
Enabling Human Computation
through Text-based Conversa-
tional Agents

Owen Huang

Web Information Systems
Data Science & Technology, EEMCS
Delft University of Technology

Enabling Human Computation
through Text-based

Conversational Agents
by

Owen Huang
to obtain the degree of Master of Science in Computer Science

at the faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS),
Delft University of Technology,

to be defended publicly on Monday December 17, 2018 at 3:30 PM.

Student number: 4317459

Thesis committee:

Chair: Prof. dr. ir. G.J.P.M. Houben, Faculty EEMCS, TU Delft
University supervisor: Prof. dr. ir. A. Bozzon, Faculty EEMCS, TU Delft
University supervisor: Dr. ir. P. Mavridis, Faculty EEMCS, TU Delft
Committee member: Prof. dr. ir. J. Urbano, Faculty EEMCS, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Human Computation (HC) has established itself to be a powerful tool for carrying out certain simple and
repetitive tasks in the form of microtasks, which to this day are still difficult for a machine to automate. With
the latest increase in interest in machine learning, HC has similarly gotten more attention as a popular way
to acquire training data in large quantities. Traditional microtask crowdsourcing platforms, such as Amazon
Mechanical Turk (AMT) or Figure Eight, are typically built using web-based interfaces. However, the speed
and quality of data acquired via the crowd are naturally limited by the number of available workers and their
skill set.

We perceive a grand opportunity in expanding the crowd by exploring alternative means to the traditional
microtask crowdsourcing platforms that are reliant on the web-based interface. More specifically, as popu-
lar messaging services such as Telegram, WhatsApp and Facebook Messenger are used on a daily basis by
millions of people across the world, we propose to perform HC activities inside these services through a text-
based conversational agent (or chatbot). We foresee new opportunities arising in conducting HC inside the
chatbot, that could leverage the access to a potentially larger and more diverse crowd.

In this thesis, we set the first step towards a new alternative to the typical web-based interface used in HC.
As a result, we set out to investigate the viability of facilitating microtask crowdsourcing inside chatbots. To
this end, we design and implement a chatbot that acts as a medium for the execution of microtask crowd-
sourcing activities, which is then used for conducting several pilot experiments. In addition, we propose a
mapping from Web to Chatbot tasks for several commonly found User Interface (UI) elements inside worker
interfaces. Thereafter, we conduct an elaborate experimental campaign to gauge the feasibility and inter-
est of crowd workers to use the chatbot as a new medium for performing generic microtasks. We designed,
implemented and executed six common microtask crowdsourcing types; Information Finding, human OCR
(CAPTCHA), Sentiment Analysis, Object Labelling, Image Annotation, and Speech Transcription. For each task
type, we implemented a microtask in both a web-based and conversational interface. By measuring the exe-
cution time, quality of answers and surveying workers’ satisfaction of a total of 316 distinct workers recruited
via Figure Eight, we show that chatbots can be effectively used as an alternative to the web-based interface to
perform microtask crowd work. We report that out of all workers who participated in the chatbot tasks, 98.3%
of the workers indicated a positive experience and were satisfied with their interaction with the chatbot, while
performance in terms of task execution time and output quality was in general comparable.

iii

Preface

In front of you lies the Master’s thesis “Enabling Human Computation through Text-based Conversational
Agents”, that concludes my end of two years of study in Computer Science at the Delft University of Tech-
nology. This document has been written in partial fulfilment of the graduation requirements of the MSc.
Computer Science programme following the Data Science & Technology Track.

The opportunity to work on such a large project is something I will be ever grateful for. My journey was
of course not without challenge, which in the end helped me grow as a person and taught me a great deal by
experiencing the process of conducting scientific research. This work is something that would not have been
possible without the guidance and support of my supervisors.

I would therefore like to express my sincere gratitude to Alessandro Bozzon and Panagiotis Mavridis. You
have always stood ready to help me, whenever I needed advice or to answer my questions. I would also like
to thank Sihang Qiu for providing invaluable support throughout this project, from the very beginning to the
end. Moreover, I would like to thank the other the thesis committee members, Geert-Jan Houben and Julián
Urbano for the taking time to attend my thesis defence. I wish to also thank everyone with whom I had spent
time during these two years in Delft. Lastly, I must express special thanks to my friends and family who have
supported me throughout my time in Delft.

Owen Huang
Delft, the Netherlands

November 2018

v

Contents

List of Figures viii
List of Tables ix
1 Introduction 1

1.1 Problem Definition . 2
1.2 Research Focus . 3
1.3 Contributions . 4
1.4 Thesis Outline . 4

2 Related Work 5
2.1 Conversational Agents . 5
2.2 Human Computation . 7

2.2.1 Macro- and Microtasks . 7
2.2.2 Challenges in Human Computation . 8

2.3 Crowd-powered Chatbots . 10
2.4 Microtask Crowdsourcing through Mobile Interfaces . 11
2.5 Summary . 12

3 Chatbot System Design 13
3.1 Design Principles . 13

3.1.1 Adaptive & Reactive Human Computation . 13
3.1.2 Modular System Design . 13
3.1.3 Isolated Task Environment . 14
3.1.4 Non-Collaborative Dyadic Conversational Environment. 15

3.2 Base Chatbot . 15
3.2.1 Natural Language Understanding . 15
3.2.2 Dialogue Management. 16
3.2.3 Action Execution & Knowledge Base . 17
3.2.4 Response Generation . 18

3.3 Chatbot Microwork Platform . 18
3.3.1 Task Planning . 18
3.3.2 Worker Selection . 19
3.3.3 Task Assignment . 19
3.3.4 Task Execution . 19
3.3.5 Result Aggregation . 19

3.4 Worker Conversational Flow . 19
3.4.1 Navigational Controls . 20
3.4.2 Feedback Control . 21

3.5 Requester Task Design . 22
3.5.1 Task Structure & Parameters . 22
3.5.2 Answer Validation . 22

3.6 Modelling the Chatbot System . 23

4 Chatbot Implementation 25
4.1 Conversational Interface . 25

4.1.1 Natural Language Processing . 25
4.1.2 Dialogue Management. 26
4.1.3 Knowledge Base . 26
4.1.4 Response Generation . 26
4.1.5 User Interface . 27

vi

Contents vii

4.2 Microtask Execution . 28
4.2.1 Concurrency in Task Assignment . 28
4.2.2 Integration with Third-party Resources . 29

4.3 System Deployment. 29
4.3.1 Event-Driven Model . 29
4.3.2 Web Server Configuration . 30

5 Viability of Chatbot Microtask Crowdsourcing 31
5.1 Experimental Design . 31

5.1.1 Experiment Goals . 31
5.1.2 Selecting Task Types . 31
5.1.3 Worker Interface . 33
5.1.4 Worker Selection . 38
5.1.5 Task Design . 39
5.1.6 Measurements & Metrics. 43
5.1.7 Task Execution Flow . 45
5.1.8 Web Task Implementation . 46
5.1.9 Chatbot Task Implementation . 47

5.2 Experiment Execution . 49
5.2.1 Task Settings . 50
5.2.2 Execution Schedule . 50

6 Results and Discussion 55
6.1 Web vs. Chatbot Work Interface . 55
6.2 Influence of UI Elements in the Chatbot Interface . 57
6.3 General Statistics & Worker Demographics . 59
6.4 Towards Conversational Human Computation . 61

7 Conclusion and Future Work 63
7.1 Conclusion . 63
7.2 Future Work. 64

A Full Entity-Relationship Diagram 65
B Included Figure Eight Contributor Channels 67
C MTurk and Figure Eight Task Templates 69
D Consent Form 71
E Telegram Registeration Instructions 73
Bibliography 77

List of Figures

1.1 An example of a common CAPTCHA. 1

2.1 ELIZA, one the earliest text-based conversational agents. 6
2.2 High-level concept of a data-driven traditional chatbot. 6
2.3 The three key aspects in Human Computation. Each aspect is in direct relation to the other two. 8

3.1 Adoption of two task execution policies switching dynamically. 14
3.2 Duality of the chatbot system. 15
3.3 Endorsement of Non-collaborative Worker Environment. 15
3.4 High-level schematic of the main components of the base chatbot system. 16
3.5 High level activity diagram of the dialogue management of the HC side of the system. 17
3.6 High level schematic of the main components of the Human Computation part of the system. . 18
3.7 Example survey template in the web-based interface from AMT. 20
3.8 Inter- and post-execution answer editing. 21

4.1 High level overview of the conversation management logic of conducting a microtask. 27
4.2 Inline audio player in the Telegram Web Client. 28
4.3 Validation Token Mechanism. 29

5.1 Text box and Text area in Figure Eight. 33
5.2 Radio Buttons and Checkboxes in Figure Eight. 34
5.3 The custom Bounding Box tool provided in Figure Eight. The Enhance feature allows for certain

images to increase contrast. The Focus feature allows hiding all drawn boxes except for the one
that is focused on. 34

5.4 The task structure in the web interface rendered through Figure Eight. 35
5.5 An example of the Conversational Work Interface developed for the experiment. 36
5.6 Start button for starting a task in the chatbot. 37
5.7 Text-Only and Code-Only Custom Keyboards. 38
5.8 Button-Only and Mixed Custom Keyboards. 39
5.9 Web and Chatbot Information Finding Task. 40
5.10 Web and Chatbot human Optical Character Recognition (OCR) task. 41
5.11 Web and Chatbot Speech Transcription Task. 42
5.12 Web and Chatbot Sentiment Analysis Task. 42
5.13 Web and Chatbot Image Annotation Task. 43
5.14 Web and Chatbot Object Labelling Task. 44
5.15 Figure Eight judgment view process creation. 47
5.16 Agreement to participate in a Chatbot Task. 48
5.17 Chatbot Task Survey in Figure Eight. 48
5.18 Chatbot Hands Out Validation Token After Task Completion. 49

6.1 Task execution time (in seconds) for all six task types: Web vs. Chatbot with instructions vs.
Chatbot without instructions. 57

6.2 Task execution time (in seconds) for all Custom Keyboards. 58
6.3 Chatbot Task Operating System distribution. 59
6.4 Chatbot Task Age Distribution. 60
6.5 Chatbot Task Country Distribution. 61

viii

List of Tables

3.1 List of the key task attributes with a brief description on their use. 22

4.1 All implemented navigational controls. 26
4.2 All emote codes used in the responses by the chatbot. 28

5.1 Categorization of key task types based on the templates from AMT and Figure Eight. 32
5.2 Summary of considered UI elements and their implementation, in both Web and Chatbot in-

terface. 33
5.3 Example data row in Figure Eight. 46
5.4 Task settings for experiment 1. 50
5.5 Task settings for experiment 2. 51
5.6 Task settings for experiment 3. 51
5.7 Task execution schedule of all the test runs of all experiments. We note that the numbering of

batches is sorted by the launch dates. The second batch is the full run of the Web Tasks. 52
5.8 Task execution schedule of all the full runs of all experiments. 53

6.1 p-values of Mann-Whitney-Wilcoxon test on the Web and Chatbot Tasks. 56
6.2 Workers output precision across tasks and platforms. 57
6.3 Execution time (µ±σ: average and standard deviation, unit: seconds) in each Work Interface. . 58
6.4 Execution time (µ±σ: average and standard deviation, unit: seconds) in each chatbot interface. 58
6.5 p-values of Mann-Whitney-Wilcoxon test on the single- and multi-selection tasks for the Web

and Chatbot Tasks using Custom Keyboards. 59

B.1 All default included contributor channels as selectable through the task settings in Figure Eight. 68

C.1 Task templates which a requester is able to pick from in AMT and Figure Eight. 69

ix

1
Introduction

In this day and age, computational problems, such as complex differential equations, regression analysis,
can often be easily solved by computers within seconds. In the past, these problems would take human
computers months to solve.

While current day computers have proven to be powerful and vital to society, we are yet to arrive at that
point where computers are able to perform complex cognitive and perceptual tasks. If one were to ask a
machine if it finds a painting “beautiful”, surely the machine would not be able to truly comprehend, interpret
and appreciate it in a similar way as a human would.

Human Computation (HC) focuses on “solving problems that computers cannot yet solve, through the
use of human processing power”. One of the most common examples of HC found today is the well known
CAPTCHA [68] (see Figure 1.1), which is commonly used as a type of test to tell apart human from machine.
The computational process given to the crowd is often constructed in such a way that they can be completed
within a reasonable amount of time and require a low level of skill. These tasks are referred to as microtasks,
while macrotasks include the class of complex tasks requiring much more time and sometimes expert knowl-
edge [11].

Figure 1.1: An example of a common CAPTCHA.

Modern technology has allowed us to connect to each other regardless of geographical location with in-
creasing ease. People increasingly use social media (e.g. Facebook1) and messaging services (e.g. Facebook
Messenger2, WhatsApp3, Telegram4) for interpersonal communication and networking. As globalization so
ever increases, so does our opportunity to borrow the “wisdom of the crowd” for solving problems where
machine still fails.

With the recent interest in artificial intelligence, text-based conversational agents or chatbots have gotten
a surge of attention in both the industry and research. Chatbots allow humans to interact with a conver-
sational partner in natural language through text. With the current opportunity to create chatbots inside

1https://www.facebook.com/
2https://www.messenger.com/
3https://www.whatsapp.com/
4https://telegram.org/

1

2 1. Introduction

popular messaging services, the potential to reach out to larger crowds with HC piques our interest. With
access to a larger worker base for microtask crowdsourcing, we may gain potential benefits such as further
democratization of crowd work. This may result in an increase in worker diversity, in terms of demographics,
skill sets and knowledge, which could improve the digital experimental environment for e.g. psychological
research [2].

But provisioning of alternative means of microtask crowdsourcing may also have a societal impact be-
cause people at “the bottom of the pyramid” could even perform retributed digital work [52]. For many peo-
ple performing crowd work has even become a necessity to make ends meet [57], while for some it may even
be one of their only ways to earn wages due to e.g. medical or personal circumstances [3].

Other potential benefits as a result of a larger worker base, may include better real-time support for crowd-
powered systems. In low-latency crowdsourcing, workers often are kept in retainment pools in order to have
workers rather wait for incoming tasks than vice-versa [23, 25, 27]. In addition, situational and spatial crowd-
sourcing (i.e. during a commute or at a certain location) may similarly benefit from more available workers
to increase the odds of finding qualified workers [35].

The benefits and motivation of why people use chatbots have been previously investigated, which
predominantly indicated that chatbots increased “productivity” [8]. While the use of chatbots is already
widespread in real-world businesses5, they are mostly only able to operate well in pre-defined settings and
consequently fail to serve its users when faced with unexpected requests. This is because chatbots work
generally well as long as the chatbot understands what the user tries to achieve, knows with what it wants
to respond, and holds all the required information to form the response. Moreover, gathering of training
data and building a rich knowledge base is challenging in itself. Public data sources may not contain the
information that is required and manually creating high-quality training data sets may be difficult and
expensive. As a result, the extent of knowledge the chatbot contains is static; it merely stretches as far to what
it has access to. This means that expanding chatbot functionality to deal with unforeseen scenarios becomes
difficult.

In an effort of increasing the flexibility and capabilities of the system, it spawned the idea to use humans
to enhance the traditional approach that relied purely on what the machine alone is capable of. The combi-
nation of the traditional chatbot system with HC (interchangeably; chatbot assisted by human-aid, Human-
in-the-loop (HITL) chatbot, crowd-powered or crowd-based chatbot) is what gave birth to a hybrid chatbot
[4, 6, 12, 23–25, 27, 40, 44]. Naturally following, hybrid chatbots may also capitalize on the possibility to learn
from past conversations with users. Thus with the aid of humans, these chatbots are able to serve more com-
plex user requests over time. In addition, hybrid chatbots may even improve the quality of its responses by
getting a better grasp on distinct contexts of conversations.

While these chatbots already included the crowd to enhance their own capabilities, we consider the pos-
sibility to use the crowd in a different way. We propose to leverage the crowd residing in popular messaging
services as a potential pool of workers for the crowdsourcing of microtasks. Although microtask crowdsourc-
ing has typically been done through web-based interfaces via popular services such as AMT or Figure Eight,
alternative interfaces remain unexplored. As a result, with the opportunity to reach out to more workers
through the chatbot, we thereby set out to take the first step into a potential new field within HC; conversa-
tional Human Computation.

1.1. Problem Definition
Our work focuses on furthering our understanding of the viability of executing generic microtask crowd-
sourcing through text-based conversational agents. Previous work has shown that performing microtasks
in text-based conversational agents is technically feasible for specific application scenarios [6]. However, the
design and execution of generic microtasks through conversational interfaces raises questions on work speed
and quality that have not been addressed in the literature. As our work focuses on microtasks, we use in the
remainder of this thesis the term task to refer in general to microtasks unless we specifically state otherwise.

Our primary challenge lies in bridging the gap between HC and the conversational interface. However,
with no medium to perform microtask crowdsourcing in a chatbot at our disposal, we ought to first raise
the question to what extent we must adapt current chatbots to facilitate HC processes. While previous work
has involved HC with chatbots, this rather focused on the execution of microtasks in traditional web-based

5E.g.: Meekan, a scheduling assistant,
Instalocate, a personal flight assistant, and
Emma, the personal fashion shopping assistant

https://meekan.com/
https://www.instalocate.com/
https://chatshopper.com/

1.2. Research Focus 3

interfaces. Our work focuses on the embedding of HC in the chatbot to perform conversational Human Com-
putation.

Because of both the novelty of bringing HC into the chatbot and conversational HC (with the latter to our
knowledge, remaining to be explored), we aim to direct our efforts to take the very first steps into uncharted
territory within the field of HC. Firstly, we require to adapt current chatbot architecture to allow the inclusion
of HC. This also means as we aim to develop in essence a conversational HC platform, that we must also take
into account how we wish to model various data transactions taking place in the crowdsourcing of microtasks.
Similarly, common HC processes such as task assignment, worker recruitment, and execution monitoring,
need to be accounted for as well in our design. For example, how should tasks be modelled to allow seamless
distribution to an arbitrary amount of workers all at once? Other questions concerning e.g. storing worker
answers and aggregation of answers also require to be addressed.

In addition, with web-based microwork platforms being a well-established medium for the crowdsourc-
ing of microtasks, the question of how to run similar microtasks in a conversational interface remains open.
Because the chatbot is a conversational partner, workers will have the opportunity to ask questions as well
instead of only providing answers to the chatbot’s questions. Evidently, maintaining a certain flow of conver-
sation throughout microtasks in the chatbot is similarly something left to be explored.

While controls and visual cues as page scrolling, editing of answers, input feedback (e.g. clicking a radio
button) are common in web-based microtask crowdsourcing interfaces, chatbots do not naturally possess ca-
pabilities for similar navigation and visualization. Since the chatbot holds a conversation which is a dynamic
process rather than a working in a static web-page, it implies that if a worker wants to perform a certain
navigable action, the worker has to let the chatbot somehow know what the desired course of action is.

1.2. Research Focus
To investigate what the effects of executing microtasks in chatbots are—in terms of work speed and quality—
we must first design and implement a chatbot that allows for conducting microtask crowdsourcing activities.
We first define the main focus of this project by aiming to answer the following main research question:

Main RQ: To what extent can text-based conversational agents support the execution of microtask
crowdsourcing activities?

Towards answering this question, we specify the following research sub-questions:

RQ 1: How do we build a text-based conversational agent that facilitates the execution of microtask
crowdsourcing activities?
Before we are able to venture forth to deepen our understanding of the viability of doing microtask crowd-
sourcing through chatbots, we must facilitate the means necessary to run our experiments. To inspire and
drive the design of the chatbot, we first look into previous work found in the literature. We aim to understand
what the architecture of existing chatbots looks like. Furthermore, what common issues HC faces that we
similarly need to overcome and what challenges lie ahead in bringing HC into the chatbot. Following all this,
we apply what we learn from extant literature and propose our chatbot design and proceed to implement a
prototype chatbot system that is able to function as a microwork platform.

RQ 2: How do we map web-based user interface elements to chatbot user interface elements for microtask
crowdsourcing?
In order to test the viability of microtask crowdsourcing in the chatbot, we require to be able to perform the
same commonly found microtasks in web-based microtask crowdsourcing platforms. The challenge here is to
provide a mapping from web-based to chatbot UI input controls. We provide such a mapping and implement
for several commonly found microtasks both a web-based and chatbot variant.

RQ 3: How do different types of user interface input elements for the conversational interface affect the
execution time and output quality of microtasks?
With the mapping from web-based to chatbot input controls, we wish to explore the opportunities that the
chatbot holds for housing microtask crowdsourcing activities in further detail. While web-based interfaces
possess standardized input controls, which most people are familiar with (e.g. textboxes, radio buttons, and
checkboxes), the UI representation in the chatbot is certainly something that remains to be explored. Our
aim is to look for opportunities the chatbot holds for input controls and take a closer look what this would
mean in terms of task execution time and output quality.

4 1. Introduction

1.3. Contributions
Towards the realization of a conversational HC platform for the crowdsourcing of microtasks, we lay the foun-
dation for many future opportunities in this thesis. We propose a design and implementation of a chatbot
taking into account the possible continuation of this project for future work. Using this chatbot, we con-
duct pilot experiments to test the viability of the platform as an alternative to existing web-based microwork
platforms. We summarize the contributions of our work in the following:

C1: To aid us in the design of our chatbot, we review chatbot and HC literature. We look into the challenges
of implementing a chatbot, and what HC has already meant for the chatbot so far. As a result, we
investigate what the main challenges in HC and crowd-based systems are. We aim to identify what
technological gaps we require to address when combining chatbots with HC.

C2: We design and implement the chatbot, that allows for the crowdsourcing of microtasks. The chatbot
is implemented to be ready for testing the execution of microtasks commonly found in existing web-
based microtask platforms. Furthermore, for facilitating future experiments on chatbots and conver-
sational crowdsourcing, we propose a modular architecture that allows the chatbot function both as a
common conversational partner and as a conversational microwork platform for housing microtasks.

C3: We design and conduct an extensive experimental campaign for testing the viability of conversational
HC. We implemented six common microtask types both in a web-based (Figure Eight) and conversa-
tional interface (Telegram). By recruiting a total of 316 distinct workers through Figure Eight, we show
that chatbots as a conversational interface can be an effective alternative to web-based interfaces. We
show that the task execution time and output quality of the six microtask types are generally compara-
ble between the web- and conversational interface. Furthermore, we gauged the workers’ satisfaction
in using the chatbot as a new medium for microtask execution and found unanimous praise and inter-
est for the chatbot.

1.4. Thesis Outline
This thesis consists of seven chapters. In Chapter 2, we discuss related work that will aid and inspire us in
the design and implementation of the chatbot. We identify what challenges current chatbots address and
look into the intricacies of HC. Following in Chapter 3, we elaborate on our proposed system architecture
and design of the chatbot to facilitate the execution of microtasks. We follow in Chapter 4 by detailing the
implementation of our design and show how the resulting chatbot operates. Thereafter in Chapter 5, we detail
the setup of our experiments to evaluate the viability of performing microtask crowdsourcing. Afterwards in
Chapter 6, we present and discuss the results of these experiments. Finally in Chapter 7, we conclude and
provide avenues for future work.

2
Related Work

In this chapter, we aim to gain a deeper understanding of the developments in chatbot technology and Hu-
man Computation over the years. In order to envision the chatbot as a medium for HC, we study both con-
cepts separately in Section 2.1 and Section 2.2 respectively. Moreover, we note the recent developments in
fusing the chatbot together with the crowd to enhance its own capabilities. While we merely use the chat-
bot as a conversational interface, we also wish to inspire ourselves with possible future directions the chatbot
may follow. As such, we study the applications of the crowd in chatbots themselves by detailing the intricacies
of the recently proposed crowd-powered chatbots in Section 2.3.

Finally, we take a brief look into the field of mobile crowdsourcing in Section 2.4 and summarize our
findings Section 2.5. We pay extra attention to proposals of mobile crowdsourcing platforms, as these works
could help us further our understanding of interface design for mobile devices.

2.1. Conversational Agents
Conversational agents date all the way back to the 1960s with ELIZA [73], as one of the first text-based con-
versational agents or chatbots. With ELIZA (shown in Figure 2.1), a precedent had been set for the fascination
we share in natural language communication between human and machine.

The term conversational agent has been widely adopted to refer to a class of conversational interfaces con-
sisting of multiple modalities. Within this class, we draw a clear distinction between text-based and speech-
based conversational agents. The former which we refer to as traditional chatbots, while the latter as Spoken
Dialogue Systems (SDSs). We primarily focus on literature surrounding text-based conversational agents.
However, we note that many techniques may be shared between chatbots and SDSs.

Chatbots typically share several key components [1, 20, 34] as shown in Figure 2.2, we discuss each com-
ponent in detail:

• Natural Language Understanding: Everything a user utters towards the chatbot will first pass a Natural
Language Understanding (NLU) unit, which tries to process the utterance. The goal of NLU is to map
the utterance to something that the chatbot would be able to interpret and act upon.

The most straightforward approach to perform NLU is through rule-based pattern matching. The sim-
plest case would be to simply map entire utterances to some output category. For example, given the
utterance ‘hello’ this may map to an output category ‘greeting’. This would let a chatbot “under-
stand” that such utterances are meant as a greeting. To take it a step further, this mapping could also be
done on parts of the utterance or instead match based on a predefined set of keywords. This strategy of
pattern matching was similarly adopted by ELIZA [73].

With the introduction of the chatbot ALICE (or A.L.I.C.E.), Wallace [69] introduced an Extensible
Markup Language (XML) dialect called Artificial Intelligence Markup Language (AIML) which im-
proved the ease of creating chatbots. AIML supports advanced pattern matching (including different
levels of wildcard tokens), and a powerful tool often2 referred to as symbolic reduction or symbolic
recursion which allows for complex substitution and creation of conditionals.

1https://www.masswerk.at/elizabot/eliza.html
2In [69] it is simply called the ‘<srai>’ operator. Furthermore, Wallace notes that there is no official meaning of the acronym.

5

https://www.masswerk.at/elizabot/eliza.html

6 2. Related Work

Figure 2.1: ELIZA1, one the earliest text-based conversational agent.

 Chatbot Users

Bob

Conversational View

Recommend place
lunch

Dialogue Manager

NLU

Intent
Classification

Named Entity
Recognition

Response
Generator

Knowledge
Base

Retrieve relevant
information

Action Execution
<chatbot

response>

Figure 2.2: High-level concept of a data-driven traditional chatbot.

The alternative to rule-based pattern matching is to adopt a data-driven NLU model. With early work
proposing to use an encoded forest of decision trees [36], machine learning had already made its way
into NLU. However, the more modern approach in these data-driven NLU models seems to contain
two key steps: intent classification and entity extraction. Intent classification holds the goal to map
utterances to a single intent (which is comparable to the rule-based approach mapping to an output
category). Entity extraction is then used to identify what important key-value pairs (i.e. entities) the
utterance contains. For example, the utterance ‘Hello, I am 50 years old.’ could result in the
intent classification greeting and extracted entities ‘age : 50’.

• Dialogue Management: Throughout a conversation with the user, the chatbot will need to keep track
of its dialogue state. The chatbot will require to know at any point if an utterance relates to anything
stated previously in the conversation.

Bui denotes that the simplest form of dialogue management is the finite state model, which essentially
models the entire conversation as a state transition network. While this approach provides the most
control over a conversation (due to its simplicity), it also means it would result in rigid responses by the
chatbot because everything has been predetermined. The alternative is the frame-based model, which

2.2. Human Computation 7

extends the finite state model, using the idea filling a predetermined number of form elements or slots
with information.

Other approaches are information state-based, which uses lets the dialogue flow based on the informa-
tion state [64]. This approach also allows for the development of multimodal dialogue systems.

A different approach to dialogue management is using probabilistic models, such as Markov Decision
Processs (MDPs) or Partially Observable Markov Decision Processs (POMDPs). These models in turn
also inspired the use of reinforcement learning models [61].

More modern approaches often use a combination of a frame-based approach and probabilistic ap-
proach, using the idea of slot-filling in combination backed by a trained model 3.

• Action Execution & Information Retrieval: Before a chatbot is able to form a proper response, it gen-
erally requires to fetch some information from either the chatbot’s internal knowledge base or some
external source. In other cases, the chatbot may be required to perform some action that heeds the
user’s request. For example, booking a hotel room may be perhaps done by automatically sending the
hotel a message detailing the reservation. For integration with external data sources, the chatbot could
make use of services such as public web APIs to fetch information.

• Response Generator: Right before the chatbot is ready to send a user some response, the chatbot gen-
erally requires to formulate the response in natural language. Using a template-based approach such
as with AIML, it is possible to directly map the input of a user to some fixed response (or again using
rule-based pattern matching to have more flexibility, by using response templates).

Similarly to NLU and dialogue management, it is also possible to use another model for selecting re-
sponses and even use a hybrid approach including response templates [63].

A different approach would be to use machine translation to generate novel responses [56], which car-
ries the opportunity to generalize better to multiple languages.

2.2. Human Computation
The term Human Computation (HC) has established its roots as a separate modern field of study after the
dissertation from Von Ahn in 2005 [65]. While the term Human Computation is often used in context with
crowdsourcing, it should not be used interchangeably. Quinn and Bederson [54] have thoroughly investi-
gated the nuance between the terms HC and crowdsourcing and concluded that HC generally refers to “the
general paradigm of computation”, and that “human participation is directed by the computational system or
process”. The former also suggests that in the future what may be difficult to solve for computers may change.

2.2.1. Macro- and Microtasks
In crowdsourcing systems, the nature of tasks solvable by humans ranges from arbitrarily complex processes
to asking simple dichotomous questions. While the boundary delineating such macro- and microtasks is
not set in stone, tasks that take “a significant amount of time” and possibly require more expert knowl-
edge [11, 62], compared to a possible split version of the task, are generally considered to be of macro-level.
For example, the general task of transcribing a one-minute audio fragment containing dozens of sentences
could be considered macro-task, when its counterpart microtask could be considered by splitting the au-
dio fragment to transcribe each sentence individually. Similarly, macrotasks could also take hours to com-
plete [21]. Among these types of macrotasks, some could also be difficult to decompose as a result of the goals
of the task. For example, creating a single animated movie from a prompt [55].

Kittur et al. [33] have proposed CrowdForge. A general-purpose framework for performing complex
macrotasks in microtask markets. By breaking down the macrotasks into smaller microtasks, these could be
run with workflows in microtask markets.

Zacks et al. [75] suggest in a study of experimental psychology that humans perceive routinely tasks in seg-
ments, which raises the question of whether complex macrotasks can be perceived in a similar fashion. As a
result, Cheng et al. [11] have recently studied the effects of breaking down of macrotasks to microtasks. Their
experiments showed that for three tasks types—receipt arithmetic, sorting lists and speech transcription—
workers preferred performing microtasks over macrotasks. In addition, microtasks were found to take longer
to complete than macrotasks, but the output was considered of much higher quality.

3The currently popular Rasa Core is an example of such a hybrid approach: https://www.rasa.com/docs/core/

8 2. Related Work

Breaking down macrotasks into a series of microtasks has also been studied in the context of designing
workflows. These workflows define solving macrotasks as a series of microtasks. Kulkarni et al. [37] have
proposed to crowdsource the creation of these workflows themselves, as finding effective workflows is a very
challenging problem itself. Cai et al. [10] found that the order of crowdsourcing chains of microtasks af-
fected task completion time depending on the complexity of the microtask. Dai et al. [13] have shown that
introducing “micro-diversions”, i.e. content that deliberately aims to break the flow of a worker to refresh
cognitive abilities, between performing series of similar microtasks results in an increase in answering speed,
while maintaining similar levels of output quality.

With a larger availability of lower-skilled than expert workers, microtasks have been studied in much more
depth as a result of their better applicability to real-world crowdsourcing processes. Microtasks differ greatly
in terms of goals, expected input and output types and required actions. In an effort to map common mi-
crotask types, Gadiraju et al. [19] have proposed a two-level categorization scheme of microtasks based on
the goals of commonly found tasks. They also highlight the importance of realizing that tasks may also share
similar goals, resulting in tasks belonging in multiple task type categories.

2.2.2. Challenges in Human Computation
HC faces many diverse challenges, which many are shared with crowdsourcing. We view different types of HC
challenges from a systems and human perspective (i.e. workers and requesters). All challenges in HC could be
traced back to three fundamental key aspects relating to the latency, quality and cost of the computational
process as depicted in Figure 2.3.

Cost Latency

Quality

Task
Dimensions

Figure 2.3: The three major factors in Human Computation. Each aspect is in direct relation to the other two.

From a systems perspective, the following challenges are evident [30, 34, 43]:

• Cost and worker scalability: The crowd is generally not free and limited in size, while the number of
tasks to perform could easily become larger than the crowd is able to handle. This means that in terms
of scalability, HC based systems may face high cost and latency if it were to rely too often and heavily
on the crowd.

To limit HC cost, different techniques may be employed. The most straightforward approach is to sim-
ply limit the number of tasks to crowdsource [70]. Other approaches include answer deduction and
generalization of crowd answers. This is achieved by logically inferring properties from e.g. assertions
or negations, and extrapolating crowd answers respectively [71, 72].

• Worker recruitment & retainment: To recruit workers, HC systems may adopt a pull- or push-based
task routing or assignment model [42]. The former model allows workers to pick tasks themselves given
a subset of available tasks. Contrary to pull-based task assignment, the push-based model lets the
system handle to whom to “push” or assign tasks. Both models may benefit greatly from user modelling.

2.2. Human Computation 9

For example, if an HC system needs to assign a difficult task that requires expert knowledge, it becomes
important to know which user possesses the necessary skills to perform that task [7].

While recruiting workers is a very challenging aspect of HC in itself, maintaining worker interest
throughout tasks or retaining workers is equally important to minimize task completion time [15].

• Data quality management: As the crowd is human, the quality of answers provided by the crowd can
greatly differ among each other. In an effort of managing the answer quality, a common practice is to
assign the same task to multiple workers and aggregate the answers to reach some consensus [28, 42].
However, as the amount of tasks increases, so does the amount of workers. This causes again the issue
of scalability. Moreover, some tasks such as sentiment analysis possess a certain degree of subjectivity,
making judging answers in an object manner challenging [45].

Other approaches to managing answer quality may involve indirect approaches, such as targeted
crowdsourcing by modelling workers and the elimination of low-quality workers. To obtain the
information for such worker models, the simplest approach would be to use ground-truth data—i.e.
labelled data—which may be used to create questions to test if workers are answering earnestly [47].
The application of such tests may be directly used to block workers from (further) participation if they
score insufficiently4. However, it may also be possible to perform other more advanced techniques
such as an Expectation Maximization algorithm to compute certain parameters of the worker model
[31, 76], or modelling workers as a graph and using graph theory to compute model parameters [32, 46].

• Real-time support: In the context of Question-Answer (QA) systems, real-time support would be desir-
able as long wait times may affect the user experience. For example, a user might wish to know where
to find a nearby café that would not be crowded at the moment. While the crowd is busy finding a place
that fulfils those requirements, the user will have to wait. Meanwhile, the user might have moved on
and twenty minutes later the crowd might suggest a place that would not be nearby anymore.

Huang et al. [26] have shown the viability of performing real-time entity extraction. Similarly, Savenkov
et al. [60] attempted to perform real-time QA by pressuring workers to answer within small time limits
and showed that answer quality was comparable to non-pressured workers. VizWiz [5] was one of the
first real-time crowdsourcing systems, which aimed to answer visual questions which could aid blind
people. Similarly, Legion [39] used the crowd to control user interfaces of several applications directly.
With Legion:Scribe [41], Lasecki et al. demonstrated the application of real-time captioning.

As HC involves humans, who may wish to contribute by performing tasks or are creating tasks themselves
(indirectly or directly), other types of challenges arise:

• Worker fatigue: Opposed to machines, humans may get tired after working for extended periods of
time. As a result, workers who are fatigued may take longer to perform tasks and produce worse quality
answers [9, 18]. Rzeszotarski et al. [13, 58] studied the impact of introducing micro-breaks in between
microtasks to reduce fatigue and overcome boredom, which showed an increase in task completion
time and maintain similar output quality.

• Motivation & participation incentive: A large challenge in HC is motivating workers to perform tasks,
which become often repetitive and boring [54].

Quinn and Bederson note that one of the motivators could be altruism; simply do good. Mao et al.
looked at comparing volunteers and paid workers [51]. They found that the performance of volunteers
and paid workers were comparable within a single scenario and noted that their results may not be
applicable to other types of tasks.

A different motivator may also be the enjoyment of tasks, which goes hand-in-hand with gamifying the
computational process. These type of games are referred to as Games with a purpose (GWAP).

One of the most famous HC games is the ESP game [66], which was used for labelling of images. Players
would be shown an image and must guess (with no means of communication between players) what
the other player would label the image as.

4Popular crowdsourcing platforms such as Amazon Mechanical Turk (https://www.mturk.com/) and Figure Eight (https://www.
figure-eight.com/) allow requesters to create quizzes that workers are forced to take. Workers that score below a certain score will
be blocked from entering tasks. Furthermore, it is also possible to put these test questions inside the task to verify that workers are still
participating without ill intention after passing the quiz.

https://www.mturk.com/
https://www.figure-eight.com/
https://www.figure-eight.com/

10 2. Related Work

Feyisetan et al. [17] used the ESP game as inspiration to design Wordsmith, to similarly label images.
They showed that monetary rewards are not a necessary incentive for improving task acceptance and
completion rates. They also explored with “furtherance rewards”, which notified workers that they are
given additional rewards if they choose to stay and perform more image labelling. These furtherance
rewards showed an increase in the amount of work accepted and performed.

Liu et al. [49] performed a small case study with a gamified mobile crowdsourcing platform they pro-
posed in [48], which showed reliable task completion time and task completion rate for QA type of tasks
related to local events.

Ipeirotis and Gabrilovich [29] proposed a quiz system and used targeted advertisements to identify
(volunteer) expert workers. They found that both task execution time and quality of answers from
paid workers was significantly worse than non-paid workers and accredited this phenomenon to paid
worker’s lack of domain knowledge.

• Worker diversity, bias, skill & knowledge: Workers may possess distinct characteristics in terms of
demographics, personality traits, skill set and knowledge. Evidently, these characteristics may end up
influencing worker performance when tasks require expert knowledge or are of a subjective nature. For
example, asking a youth who keeps up with the latest societal trends if something is “cool and hip”
may trigger different responses than asking an elderly person. Similarly, if expert knowledge is required
to perform some task, it is obvious that someone without that knowledge would not be qualified to
participate.

However, whenever there is money involved, there will naturally be people who try to maximize their
earnings.

Faltings et al. [16] noted several issues that cause bias in HC:

1. People tend to use “heuristics” to solve problems. This means that people who wish to maximize
profit, try to minimize their effort spent per task to perform as many tasks as they can in as little
time as possible. In extreme cases, this could lead to spam behaviour, in which workers show dis-
interest in undertaking the task by providing random answers or answers following a fixed pattern
[77].

2. When workers who perform the same task multiple times, while the supposed answer is repeat-
edly the same, workers become more biased to answer similarly.

3. Provided examples or information may instil bias itself, or in other words, it may damage the
independence of the worker’s assessment [50].

2.3. Crowd-powered Chatbots
The integration of microwork platforms with text-messaging and chatbot systems has primarily concerned
enhancing the capabilities of the individual components of the conversational agent—e.g. collection of train-
ing data for intent recognition, acquisition and enrichment of knowledge—or to entirely substitute artificial
intelligence for conversation management purposes.

One of the earliest examples of a chat-based crowdsourcing system is Chorus [25, 40]. Chorus allowed
end-users to chat with a seemingly single conversational partner, while in reality it was backed by a group
of crowd workers. For each conversation with an end-user, Chorus would recruit a small group of crowd
workers who would be able to propose and vote on candidate responses. From the candidate responses,
the highest voted response would be selected and sent to the user. The workers were able to cast votes on
candidate responses via a web-based conversational interface, which resembled an online chat room. This
interface showed the on-going conversation with the end-user and additionally provided the chat history
from previously recruited crowd workers with the end-user. The interface provided buttons next to each
candidate response to upvote or downvote it.

Another early example of a semi-automated chat system is Guardian [23]. Guardian was originally devel-
oped to extend SDS with broader capabilities for information retrieval through Web-APIs. However, Guardian
would also be directly adaptable for chatbots. Guardian performs its dialogue management and response
generation through the crowd. Guardian followed a two-phase approach; the first phase consisted of popu-
lating a QA collection based on some given API. The goal was to generate a set of QA pairs accompanied by
a set of API parameters that would be relevant to those pairs. The second phase, contrary to the first, ran in

2.4. Microtask Crowdsourcing through Mobile Interfaces 11

real-time. This phase would request workers to extract from on-going user requests a set of query parameters.
With these query parameters, the API is queried for a result from which workers are then asked to extract the
relevant information and form a natural response. Furthermore, Guardian also had workers manage the di-
alogue state by letting workers vote for follow-up inquiries in case Guardian required additional information
for executing the query.

With the continuation of Chorus [25, 40], Lasecki et al. recently proposed Evorus [27]. Evorus is an evo-
lution of Chorus where conversation automation is obtained by adding, learning, and improving automated
responses using past information gained from the crowd. Evorus differs greatly from Chorus by introducing
a novel framework in which candidate responses are still proposed by the crowd, but in addition, Evorus also
allows external bots to generate candidate responses. Workers would be presented with a list of candidate
responses similar to Chorus. However, in Evorus this list would also contain the candidate responses of the
external bots in addition to worker generated responses.

In a vastly different application domain, Calender.help [12] was proposed to be an email-based personal
assistant. Calender.help possessed the ability to automatically schedule meetings at a time which fits all the
participants. At that time5, Calender.help would assist in scheduling meetings when it was addressed in the
cc or was among the recipients of the email. The system uses a simple three-step approach for the scheduling
of meetings. First, Calender.help would attempt to use automated means to achieve a satisfactory result. In
case this failed, in-house non-skilled workers are recruited to attempt the task. If this still would not produce
the desired result, expert workers would be then asked to complete the task.

Liang et al. [44] propose CI-Bot, an early prototype of a conversational agent as question and answering
system, that made use of the conversational interface for microtask crowdsourcing. The authors conducted
a pilot experiment and reported good performance for image labelling tasks.

InstructableCrowd [24] is a conversational agent that can crowdsource “trigger-action” rules for IF-THEN
constructs, e.g. to set an alarm or an event in a calendar application. Because InstructableCrowd was devel-
oped as a mobile application, it allowed the use of the device’s sensors to create these trigger rules. Moreover,
InstructableCrowd included several simple actions such as sending device notifications and text messages.
Workers used a web-based interface similar to the chat room proposed in [25, 27]. Aside from a chat log
shown to the worker, the creation of the IF-THEN rules was done based on the use of simple checkboxes,
dropdown menus and text boxes.

Bradeško et al. proposed Curious Cat, a context-aware conversational knowledge acquisition system [6].
Curious Cat was similarly to [24] a mobile application. Curious Cat uses a logic-driven QA mechanism to
answer user questions. Instead of mapping predefined questions to a set of answers via rule-based pattern
matching, Curious Cat maps the questions (posed in natural language) to a set of logical predicates. Using
a logic inference engine, the logical predicates are then translated back to natural language to form the ap-
propriate response. Curious Cat also relied on workers to supplement information, in case automated means
failed to resolve to find the necessary information to answer users. Unlike [12, 24, 25, 27, 40], Curious Cat
made full use of the opportunity to view other users of the application as potential workers. As such, micro-
tasks were executed inside the mobile interface of Curious Cat itself. The conversational interface was similar
to that of a common chat room as in [24, 25, 40], but also showed suggested answer options in the form of
“autocomplete suggestions” above the text box in which workers would type their answer. To target which
workers to ask and what questions, Curious Cat made use of contextual information extracted from mobile
sensors to model spatial information of users.

These systems demonstrated the technical feasibility of application-specific microtask execution through
chatbots. Our work has a broader scope, as it addresses the execution of different classes of microtask crowd-
sourcing, with a principled comparison with traditional Web interfaces aimed at evaluating chatbots as a
generic medium for crowd work.

2.4. Microtask Crowdsourcing through Mobile Interfaces
In previous work, mobile interfaces have been used as a means for addressing the problem of ubiquitous and
opportunistic microtask crowdsourcing in either in a humanitarian6 or academic [35, 38, 52, 74] setting.

Yan et al. [74] showed an early example in the use of mobile interfaces through their platform mCrowd,
which was able to perform crowd sensing tasks through a native mobile application. mCrowd was a small

5The personal assistant Calender.help was initially called Cal, but became later part of Microsoft’s personal assistant Cortana. The
system would also be able to recognize being addressed within the body of an email. More information is available on Microsoft’s
Calender.help web-page: https://calendar.help

6e.g. Ushahidi: https://www.ushahidi.com/

https://calendar.help
https://www.ushahidi.com/

12 2. Related Work

demonstration to show the technical feasibility to perform mobile crowdsourcing and supported four differ-
ent task types; image annotation, image collection, text-based QA, and QA based on location. The design of
the interface is simple; three different “tabs” for 1) listing available tasks as a worker, 2) creating a task as a
requester, and 3) collecting and viewing of task results.

Samdara et al. [59] experiment with different mobile interfaces to perform crowdsourcing on multimedia
microtasks. They tested three different input controls making use of the physical number pad and other
navigational buttons commonly found in non-touch mobile devices.

Narula et al. [52] introduced MobileWorks, which is a light-weight mobile crowdsourcing platform de-
signed for web browsers of lower-end mobile phones. Therefore also enabling the execution of crowdsourc-
ing tasks by people with limited connectivity. It uses a very simple and minimalistic design of web-pages to
limit the amount of data transfer required to perform microtasks. The authors also showed in a small pilot
experiment involving ten workers, that the workers were positive about their experience on the platform and
would also be likely to recommend it to others.

In a similar spirit, Kumar et al. [38] push further the initiative of mobile crowdsourcing in the context
of developing countries. They implement and test both a native mobile application (Wallah) that supports
generic crowdsourcing tasks and also a system that can handle tasks with simple Short Messaging Service
(SMS) exchange. To evaluate the system they measure the impact of different screen sizes into the ease of
use of their interface as well as the task execution time and quality of different types of tasks. They found
that among 59 workers, there were 18 different screen sizes and 48 different phone models. However, they
note that larger screen sizes did not translate to fast task completion times nor improved output quality.
Furthermore, they found a correlation between screen size and quality of work, especially for tasks such as
video annotation, human OCR and translation. Image annotation tasks were the highest performing.

In [14], Della Mea et al. set up an experiment with four different crowdsourcing platforms (Figure Eight,
formerly known as CrowdFlower, was not included) in order to check the difficulty and execution time of
commonly performed tasks and input controls. They experienced technical and usability difficulties with
straightforward mapping from Web user interfaces to mobile ones, and therefore propose a number of adap-
tations for their experts when it came to the evaluation (e.g. avoiding long descriptions, minimising scrolling).

2.5. Summary
The idea of enhancing chatbots with HC has only erupted recently. With many propositions on how to incor-
porate the crowd inside the chatbot in an attempt to improve performance, the feasibility and practicability
of doing so on a large scale are still often overlooked.

While crowd-powered chatbots face similar issues as crowd-based systems, such as quality control, they
require stricter conditions in terms of response latency. Higher response times from the crowd could cause
an increase in wait times for users to receive their replies. But in order to reduce response latency, it may be
required to make concessions in quality or cost.

With much work being poured into the improvement of chatbot systems, we recognize that to our knowl-
edge the idea of using the chatbot system as an alternative interface for the facilitation of microtask crowd-
sourcing activities remains to be explored. Both as a worker and requester, the use of a conversational inter-
face bears many future opportunities in pushing forward mobile crowdsourcing as a field of study, as a result
of the potential benefit of conducting experiments in environments where workers could be aplenty.

3
Chatbot System Design

To give our chatbot implementation shape in Chapter 4, we elaborate in this chapter on all the decisions
impacting the design of the chatbot. With the literature we have outlined in Chapter 2, we address the com-
plications of HC and chatbots and the combination thereof in our design. We start by discussing the main
considerations that have impacted the design of the chatbot in Section 3.1. Next, we discuss the dual na-
ture of the chatbot as a base chatbot in Section 3.2 and as a microtask crowdsourcing platform in Section 3.3.
We then discuss the conversational interaction design from the perspective of crowd workers in Section 3.4.
Thereafter, we discuss the extent to which tasks may be designed and their setup in Section 3.5. Finally, we
elaborate upon the complete system design in Section 3.6.

3.1. Design Principles
The design of the chatbot system is based on four main overarching goals and considerations. In addition,
these guiding principles aid us in the understanding of the strengths and limitations of the chatbot system.
We discuss these four design principles in Sections 3.1.1 to 3.1.4.

3.1.1. Adaptive & Reactive Human Computation
An important part during the execution of microtasks is to be able to monitor progress on both the task and
workers. Tasks that take too long, thus expire as a result of exceeding their time limit need to be stopped. Tasks
where workers unanimously answer in unexpected and unforeseen ways may need to be adjusted. Workers
who seem to answer frivolously or are caught spamming answers may need to be blocked from further exe-
cution of the task. Consequently, the added value of employing task and worker monitoring capabilities with
reactive mechanisms is apparent.

To allow the system to rapidly respond to any event during task execution, we introduce the abstract
notion of task execution policies. These policies steer on a high level the overall execution of the task. The idea
is that these policies would be controllable on a per task basis to allow for more control of every individual
task’s execution. These policies may then even be constructed in such a way, that it could adopt dynamic task
execution strategies based on the status of the task (Figure 3.1). For example, a policy may automatically reject
workers who repeatedly finish tasks in an uncharacteristically short amount of time. Alternatively, we may
wish to adjust pricing of judgments (i.e. an item for which we request worker assessment through questions),
depending on the level of agreement between worker answers. Another policy may consider the case where a
trade-off may take place between higher task cost in favour of task completion speed and output quality (see
also Figure 2.3). As recruiting more skilled workers may achieve higher output quality, the pay must naturally
complement the difficulty of the task. However, limiting the selection of workers by their respective skill set
may negatively impact the overall task completion time, as the requirements for task participation rises.

3.1.2. Modular System Design
We view the overall chatbot system as a combination of a base chatbot and a HC component that is responsi-
ble for the creation and execution of HC processes.

Rather than designing our chatbot for some specific application domain, we opt to frame the base chatbot
as an abstract logical unit that merely provides the necessary means for the communication between different

13

14 3. Chatbot System Design

Policy #1

Judgment #1

Judgment #2

Worker #1

Worker #2

Worker #3

Judgment #N

$0.05

$0.05

$0.10

Policy #2

Judgment #1

Judgment #2Worker #1

Judgment #N

$0.05

$(funds/N)

Judgment #3

$0.05

$0.05

$(0.05*N)

Judgment #3 $0.05

Figure 3.1: Adoption of two task execution policies switching dynamically based on e.g amount of workers available. In this example,
the first policy allows each worker to procure a single judgment. Worker #2 is a spammer, which causes the system to double the payout
for the next worker who answers earnestly. Pricing for remaining judgments is determined by the available budget. Switching to policy

#2 happens when very few workers are available. Here we only have one worker available and consequently that worker is tasked to
provide multiple judgments. Moreover, the pricing is kept fixed contrasting dynamic pricing in policy #1.

system components. The base chatbot contains all components that the system requires to function as a
conversational partner, while the HC component is an extension built upon the base chatbot.

As a result, we separate the user interface of the chatbot from the logical unit. This provides us with the
benefit of allowing the chatbot to integrate with multiple third-party messaging services while keeping the
possibility to design our own user interface.

Moreover, we let ourselves be inspired by the concept of a crowd-powered chatbot, which we have sur-
veyed in Section 2.3. While the primary focus of our work lies with designing a microwork platform inside the
chatbot, we acknowledge the opportunity that our proposed platform can be used to extend the functionality
of the base chatbot to eventually become a crowd-powered chatbot.

3.1.3. Isolated Task Environment

Naturally following from the modular system design, we uphold the clear distinction between the goals and
uses of the chatbot (see Figure 3.2). We acknowledge the duality in the use of the chatbot as a traditional
conversational partner and as microwork platform. With the former, we refer to typical uses of the traditional
chatbot; to engage in conversation for informational, transactional or conversational needs. While with the
latter use, we refer to the engagement in conversation and interaction with the chatbot to achieve completion
of microtask processes.

A major reason for this separation is that we wish to contain the execution of microtasks in a highly con-
trolled environment. Our rationale is that we are more tolerant of potential mishaps during use of the chat-
bot as a traditional conversational partner than during the execution of microtasks. This is because we value
serving a consistent work environment in which workers can grow accustomed to the conversational flow
determined per design of the task. Moreover, we consider also the possibility of serving external requesters—
i.e. tasks that do not originate from the chatbot itself as a requester—who may wish to have more control
over the execution of microtasks in the chatbot. In contrast, we value flexibility for activities that involve the
chatbot as a traditional conversational partner to endorse more free and natural interaction similar to talking
to a human.

3.2. Base Chatbot 15

User #1 User #2

Base Chatbot Microtask Chatbot
Platform

Chatbot
System

Figure 3.2: The chatbot as a traditional conversational partner and as microwork platform.

3.1.4. Non-Collaborative Dyadic Conversational Environment
We consider in our chatbot only the execution of microtasks through dyadic conversation. This is also mainly
for the purpose of running controlled experiments in Chapter 5. Furthermore, we do not actively facilitate
communication between workers for collaboration on microtasks of similar nature.

This means that answers from a single microtask judgment will always originate from a single worker. By
this design, we endorse that individual workers solve problems using their own skill set rather than potentially
relying on others to solve the microtask for them [22, 53].

On a high-level overview in Figure 3.3, we show that a worker is shown to communicate exclusively
through the chatbot system during task execution. The chatbot does not allow a single task to be performed
through a group conversation.

Worker #1 Worker #2 Worker #3

Chatbot

(a) Single Communication Channel.

Worker #1 Worker #2 Worker #3

Chatbot

(b) Inter-Communication Channel.

Worker #1 Worker #2 Worker #3

Chatbot

(c) Group-Communication Channel.

Figure 3.3: Overview of the worker environment. The system does not actively endorse communication between workers as shown in
a), but still supplements the capability to do so as shown in b). We note the possibility for an additional communication channel in c),

in which the chatbot converses with a group of crowd workers simultaneously, rather than on an individual level.

3.2. Base Chatbot
To shape our base chatbot system, we detail in this section the main components of the chatbot. All user
interaction with the chatbot is powered through these components. Furthermore, we elaborate upon the
functionality of all individual components of the chatbot system.

At the core of the chatbot, we have the Natural Language Understanding, Dialogue Manager, Action Exe-
cution & Knowledge Base, and Response Generator. Each request sequentially passes through these four main
components, with each component depending on the input of their predecessors. We depict the relationships
between these components in Figure 3.4.

We detail all the system components of the base chatbot, by discussing their responsibilities and function-
ality in Sections 3.2.1 to 3.2.4.

3.2.1. Natural Language Understanding
As soon as a user sends a message to the chatbot, the first step is processing the message to allow the in-
terpretation of the message by the chatbot. The understanding of natural language follows a split design for
both the chatbot and the HC component of the system. On the one hand, the base chatbot relies on a com-
bination of a rule-based approach and data-driven models for message processing. While on the other hand,

16 3. Chatbot System Design

Natural Language
Understanding Dialogue Manager Action Execution

Knowledge
Base

Response Generator

User
Message

Chatbot
Message

Figure 3.4: High-level schematic of the main components of the base chatbot system.

the HC side of the system exclusively uses a more rigid rule-based approach, which is less flexible than the
data-driven models, but in return provides more control over the HC processes.

To setup the base chatbot for NLU, two models are used in parallel: a model to classify intent and a model
to extract key entities of a message. We propose to use supervised machine-learning models for these two
objectives. The goal of the two models is to identify what the meaning and overall goal behind a message are
and to find key information that is used for other processes in the chatbot. To illustrate the idea of processing
a message through these two models, imagine the following procedure:

1. Bob starts chatting with the chatbot and at some point sends the message “Hey, do you think it’s going
to start raining in 30 minutes?”

2. The message first gets processed and the intent is found to be weather_inquiry.

3. Similarly, the entities found are forecast and time with their respective values raining and 30

minutes.

On a high-level view, the intent classifier model requires to be able to map the message Bob sent to a set
of pre-determined intents. While the entity extractor should be able to find important concepts within a
message.

For the HC side of the system, we wish to maintain full control over the conversations taking place during
the execution of microtasks. We do this by stepping away from using any type of predictive model, but we
note that it is certainly possible to adopt such an approach. We go back to the idea of QA systems; we propose
to perform in essence direct mapping from input to output responses or actions. Consequently, this would
allow for the opportunity to perform extensive parameterization of the conversational interaction on a system
and even microtask level.

3.2.2. Dialogue Management
Using the information processed from the NLU component, the chatbot will have to determine its next course
of action. To do so, the chatbot requires to realize that it is engaged in an active conversation leading up to
the current state of affairs. Because we assume conversations to be dyadic, we wish to take advantage of the
opportunity that allows the chatbot to make inquiries as well for e.g. clarification and asking for additional in-
formation. For example, if Bob would ask the chatbot the question “Do you know a good restaurant nearby?”,
it is unclear what Bob would find good, because the chatbot may not possess the knowledge about Bob’s di-
etary preferences and potential allergies. Moreover, perhaps the chatbot is also not aware of Bob’s current
location, hence does not know what nearby would refer to. These things could be clarified by simply asking
several questions to follow up on Bob’s inquiry.

Similar to NLU, we view dialogue management for the base chatbot and the HC separately. For the base
chatbot, we propose to use a mixed approach of using handcrafted rules and a data-driven model. This is a
mix of the frame-based approach to match information obtained through the intent classification and entity
extraction with the dialogue samples. Then using a model to determine what the exact conversational state
the chatbot finds itself in and what action to undertake. We feed the model a set of multi-turn example
conversations that specifies “trigger-action” conditions that use the processed output of the NLU as its input.

The HC side uses a pure finite-state approach. We illustrate the key interactions on a high level in Fig-
ure 3.5.

We note that it is possible that workers may quit halfway-through a task and start a new task at some later
point in time. To account for this, we prompt workers if they wish to continue with a previously unfinished
task. This situation will only occur if workers are attempting to start a new task, while the previous task

3.2. Base Chatbot 17

Navigate to Question
& Change Answer

Perform Answer
Review

Already in Task

Start Task

Task is Accepted

Perform Task

Buffer Task

Task in Buffer

Judgments Pending

Prompt Task

Task Completed

Review AnswersEdit Answer

End Interaction

No

Yes

Yes

No

No

Submit Answers

Yes

Yes

NoNo

Yes

Yes

No

Figure 3.5: High level activity diagram of the dialogue management of the HC side of the system.

was left unfinished and has not expired. In the case that a worker were to accept and finish a previously
unfinished task, we prompt after completion if the worker wishes to also perform the new task. We achieve
this by buffering the new task, while the chatbot waits for the previously unfinished task to be completed.

3.2.3. Action Execution & Knowledge Base
Domain knowledge of the chatbot is stored in a database. The dialogue manager which decides upon which
action to take may query the knowledge base for information it requires to serve user requests. To keep
the base chatbot as general and flexible as possible, we choose to use a document-based database as our

18 3. Chatbot System Design

knowledge base. To setup querying for information, the knowledge base uses schema-based matching. By
using the entities extracted from the NLU, we match them with the respective schema. Each schema requires
to be defined beforehand depending on the use and needs of the chatbot application and its domain. Aside
from data records that may be directly queried by their primary key, we also choose to allow for querying on
attribute (or key) level. All actions that require information from the knowledge base follow a pre-defined set
of query specifications. To embrace the modular system setup, the communication between the system and
the knowledge base goes through an Application Programming Interface (API). This also allows for the future
possibility to provide (partial) access to the entire knowledge base of the chatbot for third-party services.

3.2.4. Response Generation
While the possibility exists for generative approaches for response generation, the system is built with the
simple frame-based approach involving response templates. The system uses a set of template sentences
that hold slots or variables that require to be filled with information, which allows for reasonably flexible
response sentences. While this provides a lot of control in how the chatbot will respond, it however requires
a larger amount of (template) samples than the generative approach, in order to simulate a wide vocabulary.

This approach is used for the response generation in both the base chatbot and the HC component. By
marking parts of the templates as slots, the system will recognize that certain parts of the template require
substitution. To select an appropriate response, the system is able to employ various policies. For example,
given the following two templates for a greeting:

Template 1: Hello {{first_name}}.

Template 2: What's up {{first_name}}.

Template 3: Hello {{first_name}} {{last_name}}.

Template 1 and 2 both contain the single {{first_name}} slot, while template 3 contains the two slots
{{first_name}} and {{last_name}}. A greedy slot filling policy may be adopted, that prefers to select
template 3 as when the information for both slots is available. Other policies may also include arbitrarily
complex conditions, such as ranking candidate responses by the amount of times templates have been pre-
viously used, or simply selecting randomly.

3.3. Chatbot Microwork Platform
The HC component in the system allows for the creation and planning, execution and monitoring, and col-
lection of the results of microtasks. As the chatbot is built as an alternative to the web-based microwork
platform, we similarly direct our focus to the microtask processes in our system design.

The HC module contains the following main components: the Task Planner, Worker Selector, Task As-
signer, Execution Controller, and Result Aggregator. Each component only activates whenever the processes
of the previous components have completed. To illustrate this concept; to select workers, we must first have
planned how many workers the task requires. Similarly, before we are able to assign workers, we must of
course first have determined which workers should be involved. To execute a task we must first have both
the task designed and know which workers to send it to. We depict these sequential relations between these
components in Figure 3.4.

Task Planner Worker Selector Task Assigner Execution Controller Result Aggregator

Requester
Task Task Result

Figure 3.6: High level schematic of the main components of the Human Computation part of the system.

We detail all the system components of the HC module, similarly to the base chatbot in Sections 3.3.1
to 3.3.5.

3.3.1. Task Planning
At the core and start of an HC process, is the creation and planning of tasks. The component responsible for
the planning of the task is also what is most exposed to an external requester. This means that tasks are to be
highly parameterized to allow for better control of the chatbot system for every task’s goals. The planning of
tasks is only at a microtask level. The system does not support explicitly support macrotasks, nor does it have
the ability for automated break-down into a set of microtasks. Consequently, the system does not support
setting task execution to follow specified workflows to execute a series of microtasks in succession.

3.4. Worker Conversational Flow 19

3.3.2. Worker Selection
When a task is created and ready for execution, the number of workers specified by the task must first be
recruited. This system component tackles the problem of selecting what workers to include (and exclude)
for a specific task. The selection of workers may be specified within the task itself, which may use attributes
identifying workers from each other as a filter option. The selection of workers may be kept as simple as per-
mitting anyone, to more complex strategies involving selection through user modelling. For our system, we
opt to keep things basic (while keeping the possibility for expanding) through allowing workers to participate
as long as they abide by all exclusion rules set on task level, such as preventing workers performing similar
task types. We note that this is a more reactive than proactive approach, targeting distinct challenges. In the
case, where the system requires to actively seek out candidate workers, the availability of a worker must be
considered and is not a given. In consideration for our original goals and experimental purposes in Chapter 5,
we leave addressing effective strategies for this challenge as a separate future matter to investigate.

3.3.3. Task Assignment
The system follows the push-based task assignment approach. This approach would allow for more control
over managing the number of tasks each worker is able to perform. This means that workers may be less
prone to fatigue as a result of enforcing shorter “work sessions”. Workers would not be able to pick multiple
tasks from a list of available tasks by their own initiative. As the system notifies workers individually with a
prompt to request their participation in a microtask, the worker would be also allowed to decline an assigned
microtask. In the case a worker would decline a task, this system component would need to find a replacing
worker to carry out the task.

Even though the system directly assigns workers to tasks, we note that there is also the possibility to com-
bine the worker selection process together with the assignment of tasks to construct a hybrid approach be-
tween the pull- and push-based approach. For example, the worker selection system component would first
find candidate workers based on some policy. Thereafter, the task assignment component may rank tasks by
e.g. urgency or difficulty, and select a subset of tasks to present to the candidate workers. The workers may
then pick from a list of possible tasks.

3.3.4. Task Execution
To send and execute the task, this component would be responsible for managing and ensuring that a task
gets executed as it is supposed to. Furthermore, the monitoring of the task falls upon this system component.
As soon as a task is distributed among a group of workers, answers submitted by the workers are saved to the
database of the system. We setup the system to only submit answers to the database as soon as all assigned
judgments of a task are completed. This is done to push the full completion of an assigned task, after which
the worker is compensated with some remuneration. A possible alternative is to allow payment per judgment,
which would allow workers to still get paid even if a microtask were not fully completed. While this may be
interesting to have when the system is fully put in production, we constrained the system in order for better
experimental control.

3.3.5. Result Aggregation
After a task has finalized, the answers from workers must be aggregated in some way to reach consensus
on what is considered the “final” answer. The way answers may be aggregated holds a variety of possibili-
ties. With closed-ended questions—consisting of a fixed set of answer options—standard approaches such
as (weighted) majority voting may be directly applied. However, because typically microtasks also use of
open-ended questions, other approaches may be used such as computing some metric on the answers and
clustering answers based on the computed metric.

As there are many possible strategies for aggregation depending on the circumstances of the task, the
system allows for designing dynamic aggregation strategies. This means that rather than being fixed to one
aggregation strategy, we wish to have the chatbot system be capable of changing the aggregation strategy
whenever we want to.

3.4. Worker Conversational Flow
A large part of building our alternative HC approach to the web-based interface is designing the flow of con-
versation with a worker. In this section, we touch upon the decisions that have been made for the conver-
sational flow during microtask execution from the worker’s point of view. More specifically, we discuss how

20 3. Chatbot System Design

microtasks follow a structured conversation which is complemented with access to a set of navigational con-
trols. We discuss the different navigational controls in Section 3.4.1. In addition, we introduce the notion of
feedback in Section 3.4.2.

3.4.1. Navigational Controls
By taking a look at a simple web-based interface used for microtask execution (Figure 3.7), typically standard
Hypertext Markup Language (HTML) form elements are used.

Figure 3.7: Example survey template in the web-based interface from AMT.

Many customary navigational controls, e.g. page scrolling and editing previous form input, are by default
provided by the web-browser, these are not present inside the chatbot. While it is possible to design a web-
based interface, containing something resembling an online chat-room as a conversational interface, we wish
to avoid that the chatbot is only able to function inside the web-browser. We choose to have a generalized
conversational interface, which is independent of the environment wherein it is provided. This means that
we favour to provide all controls through conversation, rather than depend on the environment to provide
them.

Because conversations are structured in chronological order—meaning that it is non-trivial to “go back”
to some point in the conversation—we propose several key navigational controls:

1. Answer editing: In a web-based interface, it is trivial to edit some answer in a form element as long
as it is not submitted. A worker would merely have to overwrite the previous answer by changing the
previous input inside the form element. Through conversation, we distinguish two main ways to han-
dle editing of answers as shown in Figure 3.8. We combine both approaches and allow the editing of
answers during the execution of the tasks, which only allows navigation to previously answered ques-
tions. After all judgments are completed, we allow navigation to all answered questions. To indicate
which answer to edit, questions would be numbered in the order they have been sent to the user.

2. (Re-)viewing task instructions: As the conversational interface primarily consists of a chat log, which
depending on the device may show only a limited amount of messages, it becomes important to be
able to decompose long task instructions. While in a web-based interface, workers may be accustomed
to scrolling through long instructions, we wish to avoid forcing workers to do so in the conversational
interface. We consider a conversation as a highly engaging activity, which focuses on the continuous
interaction between the user and chatbot. We aim to take full advantage of the capability to actively
steer the execution of the microtask as we see fit. We split the task instructions into three commonly
included elements: an overview, example and a list of steps workers must follow to complete the task.
The overview shows a short description of the overall task. While the example shows what kind of
questions will be asked to the worker. Lastly, the steps summarize what is required from the worker to
solve the task.

3.4. Worker Conversational Flow 21

U : <A1>

C : <Q1>

U : <A2>

C : <Q2>

C : <Task End>

(a) Inter-execution answer editing.

U : <A1>

C : <Q1>

U : <A2>

C : <Q2>

C : <Task End>

(b) Post-execution answer editing.

Figure 3.8: In total two questions are posed by the chatbot (C), to which the worker (U) answers directly after. (a) When the worker is
able to answer, there is also the option to navigate to a previous question. (b) After all questions have been answered, only then the

worker is allowed to navigate to any previous question.

Because task instructions are typically displayed before the start of the task (and will be pushed to the
back of the chat log at some point), the system allows workers to also request to review task instructions
during and after task execution similar to the approach taken in the editing of previously given answers.

3. Reviewing answers: In the web-based interface, it is fairly easy to scroll back up the web-page to review
previously given answers. In a similar spirit to avoid back-traversal in the chat logs, we include an
option to review answers post-execution of the task. This ability would summarize previously given
answers and repeats the necessary navigational instructions for editing answers.

4. Submitting answers: To finalize answers and complete a microtask, the system must prompt for con-
firmation. Since submitting answers fully terminates the task, the chatbot will naturally only allow this
post-execution.

3.4.2. Feedback Control
With every action a worker takes, the chatbot must respond accordingly. Since interaction between worker
and chatbot takes place through the conversation, we setup the chatbot to send acknowledgements through
its messages.

In web-based interfaces, closed-ended questions typically use HTML elements—as radio buttons, check-
boxes and drop-down menus—that naturally include visual feedback of the selected answers. In the chatbot,
we do not possess such standardized interface elements. Therefore, in the chatbot, we choose to send a sep-
arate message as an acknowledgement. The main benefit of this approach is that it may be implemented in
any kind of conversational interface regardless of its specific application environment. During any microtask,
the chatbot is set to repeat any given answer to closed-ended questions through a separate message. For ex-
ample, if a question were to ask the worker to state what their opinion is on a painting; with two options “like”
and “dislike”, picking “like” would make the chatbot acknowledge the worker’s answer by repeating “like” in a
separate message.

A big benefit of the conversational interface is that any event may be easily communicated to the user
by simply sending a message. As a result, event and error handling are done by communicating this to the
user through messages. For example, if a worker were to spend too much time on a task and exceeds its time
limit, the worker is blocked from further participation. The chatbot is able to easily communicate this to the
worker by explaining the situation through a message. In addition, the chatbot may even take on a didactic
role by providing further instructions on how to avoid such future events, what current options the worker is
left with, what the consequences (if any) of repeated cases are, etc.

22 3. Chatbot System Design

3.5. Requester Task Design
As each task has disparate goals, the creation of tasks should be highly adjustable leaving much up to the exact
needs of each task. We discuss in Section 3.5.1, how each task is structured and what parameters are desirable
to include in the process of designing them. We also delineate the manner in which answer validation is
performed in Section 3.5.2.

3.5.1. Task Structure & Parameters
Because we wish to achieve flexible customization of a task’s execution, we setup a list of key parameters for
each task. We take note of adjustable task parameters found in popular web-based microtask platforms as
AMT and Figure Eight. We list all key task attributes in Table 3.1.

Table 3.1: List of the key task attributes with a brief description on their use.

Task Attributes Description

Title
The title of the task. This is displayed to the worker at the
start of the task.

Instruction
A set of instructions to help the worker understand the
goals of the task and with directions to complete it;
structured through an overview, example and steps.

Deadline
The maximum amount of time in seconds that is allowed
to pass before a worker fails the task.

Judgments The amount of workers requested per data item.

Reward
The payment amount in cents that a worker receives when
the worker completes the task.

Items Per Assignment
The amount of data items to include per task assigned to
each worker.

Maximum Judgments Per Worker
The maximum amount of judgments that may be
collected per worker.

Each task is structured to contain data items, over which a set of questions may be asked. The set of data
items attached to each task is comparable to a database table. Each data item would analogous to a table row,
containing a number of attributes that may be used for composing the task questions.

Each data item is to be judged by a number of workers set via the judgments parameter. Consequently,
increasing the value of this parameter may yield more answers (but at a higher cost in due payments).

3.5.2. Answer Validation
To setup basic quality control of answers, the task can employ answer validation. In the web-based interface,
for typical form elements, client-side scripting may be used to validate inputs. In the chatbot, every answer
would be passed server-side in this case. This allows the system to check all incoming answers against a pre-
defined set of input rules. We distinguish two sets of validators based on open- and closed-ended questions,
and open- and closed-input types:

1. Open-input validator: All open-input validators behave by comparing the worker’s answer (which is
a naturally a string) to a set of rules. For example, when the worker answers by typing out a short
sentence, a validator may enforce a character limit or check that the sentence adheres to some regular
expression.

2. Closed-input validator: All closed-input validators relate to checking of higher level rules. These val-
idators enforce that the worker’s answer e.g. covers a minimum or maximum amount of options or that
some option may not be chosen in combination with another.

3.6. Modelling the Chatbot System 23

3.6. Modelling the Chatbot System
In Appendix A, we show the entire system modelled from a data perspective. The model contains both entities
used for the base chatbot and for the chatbot as a microtask crowdsourcing platform.

In our system, we do not distinguish between worker and regular chatbot users. Instead, we embrace the
opportunity to have regular users become workers as well. As a result, we model the users of our chatbot
system as a single User entity. To model user interaction, we propose to represent all user (and chatbot)
messages as Utterances. As a result, a Conversation as an abstraction (which bears resemblance to a chatlog)
is introduced as a collection of sequentially sent Utterances. To drive these conversations, the chatbot uses a
conversational Model. This model is then powered by a set of response templates (represented as a Templates
entity), that may rely on the abstraction of chatbot Knowledge.

Since we also want to be able to extend our range to recruit workers from external sources outside the
chatbot, we model the worker’s access point for communication through a separate Platform entity. Con-
sequently, we model our tasks to allow them to concurrently run on different platforms as soon as it gets
published.

Naturally, tasks that are published require to be assigned to workers (in our model Users). We model our
tasks, in such a way that they contain Data Items, which in turn contain a collection of Question entities. By
modelling each Data Item with a set of questions, we gain the benefit of having a distinct set of questions
perData Item. This also allows us to model more complex tasks, with different types of questions per Data
Item. These Data Items are then assigned to workers alongside the set of questions. To keep track of which
worker is providing an assessment on which Data Items, we introduce a Task Instance entity. This entity
models all task session-specific parameters, such as task start and completion date. Finally, the entire task
Results are collected as a separate entity by aggregation of all answers. To embrace the notion of the crowd-
powered chatbot, we allow these results to be used for updating the chatbot Knowledge.

4
Chatbot Implementation

In this chapter, we elaborate upon the implemented chatbot system. This system follows the modular design
as specified in the design. Following a similar structure as in Chapter 3, we begin by discussing the base
chatbot in Section 4.1, then follow by the HC component in Section 4.2. Finally, we detail the deployment of
the chatbot in Section 4.3.

4.1. Conversational Interface
The entire chatbot system has been implemented using Python v2.7 to avoid compatibility issues with older
third-party Python modules. The chatbot consists of the four main components: we discuss the NLU in
Section 4.1.1, dialogue management in Section 4.1.2, the setup of the knowledge base in Section 4.1.3 and
finally the generation of responses in Section 4.1.4.

4.1.1. Natural Language Processing
Every user message first passes the NLU component in the chatbot, before any further action is taken:

For the base chatbot, we used the open-source library Rasa NLU1 to process all user messages. For each
user message, Rasa NLU performs two main activities: 1) classification of user intent and 2) entity extraction.

The classification of user intent is done via the training of a simple linear Support Vector Machine (SVM),
which Rasa NLU carries out through the popular machine-learning library scikit-learn2. For the purpose of
demonstrating the capability to perform the NLU in a data-driven way, we trained a linear SVM using the
default settings in Rasa NLU on a set of sample sentences within the restaurant domain.

The extraction of entities is performed by Rasa NLU, by first processing the user message through the
spaCy3 library, which provides tools for Natural Language Processing (NLP). We note that it is possible to use
different NLP tools for this process as well. Since spaCy provides simple packaged models—which includes
a tokenizer, part-of-speech tagger, parsing, named entity recognition, and pre-trained word vectors—for a
variety of languages, we chose to use their simple English model in our implementation. As a result, our
chatbot only covers NLU for conversations carried out in English.

For the NLU during execution of microtasks, we use a more rigid approach. Instead of relying on the data-
driven models, which performance highly depends on the quality of the training data, we use AIML. AIML
matches the user message to a set of sentence templates, which may contain certain keywords or patterns. In
other words, we perform rule-based pattern matching to map each user message to a specific output. We use
AIML to detect the instruction of the navigational controls as shown in Table 4.1.

Whenever a user message contains—at any position in the message regardless of capitalization—one of
the exact keywords listed in Table 4.1, we perform the corresponding action.

1https://rasa.com/docs/nlu/
2http://scikit-learn.org/stable/
3https://spacy.io/

25

26 4. Chatbot Implementation

Table 4.1: All implemented navigational controls.

Navigational Control AIML Keyword

View Task Instructions TASK INSTRUCTION(S)/HELP
View Task Example EXAMPLE
View Task Steps STEPS
Indicate Ready To Start Task CONTINUE, GO, READY, BEGIN
Edit Answer EDIT/CHANGE (QUESTION) <question nr>
Perform Answer Review REVIEW

4.1.2. Dialogue Management
With the information obtained from the NLU component, the dialogue management determines the next
course of action to undertake. For the base chatbot, we use Rasa Core4 which integrates well with Rasa NLU.
Rasa Core similar to Rasa NLU operates on a trained model, which similarly benefits from higher flexibility in
dialogue management, but may be less robust than rule-based approaches.

For the HC component, we use AIML, which allows us to map user messages to any type of output. How-
ever, this approach means that we require to handle each mapping individually. Consequently, this means
that to power the interaction between the worker and the chatbot, the chatbot has been implemented using
several simple states. We show the interaction for performing microtasks on a high-level in Figure 4.1.

Whenever a worker accepts a task, the chatbot first sends the details of the task to the worker. Each task
contains at least one judgment, which is then sent to the worker accordingly. Each answer of the worker
passes a validation state, which is determined by the specified validator per question. Finally, the task may
be finalized when all assigned judgments have been completed by the worker.

4.1.3. Knowledge Base
At the core of the chatbot stands the data storage. We refer to the entire system’s data storage as its knowledge
base. We separate the knowledge base into two parts: 1) for use of the general knowledge of the chatbot and
2) the storage of all data involved in the HC processes.

Since the system is based on separate system modules, the knowledge base is no exception. This also
allows us to develop and deploy the knowledge base separately from the chatbot. To facilitate the commu-
nication between the chatbot system and its database, we implement an API. The system is then able to
communicate with the knowledge base via simple HyperText Transfer Protocol (HTTP) requests. We support
in the system the basic GET, POST, and DELETE HTTP requests. In addition, to update any knowledge base
document (analogous to a single data record) we use PATCH requests.

The knowledge base is implemented using MongoDB v4.0.2, which was at the time the latest available
stable version. As a result, all data is stored in a JavaScript Object Notation (JSON) format.

4.1.4. Response Generation
To have the chatbot form its responses, we implement a frame-based slot filling mechanism, using hand-
crafted information to fill the slots. The system uses handcrafted sentence templates, which contains slots,
which may be filled using a pre-defined set of options or using information obtained during the interaction
with the user.

The chatbot also uses emojis as certain slots in its response templates. For ease of use, the chatbot relies
on the emoji5 library to perform the mapping from emoji codes to the Unicode representation determined by
the Unicode Consortium6. To use the emojis in a more flexible way, we categorize the emojis we included in
our set of responses by their goals and expression as follows in Table 4.2:

Each emote expression may then be used as a separate slot inside a response template. The chatbot
then randomly selects from the set of emote codes within the emote expression category. For example, by
concatenating multiple slots together such as:

TEMPLATE 1: {greeting} {emoji_greeting}!

4https://www.rasa.com/docs/core/
5https://github.com/carpedm20/emoji/
6http://www.unicode.org/emoji/charts/full-emoji-list.html

4.1. Conversational Interface 27

Start Task
Execution

1. Send Task Title

3, 6. Send the
Judgment

2. Send Task
Instructions

4. Validate Answer

Start to Answer

5. Send Answer
Review

Worker Wants to
Modify Answers

Answer is Valid

Judgments Pending

Complete Task &
Submit Answers

Activities of the worker

Activities of the chatbot

Yes

No

Yes

No

No

Yes

Figure 4.1: High level overview of the conversation management logic of conducting a microtask.

We are then able to construct entire response sentences, by randomly selecting the slot values from within
their pre-defined values. In the previous example, we sequentially select a value among the greeting set,
then do the same for the emoji_greeting set and finally perform a substitution to build the final response.

4.1.5. User Interface
The logic of the chatbot is implemented as a singular module, which is separated from the UI. For our UI, we
choose Telegram7 as a platform to host the chatbot. Because the UI is loosely coupled from the chatbot logic,
we may easily extend our chatbot implementation to reach out to more users by supporting other messaging
services such as Facebook Messenger8 or Slack9.

7https://telegram.org/
8https://www.messenger.com/
9https://slack.com/

28 4. Chatbot Implementation

Table 4.2: All emote codes used in the responses by the chatbot.

Goal/Expression Emote Code

Wondering :face_with_monocle:, :thinking_face:, :face_with_raised_eyebrow:

Cheeky
:smirking_face:, :face_with_monocle:,
:face_with_steam_from_nose:, :speak_no_evil:

Confusion :confused:, :persevere:

Happy
:heart:, :face_blowing_a_kiss:, :hugging_face:,
:smiling_face_with_smiling_eyes:, :kissing_face_with_closed_eyes:

Anger :angry:

Telegram provides an extensive API10 for hosting and building the chatbot interface. Similar to other
messaging services, Telegram provides two main ways of interaction for chatbots: text- and keyboard-based
interaction. All text-based interaction is represented via Message objects, which may contain multimedia
content such as a message, videos, audio. Each Message object may also contain a custom Keyboard object.
We specifically make use of inline keyboards, which are rendered as custom buttons within an ongoing chat
with the user.

In addition, Telegram also provides native support for rendering inline audio players whenever an audio
file is sent to the user as shown in Figure 4.2.

File Name
Play

Button

Audio
Played

Remaining
Audio Duration

Volume
Control

Figure 4.2: Inline audio player in the Telegram Web Client.

4.2. Microtask Execution
In this section, we upon a few intricacies on the execution of microtasks inside the chatbot. We first discuss
the challenges arising in the assignment of tasks on a technical level in Section 4.2.1. We then follow-up, by
showing the possibility to extend the chatbot as a microtask crowdsourcing platform to function with external
third-party platforms in Section 4.2.2.

4.2.1. Concurrency in Task Assignment
As we can imagine, the distribution of tasks to collect judgments has to deal with issues such as keeping track
of how many workers are assigned to which tasks. While we perform task assignment on a policy-level, the
system still requires to know which judgments are collected from whom to prevent assignment of tasks on
pending judgments, which occurs while workers are still performing their task.

10https://core.telegram.org/bots/api

4.3. System Deployment 29

We introduce a lock mechanism to prevent assignment to pending judgments, inspired by semaphores.
We update per data item (which may collect multiple judgments), a counter which keeps track of which work-
ers are currently working on that particular data item. This counter is incremented for each new worker that
starts a separate task instance. Similar, we decrement the counter, whenever a task is completed or has failed
due to exceeding the task deadline.

4.2.2. Integration with Third-party Resources
To allow our chatbot to function within popular messaging services, we adopt an event-driven model. This
means that our chatbot acts reactively, upon subscribing to a service that sends events (which may be trig-
gered by e.g. a user sending a message) to our chatbot system. We achieve this by attaching webhooks to
indicate such a subscription to our system. In our implementation, we attach a webhook to our system from
within the Telegram services. As a result, our chatbot may also incorporate multiple webhooks from varying
messaging services. This allows our chatbot to function simultaneously in multiple messaging services e.g.
Telegram and Facebook Messenger.

Furthermore, to provide integration with third-party microwork platforms, such as Figure Eight or AMT,
we may use deep linking of the chatbot to redirect workers to start interacting directly with the chatbot. This is
something that is also natively supported by Telegram’s data model to represent conversations. We similarly
model in our system conversations between users as a separate entity. This may allow our system to be
extended for the future possibility to perform deep linking on a separately developed messaging service.

In order to verify that externally recruited workers (e.g through Figure Eight) have successfully performed
microtasks inside the chatbot, we developed a validation mechanism based on the distribution of randomly
generated validation tokens. We summarize the core concept in Figure 4.3.

E2LGTHPVSUNQ5PVFOW9W­Q4CHPZVF8ITAQA2Y

Worker

...

Input Validation
Token:

Chatbot

Generate
Token Validate Token

Invalidate
Token

Invalid Input
Token

Task
Instance ID

Random String
(16 chars)

Figure 4.3: Validation Token Mechanism.

Whenever a worker completes a task, the chatbot generates using the task instance ID a random validation
token. We include in the token also a random string of 16 characters long to ensure that the token is at
least of reasonable size to minimize odds of accidental token collision. This token is saved as a separate
attribute for that specific task instance. The worker puts this token somewhere inside the external platform
(e.g. as a question in the task), the platform then runs a validation request to our chatbot system. Our chatbot
then verifies that token is both previously unused and matches the validation token found in the database.
Afterwards, if the process is successful, the chatbot invalidates the token to prevent it from being used again.

4.3. System Deployment
In this section, we elaborate on the deployment of the chatbot system. First, we detail the even-driven model
used in Telegram in Section 4.3.1. Then we discuss the configuration of the web server to host the chatbot
system in Section 4.3.2.

4.3.1. Event-Driven Model
Since messages are sent based on certain events, the quantity of events depends on what events the messag-
ing service considers. In our case, for Telegram we receive events based on user messages, button interactions,
but also from webhooks attached to tasks running in external microtask crowdsourcing platforms.

30 4. Chatbot Implementation

Since every user message is captured as an event in Telegram, naturally we may also have to deal with
the issue of spam. To combat a potential case of an overflood of events by single users, we limit the events
by filtering them based on their timestamps. More precisely, we ignore events that contain similar payload
to previous events within a set time-frame. We note that our approach is a very simple, but still effective
approach for distinguishing individual spammers. However, this does not protect us from potentially more
harmful attacks targeting the entire system such as Distributed Denial-of-Service (DDoS) attacks.

4.3.2. Web Server Configuration
To conduct the experiments with real-world crowd workers, we deploy our chatbot system on a production
server. For this we use a simple Virtual Machine (VM)—Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, 4 pro-
cessors, running Ubuntu 16.04.4 LTS—hosted by the Dutch SURF11.

We used Flask12 as our web framework, with Gunicorn13 as our Web Server Gateway Interface (WSGI)
HTTP server. Furthermore, we used Nginx14 as a reverse proxy for forwarding incoming requests to our run-
ning services.

We also hosted our own database and the API to facilitate database communication between our services
on the same VM.

To setup the webhook for receiving events from Telegram, our services required to comply with the
HyperText Transfer Protocol Secure (HTTPS) protocol. To receive a valid SSL/TLS certificate, we used
certbot15.

Since we do not expect too heavy load, we run Gunicorn for the API with four separate worker processes.
For our chatbot system, we run a single worker process. We note that we also enabled multi-threading.

11https://www.surf.nl/
12http://flask.pocoo.org/
13https://gunicorn.org/
14https://www.nginx.com/
15https://certbot.eff.org/

5
Viability of Chatbot Microtask

Crowdsourcing

To answer RQ2 and RQ3, we design and run three separate experiments, which together consisted of a total of
24 separately run microtasks. We first discuss the overall design of the tasks in Section 5.1. We finally discuss
the execution of each experiment in Section 5.2.

5.1. Experimental Design
In this section, we touch upon the experimental design to setup the tasks. We discuss first the overarch-
ing goals of the experiments in Section 5.1.1. Then discuss the entire setup of the tasks and recruitment of
workers in Sections 5.1.2 to 5.1.5. To evaluate the experiments, we state what our dependent variables are in
Section 5.1.6. Finally, we discuss what the execution flow of the web and chatbot tasks are in Section 5.1.7
and how we implement these tasks in Sections 5.1.8 and 5.1.9.

5.1.1. Experiment Goals
To answer RQ3, we are interested in comparing the performance (task execution time and output quality)
of different tasks in the web-based interface and the conversational interface. Moreover, we wish to find
how different types of input control may influence the performance. We aim to find out what task types—
which differ in data and input control type—are more suitable for the web-based interface and conversational
interface.

In the first experiment, we compose six basic and common task types and execute them in both the web-
based and conversational interface. The main goal of this first experiment is to look if there are any discrep-
ancies in terms of work speed and quality between executing generic microtask types within the web-based
and conversational interface. To this end, we compare for all tasks the task execution time and output quality
between each task type for the web-based and conversational interface.

In the second experiment, we investigate what the implications are of using different input control types
for closed-ended questions (i.e. questions to which a list of answer options are provided). For this experiment,
we therefore only require to design tasks that exclusively contain closed-ended questions.

In the third and final experiment, we wish to find out if initially hiding task instructions in the chatbot
impacts the task execution time. Furthermore, we raise the question of how often workers truly view task
instructions.

Lastly, as part of the main RQ, we want to know how workers would feel about doing microtasks through
a conversational interface. Hence, we survey the workers on their demographics and experience with the
chatbot.

5.1.2. Selecting Task Types
To first find out what web UI elements are typically used in tasks, we take a look at the task templates provided
by the popular web-based microtask crowdsourcing platforms Amazon Mechanical Turk (AMT) and Figure
Eight. For the full list of task templates from both services see Appendix C.

31

32 5. Viability of Chatbot Microtask Crowdsourcing

We distinguish and categorize in Table 5.1 the most prominent task types in terms of data type and input
type element. For each task type, we map the web UI elements to the possible UI representations in the
chatbot. In addition, we introduce four task type categories based on this mapping from input type element
of the web to the chatbot interface.

Table 5.1: Categorization of key task types based on the templates from AMT and Figure Eight.

Categorization Task Type Data Type
Input Type Elements

Web Chatbot

C1

Image Annotation Image Multiple Choice Text, Buttons

Data Collection Text
Multiple Choice,
Text

Text, Buttons

Search Relevance Image Multiple Choice Text, Buttons

Data Categorization Image, Text Multiple Choice Text, Buttons

Sentiment Analysis Text Multiple Choice Text, Buttons

Data Validation Image, Text Multiple Choice Text, Buttons

C2

Speech
Transcription

Audio Text Text

Character
Recognition
(human OCR)

Image Text Text

C3 Object Labelling Image
Drawing (Bounding
Box, Line, Markers)

HTML Game

C4 Survey None
Different
types-several
questions

Text, Buttons,
HTML Game

From the task types in Table 5.1, we aim to include all unique triplets of data type and input type elements.
As a result, from category C1, we select the Image Annotation, Data Collection, and Sentiment Analysis task
types. We exclude the Data Categorization and Data Validation task because they draw very close similarities
to the Image Annotation and Sentiment Analysis tasks in terms of the data type and input type elements.

We fully include the C2 and C3 categories in our experiments; picking Speech Transcription, human OCR
and Object Labelling. We finally do not include the Survey task type, because we already cover the input type
elements through the aforementioned task types.

Because we are ultimately interested in mapping the web interface UI elements to representative chatbot
UI elements, we identify and categorize in Table 5.2 the following UI elements in both web and the chatbot
interface. Through this mapping of the web to the chatbot interface, we set the focus on four distinct types of
UI elements:

1. Free Text: All open-ended questions are answered through freely typed text that is input by the worker
through a keyboard. Among the included task types, the Data Collection, Speech Transcription and
human OCR task types require the worker to type out free text answers.

2. Single Selection: All closed-ended questions require the worker to select their answer from a list of
provided answer options. The single selection UI element allows for only a single option to be selected.
Among the included task types, the Sentiment Analysis uses the single selection element.

3. Multiple Selection: Closely related to the single selection UI element, this instead allows for multiple
options to be selected. Among the included task types, Image Annotation makes use of this element.

4. Image Segmentation: To identify local objects in an image, the image may be “split” through various
means. We focus only on the drawing of bounding boxes because from an informational point of view
we gain in most cases more information than drawing lines and markers. This is because we would also

5.1. Experimental Design 33

be able to estimate or derive desirable properties gained from drawing lines and markers—as object
centre and surface—through the results achieved from drawing bounding boxes. Among the included
task types, the Object Labelling task type uses this UI element.

Table 5.2: Summary of considered UI elements and their implementation, in both Web and Chatbot interface.

UI Element Web Chatbot

Free Text Single/Multi-Line Text Message
Single Selection Radio Buttons Single Button
Multiple Selection Checkbox(es) Multiple Buttons
Image Segmentation Bounding Box Select-Grid

5.1.3. Worker Interface
To run the tasks in a web interface, we use Figure Eight1 as the microtask crowdsourcing platform. Figure
Eight provides a standardized way to build simple web pages suiting microtask execution. The web page is
constructed using a combination of HTML and Custom Markup Language (CML)—which is claimed to be a
superset of HTML2—Cascading Style Sheets (CSS) and JavaScript (JS). While the customization options for
building the web page is extremely potent, for our experiment we use only standard interface elements to
minimize odds of spurious experimental results due to unfamiliar or highly customized UI elements.

For the Free Text UI element, Figure Eight is able to provide simple text boxes and text areas for inputting a
single text sentence or larger paragraphs respectively. We depict these two UI elements in Figure 5.1. Workers
may type out any answer by first gaining the input focus of the text box or area, which is determined by the
web browser of the worker.

(a) Text box in Figure Eight. (b) Text area in Figure Eight.

Figure 5.1: Standard HTML text box and area rendered through Figure Eight’s web interface.

For Single and Multiple Selection, radio buttons and checkboxes may be used (shown in Figure 5.2), which
are analogous to the standard HTML elements of similar name. As a result, the standard functionality of radio
buttons allows us to mimic the behaviour of enforcing single input answers. Similarly, the checkboxes allow
workers to tick multiple options at once to indicate multiple selected answers.

For Image Segmentation, Figure Eight provides a custom “Bounding Box” tool as seen in Figure 5.3. This
allows workers to freely “draw” boxes of rectangular shapes—setting a starting point of any of the box’s corner
and dragging it alongside its diagonal to indicate the ending point—to enclose objects in the image within the
bounds of any of the drawn shapes. Workers are allowed to draw as many shapes as they deem necessary, so
it is up to the task instructions of the task to clarify how many shapes and how they should be drawn.

In general, tasks run in the web interface of Figure Eight show from top-to-bottom order the following
task elements as shown in Figure 5.4:

1. Task title: A single text sentence indicating the title of the task. This sentence is displayed at the very
top of the web page.

1https://www.figure-eight.com/
2http://crowdflower.github.io/CML/#/?id=what-is-it

https://www.figure-eight.com/
http://crowdflower.github.io/CML/#/?id=what-is-it

34 5. Viability of Chatbot Microtask Crowdsourcing

(a) Radio Buttons in Figure Eight. (b) Checkboxes in Figure Eight.

Figure 5.2: Standard HTML radio buttons and checkboxes rendered through Figure Eight’s web interface.

Add/Delete
Bounding BoxPan

Zoom Out/
Fit to Screen/

Zoom Out Undo/Redo Tool Help

Answer
'Nothing to

Box'

Hide
Drawn
Boxes FocusEnhance

Popout
Window

Figure 5.3: The custom Bounding Box tool provided in Figure Eight. The Enhance feature allows for certain images to increase contrast.
The Focus feature allows hiding all drawn boxes except for the one that is focused on.

2. Hide/Show Instruction button: A simple button that toggles hiding or showing the entire section con-
taining the task instructions.

3. Instructions: The task instruction content, which may be as long and thorough as a requester wishes
it to be. The instructions may contain basic instructional text, as well as visual aids such as images
and videos to describe anything that is necessary to successfully complete the task per definition of the
requester. If the web page is not able to display the entirety of the instructions all at once on screen, the
worker will have to use page scrolling to navigate up and down the web page.

4. Judgment: Each judgment consists of data content (if present) and a set of questions. The data content
is typically displayed before the questions, but may also be shown after. Any question which is posed
above the web UI element also shows if the question is required (i.e. input validation on empty inputs)
or optional in the case it does not show the (required) tag.

5. Submission button: A simple button that ends the task and submits all the provided answers to all
judgments.

5.1. Experimental Design 35

Task title
Show/hide

instructions

Instructions

Data Content
(Image)

Questions

Judgment

Answer
Submission

Figure 5.4: The task structure in the web interface rendered through Figure Eight.

When a task contains more than a single question (including repeating questions when multiple judg-
ments were asked), all content items and their respective input elements are presented from top-to-bottom
within the same web page.

For the conversational interface, there is currently no standardized implementation for UI elements.
Therefore, we use the standard UI elements in our chatbot implementation in Telegram to mimic the typical
work environment found in the web interface. Since microtask crowdsourcing UIs typically emphasize
minimalism and ease of use, we similarly share this design principle in the creation of the conversational
flow, driving the execution of the task. Based on the typical elements from the web interface, we introduce
them to the conversational interface in a similar manner. The entire execution of a task is represented by
the six simple states in Figure 4.1. Moreover, we show a basic example of the conversational flow in the
conversational interface in Figure 5.5.

We summarize the interaction between the worker and chatbot within a microtask as follows:

1. Starting the Task: To start the task, the worker has to begin a conversation with the chatbot by pressing
a Start button as shown in Figure 5.6.

2. Sending Task title: Similar to the web interface, the chatbot sends in natural language a single message
in which the title of the task is specified.

3. Sending Instructions: The chatbot next sends a brief overview of the task per definition of the requester
and allows the worker to inquire for a more elaborate explanation of the task. Workers may pick to view
a simple example and also a list of steps to successfully finish the task. Furthermore, the chatbot also
includes an option to view additional instructions on how to edit previously given answers. Finally,

36 5. Viability of Chatbot Microtask Crowdsourcing

Task title

Instructions

Data Content
(Text)

Question

Review &
Answer

Submission

Data Content
(Image)

Data Content
(Audio)

Send First
Judgment

Custom
Keyboard

Judgment #1

Judgment #2

Judgment #3

Positive
Feedback

Figure 5.5: An example of the Conversational Work Interface developed for the experiment.

the chatbot waits for the worker to indicate that they are ready to start the task before sending the first
question.

4. Sending Judgment: The chatbot keeps sending judgments one by one until there the worker has done
all judgments it had been assigned to. Before a new judgment is sent, the chatbot awaits the answer
of the worker each time and validates the answers if any validation rules have been provided. The
judgment is repeatedly sent as long as an answer does not successfully pass validation. Similar to the
web interface, judgments may consist of a data item and a set of questions. This means that it is also

5.1. Experimental Design 37

Figure 5.6: Start button for starting a task in the chatbot.

possible that multiple questions are asked per data item. Workers must provide their answer through
either the Message UI element (i.e. the area in which the worker may type their answer) or through any
interactive elements provided by the chatbot.

5. Review Answers & Submit: After all judgments in the assigned task have been completed by the worker,
there are two options provided; 1) Review Answers and 2) Submit. The former option summarizes all
given answers to each question and repeats instructions on how to edit previously given answers. The
latter ends the task and submits all the given answers.

For the single- and multiple selection UI elements in the chatbot, we have designed four different ways—
we name Custom Keyboards—to provide an answer. The first two are based on the Free Text UI element (see
Figure 5.7). We provide a worker with a list of options in Text and ask them to:

1. Answer through Text-Only input. This requires the worker to type out the entire option text. For the se-
lected task types (Sentiment Analysis and Image Annotation), capitalization is not strictly required, thus
not validated upon. This allows for more flexible inputs and prevents the need for having to capitalize
all input answers in case of multiple selection (which follows our design accounting for workers’ ease
of use).

2. Answer through Code-Only input. Contrary to the Text-Only input, herein each option is prefixed with
a code (followed by a period symbol, which is not part of the code but merely used to enhance readabil-
ity). We supply in our case an alphabetic code by following each option in the order wherein they are
presented. Workers must answer by typing out these codes.

For both of these Custom Keyboards, in the case of multiple selection, answers may be provided (regard-
less of order) by separating them with a whitespace character or commas.

The two other Custom Keyboards are based on the Single- and Multiple Selection UI elements (see Fig-
ure 5.8). We provide workers with Buttons and ask them to:

1. Answer through Button-Only input. This requires the worker to select a button that contains their pre-
ferred answer. Thereafter, workers must indicate their final selection by selecting the Next button. This
button confirms their selection and lets them proceed further with the task.

38 5. Viability of Chatbot Microtask Crowdsourcing

(a) Text-Only Custom Keyboard. (b) Coded-Only Custom Keyboard.

Figure 5.7: Text-Only and Code-Only Custom Keyboards. Note that in both cases, whitespace or commas may be used to separate
answers. In these examples, (a) uses commas, while (b) uses whitespace.

2. Answer through Mixed input. This is a combination of the Text-Only, Code-Only and Button-Only Cus-
tom Keyboards. This means that workers may pick whichever way they prefer to answer. We note that
we allow within a single question, workers may mix their way of answering. As a result, workers may an-
swer for a single question by typing out the full-text option alongside with using coded options. We give
priority to Free Text input over Button input, which means mixing Button input with Free Text results in
the Free Text input to override any previously selected Button input.

5.1.4. Worker Selection
To recruit workers for our experiments, we use the microtask crowdsourcing platform Figure Eight wherein
we also have built our web-based task interface. For all tasks running in both the web and chatbot interface,
we allow the participation of workers with a contributor level 1 or higher. Figure Eight allows the selection
of three contributor levels, where level 1 is the lowest and level 3 the highest. Setting a higher contributor
level targets workers which are supposedly the most experienced among their peers. We choose to set this
contributor level to the lowest possible level to allow for the largest possible crowd to participate in our tasks.

Since Figure Eight recruits their workers through other external channels as well, the task is also posted
on other microtask crowdsourcing platforms aside from only Figure Eight. We make use of all channels that
were included by default. For a complete list of the included channels, refer to Appendix B. In a similar spirit
of recruiting the most possible diverse worker group, we do not limit recruitment of workers by geographical
location nor by preferred language. Furthermore, we allow workers to perform each task we list on Figure
Eight only once. We achieve this by setting the maximum number of judgments each worker could perform
equal to the number of judgments we assign per task.

Similarly, we prevent workers from performing the same task in Telegram. In addition, we also enforce
that workers are unable to perform tasks of similar type for all tasks running in Telegram. We note that this is
only necessary for the chatbot tasks because all tasks run within the web-based interface are of distinct task
type. To block worker participation inside Telegram, workers would be notified via a message the chatbot
sends—stating that they are unable to start the task if they had previously done the same task or a task of
similar type. This means that a worker would not be able to enter a chatbot task of similar type even if they
were listed as two separate tasks in Figure Eight. However, we do allow workers who participated in a task that
occurred in the web interface to join a chatbot task. Consequently, to minimize the possibility that workers
who completed web tasks would end up performing chatbot tasks of similar type, we launch the chatbot tasks

5.1. Experimental Design 39

(a) Button-Only Custom Keyboard. (b) Mixed Custom Keyboard.

Figure 5.8: Button-Only and Mixed Custom Keyboards.

with a time gap after the web tasks had completed (see in Table 5.8). All these considerations are done in order
to maximize worker diversity and reduce the odds for spurious results.

5.1.5. Task Design
Based on the categorization of tasks in Table 5.1 and the UI elements in Table 5.2, we consider a total of six
different task types in our experiments:

1. Information Finding: This task is analogous to the aforementioned Data Collection task. We use the
term Information Finding based on the taxonomy of Gadiraju et al. in [19]. In this task, workers are
given a data source and are tasked to find specific relevant information. To simulate this process, we
choose to present for each judgment a single text-based data record containing a set of business-related
attributes, such as the name and address.

Workers are then tasked to find missing attribute values from the data record, by scouring for informa-
tion available on the web.

For the data records, we use 17 business data records listed in the Yelp3 dataset. The Yelp dataset
contains a large set of data records on North American businesses, which also includes Yelp user data,
user reviews, and a large number of photos. For this task, we only require and use the data records on
the businesses. From the 17 records, we create 50 task objects by randomly removing a combination of
three of the following fields per record: name, address, city, state, postal code and stars (i.e. the business
rating). We then set the number of judgments to be equal to the number of data records, where all three
questions correspond to one of the three removed data fields for each data record. Each worker is only
assigned a single judgment to keep the task simple and short.

To ensure that a worker is able to find information for a business, we ensure the identifiability of that
business by always providing at least the name or postal code. These two attribute values are therefore
never jointly removed from the same business record. In the instructions of this task, workers are re-
quested to use any commercial search engine to find the three missing attribute values that have been

3Yelp dataset: https://www.yelp.com/dataset

https://www.yelp.com/dataset

40 5. Viability of Chatbot Microtask Crowdsourcing

randomly removed from the business record. Workers then have to provide their answers as free text
in three separate input forms. For the web, this meant three separate text boxes, for the chatbot three
separate Messages (see Figure 5.9).

(a) Web. (b) Chatbot.

Figure 5.9: Web and Chatbot Information Finding Task.

2. Human OCR (CAPTCHA4): The human OCR task is categorized as a media transcription task [19]. In
this task, workers are presented with a CAPTCHA image and must transcribe the text the image con-
tains. We use a CAPTCHA generator5 to create 50 distinct images to use them as CAPTCHAs. Each
CAPTCHA contains a sequence of four characters; which could be any digit or capitalized letter. We
choose a length of four characters long to avoid over-complicating the CAPTCHAs. In a similar spirit,
we exclude special characters and symbols such as punctuation marks, currency symbols, etc.

Each CAPTCHA contains a random coloured image background with artificially generated noise. This
noise arbitrarily places dots and horizontal lines inside the image. All character sequences possess a
distinct colour shade compared to their background to ensure their visibility.

In the web interface, workers are being requested to perform five judgments (i.e solve five CAPTCHAs).
Each judgment shows an image containing a character sequence followed with a text box below the
image to type the answer in. In the chatbot, workers are again required to answer through a Message
(Figure 5.10). In the instructions of the task, workers are requested to mind their capitalization of their
answers.

3. Speech Transcription: In this audio transcription task, workers are asked to transcribe recordings of
English speech retrieved from Tatoeba6. Aside from English speech, this collection also contains many
short translated phrases from different languages. We select 50 distinct recordings with each a play

4Originally coined by von Ahn et al. in 2000 as Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA)
in http://www.captcha.net/ and later further explained by the same authors in [67].

5CAPTCHA generator: https://pypi.org/project/captcha/
6Tatoeba dataset: https://tatoeba.org/eng/audio/index

http://www.captcha.net/
https://pypi.org/project/captcha/
https://tatoeba.org/eng/audio/index

5.1. Experimental Design 41

(a) Web. (b) Chatbot.

Figure 5.10: Web and Chatbot human OCR task.

length ranging from 2 to 8 seconds. Each worker is required to perform three judgments, which corre-
sponds to listening to three audio recordings and accordingly transcribing them.

In the web interface, to listen to a single audio recording, workers need to click a link that opened an ex-
ternal web-page which then automatically played that recording. Afterwards, workers were requested
to type in what they heard in the recording in a text area. In the chatbot, workers are shown a message
(by the chatbot) that contained the audio recording. Workers are then able to directly play the audio
recording by clicking a Play button inside that message. To type in the transcribed audio fragment,
workers must send a message to the chatbot with their answer typed out as shown in Figure 5.11. In
both interfaces, workers would be free to play the recordings multiple times.

4. Sentiment Analysis: In this task, we ask workers to assess the sentiment of user reviews on businesses
from the Yelp dataset. We select for this task a similar amount of data objects to the aforementioned
tasks; 50 reviews. Consequently, we select the reviews from the Yelp dataset. To maintain sufficient
diversity on the selected businesses, we select a maximum of three reviews per business. The length
of the selected reviews varies, ranging from several sentences to whole paragraphs. Workers are asked
to judge the overall sentiment of a review by picking from the following options; Positive, Negative, or
Neutral. We also include an additional Unsure option, to indicate that they are uncertain what the
sentiment would be.

As shown in Figure 5.12, we have that in the web interface, workers are able to pick from the options
through radio buttons. In the chatbot, workers are able to pick a single answer (enforced through an-
swer validation) through buttons.

5. Image Annotation: This data enhancement task [19] has the goal of determining the categories of the
food items contained in an image. The worker would be able to choose from a set of pre-defined op-
tions: Eggs, Fish, Meat, Vegetables, Fruits, Cheese, Mushroom, Grain, and Sweets. In case the image did
not contain any food category that was applicable, workers are requested to only select a Non-food op-
tion. Since the Yelp dataset also contained images, we use 50 distinct images, with a 50–50 split of 25
images containing food and 25 non-food objects.

42 5. Viability of Chatbot Microtask Crowdsourcing

(a) Web. (b) Chatbot.

Figure 5.11: Web and Chatbot Speech Transcription Task.

(a) Web. (b) Chatbot.

Figure 5.12: Web and Chatbot Sentiment Analysis Task.

In the web interface, we use checkboxes to allow multiple selection as shown in Figure 5.13. While in
the chatbot, similar to the Sentiment Analysis task, we allow multiple buttons to be selected (through
input validation).

6. Object Labelling: Similar to the Image Annotation task, the Object Labelling task is also categorized
as a data enhancement task. We ask workers in this task to locate objects in an image. From a user
interaction perspective, this could be seen as the most complex task among the six we consider. We
select 50 arbitrary images from the Yelp dataset that depicted either food- or non-food-related objects,
similar to the Image Annotation task. We maintain the same split of 25 images showing food and 25
non-food. Workers are first instructed to determine if an image contains any food related object.

In the web interface, when any image contained any food related object, workers are tasked to draw for
each food-related object a separate rectangular bounding box as tight as possible around the object. If
no food-related object could be seen in the image, workers were instructed to use the Nothing to Box
button in the provided tool. In the chatbot, workers are prompted to start a Telegram HTML game,
which makes them having to select all the tiles from a grid in which the food-related object was located

5.1. Experimental Design 43

(a) Web. (b) Chatbot.

Figure 5.13: Web and Chatbot Image Annotation Task.

in (see Figure 5.14). In the case no food-related objects are present in the image, the workers may click
the Nothing to Select button (shown in yellow).

5.1.6. Measurements & Metrics
In our experiments, we have the following three main dependent variables: Execution Time, Answer Quality,
and Workers’ Satisfaction.

1. Execution Time: We measure the task execution time as the time (in seconds) between the start and
the submission of a task from a single worker.

In the web interface, the start of the task is analogous to the moment when the worker has selected
to perform a task and is shown the worker interface. The moment the worker presses the Submit &
Continue button (see Figure 5.4), the task ends. The time between these two moments will be used as
the execution time for the tasks run in the web interface.

In the chatbot interface, the start of the task is determined when the worker presses the Start button
(see Figure 5.6). The end of the task is marked by the moment the worker presses the Submit button (see
Figure 5.5). We then compute the execution time by taking the difference between these two moments
in time.

2. Answer Quality: To measure the quality of worker answers, we compare them to a ground truth. Since
each task will deal with different type of answers—which in some cases may be strictly equal to the
ground truth—we outline what approach we take for comparing answers to ground truth for all the
considered task types:

Since we use the Yelp dataset, we do not possess ground truth data for the Sentiment Analysis, Image
Annotation, and Object Labelling tasks. For the Sentiment Analysis task—due to the subjective nature of
the task—we let all judgments be annotated by a minimum of three people using a majority vote. In the
case of no majority, we request the opinion of a fourth person. Each answer is then directly compared
to the ground truth label. For the Image Annotation and Object Labelling tasks, we similarly annotate

44 5. Viability of Chatbot Microtask Crowdsourcing

(a) Web. (b) Chatbot.

Figure 5.14: Web and Chatbot Object Labelling Task.

the judgments and manually inspect if workers have answered correctly. For the Image Annotation
task, we mark an answer as correct, as long as it contained at least one correct annotation and no more
than two wrong annotations. Similarly, for Object Labelling in the web interface, answers are deemed
correct, when the boxes are drawn within a marginal offset of our annotated ground truth. Conversely,
for the chatbot, all answers are accepted when at least half of the selected tiles were also selected in the
annotated ground truth.

For the Information Finding and Speech Transcription task, we have ground truth data by the task de-
sign. Since the worker’s answers are provided in Free Text, we manually inspect the answers as well.
We tolerate simple spelling and grammatical errors. However, we assume an answer to be incorrect,
whenever it deviates too greatly from the ground truth.

For the human OCR task, since we generate the CAPTCHAs, we also have ground truth data. As a result,
we compare the entire answer to the label of that CAPTCHA. While we request workers to mind the
capitalization of their answers, we opt to disregard any errors made of this nature. This is done in con-
sideration that this is not a large offence. We are primarily interested in excluding only truly malicious
users, such as spammers who try to cheat by copying the same answer to multiple questions or answer
randomly.

3. Workers’ Satisfaction: To determine the workers’ satisfaction, we survey the overall experience of work-
ers who participated in the chatbot tasks. We note that by the implementation of the experiments, it
would be difficult to survey the worker satisfaction in similar fashion for the web tasks. This is because
adding additional survey questions inside each task running in the web interface (i.e. in Figure Eight)
indirectly affects the measurement of the Execution Time.

5.1. Experimental Design 45

The workers’ satisfaction is measured as an aggregate of two survey questions that were asked through
the web interface: 1) We ask if the worker “would be interested in doing similar tasks again in the Tele-
gram chatbot” and 2) An optional question with a text area that allowed workers to leave any comments
on their overall experience with the chatbot.

Aside from the three key dependent variables, we survey several items for the chatbot tasks through the
web interface:

1. Operating System (OS): We ask workers to indicate what operating system they are viewing the task
on. We provide a list of options to select from, but also include an Other option to freely specify an
operating system if it is not among the provided options.

2. Age: We provide several age ranges as options and ask workers to select which applies to them.

3. Gender: We politely inquire the worker what gender they would identify themselves most with. An
option to not comment on their gender was also included.

In addition, we perform six additional measurements through the chatbot on the following statistics:

1. Times Answer Edited: Count of the number of times the chatbot was instructed to allow editing of a
previously given answer.

2. Times Instructions Asked: Count of the number of times the chatbot was instructed to show the
overview of the task with options to view an example, steps and instructions on editing answers.

3. Times Example Viewed: Count of the number of times the worker had chosen to view an example of a
judgment.

4. Times Steps Viewed: Count of the number of times the worker had chosen to view a list of steps to solve
a judgment.

5. Times Instruction Edit Answer Viewed: Count of the number of times the worker had chosen to view the
explanation on how to instruct the chatbot to edit answers.

6. Times Answers Reviewed: Count of the number of times the worker had chosen to review their answers
during and at the end of the task.

5.1.7. Task Execution Flow
Since we select Figure Eight as our microtask crowdsourcing market, tasks are listed one by one for workers
showing their title. We distinguish between two types of tasks: Web and Chatbot Tasks. The Chatbot Tasks
include in their task title the string *|*Requires Telegram*|* to suggest the presence of a technical re-
quirement for their execution.

All the Web Tasks are fully executed within the Figure Eight platform, with the default Figure Eight work-
flow and task assignment policy. After a Web Task is published, workers who qualify for participation—i.e. at
or above contributor level 1—may find the task in a list among other (unrelated) tasks. When a worker clicks
a task, the worker is directly sent to the worker interface and immediately starts the task.

The Chatbot Tasks are split into two sections: one part in Figure Eight and one part within the chatbot
in Telegram. The Chatbot Tasks are similarly published as Web Tasks. Workers could find the task listing in
a similar fashion as the Web Tasks. When the worker selects the task, they start performing the Figure Eight
part of the task. Workers are informed that in order to (participate and) finish the task, they need to be logged
into Telegram with an account.

Within the body of the task instructions, we provide a link to an external web-page to show additional
instructions on how to register a Telegram account (see Appendix E for the contents of this web-page). In
addition, we provide instructions on how to start the task in Telegram. We also include several preview images
to inform the worker about the nature of the task.

Workers are also explicitly informed that no personal information (e.g. name or phone numbers) would
be stored. We also provide instructions to workers if they wished to withdraw from the experiment and that
they would be allowed to do so at any time.

46 5. Viability of Chatbot Microtask Crowdsourcing

Below the task instructions, workers are required to consent to several of our participation terms by mark-
ing a checkbox in the web interface. These terms are explained in detail on an external web-page, of which
the full web-page contents are included in Appendix D.

Only, if the worker checks this checkbox, the remainder of the Figure Eight task would be shown. This
remainder includes a short survey that inquires about their currently used work environment.7

After the short survey, we provide an URL that would redirect workers to start a conversation with our
chatbot in Telegram. Depending on the worker’s work environment, the worker may 1) have been redirected
to a Web client version of Telegram; or, if the worker had a native Telegram client installed, 2) to the native
Telegram application; or, if the worker was viewing the task on mobile, 3) to the mobile Telegram application.

The task assignment is performed by the chatbot dynamically, using a round robin policy on the remain-
ing judgments to be collected. Following the conversational flow depicted in Figure 4.1, after the final submis-
sion of the answers, the worker would be provided with a randomly generated validation token. The chatbot
instructs the worker to input this token into a text box in Figure Eight to finalize completion of the task.

Workers are then presented with two final survey questions which asked them if they were interested to
perform a similar task again in Telegram. Workers would be able to choose either a Yes or No option. Lastly,
workers were free to optionally comment on their working experience in a text area.

5.1.8. Web Task Implementation
All tasks implemented in Figure Eight consist of the following three main components:

1. HTML-based Instructions: To provide the instructions at the beginning of each task, Figure Eight ac-
cepted simple HTML code. As a result, we accordingly implemented the instructions entirely in HTML.
Each web task contained three headers (listed in the web-page from top-to-bottom); an overview, ex-
ample and steps.

All external resources—such as images or audio files—that were required for the data items and in-
structions, were hosted on our own server. These resources were then accessible through a Uniform
Resource Identifier (URI). For example, to display an image inside the instructions, we simply use
HTML and point to the URI as the source of the resource.

2. CML-based Data Items & Questions: In Figure Eight, we implemented the interface for displaying
judgments to workers through CML. In Figure Eight, all tasks may contain data items over which ques-
tions are asked. The set of data items is structured as a simple table, with a set of column headers. To
build a displayable judgment, we must refer to the column header—enclosed by double brackets—of
the data item inside an HTML element. Then we follow with a corresponding UI input element, which
in addition contains the question that the worker has to answer. For example, if we have a simple data
item as shown in Table 5.3:

Table 5.3: Example data row in Figure Eight.

Business_id Photo Name

1 URI_one name_1

2 URI_two name_2

Now, to create a simple text box question that refers to a name and photo of the business, we first
embed in HTML the column headers and enclose them by double brackets. Figure Eight then performs
a substitution on these double bracket variables with the data item values. Thereafter, we display the
question along with the text box UI input below the data content. We depict this process in Figure 5.15.

Furthermore, we included in all Web Task questions a required validator. This keyword was included in
the CML of the question, which forces workers to always provide an answer to the question. In other
words, no empty inputs in the UI input element were allowed.

7We opted to not employ any fingerprinting techniques that may detect the digital work environment of the worker. This was a carefully
made consideration, which otherwise would trade-off between the privacy of the worker and the benefit of gaining some additional
information. Since we do not specifically address device and application-specific information in our research questions, this is left for
potential future work.

5.1. Experimental Design 47

URI­one name_1

URI­two name_2

d1

d2

{{Name}}

{{Photo}}

Business name: {{Name}}

Data
Content

Column
Headers

Data Items

<cml:text label=
"Ask Question Here">

</cml:text>

Question

Substitute bracket
variables with data

item values

Fixed

Figure 5.15: Process of creating the view of judgments in Figure Eight. In this example, we create a question that has a simple textbox
input, showing the business name and an image using HTML above the question.

3. Additional CSS and JS: Since HTML and CML—which is a superset of HTML—was used, this also
meant that Figure Eight supported custom CSS and JS to be included in the task implementation.

For the Web Tasks, we only include custom JS for the Information Finding task. Since Figure Eight
does not natively support hiding certain questions depending on the value of a data item attribute, we
supplement the task with our own implemented script to hide specific questions. This was necessary
to avoid asking workers the question to find attribute values that are not missing.

For the survey in the Chatbot Tasks, we use some basic CSS to style the links to the consent form and to
the Telegram chatbot. This was done to attract more attention to these important links.

5.1.9. Chatbot Task Implementation
The Chatbot Tasks run partly in Figure Eight and in Telegram. This means that we similarly implement the
Chatbot Tasks using the same toolset, that we use to create the Web Tasks.

Since the actual microtask of the Chatbot Task takes place inside Telegram, there is also no need to have
the actual data items over which we ask questions in Figure Eight. The assignment process of data items
would be instead handled by the system infrastructure of the chatbot. This follows a standard round-robin
policy for the assignment of judgments. Additionally, the chatbot also keeps track of which judgments are
being performed and prevents repeated assignment of them if judgments are still pending.

The Chatbot Task title in Figure Eight is prefixed with the string *|*Requires Telegram*|*. The in-
structions of all the Chatbot Tasks in Figure Eight then contained the following three elements:

1. Overview: We announce that workers are required to have a registered Telegram account and provided
additional instructions on an external web page in case they wished to register one which is fully shown
in Appendix E. We also notify workers that any data we collected during their Telegram session would
be stored anonymously and be used exclusively for academic purposes. We explicitly state that no
personal identifying information, including mobile phone numbers, would be stored.

2. Task Initiation Overview: This short part of the instructions shows that the real microtask would take
place in Telegram and includes Figure 5.6 to show how to proceed with initiating the task in Telegram.

3. Telegram Preview: For each task, we include several preview images of the microtask in question, that
the worker would be performing in Telegram.

The part in Figure Eight contains a survey which initially prompts workers to provide consent by marking
a checkbox as shown in Figure 5.16. Workers are urged to read up on the participation conditions of the task
before agreeing, which are provided through an external web-page (see Appendix D for its contents).

After agreeing to the terms and conditions, the remainder of the survey is shown (Figure 5.17).
This survey supplies a link to redirect the worker to start the task in Telegram. Telegram provides support

for deep linking, which allows us to directly send the worker to our chatbot.
To verify that a worker had truly completed a task in Telegram, they are prompted to input in the survey a

randomly generated validation token, that they received after completing the Telegram task (see Figure 5.18).
This validation token included a part that matched a unique identifier of the task they performed in Tele-

gram generated by our chatbot system. When a worker puts in the validation token in the survey in Figure

48 5. Viability of Chatbot Microtask Crowdsourcing

Figure 5.16: Agreement to participate in a Chatbot Task.

Figure 5.17: Chatbot Task Survey in Figure Eight.

Eight (using a custom validator in the CML), a simple HTTP request would be sent to our server to validate
that the token had not been used before and is truly one generated by our chatbot.

Workers would not be able to complete and submit the task in Figure Eight, as long as this token would
invalidate. We note that because we did not actively facilitate communication between different workers (and
with task deadlines in place), we did not feel the necessity to validate on any worker identifier. This means
that tokens obtained by a worker may be used (as long as they have not been used before) by other workers.
However, we do validate on each separate task session of the worker. As a result, a worker may not use the
validation token obtained in one task for another.

We note that for the specific case of the Object Labelling task, we implement a simple HTML “game” that
may be accessed via a web-page. Inside Telegram, this would be viewable through an embedded web-page.

5.2. Experiment Execution 49

Figure 5.18: Chatbot Hands Out Validation Token After Task Completion.

This meant that workers would not have to be forced to open a web-browser manually. As a result, to generate
the grid on top of the image, we implement our own simple algorithm (see Algorithm 1). We use the algorithm
to generate a grid of 4x4 tile size to prevent tiles from being too small to select. This algorithm also takes into
account that the aspect ratio of images may differ greatly. Consequently, we ensure that the tile length and
height are always at worst in a 1 : 2 (or 2 : 1) ratio.

Algorithm 1 Grid Division Algorithm

INPUT:

- x and y are non-negative integers; where x and y are the input image width and height respectively.

- p and q are the grid tile width and height respectively, used in the current iteration for computing the
eventual outputs.

- t is the maximum amount of tiles in the grid in both horizontal and vertical dimensions.

- s is the maximum tile size; p and q will not exceed s in size.

OUTPUT: p and q , which are computed width and height of the grid tiles such that the image is split equally
with respect to the desired p and q in the input.

1: function GRID_DIVIDER(x, y, p, q, t , s)
2: if (2x

p ≤ t and p > s) or (2y
q ≤ t and q > s) then

3: if p > s then
4: p ← p

2

5: if q > s then
6: q ← q

2

7: p, q ←GRI D_D IV I DER(x, y, p, q, t , s)

8: return p, q

5.2. Experiment Execution
In this section, we discuss how the designed tasks with the setup from the previous section will be run. We be-
gin by explaining the set configuration options that have been used for each task in Section 5.2.1. Thereafter,
we elaborate upon our planning of the execution of the tasks in Section 5.2.2.

50 5. Viability of Chatbot Microtask Crowdsourcing

5.2.1. Task Settings
We summarize in Tables 5.4 to 5.6 the task settings for experiment 1, 2, and 3 respectively. Each task is de-
signed to have 50 workers perform the work, for which we pay 15¢ per task assignment. For all tasks except
Information Finding and human OCR, workers have to perform three judgments. For Information Finding,
we request only a single judgment, because per judgment we already ask three questions. For human OCR,
due to its very low difficulty, we choose to ask workers to perform five judgments.

All tasks did not require any entry requirement based on some pre-task quiz. Furthermore, tasks do not
contain any test questions for assessing worker quality during task execution. This was done in consideration
of measuring the “true” task execution time per single task assignment.

All workers were also able to perform a single task as listed in Figure Eight only once to account for po-
tentially higher worker diversity. All 24 tasks had a time limit set of 30 minutes in total, which after initial
test runs was found to be more than sufficient. After exceeding this time limit, workers will be automatically
removed from their participation of the task. In such cases, workers may re-enter the task but may end up
with different Data Items assigned to them.

Table 5.4: Task settings for experiment 1.

Task ID Task
Independent Variables

Input Form
#Workers

(#Judgments per Worker)
#Data Items

(#Judgments per Data Item)Platform Data Type Input Type

1
Information
Finding

Figure Eight Text Free Text
Single-Line
Text

50(1) 17(3)

2
Information
Finding

Telegram Text Free Text Message 50(1) 17(3)

3
Sentiment
Analysis

Figure Eight Text
Single-
Selection

Radio
Buttons

50(3) 50(3)

4
Sentiment
Analysis

Telegram Text
Single-
Selection

Single Button 50(3) 50(3)

5 Human OCR Figure Eight Image Free Text
Single-Line
Text

50(5) 50(5)

6 Human OCR Telegram Image Free Text Message 50(5) 50(5)

7
Image
Annotation

Figure Eight Image
Multiple-
Selection

Checkboxes 50(3) 50(3)

8
Image
Annotation

Telegram Image
Multiple-
Selection

Multiple
Buttons

50(3) 50(3)

9
Object
Labelling

Figure Eight Image
Image Seg-
mentation

Bounding
Box

50(3) 50(3)

10
Object
Labelling

Telegram Image
Image Seg-
mentation

Select-Grid 50(3) 50(3)

11
Speech
Transcription

Figure Eight Audio Free Text
Multi-Line
Text

50(3) 50(3)

12
Speech
Transcription

Telegram Audio Free Text Message 50(3) 50(3)

5.2.2. Execution Schedule
To lower the odds of workers performing multiple task types (e.g. by participating in an Information Finding
task in experiment 1 and 3), we run the experiments according to a set schedule. We first perform a test run for
all experiments to resolve any potential issues that may arise, following the schedule in Table 5.7. These test
runs are run with five workers per task each. Thereafter, we proceed with the execution of the full experiment
as shown in Table 5.8. We note that we deliberately executed all tasks within weekdays while avoiding the
weekend. This was done to maintain consistency in terms of task execution settings across all tasks. We
run after the test run of the Web Tasks, the full run of the Web Tasks. The Web Tasks are executed separately
from the Chatbot Tasks, with a few days in between the task execution. For the Chatbot Tasks, we run them
separately in batches based on the experiment to which they belong. This means that the second experiment
is launched after the first has completed, while the third is launched after the second has been completed.
Because we expected the test runs to finish quickly, we planned to perform all testing of the Chatbot Tasks
within a single day.

5.2. Experiment Execution 51

Table 5.5: Task settings for experiment 2.

Task ID Task
Independent Variables

Input Form
#Workers

(#Judgments per Worker)
#Data Items

(#Judgments per Data Item)Platform Data Type Input Type

13
Sentiment
Analysis

Telegram Text
Free Text
(Text-Only)

Message 50(3) 50(3)

14
Sentiment
Analysis

Telegram Text
Free Text
(Code-Only)

Message 50(3) 50(3)

15
Sentiment
Analysis

Telegram Text

Free Text
(Text and
Code),
Single-
Selection

Message,
Single Button

50(3) 50(3)

16
Image
Annotation

Telegram Image
Free Text
(Text-Only)

Message 50(3) 50(3)

17
Image
Annotation

Telegram Image
Free Text
(Code-Only)

Message 50(3) 50(3)

18
Image
Annotation

Telegram Image

Free Text
(Text and
Code),
Single-
Selection

Message,
Single Button

50(3) 50(3)

Table 5.6: Task settings for experiment 3.

Task ID Task
Independent Variables

Input Form
#Workers

(#Judgments per worker)
#Data Items

(#Judgments per Data Item)Platform Instructions Data Type Input Type

19
Information
Finding

Telegram Hidden Text Free Text Message 50(1) 17(3)

20
Sentiment
Analysis

Telegram Hidden Text
Single-
Selection

Single Button 50(3) 50(3)

21 Human OCR Telegram Hidden Image Free Text Message 50(5) 50(5)

22
Image
Annotation

Telegram Hidden Image
Multiple-
Selection

Multiple
Buttons

50(3) 50(3)

23
Object
Labelling

Telegram Hidden Image
Image Seg-
mentation

Select-Grid 50(3) 50(3)

24
Speech
Transcription

Telegram Hidden Audio Free Text Message 50(3) 50(3)

52 5. Viability of Chatbot Microtask Crowdsourcing

Table 5.7: Task execution schedule of all the test runs of all experiments. We note that the numbering of batches is sorted by the launch
dates. The second batch is the full run of the Web Tasks.

Batch ID Launch Date Experiment Task ID Platform

Batch 1 (Test) 24–09–2018 Experiment 1

1 Figure Eight

3 Figure Eight

5 Figure Eight

7 Figure Eight

9 Figure Eight

11 Figure Eight

Batch 3 (Test) 26–09–2018 Experiment 1

2 Telegram

4 Telegram

6 Telegram

8 Telegram

10 Telegram

12 Telegram

Batch 4 (Test) 26–09–2018 Experiment 2

13 Telegram

14 Telegram

15 Telegram

16 Telegram

17 Telegram

18 Telegram

Batch 5 (Test) 26–09–2018 Experiment 3

19 Telegram

20 Telegram

21 Telegram

22 Telegram

23 Telegram

24 Telegram

5.2. Experiment Execution 53

Table 5.8: Task execution schedule of all the full runs of all experiments.

Batch ID Launch Date Experiment Task ID Platform

Batch 2 (Full) 25–09–2018 Experiment 1

1 Figure Eight

3 Figure Eight

5 Figure Eight

7 Figure Eight

9 Figure Eight

11 Figure Eight

Batch 3 (Full) 27–09–2018 Experiment 1

2 Telegram

4 Telegram

6 Telegram

8 Telegram

10 Telegram

12 Telegram

Batch 4 (Full) 28–09–2018 Experiment 2

13 Telegram

14 Telegram

15 Telegram

16 Telegram

17 Telegram

18 Telegram

Batch 5 (Full) 01–10–2018 Experiment 3

19 Telegram

20 Telegram

21 Telegram

22 Telegram

23 Telegram

24 Telegram

6
Results and Discussion

In this chapter, we discuss the results obtained from running the three experiments, that we designed in the
previous chapter. A total of 24 tasks have been run, recruiting workers from the internal network of Figure
Eight and many external microtask crowdsourcing platforms. As the main objective of our work is to gain
a deeper understanding of the viability of the chatbot as an alternative work interface for microtask crowd-
sourcing, workers were neither conditioned on their participation to pre-existing quality levels, nor subjected
to any type of qualification test. We perform analysis on all collected results from the experiments. Therefore,
we provide a complete reflection of the performance achieved by the Figure Eight population. We note that
this potentially includes malicious individuals. We begin by discussing the differences we found between the
web and chatbot interfaces in Section 6.1. Thereafter, we look into the use of different Custom Keyboards for
single- and multiple-selection tasks in Section 6.2. Following in Section 6.3, we report on several statistics on
the workers. Finally, we close with a discussion of the results in Section 6.4.

6.1. Web vs. Chatbot Work Interface
To study the difference between the work interface for the Web and the Chatbot, we have run in the first
experiment a total of six tasks in both interfaces. For each task, we measured both the Execution Time and
the Answer Quality.

• Execution Time: For the execution time, we have aggregated the execution times through averaging
across all participating workers for the Web and Chatbot tasks in Table 6.3. We depict additional insights
into the distribution of the execution time and the differences between web and chatbot in Figure 6.1.
Since we are interested if there exists a statistically significant difference in Execution Time between
the Web and Chatbot Tasks, we perform a Mann-Whitney-Wilcoxon pair-wise significance test between
the Web and Chatbot Tasks. We note that the distributions of the execution time of all task types show
exponential relationships. Moreover, by manual inspection into the outliers, we observe that these
are not caused by spammers. We rather notice that the tasks are performed earnestly by the workers,
without any attempt in tricking the system. However, we observe that these workers had accepted
multiple tasks within a short range of each other, but completed them much later on. We speculate
that this may be the result of workers trying to claim multiple tasks at once to guarantee their spot for
participation—as the maximum number of participants for each of our listed tasks was only 50. We
compute the two-sided p-values as shown in Table 6.1:

From the p-values, we observe that for α = 0.05 the execution time distributions for the four task
types—Information Finding, Sentiment Analysis, Object Labelling, and Speech Transcription—both
chatbot with- and without initially showing instructions have no statistically significant difference
(p > 0.05). However, we note that there is still a considerable difference present for Sentiment Analysis
when comparing to the Information Finding, Object Labelling and Speech Transcription tasks.

A statistically significant difference is present for α = 0.05 for the Human OCR task with instructions
with a p = 0.0010. In addition, the Image Annotation task without instructions shows a statistically
significant difference of p = 0.029.

55

56 6. Results and Discussion

Table 6.1: p-values of Mann-Whitney-Wilcoxon test on the Web and Chatbot Tasks. The Between Web column shows the pair-wise test
between Chatbot Tasks and the Web Tasks. The Between Chatbot column is the pair-wise test between Chatbot Tasks with- and without

instructions.

Task Type

Between Web

Between ChatbotWith
Instructions

Without
Instructions

Information Finding 0.4819 0.5122 0.2224

Human OCR 0.0010 0.9377 0.0010

Sentiment Analysis 0.1766 0.1350 0.9560

Object Labelling 0.7854 0.7290 0.8632

Image Annotation 0.8066 0.0292 0.0274

Speech Transcription 0.4380 0.3920 0.7801

We note that the Speech Transcription tasks show a slightly longer execution time in the Web than in
the Chatbot as seen in Table 6.3. We attribute this result to the UI design of the Web Task. In the Web
Interface, workers were forced to open a separate web-browser tab in order to play the audio fragment.
In addition, workers would naturally have to navigate back to the web-browser tab to input the answer.
We speculate that these inconveniences might have caused delays in the process of completing the
task.

Furthermore, the Object Labelling tasks were completed on average faster in the Chatbot Interface than
in the Web Interface. This might be possibly due to the intuitiveness and lower complexity in using the
Image Segmentation control tool in the chatbot (tile selection vs. drawing bounding boxes in the Web
Interface).

The difference in execution time with the Sentiment Analysis tasks and the statistically significant dif-
ference (p = 0.0010) with the Human OCR task (with instructions) might be explained by the presence
of long textual instructions at the beginning of the chatbot interface. Contrary to the Web Interface,
these instructions could not be naturally hidden. We note that this hypothesis is also supported by the
results in Table 6.3. We observe that by configuring the chatbot to hide instructions from the worker’s
initial view, the task execution time is in general lower.

For the Image Annotation task, we note that hiding the instructions show a statistically significant dif-
ference between the Web Task and with initially showing the instructions. We speculate that this might
be caused by workers feeling the need to consult the task instructions. While we provide instructions
on how to do so in the chatbot, we remark that workers may not be very familiar with the use of re-
questing the instructions through message interaction. Consequently, this might have caused delays in
completing the task.

• Answer Quality. To measure the quality of answers provided by the workers, we compute the precision
as shown in Equation (6.1) for all task types in both the Web Tasks and Chatbot Tasks:

Pr eci si on = True Positives

True Positives+False Positives
(6.1)

We summarize in Table 6.2 the work performance evaluation expressed in the Pr eci si on for the six
considered task types. In general, we observe that all the task types show comparable performance.
Furthermore, we note that the precision between tasks for the Chatbot Interface is on average slightly
lower than in the Web Interface.

We note that by analysis of the results, we found an equal distribution of malicious and badly per-
forming workers across the tasks. Users that were branded malicious—when copying their answers to
multiple questions or simply answering randomly—are excluded from the analysis in answer quality.
To explain why the rather trivial Human OCR task merely resulted in a precision from 0.70 to 0.80, we
inspected the results manually. We observed that most errors were made due to the presence of am-
biguous characters in our generated CAPTCHAs (e.g. a “D” character resembled both a capital “O” or a

6.2. Influence of UI Elements in the Chatbot Interface 57

Table 6.2: Workers output precision across tasks and platforms.

Task Type Web
Chatbot

With Instructions Without Instructions
Information Finding 0.86 0.88 0.82
Human OCR 0.72 0.80 0.76
Speech Transcription 0.71 0.69 0.68
Sentiment Analysis 0.89 0.83 0.81
Image Annotation 0.85 0.79 0.82
Object Labelling 0.77 0.80 0.77

“0” (zero), while a rotated “L” looked very similar to a “V”). Moreover, the Object Labelling task resulted
in slightly higher precision in the Chatbot Task compared to the Web Task. We believe that the intu-
itiveness of the grid selection tool, and simplified task actions and controls required in the chatbot may
be the cause of this result. We also note that in general the answer quality seems to be slightly lower
for tasks without initially shown instructions compared to the tasks that do show them at the start. We
attribute the slightly lower answer quality in the particular case of the Information Finding task (with-
out showing instructions) due to the fact that several workers seemed to fail to understand what the
distinction between some attributes are, such as state and city.

IF OCR SA OL IA ST
Task Type

0

500

1000

1500

Ex
ec

ut
io

n
tim

e
(s

)

Web Chatbot (with instruction) Chatbot (without instruction)

Figure 6.1: Task execution time (in seconds) for all six task types: Web vs. Chatbot with instructions vs. Chatbot without instructions.

6.2. Influence of UI Elements in the Chatbot Interface
Similar to the previous approach for studying the execution time, we list the various execution times for
the four Custom Keyboards in Table 6.4. Furthermore, in Figure 6.2 we depict other basic statistics along-
side the distribution of execution times for both Sentiment Analysis (single-selection) and Image Annotation
(multiple-selection) tasks.

Similar to the previous approach, we observe that the distributions of execution time are exponential.
Therefore, we again perform a Mann-Whitney-Wilcoxon pair-wise significance test between the Web and
Chatbot Tasks. From the results in Table 6.4 and Table 6.5, we observe that the use of different custom key-
boards leaves an impact on the task execution times. For both the single- and multiple-selection tasks, we
have a statistically significant difference of p < 0.01 for α = 0.05 with the text configuration (both Sentiment
Analysis and Image Annotation tasks). Furthermore, for the code configuration in the Sentiment Analysis task,

58 6. Results and Discussion

Table 6.3: Execution time (µ±σ: average and standard deviation, unit: seconds) in each Work Interface.

Task Type Web

Chatbot

With
Instructions

Without
Instructions

Information Finding 339±299 395±346 299±227
Human OCR 149±144 339±333 151±141
Speech Transcription 346±365 253±204 248±194
Sentiment Analysis 157±188 272±325 181±175
Image Annotation 198±215 192±180 313±265
Object Labelling 293±345 223±208 205±157

Table 6.4: Execution time (µ±σ: average and standard deviation, unit: seconds) in each chatbot interface.

Task Type Mixed Button-only Text-only Code-only

Sentiment Analysis 168±157 272±325 225±160 257±187
Image Annotation 185±163 192±180 332±313 252±276

Sentiment analysis Image annotation
Task type

0

500

1000

1500

Ex
ec

ut
io

n
tim

e
(s

)

Mixed Button Text Code

Figure 6.2: Task execution time for all Custom Keyboards; mixed, button-only, text-only, and code-only.

we have a similar significant difference of p < 0.01. Through observation in Table 6.4, we see that the avail-
ability of multiple input alternatives (Mixed Custom Keyboard) yields faster execution times for both single-
and multiple-selection.

We note that while there is a clear best option, there is no clear total order of performance across the two
tasks. The use of button-based interaction pulls ahead in terms of execution time in favour of the text-based
approach. In addition, we note that both the button-based and text-based interaction may be applied without
worry for a decrease in answer quality. This is because both approaches utilise a similar input validation
mechanism, preventing from answers to be accepted that do not fall within the set of given selectable options.

We also recognize that in the case of the Mixed Custom Keyboard for both single- and multiple-selection,
workers almost exclusively used the buttons as the input medium. We believe that the use of buttons com-
municates a quicker understanding of what is expected from the worker. We attribute this result to the intu-
itiveness of interactive buttons.

6.3. General Statistics & Worker Demographics 59

Table 6.5: p-values of Mann-Whitney-Wilcoxon test on the single- and multi-selection tasks for the Web and Chatbot Tasks using
Custom Keyboards.

Task Type
Between Web

Mixed Button-only Text-only Code-only

Sentiment Analysis 0.3098 0.1766 0.0011 0.0003

Image Annotation 0.9188 0.8066 0.0036 0.1842

6.3. General Statistics & Worker Demographics
In total across all three experiments, we have deployed 24 separate tasks (as jobs) in Figure Eight. Each task
contained 50 task instances that have been assigned to 50 workers. This resulted in a combined total of 1200
task executions counting all experiments. Each worker was compensated 0.15¢ per task instance, resulting
in a cost of approximately $180 U.S. dollars, accounting only for the payment for the tasks themselves (and
discounting any additional fees).

Across all tasks, a total of 316 distinct workers have participated. These 316 workers completed at least
one task, with an average of µ = 3.886, a standard deviation of σ = 2.4941, and medi an = 2. Among these
workers, 31 workers have performed both Web and Chatbot Tasks. From the 316 workers, a total of 167 work-
ers participated in one of the experiments, while 93 workers were part of two experiments, and finally, 56
workers took part in all three experiments.

We report that within the use of our supplied navigational commands inside the chatbot, only 10 workers
inquired to (re)view the task instructions. However, workers viewed the steps of task 38 times altogether.
While counting across all tasks, the example of a task was viewed 112 times. Moreover, we noted 17 occasions
where instructions on how to edit answers had been explicitly requested. Combined with the 46 cases where
answers were reviewed, a total of 21 times answers had been edited.

Furthermore, we surveyed that a total of 12.2% of workers who performed Chatbot tasks had indicated
that they performed the task on a mobile device as shown in Figure 6.3. As seen in Figure 6.3, the distribution
of OS used shows a large bias towards the use of any version of the Windows OS. Surprisingly, only a very small
number of workers use other popular OS, such as MacOS or any Linux distribution. We note that workers were
also free to supplement any other OS that was not among the given list of options (through the Other option).
However, no other OS was collected that deviated from the initially given list of options.

Windows, 777

Android, 100

Windows Mobile, 9
MacOS, 7 Linux, 5 iOS, 1

Figure 6.3: Operating System distribution among all participants who participated in the chatbot tasks.

60 6. Results and Discussion

We also surveyed workers to indicate within what age-range they fell. We depict the results in Figure 6.4.
While we cannot determine if workers had answered truthfully, we observe that a clear majority is found in
an age above 25 years old. Interestingly, a small group of 91 (approximately 10%) workers had indicated to
be of 45 or above years old. Furthermore, the second largest (29%) group of workers was found to be in their
early stages of adulthood (18-24).

18-24: 29% (257)

25-34: 40% (362)

35-44: 21% (190)

45-54:
8% (69)

55-64: 2% (18)
65-74: 0% (3)

≥75: 0% (1)

Between 18-24 years old
Between 25-34 years old
Between 35-44 years old
Between 45-54 years old
Between 55-64 years old
Between 65-74 years old
75 years or older

Figure 6.4: Age-range distribution among all participants who participated in the chatbot tasks.

The last item on our survey, related to the worker demographics, inquired to which gender they would
identify themselves most with. By aggregating the results from all experiments, we found that 682 workers
indicated that they consider themselves to be male. While 205 workers indicated to be female. The remaining
13 workers preferred not to comment on their gender.

Lastly, Figure Eight collects automatically for all the participants in our tasks their residing country. We
note that these statistics are determined by the IP-address of each worker, meaning that the determined result
may not always be accurate. For example, a worker could use online Virtual Private Network (VPN) services
that may affect their IP-address. We show the collected results in Figure 6.5. Clearly, the majority of workers
(53%) had taken up residence in Venezuela (VEN). The second largest group (8%) of workers originate from
Egypt (EGY). The remaining 39% of the workers included a wide variety of countries; such as Turkey (TUR),
Ukraine (UKR), Philippines (PHL), Mexico (MEX), Nigeria (NGA) and Algeria (DZA).

The last two items on the survey related to the workers’ satisfaction. We required workers to indicate if
they were willing to perform similar tasks again that they had performed within Telegram. Out of all 900
task executions in the chatbot, an overwhelming 98.3% of workers indicated a positive experience with the
chatbot and stated to be willing to perform similar tasks again in Telegram. Moreover, we also allowed workers
to optionally leave comments on their experience with the chatbot. We report that a total of 115 workers left
comments, which in general ranged from a single sentence to several. By manual inspection of the comments,
we found much praise for the intuitive user experience (e.g. “Very easy to understand, and easy and fastest now
we have buttons”, “very pleasant experience, i like the replays from the BOT, very interactive! Thx!”, “i loved this
task, is so much different to the others, and i think is a excellent work it with telegram. nice”, “It was different,
but i like it..”, “Yeah, i like this type of Task, is cool, a new feature is coming to us”). Other workers remarked
the enjoyable experience (“This is fun and easy task I may try another task like this! Great!”, “Its fun!! best
experience for first time using telegram haha”).

6.4. Towards Conversational Human Computation 61

VEN, 480

EGY, 71

IND, 42

UKR, 36

TUR, 33

RUS, 30

PHL, 27

VNM, 24

MEX, 18

NGA, 18
BIH, 18

BRA, 14
DZA, 9

IDN, 9
ROU, 9

Other
countries, 62

Figure 6.5: Country distribution among all participants who participated in the chatbot tasks.

We noticed that a worker also commented—“Good easy. Why the quiz or select tile(s) not in telegram app,
it’s will more fun.”—on the fact that they would prefer that the selection grid tool in the chatbot for the Object
Labelling task were to be natively supported in Telegram.

In contrast, another worker commented within the Object Labelling task in Spanish: “MEJORAR LAS IN-
STRUCCIONES”, which indicated that they found the instructions were insufficient.

6.4. Towards Conversational Human Computation
Through analysis of the results on all three experiments, we show that chatbots could be a suitable alternative
to the current web-based microtask crowdsourcing platforms. While it may be too soon to fully embrace the
chatbot as an alternative, our results hold for at least the six considered task types both in terms of execution
time and quality.

We have received universal acclaim among the participants for our chatbot as an alternative interface
for performing microtasks. Workers had expressed in particular their appreciation for the Mixed Custom
Keyboard for single- and multiple-selection based tasks, and the selection-grid input for Object Labelling.

By comparing our work to previous work in mobile crowdsourcing [14, 35, 38], we follow in their footsteps
and again highlight the importance of task and interaction design. Our results suggest that for common tasks
like Sentiment Analysis and Image Annotation, the custom Button-based keyboard enables execution times
comparable to web interfaces. The instructions and chatbot navigational commands also have an impact on
the execution time. We find that this is especially apparent for domain specific tasks (e.g. labelling of food).

While our results may not be directly compared to previous work, due to unavailable datasets and code,
we find that our results are similar to the ones obtained in previous studies with mobile user interfaces [14,
38]. However, we note that by comparing the answer quality of our Human OCR and Image Annotation task
to the results found by Kumar et al. in [38], they were rather of comparable quality.

With the elaborate experimental design and execution plan in Chapter 5, we have accounted for many in-
and extrinsic factors that could have influenced the results. However, we state the following potential threats
to the validity of our results:

62 6. Results and Discussion

• Representation of Worker Population: The 316 workers who participated in our experiments still re-
mains a small group among the vast population of crowd workers. As a result, the group of workers we
recruited may not represent the entire population of crowd workers well. While Figure Eight is a popular
platform, which also recruits from many other external worker channels, we need further experimen-
tation to generalize our findings. Therefore we urge for the experimentation on other crowdsourcing
platforms aside from Figure Eight, as well as exploring other messaging platforms for the chatbot.

• User Interface Usability: The tasks that we have implemented in the Web Interface were kept very
standard and simple to minimize the risk of confusing workers with an unknown UI. Similarly, for
the chatbot, we provided only the bare necessities for interaction to complete microtasks. We remark
that there is a clear possibility that workers may not be familiar with the specific Telegram messaging
service. However, we allowed workers to pick any Telegram client they could use. This also included a
Web-based Telegram client (which is identical in functionality, and look and feel to the native desktop
and mobile clients), which workers unfamiliar with Telegram may have found easier to work with.

• Task Complexity: In our experiments, we have not actively addressed the complexity of a task contrary
to the works in [14, 38]. We also take note that as the task complexity rises, the instructions of the task
also need to heed the issue of effective communication.

• Limitations in Task & Input Types: We acknowledge the potential to explore more different task types
and UI element variations. As an example, the chatbot allows for interesting UI inputs such as voice-
recorded messages, sending of video recordings, sharing images, etc. Aside from UI input elements,
there are also other task types that remain to be explored such as annotating videos (done in [38, 59]).

7
Conclusion and Future Work

In this chapter, we provide an answer to our main research question: “To what extent can text-based conver-
sational agents support the execution of microtask crowdsourcing activities?” in Section 7.1. We then provide
an outlook on future opportunities in progressing conversational HC in Section 7.2.

7.1. Conclusion
As we are witnessing widespread interest and adoption of text-based conversational agents or chatbots in
both industry and as a subject of study, we raised the question of the potential applicability of the chatbot as
an alternative interface to the traditional web interface for performing HC activities.

In our thesis, we aimed to investigate the viability of the chatbot as a microtask crowdsourcing platform.
Towards this goal, we started by dividing our main research question into the three separate research-sub
questions:

RQ 1: How do we build a text-based conversational agent that facilitates the execution of microtask
crowdsourcing activities?

Inspired by the literature, we have designed a full chatbot system with a dual nature; a chatbot as a conver-
sational partner and as a microtask crowdsourcing platform. In our work, we have primarily directed our
efforts towards the realization of the latter by laying the foundation for a conversational interface in which
microtask crowdsourcing activities are fully supported. We have implemented and deployed the system
to function in production, which has been directly used for running all the tasks from the experiments we
designed. We adopted the principles of modular system design and setup the system such that individual
system components may be extended for future development, including support for multiple messaging
services.

RQ 2: How do we map web-based user interface elements to chatbot user interface elements for microtask
crowdsourcing?

In order to perform a comparison between the Web and Chatbot interface, we have designed and imple-
mented tasks in both interfaces. To be able to host tasks that we are currently able to create in the Web
interface, we proposed an abstraction alongside a mapping to represent UI elements found in the Web to
the Chatbot. With this abstraction, we implemented and incorporated the respective UI elements in our
conducted experiments.

RQ 3: How do different types of user interface input elements for the conversational interface affect the
execution time and output quality of microtasks?

In order to study the effects of different types of UI input elements, we conducted a thorough experimental
campaign in which 316 distinct workers took part in. Thereafter, we performed a systematic analysis of six
task types, in which we show that task execution times and output qualities in the chatbot are comparable

63

64 7. Conclusion and Future Work

to the tasks that were run through a web-based interface. Among all participants, we found that they unan-
imously expressed interest in performing microtasks in the future through the chatbot as a work execution
medium. With highlights found in previous work, we strengthened and stressed the importance of task-
specific interaction design. Furthermore, we showed that the convenience of advanced text input interfaces
currently available in messaging platforms like Telegram may affect the task execution time.

7.2. Future Work
With our work, we have set the first step in a potential new direction for HC. We have shown that conver-
sational HC is feasible and that it has also sparked interest in crowd workers. As a result, our work provides
inspiration for future research opportunities:

• Device Constraints: In our work, we did not address the impact of device specifications in our UI de-
sign. We imagine that given the opportunity to perform conversational HC in a mobile interface, it
becomes of the essence to consider the possibility to prefer certain UI elements in favour of others, as
a result of e.g. screen size and touch controls. We foresee challenges in balancing task complexity to
fit appropriate UI elements, such as trading-off information gain in a tool for Image Segmentation in
favour of user usability.

• Mobile Crowdsourcing: Because conversational interfaces are already readily available through widely
popular messaging services such as Telegram and Facebook Messenger, we notice the new opportu-
nities for performing crowdsourcing activities in a mobile fashion. We see an opportunity to use the
conversational interface to perform situational and location-based crowdsourcing, where workers may
perform tasks requiring to be physically present at some location. For example, tasks may include tak-
ing photos with a mobile phone or creating a recording at some specified location and time.

• System Peak Performance: While our proposed system is capable of facilitating a variety of micro-
tasks, this was still carried out in a (partially) controlled environment. We raise therefore the question
how well our system will function in a true real-world setting as high-traffic microtask crowdsourcing
platform. Furthermore, we are in particular interested in what the peak performance is for different
task and content types and different use cases (e.g. video content, microtask workflows, worker retain-
ment). Moreover, we are curious how well a microtask crowdsourcing platform would function over
a prolonged period of time within a popular messaging platform such as Telegram. We see opportu-
nities to take advantage of strategies involving the notification system of messaging services to main-
tain higher worker retainment. We are also interested in the application of combining multiple worker
sources—including workers from the messaging platform and other web-based platforms—to attempt
sustaining near-real time crowdsourcing.

• Conversational Requester Interface: In our work, we only looked from the perspective of a worker.
However, we raise the question if the conversational interface could also be applied effectively for de-
signing tasks as a requester. As we have shown that the conversational interface is a viable alternative
for microtask execution, we have yet to discern the challenges in the conversational interface for the en-
tire task design and implementation process. To achieve the full realization of a conversational crowd-
sourcing platform, we require to facilitate the means for external task requesters. We foresee challenges
in managing data for the task creation process and monitoring on-going tasks in the conversational in-
terface.

• Exploring Conversation: A very large aspect we did not address in our work, which of course is a large
benefit of the conversational interface, is taking up the “art of conversation”. We contemplate that the
field of cybernetics may provide interesting insights into the design of the chatbot as a fully fledged con-
versational partner during microtask activities. In our current implementation, we employed a simple
feedback loop mechanism to acknowledge user interaction, but factors such as chatbot personality may
potentially affect worker performance. Furthermore, we note the possibility of training workers to gain
knowledge and learn new skills through repeated conversations with the chatbot. As a result, we also
note that the chatbot may, in turn, learn new things from workers, which the chatbot may then teach
to other workers. Furthermore, we are also interested in the dynamics of group-based conversation for
the execution of microtasks.

A
Full Entity-Relationship Diagram

65

User Task

Conversation

Platform

Makes

Hosts

Spawns

On

1

N

N

1

N

N N

M

1 N

Task Instance

Has

Has

Data Items

Result Has

Has

Has

Model

Templates Knowledge

Drives

Utterance

Has

Has

Performs

1

M

1

N

1

N

N

1

N

1

N

M

N

M

1

N

1

N

Consumes

1

N

Uses
N M

Requests

Uses
1

N

model_id

date_created

stat_model

training_data

utter_id

sentence

intent

entities

images

buttons

is_user

conv_id

utterances

template_id

sentence

user_id

display_name

reputation

skills

knowledge_id

intent

action

task_id

user_id

date_created

type

title

instruction

reward

judgments

deadline

completed

instance_id

task_id

user_id

completed

ver_code

result_id

result

item_id

values

platform_name

api_endpoint

aggregator

judgments

ext_metadata

lock

itemsPerAssignment

date_compl

date_created

type

date_compl

maxJudgmentsPerWorker

validator

Is aQuestion
1

1

N

type

webhook

B
Included Figure Eight Contributor

Channels

67

68 B. Included Figure Eight Contributor Channels

Table B.1: All default included contributor channels as selectable through the task settings in Figure Eight.

Channel Name Included

Adept Technologies BPO 3
BitcoinGet 3
CapeStart 3
Clickworker (DE) 3
Clickworker (EN) 3
ClixSense 3
Coleman Data Solutions 3
Content Runner 3
Creative Solutions Network 3
Crowd Guru 7
CrowdWorks 3
DDD (Kenya) 3
Daproim 3
Daproim (Digital Campus Connect) 3
Data House 3
DataPure 3
Earnably 3
EntropiaPartners (Second Life) 3
Figure Eight Elite 3
FusionCash 3
FusionCash (Family Friendly) 3
Get-Paid.com 3
Gift Hunter Club 3
GiftHulk 3
GrabPoints 3
Hiving 3
Human in the Loop 3
IndiVillage 3
Infosource Bulgaria 3
KayCaptions 3
KeepRewarding 3
Kinetic Business Solutions 3
Listia 3
Memolink 3
NeoBux 3
Opsify LLC 3
Points to Shop 3
PrizeRebel 3
Proximo 3
SmartOne 3
SuperRewards 3
Swagbucks (Prodege) 3
Taqadam 3
TeleNet Global 3
TimeBucks Tasks 3
Tremor Games 3
TrueAccord 3
Vivatic Tasks 3
Wannads 3
Zen3 Infosolutions 3
iMerit India 3
infosearchbpo 3
instaGC 3
oWorkers 3
rProcess 3
vCare 7
vCare India 3
vCare USA 3

C
MTurk and Figure Eight Task Templates

Table C.1: Task templates which a requester is able to pick from in AMT and Figure Eight.

Task type
Data Type Input Type Elements Task Goal

Amazon Mechanical Turk Figure Eight

Sentiment Wizard;
Sentiment Project;
Sentiment of a Tweet

Sentiment Analysis Text Multiple Choice
Given a short text fragment,
determine what the sentiment of
the fragment is.

Choose image A or B Search Relevance Text, Image Multiple Choice
Given a search query and its
result, compare which one is
more relevant.

Categorization Wizard;
Categorization Project

Data Categorization Text, Image Multiple Choice
Given a piece of media content,
determine what categories it
belongs to.

Collect data; Collect data
from a Website; Writing

Data Collection &
Enrichment

Text Text, Multiple Choice
Given a (partial) data record, find
or complement a data attribute.

- Data Validation Text, Image Text, Multiple Choice
Given a piece of media content,
validate its correctness and
completeness.

Tagging of an Image Image Annotation Image
Multiple Choice,
Bounding Box, Draw
Line, Mark Objects

Given an image annotate the
image contents from a list of
options, bound all objects in
boxes, indicate the center of
objects, draw the object body
length.

Transcription from A/V;
Transcription from a
Receipt; Transcription
from an Image

Transcription Image, Audio Text, Multiple Choice

Given an image, audio or video
fragment, indicate the legibility,
intelligibility or visibility and
transcribe the contents.

Moderation of an Image Content Moderation Text, Image Multiple Choice

Given an image or user comment
or URL, determine if the contents
comply with a set of given service
rules.

Survey (Link) - None
Different types-several
questions

A series of questions that may
highly differ. May also be run on
an external platform by providing
an URL.

69

D
Consent Form

Research Participation
You are being invited to participate in a research study to evaluate a novel method to perform Human
Computation in a conversational manner.
This study is being conducted by Owen Huang, MSc student from the TU Delft.

The purpose of this research study is to evaluate any interaction you have with a chatbot in the instant
messaging service Telegram, while you perform a microtask, comparable to the tasks found in Figure Eight.
Performing this microtask will take you approximately 5 minutes to complete.

Your participation in this study is entirely voluntary. You may choose not to participate by closing this
task in Figure Eight and Telegram. By performing and fully completing this task in Figure Eight and the
given microtask in Telegram (i.e. clicking the ’Submit’ button, at the end of the microtask in Telegram), you
agree to participate in this research study. If you decide to participate in this study, you may withdraw your
participation at any time.
If you decide not to participate in this study or decide to withdraw your participation at any time, you will
not be penalized. If you do not complete this task in Figure Eight and did not click the ’Submit’ button in
Telegram, this will be treated as the withdrawal of your participation in this study and any answers you have
given thus far will not be used.

Participation Procedure
The procedure of performing the microtask in Telegram involves, if applicable:

• The registration of a Telegram account with a valid mobile phone number.

• The process of downloading a Telegram mobile or desktop client.

Thereafter, you will be redirected through clicking the URL in this Figure Eight task (after confirming you
possess a Telegram account) to start a one-on-one conversation with a Telegram bot.
You will then perform a microtask by interacting with the Telegram bot, which involves reading and under-
standing any given instructions to you and answering a series of short and simple questions.
After the completion of the microtask you will be prompted to click the ’Submit’ button in order to confirm
your participation in this study and submitting all your answers given to the Telegram bot.
By clicking the ’Submit’ button, you will be presented with a validation token that verifies the completion of
your microtask and allows the completion of the task in Figure Eight.

Any information we store, as collected by the completion of this task in Figure Eight and the use of
Telegram is done fully anonymous. We will not store any information that may personally identify you, such
as IP adresses, names or mobile phone numbers. The results of this study will only be used for academic
purposes, such as scholarly publications.

71

https://telegram.org/
https://www.figure-eight.com/

72 D. Consent Form

If you have any inquiries about this research study, please contact Owen Huang (O.Huang@student.tudelft.nl).
This research has been reviewed by the TU Delft Human Research Ethics Committee.

ELECTRONIC CONSENT
By accepting and completing this task in Figure Eight and the given microtask in Telegram:

• You declare that you are over 18 years old.

• You voluntarily agree to participate.

• You have fully read and understood the above information.

If you do not wish to participate in this research study, please close this task in Figure Eight and if applicable
any open conversations in Telegram incurred by the Figure Eight task.

E
Telegram Registeration Instructions

How to register a Telegram account

Note: If you already have a registered Telegram account, you may skip these steps.
Please log into your Telegram account to continue on with the task.

Steps

1. Download and install the mobile or desktop Telegram client here.

2. Open the mobile or desktop Telegram client and proceed until you are eventually asked to register with
your phone number:

73

https://telegram.org/

74 E. Telegram Registeration Instructions

3. Register with a valid mobile phone number and activate your login by inputting the activation code re-
ceived through either via SMS or phone call.

75

4. After putting in the activation code provided by Telegram, you have successfully registered and logged
into a Telegram account and are ready for this task!

Bibliography

[1] Hadeel Al-Zubaide and Ayman A Issa. Ontbot: Ontology based chatbot. In Fourth International Sympo-
sium on Innovation in Information & Communication Technology (ISIICT), pages 7–12. IEEE, 2011.

[2] Tara S Behrend, David J Sharek, Adam W Meade, and Eric N Wiebe. The viability of crowdsourcing for
survey research. Behavior research methods, 43(3):800, 2011.

[3] Janine Berg. Income security in the on-demand economy: Findings and policy lessons from a survey of
crowdworkers. Comp. Lab. L. & Pol’y J., 37:543, 2015.

[4] Fumihiro Bessho, Tatsuya Harada, and Yasuo Kuniyoshi. Dialog system using real-time crowdsourcing
and twitter large-scale corpus. In Proceedings of the 13th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, pages 227–231. Association for Computational Linguistics, 2012.

[5] Jeffrey P Bigham, Chandrika Jayant, Hanjie Ji, Greg Little, Andrew Miller, Robert C Miller, Robin Miller,
Aubrey Tatarowicz, Brandyn White, Samual White, et al. Vizwiz: nearly real-time answers to visual ques-
tions. In Proceedings of the 23nd annual ACM symposium on User interface software and technology,
pages 333–342. ACM, 2010.

[6] Luka Bradeško, Michael Witbrock, Janez Starc, Zala Herga, Marko Grobelnik, and Dunja Mladenić. Curi-
ous cat–mobile, context-aware conversational crowdsourcing knowledge acquisition. ACM Transactions
on Information Systems (TOIS), 35(4):33, 2017.

[7] Jonathan Bragg, Andrey Kolobov, Mausam Mausam, and Daniel S Weld. Parallel task routing for crowd-
sourcing. In Second AAAI Conference on Human Computation and Crowdsourcing, 2014.

[8] Petter Bae Brandtzaeg and Asbjørn Følstad. Why people use chatbots. In International Conference on
Internet Science, pages 377–392. Springer, 2017.

[9] Alec Burmania, Srinivas Parthasarathy, and Carlos Busso. Increasing the reliability of crowdsourcing
evaluations using online quality assessment. IEEE Transactions on Affective Computing, 7(4):374–388,
2016.

[10] Carrie J. Cai, Shamsi T. Iqbal, and Jaime Teevan. Chain reactions: The impact of order on microtask
chains. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16,
pages 3143–3154, New York, NY, USA, 2016. ACM.

[11] Justin Cheng, Jaime Teevan, Shamsi T. Iqbal, and Michael S. Bernstein. Break it down: A comparison
of macro- and microtasks. In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, pages 4061–4064, New York, NY, USA, 2015. ACM.

[12] Justin Cranshaw, Emad Elwany, Todd Newman, Rafal Kocielnik, Bowen Yu, Sandeep Soni, Jaime Teevan,
and Andrés Monroy-Hernández. Calendar. help: Designing a workflow-based scheduling agent with
humans in the loop. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,
pages 2382–2393. ACM, 2017.

[13] Peng Dai, Jeffrey M. Rzeszotarski, Praveen Paritosh, and Ed H. Chi. And now for something completely
different: Improving crowdsourcing workflows with micro-diversions. In Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social Computing, CSCW ’15, pages 628–638,
New York, NY, USA, 2015. ACM.

[14] Vincenzo Della Mea, Eddy Maddalena, and Stefano Mizzaro. Mobile crowdsourcing: Four experiments
on platforms and tasks. Distributed and Parallel Databases, 33(1):123–141, 2015.

77

78 Bibliography

[15] Djellel Eddine Difallah, Michele Catasta, Gianluca Demartini, and Philippe Cudré-Mauroux. Scaling-up
the crowd: Micro-task pricing schemes for worker retention and latency improvement. In Second AAAI
Conference on Human Computation and Crowdsourcing, 2014.

[16] Boi Faltings, Radu Jurca, Pearl Pu, and Bao Duy Tran. Incentives to counter bias in human computation.
In Second AAAI conference on human computation and crowdsourcing, 2014.

[17] Oluwaseyi Feyisetan, Elena Simperl, Max Van Kleek, and Nigel Shadbolt. Improving paid microtasks
through gamification and adaptive furtherance incentives. In Proceedings of the 24th International Con-
ference on World Wide Web, pages 333–343. International World Wide Web Conferences Steering Com-
mittee, 2015.

[18] Michael J Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold Xin. CrowdDB: an-
swering queries with crowdsourcing. In Proceedings of the 2011 ACM SIGMOD International Conference
on Management of data, pages 61–72. ACM, 2011.

[19] Ujwal Gadiraju, Ricardo Kawase, and Stefan Dietze. A taxonomy of microtasks on the web. In Proceedings
of the 25th ACM Conference on Hypertext and Social Media, pages 218–223, New York, NY, USA, 2014.
ACM.

[20] Supratip Ghose and Jagat Joyti Barua. Toward the implementation of a topic specific dialogue based
natural language chatbot as an undergraduate advisor. In International Conference on Informatics, Elec-
tronics & Vision (ICIEV), pages 1–5. IEEE, 2013.

[21] Daniel Haas, Jason Ansel, Lydia Gu, and Adam Marcus. Argonaut: macrotask crowdsourcing for complex
data processing. Proceedings of the VLDB Endowment, 8(12):1642–1653, 2015.

[22] David Hirshleifer and Siew Hong Teoh. Herd behaviour and cascading in capital markets: A review and
synthesis. European Financial Management, 9(1):25–66, 2003.

[23] Ting-Hao Kenneth Huang, Walter S Lasecki, and Jeffrey P Bigham. Guardian: A crowd-powered spoken
dialog system for web apis. In Third AAAI conference on human computation and crowdsourcing, 2015.

[24] Ting-Hao Kenneth Huang, Amos Azaria, and Jeffrey P Bigham. Instructablecrowd: Creating if-then rules
via conversations with the crowd. In Proceedings of the 2016 CHI Conference Extended Abstracts on Hu-
man Factors in Computing Systems, pages 1555–1562. ACM, 2016.

[25] Ting-Hao Kenneth Huang, Walter S Lasecki, Amos Azaria, and Jeffrey P Bigham. “Is There Anything Else
I Can Help You With?” Challenges in Deploying an On-Demand Crowd-Powered Conversational Agent.
In Fourth AAAI Conference on Human Computation and Crowdsourcing, 2016.

[26] Ting-Hao’Kenneth’ Huang, Yun-Nung Chen, and Jeffrey P Bigham. Real-time on-demand crowd-
powered entity extraction. arXiv preprint arXiv:1704.03627, 2017.

[27] Ting-Hao’Kenneth’ Huang, Joseph Chee Chang, and Jeffrey P Bigham. Evorus: A Crowd-powered Con-
versational Assistant Built to Automate Itself Over Time. arXiv preprint arXiv:1801.02668, 2018.

[28] Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Lam Ngoc Tran, and Karl Aberer. An evaluation of aggrega-
tion techniques in crowdsourcing. In International Conference on Web Information Systems Engineering,
pages 1–15. Springer, 2013.

[29] Panagiotis G Ipeirotis and Evgeniy Gabrilovich. Quizz: targeted crowdsourcing with a billion (potential)
users. In Proceedings of the 23rd international conference on World wide web, pages 143–154. ACM, 2014.

[30] Panagiotis G. Ipeirotis and Praveen K. Paritosh. Managing crowdsourced human computation: A tuto-
rial. In Proceedings of the 20th International Conference Companion on World Wide Web, pages 287–288,
New York, NY, USA, 2011. ACM.

[31] Panagiotis G Ipeirotis, Foster Provost, and Jing Wang. Quality management on amazon mechanical turk.
In Proceedings of the ACM SIGKDD workshop on human computation, pages 64–67. ACM, 2010.

[32] David R Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowdsourcing systems.
In Advances in neural information processing systems, pages 1953–1961, 2011.

Bibliography 79

[33] Aniket Kittur, Boris Smus, Susheel Khamkar, and Robert E Kraut. Crowdforge: Crowdsourcing complex
work. In Proceedings of the 24th annual ACM symposium on User interface software and technology,
pages 43–52. ACM, 2011.

[34] P. Kucherbaev, A. Bozzon, and G. Houben. Human aided bots. IEEE Internet Computing, pages 1–1, 2018.

[35] Pavel Kucherbaev, Azad Abad, Stefano Tranquillini, Florian Daniel, Maurizio Marchese, and Fabio Casati.
Crowdcafe-mobile crowdsourcing platform. arXiv preprint arXiv:1607.01752, 2016.

[36] Roland Kuhn and Renato De Mori. The application of semantic classification trees to natural language
understanding. IEEE transactions on pattern analysis and machine intelligence, 17(5):449–460, 1995.

[37] Anand Kulkarni, Matthew Can, and Björn Hartmann. Collaboratively crowdsourcing workflows with
turkomatic. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, pages
1003–1012. ACM, 2012.

[38] Abhishek Kumar, Kuldeep Yadav, Suhas Dev, Shailesh Vaya, and G. Michael Youngblood. Wallah: Design
and evaluation of a task-centric mobile-based crowdsourcing platform. In Proceedings of the 11th In-
ternational Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pages
188–197. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing), 2014.

[39] Walter S. Lasecki, Kyle I. Murray, Samuel White, Robert C. Miller, and Jeffrey P. Bigham. Real-time crowd
control of existing interfaces. In Proceedings of the 24th Annual ACM Symposium on User Interface Soft-
ware and Technology, pages 23–32, New York, NY, USA, 2011. ACM.

[40] Walter S. Lasecki, Rachel Wesley, Jeffrey Nichols, Anand Kulkarni, James F. Allen, and Jeffrey P. Bigham.
Chorus: A crowd-powered conversational assistant. In Proceedings of the 26th Annual ACM Symposium
on User Interface Software and Technology, pages 151–162, New York, NY, USA, 2013. ACM.

[41] Walter S Lasecki, Raja Kushalnagar, and Jeffrey P Bigham. Legion scribe: real-time captioning by non-
experts. In Proceedings of the 16th international ACM SIGACCESS conference on Computers & accessibil-
ity, pages 303–304. ACM, 2014.

[42] Edith Law and Luis von Ahn. Human Computation. Morgan & Claypool Publishers, 1st edition, 2011.
ISBN 1608455165, 9781608455164.

[43] Guoliang Li, Jiannan Wang, Yudian Zheng, and Michael J Franklin. Crowdsourced data management: A
survey. IEEE Transactions on Knowledge and Data Engineering, 28(9):2296–2319, 2016.

[44] Xulei Liang, Rong Ding, Mengxiang Lin, Lei Li, Xingchi Li, and Song Lu. CI-Bot: A Hybrid Chatbot En-
hanced by Crowdsourcing. In Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM)
Joint Conference on Web and Big Data, pages 195–203. Springer, 2017.

[45] Bing Liu. Sentiment analysis and subjectivity. Handbook of natural language processing, 2:627–666,
2010.

[46] Qiang Liu, Jian Peng, and Alexander T Ihler. Variational inference for crowdsourcing. In Advances in
neural information processing systems, pages 692–700, 2012.

[47] Xuan Liu, Meiyu Lu, Beng Chin Ooi, Yanyan Shen, Sai Wu, and Meihui Zhang. CDAS: A Crowdsourcing
Data Analytics System. Proceedings of the VLDB Endowment, 5(10):1040–1051, 2012.

[48] Yefeng Liu, Vili Lehdonvirta, Mieke Kleppe, Todorka Alexandrova, Hiroaki Kimura, and Tatsuo Nakajima.
A crowdsourcing based mobile image translation and knowledge sharing service. In Proceedings of the
9th International Conference on Mobile and Ubiquitous Multimedia, page 6. ACM, 2010.

[49] Yefeng Liu, Todorka Alexandrova, and Tatsuo Nakajima. Gamifying intelligent environments. In Pro-
ceedings of the 2011 international ACM workshop on Ubiquitous meta user interfaces, pages 7–12. ACM,
2011.

[50] Jan Lorenz, Heiko Rauhut, Frank Schweitzer, and Dirk Helbing. How social influence can undermine the
wisdom of crowd effect. Proceedings of the National Academy of Sciences, 108(22):9020–9025, 2011.

80 Bibliography

[51] Andrew Mao, Ece Kamar, Yiling Chen, Eric Horvitz, Megan E Schwamb, Chris J Lintott, and Arfon M
Smith. Volunteering versus work for pay: Incentives and tradeoffs in crowdsourcing. In First AAAI con-
ference on human computation and crowdsourcing, 2013.

[52] Prayag Narula, Philipp Gutheim, David Rolnitzky, Anand Kulkarni, and Bjoern Hartmann. Mobileworks:
A mobile crowdsourcing platform for workers at the bottom of the pyramid. Human Computation, 11
(11):45, 2011.

[53] André Orléan. Bayesian interactions and collective dynamics of opinion: Herd behavior and mimetic
contagion. Journal of Economic Behavior & Organization, 28(2):257–274, 1995.

[54] Alexander J Quinn and Benjamin B Bederson. Human computation: a survey and taxonomy of a growing
field. In Proceedings of the SIGCHI conference on human factors in computing systems, pages 1403–1412.
ACM, 2011.

[55] Daniela Retelny, Sébastien Robaszkiewicz, Alexandra To, Walter S. Lasecki, Jay Patel, Negar Rahmati,
Tulsee Doshi, Melissa Valentine, and Michael S. Bernstein. Expert Crowdsourcing with Flash Teams. In
Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pages 75–85,
New York, NY, USA, 2014. ACM.

[56] Alan Ritter, Colin Cherry, and William B Dolan. Data-driven response generation in social media. In
Proceedings of the conference on empirical methods in natural language processing, pages 583–593. As-
sociation for Computational Linguistics, 2011.

[57] Joel Ross, Lilly Irani, M Silberman, Andrew Zaldivar, and Bill Tomlinson. Who are the crowdworkers?:
shifting demographics in mechanical turk. In CHI’10 extended abstracts on Human factors in computing
systems, pages 2863–2872. ACM, 2010.

[58] Jeffrey M Rzeszotarski, Ed Chi, Praveen Paritosh, and Peng Dai. Inserting micro-breaks into crowdsourc-
ing workflows. In First AAAI Conference on Human Computation and Crowdsourcing, 2013.

[59] Navkar Samdaria, Ajith Sowndararajan, Ramadevi Vennelakanti, and Sriganesh Madhvanath. Mobile
interfaces for crowdsourced multimedia microtasks. In Proceedings of the 7th International Conference
on HCI, IndiaHCI 2015, pages 62–67, New York, NY, USA, 2015. ACM.

[60] Denis Savenkov and Eugene Agichtein. CRQA: Crowd-Powered Real-Time Automatic Question Answer-
ing System. In Fourth AAAI Conference on Human Computation and Crowdsourcing, 2016.

[61] Jost Schatzmann, Karl Weilhammer, Matt Stuttle, and Steve Young. A survey of statistical user simulation
techniques for reinforcement-learning of dialogue management strategies. The knowledge engineering
review, 21(2):97–126, 2006.

[62] Heinz Schmitz and Ioanna Lykourentzou. Online sequencing of non-decomposable macrotasks in ex-
pert crowdsourcing. ACM Transactions on Social Computing, 1(1):1, 2018.

[63] Iulian V Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin, Sandeep Sub-
ramanian, Taesup Kim, Michael Pieper, Sarath Chandar, Nan Rosemary Ke, et al. A deep reinforcement
learning chatbot. arXiv preprint arXiv:1709.02349, 2017.

[64] David R Traum and Staffan Larsson. The information state approach to dialogue management. In Cur-
rent and new directions in discourse and dialogue, pages 325–353. Springer, 2003.

[65] Luis Von Ahn. Human Computation. PhD thesis, Pittsburgh, PA, USA, 2005. AAI3205378.

[66] Luis Von Ahn. Games with a purpose. Computer, 39(6):92–94, 2006.

[67] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. Captcha: Using hard ai problems
for security. In International Conference on the Theory and Applications of Cryptographic Techniques,
pages 294–311. Springer, 2003.

[68] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. Captcha: Using hard ai problems
for security. In International Conference on the Theory and Applications of Cryptographic Techniques,
pages 294–311. Springer, 2003.

Bibliography 81

[69] Richard Wallace. The elements of aiml style. Alice AI Foundation, 2003.

[70] Jiannan Wang, Tim Kraska, Michael J Franklin, and Jianhua Feng. Crowder: Crowdsourcing entity reso-
lution. Proceedings of the VLDB Endowment, 5(11):1483–1494, 2012.

[71] Jiannan Wang, Sanjay Krishnan, Michael J Franklin, Ken Goldberg, Tim Kraska, and Tova Milo. A sample-
and-clean framework for fast and accurate query processing on dirty data. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data, pages 469–480. ACM, 2014.

[72] Sibo Wang, Xiaokui Xiao, and Chun-Hee Lee. Crowd-based deduplication: An adaptive approach. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pages 1263–
1277. ACM, 2015.

[73] Joseph Weizenbaum. Eliza—a computer program for the study of natural language communication
between man and machine. Communications of the ACM, 9(1):36–45, 1966.

[74] Tingxin Yan, Matt Marzilli, Ryan Holmes, Deepak Ganesan, and Mark Corner. mcrowd: A platform for
mobile crowdsourcing. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Sys-
tems, pages 347–348, New York, NY, USA, 2009. ACM.

[75] Jeffrey M Zacks, Barbara Tversky, and Gowri Iyer. Perceiving, remembering, and communicating struc-
ture in events. Journal of Experimental Psychology: General, 130(1):29, 2001.

[76] Yudian Zheng, Jiannan Wang, Guoliang Li, Reynold Cheng, and Jianhua Feng. Qasca: A quality-aware
task assignment system for crowdsourcing applications. In Proceedings of the 2015 ACM SIGMOD inter-
national conference on management of data, pages 1031–1046. ACM, 2015.

[77] Dongqing Zhu and Ben Carterette. An analysis of assessor behavior in crowdsourced preference judg-
ments. In SIGIR 2010 workshop on crowdsourcing for search evaluation, pages 17–20, 2010.

	List of Figures
	List of Tables
	Introduction
	Problem Definition
	Research Focus
	Contributions
	Thesis Outline

	Related Work
	Conversational Agents
	Human Computation
	Macro- and Microtasks
	Challenges in Human Computation

	Crowd-powered Chatbots
	Microtask Crowdsourcing through Mobile Interfaces
	Summary

	Chatbot System Design
	Design Principles
	Adaptive & Reactive Human Computation
	Modular System Design
	Isolated Task Environment
	Non-Collaborative Dyadic Conversational Environment

	Base Chatbot
	Natural Language Understanding
	Dialogue Management
	Action Execution & Knowledge Base
	Response Generation

	Chatbot Microwork Platform
	Task Planning
	Worker Selection
	Task Assignment
	Task Execution
	Result Aggregation

	Worker Conversational Flow
	Navigational Controls
	Feedback Control

	Requester Task Design
	Task Structure & Parameters
	Answer Validation

	Modelling the Chatbot System

	Chatbot Implementation
	Conversational Interface
	Natural Language Processing
	Dialogue Management
	Knowledge Base
	Response Generation
	User Interface

	Microtask Execution
	Concurrency in Task Assignment
	Integration with Third-party Resources

	System Deployment
	Event-Driven Model
	Web Server Configuration

	Viability of Chatbot Microtask Crowdsourcing
	Experimental Design
	Experiment Goals
	Selecting Task Types
	Worker Interface
	Worker Selection
	Task Design
	Measurements & Metrics
	Task Execution Flow
	Web Task Implementation
	Chatbot Task Implementation

	Experiment Execution
	Task Settings
	Execution Schedule

	Results and Discussion
	Web vs. Chatbot Work Interface
	Influence of UI Elements in the Chatbot Interface
	General Statistics & Worker Demographics
	Towards Conversational Human Computation

	Conclusion and Future Work
	Conclusion
	Future Work

	Full Entity-Relationship Diagram
	Included Figure Eight Contributor Channels
	MTurk and Figure Eight Task Templates
	Consent Form
	Telegram Registeration Instructions
	Bibliography

