
An Empirical Study of Version Conflicts in Maven-Based Java Projects
Analyzing Developer Effort, Semantic Versioning Adherence and Resolution Strategies as Observed in

Real-World Version Conflicts

Valentin-Vlad Mihăilă1

Supervisors: Sebastian Proksch1, Cathrine Paulsen1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Valentin-Vlad Mihăilă
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Cathrine Paulsen, Georgios Iosifidis

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Java projects often depend on third-party libraries
to support development, but intensive reuse can
lead to version conflicts, a common manifestation
of dependency hell. This paper presents an em-
pirical study of 124 GitHub pull requests from
85 Maven-based Java projects that addressed such
version conflicts. We investigate the phenomenon
from three perspectives: developer effort, the role
of Semantic Versioning (SemVer) and conflict reso-
lution strategies. Our analysis reveals that activity-
based effort metrics are often confounded by unre-
lated changes and automation, suggesting the need
for qualitative validation. Despite widespread use
of SemVer syntax, 80% of observed runtime errors
resulted from forward incompatibilities not covered
by SemVer and even SemVer-compliant library ver-
sions occasionally broke backward-compatibility.
The most common resolution strategy was library
harmonization (67.7% of PRs), often achieved
through version alignment techniques. These find-
ings highlight the limitations of relying solely on
versioning conventions and emphasize the impor-
tance of proactive tools and practices for managing
dependencies. All datasets and analysis scripts are
publicly available to support further research.

1 Introduction
The widespread adoption of open-source software develop-
ment has led to a large collection of freely available software
components (libraries) that can be used as building blocks for
new projects [1]–[3]. Leveraging existing libraries can in-
crease software quality, boost developer productivity and re-
duce development costs [2]. However, intensive use of third-
party libraries may lead to complex dependency management
issues (colloquially referred to as dependency hell), since de-
velopers often struggle to maintain a clear understanding of
all software packages their project depends on [4].

One common class of dependency issues are version con-
flicts, which occur when a project depends on multiple ver-
sions of the same library. Such conflicts usually emerge when
projects depend on third-party libraries which in turn depend
on different versions of a shared library. When multiple ver-
sions of a library appear on the classpath of a Java project,
typically only one version is loaded at runtime, while the oth-
ers are shadowed [5]. This mismatch can potentially result in
errors or unpredictable program behaviour at runtime, espe-
cially if the application depends on features that exist only in
the versions that are not actually loaded.

Prior work has explored the manifestation and resolution
patterns of general dependency conflicts in open-source soft-
ware [6]–[8]. In particular, Wang et al.’s 2018 study [6] was
the first to conduct an empirical study on dependency con-
flicts in open-source Java projects, applying a sound and re-
producible methodology to retrieve documented occurrences
of dependency conflicts. However, their dataset included
only 39 cases of conflicts occurring in library versions and

was targeted exclusively at the Apache software ecosystem.
Although this ecosystem benefits from high-quality mainte-
nance and documentation, the narrow scope limits the gener-
alizability of their findings.

In this study, we replicated the methodology used by Wang
et al. [6] and investigated version conflicts in a larger and
more diverse sample of open-source projects. We carried
out an empirical analysis of 124 Pull Requests (PRs) from
GitHub that addressed version conflicts in 85 Java projects
using the Maven build system. Specifically, our study exam-
ined version conflicts from three complementary angles:

RQ1: How can we quantitatively measure developer
effort spent resolving version conflicts? Tracking the ef-
fort of developers in open-source software is inherently diffi-
cult due to challenges such as unstandardized documentation
practices [9]. As a result, there is limited quantitative under-
standing of how version conflicts impact developers. To ad-
dress this gap, we investigated four effort-related metrics de-
rived from GitHub activity data and the analysis revealed that
these metrics are not always reliable, as PRs often include
unrelated changes or automation commands. These results
suggest that purely quantitative measures may be insufficient
on their own and highlight the need for qualitative methods
to validate and contextualize such effort estimations.

RQ2: To what extent does adherence to Semantic
Versioning mitigate runtime errors caused by version con-
flicts? Semantic Versioning (SemVer) aims to mitigate de-
pendency hell by defining version rules that ensure backward-
compatibility between patch and minor library updates. To
the best of our knowledge, no prior work has investigated
whether SemVer actually mitigates errors caused by version
conflicts in practice. To address this gap, we analyzed ver-
sion conflicts in 70 Java projects and found that compliance
with SemVer syntax alone does not guarantee compatibility.
In three concrete version conflict cases, patch or minor differ-
ences caused runtime errors due to backward-compatibility
violations. Moreover, 80% of runtime errors were caused
by forward incompatibilities (loaded versions missing func-
tionality referenced through newer versions), where SemVer
offers no protection. These findings suggest that SemVer’s ef-
fectiveness is limited in practice and relying solely on version
numbers is often insufficient to ensure compatibility.

RQ3: What resolution strategies do developers use to
fix version conflicts? While Wang et al. [6] identified
several resolution patterns for addressing version conflicts in
Maven, the small size and ecosystem-specific scope of their
dataset may limit the broader applicability of their findings.
To extend their work, we analyzed 124 PRs and identified
five main resolution categories. Among these, harmonization
(i.e., aligning) of library versions was the most frequently ap-
plied strategy, with developers favouring either local adjust-
ments (e.g., modifying direct dependencies) or centralized
control mechanisms (e.g., via the dependencyManagement
section). In addition, we observed a smaller but notewor-
thy use of proactive conflict prevention strategies that offer
promising opportunities to detect and avoid conflicts earlier
in the development process.

Ultimately, our findings provide real-world insights into
version conflicts as a common manifestation of dependency

hell and aim to inform the development of more effective de-
pendency management tools and practices. By helping devel-
opers better manage project dependencies, we hope to support
more reliable and maintainable software. To facilitate future
research in this area, we have made our datasets and analysis
scripts publicly available on GitHub [10].

2 Background and Related Work
This section introduces key concepts and prior work relevant
to understand version conflicts in Maven-based Java projects.
We begin with a real-world example, followed by an overview
of Maven’s dependency mechanism and the role of Semantic
Versioning. We conclude with related studies on dependency
conflicts, developer effort and resolution practices.

2.1 Real-World Version Conflict Example
To illustrate a real-world case of a version conflict, consider
an issue from the GitHub repository of Apache Pulsar [11]
that resulted in a runtime failure when executing a shell com-
mand. As reported in PR apache/pulsar#16775 [12], a de-
pendency of the project (JCommander 1.78) overshadowed
an older release of the same library (JCommander 1.48),
which was required by another dependency of the project
(BookKeeper 4.12.0). The newer JCommander version
had removed a method still used by BookKeeper, triggering
a NoSuchMethodError at runtime (Figure 1). Fortunately,
the issue was solved by upgrading BookKeeper to version
4.12.1, which also uses JCommander 1.78.

public class JCommander { // 1.48
/* ... */
public void usage(StringBuilder out) {
usage(out, "");

}

public void usage() {
StringBuilder sb = new StringBuilder();
usage(sb);
getConsole().println(sb.toString());

}
}

(a)

public class JCommander { // 1.78
/* ... */
private IUsageFormatter usageFormatter =

new DefaultUsageFormatter(this);↪→
public void usage() {
StringBuilder sb = new StringBuilder();
usageFormatter.usage(sb);
getConsole().println(sb.toString());

}
}

(b)

$ bin/bookkeeper shell cookie_update -h
JMX enabled by default
Exception in thread "main" java.lang.NoSuchMethodError:

com.beust.jcommander.JCommander.usage(Ljava/lang/StringBuilder;)↪→
at org.apache.bookkeeper.tools.framework.Cli.setupCli(Cli.java:142)
at org.apache.bookkeeper.tools.framework.Cli.<init>(Cli.java:53)
at org.apache.bookkeeper.tools.framework.Cli.runCli(Cli.java:243)
at org.apache.bookkeeper.tools.common.BKCommand.apply(BKCommand.java:64)
...

(c)

Figure 1: Example of a version conflict causing a runtime error due
to version incompatibilities. The method usage(StringBuilder)
of the JCommander class in JCommander 1.48 (a) was removed
in favour of a helper object in JCommander 1.78 (b), raising
NoSuchMethodError when the method was invoked at runtime (c).

2.2 Maven Dependency Resolution Model
Maven is an automated build system for JVM-based lan-
guages (such as Java, Kotlin or Scala) that manages the entire
build cycle of software projects. To use Maven, a Project
Object Model (POM) is created in a pom.xml file, which
specifies the project structure and third-party libraries (arti-
facts) that the project depends on. Dependencies declared in
the POM are referred to as direct dependencies and they often

have their own dependencies, which are called transitive de-
pendencies. For example, consider a Maven project that uses
the Spring Framework library [13], which requires transitive
dependencies such as Spring Core, Spring Context and Spring
Security. Maven resolves these transitive dependencies auto-
matically, thus relieving developers from the complexity of
manually adding all required dependencies [14].

By default, Maven dependencies are specified using fixed
version numbers, a practice known as version pinning. While
this approach ensures reproducible builds, it may also lead
to version conflicts. In particular, when commonly used
libraries (e.g., Guava, Apache Commons, Jackson) are re-
stricted to specific versions in the dependency graphs of other
libraries, users are exposed to a higher likelihood of version
conflicts when relying on these libraries [7]. To mediate such
conflicts, Maven applies a ”nearest wins” strategy, selecting
the version that is closest to the root of the project’s depen-
dency tree [14]. In case multiple versions are located at the
same depth, Maven chooses the one that is declared first.

However, issues may arise if the selected library version
lacks functionality required by project components that rely
on different, incompatible versions of the same library. Such
version conflicts can lead to common runtime errors such as
NoSuchMethodError and NoClassDefFoundError, which
indicate missing method or class definitions. In order to guar-
antee the version of a library, Maven recommends declar-
ing it explicitly as a direct dependency in the project’s
POM or controlling the version centrally in the dedicated
dependencyManagement section of the POM [14].

To aid developers detect version conflicts in their project’s
dependencies, Maven offers the Maven Dependency Plugin
[15] which can be configured to show warnings of com-
mon dependency issues when a project is built. Running the
Maven dependency:tree goal with the verbose flag en-
abled generates a serialized tree of the project’s dependen-
cies, specifying which ones were omitted due to version con-
flicts [16]. Figure 2 shows an example dependency tree where
multiple versions of the Guava library are introduced transi-
tively. Maven resolves the conflict by selecting version 21.0
(the nearest to the root) and omits versions deeper in the hi-
erarchy (19.0, 17.0). Additionally, identical versions from
different paths are marked as duplicates.

me.lucko:bungeeguard-sponge:1.2-SNAPSHOT
+- me.lucko:bungeeguard-backend:1.2-SNAPSHOT
\- org.spongepowered:spongeapi:7.3.0

+- com.google.guava:guava:21.0
+- com.google.inject:guice:4.1.0
| \- (com.google.guava:guava:19.0 - omitted for conflict with 21.0)
+- org.spongepowered:plugin-meta:0.4.1
| \- (com.google.guava:guava:17.0 - omitted for conflict with 21.0)
\- org.spongepowered:configurate-hocon:3.7.1

\- org.spongepowered:configurate-core:3.7.1
\- (com.google.guava:guava:21.0 - omitted for duplicate)

Figure 2: Simplified dependency tree with two Guava version con-
flicts and one duplicate in the POM of bungeeguard-sponge be-
fore the changes in lucko/BungeeGuard#75 [17].

However, Maven cannot distinguish between compatible
and harmful version conflicts (i.e., ones that will lead to run-
time failures) [6]. As the number of a project’s dependencies
grows, the dependency tree can also quickly become very
large and difficult to understand. Therefore, such warnings

may be overlooked by developers, potentially leading to seri-
ous consequences in practice.

2.3 Semantic Versioning
Semantic Versioning (SemVer) has been proposed as a par-
tial solution to the dependency hell problem, encoding com-
patibility promises in the version numbers of software pack-
ages [18]. Introduced by GitHub co-founder Tom Preston-
Werner, SemVer defines a three-digit versioning scheme
(MAJOR.MINOR.PATCH), each indicating a different level of
change:

• MAJOR: API changes breaking backward-compatibility;
• MINOR: backward-compatible changes or new features;
• PATCH: only backward-compatible bug fixes allowed.
According to this scheme, version conflicts that differ in

the PATCH or MINOR parts should be backward-compatible,
meaning that newer patch or minor releases should cover pre-
vious functionality. For instance, if a project depends on ver-
sion 2.1.0 of a library, it should continue to function cor-
rectly when a newer patch version like 2.1.3 or a newer
minor version like 2.2.0 is loaded. However, because ad-
herence to SemVer is not strictly enforced, library developers
may misuse the versioning standards, introducing unexpected
breaking changes despite compatible version numbers. To
mitigate such issues, platforms like GitHub and Maven Cen-
tral strongly encourage developers to follow SemVer when
making new releases [19].

2.4 Related Work
Wang et al. [6] conducted a large-scale analysis of 2,289 Java
projects on GitHub and found that 63.65% contained differ-
ent versions of the same library. In a more focused study of
135 dependency conflict issues across 71 Java projects hosted
on the Apache ecosystem, they observed that 39 issues were
caused by distinct library versions present in the projects.
The remaining issues were attributed to class conflicts either
among libraries (90 cases) or between libraries and the host
project (6 cases). They also examined common strategies to
resolve version conflicts, including harmonizing library ver-
sions, reordering dependencies on the classpath and using the
Maven Shade Plugin [16] to isolate conflicting libraries. Ad-
ditionally, the authors analyzed developer discussions in issue
reports on the Jira tracking system to identify factors impact-
ing the effort required for resolving dependency issues.

To better understand the challenges developers face in de-
pendency management, Pashchenko et al. [4] conducted 25
semi-structured interviews with developers from both small-
medium and large enterprises. Their findings revealed that
many developers are reluctant to update dependencies due to
the risk of breaking changes and the lack of resources to ad-
dress them. A key concern was the presence of hidden break-
ing changes in transitive dependencies, which affected the de-
velopers’ confidence in updating dependencies.

The developers’ reluctance to update dependencies is fur-
ther complicated by library release practices and the struc-
ture of large artifact repositories (e.g., Maven Central). Soto-
Valero et al. [20] studied the co-existence of multiple library
versions in Maven Central, reporting that 40% of libraries

have at least two actively used versions. Similarly, Raemaek-
ers et al. [21] analyzed the use of SemVer in Maven Central
libraries and found that SemVer is frequently misused, with
breaking changes sometimes introduced even in minor ver-
sion updates.

3 Data Collection
To answer the three research questions outlined in Section 1,
we conducted an empirical study on documented occurrences
of version conflicts in open-source projects. This section de-
scribes the motivation behind the chosen methodology and
then details the three steps taken to compile the dataset.

3.1 Motivation
The empirical study targeted open-source Java projects
hosted on GitHub that use Maven as a build system. As the
world’s largest source code hosting platform, GitHub hosts
over 250 million open-source projects which received over
one billion contributions in 2024 alone [22]. The Maven
ecosystem was chosen due to its (i) large scale (indexing over
56 million packages as of May 2025 [23]), (ii) widespread
adoption (more than 76% of the JVM developers used the
Maven build system in 2021 [24]) and (iii) explicit version-
ing and dependency resolution mechanisms (as discussed in
Subsection 2.2). These three characteristics collectively in-
crease the likelihood and impact of version conflicts, making
the Maven ecosystem a compelling case for our study.

The methodology closely follows the approach proposed
by Wang et al. [6], which was replicated in a subsequent
investigation of version conflicts in Python projects [7]. In
both studies, the authors began by compiling a corpus of
open-source projects, then applied keyword-based searches
to identify relevant issue reports using terms typically associ-
ated with dependency conflicts. Since the automated process
could yield duplicates or irrelevant results, all identified can-
didates were manually reviewed to ensure their validity. Fol-
lowing this methodology, our data collection was carried out
in three steps, which are detailed in the following subsections
and summarized in Figure 3.

Figure 3: Overview of the three-step data collection process: (1)
compile a corpus of open-source projects, (2) perform keyword-
based searches to identify potential version conflict reports and (3)
manually review results to ensure relevance and remove duplicates.

3.2 Project Selection
First, we retrieved an initial set of 5,919 Java projects using
the SEART GitHub Search Engine [25] based on a snapshot
from April 27, 2025. This tool allows for selecting GitHub
repositories based on custom filter criteria. Our selection was
based on the following four criteria: (i) the repository uses
the Java language, (ii) it was created between April 2015 and

April 2025, (iii) it has received at least 50 stars (often used
as popularity metric by other studies [6]–[8]) and (iv) it has at
least 50 total issues (used as an indicator of maintainability by
other studies [7]). The tool returned 6,271 results, from which
we excluded invalid entries that were no longer accessible and
duplicates such as redirected repositories.

3.3 Version Conflict Identification
Second, 196 Pull Requests (PRs) were identified using the
GitHub REST API [26] based on a keyword search using
phrases and errors related to version conflict issues. PRs con-
tain changes intended to address specific problems or intro-
duce improvements in open-source software, thus analyzing
PR reports provides insight into the problems developers en-
countered and how they were fixed [27]. To feasibly detect
PRs resolving version conflicts in the 5,919 repositories, we
used two inclusion and two exclusion criteria. We included
PRs that (i) were merged (whose changes were accepted and
integrated into another branch, typically the main or develop-
ment branch) and (ii) contained at least one of the following
three keywords: ”version conflict*”, ”library conflict*” and
”NoSuchMethodError”. We excluded PRs that (i) were sub-
mitted by automated bots or (ii) did not modify the POM,
since resolving version conflicts in Maven generally requires
modifying the dependency configuration [6].

3.4 Manual Inspection
Third, to ensure the validity of the automated search results,
we conducted a manual inspection of the 196 PRs identified
in the previous step. During this step, we checked whether
the PR actually resolves version conflicts occurring in Maven
dependencies. We removed false positives (e.g., errors caused
by Maven or Java runtime versions, or cases where the key-
word search matched references of version conflicts in doc-
umentation files), as well as duplicates (e.g., GitHub cherry-
picks, which apply a commit to different branches). The man-
ual review resulted in a final dataset of 124 PRs spanning 85
repositories, which served as the basis for answering all three
research questions. Table 1 presents five key metrics of these
repositories, illustrating the diversity of the chosen sample.

Table 1: Demographics of the 85 repositories covered by the final
sample of 124 PRs (1KLOC denotes thousand lines of code).

Metric Min Max Median

KLOC1 1.29 6,041.45 187.21
Commits 46 58,564 2,698
Pull Requests 17 49,841 1,679
Stars 54 31,254 499
Contributors 8 406 73

4 Developer Effort (RQ1)
To better understand the level of developer effort involved
in resolving version conflicts, we investigated four metrics
derived from publicly available GitHub data. These metrics
quantify different aspects of effort, such as communication,
duration and code modification. This section first describes
the methodology used to compute these metrics across the
sample of 124 PRs, followed by a presentation of the results.

4.1 Methodology
We evaluated developer effort in PRs by extracting relevant
metadata from the GitHub API to compute four key metrics:

1. Comments: the number of comments posted in the PR
(as used by Wang et al. [6]). Comments are gener-
ally used by developers to clarify implementation de-
tails or request changes, an important step when solv-
ing bugs. To differentiate actual human discussions from
comments generated by bots and commands used to trig-
ger automation tasks, comments were classified as im-
pure if they were created by usernames containing the
”[bot]” tag, or if they begin with ”run” or ”rerun”;

2. Merge Time: the time interval from when the PR was
submitted until it was merged. This metric indicates the
total duration from the initial submission of the proposed
changes, undergoing code reviews and potential modifi-
cations, until the fix is finally accepted and integrated
into the main or development branch;

3. Detection to Resolution Time: the time span be-
tween the discovery of the version conflict (as indicated
through related issues explicitly linked in the PR) and
its resolution (the merge time), also used in [6]. This
captures the time length developers might have been im-
pacted by the issue and is indicative of how quickly ver-
sion conflicts are diagnosed and addressed in practice;

4. Java Line Changes: the number of lines added or re-
moved in Java source code by the PR changes. When
modifying the dependency configuration is not enough
to resolve version conflicts, developers might need to
make non-trivial refactorings in the source code.

To compare the effort involved in resolving version con-
flicts with typical development work, we analyzed the activ-
ity of each PR in the dataset relative to other merged PRs
from the same repository. We applied z-score normalization
(x − µ)/σ for the merge times and comment counts to eval-
uate how they deviate from average repository activity. For
comment counts, we examined a subset of 85 PRs from 69
repositories. This subset was selected due to GitHub’s rate
limit of 5,000 API requests per hour, which made it unfeasi-
ble to process the remaining 16 larger repositories.

4.2 Results
The distribution of the four developer effort metrics is shown
in Figure 4, with median values reported due to the presence
of outliers. Most PRs (105 out of 124; 84.7%) contain be-
tween 0 and 5 comments (Figure 4a). Based on the impure
comment detection method described earlier, 66 comments
(15.4%) were identified as impure, although excluding im-
pure comments did not have a significant impact on the over-
all distribution shown in Figure 4a. The median time to merge
a PR was 14 hours (Figure 4b) and for 29 PRs that were linked
to an issue, the median time from issue detection to resolution
was 90.1 hours (Figure 4c). Using Spearman’s rank correla-
tion (ρ), we observed a moderate correlation between merge
time and the number of comments (ρ = 0.38, n = 124), as
well as between merge time and detection to resolution time
(ρ = 0.52, n = 29).

x̃ = 2.0
0

20

40

(a) Comments

x̃ = 14.0
0

250

500

750

(b) Merge
Time (h)

x̃ = 90.1
0

500

1000

1500

(c) Detection
to Resolution
Time (h)

x̃ = 0.0
0

500

1000

(d) Java Line
Changes

Figure 4: Distributions of developer effort metrics derived from
GitHub PR activity. (c) is based on a subset of n = 29 PRs with
linked issues.

0 1 2 3
0

10

20

30

40

50

P
R

s

Z-score = 0

(a) Merge Time (z-score)

0 2 4 6 8 10
0

10

20

30

P
R

s

Z-score = 0

(b) Comments (z-score)

Figure 5: Distributions of z-score normalized developer effort met-
rics, computed relative to all merged PRs within the same repository.
(b) is based on a subset of n = 85 PRs where repository averages
could be feasibly computed.

In terms of line changes, 89 PRs (71.8%) did not include
any changes to Java source code (Figure 4d). Additionally,
34 PRs (27.4%) involved at most 5 lines of overall changes,
considering additions and removals in the Git diff of all files.

The effort analysis based on the normalized merge time re-
vealed that 107 PRs (86.3%) had a z-score below 0, indicat-
ing merge times shorter than average (Figure 5a). Within the
smaller subset of 85 PRs, 63 PRs (74.1%) also had a negative
z-score for the number of comments (Figure 5b).

5 SemVer Adherence (RQ2)
To assess how adherence to SemVer mitigates failures caused
by version conflicts in practice, we analyzed version conflicts
in 85 Java projects covered by our PR dataset. The identified
conflicts were categorized based on their version differences
and a subset of these was manually inspected to identify cases
where violations of SemVer led to runtime errors. This sec-
tion first describes the methodology used to detect and clas-
sify conflicts, followed by a presentation of key results.

5.1 Methodology
We used the Maven dependency:tree goal (as described in
Subsection 2.2) to detect and categorize all version conflicts
present in the sample of 85 repositories. To minimize poten-
tial bias, we selected only one PR per repository, investigating
the state before the changes introduced by the selected PR.
Since many repositories contain multiple modules (subpro-
jects) with different POM configurations, we generated the
dependency trees for all modules defined in the central POM
file, which is located at the root of the project.

Within each module, every pair of conflicting versions that
conformed to SemVer was assigned a semantic difference,
classifying differences between versions as Major, Minor,
Patch or Other (the latter including optional pre-release or
build metadata labels). To parse dependency versions reliably
according to the SemVer specification, we used the semver
Python package [28], which supports versions with missing
minor or patch parts (e.g., 1.3).

To evaluate the reliability of SemVer compatibility guar-
antees in mitigating failures caused by version conflicts, we
manually investigated PRs where the tree generation was suc-
cessful to identify instances where developers explicitly re-
ported software breakages due to version conflicts. For each
identified case, we recorded the type of error encountered, the
root cause dependency along with its two conflicting versions
and the direction of the conflict (i.e., whether the loaded ver-
sion was older or newer). The direction is particularly rele-
vant, as newer patch and minor versions are expected to main-
tain backward compatibility under the SemVer specification.

5.2 Results
The dependency tree generation succeeded for 70 PRs, re-
sulting in the detection of 52,417 version conflicts, 87.1% of
which adhered to the SemVer syntax (Table 2). The remain-
ing 15 PRs could not be processed due to the absence of a
central POM (10 PRs), unresolved artifacts (3 PRs) or Maven
compiler errors (2 PRs).

Table 2: Summary of semantic differences between conflicting ver-
sions across 2,199 affected modules in 70 GitHub repositories. Per-
module maximum, median and mean counts are reported.

Semantic Difference Max Median Mean Total %

Major 143 1 3.57 7,854 15.0%
Minor 233 4 11.79 25,937 49.5%
Patch 139 1 5.38 11,831 22.6%
Other 7 0 0.02 38 <0.1%
Invalid SemVer 93 0 3.07 6,757 12.9%

All 516 7 23.84 52,417 100%

In the sample of 70 PRs, we found 35 runtime errors that
were directly caused by version conflicts, involving 8 major,
17 minor and 10 patch differences, as listed in Table 3. In
7 of the 35 cases, the error was caused by backward incom-
patibility (i.e., loading a newer library version which lacked
functionality required through an older version). Notably, 3
of the 7 instances are considered direct violations of SemVer’s
backward compatibility rules (highlighted in red in Table 3),
as NoSuchMethodError resulted from method incompatibil-
ities when the newer minor or patch version was selected.

6 Resolution Strategies (RQ3)
To investigate how developers resolve version conflicts in
Maven, we analyzed the sample of 124 PRs and identified
common resolution patterns, which we grouped into five main
categories. This section briefly describes the methodology
used to identify and classify resolution strategies, and then
presents the observed strategies.

Table 3: List of PRs with reported runtime errors that were caused by version conflicts. The versions in bold indicate cases where a newer
dependency version was loaded which failed to provide functionality expected by another component of the project. The PRs highlighted in
red are direct violations of SemVer’s backward compatibility rules.

PR Link Error Type Root Cause Dependency Version
Required

Version
Loaded

Semantic
Difference

1 https://github.com/Alfresco/alfresco-community-repo/pull/3063 NoSuchMethodError org.apache.logging.log4j:log4j-api 2.31.1 2.24.2 MINOR
2 https://github.com/alibaba/nacos/pull/10170 NoSuchMethodError org.apache.httpcomponents:httpasyncclient 4.1.5 4.1.3 PATCH
3 https://github.com/alldatacenter/alldata/pull/595 NoSuchMethodError net.java.dev.jna:jna 4.1 5.8 MAJOR
4 https://github.com/apache/amoro/pull/2561 NoSuchMethodError org.apache.orc:orc-core 1.9.1 1.7.2 MINOR
5 https://github.com/apache/camel-k-runtime/pull/1053 NoSuchMethodError ch.qos.logback:logback-classic >1.3.0 1.2.11 MINOR
6 https://github.com/apache/camel-quarkus/pull/736 NoSuchMethodError xml-apis:xml-apis 1.4.01 1.3.04 MINOR
7 https://github.com/apache/dolphinscheduler/pull/14561 NoSuchMethodError io.fabric8:kubernetes-client 5.10.2 6.0.0 MAJOR
8 https://github.com/apache/hop/pull/4606 NoSuchMethodError org.codehaus.woodstox:stax2-api 4.2.1 3.1.4 MAJOR
9 https://github.com/apache/incubator-hugegraph/pull/2339 NoSuchMethodError org.apache.logging.log4j:log4j-api 2.17.2 2.17.0 PATCH
10 https://github.com/apache/incubator-seata-samples/pull/171 NoSuchMethodError org.springframework:spring-web 5.1.5 5.1.3 PATCH
11 https://github.com/apache/pulsar/pull/20070 NoSuchMethodError io.vertx:vertx-core 4.3.2 3.9.8 MAJOR
12 https://github.com/apache/seatunnel/pull/2589 NoSuchMethodError commons-io:commons-io 1.3.2 2.11.0 MAJOR
13 https://github.com/apache/shardingsphere/pull/7299 NoSuchMethodError io.netty:netty-buffer 4.1.45 4.1.42 PATCH
14 https://github.com/confluentinc/ksql/pull/10033 NoSuchMethodError io.netty:netty-handler 4.1.87 4.1.86 PATCH
15 https://github.com/eclipse-hawkbit/hawkbit/pull/158 NoSuchMethodError com.vaadin:vaadin-shared 7.6.5 7.6.3 PATCH
16 https://github.com/eclipse-sw360/sw360/pull/459 NoSuchMethodError org.apache.commons:commons-lang3 3.8.1 3.1 MINOR
17 https://github.com/google/caliper/pull/421 NoSuchMethodError com.squareup:javapoet 1.11.1 1.9.0 MINOR
18 https://github.com/googleapis/java-storage/pull/2680 NoSuchMethodError org.junit.platform:junit-platform-commons 1.11.0 1.10.3 MINOR
19 https://github.com/GoogleCloudPlatform/cloud-spanner-r2dbc/pull/541 NoSuchMethodError org.springframework.data:spring-data-commons 2.7.0 2.6.4 MINOR
20 https://github.com/GoogleCloudPlatform/DataflowTemplates/pull/1838 NoSuchMethodError ch.qos.logback:logback-core 1.2.13 1.2.10 PATCH
21 https://github.com/GoogleCloudPlatform/spring-cloud-gcp/pull/3146 NoSuchMethodError io.opentelemetry:opentelemetry-api 1.40.0 1.37.0 MINOR
22 https://github.com/hiero-ledger/hiero-mirror-node/pull/1252 NoSuchMethodError io.grpc:grpc-netty-shaded 1.31.1 1.30.2 MINOR
23 https://github.com/JanusGraph/janusgraph/pull/3764 NoSuchMethodError org.yaml:snakeyaml 1.32 2.0 MAJOR
24 https://github.com/openmessaging/benchmark/pull/392 NoSuchMethodError com.google.protobuf:protobuf-java 3.21.5 3.9.1 MINOR
25 https://github.com/opentracing-contrib/java-specialagent/pull/47 NoSuchMethodError javax.servlet:javax.servlet-api 3.1.0 3.0.1 MINOR
26 https://github.com/openzipkin/zipkin-gcp/pull/72 NoSuchMethodError com.google.guava:guava 20.0 18.0 MAJOR
27 https://github.com/powsybl/powsybl-core/pull/1471 NoSuchMethodError ch.qos.logback:logback-core 1.2.3 1.1.8 MINOR
28 https://github.com/sofastack/sofa-jraft/pull/1073 NoSuchMethodError com.caucho:hessian 4.0.3 4.0.63 PATCH
29 https://github.com/spring-cloud/spring-cloud-stream/pull/2489 NoSuchMethodError org.apache.kafka:kafka 2.13 3.1.1 3.0.0 MINOR
30 https://github.com/streamnative/mop/pull/1406 NoSuchMethodError com.fasterxml.jackson.core:jackson-databind 2.12.2 2.16.2 MINOR
31 https://github.com/thingsboard/thingsboard/pull/5027 NoSuchMethodError io.netty:netty-buffer 4.1.66 4.1.45 PATCH
32 https://github.com/WesJD/AnvilGUI/pull/222 NoSuchMethodError org.spigotmc:spigot 1.19 1.19.1 PATCH
33 https://github.com/Consensys/tessera/pull/736 NoSuchFieldError org.bouncycastle:bcprov-jdk15on 1.61 1.59 MINOR
34 https://github.com/jenkinsci/github-checks-plugin/pull/26 NoClassDefFoundError com.google.guava:guava 29.0-jre 11.0.1 MAJOR
35 https://github.com/OpenAPITools/openapi-generator/pull/7102 Internal Server Error com.fasterxml.jackson.core:jackson-annotations 2.10.x 2.9.0 MINOR

6.1 Methodology
Resolution strategies were identified through a manual re-
view of each PR, examining developer discussions and PR
file changes. We extracted specific strategies taken by devel-
opers to resolve version conflicts and then grouped them into
broader categories based on shared patterns and goals. It is
important to note that 19 PRs (15.3%) involved a combina-
tion of two or more strategies and in these cases each strategy
was counted individually.

6.2 Results
We identified five categories of common resolution strate-
gies that addressed version conflicts in 118 PRs (95.2% of
the sample). The distribution of these categories is shown in
Figure 6 and each category is described below.

I. Controlling dependency versions locally (47 out of
124 PRs). Developers often resolved version conflicts by
explicitly adding direct dependencies to override the version
selected through Maven’s ”nearest wins” mechanism (Sub-
section 2.2). In other cases, developers modified the ver-
sion through an already existing direct dependency (either up-
graded or downgraded) to meet the version requirements of
other project components. A similar strategy was adjusting
the version of a direct dependency that introduced the con-
flict transitively. For example, in citrusframework/yaks#39
[29], a mismatch between Spring 4.x and 5.x dependencies
was resolved by both adding direct Spring dependencies and
upgrading one of their parent dependencies.

II. Managing dependency versions centrally (44 out of
124 PRs). Several PRs resolved version conflicts by including
the desired version in the dependencyManagement section,
used to enforce a consistent version across multiple project
components. In fewer cases, version alignment was achieved
using BOM (Bill of Materials) POMs, which define compat-
ible sets of versions for interdependent libraries [14]. For

example, in googleapis/java-storage#2680 [30], a test failure
caused by conflicting JUnit versions was resolved by import-
ing the junit-bom, following the official JUnit recommen-
dation [31].

III. Excluding transitive dependencies (27 out of 124
PRs). In 24 PRs, developers used the <exclusion> element
to remove transitive dependencies which introduced conflicts,
following Maven’s recommendation to prevent unwanted de-
pendencies from appearing on the project’s classpath [32]. In
7 of these cases, the excluded dependency was then re-added
as a direct dependency to ensure the correct version was used.
For instance, in langchain4j/langchain4j#1508 [33], the au-
thor applied this two-step approach, describing that it helps
”avoid version divergence in the project”.

IV. Removing or replacing dependencies (12 out of 124
PRs). In some cases, developers removed the direct conflict-
ing dependency, choosing to rely on a transitive version in-
stead. Others resolved the conflict by replacing the conflict-
ing dependency with another dependency, which sometimes
required additional source code modifications. For exam-
ple, in stargate/stargate#1253 [34], the author mentioned that
in order to avoid Guava version conflicts, they replaced the
”uses of plain Guava with either [the] shaded version or (in
some cases) JDK 8 methods”.

V. Shading dependencies (9 out of 124 PRs). When two
conflicting versions were required at the same time (e.g., due
to incompatible features), developers used the Maven Shade
Plugin to relocate one of the versions within the Uber JAR,
which packages the project dependencies in the final artifact.
For example, in apache/iotdb#9788 [35], the author shaded
all Thrift artifacts used in their project to allow their project
and Spark dependencies to each use their desired Thrift ver-
sions without conflict.

0 10 20 30 40

PRs

I. Controlling dependency versions locally

II. Managing dependency versions centrally

III. Excluding transitive dependencies

IV. Removing or replacing dependencies

V. Shading dependenciesR
es

ol
ut

io
n

C
at

eg
or

y

Figure 6: Distribution of resolution strategies used by developers
to address version conflicts in Maven-based Java projects. In cases
where multiple strategies were used in a single PR (15.3% of the
sample), each strategy was counted separately.

7 Discussion
This section discusses the key findings across all three re-
search questions, reflecting on their implications for different
stakeholders, comparing them with related work and suggest-
ing potential directions for future research.

7.1 Limitations of PR Effort Metrics
Noisiness Caused by Unrelated Changes. In this study,
we explored GitHub PR activity as an indicator for devel-
oper effort (Figure 4) and our findings suggest that the four
proposed metrics are not always reliable, primarily because
version conflict fixes are often embedded within broader de-
velopment tasks (e.g., integrating new features, code refactor-
ing), rather than addressed in isolation. As a result, unrelated
changes in the PR can introduce noise that affects the accu-
racy of these effort estimates.

Inaccurate Reflection of Human Effort. While a higher
merge time may intuitively imply more effort, it does not nec-
essarily reflect continuous work, as merges can be delayed
due to low urgency or scheduling constraints. For example, in
matsim-org/matsim-libs#1291 [36] the merge was postponed
until after the holiday season to avoid potential build failures,
thus inflating the apparent effort.

Similarly, associating comment counts with human effort
also has several limitations. It overlooks discussions held
outside of GitHub and includes unrelated comments such
as those used to trigger CI pipelines or test coverage tools.
While the method described in Subsection 4.1 successfully
flagged 15.4% of unrelated comments, a closer manual in-
spection revealed that not all such comments were detected,
often due to inconsistencies in bot usernames or command
syntaxes, which highlights the limitations of rule-based meth-
ods for filtering out bot-related activity. Future work could
explore machine learning approaches such as BoDeGHa [37]
to more accurately isolate human discussions.

Nevertheless, the identified moderate correlation between
merge time and the number of comments is consistent with
earlier findings from a large-scale study of 141,468 PRs by
Gousios et al. [38], suggesting that PRs with longer discus-
sion threads may also take more time to merge. Still, since not
all comments are relevant to the resolution work, it is hard to
correlate comment counts with actual human effort.

Lack of Ground Truth Validation. Without definitive
ground truth data, it is difficult to determine whether these

metrics accurately reflect the effort involved in resolving ver-
sion conflicts. For instance, in apache/beam#4653 [39], the
only PR with effort data available, developers reported spend-
ing 2.3 hours on the issue via the Jira tracking system, while
the corresponding merge time was 10.1 hours and the detec-
tion to resolution time was 44.5 hours.

To improve the limited understanding of quantitative ef-
fort metrics, future work could incorporate qualitative meth-
ods such as developer interviews or surveys, as done by
Pashchenko et al. [4] and by Huang et al. [40]. These ap-
proaches should better capture the nuances of human effort
and could be used to validate quantitative results, although
they involve more time and depend on developers’ willing-
ness to participate.

7.2 Incompatibility Risks of Version Conflicts
SemVer Guarantees Backward, not Forward Compatibil-
ity. Out of the 35 runtime errors caused by version con-
flicts in Table 3, 28 cases (80%) involved a scenario where
a component required a newer version than the one actually
loaded at runtime. In such cases, SemVer offers no protec-
tion, as it only ensures backward-compatibility, not forward-
compatibility. As a result, version conflicts in which features
from newer versions are expected but missing at runtime are
potentially more likely to lead to software breakages.
Reliance on Version Numbers Can Be Misleading. Al-
though 87.1% of the version conflicts in our dataset in-
volve library versions that are correctly formatted accord-
ing to the SemVer specification (Table 2), this alone does
not imply that libraries fully adhere to SemVer’s compati-
bility guarantees [21]. Our findings challenge the assump-
tion that conflicts involving minor or patch version differ-
ences are always harmless. This is supported by the three
concrete cases (#28, #30 and #32) in Table 3, where load-
ing a newer patch or minor version caused runtime errors
due to missing methods, thus violating SemVer’s backward-
compatibility rules. For example, in case #30, a deprecated
method in the jackson-databind library was removed in
the minor version range between 2.12.2 and 2.16.2, as part
of a clean-up commit in an intermediate release [41]. How-
ever, according to the SemVer specification, such removals
should only occur in major releases [18]:

Before you completely remove the [deprecated]
functionality in a new major release there should
be at least one minor release that contains the dep-
recation so that users can smoothly transition to the
new API.

These findings also highlight the risks associated with us-
ing loose dependency constraints, such as version ranges.
While such constraints can reduce the likelihood of conflicts
by accepting a broader set of library versions, they do not
eliminate incompatibility risks. In particular, selecting the
newest version within seemingly compatible SemVer ranges
may still result in failures if that version unexpectedly intro-
duces breaking changes. As Raemaekers at al. [21] argue,
determining whether a library update is backward-compatible
is an undecidable problem and relying solely on version num-
bers is often not enough to ensure compatibility.

Mitigating Risks of Version Conflicts. To reduce incom-
patibility risks arising from version conflicts, developers
should implement additional testing or validation methods to
ensure that their projects continue to function correctly when
library versions change. This is especially important when
applying resolution strategies such as library harmonization
explored in RQ3, where the selected version must still support
all features referenced in the project. At the same time, li-
brary maintainers should closely adhere to SemVer guidelines
when publishing new releases and provide clear documen-
tation of changes to help users understand how the changes
might impact their projects.

7.3 Version Conflict Resolution and Prevention
Library Harmonization as the Preferred Resolution
Strategy. The analysis of resolution strategies revealed that
library harmonization is the dominant approach used to re-
solve version conflicts in Maven-based Java projects. Har-
monization of versions is reflected by strategies in Category
I and Category II in our classification (Figure 6), accounting
for 84 PRs (67.7% of the sample) that applied a strategy from
one or both categories. This suggests a strong developer pref-
erence for either quick local fixes (e.g., adding or modifying
direct dependencies) or more centralized control (e.g., align-
ment via dependencyManagement or BOMs). While local
fixes may offer lower complexity, centralized approaches are
generally better suited for long-term maintainability and are
particularly useful in multi-module Maven projects [42].

These findings slightly differ from earlier work by Wang
et al. [6], who reported that harmonizing library versions re-
solved 18 out of 39 conflicts in library versions (46.16%).
This difference may reflect a shift in developers’ preferred
resolution strategies, although it could also stem from varia-
tions in manual inspection and classification methods.

Implications for Conflict Resolution Tools. The observed
strong preference for harmonization is consistent with find-
ings from a developer survey by Huang et al. [40], who
identified harmonization as a commonly used approach for
resolving version inconsistencies and developed LibHarmo,
a tool to assist developers in applying this strategy. The tool
provides version harmonization recommendations for multi-
module Maven projects, while also considering the effort re-
quired to apply these changes. Our findings reinforce the
value of such tools and highlight the importance of prioritiz-
ing harmonization-based strategies, with a focus on central-
ized solutions to preserve consistency across multiple com-
ponents.

The Potential of Conflict Prevention Strategies. Our ob-
servations suggest the potential of proactive strategies to
shift how version conflicts are typically addressed in Maven
projects. While explicitly introduced in only 5 PRs, we ob-
served preventive strategies used as conflict detection meth-
ods in more PRs. The Maven Enforcer Plugin [16] pro-
vides several built-in rules that impose constraints on de-
pendency configuration to prevent conflicts. In particular,
the dependencyConvergence rule enables early detection
of version conflicts by failing the build at compile time when
different library versions are present, thus avoiding errors that

might otherwise occur at runtime. Future work could explore
the adoption and long-term impact of such preventive tech-
niques, analyzing whether they reduce the likelihood of future
issues caused by version conflicts.

7.4 Threats to Validity
Internal Validity. Several steps in our methodology in-
volved manual analysis, including the validation of identified
PRs (Subsection 3.4) and the extended review of PRs to iden-
tify resolution strategies (Subsection 6.2). This introduces a
potential risk of selection bias, which may lead to inconsistent
interpretations or missed edge cases. To reduce this threat,
we documented our procedures extensively in the paper, ap-
plied a consistent analysis approach across all samples and
maintained detailed records of our decision-making process.
However, a key limitation is that, due to the structure of the
course, the study was conducted by a single researcher. As a
result, cross-checking with additional reviewers was not pos-
sible, which may affect the reliability of our interpretations.
External Validity. While investigating PRs, we observed
that version conflicts can lead to a broader range of run-
time errors beyond those captured by our initial keyword
search in Subsection 3.3. In particular, additional errors
such as NoClassDefFoundError, NoSuchFieldError and
LinkageError were sometimes associated with dependency
version mismatches. Although including these terms in the
keyword search phase may have uncovered additional rele-
vant cases, we limited our search scope due to the time con-
straints of the study and the labour-intensive nature of the
manual review phases. Therefore, our dataset may not fully
capture the diversity of failures caused by version conflicts.

8 Responsible Research
In this section, we discuss the reproducibility and integrity
considerations of our research, including data availability,
compliance with open-source licensing and the use of gen-
erative AI.

8.1 Research Reproducibility
To support the reproducibility of our study and improve the
generalizability of our findings, we described each analysis as
thoroughly as possible. The data used in this study was col-
lected from open-source repositories via the GitHub API [26].
While such data is publicly accessible, it is subject to change
or removal over time. To ensure traceability, we recorded the
snapshot date of our dataset collection (Subsection 3.2) and,
when referencing individual PRs, we included the visited date
in the corresponding citations.

To further enhance reproducibility, we provide all Python
scripts used for data collection and analysis, along with the
supporting datasets in both CSV and JSON formats. These
resources are publicly available on GitHub [10] and include
instructions for replicating the procedures.

8.2 Research Integrity
Licensing of Open-Source Tools. All open-source tools
used in this study were properly cited and their licenses were
respected in accordance with applicable licensing policies
and academic standards.

Use of AI. Generative AI tools, specifically ChatGPT, were
used to support the writing process of this paper, develop
Python scripts, assist with data interpretation and correct La-
TeX errors. A summary of the types of prompts used is pro-
vided in Appendix A. All content produced by ChatGPT was
manually reviewed and verified for accuracy and correctness
before inclusion in the research. ChatGPT was not used to
generate new ideas and none of its textual outputs were used
verbatim in the final paper.

9 Conclusions
This study addressed gaps in existing research on depen-
dency hell by analyzing 124 PRs which addressed version
conflicts in 85 Maven-based Java projects. We investigated
version conflicts from three angles: quantifying developer ef-
fort, evaluating the reliability of SemVer as a mitigation strat-
egy and identifying common resolution strategies. Our find-
ings show that activity-based metrics alone offer limited in-
sight into developer effort due to confounding factors such as
unrelated changes, external delays or automation commands,
pointing to the need for qualitative validation in future work.

In a focused analysis of 35 runtime errors caused by ver-
sion conflicts, 80% resulted from forward incompatibilities,
cases not covered by SemVer’s guarantees. Moreover, de-
spite the frequent use of SemVer syntax, three concrete cases
showed that even seemingly compatible versions can break
backward-compatibility, indicating the risks of relying solely
on version numbers. To mitigate such risks, developers
should validate selected versions through compatibility test-
ing. Our findings also revealed library harmonization as the
dominant resolution strategy (67.7% of PRs), supporting the
development of version harmonization tools, especially in
multi-module Maven projects. Finally, while less frequent
in our dataset, proactive conflict prevention strategies, such
as the Maven Enforcer Plugin, offer promising directions for
solving version conflicts before they manifest at runtime.

A LLM Prompts Used
• ”What’s a better word than ⟨word⟩ in ⟨phrase⟩?”
• ”What’s a good topic sentence for this ⟨paragraph⟩ dis-

cussing ⟨context⟩?”
• ”Can you help me rephrase this ⟨paragraph⟩ about
⟨context⟩?”

• ”Please format this ⟨table⟩ in LaTeX.”
• ”Is my figure ⟨caption⟩ logical? How can I improve it?”
• ”Can you write a Python script that does ⟨task⟩?”
• ”How can I visualize this ⟨data⟩?”
• ”How can I fix this Python/Maven/LaTeX ⟨error⟩?”

References
[1] R. Kikas, G. Gousios et al., “Structure and Evo-

lution of Package Dependency Networks,” in 2017
IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), May 2017, pp. 102–112.
DOI: 10.1109/MSR.2017.55.

[2] P. Mohagheghi and R. Conradi, “Quality, productiv-
ity and economic benefits of software reuse: A review
of industrial studies,” Empirical Software Engineering,
vol. 12, no. 5, pp. 471–516, Oct. 2007, ISSN: 1573-
7616. DOI: 10.1007/s10664-007-9040-x.

[3] A. Decan, T. Mens and P. Grosjean, “An empirical
comparison of dependency network evolution in seven
software packaging ecosystems,” Empirical Software
Engineering, vol. 24, no. 1, pp. 381–416, Feb. 2019,
ISSN: 1573-7616. DOI: 10.1007/s10664-017-9589-y.

[4] I. Pashchenko, D.-L. Vu and F. Massacci, “A Quali-
tative Study of Dependency Management and Its Se-
curity Implications,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communica-
tions Security, ser. CCS ’20, New York, NY, USA:
Association for Computing Machinery, Nov. 2020,
pp. 1513–1531, ISBN: 978-1-4503-7089-9. DOI: 10 .
1145/3372297.3417232.

[5] A. Stuckenholz, “Component evolution and versioning
state of the art,” SIGSOFT Softw. Eng. Notes, vol. 30,
no. 1, p. 7, Jan. 2005, ISSN: 0163-5948. DOI: 10.1145/
1039174.1039197.

[6] Y. Wang, M. Wen et al., “Do the dependency conflicts
in my project matter?” In Proceedings of the 2018
26th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Founda-
tions of Software Engineering, Lake Buena Vista FL
USA: ACM, Oct. 2018, pp. 319–330, ISBN: 978-1-
4503-5573-5. DOI: 10.1145/3236024.3236056.

[7] Y. Wang, M. Wen et al., “Watchman: Monitoring
dependency conflicts for Python library ecosystem,”
in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20,
New York, NY, USA: Association for Computing Ma-
chinery, Oct. 2020, pp. 125–135, ISBN: 978-1-4503-
7121-6. DOI: 10.1145/3377811.3380426.

[8] Y. Wang, R. Wu et al., “Will Dependency Conflicts Af-
fect My Program’s Semantics?” IEEE Transactions on
Software Engineering, vol. 48, no. 7, pp. 2295–2316,
Jul. 2022, ISSN: 1939-3520. DOI: 10.1109/TSE.2021.
3057767.

[9] G. Robles, A. Capiluppi et al., “Development effort
estimation in free/open source software from activity
in version control systems,” Empirical Software En-
gineering, vol. 27, no. 6, pp. 1–37, Nov. 2022, ISSN:
1573-7616. DOI: 10.1007/s10664-022-10166-x.

[10] VladM13/maven-repo-miner. [Online]. Available:
https : / / github . com / VladM13 / maven - repo - miner
(visited on 21/06/2025).

[11] Apache/pulsar. [Online]. Available: https : / / github .
com/apache/pulsar (visited on 21/06/2025).

[12] [branch-2.7] Upgrade the BookKeeper version to
4.12.1 by hangc0276 · Pull Request #16775 ·
apache/pulsar. [Online]. Available: https : / / github .
com / apache / pulsar / pull / 16775 (visited on
17/06/2025).

https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1007/s10664-007-9040-x
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1145/3372297.3417232
https://doi.org/10.1145/3372297.3417232
https://doi.org/10.1145/1039174.1039197
https://doi.org/10.1145/1039174.1039197
https://doi.org/10.1145/3236024.3236056
https://doi.org/10.1145/3377811.3380426
https://doi.org/10.1109/TSE.2021.3057767
https://doi.org/10.1109/TSE.2021.3057767
https://doi.org/10.1007/s10664-022-10166-x
https://github.com/VladM13/maven-repo-miner
https://github.com/apache/pulsar
https://github.com/apache/pulsar
https://github.com/apache/pulsar/pull/16775
https://github.com/apache/pulsar/pull/16775

[13] Spring Framework. [Online]. Available: https://spring.
io/projects/spring-framework (visited on 21/06/2025).

[14] Introduction to the Dependency Mechanism. [Online].
Available: https : / / maven . apache . org / guides /
introduction/introduction-to-dependency-mechanism.
html (visited on 13/05/2025).

[15] Apache Maven Dependency Plugin – Introduction.
[Online]. Available: https://maven.apache.org/plugins/
maven-dependency-plugin/ (visited on 21/06/2025).

[16] Apache Maven Dependency Plugin – dependency:tree.
[Online]. Available: https://maven.apache.org/plugins/
maven-dependency-plugin/tree-mojo.html (visited on
06/05/2025).

[17] Support new BungeeCord API by GatitoUwU · Pull
Request #75 · lucko/BungeeGuard. [Online]. Avail-
able: https://github.com/lucko/BungeeGuard/pull/75
(visited on 17/06/2025).

[18] T. Preston-Werner, Semantic Versioning 2.0.0. [On-
line]. Available: https : / / semver . org/ (visited on
20/06/2025).

[19] Naming conventions of Maven coordinates. [Online].
Available: https : / / maven . apache . org / guides /
mini / guide - naming - conventions . html (visited on
29/05/2025).

[20] C. Soto-Valero, A. Benelallam et al., “The Emergence
of Software Diversity in Maven Central,” in 2019
IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), May 2019, pp. 333–343.
DOI: 10.1109/MSR.2019.00059.

[21] S. Raemaekers, A. van Deursen and J. Visser, “Seman-
tic versioning and impact of breaking changes in the
Maven repository,” Journal of Systems and Software,
vol. 129, pp. 140–158, Jul. 2017, ISSN: 0164-1212.
DOI: 10.1016/j.jss.2016.04.008.

[22] GitHub Staff, Octoverse 2024 Report, Oct. 2024. [On-
line]. Available: https : / / github. blog / news - insights /
octoverse/octoverse-2024/ (visited on 16/05/2025).

[23] Maven Repository: Repositories. [Online]. Available:
https : / / mvnrepository . com / repos (visited on
20/06/2025).

[24] JVM Ecosystem Report 2021. [Online]. Available:
https://snyk.io/reports/jvm-ecosystem- report-2021/
(visited on 20/06/2025).

[25] O. Dabic, E. Aghajani and G. Bavota, Sampling
Projects in GitHub for MSR Studies, Mar. 2021. DOI:
10.48550/arXiv.2103.04682.

[26] GitHub REST API documentation. [Online]. Available:
https://docs-internal.github.com/en/rest?apiVersion=
2022-11-28 (visited on 21/06/2025).

[27] M. Griffiths-Prasolova, The Art (and Science) of Re-
viewable PRs, Nov. 2023. [Online]. Available: https :
/ / engineering . joinknack . com / art - and - science - of -
reviewable-prs/ (visited on 27/05/2025).

[28] Semver: Python helper for Semantic Versioning. [On-
line]. Available: https: / /github.com/python- semver/
python-semver (visited on 20/06/2025).

[29] Fix[ENTESB-12609]: Spring major version conflicts
by christophd · Pull Request #39 · citrusframe-
work/yaks. [Online]. Available: https : / / github. com /
citrusframework/yaks/pull/39 (visited on 17/06/2025).

[30] Build: Switch to using junit 5 bom by BenWhitehead
· Pull Request #2680 · googleapis/java-storage. [On-
line]. Available: https://github.com/googleapis/java-
storage/pull/2680 (visited on 17/06/2025).

[31] JUnit 5 User Guide. [Online]. Available: https://junit.
org / junit5 /docs /current /user- guide /#running- tests -
build-maven-bom (visited on 18/06/2025).

[32] Optional Dependencies and Dependency Exclusions –
Maven. [Online]. Available: https://maven.apache.org/
guides / introduction / introduction - to - optional - and -
excludes-dependencies.html (visited on 17/06/2025).

[33] Re #1506 Enabling Maven (version) enforcer plu-
gin in ‘LangChain4j :: Integration :: OpenAI‘
module. by PrimosK · Pull Request #1508 ·
langchain4j/langchain4j. [Online]. Available: https://
github.com/langchain4j/langchain4j/pull/1508 (visited
on 17/06/2025).

[34] Remove use of unshaded guava (fix #1229) by tatu-at-
datastax · Pull Request #1253 · stargate/stargate. [On-
line]. Available: https://github.com/stargate/stargate/
pull/1253 (visited on 17/06/2025).

[35] [IOTDB-5772] spark-iotdb-connnector: Support scala
2.11 & 2.12 and resolve the Thrift version conflict
with Spark’s by xuanronaldo · Pull Request #9788 ·
apache/iotdb. [Online]. Available: https://github.com/
apache/iotdb/pull/9788 (visited on 17/06/2025).

[36] Contrib dependency management by rakow · Pull Re-
quest #1291 · matsim-org/matsim-libs. [Online]. Avail-
able: https://github.com/matsim-org/matsim-libs/pull/
1291 (visited on 16/06/2025).

[37] M. Golzadeh, A. Decan et al., “A ground-truth dataset
and classification model for detecting bots in GitHub
issue and PR comments,” Journal of Systems and Soft-
ware, vol. 175, p. 110 911, May 2021, ISSN: 01641212.
DOI: 10.1016/j.jss.2021.110911.

[38] G. Gousios, M. Pinzger and A. v. Deursen, “An ex-
ploratory study of the pull-based software develop-
ment model,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014,
New York, NY, USA: Association for Computing Ma-
chinery, May 2014, pp. 345–355, ISBN: 978-1-4503-
2756-5. DOI: 10.1145/2568225.2568260.

[39] [BEAM-3668] Quick workaround fix for netty conflict
waiting better fix by BEAM-3519 by jbonofre · Pull Re-
quest #4653 · apache/beam. [Online]. Available: https:
/ / github . com / apache / beam / pull / 4653 (visited on
16/06/2025).

[40] K. Huang, B. Chen et al., “Interactive, effort-aware
library version harmonization,” in Proceedings of the
28th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Founda-
tions of Software Engineering, ser. ESEC/FSE 2020,
New York, NY, USA: Association for Computing Ma-

https://spring.io/projects/spring-framework
https://spring.io/projects/spring-framework
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/plugins/maven-dependency-plugin/
https://maven.apache.org/plugins/maven-dependency-plugin/
https://maven.apache.org/plugins/maven-dependency-plugin/tree-mojo.html
https://maven.apache.org/plugins/maven-dependency-plugin/tree-mojo.html
https://github.com/lucko/BungeeGuard/pull/75
https://semver.org/
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://doi.org/10.1109/MSR.2019.00059
https://doi.org/10.1016/j.jss.2016.04.008
https://github.blog/news-insights/octoverse/octoverse-2024/
https://github.blog/news-insights/octoverse/octoverse-2024/
https://mvnrepository.com/repos
https://snyk.io/reports/jvm-ecosystem-report-2021/
https://doi.org/10.48550/arXiv.2103.04682
https://docs-internal.github.com/en/rest?apiVersion=2022-11-28
https://docs-internal.github.com/en/rest?apiVersion=2022-11-28
https://engineering.joinknack.com/art-and-science-of-reviewable-prs/
https://engineering.joinknack.com/art-and-science-of-reviewable-prs/
https://engineering.joinknack.com/art-and-science-of-reviewable-prs/
https://github.com/python-semver/python-semver
https://github.com/python-semver/python-semver
https://github.com/citrusframework/yaks/pull/39
https://github.com/citrusframework/yaks/pull/39
https://github.com/googleapis/java-storage/pull/2680
https://github.com/googleapis/java-storage/pull/2680
https://junit.org/junit5/docs/current/user-guide/#running-tests-build-maven-bom
https://junit.org/junit5/docs/current/user-guide/#running-tests-build-maven-bom
https://junit.org/junit5/docs/current/user-guide/#running-tests-build-maven-bom
https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html
https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html
https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html
https://github.com/langchain4j/langchain4j/pull/1508
https://github.com/langchain4j/langchain4j/pull/1508
https://github.com/stargate/stargate/pull/1253
https://github.com/stargate/stargate/pull/1253
https://github.com/apache/iotdb/pull/9788
https://github.com/apache/iotdb/pull/9788
https://github.com/matsim-org/matsim-libs/pull/1291
https://github.com/matsim-org/matsim-libs/pull/1291
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1145/2568225.2568260
https://github.com/apache/beam/pull/4653
https://github.com/apache/beam/pull/4653

chinery, Nov. 2020, pp. 518–529, ISBN: 978-1-4503-
7043-1. DOI: 10.1145/3368089.3409689.

[41] EnumResolver clean up: Remove depre-
cated constructors, sort · FasterXML/jackson-
databind@9ea61eb. [Online]. Available: https :
//github.com/FasterXML/jackson-databind/commit/
9ea61eb820b82aa286ab75b56dc19ccd919a6743
(visited on 13/06/2025).

[42] B. Demers, Maven dependency hell: Five tips to get
out, Jul. 2024. [Online]. Available: https://gradle.com/
blog/five- ways- dependency- hell- maven/ (visited on
18/06/2025).

https://doi.org/10.1145/3368089.3409689
https://github.com/FasterXML/jackson-databind/commit/9ea61eb820b82aa286ab75b56dc19ccd919a6743
https://github.com/FasterXML/jackson-databind/commit/9ea61eb820b82aa286ab75b56dc19ccd919a6743
https://github.com/FasterXML/jackson-databind/commit/9ea61eb820b82aa286ab75b56dc19ccd919a6743
https://gradle.com/blog/five-ways-dependency-hell-maven/
https://gradle.com/blog/five-ways-dependency-hell-maven/

	Introduction
	Background and Related Work
	Real-World Version Conflict Example
	Maven Dependency Resolution Model
	Semantic Versioning
	Related Work

	Data Collection
	Motivation
	Project Selection
	Version Conflict Identification
	Manual Inspection

	Developer Effort (RQ1)
	Methodology
	Results

	SemVer Adherence (RQ2)
	Methodology
	Results

	Resolution Strategies (RQ3)
	Methodology
	Results

	Discussion
	Limitations of PR Effort Metrics
	Incompatibility Risks of Version Conflicts
	Version Conflict Resolution and Prevention
	Threats to Validity

	Responsible Research
	Research Reproducibility
	Research Integrity

	Conclusions
	LLM Prompts Used

