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Abstract

Compound floods, which can be attributed to different drivers (pluvial, fluvial, surge, tide, and waves), gen-
erate a larger flood hazard when drivers co-occur than when they occur in isolation of each other. Current
compound flood risk assessments are affected by a curse of dimensionality, where a larger number of events
need to be numerically simulated to understand the response of risk to drivers. This research aims to create
a methodology that improves the quantification of compound flood risk by using a Treed Gaussian Process
(TGP) for the case study of Charleston. A TGP can actively learn from the response of damages to drivers to
reduce the number of events that need to be simulated. By comparing this approach with a state-of-the-art
approach, the research shows a reduction of the computational cost by a factor of 4, an improvement in the
root mean square error by a factor of 8, and an improvement in the estimate of Expected Annual Damages
(EAD) by a factor of 20. This reduction in computational cost allows for the inclusion of random variables that
are normally assumed constant such as the duration and time lag of drivers. A sensitivity analysis demon-
strates these variables produce a statistically significant difference in the estimate of EAD, which increases its
value from 172 to 219 Million USD. The research also shows the combination of events caused by drivers lead-
ing to extreme damage changes when including these additional random variables, although surge is always
found to be dominant. By applying the TGP to multiple outputs, the research demonstrates the TGP is not
only applicable to the case study, which shows a TGP can be implemented in current flood risk assessments.
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Layman Summary

Flooding is a frequent natural disaster that can cause large social, economic, environmental, and political
damages. To reduce the damages associated with flooding, the concept of risk is used. Risk is defined by the
probability and the consequences associated with a flood. Frequent and less damaging floods can be weighed
against infrequent and highly damaging floods, which allows for a cost-benefit analysis of how much should
be spent on flood protection measures. Floods are caused by drivers which can take different forms. Examples
of these drivers are precipitation, fluvial water level, and the coastal water level. These can be defined by their
magnitude, duration, and time lag. When these co-occur they worsen the effect of the flood. This is called a
compound flood. To correctly understand the effect of these drivers on economic damages, a large number
of artificial floods need to be simulated numerically. However, this can lead to large computational costs
due to the time required to simulate these. The current state-of-the-art approach is to simulate a subset
and interpolate linearly. However, it is unknown if enough simulations have been performed. To this end,
a Treed Gaussian Process (TGP) is used. For the case study of Charleston, it reduces the cost of modeling
artificial floods by a factor of 4, while increasing the accuracy in the estimate of consequences of these floods
by a factor of 8 when compared to the state-of-the-art approach. By reducing the computational costs, more
resources become available to investigate the effect of the duration and time lag of the drivers on the flood
risk. A sensitivity analysis shows that the duration and time lag of drivers create significant differences in
the estimate of risk, and should be included in compound flood risk assessments. It also shows that not
including all probabilistic variables can underestimate the risk. By including the duration and time lag, this
research also shows which driver dominates the large economic damages. For Charleston, this was found to
be the coastal water level. Finally, by applying the TGP in different sub-counties of Charleston County, it is
shown that the economic damages to the same events change. Therefore, the TGP should not only apply to
Charleston, and can be included in current compound flood risk assessments.
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1
Introduction

1.1. Research Context
Flood events can cause large amounts of damage, which are not only economic but also social, environmen-
tal, and political. Between 1990 and 2006, approximately half of the individuals affected by natural disasters
were impacted by floods [Birkholz et al., 2014]. Governing bodies tackle this issue by managing their flood
protection infrastructure with the concept of risk. Risk can be defined as a function of hazard, exposure, and
vulnerability [Klijn et al., 2015]. This facilitates the comparison between different flood events, allowing for
economic optimization of flood protection measures [Baan and Klijn, 2004; Klijn et al., 2015].

Different methods are available to compute the probabilities associated with these flood events. One method
is to use an extreme value analysis on water level [Arns et al., 2013]. However, this method depends on the
events observed during the time record to create a probability distribution. This distribution is then extrap-
olated to estimate the probabilities of water levels that have not been observed yet [Hegnauer et al., 2014].
Moreover, the distribution is only valid at the location where observations are available. This is caused by the
non-linear, non-steady, and non-uniform effect the bathymetry, and the drivers have on the water level [Wahl
et al., 2015].

A second method is to fit statistical distributions to the drivers causing the flood event and simulate their
effect on the water level using numerical models [Couasnon et al., 2022; Eilander et al., 2023c; Gori et al.,
2020]. This allows for water levels to be observed within the entire model region. In a riverine environment,
the water level is primarily dominated by a single driver, the upstream discharge. To reduce the number of
simulations, the probability associated with a discharge can be assumed equal to the probability of the water
level [Hegnauer et al., 2014].

In low-lying coastal areas, floods can be caused by multiple drivers: fluvial discharge, coastal water level
(surge, waves, tide), and precipitation [Eilander et al., 2023c; Parker et al., 2023]. When drivers interact with
one another, this leads to a compound flood [Wahl et al., 2015]. If these drivers are assumed statistically inde-
pendent, it may change the estimate of the joint probability [Ward et al., 2018]. Moreover, if these drivers are
assumed never to co-occur it will underestimate the peak water level for a given return period [Moftakhari
et al., 2019], underestimating the hazard associated with an event. This is caused by the non-linear interac-
tion of different drivers [Wahl et al., 2015]. Thus, the assumption made for riverine environments is no longer
valid. To correctly quantify the risk associated with an event in a compound flood-prone area, multiple com-
binations of events need to be simulated [Couasnon et al., 2022; Eilander et al., 2023c].

For an accurate representation of the Expected Annual Damages (EAD), which is the exceedance probability
integral of the flood impact, an estimation for all possible events is desired [Couasnon et al., 2022; Eilander
et al., 2023c]. However, simulating all possible combinations is not feasible as each sample is computationally
expensive to process [Hendrickx et al., 2023]. There are different methods to reduce the computational cost
associated with simulating large event sets, nested in multiple dimensions. These can be split into three
distinct categories: improve computational resources [Apel et al., 2016], increase the number of numerical
modeling assumptions [Bates et al., 2010; Leijnse et al., 2021], and reduce the number of simulations [Eilander
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et al., 2023c; Hendrickx et al., 2023].

Reducing the number of simulations is the most effective computational cost-reduction technique [Hen-
drickx et al., 2023], but it must be combined with an interpolation technique to obtain the results of the non-
simulated events. One solution is to construct a structured grid of pre-defined simulations to run [Couas-
non et al., 2022; Eilander et al., 2023c]. However, this method is affected by the curse of dimensionality: the
number of required simulations increases exponentially with the number of probabilistic variables. Another
solution is to use sampling algorithms that choose samples based on the input space (independent variables)
[Camus et al., 2011]. However, the number of simulations must be chosen a priori, making it unclear if enough
simulations have been performed. A final solution is to apply machine learning techniques, in the form of
a Treed Gaussian Process (TGP), which chooses samples based on the output space (dependent variable) by
using active learning [Gramacy and Lee, 2009; Hendrickx et al., 2023].

In hydraulic engineering, machine learning techniques have shown promise in reducing the number of sim-
ulations while giving a robust estimate of the output space [Hendrickx et al., 2023], but have yet to be applied
to compound floods.

1.2. Research Problem
For compound floods, the research problem is related to this multidimensional input space, which makes it
difficult to characterize the vulnerability related to different return periods. This is caused by: the computa-
tional cost of using numerical simulations, and the dependence structure of probabilistic variables associated
with drivers. Researchers have tackled this problem by using input reduction to reduce the number of prob-
abilistic variables, making certain sampling strategies easier to apply. For example, durations of drivers and
time lags between drivers are often assumed to be constant [Couasnon et al., 2022; Eilander et al., 2023c; Jane
et al., 2022]. Moreover, the current sampling strategies require an interpolation technique, often taken as lin-
ear [Couasnon et al., 2022; Eilander et al., 2023c; Jane et al., 2022]. It is unclear whether the combination of
input reduction and bi-linear interpolation provides the most accurate representation of compound floods
for the computational cost.

1.3. Research Objectives and Questions
1.3.1. Objectives
This research aims to create a methodology that improves the quantification of compound flood risk by using
a Treed Gaussian Process. To do so, the objectives listed below are defined:

1. Define a stopping criterion for a Treed Gaussian Process that uses active learning and compare the
computational cost and estimate of the EAD with a current approach.

2. Identify the driver dominating the economic damages.

3. Demonstrate the effect of different extents of input reduction on the EAD and its associated uncertainty,
as well as computational cost.

4. Apply a Treed Gaussian Process to a case study and discuss its applicability for other locations.

1.3.2. Questions
To what extent does a Treed Gaussian Process improve the quantification of compound flood risk?

1. To what extent can a Treed Gaussian Process improve the estimate of compound flood risk while limit-
ing the increase in computational cost?

2. To what extent can a Treed Gaussian Process give insight into the dominant driver when drivers are
defined by multiple random variables?

3. To what extent is the value of risk, its associated uncertainty, and the computational cost of a Treed
Gaussian Process sensitive to the number and choice of random variables when modeling compound
flood events?

4. How are the results associated with the case study applicable to other locations?

2
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1.4. Thesis Outline
Chapter 2 provides a background knowledge on compound flood risk, and the different tools required to
conduct one. Then, the case study, accompanying data, and numerical models are presented in chapter 3.
The methodology used to obtain stochastic event sets, samples for the surrogate model, and statistical tests
are shown in chapter 4. Chapter 5 presents the results obtained from the methodology. These are discussed
in chapter 6. Conclusions are drawn in chapter 7, and recommendations for further research are provided.
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2
Literature Review

This chapter presents the background knowledge and the tools required to perform a compound flood risk
assessment. In section 2.1 the definition of risk is given. Compound flood drivers, and random variables as-
sociated with them are identified in section 2.2. Information on identifying historical flood events is given in
section 2.3. Section 2.4 shows the tools required to model the dependence between different random vari-
ables that can affect a compound flood-prone location. Section 2.5 shows the current state-of-the-art knowl-
edge to decrease the computational time associated with compound flood risk assessments. A conclusion of
these sections can be found in section 2.6.

2.1. Definition of Risk
The concept of risk provides governing bodies with a metric to compare the effect of different flood events.
This facilitates the economic optimization of flood protection measures. Different definitions of risk exist,
but these are usually functions that are dependent on hazard, exposure, and vulnerability [Klijn et al., 2015].

The hazard associated with a flood event can be defined by its probability, but also the spatially varying maxi-
mum water depth associated with it [Klijn et al., 2015]. The probability refers to the frequency of flood events,
which is equivalent to the reciprocal of the Return Period (RP). The RP is the average time between subse-
quent flood events that leads to equal or larger magnitudes of a given variable [Gumbel, 1941]. This variable
can take many forms. Previous studies have used water level (or depth) [Jane et al., 2022], discharge [Heg-
nauer et al., 2014], or damages (economic or social) [Eilander et al., 2023c]. Economic damage is preferred as
it allows for the calculation of the Expected Annual Damages (EAD).

Exposure takes into account elements and activities that may be affected by flood hazards [Klijn et al., 2015].
These elements can be private property such as homes and businesses or public property such as roads and
hospitals. Due to socio-economic developments, exposure can change over time [Baan and Klijn, 2004].

Vulnerability can be seen as the potential economic, social, environmental, and political damages caused by
a hazard (flood event) to an exposed area [Klijn et al., 2015]. Here, it is assumed that vulnerability is defined
solely by the economic damages of an event, creating a singular output per flood event.

The modeling of hazard requires a statistical model (section 2.4), and a hydrodynamic model (section 2.5.2).
The modeling of exposure and vulnerability requires an impact model (section 4.1.2).

EAD provides an estimate of the economic damages if they were spread out over time. It allows to weigh less
damaging but frequent floods with high damaging but rare floods. To obtain an estimate of EAD, the integral
of the damage-frequency curve is needed [Couasnon et al., 2022; Eilander et al., 2023c]. EAD can be used to
perform a cost-benefit analysis to explain how much money should be spent on flood protection measures
[Oliveri and Santoro, 2000].
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2.2. Compound Flood Drivers
Compound floods are caused by flood drivers co-occurring, leading to a larger flood hazard than if they oc-
curred in isolation [Wahl et al., 2015]. Drivers co-occur because of the underlying weather patterns they are
caused by [Khanal et al., 2019]. These can take many forms such as tropical cyclones and extra-tropical storms
[Parker et al., 2023]. For a risk assessment, if a location is affected by different weather patterns, they should
be considered separately, because the probability and consequences are dependent on the weather pattern
[Diermanse et al., 2023; Eilander et al., 2023c; Nederhoff et al., 2024; Parker et al., 2023]. However, for short-
time records (of data), it can be difficult to get a statistical understanding of weather patterns that have large
RPs. Two solutions have been proposed in the literature. Firstly, they can be simulated with global models
(section 2.2.5) to extend the time record but are computationally expensive to use (section 2.4.3). Secondly,
they can be grouped to simplify the risk assessment [Jane et al., 2022].

In a coastal environment, a multitude of drivers can generate compound floods [Couasnon et al., 2020; Eilan-
der et al., 2023c; Hendry et al., 2019; Parker et al., 2023; Wahl et al., 2015]. These can be grouped according to
their effect on a hydrodynamic model. These models (section 2.5.2) are required to simulate the flood hazard
map associated with a compound flood event. In the case of subcritical flow, two boundary conditions need
to be defined to reach a well-posed problem: fluvial (upstream) discharge and coastal (downstream) water
level. Precipitation and other meteorological conditions are not explicitly required but are defined for each
grid cell. Waves are also not required but are defined at the coastal water level boundary condition. Waves
contribute to flood risk in two ways, with wave set-up and run-up. Wave run-up can be ignored as it does not
cause sustained flooding [Parker et al., 2023].

The effect a driver has on the overall model is not only defined by its magnitude but also by duration, location,
and spatial spread [Apel et al., 2016]. In compound floods, the lag between the peaks of different drivers also
becomes important [Eilander et al., 2023c; Moftakhari et al., 2019].

2.2.1. Fluvial Discharge
Discharge is defined as the volumetric flow rate of water. In a riverine environment, it is affected by the prop-
erties of the upstream catchment [Hendry et al., 2019]. These include the surface area, elevation gradient,
and soil characteristics of the catchment, which dictate how much base flow (only supplied by groundwater
flow) and surface runoff (generated by precipitation events) occurs. Surface runoff is the mechanism that
leads to extremes in measured data [Hendry et al., 2019; Wahl et al., 2015].

In a coastal environment, backwater effects either cause an increase or decrease in discharge as the flow
approaches the river mouth. The type of backwater effect depends on the magnitude of both discharge and
the coastal water level.

If local data cannot be used, global models can estimate discharges [Eilander et al., 2023b].

2.2.2. Pluvial
Precipitation leads to a local increase in water level causing local flooding through surface runoff [Wahl et al.,
2015]. For relatively flat topographies, it can be assumed to be spatially uniform [Eilander et al., 2023c] or
Gaussian distributed [Apel et al., 2016].

2.2.3. Coastal Water Level
2.2.3.1. Tidal
Gravitational bodies (sun and moon) create bulges in ocean water masses through tangential forces gener-
ated by their differential pull [Bosboom and Stive, 2021]. The diurnal rotation of the earth creates a semi-
diurnal tide which has two peaks and two troughs in water level over a day. The tidal period is dependent
on the synodic rotation of the celestial body [Bosboom and Stive, 2021]. Thus, the moon and the sun both
generate a semi-diurnal component as their synodic rotations are not the same. The beating of these signals
creates the spring-neap tidal cycle, causing oscillations in the tidal range.

The declination angle of the earth’s axis generates diurnal (and other semi-diurnal) components [Bosboom
and Stive, 2021]. The interaction of diurnal and semi-diurnal components generates a daily inequality, caus-
ing the two higher and two lower tides to have unequal magnitudes.

The magnitude of tidal constituents is dependent on a multitude of factors such as the latitude or the shape
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of the continental shelf [Bosboom and Stive, 2021]. The tidal beating is thus not constant around the world.
Moreover, tidal constituents can have periods that are longer than a day. The longest of which is 18.6 years,
caused by the variation of the lunar declination [Bosboom and Stive, 2021]. Therefore, to model tidal behav-
ior, a harmonic analysis can be applied. If a gauge has measured more than 20 years of data, the frequency of
all constituents should be identifiable.

2.2.3.2. Non-Tidal Residual
The non-tidal residual can be defined as the resulting water level which cannot be attributed to sea level rise
or tides. This definition therefore encompasses Monthly Mean Sea Level (MMSL) changes, wave setup, and
storm surges. This driver is generated by offshore meteorological effects. If local data is not available, the
Global Tide and Surge Model (GTSM) can be used [Parker et al., 2023].

For total water level measurements, a trend in Mean Sea Level (MSL) occurs and must be removed from the
data. Different methods are available, but they introduce biases and do not lead to the same results. It is
therefore recommended to remove the 1-year moving average [Arns et al., 2013]. However, this will result in
tidal components that have a period longer than a year to be removed from the non-tidal residual (if they are
present). The one-year moving average still causes seasonality on a scale smaller than a year to be present.

Increased total water levels induce a phase shift in the tidal signal, creating peaks in the non-tidal residual
that are an artifact of small changes in the timing of the predicted tide [Williams et al., 2016]. To correctly
capture the magnitude of events, skew surge can be used [Williams et al., 2016]. It is defined as the absolute
difference between the peak total water level and peak tide during a tidal cycle (fig. 2.1).

Figure 2.1: Definition of skew surge. Figure is adapted from Williams et al. [2016] and uses the matplotlib python package [Hunter, 2007].

2.2.4. Local Meteorological Effects
The non-tidal residual component is predominantly affected by meteorological effects happening offshore
[Bakker et al., 2022]. However, local meteorological effects can influence the spatially and time-varying water
level through pressure and wind setup as well as wind-driven waves. For certain locations, wind and pressure
have to be taken into account to reach the best description of the water level associated with a compound
flood [Leijnse et al., 2021]. This is not always the case, because the effect wind and pressure have on the water
level are dependent on (i) the water depth, (ii) the geometric constraints and size of the local water bodies,
(iii) the time over which they act [Bosboom and Stive, 2021].

2.2.5. Obtaining the Time Record of Drivers in Data Scarce Environments
The method used in a research paper is often dependent on the case study location [Chen and Liu, 2014;
De Angeli et al., 2018; Kumbier et al., 2018; Webster et al., 2014]. Eilander et al. [2023b,c]; Parker et al. [2023]
create frameworks that are dependent on global models, which standardizes the approach. Parker et al.
[2023] use ERA5 climate reanalysis as a boundary condition to GTSM. They were able to determine that
tides, wave setup, and non-tidal residual were the dominant contributions to extreme water levels along the
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Atlantic coast of the United States. It was also demonstrated that the relative influence of the non-tidal resid-
ual component increased for more extreme events, driven by hurricanes. They also showed that the skill of
the framework was similar to more complex models. Eilander et al. [2023c] include GTSM forced with ERA5
as the downstream boundary condition but also uses ERA5 to compute precipitation and discharge. They
couple a hydrodynamic and impact model to reach a value for risk.

Using global models is attractive as it makes it easier to create a local model without spending time on data
scraping. However, the studies are affected by the uncertainty and the resolution of global datasets. For ex-
ample, ERA5 can capture the location and shape of extreme precipitation events but is unable to capture
extreme precipitation totals [Lavers et al., 2022]. This propagates to the outcome as irreducible uncertain-
ties are introduced when computing extreme flows [Bates et al., 2021]. Therefore, if local data sources are
available, these would be preferred.

2.3. Extreme Value Analysis (EVA)
Flood hazard is driven by extremes in compound flood driver magnitudes [Couasnon et al., 2022; Eilander
et al., 2023c; Hegnauer et al., 2014; Jane et al., 2022]. These events can be identified through an Extreme
Value Analysis (EVA) [Arns et al., 2013], which assumes that the time series is stationary and that each event is
independent and identically distributed (i.i.d.). L-moments can be used to fit parameters and choose the best
theoretical distribution according to a certain metric. For instance the Akaike Information Criterion (AIC),
Akaike Information Criterion corrected (AICc), or Bayesian Information Criterion (BIC) score can be used
[Eilander et al., 2023a]. The AIC estimates prediction error and provides a score, which can be computed
with eq. (2.1). BIC (eq. (2.2)) further penalizes model complexity as smaller scores are associated with models
that have fewer parameters. For all three metrics, the best-fitting model has the lowest score. Two different
approaches can be used to apply EVA, which are Block Maxima (BM) (section 2.3.1) and Peak Over Threshold
(POT) (section 2.3.2).

AIC =−2lnL+2k (2.1)

BIC = k lnn −2lnL (2.2)

In eq. (2.1) and eq. (2.2), L is the maximized value of the likelihood function, k is the number of parameters
in the model, and n is the number of data points used to fit the distribution.

2.3.1. Block Maxima (BM)
This approach divides the time record of a random variable into equal blocks of time. Since flood drivers
show seasonality on the scale of a year, a common approach is to take blocks that span a year [Eilander et al.,
2023c]. In certain locations, the seasonality may be shorter than a year. In these cases, a block that spans a
month can also be used [Couasnon et al., 2022]. The largest event within the block is retained to fit an extreme
value distribution. There are numerous limitations to this approach. Firstly, the start and end of each block
need to be defined to ensure the i.i.d. assumption is not violated. Secondly, the number of available historical
events is equal to the number of years of coinciding time records. This means that if two extremes occur
within a block, only the largest is used, and if no extremes occur within a year, the largest value within the
block is still retained.

2.3.2. Peak Over Threshold (POT)
This approach sets a threshold, any event above this threshold can be defined as an extreme. The validity of
the i.i.d. assumption is dependent on a de-clustering time. The main limitation of this approach is defining a
robust threshold and an accurate de-clustering time [Bocharov, 2023], which can be subjective. This can be
reduced by using mean residual life, return value, and parameter stability plots [Bocharov, 2023]. For a range
of thresholds, the mean residual life plot should show an approximately linear behavior, and both the return
value and parameters should be approximately constant. POT has been shown to be more stable than BM
in predicting return values when varying the length of the time record, which makes it advantageous to use
when the time record is short [Arns et al., 2013].
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2.3.3. Identification of Co-Occurring Random Variables
The above EVA methods describe how to obtain extreme events and distributions for random variables, but
they do not explain how to identify event pairs to model the joint probability distribution. For both ap-
proaches, there exist two methods. Firstly, an EVA can be fit to all random variables representing the magni-
tude of flood drivers [Eilander et al., 2023c]. For BM, event pairs are identified by occurring within the same
block. This will intrinsically contain both compound and non-compound events. Non-compound events are
expected to contribute heavily to the joint, introducing a bias [Eilander et al., 2023c]. For POT, drivers exhibit
a different number of extremes for a given year, the method used for BM cannot be used. The solution is to
identify the co-occurring magnitudes of other drivers for the different random variables, which ensures all
events are compound. However, since not all events will be extreme, the probability distributions will not be
valid for the entire joint distribution. Secondly, to ensure all events are compound, and to ensure the prob-
ability distributions associated with an EVA are valid, an EVA can be fitted to a dominant driver. The values
associated with the different random variables can then be identified by investigating the co-occurring mag-
nitudes [Jane et al., 2022]. The issue here is there is an omission of events that can lead to significant damages
associated with extremes of other drivers, this method is therefore case study specific.

2.4. Dependence Structure
Drivers can be considered to act independently [De Angeli et al., 2018; Webster et al., 2014]. However, this
may misinterpret the joint probability of these drivers if they are in reality dependent [Ward et al., 2018]. A
dependence structure is therefore required to best represent the RPs of a compound event. Compound flood
risk studies differ in the way this dependence structure is defined, which causes the return value associated
with a RP to change [Jane et al., 2022; Ward et al., 2018].

2.4.1. Choice of Correlation Coefficient
There are different ways to characterize the correlation between drivers. The Pearson correlation coefficient
assumes a linear relationship between bivariate variables. This is a significant limitation, as not all correla-
tions are linear. Moreover, its parametric nature can make it susceptible to outliers, which can heavily affect
the estimation of correlation. Kendall’s tau (τ) or Spearman’s rho (ρ) take a more robust approach to com-
puting the correlation of extreme events in a bivariate space [Wahl et al., 2015]. These are ranked-based
approaches, which are not dependent on their marginal distributions. For example, Kendall’s τ is defined as
the probability of concordance minus the probability of discordance of two random variables [Czado, 2019].
There are different variations of Kendall’s τ. τA will not make adjustments for ties (eq. (2.3)), while τB does
(eq. (2.4)) [Czado, 2019].

τA = Nc −Nd(n
2

) (2.3)

τB = Nc −Nd√
Nc +Nd +N1 ·

√
Nc +Nd +N2

(2.4)

In eq. (2.3) and eq. (2.4), Nc represents the number of concordant pairs, Nd the number of discordant pairs.
In eq. (2.3), n represents the total number of pairs. In eq. (2.4), N1 the number of extra x1 pairs, and N2 the
number of extra x2 pairs.

Regardless of its variations, Kendall’s τ has been used in previous compound flood studies and can show in-
teresting outcomes. It has shown climate change is causing a larger incidence of joint events in the upper tail
region [Wahl et al., 2015]. It has also shown the correlation is dependent on the time lag associated between
drivers [Ward et al., 2018], and the season (i.e. tropical cyclones are only relevant during a certain part of the
year) [Couasnon et al., 2022]. This is because of the underlying physical processes that cause the drivers. One
example is the weather pattern first affects the coast, which causes a combination of surge and wind-driven
waves, before causing precipitation inland, causing a flood wave and urban precipitation. Another example
is subsequent weather patterns cause precipitation to occur inland while simultaneously affecting the coast
[Khanal et al., 2019].
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2.4.2. Explicit Methods for Dependence Modeling
Multivariate probability density functions are used to represent the dependence structure between different
random variables. Examples of methods that can be applied to higher dimensional problems include copula
functions or the Heffernan and Tawn model [Couasnon, 2023].

In compound floods, one popular method is to use bivariate copulas on local boundary conditions [Couas-
non et al., 2022; Gori et al., 2020; Moftakhari et al., 2019, 2017; Phillips et al., 2022]. Sklar’s Theorem states that
for a 2-dimensional random vector with joint distribution F , and marginal Cumulative Distribution Func-
tions (CDFs) (Fi , F j ), the joint distribution can be expressed with eq. (2.5). For continuous distributions, the
copula C is unique [Czado, 2019]. The copula is fitted in the uniformly ranked space for variables u and v .

F (xi , x j ) =C (Fi (xi ),F j (x j )) =C (u, v) (2.5)

In two dimensions, isolines can be drawn the represent the bivariate CDF giving the return values for which a
RP can occur [Moftakhari et al., 2019]. Different scenarios exist [Serinaldi, 2014], but Moftakhari et al. [2019]
only investigate two of these. One represents the ’AND’ case where both random variables exceed the spec-
ified RP. The other represents the ’OR’ case where only one random variable exceeds the specified RP. A
choice must be made to discriminate between the two. The ’AND’ case is preferred as pairs associated with
the ’OR’ case at the extremities of the isoline exceed the values associated with the marginal distribution for
the same RP [Moftakhari et al., 2019]. An assumption can be made only to simulate this event, which reduces
the number of simulations [Moftakhari et al., 2019]. However, this assumes that a singular design event best
represents the return value for a given RP.

Another method is to generate events with the copula [Couasnon et al., 2022]. This assumes each gener-
ated event has a constant frequency of occurrence per year, foc, which is dependent on the extreme rate of
the historical event set, Erate (eq. (2.6)). An empirical CDF of the dependent variable can be created once
all generated events are simulated/estimated [Couasnon et al., 2022], effectively removing the assumption
mentioned above. For large event sets and large computational costs per simulation, this method becomes
dependent on the sampling and interpolation methods used (see section 2.5).

foc = 1

Erate
(2.6)

2.4.2.1. Vine Copulas
In a higher dimensional space, vine copulas can be used to characterize the dependence structure and gen-
erate events [Eilander et al., 2023c]. A regular vine is defined as a set of trees, V = (T1, ...,Td−1) on d elements
where each tree, T j = (N j ,E j ), is connected. Moreover, T1 is a tree with node set N1 = 1, ...,d and edge set
E1. For j ≥ 2, T j is a tree with node set N j = E j−1 and edge set E j . Finally, for 2 ≥ j ≤ d − 1, and a,b ∈ E j ,
|a ∩b| = 1, where a and b are nodes in T j . Therefore, in T j−1, they are edges and must share a common node
[Czado, 2019].

The number of regular vines grows at a rate (eq. (2.7)). This is caused by an enumerating problem when
counting all possible edges [Morales-Nápoles et al., 2023].

d !

2
·2

(d−2
2

)
(2.7)

A vine copula is defined by three components when applied to a d dimensional random vector [Czado, 2019].
Firstly, F marginal distributions for each d dimension are needed. Secondly, a V vine tree sequence on d
elements is required. Finally, a set of B bivariate pair copulas is needed. The number of copulas follows
(eq. (2.8)), because each edge, e in V is defined by a copula. A simplifying assumption is made where the
copula for an arbitrary edge is not dependent on the specific values of conditioning variables [Czado, 2019].

d · (d −1)

2
(2.8)
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To select bivariate copula families (and their associated parameters), AIC and BIC can be used. They are more
reliable than other tests such as the Cramer-von Mises statistic [Czado, 2019]. The best-fitting model is the
one with the lowest score.

The pair copula family set and their associated parameters depend on the vine structure [Czado, 2019]. More-
over, eq. (2.7) makes it difficult to use a brute force approach on high-dimensional datasets [Morales-Nápoles
et al., 2023]. For this reason, a sequential top-down approach called Dißmann’s algorithm [Dißmann et al.,
2013] is often used [Czado, 2019; Nagler and Vatter, 2023]. This approach selects the first tree T1, then con-
structs the following trees sequentially until the last tree, Td−1, is reached. Each tree needs to be defined for
all nodes and must satisfy the definition of a regular vine. Moreover, for each tree Ti , the best tree can be
obtained by maximizing a certain weight, w . This weight can be defined with different parameters [Czado,
2019]. One approach is to use the absolute empirical Kendall’s tau [Nagler and Vatter, 2023]. Dißmann’s al-
gorithm only makes local optimizations for each tree. Therefore, there is no guarantee the algorithm will find
the best set of trees, V [Morales-Nápoles et al., 2023]. However, brute force can require significant compu-
tational cost for high dimensional datasets, and has not yet been used when there are more than 8 random
variables [Morales-Nápoles et al., 2023].

Events can be generated from a fitted copula with an inverse Rosenblatt transform [Nagler and Vatter, 2023].
For each event, d , i.i.d. samples are generated from a uniform distribution on the interval [0, 1] (U). For
a copula C , these independent uniform variables are transformed in a random vector V of length d using
eq. (2.9) [Czado, 2019].

Vi =C−1
i |i−1,...,1(Ui |Ui−1, ...,U1), i = 1, ...,d (2.9)

Once the marginal distributions F for each d dimension are fitted (using methods such as AIC, BIC, or Sum
Square Error (SSE)), they can be used to transform V from a uniformly ranked space to the variable space.
This uses the inverse CDF of Fi and takes Vi as a quantile. Combining this process with eq. (2.9) M times
generates an event set of size M .

2.4.3. Implicit Methods for Dependence Modeling
Implicit methods, such as a weather generator partially solve the dependence structure. This is because indi-
vidual drivers are inherently linked as they are caused by the same or correlated weather pattern(s) [Khanal
et al., 2019]. One limitation is that the multivariate time record of multiple drivers is reduced to a univari-
ate hazard (water depth) time series [Couasnon, 2023]. To obtain this time series, computationally intensive
numerical models (hydrological and hydrodynamic) need to be run to convert boundary conditions from
the weather generator [Couasnon, 2023; Khanal et al., 2019]. Since changes in coastal water levels and dis-
charges are influenced by regional/continental changes in meteorological conditions, these models need to
be defined on a similar scale. This further increases the computational cost.

For extratropical weather events, weather generators can be used to create a synthetic time record for water
levels and discharge [Breinl et al., 2015; Khanal et al., 2019]. A hydrological model is needed to compute the
effect of precipitation on discharge. A hydrodynamic model is needed to compute the effect of discharge
and meteorological conditions on water levels. These weather generators can demonstrate why drivers are
dependent on each other, and that there exists a range of time lags where both drivers are dependent on
one another. The land use and catchment area causes this. For large RPs, this dependence increases, as the
weather pattern causing the compound event becomes more dominant [Khanal et al., 2019].

For tropical cyclones, the computational cost can be reduced by creating a subset of the meteorological forc-
ings using a sampling algorithm (see section 2.5). By only sampling relevant physical parameters, only a
small event set needs to be simulated. This method reduces the uncertainty in extreme value predictions
and is useful in areas with limited data on tropical cyclones [Bakker et al., 2022]. However, the model lacks
important independent variables in a compound flood environment, such as precipitation, which means the
current iteration can only be used to assess coastal floods.

2.4.4. Closing Thoughts on the Dependence Structure
With a large number of probabilistic variables, an explicit method such as vine copulas seems to be the
most attractive to define the dependence structure. They are a versatile option as they are flexible and in-
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terpretable. Since they create an event set of local boundary conditions, the computational cost is reduced
(no hydrological model, and the hydrodynamic model domain is smaller). To find the best vine, brute force
is expected to perform better than Dißmann’s algorithm. However, brute force can be computationally ex-
pensive for high dimensional datasets and has not yet been used for more than 8 random variables [Morales-
Nápoles et al., 2023]. For compound floods, if the magnitude, duration, lag, location, and spread are made
probabilistic for each driver, it is expected there will be more than 8 random variables. Therefore, Dißmann’s
algorithm is preferred. For correlation, the advantages of Kendall’s τ cannot be overlooked, especially if it is
used to apply Dißmann’s algorithm [Nagler and Vatter, 2023].

2.5. Reduction in Computational Time
It is computationally infeasible to get a holistic overview of compound floods for large event sets, nested in
multiple dimensions [Hendrickx et al., 2023]. The explanation is twofold. Firstly, the number of required
simulations scales with the number of dimensions, which is equivalent to the number of random variables.
This is similar to the curse of dimensionality in deep learning [Prince, 2023]. Secondly, flood propagation
is both non-linear and non-uniform, which means hydrodynamic models are required to understand the
spatio-temporal varying water depths for different events. Three different solutions exist to this problem,
and they are not mutually exclusive from one another (i.e, they can be combined). Firstly, the computational
resources can be improved (section 2.5.1). Secondly, the numerical problem related to the computation of
the flood hazard can be simplified (section 2.5.2). Finally, the number of samples can be reduced by only
simulating a smaller subset of the event set and using interpolation techniques to obtain all values for the
event (section 2.5.3).

2.5.1. Improve the Computational Resources
The computational resources can be improved, reducing the computational time associated with a compu-
tational cost. One example is a Graphics Processing Unit (GPU) [Apel et al., 2016]. Another example is a
High-Performance Computing (HPC) cluster [Morales-Nápoles et al., 2023]. However, these resources are
not always readily available. Moreover, in the case of the GPU, its use is software-specific.

2.5.2. Numerical Modeling Assumptions
The best possible description of a moving fluid can be obtained by solving the Navier-Stokes (NS) equations.
However, this is computationally infeasible for a large model domain, as the grid cell size needs to be suffi-
ciently small to capture the effect of turbulence to achieve a high accuracy [Pourmostafa and Ghadimi, 2020].
Moreover, certain terms contained within these equations can be assumed negligible as they do not con-
tribute extensively to the computation of the flood hazard [Leijnse et al., 2021]. The numerical problem can
therefore be simplified by neglecting certain physical processes.

In the context of regional flooding, the effect of turbulence can be assumed to be negligible. A reduction in the
number of grid cells can be achieved by using the Reynolds-Averaged Navier-Stokes (RANS) equations. RANS
is reached by averaging over the turbulent time scale, which smooths the effect of turbulence. Additional
terms, in the form of Reynolds stresses, are created to represent the effect of unresolved turbulence. These
terms are solved by using turbulence closure models, which are semi-empirical [Stewart, 2008]. Moreover,
incompressible flow can be assumed to reduce the number of terms in the governing equations [Stewart,
2008].

For low-lying coastal areas, the effect of vertical velocity can be ignored. This is achieved by reducing the
vertical momentum balance to a hydrostatic balance, reducing the number of terms that need to be solved
for the Non-linear Shallow Water Equations (NSWE). This assumes the vertical velocities are smaller than the
horizontal velocities, which is valid if the horizontal length scale is larger than the vertical length scale. To
further reduce the number of grid cells, and the complexity of the numerical scheme, the vertical direction is
averaged over. This leads to the Depth-Averaged Non-linear Shallow Water Equations (DA-NSWE). Different
numerical solvers can solve both the NSWE and the DA-NSWE [Leijnse et al., 2021]. These solvers can capture
the relevant hydrodynamic processes and have previously been used in compound flood risk assessments:
MIKE 11 + MIKE 21 [Webster et al., 2014]; Delft3D [Kumbier et al., 2018]. They are expected to bring significant
accuracy, but have a large computational cost associated with them [Leijnse et al., 2021].

To further simplify the numerical scheme, and reduce the computational cost, the Saint Venant Equations
(1D NSWE) further average over a lateral direction (eq. (2.10) and eq. (2.11)). This is the starting point for the
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numerical solver implemented in LISFLOOD-FP [Bates et al., 2010].

∂A

∂t
+ ∂Q

∂x
= 0 (2.10)

∂Q

∂t
+ ∂

∂x

[
Q3

Ac

]
+ g Ac

∂h

∂x
+ c f

|Q|Q
Ac R

= 0 (2.11)

Where A is the channel area [m2], t is time [s], Q is the discharge [m3s−1], x is the spatial coordinate [m],
Ac is the conveyance area [m2], g is the gravitational constant [m2s−1], h is the water depth [m] and R is the
hydraulic radius [m]. In eq. (2.11) (conservation of momentum in the x direction), the first term represents
acceleration, the second advection, the third water slope and the final term is friction slope. An equation
analogous to eq. (2.11) can be defined for the y direction. To reach the Local Inertia Equations (LIE), Bates
et al. [2010] neglect advection, assumes a rectangular channel and approximates R with h. This creates an
explicit scheme, which can cause instabilities at shallow depths. These can be reduced by modifying the
discharge in the term that dictates friction slope, creating an equation that is linear in discharge at the next
time step.

2.5.2.1. Super-Fast INundation of CoastS (SFINCS)
Super-Fast INundation of CoastS (SFINCS) [Leijnse et al., 2021] is a model based on the LIE, but further op-
timized for coastal flooding. When compared to the SFINCS, it includes a wind drag term, a source term
(allows for precipitation to be included), and an optional advection term that is useful for wave-related prob-
lems (but approximately doubles the computational cost). SFINCS also does not resolve morphodynamics
or the surf zone due to the increase in computational cost but enables coupling with empirical relationships.
SFINCS also achieves faster simulation times by computing fewer grid cells (deeper parts of the domain can
be ignored), and performs parallel computations.

While validating SFINCS, Leijnse et al. [2021] show that the model underestimates wave heights as it is a more
dissipative numerical scheme. When applying the model for a compound flood event and comparing it to a
process-based model (Delft3D), SFINCS is over 100 times faster while having a difference of 5.2 cm [Leijnse
et al., 2021]. This error is likely attributed to the resolution of the data [Bates et al., 2021], and the lack of a
sub-grid schematization [Eilander et al., 2023b], which has since been implemented.

Eilander et al. [2023b] validate SFINCS for a case study in Mozambique. When comparing it to a global model
(CaMa-Flood), SFINCS shows a better skill, but there are still significant amounts of false positives and nega-
tives. This can have a large effect on the estimation of damages for a given event as the model may inundate
an area with high vulnerability, when in reality it remains dry (false positive).

As mentioned above, SFINCS does not take into account morphodynamics and does not resolve the swash
zone. However, if morphological effects are not taken into account, water depths predicted by the model may
be inaccurate for a compound event [Kumbier et al., 2018]. Empirical relations can be used to get a value for
wave run up [Leijnse et al., 2021]. However Parker et al. [2023] argued wave run-up could be ignored as it does
not cause sustained flooding.

Thus, SFINCS may not provide the best representation of maximum water depths across the model region.
Nonetheless, its reduction in computation cost is extremely attractive for first-order risk assessments [Eilan-
der et al., 2023c].

2.5.3. Selection of Simulations
The number of samples can be reduced by only simulating a smaller subset of the event set and using in-
terpolation techniques to obtain all values for the event. These can take various forms but can be placed in
three distinct categories: creating a structured grid [Couasnon et al., 2022; Eilander et al., 2023c], sampling
from the input space [Camus et al., 2011], and/or sampling based on the output space by using active learning
[Gramacy and Lee, 2009; Hendrickx et al., 2023].

2.5.3.1. Structured Grid
This approach disregards the event set by creating a grid based on the exceedance probabilities of all driver
magnitudes [Couasnon et al., 2022; Eilander et al., 2023c]. In the case of Eilander et al. [2023c], the grid
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is based on one non-extreme condition and six extreme univariate conditions (2, 5, 10, 50, 100, and 500-
year return values). With four drivers, this means 74 = 2401 simulations need to be run, clearly showing the
effect of the curse of dimensionality. This method is highly dependent on the type of interpolation technique
used to obtain the consequences related to the event set (see section 2.5.3.4). By being independent of the
joint probability, changes in dependence could be investigated. A structured grid also allows for a sensitivity
analysis to be performed, making it easier to understand changes in the risk with respect to changes in the
dependence structure of the flood drivers modeled [Eilander et al., 2023c].

2.5.3.2. Sampling from the Input Space
This approach uses algorithms to choose a subset of samples based on the input space, which can be defined
by a grid or an event set. Possibilities include Monte Carlo sampling, Latin hypercube sampling, directional
sampling, stratified sampling, importance sampling, Self-Organizing Maps (SOM), k-means clustering, nu-
merical integration, and Maximum Dissimilarity Algorithm (MDA) [Camus et al., 2011; Diermanse et al., 2023;
Hendrickx et al., 2023]. Sampling from the input space is not efficient as it can generate clusters in the output
space that have a high correlation with one another. Moreover, the number of samples needs to be defined a
priori. This number can be difficult to choose when information on the output is unknown.

For compound floods, interpolation is required. For this purpose, Camus et al. [2011] demonstrate that a
MDA is the best algorithm to use when compared to k-means clustering and SOM. This is because it is not
affected by the disparity in density of the input, and thus best explores the boundaries of the input with a
limited number of samples. Based on an initialization, and a dissimilarity measure, which are often taken as
the maximum of an arbitrary dimension and Euclidean distance respectively [Camus et al., 2011; Hendrickx
et al., 2023], a MDA [Kennard and Stone, 1969] repeats two steps until the number of samples is reached.
Firstly, given the current subset, it assigns all remaining points to the sampled point to which it is the least
dissimilar. Secondly, based on this assignment, the point which has the largest remaining dissimilarity is the
next point added to the subset.

An example of using a MDA to collect 6 samples on a regular spaced grid can be seen in fig. 2.2. The color
blue represents available samples, the color orange represents samples currently contained in the subset,
and solid black lines are used to partition the input space and show which available samples are the closest
to the current samples in the subset. In this case, the maximum of both dimensions is used to initialize the
MDA, and Euclidean distance is used as a measure of dissimilarity. Based on this particular initialization, the
first four samples will contain the corners of the input space. The subsequent samples will create an evenly
spaced unstructured grid, which has a finer resolution with additional samples.

Figure 2.2: Using a MDA to collect 6 samples from a regularly spaced grid in 2 dimensions. Plots are created using the Matplotlib Python
package Hunter [2007].

2.5.3.3. Sampling Based on the Response of the Output Space
This approach uses machine learning techniques (regression) to fit a model to the current subset of samples.
These models are regularized, removing the need for a validation/test set, which would be needed for other
machine learning algorithms that use stochastic gradient descent (a neural network would be an example).
The model can provide estimates of the dependent variable(s) for the input space, and can be combined
with an acquisition function to select samples, but requires additional computational resources. These esti-
mates allow for a stopping criterion to be defined, which dictates when a sufficient number of samples have
been simulated to reach an accurate estimate for all the dependent variable(s) corresponding to the input
space. Finding an optimal stopping criterion for sampling algorithms is an active area of research. There
are different classifications. Accuracy and confidence-based criteria use a test dataset to evaluate the current
model concerning known values. Stability-based criteria evaluate the difference between values before and
after obtaining new data [Ishibashi and Hino, 2021]. Only the last criterion is appealing as it circumvents a
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test dataset. A test dataset is not desired as it requires more simulations, increasing the computational cost.
Moreover, picking these samples would require a separate sampling algorithm.

One such regression model is a Gaussian Process (GP). An extension is a Treed Gaussian Process (TGP) [Gra-
macy and Lee, 2009], which has been applied in hydraulic engineering to reduce the number of simulations
for an event set in 13 dimensions [Hendrickx et al., 2023].

Gaussian Process (GP)
A GP is defined by two components, its mean (m(x)) and covariance (or kernel) (k(x, x ′)) (eq. (2.12), where x
and x ′ represent 2 points in the input space), and uses Bayes theorem to actively learn from sequential data
arrivals [Bishop, 2006]. After each data point, a new model is trained, where the previous posterior is set as the
new prior (eq. (2.13), where t represents target, t̂ is the posterior target, m̂ is the posterior mean (eq. (2.14)),
σ̂2 is the posterior variance (eq. (2.15)), x̂ are inputs where prediction occurs, X are the sampled inputs, β−1

represents the confidence in the observed data (related to measurement error), and I is an identity matrix).

y(x) ∼GP (m(x),k(x, x ′)) (2.12)

p(t |t̂ ) = N (t̂ |m̂, σ̂2) (2.13)

m̂ = K (x̂,X)[K (X,X)+β−1I]−1t (2.14)

σ̂2 = k(x̂, x̂)−K (x̂,X)[K (X,X)+β−1I]−1K (X, x̂)+β−1 (2.15)

Each trained model provides predictions and modeling uncertainties for the dependent variable(s). This
assumes the local Gaussian approximation is valid [Gramacy and Lee, 2009]. These modeling uncertainties
can be used as an acquisition function to actively learn from the output space. One metric is to use the
quantile difference of the modeling uncertainty, also known as the Active Learning Mackay (ALM) statistic,
which is associated with the largest gain in expected information [MacKay, 1992]. For a structured grid, this
may lead to inefficient simulations as this metric is expected to be the largest at the extremities of the grid.
This is caused by the GP using the prior to fit the input space outside of its sampled information. For an
unstructured grid, the number of available samples is reduced at the extremities of the input space, reducing
this effect. Moreover, if these points are simulated, the information gained from these samples will be useful
as they are part of the stochastic event set. The computational cost associated with a GP is related to inverting
a matrix when computing the posterior predictive surface. This is proportional to the number of sampled
events cubed (O(N 3)) [Bishop, 2006; Gramacy and Lee, 2009].

A common initial prior for a GP is to assume a mean with a value of zero, a squared exponential kernel
(eq. (2.16), where σ f is a scaling factor and ℓ is a length scale), and a constant β [Bishop, 2006]. Therefore,
if a prior does not include information on any data points, it will initially sample randomly from the input
space, as the quantile difference would be spatially uniform (fig. 2.3). To prevent this, and initially simulate
data points that are expected to have meaningful information associated with them, Hendrickx et al. [2023]
use a MDA with a small subset size.

k(x, x ′) =σ2
f ·exp

(
−∥ x −x ′ ∥2

2 ·ℓ2

)
(2.16)

Treed Gaussian Process (TGP)
The advantage of using a treed model is that it partitions the input, allowing different models to fit different
variations in the data. This allows the TGP to be non-stationary and account for heteroskedasticity. Het-
eroskedasticity occurs when the noise/residual for the observations is not constant for the entire input space.
Therefore partitions prevent uncertainty from propagating from feature-rich sections, which would result in
large ALM statistics in uninteresting areas [Gramacy, 2023]. Therefore, in theory, a TGP enables the sampling
to only occur in feature-rich sections of the input space. A feature can be defined as a measurable quantity
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(a) Samples generated from GP. (b) GP mean and associated confidence interval (uncertainty)
compared to ground truth. ALM statistic is synonymous with
the confidence interval.

Figure 2.3: GP behavior under prior assumptions. Figures obtained from DSAIE [2024].

in the data, which the regression model needs to identify to provide an accurate estimate of the dependent
variable(s). An example can be the locations, magnitudes, and sparsity of local maxima/minima.

A TGP works by recursively partitioning the input space by making binary splits, which are parallel to coordi-
nate axes. To prevent a partition from occurring at every data point (overfitting), a meaningful prior for the
size of data points within a tree is required. Starting with a tree that has no partitions, ν ∈ T , the probability of
a split can be calculated using eq. (2.17), where qν is the depth of the tree, a and b are parameters that dictate
the size and spread of the trees [Gramacy and Lee, 2009]. a and b can be assumed to be 0.5 and 2 respectively
[Gramacy and Lee, 2009].

Pspl i t = a
(
1+qν

)−b (2.17)

For each ν region, a hierarchical GP model is used which follows eq. (2.18) [Gramacy and Lee, 2009].
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Each ν region contains data Dν = (Xν,Zν) (Z is analogous to t in eq. (2.13)). Linear trend coefficient βν comes
from an unknown mean β0 and region specific variance σ2

ντ
2
ν. N is a multivariate normal distribution. σ2

ν

is the variance with a Kernel Kν. Fν = (1,Xν). W is an m x m matrix, where m represents the number of
independent variables and an intercept. IG and W represent the Inverse-Gamma and Wishart distributions
respectively. All other variables are hyperparameters which can be treated as known (see section 2.5.3.4). For
datasets with a small amount of noise, an improper prior, where W = ∞ can be used to simplify eq. (2.18)
[Gramacy, 2023].

In eq. (2.18), nothing prevents the mean of the overall model from being discontinuous at the location of a
partition [Gramacy and Lee, 2009]. This can cause the highest uncertainty to be located along the partition,
causing a sample near it to be simulated.

GP regression is more flexible than linear regression, but if the data portrays linear trends, a linear model is
more efficient [Gramacy and Lee, 2009]. Therefore, eq. (2.18) can be augmented by using a limiting linear
model. This is done by introducing a boolean which either selects a GP or a linear model for a partition or a
dimension [Gramacy and Lee, 2009].

If no partitions occur, the additional hyperparameters and equations in eq. (2.18) increase the computational
cost of a TGP when compared to a GP without bringing additional information. However, if a partition oc-
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curs, splitting the input space reduces the main computational cost of using a GP, as it is proportional to the
number of sample points that it is modeling (O(N 3)).

2.5.3.4. Interpolation Techniques
Only simulating a subset of the event set means interpolation techniques are required to get a value of conse-
quences for the entire event set. In compound floods, this is often taken as linear: structured grid [Couasnon
et al., 2022; Eilander et al., 2023c]; unstructured grid [Jane et al., 2022]). Different approaches are available:
GP or TGP [Gramacy and Lee, 2009],Radial Basis Functions (RBFs) [Bishop, 2006; Jane et al., 2022], or a neural
network [Hendrickx et al., 2023]. The main issue with these latter approaches is an additional computational
cost is required to train these models.

When comparing interpolation techniques for compound floods, Jane et al. [2022] show linear scatter inter-
polation leads to the smallest Root Mean Square Error (RMSE). However, they did not consider a GP, TGP, or
neural networks.

Linear interpolation requires limited additional computational cost as it is deterministic and has no hyper-
parameters. Its accuracy depends on the sparsity of simulated data points, which should be minimized.

As shown earlier, The GP or TGP needs to compute the posterior predictive surface. Additionally, a GP, and
a TGP only have hyperparameters. To optimize these, two methods are available. For a GP, empirical Bayes
(also known as Bayesian inference) [Bishop, 2006] can be used (fig. 2.4), where the log-likelihood is maximized
(eq. (2.19), dependencies for σ f and ℓ come from K), which requires an iterative process [Bishop, 2006]. For
a TGP, Gramacy and Lee [2009] use Markov Chain Monte Carlo (MCMC). A MCMC works by initializing a
value for the hyperparameters and sampling from the distributions (eq. (2.18)). The sampling is repeated
for a pre-defined number of steps [Gramacy, 2023]. The accuracy of the estimate for the hyperparameters is
dependent on how many samples are used to represent the distribution.

RBFs have hyperparameters and weights associated with them. These weights need to be marginalized to
reach a likelihood function that only depends on hyperparameters. Then empirical Bayes can be used to
optimize the hyperparameters [Bishop, 2006].

ln p(t|σ f ,ℓ,β) =−1

2
ln |K+β−1I|− 1

2
tT (K+β−1I)−1t− N

2
ln2π (2.19)

(a) Initial guess.
σ f = 100, ℓ= 100, β= 100, ln p(t) =−19.91.

(b) 50% optimized.
σ f = 2.1, ℓ= 0.43, β= 16.1, ln p(t) =−5.98.

(c) 100% optimized.
σ f = 0.4, ℓ= 1.2, β= 167.1, ln p(t) =−2.25.

Figure 2.4: Applying empirical Bayes for a GP with a squared exponential kernel (eq. (2.16)) and 5 sampled points [DSAIE, 2024].

A neural network can take various forms. It can be used as a regression technique to estimate a small num-
ber of outputs [Ayyad et al., 2022; Hendrickx et al., 2023] or multiple outputs, such as pixels of an image
[Bentivoglio et al., 2023]. Since they are affected by the curse of dimensionality, more weights are required
to correctly map and understand all of the dimensions [Prince, 2023]. This exponential process makes it
computationally expensive to tackle problems with a large dimensionality. The curse of dimensionality can
be solved by applying inductive biases, which are prior assumptions of a trend/feature existing in the data.
These reduce the number of weights required [Bentivoglio et al., 2023]. However, neural networks are not
regularized. Neural networks are therefore not an attractive option for minimizing the computational cost.
To ensure they do not overfit the data, they require the dataset to be split into two or three components:
training, validation, and testing. For a small number of samples, this becomes problematic. Moreover, they
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can require significant computational resources to train the models, as a large number of weights need to be
optimized.

2.5.4. Closing Thoughts on Computational Time
The computational time can be reduced in three ways: improving computational resources, reducing the
complexity of numerical models by increasing the number of assumptions, and using a sampling strategy
coupled with an interpolation technique.

SFINCS has already been applied in the context of compound floods [Diermanse et al., 2023; Eilander et al.,
2023c] and has shown that its accuracy is not equivalent to more complex numerical models [Leijnse et al.,
2021]. Nonetheless, its reduction in computational cost makes it attractive to apply in compound flood risk
assessments.

A TGP has shown its applicability in reducing the number of simulations to reach an accurate estimate of the
dependent variable(s) [Gramacy and Lee, 2009; Hendrickx et al., 2023]. Its non-stationarity and heteroskedas-
ticity make it more appealing than a GP. A computational cost is required to obtain the posterior predictive
surface, which is only beneficial when a substantial number of samples are not required to simulate. This is
dependent on the choice of a stopping criterion. Current literature has shown that stability-based methods
are the most appealing. However, nothing indicates the best variable to monitor, this will need to be defined
during the research. Finally, a TGP heavily depends on an initial prior, but Hendrickx et al. [2023] have shown
that a MDA can be used to provide an initial set of data points, reducing the computational cost of using a
TGP for a certain amount of samples.

2.6. Conclusion
In conclusion, this literature review has presented insights into the assumptions and tools required to model
and quantify compound flood risk in estuarine areas.

Firstly, risk is defined as a function of hazard, exposure, and vulnerability. Hazard is defined by the probability
of the event and its associated maximum water depth. The probability refers to the frequency at which a
value of economic damages is exceeded. The maximum water depth can be modeled using a hydrodynamic
model. Different options are available but SFINCS is preferred as it significantly reduces the computational
cost of running simulations. However, its reduced complexity can introduce uncertainty in the quantification
of flood hazard. Exposure and vulnerability can be modeled using an impact model. EAD can be used as a
metric to perform a cost-benefit analysis on flood protection but requires quantification of risk for different
RPs.

Secondly, a compound flood is defined as the interaction of multiple drivers leading to a larger flood hazard
than if they occurred in isolation. These drivers are fluvial discharge, pluvial, coastal water level, and local
meteorological effects. These drivers influence the flood hazard with their magnitude, duration, spatial pat-
tern, and time lag with other drivers. Depending on the case study location, some of these drivers can be
ignored as the flood hazard will not be sensitive to them. This simplifies the risk assessment in both the sta-
tistical modeling and overall computational cost. Different underlying weather patterns have distinct effects
and they should be taken into account separately, but a small time record may make this difficult.

Thirdly, using an EVA, historical compound flood events can be identified. These should be applied to the
magnitude of the dominant driver to ensure all identified events are expected to lead to an extreme hazard. A
POT approach is preferred as it is expected to perform better on short-time records.

Then, to reduce the computational cost of numerically simulating events, an explicit method of modeling
the dependence structure shows the most promise. These can create stochastic event sets of local boundary
conditions reducing the modeling extent required. A vine copula can be used to model the dependence struc-
ture of the random variables associated with different drivers. Fitting a vine copula to a high-dimensionality
dataset is difficult, as an enumeration problem makes it difficult to choose the vine copula that fits the data
with the smallest error. To reduce the computational cost of using a brute force approach (fitting all struc-
tures and choosing the one with the smallest error), Dißmann’s algorithm is available, but it cannot ensure
that it fits the best statistical model.

Finally, using machine learning techniques such as a GP or TGP has been shown to reduce the number of
samples required to reach an accurate estimate of the dependent variable(s). However, a model needs to be
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trained after each simulation. This introduces a computational cost that is proportional to the number of
sampled points. A stopping criterion will need to be defined in this research to minimize the computational
cost.
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3
Case Study and Data

For this research, a location affected by compound floods was required. Furthermore, these events preferably
had to happen at a relatively high frequency, making it easier to model the dependence structure and validate
hydrodynamic numerical models. Additionally, it is easier to correctly model the dependence structure if a
reliable and long-term record of coinciding variables is available. This can be achieved by using local data
sources in areas that have the resources to install and monitor the necessary measuring devices.

The case study is introduced in section 3.1. Information on the raw data related to flood drivers is given in
section 3.2. A brief description of past historical compound flood event is provided in section 3.3. Finally, a
description of the current numerical models is given in section 3.4.

3.1. Charleston
Charleston, South Carolina is located along the Atlantic coast of the United States. This region has been
identified as an area prone to compound floods. These are driven by combinations of precipitation, surge,
tide, waves, and discharge [Couasnon et al., 2020; Parker et al., 2023; Wahl et al., 2015]. Tropical cyclones
often cause the largest amount of damage in this region as individual events generate co-occurring extremes
in drivers which lead to compound flood events. In the Atlantic, tropical cyclones are known as hurricanes
and are classified based on their wind speed [NOAA, 2012]. The hurricane season takes place between June
1 and November 30 and has return periods that range between 5 and 15 years for the South Atlantic coast
[NOAA, 2021]. This has caused numerous numerical models to be validated in this region in an attempt to
understand flood risk and reduce the annual expected damages by improving flood protection infrastructure.

The Atlantic coast is also affected by extra tropical storms that occur during the winter. These events have a
return period that is approximately one year and generate significant storm surges that often coincide with
significant precipitation, which are not necessarily extreme. These cause more frequent but less severe com-
pound flood events, which should still be accounted for [Parker et al., 2023].

The United States also has sources of reliable local data, which are open source. National Oceanic and At-
mospheric Organization (NOAA) have gauges in important cities across the United States that measure water
level, wind, pressure, and temperature. They are also able to provide an estimate for the tide by perform-
ing a spectral analysis on the 37 most important constituents [NOAA, 2019]. United States Geological Sur-
vey (USGS) provide data related to the quantity, quality, distribution, and movement of surface and under-
ground water [USGS, 2009]. Gauges can be placed along relatively important rivers, which provide informa-
tion on variables such as discharge and precipitation.

The city of Charleston is situated on the estuary created by the tidally dominated Ashley and Cooper Rivers,
and its historical center is located approximately 8 kilometers from the tidal inlet. Since its settlement, it has
enabled its growth through land reclamation of wetlands, normally flooded during high tides [Butler, 2020].
This has placed the population of the city at risk of floods as these reclamations are low-lying pieces of land,
which are affected by relative sea level rise [Holtz et al., 2014]. EVA on total water levels demonstrate that
return periods of events have decreased significantly over the past 70 years [Diermanse et al., 2023], while
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flood defense/protection measures have not been improved to accommodate these changes [Holtz et al.,
2014].

Upstream of Charleston, the Pinopolis Dam, located along the Cooper River was constructed to supply rural
communities in South Carolina with electricity. This effectively removed the natural variability of the Cooper
River, as flow is predominantly dictated by the demand for electricity. This also had the indirect effect of
reducing the effect of compound floods as extremes in discharge caused by intense precipitation in the up-
stream catchments can be stored in Lake Moultrie, which is the dam reservoir.

3.2. Data Related to the Time Records of Drivers
This section presents the sources, and locations (fig. 3.1) of data to obtain the time record of the different
compound flood drivers identified in chapter 2. These are fluvial discharge, pluvial, coastal water level, and
local meteorological effects. In some cases, it also explains why the drivers are not investigated further. The
combined time record of the considered compound flood drivers is 24 years and 4 months.

Figure 3.1: Gauge locations used to obtain the time record of compound flood drivers.

3.2.1. Downstream Water Level
Information on the tide and water level can be obtained from NOAA. The gauge is located in Charleston
Harbor near the city center. This is the blue marker in fig. 3.1. The tidal time record is computed using a
harmonic analysis and is stationary. NOAA only includes 37 components, none of which have a period longer
than a year.

Data on water level is available from 1921 to the present day with a sampling rate of 1 hour. The data is non-
stationary and needs to be detrended to apply an extreme value analysis. This is caused by the yearly trend
of MSL as well as the seasonality in MMSL. The total water level time record contains the effect of tides, sea
level rise, and a non-tidal residual component (see section 2.2.3.2 for the definition of the non-tidal residual
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component).

3.2.2. Upstream Discharge
Information on the historical discharge of the Cooper River can be obtained from the USGS. The gauge is
located directly downstream of Lake Moultrie. Data is available from October 1998 onwards, and there are
periods of missing data, which can last on the scale of months. Data is measured at 15-minute intervals in
cubic feet per second.

3.2.3. Precipitation
Local data for precipitation is available, but only until 2007. ERA5 reanalysis will therefore be used instead.
Using the HydroMT data catalog [Eilander et al., 2023a], ERA5 data can be obtained from January 1979 to
March 2023. The sampling rate is 1 hour.

ERA5 has a coarse resolution for its precipitation reanalysis, with a grid based on 0.25o arcs on longitude and
latitude, meaning precipitation is not directly measured at Charleston. A choice therefore has to be made on
where to measure precipitation. One option is to take the spatial average [Eilander et al., 2023c]. However,
this could diffuse the magnitude of a historical event if the peak occurs at slightly different time steps, un-
derestimating the actual magnitude of the event. Another option is to take data from a single coordinate and
assume it represents all the other coordinates.

The second option reduces peak attenuation and is more conservative. To choose the coordinate, NOAA cre-
ates return period maps of precipitation (fig. 3.2), which show locations near the open coast are susceptible to
larger magnitudes of precipitation. Therefore, to be conservative, the coordinate with the smallest Euclidean
distance to Charleston, whilst also located near the open coast was chosen. With the resolution of ERA5, this
resulted in 32.75o North, 79.75o West, which can be seen in fig. 3.1.

Figure 3.2: 2-year return period map for rainfall from the NOAA. ’+’ markers represent differences of 0.1o in longitude and latitude.
Isolines create bounding regions of equal precipitation magnitude. The SFINCS model region can be encapsulated within three of these
regions. In metric, the difference between the return values of regions with the largest and smallest return values is approximately 10
millimeters per hour.
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3.2.4. Wind and Pressure
Data related to local meteorological conditions can be obtained locally from various sources (such as the
NOAA). However, similar to precipitation the time record is too short. Moreover, based on geometric con-
straints and the size of the estuary (fig. 3.1), it is assumed that wind and pressure setup will have negligible
effects on flood risk, and this will not be investigated further. This is advantageous as it reduces the dimen-
sionality, but is also a limitation as it does not provide the best representation of compound flood risk.

3.3. Historical Compound Floods
For the coinciding time record of available data between October 1998 and March 2023, two hurricanes had
a noticeable effect on the non-tidal residual water level in Charleston. Matthew in October 2016 and Irma in
September 2017.

Hurricane Matthew caused the largest skew surge at the NOAAs gauge for the record of coinciding data. Ac-
companied by a significant amount of precipitation, Charleston County suffered from widespread floods and
power outages. In South Carolina, Matthew is estimated to have killed 4 individuals and caused 249.6 million
USD in damages [Wikipedia, 2023].

Hurricane Irma caused the second-largest skew surge at the NOAAs gauge over the same time record. Ac-
companied by a large higher high tide and extreme precipitation, multiple roads were inundated. However,
the short duration of the skew surge meant that little damage was caused by the event [Wikipedia, 2024].

3.4. FloodAdapt
The numerical models described in this section were obtained from FloodAdapt, an open-source graphical
user interface that combines accurate numerical modeling with an interpretable user interface to show the
effect of land use patterns and climate change on flood risk [Deltares, 2024]. Charleston was used as a pilot
study to show the different applications of the software. It combines a hydrodynamic model (section 3.4.1)
and an impact model (section 3.4.2).

3.4.1. Hydrodynamic Model
During a previous study, a SFINCS model (fig. 3.3) was validated for the county of Charleston [Diermanse
et al., 2023]. In summary, the computational cost was minimized by reducing the model extent. Since com-
putational time is correlated to the grid size, a 200-meter grid was used. A sub-grid can be used to improve
the accuracy of the model while limiting the increase in computational expense. Levees and dunes are mod-
eled as weirs. Two pumps are included to represent existing infrastructure. Finally, an infiltration curve is
also included.

For validation, four scenarios were evaluated against historical water levels using an R-squared metric (R2)
against the NOAAs gauge in Charleston Harbor [Diermanse et al., 2023]. The closer R2 is to 1, the better the
model performs. The findings related to three of these scenarios can be found below. There is little relevance
in reporting the outcomes of the fourth scenario (hurricane Joaquin) as the results were affected by a bug,
which has since been resolved [Diermanse et al., 2023].

1. Long-term tide and surge water levels: The model achieved R2 = 0.96 for tide and R2 = 0.64 for surge.

2. King Tide event: The model achieved a value of R2 = 0.92. It also correctly predicted which roads were
inundated.

3. Hurricane Irma: The model overestimated the water levels by approximately 0.5 feet as it does not
take into account seasonality in mean sea level. During the hurricane 166 homes were flooded. In the
model, 162 of these homes were located in inundated areas.

While the model can be considered validated, it is important to mention that it does not represent reality
exactly. This is caused by a multitude of factors such as model choice, accuracy of data, and model schema-
tization. Moreover, for scenario 3, Diermanse et al. [2023] only mentions the ratio of true positives to actual
positives. However, there is no consideration of false positives, which should occur if the water levels are
overestimated by 0.5 feet, leading to an overestimation of flooded homes.

Additionally, water level boundaries are also forced with water level data from the NOAA gauge, located in
the Charleston Harbor. Since the gauge is not located on an open coast, the water level is affected by river
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Figure 3.3: SFINCS model showing water level boundaries, outflow boundaries, levee/dune/seawall locations, discharge boundaries
modeled as point sources, and the digital elevation model [Diermanse et al., 2023; Eilander et al., 2023a].

discharge, local meteorological effects, and tidal amplification, not providing the best representation of the
water level at the boundaries. Another limitation of this model is concerning the types of failure. Currently,
flood hazards can only be caused by overflow. It disregards other levee failures such as wave overtopping,
piping, or micro instability, which reduces the risk associated with a flood event.

3.4.2. Impact Model
The DELFT-Fast Impact Assessment Tool (FIAT) model combines a flood hazard map, exposure, and vulner-
ability data to obtain consequences related to an event. These consequences can be economic or social. The
model is only defined for Charleston County [Diermanse et al., 2023], which means that the impact model
is only defined in the downstream region of the SFINCS model (fig. 3.3). The model uses 224 census block
groups to subdivide the model. Damages occur if the water level at the centroid of the footprint of a building
exceeds its ground elevation. Damage for a building is calculated by combining the maximum water depth
(hazard), maximum damage (exposure), and depth damage curves (vulnerability). SFINCS calculates the
spatially varying maximum water depth. Exposure is defined by the National Structure Inventory (NSI) [Dier-
manse et al., 2023]. Vulnerability is defined by various data sources based on the category of the modeled
building [Diermanse et al., 2023]. The model includes roads, but these do not have depth-damage curves
associated with them, they are only used to show accessibility constraints, a metric to measure social conse-
quence.
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4
Methods

Four distinct tools are required to perform a compound flood risk assessment. Firstly, economic damages
from flood events need to be modeled (section 4.1). This requires a hydrodynamic model (section 4.1.1)
and an impact model (section 4.1.2). Secondly, a statistical model is needed to model the dependence be-
tween the different random variables (section 4.4.1), allowing for the generation of representative stochastic
events (section 4.4.2), which are used as the hydrodynamic model’s boundary conditions (section 4.4.3). To
fit the statistical model, historical observations of past flood events are needed (section 4.3). This requires
preprocessing the time records of the different drivers (section 4.2). Then, the dominant driver is identified
(section 4.3.1), on which an Extreme Value Analysis (EVA) is performed (section 4.3.3), and corresponding
random variables are defined (section 4.3.2). This generates a historical event set (section 4.3.4). Thirdly, a
surrogate damage model is required to reduce the computational cost of simulating all stochastic events gen-
erated by the statistical model (section 4.5). Two different approaches are investigated: a priori (section 4.5.1)
and a posteriori (section 4.5.2). The a priori approach is the current state-of-the-art recommended by Jane
et al. [2022]. It consists of sampling with a Maximum Dissimilarity Algorithm (MDA) (section 4.5.1.1) and
using linear scatter interpolation (section 4.5.1.2). The a posteriori approach consists of sampling and surro-
gate damage modeling with a Treed Gaussian Process (TGP) (section 4.5.2.2). This requires an initialization
(section 4.5.2.1), a stopping criterion (section 4.5.2.3), and an explanation of how to sample and model mul-
tiple outputs (section 4.5.2.4). Finally, once a sufficiently accurate estimation of economic damages for all
stochastic events is obtained, risk can be modeled (section 4.6) once it is defined (section 4.6.1). This allows
for a statistical analysis (section 4.6.2) to compare different sampling and surrogate approaches, and the ef-
fect of including additional random variables. It also allows to understand which driver is contributing the
most to the economic damages (section 4.3.1). The overall method is summarized in fig. 4.1.

Figure 4.1: Overall methodology, showing the different tools needed to model risk. The damage (hydrodynamic and impact) model is
included in the surrogate damage modeling approaches.
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4.1. Damage Modeling
The hazard (section 4.1.1) and impact (section 4.1.2) numerical models are required to obtain the damages
related to (compound) flood events. These models were validated in a previous study [Diermanse et al., 2023].
Only small changes were made to the impact model (section A.2). Here a description of the workflows of the
models is given to explain how an economic damage value can be obtained from boundary condition inputs
(fig. 4.2). Once the time series of the boundary conditions is known, it is provided to the SFINCS, which
computes the maximum water depth for each sub-grid cell (section 4.1.1). This is known as the hazard map.
This is then used as an input for DELFT-FIAT model, which combines it with the ground elevation, depth-
damage curves, and the maximum damages associated with the buildings located in the model domain to
obtain the economic damages associated with a flood event (section 4.1.2).

Figure 4.2: Damage modeling. Workflow used to reach total economic damages for a flood event.

4.1.1. Hazard Modeling with SFINCS
SFINCS requires a set of boundary conditions to calculate the maximum water depth of each grid cell, which
is used as the hazard map. A boundary condition for upstream discharge and downstream water level is
required, for precipitation it is optional. These boundary conditions need to be defined for each time step and
at specific locations. Here it is assumed that the coastal water level and precipitation are spatially uniform to
reduce the number of dimensions needed to characterize a driver. For the former, the water level is uniform
along the downstream boundary. For the latter, the precipitation is uniform over the entire model domain
(conservative according to fig. 3.2). It is also assumed that only the discharge of the Cooper River is important.
Solving the governing equations (section A.1) allows SFINCS to compute the maximum water depth for each
sub-grid over the entire model domain (fig. 3.3), which is used as the hazard map.

4.1.2. Impact Modeling with DELFT-Fast Impact Assessment Tool (DELFT-FIAT)
DELFT-Fast Impact Assessment Tool (FIAT) allows for the quantification of the exposure and vulnerability of a
flood event once the hazard map is known [Diermanse et al., 2023]. The model requires three inputs. Firstly,
a flood map (hazard) containing maximum water depths at all grid cells (provided by SFINCS). Secondly,
ground elevation and depth-damage functions (vulnerability curves) dictate the damage fraction associated
with a particular building (or grid cell), and water depth. These curves are often non-linear. Finally, maximum
potential damages (exposure) associated with a particular building (or grid cell). When hazard, vulnerability
curves, and exposure are combined, the economic damages of a building (or grid cell) can be obtained. Sum-
ming all buildings (or grid cells) together provides an estimate for total economic damages. This workflow
can be visually seen in fig. 4.3.

Figure 4.3: DELFT-FIAT workflow.

25



4.2. Preprocessing the Time Records of Different Drivers 4. Methods

While the model for Charleston was validated in a previous study [Diermanse et al., 2023], some buildings
were constantly flooded and had to be removed (section A.2).

The current DELFT-FIAT model is only defined for Charleston County. This first model will be called the com-
plete model. All the buildings within the model are associated with census block groups, which are used to
split the complete model. Each census block group is attributed to a sub-county according to the Census
County Division [United States Census Bureau, n.d.]. These 11 sub-counties are used to define a second
model which is called the sub-county model (fig. 4.4). Then, according to these sub-county definitions, a
third model is defined by grouping sub-counties according to their proximity to the open coast. These groups
can be classified as either coastal or inland. This third model will be called the classified model (table 4.1).
The reasons for these different models will become apparent when introducing the stopping criterion for the
TGP (section 4.5.2.3).

Figure 4.4: Sub-county model according to the Census County Division [Esri Federal Datasets, 2024]. The colors of names are represen-
tative of their classification in table 4.1: red represents coastal and blue represents inland.

Table 4.1: Classified model according to the proximity to the open coast of each sub-county.

Coastal Inland
Edisto Island Ravenel-Hollywood

Kiawah Island-Seabrook Island West Ashley
Wadmalaw Island North Charleston

Johns Island Charleston Central
James Island

Mount Pleasant
McClellanville

4.2. Preprocessing the Time Records of Different Drivers
In this section, the data preprocessing steps taken to reach the time records of the different flood drivers are
explained. It is necessary to avoid introducing any bias in the quantification of past flood hazards. This will

26



4.3. Defining a Historical Event Set for Compound Floods 4. Methods

skew the dependence and the magnitude of the stochastic events.

The first step in preprocessing is to ensure that all datasets are based on the same timezone. This is important
for the time lag between drivers. The Universal Coordinated Time (UTC) is used as the switch to daylight
saving time does not affect it. Moreover, local time is not needed for the main analysis as stochastic events
will be generated (section 4.4.3). Then, the total water level, upstream discharge, and precipitation time
records are further preprocessed.

For the total water level, three components are decoupled: the tide, the Mean Sea Level (MSL), and the non-
tidal residual. These components can be linearly superposed to obtain the total water level. This provides a
higher accuracy when schematizing the dependence structure, as the tidal magnitudes are bounded by their
constituents and are not weather-related, skewing the correlation with different drivers when identifying ex-
tremes. Therefore, the EVA should only be performed on the non-tidal residual to provide a more meaningful
correlation (this assumption is confirmed in section D.3.1). Since the time record is non-stationary, the trend
in the MSL should first be removed to apply an EVA. Here, a 1-year moving average is used [Arns et al., 2013].
This analysis has the undesired effect of removing tidal periods that are longer than a year from the analysis.
It also provides the value of the MSL component to use when linearly superposing different components to
obtain the total water level, which is 0.2 m (section B.1). The concept of skew surge [Williams et al., 2016] is
used to represent the non-tidal residual (fig. 2.1). Here, a tidal cycle is defined as occurring from trough to
trough. The use of skew surge causes the skew surge duration to occur in 12-hour increments for the case
study of Charleston (section B.1).

The upstream discharge is converted from imperial to metric. The data is resampled from 15-minute to
hourly intervals by taking the maximum discharge within that hour. Since there are periods of missing data
that can last for months, it is difficult to find a suitable interpolation method. For simplicity, a backfill interpo-
lation is used, which means the last observed value is repeated until another observed value is reached. The
discharge time record is affected by hydropeaking, which makes it difficult to apply an EVA on (section B.3).
However, the findings in chapter C (summarized in section 4.3.1) meant this did not have to be solved for the
case study of Charleston.

ERA5 provides its data for precipitation as meters per time step. Therefore, for hourly time steps, the time
record is divided by 1,000 to reach units equal to millimeters per hour (recognized by SFINCS). As men-
tioned in chapter 2, ERA5 under-predicts extremes, and this is also the case for Charleston (section B.4 and
section D.2).

4.3. Defining a Historical Event Set for Compound Floods
In this section, a description is given of how to identify historical flood events. For each flood event, ran-
dom variables that define simplified parametric boundary conditions (section 4.4.3) are collected. This step
is crucial in fitting a statistical model to generate stochastic events (section 4.4). Small differences in the
methodology used to identify flood events and/or collect the random variables can have larger differences in
the stochastic events generated, which will influence the estimate of flood risk.

The short time record of 24 years and 4 months means Peak Over Threshold (POT) is preferred to increase the
number of identified extremes. To ensure the marginal Probability Distribution Functions (PDFs) are valid
for the entire joint probability distribution, a dominant driver should first be identified (section 4.3.1), which
requires a sensitivity analysis. Then, the co-occurring random variables (magnitudes, durations, and time
lags) and their correlation should be defined (section 4.3.2). Finally, section 4.3.3 shows how POT is applied
to the dominant driver. The threshold is chosen based on a univariate and multivariate sensitivity analysis.
Once a stable threshold is defined, the historical event set is obtained (section 4.3.4). This workflow can be
visualized in fig. 4.5.

27



4.3. Defining a Historical Event Set for Compound Floods 4. Methods

Figure 4.5: Workflow to reach historical event set.

4.3.1. Identifying the Dominant Driver for Extreme Value Analysis
To identify the dominant driver, a sensitivity analysis of the different driver magnitudes on the total eco-
nomic damages of the complete FIAT model is performed. For each driver, two magnitudes are used: the
maximum historically observed value, and the the average value over the time record. This creates a grid of
23 simulations. The dominant driver is defined as the driver that causes the largest difference in total eco-
nomic damages when it is considered extreme when compared to the event where all drivers are not extreme.
For Charleston, skew surge is identified as the dominant driver, and discharge is found to not contribute to
compound floods and is omitted from the rest of the research (chapter C).

4.3.2. Identifying Co-Occurring Random Variables and Defining Their Correlation
Once the dominant driver is defined, POT (section 4.3.3) identifies all extreme events for that driver. For
each event, co-occurring random variables associated with the different drivers need to be identified. These
random variables define the parametric model used to define the boundary conditions for the drivers (sec-
tion 4.4.3). The choice of random variables to include is based on Eilander et al. [2023c]. They use non-tidal
driver magnitudes and recommend including duration and time lag. For this research, the tidal driver is also
included as a random variable. Once all random variables are obtained, their correlation can be investigated,
but this requires the definition of a correlation coefficient. The correlation between the different variables
influences the dependence structure of the statistical model.

To define the random variables for each event, a window of ±3 days is centered on the time at which the
maximum magnitude of the dominant driver occurs. This window length is chosen as historical compound
floods for the case study have shown to occur within a small time lag of each other. Other non-tidal driver
magnitudes are taken as the maximum magnitude occurring within the window. The lag of these drivers
is defined as the difference in time (hours) between the dominant driver and the other driver’s maximum
magnitudes.

The duration of non-tidal drivers is taken as the maximum of: 1) the length of time the magnitude is above
a quantile or 2) 6 days (window length). This definition ensures two things. Firstly, the duration is bounded.
Secondly, the duration will not be affected by the trivial solution of always being the upper bound. The latter
could be caused by measurement inaccuracies or processes that affect the drivers on a time scale that is larger
than 6 days. Therefore, the choice of quantile is dependent on the driver and its time record. For skew surge,
this is defined as the largest upper quantile of the MMSL, which is 0.2 meters (section B.1). For precipitation,
it is defined as 0.3 millimeters per hour.
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The tidal driver can be defined solely by its magnitude. For Charleston, the large daily inequality of the tide
may cause the linear summation between a lower high tide and a skew surge to be dwarfed by a higher high
tide with no skew surge. This can occur at a range of tidal magnitudes (section B.2). To prevent this when
identifying extremes in skew surge, the extremes in skew surge magnitudes are restricted to Higher High (HH)
tides. This has little effect on the quantification of extreme water levels (section D.1). For an event, the tidal
magnitude is defined as the magnitude of the tide which coincides with this definition of skew surge.

Kendall’s τ is used to define the level of correlation between bivariate pairs of random variables. Since it
assesses rank, it can understand non-linear dependence. Here τB (eq. (2.4)) is used [Virtanen et al., 2020]
as it takes into account ties in ranks. The statistical significance of the correlation can be assessed with the
associated p-value of τB (test for independence). Another advantage is that the absolute empirical Kendall
τ is used to fit the regular vine [Nagler and Vatter, 2023]. Therefore, observations made in the correlation
analysis should translate to the pair copulas and regular vine used to define the vine copula.

4.3.3. Extreme Value Analysis on Dominant Driver
POT is used to identify extremes in the magnitude of the dominant driver. With the definitions of co-occurring
random variables (section 4.3.2), the historical event set can be obtained. To fit the POT model, the HydroMT
package [Eilander et al., 2023a] is used. It utilizes l-moments to fit exponential and generalized Pareto dis-
tributions and chooses the distribution based on the smallest Bayesian Information Criterion (BIC) score
(eq. (2.2)). The BIC score is chosen over the AIC or AICc as it penalizes overfitting models for small datasets.

POT depends on two parameters that decide which extremes to include in the model. These are the declus-
tering time and the threshold. The declustering time is taken as a week, which is a conservative estimate, as it
is equivalent to the average duration of observed hurricanes [NOAA, 2021]. The choice of a suitable threshold
is more complex, as it dictates the number of events to include in the historical event set. Different methods
exist to define the threshold, but both are based on the sensitivity of a metric concerning the threshold.

Firstly, the univariate sensitivity can be investigated using mean residual life and return value stability plots
[Bocharov, 2023]. The mean residual life plot shows for different thresholds the average excess of all events
identified by POT above a threshold. Thresholds are stable if the mean excess is approximately linear. For
different thresholds, the return value stability plot shows the stability of the return value for a given RP. Here
the 100-year RP is used. Thresholds are stable if there are little changes in the return value.

Secondly, multivariate sensitivity can be investigated using the extreme driver ratio and the correlation be-
tween dominant and other driver magnitudes for different thresholds (or extreme rates). The former is de-
fined as the ratio of events identified by a POT for other drivers included in the events identified by the thresh-
old for the dominant driver to the total number of events. The latter is defined as the value of τB between the
dominant driver magnitude and other driver magnitudes. In both of these cases, a period of stability is de-
sired.

To reach the final event set with d dimensions (or random variables) for ddriver drivers, multivariate sensitivity
is first used to identify a range of extreme rates where the metrics are stable. Then, combined with univariate
stability on the dominant driver, a threshold for the dominant driver is chosen. This results in a threshold
of 0.32 m for skew surge, equivalent to an extreme rate of 2.91 events per year (chapter D). The threshold
corresponds to the dotted horizontal line in fig. 4.6a.

The identified extremes (red) are shown in fig. 4.6a alongside the time record of the skew surge. Figure 4.6b
shows the exponential extreme value curve and the 25 events which have the largest skew surge magnitudes.
One clear outlier in fig. 4.6b corresponds to Hurricane Matthew, causing the largest observed skew surge to
not match the behavior of the tail of the exponential curve. A decision is taken not to fit the tail of the skew
surge extremes. There are two reasons for this. Firstly, it was decided to fit statistical models to tropical and
extra-tropical events. Therefore, fitting the tail would prioritize tropical cyclone events, affecting the statis-
tical behavior expected from extra-tropical events. Secondly, because of the short time record, the largest
observed event may have a RP of 25 years. If a longer record were available, this return value could corre-
spond with a larger RP.
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(a) Time record of skew surge with observed extremes, thresh-
old, and extreme rate.

(b) Empirical and theoretical extreme value curves of skew surge extremes for a return
period larger than 1 year.

Figure 4.6: Output of Extreme value analysis of skew surge using POT with a threshold of 0.32 m (extreme rate of 2.91 events per year).
Performed using the HydroMT package [Eilander et al., 2023a] and code obtained from Eilander et al. [2023c].

4.3.4. Historical Event Set
The identification of skew surge extremes (fig. 4.6) and the definition of co-occurring random variables (sec-
tion 4.3.2) allows for a representation of the historical event set and its correlation (section E.1). The histor-
ical event set contains 3 drivers which are defined by 6 random variables: Skew surge Magnitude (S Mag),
Precipitation Magnitude (P Mag), Tidal Magnitude (T Mag), Precipitation Duration (P Dur), Skew surge Du-
ration (S Dur), and Precipitation Lag (P Lag). The correlation analysis (section E.1) shows that four bivariate
pairs have significant correlation. Here they will be presented in order of descending value of τB : P Mag and
P Dur, S Mag and P Lag, T Mag and P Dur, and S Mag and P Mag.

4.4. Generating Unseen Compound Flood Event Boundary Conditions
This section will produce different stochastic event sets, which will contain the parameters used to define
the time series of the boundary conditions for the different flood drivers. Stochastic event sets are necessary
to produce a large number of events to obtain the return values of economic damages for unobserved RPs.
Different stochastic event sets are necessary for 2 different reasons. Firstly, it allows the investigation of ad-
ditional random variables on flood risk. If stochastic event sets have less than 6 random variables, constants
will be used to define the parameters for the non-random variables. Secondly, it allows the generation of
training and test event sets. Training event sets will contain 500 samples and will be applied to the lowest and
largest number of dimensions. Their purpose is to define a stopping criterion (section 4.5.2.3) and calculate
the accuracy of the surrogate models. Other stochastic event sets will be termed the test datasets and will be
applied for all the different numbers of dimensions and will contain 10,000 events. Their purpose is to inves-
tigate the effect of including additional random variables on the computational cost, the estimate of risk, and
the driver dominating the largest economic damages.

The workflow (fig. 4.7) used to generate stochastic events and boundary conditions for fig. 4.2 requires the
historical event set as a starting point (section 4.3). Firstly, the statistical model (vine copula) is created. A
vine copula requires a regular vine, and pair copulas to model the dependence(section 4.4.1). This is done
multiple times to represent different levels of input reduction. Each model generates at least one stochastic
event set (section 4.4.2). A vine copula also requires the CDFs of the random variables to transform stochastic
events from the ranked to the variable space (section 4.4.2.1). Secondly, if a stochastic event set has less than
6 random variables, a constant needs to be defined for the missing random variables (section 4.4.2.2). Then,
a description is given to explain how the time series of the boundary conditions are created for events within
the different event sets (section 4.4.3). An example of an event set can be found in section 4.4.4.
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Figure 4.7: Workflow used to reach stochastic event sets. Connectors with less weight represent the use of Python packages.

4.4.1. Modeling the Dependence Structure Between Random Variables
A vine copula is fitted 4 times. For simplicity, a copula is also applied in two dimensions. These are applied
in the univariate ranked space of the historical event set (generated in section 4.3). For continuous random
variables with a coarse resolution (such as S Dur), many data points occupy the same rank. To prevent a bias
when fitting the vine copula, a small amount of Gaussian noise is added to all observations.

Random variables are added sequentially to the vine copula. The starting point is the (vine) copula generated
by the non-tidal driver magnitudes. This results in a copula fitted to S Mag and P Mag. The choice of variable
to add is a subjective one. Here, variables are added based on the following order: T Mag, P Dur, S Dur,
and P Lag. Therefore when increasing the number of random variables (or dimensions), the combination of
variables follows table 4.2.

Table 4.2: Combination of random variables when increasing the number of dimensions (dims) for a stochastic event set.

Number of Dimensions (or Random Variables) Random Variables Included
2 dims S Mag, P Mag
3 dims S Mag, P Mag, T Mag

4 dims
S Mag, P Mag, T Mag,
P Dur

5 dims
S Mag, P Mag, T Mag,
P Dur, S Dur

6 dims
S Mag, P Mag, T Mag,
P Dur, S Dur, P Lag
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The regular vine and copula pairs are chosen using the pyvinecopulib python package [Nagler and Vatter,
2023], which uses the absolute empirical Kendall’s τ as a weight for Dißmann’s algorithm (see section 2.4 for
background on the theory). To simplify the regular vine and copula pairs, two additional steps are taken.
Firstly, the independent pair copula is forced if the absolute empirical Kendall’s τ is less than 0.05 [Eilander
et al., 2023c]. Secondly, if all pair copulas associated with a random variable are independent, it is removed
from the regular vine.

The result of this process can be found in chapter F, where they are compared to the correlation analysis pro-
vided in section E.1. The independence of certain variables (section E.1) resulted in 1 copula (2 dimensions)
and 2 vine copulas (4 and 6 dimensions) being fitted.

4.4.2. Generating Stochastic Event Sets
Events can be generated from the vine copula (see section 2.4) using the pyvinecopulib python package [Na-
gler and Vatter, 2023]. For a given Random Number Generator (RNG) seed, and a fixed number of samples,
stochastic event sets are generated in the univariate ranked space of each random variable present in the
model.

For each combination of random variables, 10,000 events are generated using seed number 5. A training
dataset is also created in the smallest, and the largest number of dimensions. This is done by generating
500 events using seed number 30. In both cases, if all pair copulas associated with a variable are statistically
independent, it is removed from the regular vine. For this variable, the same number of events are generated
from a uniform distribution between 0 and 1 with the same seed.

This results in 5 test event sets and 2 training event sets which are generated based on a copula and 2 vine
copulas (chapter F). The copula generated test event sets in 2 and 3 dimensions. Since it is the lowest number
of dimensions it is also used to generate a training event set. The vine copula fitted to 4 random variables is
used to generate test stochastic event sets for 4 and 5 dimensions. Finally, the vine copula fitted to 6 random
variables generated training and test event sets in 6 dimensions. This is summarized in table 4.3.

Table 4.3: Event sets generated from the various dependence structures.

Dependence Model Used Stochastic Event Sets Generated
Copula fitted to: S Mag and P Mag 10,000 events for S Mag and P Mag

500 events for S Mag and P Mag
10,000 events for S Mag, P Mag,
and T Mag ( independence)

Vine copula fitted to:
S Mag, P Mag, T Mag, and P Dur

10,000 events for S Mag, P Mag,
T Mag, and P Dur
10,000 events for S Mag, P Mag,
T Mag, P Dur, and S Dur (independence)

Vine copula fitted to:
S Mag, P Mag, T Mag, P Dur, S Dur, and P Lag

10,000 events for S Mag, P Mag,
T Mag, P Dur, S Dur, and P Lag
500 events for S Mag, P Mag
T Mag, P Dur, S Dur, and P Lag

These datasets are still in a ranked space (i.e. quantiles) and need to be transformed (section 4.4.2.1). More-
over, for datasets with less than 6 random variables, the missing variables need to be defined with constants
(section 4.4.2.2)

4.4.2.1. Defining Non Extreme Marginal Probability Distribution Functions
A Cumulative Distribution Function (CDF) needs to be defined for all 6 random variables. The quantiles
can be combined with the inverse CDF to obtain the real values of the variables. Currently, only one CDF
is defined, which is S Mag (fig. 4.6). For non-extreme random variables, POT cannot be used. Therefore, to
define their PDFs and corresponding CDFs, the fitter package [Cokelaer et al., 2024] is used. The package uses
80 continuous distributions from scipy [Virtanen et al., 2020] and fits parameters according to the Empirical
Probability Distribution Function (EPDF) of a variable by maximizing the likelihood. Metrics can be used to
select the best distribution. These include SSE, AIC, BIC, Kolmogorov-Smirnov (KS) statistic, and KS p-value.

32



4.4. Generating Unseen Compound Flood Event Boundary Conditions 4. Methods

These marginal PDFs are defined in chapter G and fig. 4.6. A summary containing the names of the distribu-
tions is shown in table 4.4.

Table 4.4: Distributions used to define the marginal PDFs and CDFs for the different random variables.

Random Variable Distribution
S Mag Exponential
P Mag Exponential
T Mag Empirical: HH Tides
P Dur Truncated Normal
S Dur Truncated Gumbel
P Lag Truncated Normal

4.4.2.2. Constants in Event Sets
If one of the random variables is not defined for the stochastic event sets, a constant is assumed, which is the
median of the historical event set for each random variable. These constants are shown in table 4.5.

Table 4.5: Constants associated with events that are in lower dimensions. For random variables associated with a given dimensionality
see table 4.2. Black cells represent a random variable.

2 dims 3 dims 4dims 5 dims 6 dims
T Mag [m] 0.85
P Dur [hr] 14 14
S Dur [tidal cycles] 4 4 4
P Lag [hr] -5 -5 -5 -5
Discharge Magnitude [m3 s−1] 200 200 200 200 200

4.4.3. Defining Boundary Conditions for the SFINCS Model
Each event in the stochastic event set has a set of random variables associated with the different drivers. These
random variables can be used as parameters to define a time series for the different boundary conditions of
the SFINCS model. These are used to compute the economic damages associated with the event (fig. 4.2).

Non-tidal drivers are defined by a Gaussian distribution. Only three parameters are needed to correctly define
one: the peak, the standard deviation, and the location. The peak and standard deviation are determined by
the magnitude and duration of the event respectively. From a relative point of view, the dominant driver has
a location of zero. The location of the other drivers (excluding tidal) are therefore given by their time lag.

The downstream water level is defined by three components: the MSL, tidal beating, and the skew surge.
These are linearly superposed. MSL was identified as a constant with a magnitude of 0.2 m (chapter B). For
a given T Mag, a random historical beating from the HH tide empirical distribution is sampled (with a fixed
seed). To match the temporal resolution of the SFINCS model, linear interpolation is used for simplicity. The
timing of the HH tide corresponds with that of the skew surge. Skew surge is defined as a Gaussian. Since
it used a quantile to define its duration, this quantile is used to place the asymptote of the Gaussian. In
section 4.3.2, this quantile was identified and is equivalent to 0.2 m.

Figure 4.8 visually shows how these parameters are combined to create the time series of boundary conditions
for the downstream water level and precipitation.
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Figure 4.8: Boundary condition schematization, showing that the total water level (blue) depends on three components: the MSL, the
tide, and the skew surge. These are linearly superposed. The MSL is assumed constant. The tide is solely defined by the T Mag. The skew
surge is defined by its magnitude (S Mag) and duration (S Dur). The precipitation (black) is defined by its magnitude (P Mag), duration
(P Dur), and time lag with skew surge maximum (P Lag).

4.4.4. Event Sets
This subsection provides an example of an event set, for other event sets consult chapter H.

Figure 4.9 shows the test event set generated by the copula for the S Mag and P Mag. Figure 4.9a shows the
event set generated in the ranked space (grey dots) alongside the observed values (blue dots). This ranked
space is transformed to the variable space in fig. 4.9b using the marginal PDFs (table 4.4). The 4 other param-
eters used to define the boundary conditions are kept as constants and use table 4.5 for their values.

The POT applied to S Mag and P Mag showed the univariate 100-year return value was approximately 0.9
m (fig. 4.6b) and 27 mm hr−1 (section D.1.1) respectively. For skew surge, the overestimation of the RP of
the largest event causes only a small number of generated surge magnitudes to be greater than the largest
historical event. This was a known limitation of the approach to fit tropical and extra-tropical events simul-
taneously. For precipitation, using an exponential marginal PDF on non-extreme and extreme events causes
the tail of the distribution to have a larger density when compared to the tail of the POT exponential only
fitted to extremes (see section D.1.1). This causes larger event magnitudes to be generated. This reduces the
effect of ERA5 underestimating extreme precipitation totals ([Lavers et al., 2022]) but is not significant enough
to reach the precipitation return values provided by NOAA (fig. 3.2).
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(a) Events are shown in their univariate ranked space. Ranks
of the observed events are dictated by their empirical CDF.

(b) Events shown in the variable space. The top left corner
contains Kendall’s τB .

Figure 4.9: Test Dataset in two dimensions (10,000 samples) for P Mag and S Mag. Shows the observed events (historical event set) and
events generated by the copula (Gaussian), which were obtained by using the pyvinecopulib python package [Nagler and Vatter, 2023].
The generated quantiles (fig. 4.9a) can be combined with the distributions defined in chapter G and fig. 4.6b to obtain fig. 4.9b.

4.5. Selection of Simulations and Surrogate Model
This section presents the methodology used to perform the current state-of-the-art approach (section 4.5.1),
and the proposed approach (section 4.5.2), to reduce the computational cost associated with computing the
economic damages for the entire stochastic event sets. This requires combining a sampling algorithm and a
surrogate model. From here on we call the current approach the a priori approach as it selects simulations
based on prior knowledge of the stochastic event set. We also call the proposed approach the a posteriori
approach as it uses the knowledge gained from new observations to select samples.

4.5.1. A Priori Selection of Simulations and Surrogate Model
This section presents the a priori approach for sampling and modeling the economic damage surface associ-
ated with a stochastic event set. Jane et al. [2022] show combining a Maximum Dissimilarity Algorithm (MDA)
with linear scatter interpolation provides the surrogate model with the best accuracy. This will therefore be
used to represent the state-of-the-art approach (fig. 4.10). To reduce the computational cost, this approach
is only be applied to 2 dimensions (fig. 4.9) and assumes constants (section 4.4.2.2) for other random vari-
ables. Since the current approach samples from the input, it can be assumed that all outputs (i.e. different
FIAT models) are valid if a sufficient number of samples are simulated. The method used to compare both
approaches is shown in section 4.5.3 and section 4.6.1.

Figure 4.10: Current state-of-the-art approach for surrogate damage modeling compound floods.

4.5.1.1. Sampling with a Maximum Dissimilarity Algorithm (MDA)
Two different subsets of samples are generated. Firstly, 22 samples representing all the corners of the input
space are simulated. These simulations are not part of the stochastic event set and prevent extrapolation.
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Secondly, a MDA is applied to the stochastic event set. To prevent bias towards a variable, the dataset is nor-
malized using a min-max scaler [Pedregosa et al., 2011]. Here it is assumed that 8ddriver −2ddriver = 60 MDA sam-
ples is sufficient for an understanding of the output space. The number of samples is based on the method
used by Eilander et al. [2023c] where they use a structured grid with 8ddriver simulations. The MDA is initialized
by providing the event associated with the largest magnitude of the dominant driver. Euclidean distance is
used as a metric of distance.

4.5.1.2. Surrogate Damage Modeling with Linear Scatter Interpolation
Linear scatter interpolation [Jane et al., 2022] is used to obtain economic damages for un-simulated sam-
ples from the stochastic event set. After the corners of the input space are simulated, interpolation is used
recursively after each simulated event. This allows for an investigation of the accuracy of the approach (sec-
tion 4.5.3), and how it improves with additional simulations. The computational cost of each method is as-
sessed by timing the individual SFINCS and FIAT simulation times. It is assumed that the selection of simu-
lations as well as the interpolation takes no additional computational cost.

4.5.2. A Posteriori Selection of Simulations and Surrogate Model
In this section, a description of the workflow used to select samples a posteriori with a corresponding sur-
rogate model is given (fig. 4.11). To prevent initially sampling randomly, the Treed Gaussian Process (TGP)
requires an initialization where the damages of a subset are simulated (section 4.5.2.1). In section 4.5.2.2, a
description of the assumptions and products of the TGP are given. Section 4.5.2.3 shows how a stopping cri-
terion is defined, and section 4.5.2.4 explains why this stopping criterion means the TGP should be defined
on more than one output.

Figure 4.11: Workflow used to dynamically select samples a posteriori from a stochastic event set. The example shown in the workflow is
the sub-county FIAT model (11 outputs) if it were applied to 2, 3, 4, 5, and 6 dimensions.

The a posteriori approach is used on the complete and classified FIAT models for the test stochastic event sets
in 2, 3, 4, 5 and 6 dimensions. It is also deployed on the sub-county FIAT model in 2 dimensions. To choose a
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stopping criterion, the a posteriori approach is also used on the training event sets in 2 and 6 dimensions for
the complete FIAT model.

4.5.2.1. Initialization with a Maximum Dissimilarity Algorithm (MDA)
The initialization of the TGP is important for two distinct reasons. Firstly, it prevents the confidence interval
of the TGP from being uniform over the entire input space resulting in random samples being simulated
(fig. 2.3). Secondly, stochastic event sets that have a large number of dimensions are expected to require more
samples to reach a stable output surface. Therefore, a larger initialization reduces the overall computational
cost of using a TGP to reach a stable output.

To initialize the TGP, a MDA is used [Hendrickx et al., 2023]. It is known that the largest ALM statistic will be
where the model needs to extrapolate [MacKay, 1992]. It is therefore more efficient to sample these without
the TGP. For a structured grid, the number of vertices is equal to 2d . If the MDA is initialized by a vertex of a
grid and uses Euclidean distance as a distance metric, it will sample all of the 2d vertices (fig. 2.2).

Here it is assumed that similar behavior occurs for an unstructured grid and the MDA generates a subset of
Nsub = 2d events. Its exponential behavior makes it unfit for event sets with a large number of dimensions.
After normalizing the stochastic event set with a min-max scaler [Pedregosa et al., 2011], the MDA is initialized
by giving the event that represents the largest magnitude of the dominant driver and uses Euclidean distance
as its distance metric. After N = Nsub events are simulated, the output is also normalized using a min-max
scaler. The simulated events become the sampled events, and the remaining events become the available
events.

4.5.2.2. Active Learning with a Treed Gaussian Process (TGP)
A TGP allows to fit a surrogate model on the output, in this case, the economic damages of compound flood
events. This model not only provides a regularized estimate for the entire stochastic event set, it also allows
for the use of acquisition functions such as the ALM statistic [MacKay, 1992]. This statistic can be used to
select samples based on the highest model uncertainty, allowing for a more efficient search.

For implementation, the TGP R package is used [Gramacy and Lee, 2009]. The sampled events and the pack-
age defaults for the Bayesian Treed Gaussian Process with a Linear Limiting Model (BTGPLLM) (i.e. squared
exponential kernel, bflat prior, MCMC of 9000 samples with a burn-in of 2000 samples) were used to fit the
surrogate model. From here on the BTGPLLM will be equivalent to TGP in the text. The posterior predictive
surface of the surrogate model creates products such as the mean, 5, and 95 quantiles for both the sampled
and available events. Moreover, the ALM statistic for the available events is computed. The ALM is used
as an acquisition function where the available event corresponding to its maximum value is simulated, its
damage is normalized and added to the sampled events. These steps are followed until a stopping criterion
(section 4.5.2.3) is met. Each time the TGP is used, the computational time is measured.

The mean posterior surface can be used to compute the EAD and the 100-year RP (section 4.6.1). Similarly,
the 5 and 95 quantiles can be used to show the modeling uncertainty in both metrics.

4.5.2.3. Defining a Stopping Criterion
A stopping criterion is essential in reducing the computational cost associated with performing a compound
flood risk assessment. A TGP allows for the computation of metrics each time it is fitted when an additional
sample is added to the subset. However, the literature (section 2.5) was unable to give a suitable metric to
use, this subsection will describe the method to identify one.

For all events contained in the training event sets, the total economic damages from the complete FIAT model
are all simulated (section 4.4.2 and section H.1). This allows for an estimate of the ground truth, which is the
risk estimate calculated by simulating the economic damages of all events in the training event set. Then
using the workflow presented in fig. 4.11, the posterior predictive surface of the TGP can be tested against
the ground truth after each TGP iteration. To this end, different metrics are computed: the RMSE of the
sampled and available events, the mean and maximum ALM of the available events, and the Coefficient Of
Variation (COV) for a rolling window of size 10 of the EAD (see section 4.6 to understand how risk is modeled).
The RMSE of the available events gives an indication of the accuracy of the current surface compared to the
ground truth. Other metrics that follow its pattern should be used to define the stopping criterion.
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Applying this methodology to the training event sets in 2 and 6 dimensions (see table 4.2 for random variables
included) resulted in the stopping criterion being defined as 2 consecutive TGP models for an arbitrary output
which results in an ALM mean smaller than 0.1 (chapter I).

4.5.2.4. Sampling from Multiple Outputs
The implementation of a stopping criterion means that there is high confidence in the sampled events to
represent the current output. However, to the inverse of the a priori selection of simulations (where sam-
pling the input for a large number of events gives good confidence on any output), it is unknown how well
these sampled events will perform on an unseen output (such as a sub-county, but it could also be a social
vulnerability) as the simulated events were chosen based on the features of a particular output.

To prevent this, fig. 4.11 shows how the TGP can sample from multiple outputs. After the initialization, the
TGP is fitted to different outputs in a round-robin schedule. For example, suppose the classified model (ta-
ble 4.1) is used. In that case, the TGP is first fitted to the inland economic damages, and the event correspond-
ing to the highest ALM is simulated. Then, the TGP is fitted to the coastal economic damages, and the highest
ALM is simulated. This process is repeated until one of the outputs reaches the stopping criterion, where the
current output is removed from the round-robin schedule, and the TGP continues sampling from the other
output until it also reaches the stopping criterion. In the case of the sub-county model, the round-robin
schedule contains 11 outputs.

4.5.3. Comparing Both Approaches
To compare the computational cost, accuracy, and estimate of risk for both approaches, the test and training
event set in two dimensions will be used. The large size of the test event set means the ground truth cannot
be simulated within a reasonable amount of time. Nonetheless, a large event size provides a larger diversity in
the stochastic events, bringing larger differences between both approaches. Therefore, both surrogate models
will be generated on the test event set for the complete FIAT model. This will calculate their computational
time. Then, the accuracy and estimate of risk of the surrogate models will be compared with the ground truth
of the training event set for the complete FIAT model. Accuracy will be measured with Root Mean Square
Error (RMSE). Section 4.6 will explain how risk will be compared.

4.6. Risk Modeling Under Different Approaches
This section gives an overview of how risk is modeled once an estimate of all economic damages is available
for a stochastic event set (section 4.6.1). This is achievable by simulating or by using a surrogate damage
model to estimate all economic damages associated with events in an event set (section 4.5). This section
also explains the statistical tests performed to understand the effect a method or number of dimensions has
on the estimate of risk (section 4.6.2). Finally, section 4.6.3 shows how to identify the drivers contributing to
the events which cause economic damages with a RP larger than 100 years.

4.6.1. Defining Risk
The estimate of risk of an event is dependent on two components, its probability and its economic dam-
ages. For an estimate of the probability, the method used by Couasnon et al. [2022]; Eilander et al. [2023c] is
followed. Each event in the stochastic event set (of size M) is assumed to occur at a frequency foc per year
(eq. (2.6)). Then, all events are ranked according to the magnitude of their economic damage, creating an
empirical CDF. The RP of each event is calculated using eq. (4.1). The RP of an event therefore depends on
the type of output. This is because further upstream the 100-year RP will be caused by a different event than
downstream.

RPevent = foc(M +1)

rankevent (economic damages)
(4.1)

From this point onwards, the curve that plots the RP on the x-axis and the economic damages on the y-axis
will be called the risk curve. The risk curve is integrated using the trapezoidal rule [Virtanen et al., 2020] to
obtain an estimate of the EAD [Eilander et al., 2023c].
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4.6.2. Measuring Differences in Risk Estimates
The estimate for a risk curve (RCi , where i represents risk curves for different estimates of the same event set)
with corresponding empirical CDFs (ECDFi ) and EAD (EADi ) can be compared between different methods,
ground truth, and the number of dimensions using statistical tests such as the Kolmogorov-Smirnov (KS) and
Mann-Whitney U rank (MWU) tests.

A two-sample KS test [Virtanen et al., 2020] can be used to compare the empirical CDFs of economic dam-
ages. A KS test is a non-parametric test that determines whether the two empirical CDFs (ECDF1 and ECDF2)
are drawn from the same parent distribution. It calculates the maximum distance in cumulative probability
(eq. (4.2)) and performs a hypothesis test. The null hypothesis assumes that both empirical CDFs are drawn
from the same parent distribution. Therefore, for small p-values (in this case 0.05), the null hypothesis can be
rejected showing there is a significant difference in the parent distribution, meaning the method or number
of dimensions causes significant differences in the estimate of the risk curve. To compute this p-value, ECDF1

and ECDF2 were used as inputs for the scipy.stats.ks_2samp function [Virtanen et al., 2020]. Defaults are not
changed.

Dn,m = sup
x

∣∣F1,n(x)−F2,m(x)
∣∣ (4.2)

A MWU test [Virtanen et al., 2020] can be used to compare the EAD obtained from two different risk curves.
It is a non-parametric test that tries to understand if there is a noticeable change in the location (EAD1, and
EAD2) for the two risk curves (RC1 and RC2). To obtain different estimations of the EADi for a risk curve (RCi ),
an empirical bootstrap is used, which assumes each event in RCi has an equal probability. It samples with
replacement until M events are collected (i.e. the size of the event set). This process can be repeated multiple
times, creating different realizations of the risk curve (RCi , j , where j represents a bootstrap realization) and
by extension, corresponding EADi , j . This process is performed for two risk curves that need to be compared
(RC1 and RC2) 10,000 times. This creates 10,000 realizations of EAD1 and EAD2 which are used as inputs for
the scipy.stats.mannwhitneyu function [Virtanen et al., 2020], where all the defaults are used. Using the p-
value, a hypothesis test can be performed, where the null hypothesis assumes both RC1 and RC2 have the
same EAD. Suppose the p-value is smaller than a certain threshold (in this case 0.05). In that case, the alter-
nate hypothesis can be accepted, showing there is statistical significance that RC1 and RC2 have a noticeable
change in location.

4.6.3. Identifying the Driver Dominating Large Return Periods
The dominance of a driver will be investigated by only looking at the magnitudes of surges and precipitation
for the events that lead to a RP larger than 100 years in economic damages. A driver is found to contribute
to the economic damages of an event if the driver magnitudes associated with stochastic events are greater
than the POT threshold for an extreme rate of 1 event per year. For S Mag and P Mag this was found to be
0.43 m and 11.8 mm hr−1 respectively. For each driver, a ratio can be created where the number of events
that have their magnitudes exceed this threshold are compared to all events that cause damages with a RP
larger than 100 years. The driver which has the largest ratio is the driver dominating the economic damages.
This workflow is shown in fig. 4.12. The ratio is used to analyze the effect of multiple outputs/locations for
the same stochastic event set (fig. 4.12a) and different stochastic event sets for the same output/location
(fig. 4.12b) to understand how the events which cause a large RP are affected by these.

39



4.6. Risk Modeling Under Different Approaches 4. Methods

(a) Workflow used to compare different outputs/locations for the same stochastic event set.

(b) Workflow used to compare the effect of additional dimensions (dims, or random variables) for the same output/location.

Figure 4.12: Workflow used to identify the driver dominating the larger RPs. Once the ratios for P Mag and S Mag are computed for an
output/location and stochastic event set, they can be compared with others.
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5
Results

This chapter presents the main results required to reach the conclusions of chapter 7. Section 5.1 compares
the results of the a priori and a posteriori methods. This investigates their accuracy (section 5.1.3), and cost
(section 5.1.4). Section 5.2 shows and compares the results of including additional random variables when
using the a posteriori method. First, the computational cost is shown (section 5.2). Second, the risk estimates
are shown (section 5.2.2). Then, section 5.3 shows the results associated with identifying the flood driver
dominating the economic damages.

5.1. Comparing a Priori and a Posteriori Methods
This section compares the a priori and a posteriori methods on the complete FIAT model for the test and
training stochastic event sets which only include 2 random variables. First, a description of the sampling
and surrogate modeling of each approach on the test event set is given (section 5.1.1, section 5.1.2). Second,
in section 5.1.3, the surrogate models of both approaches obtained from the test event set have their accu-
racy assessed by comparing with the ground truth of the training event set (chapter I). This is done by using
different metrics: RMSE, KS p-value, and the estimate of the EAD. Finally, the computational cost of both
approaches on the test event set is investigated (section 5.1.4).

5.1.1. Description of a Priori Sampling and Surrogate Modeling
Figure 5.1 shows the surrogate model generated for the a priori approach on the test event set in 2 dimensions,
which is when S Mag and P Mag are random variables. The surrogate model uses linear scatter interpolation
on 60 MDA samples and the 4 corners of the input space, and can be visualized with the color map of eco-
nomic damages. Black dots represent available samples of the test event set in 2 dimensions (fig. 4.9) which
use the interpolation technique to obtain economic damages. Red and green dots represent the subset of
MDA samples and the corners of the input space respectively. Their economic damages were simulated with
fig. 4.2.

The MDA is successfully able to generate regularly spaced grid points without being affected by the distribu-
tion of points within the input space. This facilitates the use of interpolation techniques. The surrogate model
shows the economic damages increase for both S Mag and P Mag, but increases at a faster rate for S Mag. The
surrogate model shows contour levels that display saw tooth profiles. This is caused by the piecewise linear
interpolation of scatter interpolation, as it uses triangular surfaces to model the dependent variable. In loca-
tions with no available samples, this can cause sharp differences in contour levels, which may not represent
reality. One example of this is located near a P Mag of 35 mm hr−1. An argument could be made that the
scatter interpolation is dependent on the event set, as the areas with poor interpolation occur because of a
lack of available samples.
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Figure 5.1: Surrogate model for the a priori approach. The color map indicates the total economic damages for the entire input space
after interpolating with linear scatter interpolation. Scatter interpolation uses the MDA samples and the corners to interpolate to the
rest of the event set.

5.1.2. Description of a Posteriori Sampling and Surrogate Modeling
Figure 5.2a shows the surrogate model generated by the a posteriori approach on the test event set in two
dimensions for total economic damages. The surrogate model shows similar features as fig. 5.1, but is smooth
and non-linear as it does not fit points deterministically. This is expected, as the posterior predictive surface
uses hyperparameters to weigh prior and data-driven information to be regularized [Bishop, 2006; Gramacy
and Lee, 2009].

Figure 5.2b shows the available events (open circles) and the sampled events (closed circles) in the normalized
(min-max) space. The color map shows the ALM statistic associated with the input space. Shades of white/red
indicate the highest value of the ALM statistic, which is where the TGP will sample next.

(a) Surrogate model for the a posteriori approach. Total repre-
sents the total economic damages.

(b) Available (open), sampled events (closed), and the color map rep-
resents the associated ALM statistic.

Figure 5.2: Surrogate model and associated uncertainty for the a posteriori approach after reaching the stopping criterion (14 total
samples) for the complete FIAT model. Input and output are normalized. Plots generated by Gramacy [2023].
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After 14 samples, fig. 5.2b identifies events with extreme P Mags to cause the largest uncertainty. In fig. 5.2b
11 of the sampled points can be seen. A quick comparison with fig. 5.1 shows three noticeable differences.
Firstly, a smaller number of samples are required to reach the stopping criterion. Secondly, points which are
similar in the input may be dissimilar in the output leading them to be sampled. This is the case for the two
samples which have a surge magnitude greater than 1.2 meters. Finally, not all samples of the convex polygon
need to be sampled to obtain the surrogate model shown in fig. 5.2a, as the TGP can extrapolate. This leads
to the event with the largest P Mag not being sampled (which is the case for fig. 5.1).

5.1.3. Comparing the Accuracy of Both Approaches
Since not all 10,000 events of the test event set in two dimensions were simulated, the accuracy of both sur-
rogate models can only be compared by using the training event set, where all 500 events were simulated
(chapter I). Figure 5.3 shows the RMSE with the training event set for three different surrogate models: a pri-
ori method applied on test (fig. 5.1), a posteriori method applied on test (fig. 5.2a), and a posteriori method
applied on training (fig. I.1).

Figure 5.3 shows that for the same output, but an unseen event set, the a posteriori approach outperforms the
a priori approach in two ways. Firstly, for an arbitrary number of samples, the RMSE is smaller. Secondly, it
reaches its smallest RMSE after 14 samples instead of 50. When comparing both approaches, the a posteriori
approach improves the accuracy by a factor of 8.

Applying the a posteriori approach to the training event set without a stopping criterion shows that the ac-
curacy of this approach would be improved if more samples were collected. This would mean using a more
strict stopping criterion. The a posteriori approach also shows a smaller RMSE for any number of events for
the training event set when compared to the test event set.

The significantly smaller RMSE for the training dataset shows the TGP is not only dependent on the output
it samples from but also the event set. This is logical, as the TGP on the test set is more likely to sample
events that have significantly larger magnitudes than the training set. The generation of 10,000 stochastic
events leads to more extreme events than the generation of 500 stochastic events. Moreover, the TGP can
only sample from events in the test event set. If the training set has a sample that is rarely generated and is
not contained in the test set, it cannot be used to fit the surrogate model, leading to larger errors.

The RMSE is also expected to decrease with additional samples for the a priori approach as the spacing be-
tween grid points would decrease. This would lead to a more refined surrogate model. However fig. 5.3 shows
that a plateau is reached after 40 samples, meaning a significantly large number of samples would be required
to reach a similar accuracy of the a posteriori approach.

Figure 5.3: Comparing the RMSE of using the a priori approach and the a posterior approach on an unseen event set where each available
event was simulated.
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A comparison can also be made with the empirical CDF of economic damages and the EAD estimated by both
approaches. Figure 5.4 shows the empirical CDF of economic damages of the ground truth (chapter I) when
compared to the a priori approach (fig. 5.4a) and the a posteriori approach (fig. 5.4b). For each approach,
a KS test is applied, and the statistic location can be seen with a dotted vertical line. Figure 5.9 shows the
EAD for the ground truth, the a posteriori approach accompanied by the uncertainty bands, and the a priori
approach.

Figure 5.4 shows the a priori approach and a posteriori approach have two different responses to the train-
ing event set when compared to the ground truth. The result of the KS two sample test means that both
approaches generate estimates of the empirical CDF which are statistically different than the ground truth.
This is because the p-value of each test is 0. On one hand, fig. 5.4a consistently overestimates the damages
associated with different return periods. This leads to an overestimation of 96 million USD in the EAD when
compared to the ground truth (fig. 5.5). On the other hand, for lower probabilities, the a posteriori approach
initially underestimates the damages. However, for larger probabilities, it then overestimates the damages.
This under than overestimation of damages results in an EAD that underestimates the ground truth by 5 mil-
lion USD (fig. 5.5). This results in the a posteriori approach improving the estimate in EAD by a factor of 20.
Finally, the magnitude of the uncertainty bars for the a posteriori approach in fig. 5.5 can be compared with
the training event set, where these were noticeably smaller for the same stopping criterion (fig. I.1b in chap-
ter I). This shows the stopping criterion, and by extension, the surrogate model are dependent on the event
set they are trained on.

(a) A Priori approach: MDA + scatter interpolation (b) A posteriori approach: MDA + TGP

Figure 5.4: Test statistics and associated p-values associated with two-sample KS test for empirical CDFs of the different approaches
when compared to the ground truth. If the p-value is smaller than 0.05, the null hypothesis (empirical CDFs come from the same parent
distribution) is rejected

Figure 5.5: Comparing the EAD estimates of the a priori and a posteriori approach with the ground truth. A posteriori underestimates
EAD by 5 million USD. A priori overestimates EAD by 96 million USD.
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5.1.4. Comparing the Computational Cost of Both Approaches
It has been shown that the a posteriori outperforms the a priori approach in the number of samples it needs
to fit the surrogate model, its accuracy, and its estimate of the EAD. One point of concern is the computa-
tional cost associated with the posterior predictive surface of the TGP. Figure 5.6 shows the computational
cost associated with the a priori and a posteriori approach applied on a singular output. Each approach
is subdivided into the main components of the workflow which contribute to the computational cost. For
both approaches, SFINCS and FIAT are required to obtain economic damages. Their relative weights are de-
pendent on the number of samples required by the approach. The a posteriori approach requires further
computational time to compute the posterior predictive surface.

For a singular output, in the same dimensionality, the TGP outperforms the MDA by approximately 70 min-
utes. This results in the a posteriori approach reducing the computational cost by a factor of 4 when com-
pared to the a priori approach. For a small number of samples, the cost of using a TGP is small, therefore, the
reduction in the number of simulations (50) has a significant effect on the overall computational cost. This
agrees with Hendrickx et al. [2023].

Figure 5.6: Computational cost associated with both sampling and surrogate modeling approaches.

5.2. A Posteriori Approach on Multivariate Input Spaces in Different Di-
mensions and Outputs

With this significant reduction in computational cost, there are more computational resources available,
making it easier to include the effect of additional random variables in compound flood risk assessments.
This reduction in computation cost is in part caused by the a posteriori approach only looking at a singular
output, which is not always desired. For example, Eilander et al. [2023c] investigates social and economic
damages. Therefore, the cost (section 5.2.1) and estimate of risk (section 5.2.2) when using the classified and
sub-county FIAT models for different numbers of random variables are investigated.

5.2.1. Computational Cost of Using the a Posteriori Approach
The number of samples required to reach the stopping criterion (section 5.2.1.1) dictates the computational
cost (section 5.2.1.2) of the a posteriori approach in two ways. Firstly, each additional sample requires the
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cost of running the coupled SFINCS and FIAT models to obtain the economic damages. The cost of this op-
eration is dependent on the dimensionality of the input space as the total duration of the event increases the
simulation duration of SFINCS (chapter J). The duration of an event increases when including precipitation
duration, surge duration, and precipitation lag as random variables. Secondly, the cost of computing the
posterior predictive surface depends on the number of samples [Gramacy and Lee, 2009].

5.2.1.1. Samples Required to Reach the Stopping Criterion
Table 5.1 shows the total number of samples the a posteriori approach needs to reach the stopping criterion
for different numbers of random variables and outputs. Numbers in bold show the total number of samples
required for a FIAT model and the number of random variables. Three observations can be made regarding
table 5.1.

Firstly, when increasing the number of random variables, the outputs for the complete and classified model
show that more samples are required to reach the stopping criterion. There are exceptions to this observation.
For example, the classified model, with the same number of dimensions, needs a smaller number of samples
to reach the stopping criterion (38). In 5 dimensions, the total and coastal outputs need fewer samples than
4 dimensions to reach the stopping criterion.

Secondly, four cases (in more than two dimensions) reach the stopping criterion directly after using the MDA.
In 5 and 6 dimensions, the MDA sampled 32 and 64 samples respectively before first using the TGP. The
surface needs to be computed at least twice for an output to reach the stopping criterion. This is the case for
the total and coastal (classified model) outputs. In the case of the classified model, two additional samples
are needed as the surface first needs to be computed for the inland output, because the minimum number of
samples to reach the stopping criterion for the first output follows eq. (5.1).

Finally, the larger the number of outputs, the more samples are required to reach the stopping criterion. This
can be observed for any number of random variables for the complete and classified models. For 2 random
variables, using the sub-county FIAT model and its 11 outputs significantly increases the number of samples
that need to be simulated. This is in part caused by eq. (5.1).

Minsamples first stop = MDAsamples +Numoutputs −1+Orderoutput (5.1)

Table 5.1: Total samples required to reach stopping criterion for different dimensions (see table 4.2) and number of outputs (see sec-
tion 4.1.2). For multiple outputs, the outputs are ordered top-down in the order they are sampled from (i.e. for the classified model,
inland is sampled first). Bold numbers represent the output dictating the total number of samples required to reach the final stopping
criterion.

Number of Dimensions [-]
FIAT Model Output 2 3 4 5 6
Complete Total 14 24 36 33 65
Classified Inland 17 38 43 59 224

Coastal 13 30 37 35 67
Sub-County Charleston Central 36

Edisto Island 27
James Island 28
Johns Island 29
Kiawah Island
Seabrook Island

30

McClellanville 31
Mount Pleasant 32
North Charleston 33
Ravenel Hollywood 34
Wadmalaw Island 24
West Ashley 35
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5.2.1.2. Computational Time Required to Reach the Stopping Criterion
Figure 5.7 shows the computational time associated with using the a priori and a posteriori approaches for
different numbers of random variables (dimensions) (see table 4.2) and number of outputs (see section 4.1.2).
For the a posteriori approach the cost is related to the stopping criterion being met for the final output. For
each approach, number of outputs and dimensions, the computational time is subdivided into three com-
ponents. The cost of using SFINCS, FIAT, and the posterior predictive surface (TGP). A horizontal red line is
provided as a reference for the computational time of the a priori approach.

Figure 5.7 follows trends identified in table 5.1. It shows the non-linear increase in computational time as-
sociated with calculating the posterior predictive surface (TGP) when additional samples are included. For a
large number of samples, this causes the TGP to dominate the computational cost of the method. This can be
seen with the classified model in 6 dimensions, where the TGP amounts to 75% of the computational time.
This is caused by the inland output requiring 224 samples to reach the stopping criterion (table 5.1). For a
small number of samples, the FIAT model is the component that causes the largest computational cost. In
larger dimensions, the inclusion of P Dur, S Dur, P Lag means the duration of the SFINCS model increases
(see chapter J), which reduces the gap in computational time between the SFINCS and FIAT components.

Section 5.1.4 showed that the a posteriori approach outperformed the a priori approach on a singular out-
put and the same number of dimensions. It is expected that increasing the number of random variables will
increase the estimate of risk, but how does the cost increase? Figure 5.7 shows that for a singular output,
only 6 dimensions exceeds the computational time of the a priori approach, as it requires 126 minutes. The
cost associated with the TGP is limited as the stopping criterion is often met quickly after the MDA initializa-
tion. The increase in cost is mostly caused by SFINCS (see chapter J. The MDA initialization also results in 5
dimensions having a smaller computational time than 4 dimensions.

The classified model can also be used to compare the effect of including additional outputs on the computa-
tional cost. Sampling from multiple outputs provides a higher confidence in the estimate of risk at different
locations, as the response of these locations to the economic damages will change, requiring more samples.
Because the a priori approach is assumed independent of the output, the computational cost remains the
same. In 2 dimensions, the cost associated with the TGP increases marginally as 3 additional samples are
needed to reach the stopping criterion (table 5.1). Therefore, in the same dimensionality and on 2 outputs,
the a posteriori approach still outperforms the a priori approach (fig. 5.7). For the classified model, apart
from 2 dimensions, only 4 dimensions has a lower computational time than the a priori approach. While it
required 5 additional samples when compared to 3 dimensions (table 5.1), its computational time is smaller.
This is because of the exponential behavior of the MDA initialization, which means the TGP had to be com-
puted a smaller number of times. In 6 dimensions, the inland output only reaches the stopping criterion after
224 samples (section 5.2.1.1), which causes the overall cost to be 16 times larger than the a priori approach
(section 5.2.1.2).

Finally, for the sub-county model and its 11 outputs, the a posteriori approach still outperforms the a priori
approach. However, the difference in computational time is smaller when compared to the complete and
classified model. The main reason for this is the stopping criterion (eq. (5.1)), which requires the TGP to be
fitted at least twice to each output.
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Figure 5.7: Computational time (in minutes) required to reach stopping criterion for different dimensions (see table 4.2), approach, and
number of outputs (see section 4.1.2).

5.2.2. Significance of Additional Dimensions on Risk Curves and EAD
This subsection presents the outcomes of adding random variables to the estimate of risk when using the
complete FIAT model.

Figure 5.8 shows the effect of including additional random variables in the multivariate input space (see ta-
ble 4.2) on the risk curve for the total economic damages. The logarithmic behavior of the x-axis of fig. 5.8
makes it easier to see the differences in the economic damages at large RPs. The samples represent the mean
response of the TGP to their event set. Since the TGP is probabilistic, the uncertainty associated with each
return value can also be plotted. fig. 5.8 shows the uncertainty bands associated with each dimensionality is
constant. The main reason for this is the stopping criterion is universal.

When considering the TGP uncertainty, 2 dimensions seem to be a clear outlier as it consistently underesti-
mates the return values associated with economic damages that have a RP larger than 10 years. When con-
sidering the mean response, the risk curve shows noticeable differences in behavior between the different
dimensions for all RPs. In 2 dimensions, the return values associated with RPs larger than a year seem to un-
derestimate the return value for larger dimensions. The main reason for this is the omission of the T Mag as a
random variable. The linear summation of the tidal beating with the skew surge causes a non-linear increase
in damages (damage fraction curves are non-linear (fig. 4.3)). However, the tide cannot be the only explana-
tion for this, as it underestimates return values associated with smaller return periods when compared to 5
and 6 dimensions. In 4 dimensions, by making the P Dur probabilistic, events with a small duration decrease
the P Mag which co-occurs with the peak total water level, and the total precipitation volume. This decreases
the damage associated with the events for RPs of 1 - 10 years. The inclusion of S Dur as a random variable
has a significant effect on the EAD. This is primarily caused by its response to lower RPs (smaller than a year),
which are significantly larger than for other dimensions [Couasnon et al., 2022; Eilander et al., 2023c]. While
S Dur does not increase the peak water level, if the duration is larger than the median value, it increases the
volume of water that overflows the flood protection measures. It also increases the magnitude of the total wa-
ter level that co-occurs with the precipitation event. In 6 dimensions, the P Lag further decreases the number
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of compound events, which reduces the EAD concerning five dimensions. The estimate in EAD between the
lowest and highest number of dimensions is 172 and 219 Million USD respectively.

Figure 5.8: Risk curves associated with different dimensionalities of the multivariate input space for total economic damages. Legend
includes the EAD estimate.

The risk curves associated with the inland and coastal damages were also computed for each test stochastic
event set. These show a similar behavior to fig. 5.8 (fig. K.1, fig. K.4). The linear summation of the EAD for
inland and coastal outputs leads to similar estimates in the EAD as reported in fig. 5.8 (fig. 5.9). Moreover,
the error bars can explain the differences, however their magnitude, and range make them unsuitable to use.
Figure 5.9 can also be used to show which location contributes the most to the EAD.
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Figure 5.9: EAD estimates for the complete and classified model in different dimensions. Error bars are obtained from the TGP uncer-
tainty of the risk curves. In the case of the classified model, these are linearly superposed.

Figure 5.10 shows the empirical CDFs related to the mean risk curves shown in fig. 5.8 for each dimensionality
(see table 4.2). Each subplot represents a different combination of dimensions when applying the two-sample
KS test. If the p-value is smaller than 0.05, the null hypothesis (empirical CDFs come from the same parent
distribution) is rejected. The y-axis is synonymous with the RP of events. The large extreme rate used to
model the historical event set (chapter D) means a large proportion of the empirical CDF only shows the
effect of small RPs. All combinations have a p-value of zero. This shows that none of the empirical CDFs
show statistical significance, they therefore do not come from the same parent distribution. In other words,
each dimension leads to a significantly different response to the total economic damages. This is also the
case for inland and coastal (fig. K.2, K.5), showing that for this case study, additional random variables such
as time lag still have a noticeable effect on damages even if a driver is expected to dominate the response (see
section 5.3).
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Figure 5.10: Test statistics and associated p-values associated with two-sample KS test for the empirical CDFs of different dimension-
alities when sampling from the total economic damages. If the p-value is smaller than 0.05, the null hypothesis (empirical CDFs come
from the same parent distribution) is rejected.

Figure 5.11 shows the EAD distribution obtained by performing an empirical bootstrap on the empirical CDFs
in fig. 5.10. If the p-values are smaller than 0.05, the null hypothesis (empirical CDFs have the same location
(EAD)) is rejected. Only one combination has a p-value that is greater than 0.05, which is two and four di-
mensions. Therefore, for this combination of dimensions, there is statistical evidence that the two empirical
CDFs have the same location. This conflicts with previous findings. Firstly, the empirical CDFs are different
with strong statistical evidence (fig. 5.10). Secondly, the risk curves are visually different (fig. 5.8). The rea-
son for this outcome is related to the return values corresponding to small RPs in four dimensions (fig. 5.10),
where approximately 5 - 10 % of the events have economic damages equal to zero. Since the EAD is strongly
influenced by these smaller RPs, the large return values in four dimensions have a small effect on increasing
the EAD [Couasnon et al., 2022; Eilander et al., 2023c].

The MWU rank test on the inland and coastal EADs show no significance for all variables (fig. K.3, fig. K.6), the
empirical CDF for coastal and inland in four dimensions show strong similarities with the empirical CDF of
total damages (fig. 5.10). This shows that the significance identified for 2 and 4 dimensions is either output-
specific or is caused by small differences in the empirical CDF generated by the mean responses of the TGP.
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Figure 5.11: P-values associated with MWU test for empirical CDFs of different dimensionalities (see table 4.2) when sampling from the
total economic damages. If the p-values are smaller than 0.05, the null hypothesis (empirical CDFs have the same location (EAD)) is
rejected. The empirical bootstrap was repeated 500 times.

5.3. Identifying the Driver Dominating the Large Return Periods
While the sensitivity analysis performed on the addition of random variables to the multivariate input space
can give insight into the effect of these variables on the response of damages, it does not explicitly say what
type of events are dominating the economic damages. This can be investigated by looking at the ratio de-
scribed in section 4.6.3. This is applied to the sub-county model to investigate the effect of the location of
the outputs on this ratio (section 5.3.1). Then it is applied to the total, inland, and coastal damages when
increasing the number of random variables in multivariate input space (section 5.3.2).

5.3.1. Different Sub-County’s for Two Random Variables
Figure 5.12 shows the ratio of events for surge and precipitation that have magnitudes greater than their
respective POT thresholds (extreme rate of 1). These are compared to all events that cause economic damages
greater than the 100-year RP. The ratio for the surge is consistently 1 for all sub-counties. This shows in two
dimensions that extreme skew surge is always present in the largest economic damages. On the other hand,
this is not the case for the ratio representing precipitation, which varies based on the sub-county. Four sub-
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counties have a ratio which is greater than 0.6: Charleston Central, North Charleston, Ravenel Hollywood,
and West Ashley.

Figure 5.12: Ratio of driver magnitudes above their POT threshold (for an extreme rate of one) for events with a return period larger than
100 years for all sub counties.

5.3.2. Different Outputs and Different Number of Random Variables
Recall that each dimensionality has a predefined combination of random variables (table 4.2). Figure 5.13
shows the effect of additional dimensions on the relative influence of drivers on extreme events. Similarities
with fig. 5.12 can be observed in two dimensions. The ratio for the surge is always close to 1, and the ratio for
precipitation depends on the location of the output. In more than 2 dimensions, fig. 5.13 shows that including
additional random variables has little effect on the ratio for the surge. However, it affects the precipitation
ratio, which does not show the same trends between the different outputs.

When comparing fig. 5.13a, and fig. 5.13b the precipitation ratio is larger for the inland output than the total
output for all random variables. Moreover, when comparing fig. 5.13a, and fig. 5.13c the precipitation ratio
for the total output for all random variables is larger or equal to the precipitation ratio for the coast output.

For fig. 5.13a, fig. 5.13b, and fig. 5.13c, the inclusion of the tidal magnitude as a random variable decreases
the precipitation ratio. The inclusion of the precipitation duration further increases the ratio of events that
have an extreme precipitation magnitude for fig. 5.13a and fig. 5.13b. This is not the case for fig. 5.13c, where
the ratio for precipitation decreases. Figure 5.13a, 5.13b, and 5.13c show an increase in the precipitation ratio
when including skew surge duration. The inclusion of precipitation lag has conflicting results for all three
outputs. In the case of fig. 5.13a it decreases the precipitation ratio. For fig. 5.13b it has no influence, and
fig. 5.13c it increases the ratio.
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Figure 5.13b still shows the ratio of the surge is larger than precipitation for any number of dimensions. How-
ever, for 4, 5, and 6 dimensions, the ratio is smaller than one. This shows that an extreme precipitation event
must have co-occurred with a non-extreme skew surge and caused significant damage. This was only cap-
tured when precipitation duration was included as a random variable.

(a) Complete model, total output. (b) Classified model, inland output.

(c) Classified model, coastal output.

Figure 5.13: Ratio of driver magnitudes above their POT threshold (for an extreme rate of one) for events with a RP larger than 100 years
for different dimensions and outputs.
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6
Discussion

The results shown in chapter 5 allow for a comparison between (i) an a posteriori and a priori approach for the
same event set with 2 random variables, (ii) the sensitivity of the compound flood risk estimates to additional
random variables, (iii) the effect of using multiple outputs to increase the estimate of compound flood risk
for different locations, (iv) which compound flood drivers cause the largest total economic damages.

The random variables included in the multivariate input space were based on the recommendations of Eilan-
der et al. [2023c] and an initial sensitivity analysis. This resulted in 6 random variables being used to define the
historical event set. These were Skew surge Magnitude (S Mag), Precipitation Magnitude (P Mag), Tidal Mag-
nitude (T Mag), Precipitation Duration (P Dur), Skew surge Duration (S Dur), and Precipitation Lag (P Lag).
Peak Over Threshold (POT) was applied on the S Mag, and co-occurring events were identified by using a
window of a fixed length, which was based on the average duration of hurricanes. To define the dependence
structure, (vine) copulas were used as they create stochastic event sets, where each event represented a set of
local boundary conditions reducing the numerical model extents [Couasnon et al., 2022; Eilander et al., 2023c;
Gori et al., 2020]. Points of novelty were (i) the use of a Treed Gaussian Process (TGP) to dynamically select
samples and generate a surrogate model to reduce the computational cost associated with compound flood
risk assessments, (ii) the definition of a stopping criterion based on the needs of such assessments (chapter I)
and (iii) sampling from different outputs to decrease the uncertainty associated with their response.

6.1. Limitations of the Study
Some elements of the presented research are dependent on the case study. Moreover, because of the rela-
tively short timeline, some assumptions were made to simplify the steps taken to generate stochastic event
sets. Before concluding, the underlying limitations are listed below. These can be split into three distinct
subsections. Some limitations are caused by simplifying assumptions to reduce the time required to perform
a complete compound flood risk assessment (section 6.1.1. Others are currently affecting state-of-the-art
compound flood risk assessments (section 6.1.2). Finally, using a TGP has brought a new set of limitations
(section 6.1.3).

6.1.1. General Limitations
1. Single case study location

The methodology is not only applicable to the case study of Charleston. However, different locations
will be affected by a different combination of compound flood drivers. This will change the number
and correlation of random variables. For case studies with a large number of random variables, the
vine copula may become a limitation, as it is difficult to find the correct regular vine which is associ-
ated with the smallest error. Moreover, it has also been shown that the computational cost increases
with additional dimensions. This is caused by longer boundary conditions in SFINCS (chapter J), and
the computational cost of the TGP increases with the number of sampled events. For case studies
with the same set of random variables, the conclusions on the sensitivity of the compound flood risk
assessments to certain random variables will vary, as the correlation and associated dependence are
dependent on the case study location.
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2. Focusing on economic risk
To simplify the analysis, it was decided to only focus on the effect of compound floods on economic
damages. However, damages can also be social [Diermanse et al., 2023; Eilander et al., 2023c], and
there is no guarantee that economic and social damages follow the same patterns with respect to the
stochastic event sets. This is caused by zoning patterns, creating a disparity between the spatial pat-
terns of exposure and vulnerability to economic and social consequences.

3. Focus on the current climate
The joint probability is likely to change with climate change, which would change the generation of
stochastic events. Moreover, if the trend noticed in fig. B.1 is extrapolated, it is expected that sea level
rise will continue to increase, further increasing the effect of the downstream boundary condition on
compound floods. Both of these are not taken into account. This means the estimate of risk and EAD
should change over time.

4. Omission of tropical cyclones
Seasonality of events is not taken into account, which should normally be the case for the case study
location. There is therefore an underestimation of return values associated with Return Periods (RPs)
larger than 5-10 years [Parker et al., 2023], which will underestimate risk [Nederhoff et al., 2024].

5. Using a dominant driver for event identification
Identifying a dominant driver for the historical event set restricts the analysis to damages caused by
extremes of this driver. There is therefore an omission of events that lead to extreme consequences.
This limitation was minimized by (i) increasing the extreme rate of the POT on the dominant driver,
(ii) decoupling the skew surge and the tidal driver, and (iii) defining the P Mag with a non-extreme
PDF (see section D.1.1). These lead to smaller total water levels at small RPs, and significantly larger
precipitation magnitudes at large RPs.

6. Correlation and dependence associated with time lags
Previous research has shown that certain time lags increase the dependence between driver magni-
tudes [Khanal et al., 2019]. To accommodate this approach, the historical event set should be split into
two for this particular time lag. However, this would require a significant amount of events to ensure
the vine copula can be safely fitted to both.

7. Using Dißmann’s algorithm to fit regular vines
Dißmann’s algorithm [Dißmann et al., 2013] was used to fit the regular vines in this research. It is un-
certain if this algorithm provides the best possible regular vine. It was chosen as it was unknown how
many random variables would have their dependence modeled, which could have caused the use of a
brute force approach to be unsuitable. A brute force approach ensures the best regular vine is chosen
according to a certain metric, but has only been used on up to 8 random variables [Morales-Nápoles
et al., 2023], and can be computationally expensive for 7 and 8 random variables. However, for 6 ran-
dom variables, the brute force approach would have been computationally feasible.

6.1.2. Current Compound Flood Risk Assessments
1. Spatial uniformity of compound flood drivers

While this research does attempt to include additional random variables, it assumes spatial uniformity
for precipitation, skew surge, and tide. Taking this into account would bring some additional issues as it
would (i) increase the number of random variables to correctly model the compound flood drivers, (ii)
require accurate and long time records of drivers at different locations, (iii) require a parametric model
to correctly model historic events to include the parameters in the dependence structure. Nonethe-
less, by assuming spatial uniformity, there is an overestimation of economic damages associated with
events.

2. Using global models to obtain the historical time record of a driver
Previous research has shown that ERA5 underpredicts extreme precipitation totals [Lavers et al., 2022].
Using ERA5 to retrieve the historical time record of precipitation therefore leads to an underpredicting
of damages associated with extreme precipitation events. Chapter 2 showed machine learning tools
could be used to solve this issue.

3. Super-Fast INundation of CoastS (SFINCS)
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The use of SFINCS significantly decreases the computational cost associated with the hydrodynamic
simulation of an event. However, its numerous assumptions cause certain physical phenomena to be
neglected, increasing the uncertainty associated with the hazard map obtained for stochastic events.
Nonetheless, some of this uncertainty is caused by the global datasets [Bates et al., 2021] used to cal-
ibrate and validate the SFINCS model, which would also be present in more complex hydrodynamic
models. Moreover, the use of SFINCS only investigates overflow and overtopping as potential failure
mechanisms. It does not consider other levee failures that can occur at high water levels such as pip-
ing.

4. Using stochastic event sets
When comparing events simulated by the vine copula in 6 dimensions (fig. H.6), S Mags and P Mags do
not correspond with fig. 4.9 even though the same seed was used, and the corresponding pair copula
represents a node of the vine copula. The only test event sets that are the same are (i) 2 and 3 dimen-
sions, (ii) 4 and 5 dimensions. If variations do exist, they should only affect the tail of the risk curve (i.e.
high RPs). This is because the same vine copula and marginal PDFs are used. For a large number of
samples, it is expected that the kernel density estimate (KDE) should roughly remain the same. There-
fore, the effect on EAD, and empirical CDF of economic damages, which are dependent on the overall
dataset, and not individual simulations, should be limited. If significant differences are observed, this
should be caused by the extra dimensions and not the specific realization of the event set. This will
have a noticeable effect on the identification of drivers causing events with a RP larger than 100 years.

6.1.3. Use of a Treed Gaussian Process (TGP)
1. Simplistic boundary condition representation of events

To simplify the generation of local boundary conditions, a Gaussian shape is assumed as it is only de-
pendent on three variables, the location (mean), peak magnitude, and the duration (standard devia-
tion). The small number of parameters in a Gaussian prevents the artificial boundary condition from
accurately representing the historical events. For example, a Gaussian is unable to show multiple peaks
in magnitude and is symmetric.

2. Threshold-based stopping criterion
The stopping criterion uses the ALM mean to decide whether enough samples have been collected to
get a sufficient understanding of the response of the economic damages to the input space. However,
the ALM mean depends on the MCMC to compute the hyperparameters related to the TGP. This pro-
cess requires a large number of iterations. Therefore, if the posterior predictive surface was computed
multiple times for the same sampled events, it could lead to a different realization of the TGP mean and
ALM statistics for the available samples. For a threshold-based stopping criterion, an inaccurate ALM
mean could lead to early stopping (less accurate representation of the economic damages) or more
samples (than necessary) being drawn from the input space (increasing the computational cost).

3. Sampling historical tides randomly
For artificial events, the tidal beating related to a given Higher High (HH) tide magnitude is sampled
randomly from the time record. While the magnitude of the event is correct, the significant differences
in beating may lead the damages associated with the same event to change. This can only be explained
by the TGP as noise, increasing the uncertainty associated with the event set.

6.2. Sampling and Surrogate Modeling
Section 5.1 shows the a priori and a posteriori approaches are dependent on the event set used. This is one
of the advantages of the structured grid used by [Couasnon et al., 2022; Diermanse et al., 2023; Eilander et al.,
2023c] as the simulations and surrogate model are independent of not only the output but also the event set.
The a priori and a posteriori methods could be applied to a structured grid, but it is expected this will increase
the number of samples required to reach an accurate estimation for all the dependent variables. This is
because a larger number of samples will be located in areas of the input space where stochastic events will not
be generated. This is caused by the dependence structure and marginal probability distribution functions.

6.2.1. A Priori Sampling and Interpolation
A priori sampling is independent of the output, as the number of samples and interpolation technique is
chosen without knowledge of the response of the dependent variable. The sampled events can be used to
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interpolate in different outputs leading to no increase in computational cost. However, there is no certainty
that the same number of samples or interpolation technique provides the same level of accuracy for the
different outputs.

The a priori approach was chosen based on the results of Jane et al. [2022] which showed that a MDA com-
bined with a scatter interpolation outperformed other sampling and surrogate model techniques. Camus
et al. [2011], recommended using a MDA as it provided a good subset of points on which to use interpolation.
This was observed in section 5.1.1. However, the use of dissimilarity prevents the MDA from sampling two
points close to one another, which can lead to poor interpolation and loss of accuracy in locations where
significant differences in the output are expected. Additionally, while Jane et al. [2022] recommends the use
of linear scatter interpolation technique, it is unknown if this interpolation provides the best representation
of the dependent variables for a stochastic event set. Section 5.1.1 showed saw tooth contour levels in the
interpolation of the dependent variable providing an irregular response. In certain cases, this leads to sharp
differences in the dependent variable at locations in the input where this was not expected. This may lead to
inaccurate estimations of the dependent variable.

Therefore, the inaccuracy described in section 5.1.3 is caused by both the interpolation technique, which is
not flexible enough to correctly represent the output, and the MDA not selecting the samples that bring the
largest expected information gain.

6.2.2. Applicability of a Treed Gaussian Process (TGP)
A TGP is more computationally expensive to use than a GP because of the additional hyperparameters needed
to define its hierarchical model (eq. (2.18)).

Nonetheless, a TGP was used over a GP as it was believed that the binary partitions would bring about a
smaller computational cost and a better understanding of the uncertainty associated with the input space.
Moreover, it could lead to a better fitting model in the context of flooding, as levees and other flood protection
measures can suddenly be overtopped, which would require a discontinuity in the response of the output
[Gramacy and Lee, 2009]. A binary partition could therefore indicate at which magnitude of a driver a flood
protection measure is no longer viable. Moreover, if P Lag is included, the effect of compound floods should
only be relevant for a range of time lags, which a binary split could show when this is the case.

However, for a partition to be statistically significant, it requires a large number of sampled events. The use
of a stopping criterion to minimize the computational cost therefore reduces the likelihood of observing a
partition. This can be minimized by using the TGP on multiple outputs, as the number of samples needed to
reach the stopping criterion increases (eq. (5.1)). Nonetheless, the outcomes of the training dataset showed
if a partition occurs it is not always stable (chapter I).

In this research, the TGP was used on 26 distinct outputs, and only partitioned on 2 of them, showing the
additional computational cost may not be appropriate for (i) this case study (ii) a stopping criterion. The
outputs that were partitioned were North Charleston (sub-county model in 2 dimensions) and Inland in 6
dimensions. In both cases, only the precipitation magnitude caused the binary split.

In the case of North Charleston (chapter L), when conditionalizing on the minimum of S Mag, the binary split
does not seem to occur at the value of P Mag where damages start occurring, demonstrating that if binary
splits did occur for the other outputs, they may have not brought the desired information of the state of the
current flood protection measures.

6.2.2.1. Early Stopping
Using an a posteriori method allows for an estimation of a stopping criterion, which should reduce the com-
putational cost associated with the hydrodynamic and impact models, as it gives more confidence in the
number of samples needed to model the response of an output.

One observation made in section 5.2.1.1 was related to the TGP stopping after the initialization provided by
the MDA. This was also observed with the training dataset (chapter I). However, for the training dataset, it
was expected that this was caused by the small size of the event set. If it also occurs for the test set, it could
be caused by (i) the stopping criterion not being robust enough leading to an early stop, (ii) the incremental
addition of the P Dur, S Dur, and P Lag, which reduces the number and severity of compound flood events.
This demonstrates the importance of correctly defining the vine copula, as it dictates the number and severity
of compound floods in the stochastic event set.
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An early stop does not cause the TGP to be a poor surrogate model as it is regularized (chapter 2), but as
seen with the training dataset (chapter I), it does lead to the possible accuracy. Moreover, fig. 5.9 showed that
this can result in small differences in the estimate of the EAD. It can also lead to differences in the economic
empirical CDF and EAD distribution generated by these as these are based on the mean response of the TGP
and do not take into account its uncertainty.

6.2.2.2. Multiple Outputs
While early stopping is a limitation of this research, consistent trends are still noticeable in the results. One
of these is the additional number of samples required to reach the stopping criterion when there are mul-
tiple outputs. Part of this can be attributed to eq. (5.1). Since a round-robin schedule is used, the larger
the number of outputs, the more samples are needed to remove outputs from the schedule. However, this
is not always the case. This shows that using multiple outputs requires additional samples to better under-
stand the response of the dependent variable in different contexts. For the sub-county model, Charleston
Central requires the largest number of samples, which is caused by it being the most affected by compound
flooding (section 5.3.1). The TGP therefore requires more information on different combinations of events
to correctly model the output. Using multiple outputs therefore increases the understanding of compound
flooding, which reduces the likelihood of an early stop, which comes at an additional computational cost.

By having multiple outputs, the TGP is forced to sample from different random variables to understand the
local response to economic damages, which will vary depending on the location (distance from the open
coast) and characteristics (i.e. flood protection measures) of the output. This is a desired effect, as it provides
a better understanding of flood risk for different areas of the SFINCS and FIAT model boundaries. It therefore
allows governing bodies to use a utilitarian framework to know where to spend their resources.

The use of multiple outputs shows that a TGP should not only apply to the case study of Charleston. In 2
dimensions, it is known that the estimate in EAD provided by the TGP is accurate (section 5.1.3). Moreover,
the classified model in 2 dimensions reaches a similar quantification of EAD when combining the inland and
coastal output (fig. 5.9). When comparing the driver ratios for surge and precipitation between the inland
(fig. 5.13b) and the coast (fig. 5.13c) in 2 dimensions, it can be seen the response of the locations are signifi-
cantly different. The inland location is more affected by precipitation, than the coast. Nonetheless, the TGP
can still accurately model both locations and provide an accurate estimate of EAD.

6.2.3. Comparing the Computational Cost of Both Approaches
The results shown in section 5.1.4 and section 5.2.1.2 are dependent on the processor and the hydrodynamic
model used. One of the advantages of SFINCS is its speed. If a more complex hydrodynamic model was
used to solve the flood hazard of an event (i.e. Delft3D), it is expected that this would be the component
dominating the cost for the number of samples shown in section 5.2.1.1.

Section 5.1 showed that the a posteriori outperformed the a priori approach on the same event sets for the
number of samples it needs to fit the surrogate model, its accuracy, and cost. With this significant reduc-
tion in computational cost, it could be interesting to increase the number of random variables, decrease
the number of assumptions used in compound flood risk assessments, and obtain a better understanding
of the true response of the economic damages to compound flood drivers. With six random variables, the
longer boundary conditions in terms of time combined with the larger number of sampled events lead to an
increase in the total duration of 30 minutes for a singular output (section 5.2.1.2). This outcome might be
dependent on the MCMC, which leads the TGP to an early stop. However, fig. 5.9 showed that the estimate
in EAD was consistent when comparing the outcome of the complete and classified models for any number
of random variables. Moreover, chapter I (more specifically fig. I.2) showed that the training event set would
have stopped after 66 total samples if a stopping criterion was used. Therefore, there is some confidence in
the computational times reported in fig. 5.7.

section 5.2.1.2 exposed one potential issue of using a TGP and a stopping criterion. It is unknown what the
cost of modeling an event set will be. For 6 dimensions and the classified model, this leads to a large com-
putational cost. This may have been caused by small amounts of noise introduced by the schematization /
parametrization of the boundary conditions (section 4.4.3). Ishibashi and Hino [2021] also experienced this
and used the argument that in certain active learning contexts, less information can provide better accuracy
than more information. To prevent large computational times, a stopping criterion may be placed on the
number of samples for the a posteriori approach, which is similar to the a priori approach. This may remove
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the benefit of using an a posteriori approach. This is because the surrogate model can provide metrics that
can monitor if enough samples have been collected to measure the accuracy of the dependent variables of an
event set (chapter I).

Finally, for the sub-county model, the difference in computational cost between both approaches further
decreases, but it is still advantageous to use a TGP. Moreover, the TGP can give estimates of the confidence
for each output, providing a more robust measure of EAD for multiple outputs.

6.3. Sensitivity Analysis of Additional Random Variables
When comparing the risk curves shown in fig. 5.8, a clear outlier was identified. This was also observed for the
inland and cost outputs (fig. K.1, and fig. K.4 respectively). For higher RPs, the risk curve associated with the
non-tidal driver magnitudes underpredicts the return values of economic damages when compared to higher
dimensions. This remains the case when the modeling uncertainty of the TGP is taken into account. Includ-
ing the other driver magnitudes (only T Mag in this case) reduces the difference with the higher dimensions.
This may be caused by the proximity of Charleston County to the open coast, which makes it susceptible to
damage from the coastal water level.

The sensitivity analysis in section 5.2.2 showed that each additional variable had a noticeable effect on the
different metrics such as the empirical CDF of economic damages and EAD. Without taking into account
the limitations, a conclusion could be that additional variables improve the understanding of compound
flood risk assessments, and justify the increase in computational cost. However, the limitations influence the
results.

Firstly, the statistical tests were dependent on the realization of the TGP mean for an event set, and do not
take into account the model uncertainty of the TGP. Depending on the realization, it can lead to different
estimates of the metrics and associated test outcomes. This means that a range of samples and associated
computational costs for each FIAT model and dimensionality exist. For each of these exists a risk curve, with
an associated confidence interval, empirical CDF, and EAD. If early stopping occurs, it could cause noticeable
differences between different realizations of the method for the same event set, dimensionality, and output.

Secondly, because of the large event set size, combined with a large extreme rate, this leads 70% of the event
set to have a RP smaller than 2 years. The EAD and empirical CDF are therefore dominated by the response of
the surrogate model in areas with small economic damages. However, the TGP samples from areas with the
largest expected information gain, which is often located in areas with significant differences in economic
damages concerning the input (i.e. large RPs). When using a stopping criterion, it may prevent the TGP from
understanding the damages associated with these lower RPs, leading to noticeable differences in EAD and
empirical CDF.

Finally, another reason for the small p-values related to the empirical CDFs could be related to the type of
test conducted. On one hand, the size of the event set dictates the significance of the KS-statistic. On another
hand, the KS test only takes into account the largest difference in probability between two empirical CDFs.
It does not investigate the mean difference. The estimates of the empirical CDF may give large values of the
KS statistic, which is caused by a large difference in the lower RPs. However, in the larger RPs, the empirical
CDFs may be similar as shown in the risk curves (fig. 5.8). The KS test does not account for this.

These outcomes did not affect the results of the training dataset (chapter I). This is related to the size of
the event set. Because of the probabilistic nature of an event set, a smaller number of events leads to less
diverse pairs of generated events. This has two effects. Firstly, the MDA initialization will lead to a larger
proportion of the available samples to be simulated. Secondly, the smaller event space leads to an easier
MCMC computation for the hyperparameters. Both of these will decrease the variety between realizations of
the TGP mean.

6.4. Identifying the Driver Dominating the Large Return Periods
The identification of the dominant driver is important, as it can indicate to governing bodies what flood
protection measures should be improved. Section 5.3.1 and section 5.3.2 both showed that the driver ratio
for S Mag was always close to 1. This may be caused by the choice of threshold which was too small for S Mag.
Nonetheless, other factors can cause this such as the proximity of the sub-counties to the open coast and the
estuary. It is therefore expected that large S Mags will cause significant damages. Moreover, in section 3.4.1,
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when discussing the previous validation of the SFINCS model, there were some unanswered questions on the
number of false positive inundated homes. If this false positive number is high, it is expected that the effect
of the skew surge driver on economic damages will increase.

The classified model assumed the sub-counties could be clustered according to their proximity to the open
coast. This would allow the output space for the different clusters to exhibit different behaviors without
increasing the computational cost significantly. The four sub-counties used for inland were: Charleston Cen-
tral, North Charleston, Ravenel Hollywood, and West Ashley. These sub-counties are associated with the four
largest precipitation ratios (section 5.3.1) demonstrating that this assumption was justified. Thus, in two di-
mensions, the observations made on the sub-county model should be comparable to the classified model and
should reduce the computational cost of using the methodology. This required some form of prior knowledge
to make this decision. Moreover, greater confidence is gained by sampling from multiple outputs and should
give insight into the location of flood protection measures. For the same event set, the different sub-counties
see noticeable differences in the types of events that can cause damages with a RP larger than 100 years. This
is not only caused by the location of the sub-county but also its flood protection measures concerning the
different drivers. This analysis therefore disagrees with the use of design events for different RPs [Jane et al.,
2022; Moftakhari et al., 2019]. One reason for the noticeable difference is that this analysis took into account
pluvial instead of fluvial drivers. Another reason could be because the analysis was focused on risk and not
hazard.

Section 5.3.2 also showed the dominant driver was always skew surge. Moreover, some general observations
in the precipitation and surge ratios were caused by the proximity of the sub-counties to the open coast.
However, as mentioned in section 6.1.1 the ratio for precipitation was affected by differences in the stochastic
event sets generated. Nonetheless, incrementally adding random variables had different effects on the num-
ber of extreme precipitation events. Including the T Mag increased the number of random variables that can
cause extreme water levels, which increases the relative frequency and magnitude of extreme water levels.
For example, a spring tide coinciding with a surge event that has a RP of 2 years can cause damages with a RP
of 100 years. This decreases the relative damage of extreme precipitation events. Including P Dur increased
the precipitation totals of extreme precipitation events and the co-occurring P Mag with the total water level
event. This is because of the correlation between P Mag and P Dur (section E.1). Including S Dur increases
the overflow volume and the co-occurring skew surge magnitude with the precipitation event. Finally, includ-
ing P Lag decreases the number of events that are co-occurring, as the marginal probability density function
(chapter G) has a higher likelihood of generating events that have a significant time lag.
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7
Conclusion and Recommendations

7.1. Conclusions
In conclusion, by answering the following sub-questions, a Treed Gaussian Process (TGP) has shown that it
can improve the quantification of compound flood risk in different ways.

1. To what extent can a Treed Gaussian Process improve the estimate of compound flood risk while
limiting the increase in computational cost?

The results demonstrate that if the state-of-the-art approach and the TGP are applied on the same event
set in 2 dimensions, the TGP improves the accuracy in RMSE by a factor of 8, improves the estimate in
EAD by a factor of 20, and reduces the computational cost by a factor of 4. While the cost reduction is
significant, this is dependent on a stopping criterion, which may not provide the best representation
of the risk curves. For multiple outputs, the cost of using a TGP increases, but for Charleston, these are
always smaller than the current approach for the same number of dimensions.

2. To what extent can a Treed Gaussian Process give insight into the dominant driver when drivers are
defined by multiple random variables?

A TGP reduces the cost associated with compound flood risk assessments facilitating the inclusion of
additional random variables. Including the duration and lag of drivers, causes events with damages
with a RP larger than 100 years to change. This changes the magnitude of drivers when events co-occur
which changes the relative influence of a dominant driver. For the case study of Charleston, skew surge
was always dominant where almost all events with a RP larger than 100 years had an extreme S Mag.
However, the relative influence of precipitation changed depending on the number of random variables
and the output.

3. To what extent is the value of risk, its associated uncertainty, and the computational cost of a Treed
Gaussian Process sensitive to the number and choice of random variables when modeling com-
pound flood events?

By using a stopping criterion with an ALM mean of 0.1 on the TGP, the uncertainty associated with
the surrogate model of economic damages was approximately constant for different combinations of
random variables. For the case study of Charleston, the computational cost was mostly dominated by
SFINCS and DELFT-FIAT, which in certain cases was dependent on the initialization of the TGP with
the MDA. This led the computational cost to increase when increasing the number of random vari-
ables. For a singular output, the cost increased by 100 minutes between the lowest and highest number
of dimensions. When taking into account the uncertainty of the TGP the driver magnitudes provide a
similar risk curve to the risk curve of all random variables. However, the sensitivity analysis demon-
strated that sequentially including additional random variables always had significant effects on the
risk curves and corresponding estimates of EAD. This may have been affected by the MCMC and the
stopping criterion, which did not provide the best representation of the economic damages. Nonethe-
less, the estimate of EAD for 2 and 6 random variables was found to be significantly different and in-

62



7.2. Recommendations 7. Conclusion and Recommendations

creased from 172 to 219 Million USD for Charleston County. This shows the importance of including
the tide, driver duration, and lag as random variables.

4. How are the results associated with the case study applicable to other locations?

The focus of this research was on improving the selection of simulations and surrogate modeling re-
lated to compound flood risk assessments. Individual outcomes such as the identification of a domi-
nant driver, or the sensitivity analysis cannot be assumed to translate to other locations. This is because
these are dependent on characteristics that are intrinsic to the case study. These include flood protec-
tion measures and the dependence between compound flood drivers. Nonetheless, by applying the
TGP on different outputs, and the number of random variables, this research shows the outcomes re-
lated to the cost and accuracy of the surrogate model can be applied to other locations. The outputs
had significant differences in the response of the dependent variables, and the TGP was still able to
model these. In different locations, additional compound flood drivers may have to be included, such
as fluvial discharge. In these locations, it is unknown how non-surge, tide, or pluvial drivers will affect
the cost and accuracy.

7.2. Recommendations
1. Uncertainty in estimates from the Treed Gaussian Process (TGP)

The uncertainty associated with the TGP is dependent on the stopping criterion used. To prevent large
increases in computational cost for marginal improvements in accuracy, it is recommended to have the
threshold on the ALM mean at 0.1 (for a normalized output). If the accuracy associated with this level
of uncertainty is insufficient, it is recommended to decrease the threshold, to allow the TGP to sample
more, providing it more information on the relationship between input and output. However, if this is
too low, the stopping criterion may never be met. Moreover, if different realizations of the TGP occur, it
is recommended to increase the number of iterations used by the MCMC.

2. Minimizing the computational cost associated with a Treed Gaussian Process (TGP)

When using SFINCS, the TGP dominates the computational cost for a large number of samples. There-
fore, an argument could be made to minimize the number of times the posterior predictive surface
needs to be calculated. This can be done in three ways. Firstly, the number of iterations used for the
MCMC of hyperparameters should be increased to increase the accuracy of the ALM statistic. This
would increase the accuracy and consistency of the number of samples needed to reach the stopping
criterion. Secondly, the number of outputs should be minimized in order to reduce the effect of Equa-
tion 5.1. Finally, the TGP could be trained every x samples instead of every sample. This would decrease
the cost associated with the TGP, but would increase the cost of SFINCS and FIAT as more samples
would be drawn. It would also increase the cost associated with multiple outputs. An argument could
also be made to increase the number of MDA samples used for the initialization of the TGP. However,
this could lead to the TGP only being used for the surrogate modeling, and not the sample choice. The
latter is advantageous in reducing the number of samples [Hendrickx et al., 2023] as the TGP chooses
the sample that brings the largest expected information [MacKay, 1992]. Increasing the number of MDA
samples may lead to more samples being drawn, which could increase the computational cost.

3. Inclusion of driver duration and lag as random variables

The analysis demonstrated that the duration and lag of a compound flood driver had a statistically sig-
nificant effect on the EAD and the risk curve. When performing a compound flood risk assessment,
these should be made random variables. However, in areas affected by multiple drivers, it may become
difficult to successfully define the dependence structure between the different random variables. For
these locations, it is recommended to take them as constants but assume a value that will produce a
conservative estimate. This is because the results for Charleston show that only taking into account the
driver magnitudes can be sufficient if the uncertainty of the TGP is acknowledged. This reduces the
number of random variables, and also reduces the computational cost associated with using a brute-
force approach to fit the regular vine, providing a more accurate way of modeling the dependence struc-
ture.

4. Number and spatial extent of outputs when using a Treed Gaussian Process (TGP)
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This research showed that increasing the number of outputs increases the understanding of compound
flood risk in different locations, as the relative effect of compound flood drivers varies based on the
characteristics of the case study. To minimize the cost associated with the method, it is recommended
to reduce the number of outputs. However, this requires some prior knowledge of where the transition
zones are located. This knowledge could be improved with a preliminary sensitivity analysis. This
research only focuses on economic damages. While social damages and economic damages may be
correlated, their responses to compound flood events are expected to vary [Eilander et al., 2023c]. It is
therefore recommended to include different outputs that vary in location, and type of damage to get
the best representation of compound flood risk for a case study location.

5. Improve the quantification of extreme precipitation events

The historical precipitation magnitudes captured by ERA5 underestimate the return values provided
by NOAA. This is a known drawback of using ERA5 [Lavers et al., 2022]. This underestimation of his-
torical events leads to an underestimation of precipitation magnitudes when they are generated by the
vine copula, which underestimates the damages of an event. Different methodologies are available
to correct this. These methods map rainfall from ERA5 and local gauges and apply a transformation
[Holthuijzen et al., 2022; Sun et al., 2022]. Therefore, data from local gauges can be extrapolated to the
time record of ERA5.

6. Increasing size and number of training datasets

A large uncertainty related to the potential early stopping of the TGP on the test datasets could be
resolved by comparing their outcomes with the training datasets. The accuracy of these comparisons
would increase if they could be done for each dimension, and if their size was increased to allow for a
more diverse set of event pairs. However, this would require significant computational resources.

7. Seasonality of events

It has been shown by previous research that the inclusion of seasonality [Couasnon et al., 2022] is vital
in correctly quantifying the return values associated with tropical cyclones [Nederhoff et al., 2024]. The
reason they were not included in this research is because of the short time record. There are two solu-
tions that are often used in research. On the one hand, COAST-RP [Dullaart et al., 2022] has been used
to gather a better understanding of the effect of tropical cyclones on extreme total water levels and has
been used in compound flood risk assessments [Eilander et al., 2023c]. However, this does not include
information on the precipitation magnitudes occurring during tropical cyclones. On the other hand,
the joint probability modeling optimal sampling (JPM-OS) has been used by Diermanse et al. [2023] to
simulate tropical cyclone tracks (similar to [Bakker et al., 2022]). Each track has parameters associated
with it, which dictate the meteorological forcing, and by extension the magnitude of the storm surge
and precipitation.

8. Optimal input reduction

Past research has used input reduction to reduce the number of samples that needed to be simulated.
Sampling a posteriori has been shown to reduce the computational cost associated with higher dimen-
sions, however, it can be significantly larger than lower dimensions if the surrogate model requires
many samples. Similar to the concept of effective discharge [Wolman and Miller, 1960], it would be in-
teresting to identify which combination of driver duration and lags can be assumed constant to arrive
at a similar estimate of the risk curve and corresponding EAD in higher dimensions. This would require
validation by performing a sensitivity analysis on different event sets and different constants in a lower
dimensionality, which could be computationally expensive with a large number of random variables.

9. Compare with a Gaussian Process (GP)

The analysis showed that the partitions of the TGP only occurred for two of the outputs. Moreover, these
partitions did not bring any additional information, in terms of flood risk assessment, and were not
stable. Because of its additional computational cost, it would be interesting to compare the estimate
and the cost of using a GP with a TGP. If no partitions occur, the GP is expected to provide the same
estimate, but for a lower cost. However, partitions can occur before the stopping criterion. The TGP
allows for heteroskedasticity, which makes it easier to only sample from interesting locations in the
input space, leading to a smaller number of samples to simulate.
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A
Supplementary Information For Damage

Modeling

A.1. Hazard Model Governing Equations
The following set of equations (eq. (A.1), eq. (A.2), eq. (A.3)) are used by SFINCS to compute the water levels
and flow rates at each time step and sub-grid cell. For hazard modeling, only the maximum water depth for
the different sub-grid cells in the model domain (fig. 3.3) has to be retained.
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In the SFINCS model for Charleston used by Diermanse et al. [2023], the advection term adν was set to
zero. Furthermore, from the shape and geometric constraints of the water bodies of the case study, it is
further assumed that wind setup is negligible (wind stress, τw is always zero). Sm,n is the source term and can
represent precipitation, infiltration, or discharge from a point source [Leijnse et al., 2021]. ζ represents the
water level, and q is the discharge per meter width. For other variables, see Leijnse et al. [2021].

A.2. Removing Permanently Flooded Buildings From Impact Model
The DELFT-Fast Impact Assessment Tool (FIAT) model defined for Charleston gives estimates of total eco-
nomic damages that are too large for a median Higher High (HH) tide. After visualizing which buildings con-
tributed to this damage, it was realized that the local bathymetry gives incorrect estimations of the ground
floor height of buildings along the waterfront. Since a median HH tide occurs frequently, it will make the es-
timate of the Expected Annual Damages (EAD) dependent on the extreme rate of the historical event set. To
solve this, a model (Figure 4.2) with the following boundary conditions is used: linearly superpose a median
HH tide with a Mean Sea Level (MSL) of 0.2 m, a discharge of 200 m3 hr−1, and no precipitation. The output
attributes an economic damage value for all building footprints (object IDs) contained in the model. The
object IDs of buildings causing damages were then removed from the DELFT-FIAT model.
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B
Time Records of Drivers

This appendix presents observations made on the time record of the different compound flood drivers when
preprocessing them. Firstly, section B.1 shows how the signal of the non-tidal residual was made stationary.
Secondly, section B.2 investigates the daily inequality observed in the tidal time record. Thirdly, section B.3
shows the effect of the dam management on the upstream discharge observations. Finally, section B.4 shows
the extent to which ERA5 underpredicts precipitation extremes.

B.1. Stationarity of the Non-Tidal Residual
After removing the tidal signal from the total water level to obtain the non-tidal residual, a trend caused by
a change in the Mean Sea Level (MSL) was present. To apply Peak Over Threshold (POT), the time record
needs to be stationary, and the trend needs to be removed. This was done using a one-year moving average
to minimize the bias introduced when applying POT [Arns et al., 2013]. This trend can be observed in fig. B.1,
which shows the value of MSL over the time record of available observations steadily increases. There are
periods of seasonality that create a cyclic behavior. Since 2010, the rate of the MSL increase has increased
when compared to previous years.

Figure B.1: 1-year moving average of non-tidal residual for available time record at the NOAA gauge in Charleston.

To better characterize the magnitude of the non-tidal residual, skew surge [Williams et al., 2016] is used. This
means observations go from an hourly resolution to a 12-hour resolution (Charleston has a semi-diurnal
tidal regime [Bosboom and Stive, 2021]). Therefore, the duration of skew surge events will occur in 12-hour
increments.
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B.2. Daily Inequality Caused by the Beating of Tidal Constituents B. Time Records of Drivers

The boundary conditions for the downstream water level are obtained by linearly superposing the tide, MSL,
and the skew surge. From fig. B.1, the MSL does not increase at a constant rate but fluctuates. This results
in the MSL at the end of the time record not having the largest observed value. This could be caused by
atmospheric patterns or tidal constituents that have a time period larger than a year. A decision therefore
has to be made when defining the magnitude of MSL. Overall, fig. B.1 shows a positive trend, therefore, as a
conservative estimate, the maximum observed MSL during the coinciding record of all drivers is used. This
occurred in 2019 (the record is between 1998 and 2023), resulting in an MSL of 0.2 meters.

A one-year moving average does not remove monthly seasonality. Figure B.2 shows the seasonality of Monthly
Mean Sea Level (MMSL). Each month contains a box plot. The orange line represents the mean, while the up-
per and lower limits of the box represent the 75th and 25th quantile respectively. The whiskers show the mini-
mum/maximum of: the addition/subtraction of 1.5 times the interquartile range and the 75th/25th quantile,
or the maxima/minima for that month. Larger water levels can be expected in August, September, October,
and November, which are caused by the hurricane season (chapter 3) and smaller pressures associated with
warmer temperatures. In December, January, February, March, and April, it can be expected that lower water
levels will occur, caused by larger pressures associated with colder temperatures. The largest upper quantile
occurs in September and causes a MMSL of 0.2 meters.

Figure B.2: MMSL seasonality of non-tidal residual at the NOAA gauge in Charleston after removing a one-year moving average.

B.2. Daily Inequality Caused by the Beating of Tidal Constituents
Figure B.3 shows the frequency of daily inequalities in high tides observed at the NOAA Charleston gauge. The
daily inequality has a maximum of 0.53 meters with the largest density occurring between 0.2 and 0.25 meters
(fig. B.3). Since the POT is applied to the skew surge (and not the total water level), it shows the importance
of only investigating events that occur during Higher High (HH) tides. This ensures the water levels that co-
occur with an extreme skew surge can be considered extreme. For example, for a large daily inequality, if the
peak of a storm surge event occurs during a lower high tide, it may lead to a smaller total water level than the
tail of the event occurring during a HH tide. While this can happen in reality, the parametrization of events
(section 4.4.3) may introduce artificial noise (or uncertainties) when using a Treed Gaussian Process (TGP)
(section 4.5.2).
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B.3. Dam Management of Upstream Discharge B. Time Records of Drivers

Figure B.3: Daily inequality histogram observed at the NOAA gauge in Charleston.

B.3. Dam Management of Upstream Discharge
The time record of the upstream discharge is non-stationary (fig. B.4), making it difficult to apply POT. The
non-stationarity for water level is caused by a regular change in the datum (MSL), making it relatively easy to
correct. In this case, the non-stationarity is caused by dam management, which causes hydropeaking. Hy-
dropeaking occurs when the hydrograph shows peaks that occur during dam releases, which follow electricity
demand. This is difficult to correct as it causes the discharge not to follow its natural variability, dictated by
the properties of its upstream catchment (catchment properties decide the base flow, properties related to
runoff and lag between peak precipitation in the catchment and peak fluvial discharge [Hendry et al., 2019]).
The results of chapter C meant this non-stationarity was not corrected.

As shown in fig. B.4a, these management periods can last on the scale of several years.In the right plot of
fig. B.4b, it can be seen that for the most recent period of management, discharge is often released once a
day with a pre-defined magnitude and duration. This is further supported by fig. B.5. Figure B.5a shows that
releases often occur around 5:00 - 8:00 or 12:00 - 14:00 local time. The Figure B.5b shows that these releases
are frequently associated with a daily maximum of 400 or 700 meters cubed per second.

(a) Time record of discharge showing the different periods of dam
management as well as the missing data (2001).

(b) Time series for a random week in the current period of dam man-
agement.

Figure B.4: Discharge time record is affected by hydropeaking.
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B.4. ERA5 Precipitation B. Time Records of Drivers

(a) Histogram of times at which maximum discharge per hour
occurs (start of dam release) every day.

(b) Histogram of the daily maxima in discharge.

Figure B.5: Hydropeaking statistics for the current period of dam management (January 2019 - March 2023).

B.4. ERA5 Precipitation
In previous research, ERA5 has been shown to capture the location and shape of extreme precipitation events
but cannot capture extreme precipitation totals [Lavers et al., 2022]. This is also the case for Charleston.
fig. 3.2 predicts 2.1 to 2.2 inches per hour (equivalent to 53-56 mm hr−1) for a 2-year Return Period (RP) for the
coordinate at which precipitation data is collected. For the time record of coinciding data, ERA5 reanalysis
has a maximum precipitation magnitude of 23 mm hr−1. Since local rain gauges are not available for the
required time record, machine learning techniques can be used to correct ERA5 data [Sun et al., 2022]. This
step would have to be taken for an accurate compound flood risk assessment. However, performing this
methodology is outside the scope of this research, and the underestimation of precipitation magnitudes will
be considered a limitation.
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C
Sensitivity Analysis of Three Compound

Flood Drivers

This appendix describes the method and corresponding results of the sensitivity analysis performed to obtain
the driver dominating the total economic damages.

For precipitation and skew surge, a Gaussian shape is assumed. For Gaussian’s, a heuristic exists, where the
standard deviation is equal to the duration of events. This duration is taken as 12 hours for both drivers.
Moreover, no time lag between precipitation and skew surge is assumed. Thus, only the magnitude is needed
to correctly define the Gaussian and the boundary condition. For discharge, a constant magnitude is assumed
to simplify the modeling of the boundary condition. Finally, a median Higher High (HH) tide is assumed to
coincide with the skew surge. This is done to reduce the relative importance of the downstream boundary
condition.

To decrease the potential dominance of the coastal water level, the skew surge time series is linearly super-
posed with a median HH tide and maximum observed Mean Sea Level (MSL). Table C.1 shows the combi-
nations of events used to test the sensitivity of the economic damages to the three compound flood drivers:
precipitation, discharge (Cooper River), and skew surge.

Table C.1: The 8 simulations used to conduct a sensitivity analysis to determine which compound flood driver contributes the most to
the total economic damages of Charleston County. For S Mag, a constant magnitude is assumed. For precipitation, a Gaussian shape is
assumed, where its peak (P Mag) coincides with the HH tide (no time lag). For discharge, a constant magnitude (Q Mag) is assumed. The
duration of all three drivers is 12 hours. Since the simulation is only 12 hours long, an artificial tidal signal is created which assumes a
sinusoidal shape with a tidal period of 12.42 hours (M2 constituent), which has a magnitude of the HH tide. Finally, MSL is assumed to
be constant.

Simulation
Coastal Water Level [m]

P Mag [mm hr−1] Q Mag [m3 s−1]
S Mag [m] HH Tide [m] MSL [m]

1 0 0.85 0.2 0 200
2 0 0.85 0.2 0 800
3 0.97 0.85 0.2 0 200
4 0.97 0.85 0.2 0 800
5 0 0.85 0.2 23 200
6 0 0.85 0.2 23 800
7 0.97 0.85 0.2 23 200
8 0.97 0.85 0.2 23 800
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C. Sensitivity Analysis of Three Compound Flood Drivers

Figure C.1: Using fig. 4.2 and simulations shown in table C.1 to perform a sensitivity analysis of the compound flood driver magnitudes.

The sensitivity analysis (Figure C.1) shows the economic damages associated with the different simulations
described in table C.1. It shows that discharge does not affect economic damage regardless of the combina-
tion of compound flood drivers. This can be seen when comparing simulation 2 with 1, 4 with 3, 6 with 5, and
8 with 7. This is probably caused by the proximity of Charleston County to the open coast. The backwater ef-
fect means the coastal water level dominates the magnitude of the water level. If the Fast Impact Assessment
Tool (FIAT) model was also defined for the county upstream (Berkeley), the backwater effect would decrease
the dominance of the coastal water level and would show the effect of the so-called transition zone [Gori et al.,
2020; Jane et al., 2022], probably resulting in discharge causing economic damages. Therefore, for the extent
of the FIAT model, the sensitivity analysis shows that fluvial discharge can be safely removed as a compound
flood driver, reducing the number of drivers and dimensions.

This proximity to the open coast also demonstrates that the skew surge events dominate the economic dam-
ages. This can be seen when comparing simulations 3 and 4 with 5 and 6. Comparing simulations 3, 4, and
5, 6 with 7 and 8 shows that precipitation introduces a compound effect, as the economic damages increase
when compared to simulations 3 and 4. Therefore, skew surge can be identified as the dominant driver, and
precipitation should be considered a compound flood driver.
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D
Sensitivity of Statistical Models to Peak

Over Threshold (POT)

The sensitivity analysis on economic damages showed that skew surge was the dominant driver (chapter C).
In this appendix, the methodology described in section 4.3 is applied. Firstly, in section D.1 the events used to
quantify the skew surge extremes and co-occurring tides are defined (total water level extremes). Secondly,
Peak Over Threshold (POT) is applied to precipitation to identify the precipitation extreme events for the
multivariate sensitivity analysis (section D.2). Thirdly, a multivariate sensitivity analysis is performed (sec-
tion D.3). Finally, a univariate sensitivity analysis is performed on the threshold used for the skew surge POT
(section D.4). The results of these sections provide an answer for the definition of the skew surge, and the
threshold to use to identify the historical observations of compound flooding for Charleston (section D.5).

D.1. Quantifying the Total Water Level
An informed decision had to be made on how to quantify the Tidal Magnitude (T Mag) that corresponds with
skew surge events, as this would affect the magnitude of identified skew surge events and corresponding total
water levels. A preference is given to performing the Extreme Value Analysis (EVA) on the skew surge as it is
expected to have a higher correlation with other weather-related drivers (see section D.3.1 for a confirmation
of this expectation). However, the large daily inequality (section B.2) means including all T Mags could cause
a stochastic event to have the maximum total water level that does not co-occur with the maximum skew
surge. This is not desired because of the parametrization of the boundary conditions, which may increase
the uncertainty associated with a stochastic event set when using a Treed Gaussian Process (TGP). A sensi-
tivity analysis was therefore performed in fig. D.1. Figure D.1 shows 80 different realizations of the empirical
marginal probability distribution when generating 10,000 stochastic events for different definitions of skew
surge (fig. D.1b) and total water level (fig. D.1a). Firstly, extreme surges conditional on Higher High (HH) tides
are investigated (blue). Total water levels are obtained by linearly superposing a statistically independent HH
tide [Williams et al., 2016]. Secondly, extreme surge conditional on any tides is investigated (red). Total wa-
ter levels are obtained by linearly superposing a statistically independent higher tide [Williams et al., 2016].
Thirdly, extreme total water levels are investigated (green). Skew surge is obtained by removing a statistically
independent high tide [Williams et al., 2016]. Finally, a non-extreme probability distribution (section 4.4.2.1)
is fitted to the skew surge historical observations which were identified by the total water level EVA (black).
Total water levels are obtained by linearly superposing a random high tide [Williams et al., 2016].
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D.1. Quantifying the Total Water Level D. Sensitivity of Statistical Models to Peak Over Threshold (POT)

(a) Effect of definition on total water level extremes.

(b) Effect of definition on skew surge extremes.

Figure D.1: Investigating the definition of the total water level on the quantification of extreme events.

Differences in surge magnitudes can be quite significant, but the total water level is more important, as it
is the boundary condition of the hydrodynamic model. After a Return Period (RP) of 10 years, all curves
bar non-extreme surge are approximately equivalent. Before this RP, extreme surges underestimate the total
water level. This is because the extreme water levels (green) are king tides co-occurring with small skew
surges, which means the skew surge magnitude is conditional on the tide (small surge, extreme tides). This
underestimation is smaller if the skew surge is conditional on HH tides (blue versus red). For RPs smaller
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D.2. Applying POT to Non-Dominant DriversD. Sensitivity of Statistical Models to Peak Over Threshold (POT)

than 2-3 years, the difference becomes significant. This can be seen as an advantage as it means extreme
precipitation events can co-occur with non-extreme total water levels (non-compound). This reduces the
effect of using a dominant driver to obtain historical compound flood events. This underestimation is also
not a problem if flood defenses are designed for a RP of 2 years.

Combining this information with the expectation that skew surge provides a better correlation with precipi-
tation (see section D.3.1), means skew surge which is conditional on HH tides is used as a random variable to
apply POT.

D.1.1. Non-Extreme Marginal Probability Distribution Functions
The non-extreme surge shows the effect of representing extremes with a non-extreme probability distribution
(fig. D.1). It underpredicts the return values associated with lower RPs as the density is dominated by non-
extreme historical observations. It is also unable to correctly capture the tail of the historical observations
and over-predicts the return values associated with large RPs. These observations are expected to also occur
for other non-extreme marginal probability distribution functions for the magnitude of drivers.

D.2. Applying POT to Non-Dominant Drivers
Figure D.2 shows the plots used to determine a stable threshold for the non-dominant drivers. In the case
of Charleston, this only had to be applied to precipitation. This was performed to compute the number of
extreme precipitation events. Figure D.2a shows the mean excess rate when the threshold is varied. Fig-
ure D.2b shows the magnitude of the 100-year return value when varying the threshold for exponential and
Generalized Pareto Distribution (GPD) curves. It shows the exponential curve predicts a larger magnitude of
the return value, but is stable for a smaller range of thresholds. The return value for a 100-year RP is stable
between 11 and 14 mm hr−1, and the mean residual life is approximately linear between 11 and 14.5 mm hr−1.
It was therefore decided to use a threshold of 11.86 mm hr−1 as a way to include more samples. This resulted
in an extreme rate of 1.11 extreme events per year.

(a) Mean excess rate of different thresholds when applying POT to P Mag.
The y-axis is the mean excess. The x-axis is the threshold. Both have mm
hr−1 as units.

(b) Return value stability for a RP of 100 years when applying POT to P Mag.
The exponential extreme value distirbution is ’expon’ (blue) and the GPD is
’genpareto’ (red). The 95% confidence intervals are created by bootstrapping
100 samples. The y-axis is the return value. The x-axis is the threshold. Both
have mm hr−1 as units.

Figure D.2: Univariate stability of POT on P Mag. Plots are created using the pyextremes python packages [Bocharov, 2023].

Figure D.3a shows the identified extremes (red) alongside the time record of the skew surge. Figure D.3b
shows the exponential (smaller BIC value than the GPD) extreme value curve and the 25 events which have
the largest skew surge magnitudes. It shows the 2 and 100-year return values are approximately 15 and 27 mm
hour−1 respectively. Since fig. D.3b is not used for the rest of the analysis, its accuracy with the historical ob-
servations is not important. However, a comparison of 2-year return values can be made with fig. 3.2 to show
the extent to which ERA5 underpredicts extremes for this particular threshold and location. Figure 3.2 esti-
mated the 2-year return value to be 53-56 mm hour−1. Figure D.3b estimates this value to be 15 mm hour−1.
For a 2-year RP, ERA5 underpredicts the magnitude of events by a factor of approximately 3.5. Depending
on the RP, this effect is enhanced or reduced by using a non-extreme probability distribution function (sec-
tion D.1.1). For large RPs, the effect is expected to be reduced providing more meaningful extremes.
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D.3. Multivariate Sensitivity of POT D. Sensitivity of Statistical Models to Peak Over Threshold (POT)

(a) Time record of P Mag with observed extremes, threshold, and ex-
treme rate.

(b) Empirical and theoretical extreme value curves of P Mag extremes for RPs larger
than 1 year.

Figure D.3: Output of EVA of P Mag using POT with a threshold of 11.86 mm hr−1 (extreme rate of 1.11). Performed using the HydroMT
package [Eilander et al., 2023a] and code obtained from Eilander et al. [2023c].

D.3. Multivariate Sensitivity of POT
For the multivariate sensitivity, stability in the correlation and the number of extreme precipitation extremes
is desired. Moreover, a large number of extreme precipitation events are desired as it makes it easier to model
the tail of its marginal probability distribution. This ensures that a particular instance of the threshold does
not have a significant effect on the statistical models used to characterize dependence and the probability
distribution function of the precipitation marginal.

Figure D.4 shows the effect of including more events in the skew surge POT by decreasing the threshold and
increasing the extreme rate on two variables of interest: correlation with P Mag, and the relative number of
P Mag which can be considered extreme. Figure D.4 shows an extreme rate of 1 has the highest correlation
and ratio of extreme precipitation events. The small number of events present in the historical event set
could have caused this, as the combined record is 25 years, which means the extreme rate of 1 means only
25 events will be present in the historical event set. A small number of events also make it harder to fit de-
pendence models and probability distribution functions to the marginals. It is therefore preferred to have a
larger extreme rate to avoid this. However, as the extreme rate increases, both the correlation and ratio of
extreme precipitation events decreases. In fig. D.4b, it can be visually seen when a new precipitation event is
included, as there is a sudden increase in the ratio of extreme precipitation events. For example, at an extreme
rate of 1, 5 events are included. It is only at an extreme rate of 1.7 that an additional extreme precipitation
event is added. Between extreme rates of 2.4 and 5, no additional events are identified. It can also be visually
observed that additional extreme precipitation events decrease the correlation in fig. D.4a. This is caused by
extreme precipitation events coinciding with the smallest surges when they are initially introduced into the
event set. This can be visualized in fig. D.5, where the vertical blue line, which represents the threshold of the
skew surge, slowly shifts to the left when decreasing the magnitude of the threshold. It is also for this reason
that the correlation increases or is stable when the precipitation ratio decreases, as the additional events that
are added are probably small for (extreme) skew surge and precipitation.
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D.3. Multivariate Sensitivity of POT D. Sensitivity of Statistical Models to Peak Over Threshold (POT)

(a) Sensitivity of Kendall’s τB (between S Mag and P Mag).

(b) Sensitivity of extreme precipitation (P) ratio.

Figure D.4: Sensitivity of multivariate metrics when increasing the extreme rate for the POT applied to S Mag.

Figure D.5: Events identified by POT when applied on P Mag and S Mag. To identify event pairs, the definition of compound is used
(window of 3 days before and after identified event, the largest magnitude is taken). The upper right quadrant shows events that are
both extreme. Events to the right of the vertical line (represents the threshold used for POT of S Mag) are all identified by the POT of
skew surge. Events above the horizontal line (represents the threshold used for POT of P Mag) are all identified by the POT of P Mag. The
marginal PDF are not valid below their thresholds. Using the results of the preliminary sensitivity, it was decided to only use the events
identified by the POT of S Mag, making the joint and the results dependent on extreme S Mag.

In summary, fig. D.4 shows that the correlation between the two compound flood drivers is stable when no
additional precipitation extremes are added to the historical event set. Moreover, it is easier to fit statistical
models when there is a sufficiently large number of events. Additionally, it is easier to define the tail behavior
of the probability distribution for the precipitation magnitude marginal when larger magnitudes are included
in the event set. Therefore a threshold that coincides with an extreme rate greater than 2.5 seems to be the
preferred option as it maximizes the number of extreme precipitation events. This does mean that the non-
extreme precipitation magnitudes will have more weight when defining the probability distribution functions
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D.3. Multivariate Sensitivity of POT D. Sensitivity of Statistical Models to Peak Over Threshold (POT)

for the marginals, and could skew the dependence structure by making it less likely to generate coinciding
extremes in both skew surge and precipitation. The univariate stability will now be investigated to make a
more informed decision.

D.3.1. Multivariate Sensitivity When Applying POT to the Total Water Level
This subsection describes why S Mag and T Mag are linearly superposed instead of using the total water level.
To this end a multivariate sensitivity analysis (similar to section D.3) was applied to the total water level. The
results of this analysis are compared with section D.3.

When comparing fig. D.6 with fig. D.4, some clear differences in the sensitivity of the multivariate metrics can
be observed. Firstly for fig. D.6a and fig. D.4a, Kendall’s τB is smaller for the total water level for extreme rates
between 1 and 2. Additionally, the total water level only reaches a period of stability for Kendall’s τB after
an extreme rate of 4, when compared to 2.5-3 for S Mag. Secondly, for fig. D.6b and fig. D.4b, the extreme
precipitation ratio is smaller for all extreme rates for the total water level when compared to S Mag. This
means using the total water level instead of the skew surge will identify less extreme P Mag events.

(a) Sensitivity of Kendall’s τB (between the total water level and P Mag).

(b) Sensitivity of extreme precipitation (P) ratio.

Figure D.6: Sensitivity of multivariate metrics when increasing the extreme rate for the POT applied to the total water level.

These observations are caused by the total water level extremes co-occurring with P Mags which are not al-
ways extreme. This is because the T Mag can be considered independent of the weather. This has two effects.
On one hand, since the total water level is caused by the linear superposition of the tide and the skew surge,
weather patterns may cause extreme S Mags which may co-occur with extreme P Mags, however these may
co-occur with small T Mags resulting in a non extreme total water level. On another hand, lager T Mags may
co-occur with a weather pattern which causes small P Mags and S Mags. As shown in section D.1, large T Mags
are sufficient in generating extreme total water levels for the case study of Charleston. These extreme total
water levels than coincide with non extreme P Mags.

Therefore to ensure the historical event set contains a large number of extreme P Mag events, and a good
correlation with P Mag, it is preferred to use S Mag over the total water level to identify historical flood events.
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D.4. Univariate Sensitivity of POT
Figure D.7a shows the plots used to determine a stable threshold for S Mag which was identified as the dom-
inant driver. Figure D.7a shows the mean excess rate when the threshold is varied and is stable for thresholds
ranging between 0.3 and 0.42 meters. Figure D.7b shows the magnitude of the 100-year return value when
varying the threshold. For exponential and GPD curves. It shows the exponential curve predicts a smaller
magnitude of the return value, but is stable for the range of thresholds identified by fig. D.7a. Since BIC is
used as a metric to fit the extreme value distribution, the exponential distribution is likely to be preferred,
which means any threshold between 0.3 and 0.42 meters is a good option.

(a) Mean excess rate of different thresholds when applying POT to S Mag.
The y-axis is the mean excess. The x-axis is the threshold. Both have meters
as units.

(b) Return value stability for a RP of 100 years when applying POT to S Mag.
The exponential extreme value distirbution is ’expon’ (blue) and the GPD is
’genpareto’ (red). The 95% confidence intervals are created by bootstrapping
100 samples. The y-axis is the return value. The x-axis is the threshold. Both
have meters as units.

Figure D.7: Univariate stability of POT on S Mag. Plots are created using the pyextremes python packages [Bocharov, 2023]. For an easier
comparison with Figure D.4: extreme rate = [1.35, 2.05, 2.42, 2.91, 3.93], and threshold [m] = [0.4, 0.36, 0.34, 0.32, 0.29].

D.5. Conclusion of Sensitivity Analysis
Using the results from the multivariate and univariate sensitivity analysis, an informed decision can now be
made on the threshold used to define the POT of S Mag and the corresponding historical event set. To maxi-
mize the number of events, number of P Mag extremes, and the correlation between S Mag and P Mag, while
minimizing the noise caused by non-extreme events when fitting different statistical models, an extreme rate
of 2.91 (threshold of 0.32 m) was chosen.
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E
Correlation Analysis

This appendix provides a correlation analysis of the historical event set (section E.1). It also investigates
the effect of splitting the event set into two on the correlation between bivariate pairs of random variables
(section E.2).

E.1. Historical Event Set
Figure E.1 shows the identified historical event set for Skew surge Magnitude (S Mag), Precipitation Magni-
tude (P Mag), Tidal Magnitude (T Mag), Skew surge Duration (S Dur), Precipitation Duration (P Dur), and
Precipitation Lag (P Lag). These are plotted in the uniformly ranked space. This means the events which are
associated with the minimum and maximum magnitude of a probabilistic variable have ranks 1

N+1 and N
N+1

respectively, where N is the number of events in the historical event set. For P Lag, ranks of 0 and 1 corre-
spond to -3 days and +3 days respectively. The correlation coefficient in the form of Kendall’s τB is shown in
the upper left corner of each bivariate plot. Table E.1 shows the p-values associated with each Kendall’s τB .
The null hypothesis uses Kendall’s τB value of 0. Therefore, if the p-value is smaller than 0.05, the correlation
is significant at the 5% level. The event set can be split into events identified by the POT applied on precipi-
tation (fig. D.3) and other events. These extreme precipitation events and table E.1 can be used to show if the
identified correlation (positive, negative, none) holds for extreme events.
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Figure E.1: Scatter matrix for the event set using the Seaborn python package [Waskom, 2021], which shows the correlation between
different dimensions in the uniformly ranked space. Includes S Mag, P Mag, T Mag, S Dur, P Dur, and P Lag. Along the main diagonal, a
histogram for each dimension is plotted. It shows the probability density for non-extreme (black) and extreme precipitation (red) events.
If both histograms are combined, a uniform density is achieved. Kendall’s τB for each combination can be found in the upper left corner
of the respective subplot.

Table E.1: P-values associated with each Kendall’s τB shown in Figure E.1. Shades of green show bivariate pairs of probabilistic variables
that have significant correlation at the 5% level.

S Mag P Mag T Mag S Dur P Dur
P Mag 0.027
T Mag 0.27 0.84
S Dur 0.09 0.69 0.80
P Dur 0.14 4.6e −07 0.025 0.83
P Lag 0.011 0.26 0.72 0.15 0.97

Table E.1 shows that only four pairs of variables are significant. Firstly, the highest confidence is associated
with P Mag and P Dur. This positive correlation means that a large P Mag is often associated with a large
P Dur. The lower tail for these variables in fig. E.1 shows a stronger dependence, showing the effect of in-
cluding non-extreme P Mag events in the event set. Secondly, the next highest confidence is associated with
P Lag and S Mag, showing a positive correlation. Negative lag is associated with smaller S Mags, and positive
lag is associated with larger S Mags. This bivariate pair shows lower and upper tail independence in fig. E.1.
The third pair which has a significant positive correlation is the T Mag and P Dur. This could be caused by
the seasonality of the tidal beating, and underlying weather patterns causing larger durations of rain. Finally,
S Mag and P Mag are also significant. This was expected as the threshold was chosen based on the value of
Kendall’s τB (section D.3). Figure D.4 showed that including a smaller number of events would increase the
correlation, demonstrating the noise introduced by non-extreme events. There is also tail independence for
this pair of variables in fig. E.1.

Table E.1 also shows that S Dur is independent of other variables. One potential reason for this is a small
amount of noise was introduced to break the ties caused by the duration being defined to the nearest tidal
cycle (i.e. 12 hours). Another outcome from table E.1 is the independence of P Lag and P Mag. Finally, the
independence of S Mag and T Mag corresponds with the outcomes of Williams et al. [2016].

E.2. Splitting Event Set Based on Precipitation Lag
Chapter 2 showed that different values of lag caused differences in correlation [Khanal et al., 2019; Wahl et al.,
2015]. Therefore, if large P Mags are associated with a specific P Lag, and small P Mags are associated with
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large values of positive and negative P Lag, Kendall’s τB will show independence. One way to resolve this
would be to split the event set into two. However, this would be dependent on the number of events in either
split. This method would result in different kernel density estimates (fig. E.4) as the bivariate pairs of random
variables showing statistically significant correlation changes (table E.3 and table E.2 versus table E.1). How-
ever, it is unknown if doing this split results in better joint modeling of compound floods. It was therefore
decided not to pursue this further, and assume the dependence structure associated with Figure E.1 provides
a sufficiently accurate representation of the joint distribution.

Figure E.2: Scatter matrix for the event set which has negative precipitation lag. Uses the Seaborn python package [Waskom, 2021], which
shows the correlation between different dimensions in the uniformly ranked space. Includes S Mag, P Mag, T Mag, S Dur, P Dur, and
P Lag. Along the main diagonal, a histogram for each dimension is plotted. It shows the probability density for non-extreme (black) and
extreme precipitation (red) events. If both histograms are combined, a uniform density is achieved. Kendall’s τB for each combination
can be found in the upper left corner of the respective subplot. For precipitation lag, a rank of 0 and 1 indicates a lag of -3 days and 0
days respectively.

Table E.2: P-values associated with each Kendall’s τB shown in Figure E.2. Shades of green show bivariate pairs of probabilistic variables
that have significant correlation at the 5% level.

S Mag P Mag T Mag S Dur P Dur
P Mag 0.65
T Mag 0.34 0.68
S Dur 0.36 0.79 0.47
P Dur 0.74 8.1e −5 0.0091 0.97
P Lag 0.35 0.028 0.43 0.0043 0.31
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Figure E.3: Scatter matrix for the event set which has positive precipitation lag. Uses the Seaborn python package [Waskom, 2021], which
shows the correlation between different dimensions in the uniformly ranked space. Includes S Mag, P Mag, T Mag, S Dur, P Dur, and
P Lag. Along the main diagonal, a histogram for each dimension is plotted. It shows the probability density for non-extreme (black) and
extreme precipitation (red) events. If both histograms are combined, a uniform density is achieved. Kendall’s τB for each combination
can be found in the upper left corner of the respective subplot. For precipitation lag, a rank of 0 and 1 indicates a lag of 0 days and +3
days respectively.

Table E.3: P-values associated with each Kendall’s τB shown in Figure E.3. Shades of green show bivariate pairs of probabilistic variables
that have significant correlation at the 5% level.

S Mag P Mag T Mag S Dur P Dur
P Mag 0.025
T Mag 0.59 0.72
S Dur 0.03 0.36 0.47
P Dur 0.09 0.0019 0.72 0.78
P Lag 0.25 0.0068 0.47 0.29 0.14
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Figure E.4: Kernel density estimation (KDE) after generating 10,000 events for historical event sets with a split and no split. Uses the
Seaborn python package [Waskom, 2021]. Includes S Mag, P Mag, T Mag, S Dur, P Dur, and P Lag. Along the main diagonal, the proba-
bility distibutions of the marginals is shown. The only significant difference is for precipitation lag, where the marginal needs to be split
to better characterize the event set. The split KDE shows a larger concentration of extreme magnitudes at a lag of zero hours (mostly
influenced by the marginal, because surge magnitude has no correlation with precipitation lag, but exhibits a similar behaviour. The
independence does cause the peak in KDE to be less pronounced).

.
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F
Regular Vine And Pair Copulas

This appendix presents the outcome of the regular vine and pair copulas used when fitting the vine copulas
with the pyvinecopulib python package [Nagler and Vatter, 2023] in 2, 3, 4, 5, and 6 dimensions. Table 4.2
shows which random variables are included for a given dimensionality.

Table F.1 shows the Bayesian Information Criterion (BIC) score associated with the different copulas when fit-
ting them to the two dimensional historical event set, which contains Skew surge Magnitude (S Mag) and Pre-
cipitation Magnitude (P Mag) as random variables. In two dimensions, the Gaussian copula has the smallest
BIC score. In section E.1, it was identified that the historical event set had no tail dependence, which matches
the characteristics of a Gaussian copula.

Table F.1: BIC score associated with available copulas in the pyvinecopulib python package [Nagler and Vatter, 2023] when fitting the
copulas to the historical observations of S Mag and P Mag. The smallest BIC score is highlighted in bold.

Copula Family BIC Score
Independent 0
Gaussian -3.37
Student 0.93
Clayton -0.94
Gumbel -3.28
Frank -1.05
Joe -2.67
BB1 0.74
BB6 0.99
BB7 0.32
BB8 1.34

In three dimensions (see table 4.2), the pair copula associated with S Mag and P Mag is the same as for two
dimensions. Moreover, the pair copulas associated with Tidal Magnitude (T Mag) are found to be indepen-
dent. This follows the outcomes of section E.1. To simplify the regular vine (chapter 4), T Mag was removed.
To obtain stochastic events, quantiles are randomly sampled from a uniform distribution between 0 and 1
and are randomly associated with events generated by the copula in two dimensions.

Table F.2 shows the pair copulas associated with the different edges of each tree in the regular vine when
fitting a vine copula to 4 random variables. The regular vine can be visualized in fig. F.1. Nodes are defined
by each random variable of the historical event set for 4 dimensions (see table 4.2). Tree 2 and 3 have edges
which are defined by conditional pair copulas. Tree 2 models the dependency between 2 different pair of
variables given a third variable. Tree 3 models the dependency between a pair of variables given a third and
fourth variable. A similar description can be given for table F.3, which shows the vine copula for 6 dimensions
(see table 4.2). The regular vine shown in fig. F.2 shows there are 2 additional nodes, 2 additional pair copulas
per tree, and 2 additional trees. Moreover, the node of S Mag in fig. F.2 has a degree of 3.
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Figure F.1: Regular vine fitted to 4 random variables.

In 4 dimensions (table F.2), T Mag needs to be included in the vine copula. This follows the outcomes of
section E.1 which showed that Precipitation Duration (P Dur) and T Mag had a significant correlation. A non-
independent pair copula is also fitted to P Mag and P Dur. A rotated 180o Joe copula follows the lower tail
dependence identified in section E.1.

Table F.2: Representation of the vine copula in 4 dimensions [Nagler and Vatter, 2023]. Includes S Mag, P Mag, T Mag, and P Dur. Each
edge represents a pair copula.

Tree Edge Copula Model
1 S Mag, P Mag Gaussian

P Mag, P Dur Joe 180o

T Mag, P Dur Frank
2 S Mag, P Dur | P Mag Independence

P Mag, T Mag | P Dur Independence
3 S Mag, T Mag | P Mag, P Dur Independence

In five dimensions, the pair copulas associated with Skew surge Duration (S Dur) are all independent, which
was one of the outcomes of section E.1. Again, to simplify the regular vine, S Dur is removed. The vine copula
in four dimensions is used to generate events for S Mag, P Mag, T Mag, and P Dur. To generate co-occurring
values for S Dur, quantiles are randomly sampled from a uniform distribution between 0 and 1.

Figure F.2: Regular vine fitted to 6 random variables.

In 6 dimensions, all variables need to be included (fig. F.2 and table F.3). While surge duration was found
to be independent in section E.1, a non-independent copula is found to have a smaller BIC score than an
independent copula on the second tree for the pair copula representing S Dur,P Lag | S Mag (table F.3). This
is also the case for the third tree where P Mag, P Lag are non-independent (table F.3) even though this was the
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case in section E.1. This is caused by the pair copula being conditioned on other variables, which changes
the significance of their correlation.

Table F.3: Representation of the vine copula in six dimensions [Nagler and Vatter, 2023]. Includes S Mag, P Mag, T Mag, P Dur, S Dur, and
P Lag. Each edge represents a pair copula.

Tree Edge Copula Model
1 T Mag, P Dur Frank

P Dur, P Mag Joe 180o

P Mag, S Mag Gaussian
S Dur, S Mag Independence
S Mag, P Lag Frank

2 T Mag, P Mag | P Dur Independence
P Dur, S Mag | P Mag Independence
P Mag, S Dur | S Mag Independence
S Dur, P Lag | S Mag Joe 270o

3 T Mag, S Mag | P Dur, P Mag Independence
P Dur, S Dur | P Mag, S Mag Independence
P Mag, P Lag | S Mag, S Dur Joe 180o

4 T Mag, S Dur | P Dur, P Mag, S Mag Independence
P Dur, P Lag | P Mag, S Mag, S Dur Independence

5 T Mag, P Lag | P Dur, P Mag, S Mag, S Dur Independence
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G
Defining Marginal Probability Distribution

Functions (PDFs) for Non-Dominant
Magnitudes

This appendix presents the marginal Probability Distribution Functions (PDFs) used to define the random
variables that are not the dominant driver’s magnitude. A short methodology is provided for the different
types of random variables: magnitudes, durations, lag, and the tide.

For non-tidal driver magnitudes, good tail behavior is desired to extrapolate plausible values. For this reason,
the Bayesian Information Criterion (BIC) score is used to choose the best marginal as it favors simple models
with steady tail behavior. Distributions that do not match the expected behavior are filtered out (i.e. uniform
distribution). The result for Precipitation Magnitude (P Mag) can be found in fig. G.1a.

For duration and time lag, extrapolation is not a necessary feature. Therefore, only truncated distributions
are used to fit the empirical distributions. In this case, the BIC may be biased towards overly simple models,
favoring distributions that can underfit and misrepresent the data. Therefore, the Sum Square Error (SSE) is
used as a metric to choose the best distribution. The results for Precipitation Duration (P Dur), Skew surge
Duration (S Dur) and Precipitation Lag (P Lag) can be found in fig. G.1b, fig. G.1c, and fig. G.1d respectively.

The Tidal Magnitude (T Mag) is bounded by the beating of its constituents. For sufficiently long time records,
the majority of beating cycles should have occurred. Therefore, the fitter package is not required, as the
Empirical Probability Distribution Function (EPDF) of all Higher High (HH) tides can be used instead. The
corresponding histogram can be found in fig. G.2.
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(a) The 5 PDFs which result in the smallest BIC score for the P Mag EPDF.
The exponential (’expon’) is the distribution that minimizes the BIC score.
Visually, the fit performs relatively well. The peak in density is displaced to
smaller magnitudes because of the parameters available for the exponen-
tial distribution. When generating events, it will overestimate the number of
precipitation events which have a magnitude of zero.

(b) The 5 PDFs which result in the smallest SSE for the P Dur EPDF. BIC or
AIC scores are not used as they prioritize the truncated exponential (’trunc-
expon’). The truncated normal is the best fit and also performs well visually.
When generating events, it will overestimate the number of events with a
large P Dur.

(c) The 5 PDFs which result in the smallest SSE for the the S Dur EPDF. The
truncated gumbel (’geompertz’) is the best fit and also performs well visually
for a variable that is defined at coarse intervals.

(d) The 5 PDFs which result in the smallest SSE for the P Lag EPDF. The trun-
cated normal (’truncnorm’) is the best fit and also performs the best visually
as it is the only one that captures the peak in density near 0 hours of lag.
However, it is not flexible enough to capture the true location of the peak
and underestimates the lag corresponding to peak density by approximately
(10 - 15) hours.

Figure G.1: Empirical and theoretical marginal PDFs. Theoretical marginals are chosen based on a metric (BIC or the SSE) using the
Fitter python package [Cokelaer et al., 2024].
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Figure G.2: EPDF for T Mag. Only HH tides are used because of how skew surge events were identified. Used instead of a theoretical
marginal PDF as S Mag can be assumed independent of T Mag (Table E.1 and [Williams et al., 2016]). Moreover, because of the tidal
beating, the 25 years of data should give a strong confidence in observing all possible T Mags.
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H
Stochastic Event Sets

This appendix presents a graphical representation of the training and test stochastic event sets used in this
research.

H.1. Training Sets

(a) Events are shown in their univariate ranked space. Ranks of the
observed events are dictated by their empirical CDF.

(b) Events shown in the real space. The top left corner contains
Kendall’s τB .

Figure H.1: Training set in two dimensions (500 samples) for P Mag and S Mag. Shows the observed events (historical event set) and
events simulated by the copula (Gaussian), which were obtained by using the pyvinecopulib python package [Nagler and Vatter, 2023].
The simulated quantiles (Figure H.1a) can be combined with the distributions defined in Appendix G and Figure 4.6b to obtain Fig-
ure H.1b.
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Figure H.2: Training set in six dimensions (500 samples) for P Mag, S Mag, T Mag, P Dur, S Dur, and P Lag. Shows the observed events
(historical event set) and events simulated by the vine copula, which were obtained by using the pyvinecopulib python package [Nagler
and Vatter, 2023]. The upper left corner of each subplot shows the edge of the vine copula, its corresponding pair copula, and empirical
Kendall’s τ. Code for the plot was obtained from Eilander et al. [2023c].
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H.2. Test Sets

Figure H.3: Test Dataset in three dimensions (10,000 samples) for P Mag, S Mag, and T Mag. Shows the observed events (historical event
set) and events simulated by the vine copula, which were obtained by using the pyvinecopulib python package [Nagler and Vatter, 2023].
The upper left corner of each subplot shows the edge of the vine copula, its corresponding pair copula, and empirical Kendall’s τ. Code
for the plot was obtained from Eilander et al. [2023c].

Figure H.4: Test Dataset in four dimensions (10,000 samples) for P Mag, S Mag, T Mag, and P Dur. Shows the observed events (historical
event set) and events simulated by the vine copula, which were obtained by using the pyvinecopulib python package [Nagler and Vatter,
2023]. The upper left corner of each subplot shows the edge of the vine copula, its corresponding pair copula, and empirical Kendall’s τ.
Code for the plot was obtained from Eilander et al. [2023c].
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Figure H.5: Test Dataset in five dimensions (10,000 samples) for P Mag, S Mag, T Mag, P Dur, and S Dur. Shows the observed events
(historical event set) and events simulated by the vine copula, which were obtained by using the pyvinecopulib python package [Nagler
and Vatter, 2023]. The upper left corner of each subplot shows the edge of the vine copula, its corresponding pair copula, and empirical
Kendall’s τ. Code for the plot was obtained from Eilander et al. [2023c].
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Figure H.6: Test Dataset in six dimensions (10,000 samples) for P Mag, S Mag, T Mag, P Dur, S Dur, and P Lag. Shows the observed events
(historical event set) and events simulated by the vine copula, which were obtained by using the pyvinecopulib python package [Nagler
and Vatter, 2023]. The upper left corner of each subplot shows the edge of the vine copula, its corresponding pair copula, and empirical
Kendall’s τ. Code for the plot was obtained from Eilander et al. [2023c].
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I
Defining a Stopping Criterion for

Compound Floods

This appendix presents the results, analysis, and the decision taken to define the stopping criterion used
for the a posteriori approach. Both fig. I.1 and fig. I.2 are used. Since they both have the same format, a
description is only given for fig. I.1, but it is valid for fig. I.2.

Figure I.1 presents the outcomes of fitting the Treed Gaussian Process (TGP) iteratively to the training event
set in 2 dimensions (fig. H.1) using the methodology presented in section 4.5.2. Figure I.1a shows the Root
Mean Square Error (RMSE) associated with the sampled events and the available events as more events are
used to fit the TGP. This compares the estimate of economic damages estimated by the TGP with the eco-
nomic damages simulated with the coupled SFINCS and FIAT models for all events in the stochastic event
set. Figure I.1c shows the mean and maximum Active Learning Mackay (ALM) statistic of all available events
in the stochastic event set as the number of samples used to fit the TGP increases. Figure I.1b shows the es-
timate of the TGP for the EAD mean with the associated uncertainty, and the ground truth as the number of
samples used to fit the TGP increases (see section 4.6 to understand how risk is modeled). Figure I.1d shows
the COV associated with the EAD mean as the number of samples increases. Figure I.1e shows the p-value
associated with a two-sample KS test (section 4.6.2) which compares the empirical CDF of the ground truth
with the empirical CDF estimated by the TGP as the number of samples used to fit the TGP increases (see
section 4.6.2). Finally, all subplots include a vertical black line which indicates the number of total samples
used to reach the stopping criterion. Figure I.1f shows the empirical CDFs associated with the ground truth
and the TGP when the TGP uses the number of samples needed to reach the stopping criterion.

96



I. Defining a Stopping Criterion for Compound Floods

(a) Sampled and available RMSE. (b) EAD estimated by the TGP mean with the associated uncertainty. The
EAD can be compared to the ground truth calculated for the training set.

(c) The mean and maximum ALM of the available samples. (d) The COV for a rolling window of a minimum of 10 samples.

(e) The p-value associated with the KS two-sample test which compared the
empirical CDF of the mean TGP to the empirical CDF of the ground truth.

(f) Results of a two-sample KS test applied on the empirical CDFs of the TGP
mean (after using the stopping criterion) and the ground truth. Includes the
location, result, and p-value of the KS test.

Figure I.1: Outcome of performing the analysis on a training dataset of 500 samples in two dimensions (fig. H.1). The TGP is first fitted
to the sampled points after the economic damages of 4 samples are computed.

The first observation can be made with the available RMSE which is almost monotonically decreasing (the
signal is rough, which results in relatively small increases in the loss) for 2 dimensions (fig. I.1a). Based on
this limited amount of evidence, it can be assumed that the more samples the TGP uses, the better the fit
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becomes, and the smaller the available loss becomes. However, to reduce the computational cost related
to the posterior predictive surface (which is proportional to the number of samples cubed) and the damage
modeling, a stopping criterion should be defined at which the loss is sufficiently small. Two different metrics
could be used to define this stopping criterion: the ALM (mean or maximum) and the COV of the EAD.

From fig. I.1c, the ALM mean seems to follow trends in the sampled loss shown in fig. I.1a. This is logical,
as the ALM is equivalent to the quantile difference of the TGP which is a measure of its uncertainty. The
TGP is uncertain when the mean is unable to fit the sampled data points exactly, which is caused by the
Markov Chain Monte Carlo (MCMC) being unable to find a suitable set of hyperparameters. This results
in a loss occurring for the sampled points. Another observation with the ALM mean can be made with the
TGP uncertainty of the EAD where small magnitudes in the ALM mean correspond with a more accurate
estimation of the EAD and a smaller corresponding uncertainty range (fig. I.1b). On the other hand, the
ALM maximum seems to have non-harmonic peaks in its magnitude. These are most probably caused by a
partition, which results in a small subset of samples having a large uncertainty. Therefore, these peaks do not
correspond with a period of larger training loss or validation loss. If the ALM maximum was used to define
the stopping criterion, it would most probably prevent the final model from having partitions, resulting in
a model that does not provide the most accurate representation of the entire event set [Gramacy and Lee,
2009].

Figure I.1d shows the COV relating to the EAD shown in fig. I.1b. The main setback of using the COV as a
stopping criterion is that 10 consecutive samples from the TGP need to be computed. Depending on the di-
mensionality, this will result in more samples having to be modeled to reach an understanding that stability
has been reached. In six dimensions, small values of COV do not result in the best estimate of EAD. Moreover,
for multiple outputs, using a COV would mean either computing the posterior predictive surface for all out-
puts after each sample is modeled, or would require numoutputs ·windowsize samples to be modeled before an
understanding of stability has been reached. Both of these cases are computationally expensive. This results
in the COV not being suitable to be defined as a stopping criterion.

Similar observations can also be made in fig. I.2. Figure I.2a and fig. I.2c show there is a correlation between
the sampled loss and the ALM mean. The RMSE and ALM statistic initially start at smaller magnitudes than
fig. I.1. This is caused by the MDA initialization, which requires 64 samples in 6 dimensions. This translates
to a more stable EAD and a smaller uncertainty band initially (fig. I.2b and fig. I.2d).
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(a) Sampled and available RMSE loss. (b) EAD estimated by the TGP mean with the associated uncertainty. The
EAD can be compared to the ground truth calculated for the training set.

(c) The mean and maximum ALM of the available samples. (d) The COV for a rolling window of a minimum of 10 samples.

(e) The p-value associated with the KS two-sample test which compared the
empirical CDF of the mean TGP to the empirical CDF of the ground truth.

(f) Results of a two-sample KS test applied on the empirical CDFs of the TGP
mean (after using the stopping criterion) and the ground truth. Includes the
location, result, and p-value of the KS test.

Figure I.2: Outcome of performing the analysis on a training dataset of 500 samples in six dimensions (fig. H.2). The TGP is first fitted to
the sampled points after the economic damages of 64 samples are computed.

It was therefore decided to use the ALM mean as a stopping criterion as it is the most suitable variable to use
when compared to the ALM maximum and the COV. The choice of threshold dictates how accurate the poste-
rior predictive surface becomes, and the number of samples that need to be modeled. Since the components
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used in the damage modeling are deterministic for a set of boundary conditions, it can be assumed that the
best surrogate model should have an uncertainty of zero (small ALM mean). However, the TGP will initially
assume small differences in economic damages are caused by noise. Moreover, fig. I.1a shows that there is a
plateau in the RMSE, showing a TGP is unable to fit stochastic event sets perfectly, no matter the number of
samples it uses to calculate the posterior predictive surface. This means a small threshold could result in large
or infinite computational costs for marginal gains in accuracy. Since a TGP is regularized, choosing a large
threshold will result in a less accurate model, but not one that overfits the sampled points. In 6 dimensions,
fig. I.2e shows that the empirical CDF of the Ground truth and the TGP mean results in a p-value that is larger
than the 5% significance level for any number of samples (after using a MDA). This means, that the TGP gives
an accurate estimate of the risk curve after only using samples chosen a priori. Therefore, the ALM mean
corresponding to the initial fit of the TGP should result in a good stopping criterion. However, it is unknown
if the magnitude of the ALM statistic is dependent on the size of the event set as the number of samples that
need to be modeled could be proportional to the size of the event set.

In two dimensions, the size of the event set becomes less problematic, because there is less sparsity in the
input space between the available samples. The irregularity of the empirical CDF of the ground truth (fig. I.1f)
shows the p-value is never steadily above the 5% significance level (fig. I.1e). The irregularity of the ground
truth could be caused by the magnitude of the total economic damages, which makes the modeled events
susceptible to small changes in the boundary conditions. For example, sudden overflow, caused by small
changes in the surge magnitude could result in a sudden increase in economic damages. The TGP can only
correctly model this if it partitions (around sample 18), but none of the metrics correctly identify when a
partition causes a significant p-value in the KS test. Nonetheless, the available RMSE (fig. I.1a) reaches a stable
value after approximately 10 samples. This corresponds to an ALM mean of approximately 0.1. In addition,
the MCMC causes different realizations of the TGP to have different ALM statistics for the same samples.
This is because the MCMC converges if it is given enough samples, if not, it will give different estimates of
the hyperparameters. To prevent early stopping, the stopping criterion is therefore defined as: 2 consecutive
TGP models for an arbitrary output which result in an ALM mean smaller than 0.1.
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J
Computational Cost For Components Of

Damage Modeling

This appendix presents the computational cost associated with the components used in the damage model-
ing workflow (fig. 4.2). To this end, fig. J.1 and fig. J.2 present the cost associated with the SFINCS and FIAT
models for Charleston when modeling all events in the training stochastic event set in 6 dimensions (fig. H.2).

Figure J.1 shows box plots for the computational time associated with the SFINCS and FIAT models. For each
model, The orange line represents the mean, while the upper and lower limits of the box represent the 75th
and 25th quantile respectively. The whiskers show the minimum/maximum of: the addition/subtraction of
1.5 times the interquartile range and the 75th/25th quantile. On one hand, the relatively large interquartile
range for the SFINCS model shows that is dependent on the magnitude of the different random variables
when they are used in the boundary condition schematization. On the other hand, the small distance be-
tween the whiskers of the box plot for the FIAT model shows that its computational time is independent of
the magnitude of the random variables.

Figure J.1: Box plots of the computational cost of using SFINCS and DELFT-FIAT models for all the events in Figure H.2.
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J. Computational Cost For Components Of Damage Modeling

Figure J.2 shows the computational time for SFINCS when compared to the magnitude of the different ran-
dom variables used in the boundary condition. Kendall’s τB is used to identify any potential correlations.
Simulation time seems to be independent of S Mag and T Mag (fig. J.2a and fig. J.2c respectively). Other vari-
ables show some correlation. The most significant is S Dur with a Kendall’s τB of 0.65 (fig. J.2e).

(a) Correlation with S Mag. (b) Correlation with P Mag.

(c) Correlation with T Mag. (d) Correlation with P Dur.

(e) Correlation with S Dur. (f) Correlation with P Lag.

Figure J.2: Kendall’s τB to test for correlation between the computational time of SFINCS and the different random variables.
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K
Sensitivity of Additional Dimensions on

Risk Curves and EAD for the Classified
Model

This appendix presents the sensitivity of additional dimensions (or random variables) on the inland and
coastal outputs of the classified FIAT model.
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K.1. Inland K. Sensitivity of Additional Dimensions on Risk Curves and EAD for the Classified Model

K.1. Inland

Figure K.1: Risk curves associated with different dimensionalities of the multivariate input space for inland economic damages. Legend
includes the EAD estimate.
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K.1. Inland K. Sensitivity of Additional Dimensions on Risk Curves and EAD for the Classified Model

Figure K.2: Test statistics and associated p-values associated with two-sample KS test for empirical CDFs of different dimensionalities
when sampling from the inland economic damages. If the p-value is smaller than 0.05, the null hypothesis (empirical CDFs come from
the same parent distribution) is rejected.
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K.1. Inland K. Sensitivity of Additional Dimensions on Risk Curves and EAD for the Classified Model

Figure K.3: P-values associated with MWU test for empirical CDFs of different dimensionalities when sampling from the inland economic
damages. If the p-values are smaller than 0.05, the null hypothesis (empirical CDFs have the same location (EAD)) is rejected. The
empirical bootstrap was repeated 500 times.
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K.2. Coast K. Sensitivity of Additional Dimensions on Risk Curves and EAD for the Classified Model

K.2. Coast

Figure K.4: Risk curves associated with different dimensionalities of the multivariate input space for coast economic damages. Legend
includes the EAD estimate.
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K.2. Coast K. Sensitivity of Additional Dimensions on Risk Curves and EAD for the Classified Model

Figure K.5: Test statistics and associated p-values associated with two-sample KS test for empirical CDFs of different dimensionalities
when sampling from the coast economic damages. If the p-value is smaller than 0.05, the null hypothesis (empirical CDFs come from
the same parent distribution) is rejected.
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K.3. Discussion K. Sensitivity of Additional Dimensions on Risk Curves and EAD for the Classified Model

Figure K.6: P-values associated with MWU test for empirical CDFs of different dimensionalities when sampling from the coast economic
damages. If the p-values are smaller than 0.05, the null hypothesis (empirical CDFs have the same location (EAD)) is rejected. The
empirical bootstrap was repeated 500 times.

K.3. Discussion
Upon close inspection of fig. K.3 and K.6, an argument could be made for the visual overlap of the EAD distri-
butions for the combination of certain variables. For example, the comparison between 5 and 6 dimensions
for inland EAD shows a large portion of both tails overlap (fig. K.3). Moreover, there is a small difference of 3
- 5 Million USD in the mean EAD of the distributions. The similarity between these two distributions could
show that P Lag has a negligible effect on the resources used in flood protection measures of communities
located slightly upstream of the open coast.
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L
Observed Binary Partition in a TGP

(a) Surrogate model for the a posteriori approach applied to North
Charleston economic damages.

(b) Open and closed circles represent available and sampled events respec-
tively. Normalized ALM statistics associated with the entire event space after
using 33 samples. White represents the location with the largest ALM statistic.
The available event the closest to this location will be added to the sampled
events next. Partition is visible with dashed black and red lines.

Figure L.1: Surogate model and associated uncertainty for the a posteriori approach after reaching the stopping criterion for North
Charleston. Input and output are normalized.
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