case of logistic loss v∗−1

coincides with the posterior probability defined in logistic regression 1
1+e−x .
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