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Figure 1: Left: Real Encoded Packet — Right: Generated Encoded Packet
Encoded through the method desribed in [1]

Abstract

Academic research in 5G networking faces a lack of accessible,
realistic packet-level datasets, limiting innovation and reproducibil-
ity. This paper evaluates two state-of-the-art machine learning
approaches, PAC-GAN and TabularARGN, for generating synthetic
5G TCP/IP packet headers. Using a real 5G packet-capture dataset,
we adapt both models to include inter-packet timing and rigorously
assess them on protocol validity, marginal distribution alignment,
and joint distribution fidelity. Results show that PAC-GAN produces
highly valid and statistically faithful synthetic packets, effectively
modeling complex header dependencies and temporal patterns.
While TabularARGN ensures strict protocol compliance, it strug-
gles to capture higher-order correlations and traffic diversity. Our
findings establish convolutional generative models like PAC-GAN
as practical tools for producing realistic, protocol-compliant syn-
thetic 5G traffic, broadening access to datasets for benchmarking
and security testing.

1 Introduction

The lack of accessible, high-fidelity traffic datasets fundamentally
constrains academic research into mobile communications infras-
tructure. Network operators and equipment vendors typically treat
network traces as proprietary, and privacy concerns further re-
strict public sharing. As a result, students and researchers often
cannot access realistic workloads, impeding efforts to benchmark

performance, validate new protocols, or develop effective capacity-
planning strategies under authentic conditions.

Existing synthetic traffic-generation tools offer limited relief.
While they can produce artificial datasets, these tools frequently
fail to capture the complex temporal and structural patterns in
real-world 5G network traffic. This shortfall means that generated
data may not accurately reflect the nuanced dependencies and
distributions that characterize actual network behavior, limiting
their utility for rigorous simulation and evaluation.

To address these barriers, we have honed in on and systemati-
cally evaluated the capabilities of two advanced deep generative
models, PAC-GAN and TabularARGN, to synthesize individual 5G
packet headers. We aim to generate synthetic packet data that
closely preserves the statistical properties and structural nuances
observed in real network traffic by focusing on these targeted ma-
chine learning approaches. This enables the creation of diverse,
realistic packet-level datasets on demand, reducing reliance on
scarce proprietary data. By democratizing access to high-fidelity
synthetic network traffic, our approach supports more rigorous
and reproducible research in network benchmarking, capacity plan-
ning, and stress-testing, ultimately empowering both academia and
industry to advance the state of the art in 5G and future network
technologies.
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1.1 Related Works

The generation of synthetic network traffic has traditionally re-
lied on tools and models that emphasize aggregate flow statis-
tics and bandwidth patterns, rather than the synthesis of individ-
ual, protocol-compliant packets. Conventional generators such as
TRex', for example, are widely used for producing high-throughput
network traffic in testing environments. However, these tools typi-
cally operate at fixed packets-per-second (pps) and bits-per-second
(bps) rates, and lack the ability to reproduce the nuanced tempo-
ral variability and packet size distributions observed in real-world
traffic. As a result, they fall short in capturing the structural and
temporal diversity necessary for realistic simulation and bench-
marking.

In parallel, a significant body of academic work has focused
on flow- and session-level synthetic data generation. These ap-
proaches generally model high-level properties, such as connection
patterns, session durations, or aggregate bandwidth, using machine
learning techniques including GANs, VAEs, and Bayesian networks.
While effective for reproducing statistical trends at the flow level,
these models do not address the technical challenges of generating
individual packets with realistic protocol headers and inter-field
dependencies, which are essential for fine-grained simulation and
protocol evaluation.

A comprehensive review by Schoen et al. [2] highlights this gap,
noting that most prior works in the field are limited to flow-based or
trace-based generation and do not provide solutions for the direct
synthesis of structurally valid, protocol-compliant packets. This
persistent focus on aggregate metrics underscores the need for new
approaches capable of generating realistic packet-level data that
faithfully reflects both the structural and temporal characteristics of
real network traffic. The field of synthetic network traffic generation
has historically focused on aggregate flow statistics and bandwidth
modeling, rather than packet-level synthesis. As highlighted by
Schoen et al. [2], most existing approaches generate synthetic data
at the flow or session level, capturing high-level statistical prop-
erties but lacking the capability to generate realistic packet-wise
traffic data. Their comprehensive survey demonstrates that while
a variety of machine learning methods have been applied to trace
and flow generation, the direct synthesis of protocol-compliant,
structurally valid packets remains a significant research gap.

1.1.1  Flow and Trace Generation. Schoen et al. [2] systematically
reviewed the landscape of synthetic traffic generation and found
that the majority of prior works focus on reproducing aggregate
metrics such as connection patterns, session durations, or band-
width utilization. These models often employ GANs, VAEs, or
Bayesian networks to generate flow-level traces, but do not address
the technical challenges of generating individual packets with real-
istic protocol headers and field dependencies. As a result, they are
limited in their ability to support fine-grained simulation, bench-
marking, or protocol testing scenarios that require packet-level
fidelity.

1.1.2  Direct Packet Generation. To address these limitations, recent
research has explored generative models capable of synthesizing in-
dividual packets. Three models stand out as the closest to achieving
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true packet-level generation: PAC-GAN [1], PacketCGAN [3], and
PcapGAN [4]. All three leverage GAN-based architectures to model
the distribution of real network packets and generate protocol-
compliant outputs.

e PAC-GAN [1] introduces a convolutional GAN framework
that spatially encodes raw packet bytes into 20x20 matri-
ces, allowing the model to learn both local field dependen-
cies and global packet structure. This enables the genera-
tion of protocol-compliant packets that can be transmitted
over real networks and elicit valid responses from servers,
demonstrating practical utility for simulation and testing.
PAC-GAN’s architectural novelty, particularly its use of
CNNs and nibble-based encoding, makes it a strong baseline
for evaluating structural and statistical fidelity in synthetic
5G header synthesis.

e PacketCGAN [3] extends the GAN paradigm with condi-
tional labels, enabling targeted synthesis of specific traffic
classes and addressing class imbalance, which is especially
relevant for rare encrypted flows in security applications.
By incorporating attention mechanisms, PacketCGAN en-
hances class-specific feature replication, producing more
faithful representations of underrepresented packet types.

e PcapGAN [4] focuses on sequential packet synthesis by
employing GANSs trained on entire pcap sessions, aiming
to capture the structural and temporal patterns present
in real network conversations. By generating sequences
of packets that reflect the flow and session-level ordering
observed in actual traffic, PcapGAN produces synthetic
traces that better approximate the dynamics of client-server
exchanges.

These models collectively represent the state-of-the-art in direct
packet synthesis. Among them, PAC-GAN is selected as the primary
baseline in this work due to its demonstrated technical validity and
architectural innovations, making it an ideal target for evaluation
and comparison in the context of 5G traffic generation.

1.1.3  Tabular Generation. An alternative approach to packet syn-
thesis is to represent packet headers as tabular data, where each
protocol field corresponds to a column. This enables the use of
advanced tabular data generators, which can model the joint dis-
tribution of header fields without explicit protocol knowledge. A
collection of state-of-the-art generators in the literature are pre-
sented here.

e TabularARGN [5] pioneers any-order auto-regressive den-
sity estimation for mixed-type tabular data, dynamically
shuffling column order during training to learn all con-
ditional dependencies across features. With support for
variable-length sequences and built-in privacy mechanisms,
TabularARGN achieves superior fidelity and efficiency on
benchmarks, making it a promising candidate for repre-
senting packet headers as structured rows and columns
in 5G traffic synthesis. Notably, Tiwald et al. demonstrate
that TabularARGN consistently outperforms other lead-
ing tabular data generators, including GAN-, VAE-, and
diffusion-based models, across a diverse set of real-world
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and synthetic datasets, highlighting its robustness and gen-
eralization capabilities in capturing complex data distribu-
tions.

e TVAE [6] applies variational autoencoder principles to
mixed-type tabular data, converting heterogeneous fea-
tures into normalized vectors for probabilistic sampling.
While TVAE offers uncertainty quantification and robust
univariate fidelity, its performance on discrete distributions
is limited compared to auto-regressive methods.

e CTGAN [6] employs mode-specific normalization and class-
conditional sampling to handle mixed continuous and cate-
gorical features in tabular data. CTGAN excels at matching
marginal distributions of individual fields but requires care-
ful hyperparameter tuning to avoid mode collapse.

e REaLTabFormer [7] leverages transformer architectures
with self-attention to model intricate relationships within
tabular datasets, achieving high-fidelity synthetic samples
on structured benchmarks. Despite its computational de-
mands, the model’s ability to capture long-range feature
interactions offers insight into advanced sequence model-
ing approaches.

While none of these models were explicitly designed for packet
synthesis, the tabular representation of packet headers allows for
their direct application. TabularARGN, in particular, is highlighted
for its ability to enable high-fidelity, protocol-compliant header
generation by modeling each field as a column in a structured
dataset.

In summary, the current landscape of synthetic network traffic
generation is characterized by a divide between high-level flow
modeling and emerging packet-level synthesis. This work bridges
the gap by systematically evaluating both direct packet generation
models (with a focus on PAC-GAN) and advanced tabular data
generators (with a focus on TabularARGN), providing a comprehen-
sive assessment of their suitability for realistic 5G packet header
generation.

1.2 Research Question

The research question posed by this paper is as follows:

How can machine learning techniques be used to generate synthetic
5G network traffic? What ML techniques are most suitable for this
task? The subquestions that hone in on the core of the question are
as follows:

o What are the existing ML-based methods for synthetic traffic
generation?

e How do the methods compare in terms of fidelity and ease of
integration?

2 Contributions

The contributions of this paper are as follows.

2.1 Packet-Level Generation

As discussed in Section 1.1, most existing synthetic network data
generation approaches either focus on aggregate flow statistics
or generate entire packet traces using machine learning, aiming
to reproduce statistical properties over time. Meanwhile, conven-
tional traffic generators such as TRex produce streams of realistic
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packet headers but typically rely on flat or fixed inter-packet tim-
ing, lacking the nuanced variance and structural diversity seen in
real network traffic. As a result, the direct generation of individual,
high-fidelity packet headers that capture structural and temporal
characteristics remains a largely unexplored research area, which
we aim to address.

2.2 Inter-Packet Timing Modeling

This study introduces a new approach by explicitly modeling inter-
packet timing dynamics within the generative process. PAC-GAN
and TabularARGN are adapted to represent and synthesize rela-
tive time deltas between packets as part of the header generation
task. By integrating timing as a core feature, the models can cap-
ture temporal characteristics essential for realistic and temporally
consistent synthetic network traffic, a capability not addressed in
previous network traffic generation studies.

2.3 Evaluation Framework

To comprehensively assess generative performance, we introduce
and apply a robust evaluation framework that quantifies protocol
validity, marginal distribution alignment, and joint distribution
fidelity to comprehensively assess generative performance using
established statistical metrics. This multi-faceted approach enables
a holistic and quantitative analysis of how faithfully both individual
field distributions and complex cross-field dependencies in the
synthetic data align with those observed in real network traffic.
sectionMethodology

2.4 Dataset

The experiments leverage the full packet-capture dataset collected
by Coldwell et al. [8]. This dataset consists of a variety of traffic
collected on a simulation 5G network. The packets are captured at
multiple interfaces placed throughout the simulation network. As
shown in figure 2. For the purposes of this paper, only the tcp and
ip-headers captured on interface enoI are utilized. At this point in
the network pure ip-packets appear without any 5G (gprs) specific
tunneling.
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Figure 2: Simulation Network Diagram [8]

A 10% test and 90% training set split was utilized. Resulting in a
test set of 267,928 rows and a train set of 2,411,323 rows
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In the pre-processing stage, the raw packet captures are parsed
using scapy [9], resulting in a full tabular representation of the
packet headers. This tabular representation contains all ip and tcp
fields as well as the timestamp associated with the packet and a
derivative field, timedelta, which is computed as the time since the
previous packet for every row. An analysis of mode prevelance
is presented in Table 1. Based on these mode prevalences, several
fields are identified to possess extremely low to no variance and
are therefore candidates for omission from tabular generation and
the evaluation stage. As highlighted in the table, these fields are:
all ip.flags, ip.tos, ip.version, ip.proto, ip.ihl, tcp.flags.ACK, -CWR,
-URG, -ECE, tcp.dataofs, tcp.urgptr, and tcp.reserved. Additionally,
neither ip.options nor tcp.options are considered, as their variable
length nature is incompatible with the architecture of the tabular
generation approach. Checksums (ip.chksum, tcp.chksum) aren’t
considered since this paper only concerns headers and their com-
putation inherently relies on full packet content. Lastly, absolute
packet timestamps are not generated as they hold little relevance
for this study; instead, the derivative field, timedelta, is utilized as it
provides a more meaningful representation of inter-packet timing
dynamics.

2.5 TabularARGN

In this work, we utilize the official TabularARGN implementa-
tion [5] to generate synthetic packet headers from tabular data
representations, which are derived through pre-processing as de-
scribed in section 2.4. The model operates by encoding all protocol
fields as categorical sub-columns, where categorical features are
consolidated by grouping rare values, numeric features are dis-
cretized into percentile bins, and datetime fields are decomposed
into granular components. Each sub-column is mapped to an embed-
ding vector, with dimensionality determined by feature cardinality.
During training, TabularARGN randomly permutes feature order in
each batch and applies permutation masks, enabling any-order con-
ditioning and robust estimation of conditional distributions. Masked
embeddings are processed through feed-forward regressor blocks.
The training objective is the sum of categorical cross-entropy losses
across all sub-columns, with teacher forcing, early stopping on a
validation split, learning-rate decay, and checkpointing to ensure
convergence. This approach guarantees protocol validity by con-
struction, as only protocol-compliant values are sampled for each
field. Extensions for sequential data and multi-table scenarios are
supported via an LSTM-based history encoder and a feed-forward
context processor, respectively, enabling conditional generation
across related tables [5].

2.6 PAC-GAN

The PAC-GAN model is implemented following the original archi-
tecture described by Cheng et al. [1], with adaptations to focus on
header and timing synthesis. Each packet is represented as a 48-byte
vector, composed of an 8-byte nanosecond-precision timedelta and
40 bytes of concatenated ip and tcp headers. This vector is encoded
into a 20 X 20 matrix by splitting bytes into nibbles, arranging them
row-major, and duplicating each nibble in a 2 X 2 block, preserv-
ing sequential structure and enabling convolutional processing. As

Field Mode Value Mode % Non-Mode %
timestamp 2022-06-06 19:25:30 0.00% 100.00%
timedelta 0.00 9.17% 90.83%
ip.chksum 21112 0.16% 99.84%
ip.dst 192.168.70.215 46.39% 53.61%
ip.flags DF True 90.82% 9.18%
ip.flags.MF False 100.00% 0.00%
ip.flags.RF False 100.00% 0.00%
ip.frag 0 100.00% 0.00%
ip.id 0 1.66% 98.34%
ip.ihl 5 100.00% 0.00%
ip.len 52 29.32% 70.68%
ip.options [empty bytes] 100.00% 0.00%
ip.proto 6 100.00% 0.00%
ip.src 192.168.70.215 53.60% 46.40%
ip.tos 0 91.17% 8.83%
ip.ttl 63 53.05% 46.95%
ip.version 4 100.00% 0.00%
tep.ack 0 1.81% 98.19%
tep.chksum 63545 0.18% 99.82%
tep.dataofs 8 79.92% 20.08%
tep.dport 443 53.32% 46.68%
tep.flags. ACK True 98.19% 1.81%
tep.flags. CWR False 100.00% 0.00%
tep.flags. ECE False 100.00% 0.00%
tep.flags. FIN False 99.01% 0.99%
tep.flags. PSH True 51.33% 48.67%
tep.flags.RST False 98.68% 1.32%
tep.flags. SYN False 98.98% 1.02%
tep.flags.URG False 100.00% 0.00%
tcp.options [empty bytes] 18.52% 81.48%
tep.reserved 0 100.00% 0.00%
tcp.seq 4013659489 0.08% 99.92%
tcp.sport 443 46.08% 53.92%
tep.urgptr 0 100.00% 0.00%
tep.window 502 16.69% 83.31%

Table 1: Mode Prevelance Over All Fields in the Dataset Span-
ning 2,679,251 Rows

shown in figure 3: the generator receives a 64-dimensional Gauss-
ian noise vector, which is upsampled via two dense layers of 1024
and 6400 units after which it is reshaped into a 5 X 5 X 256 tensor.
This is followed by two deconvolution layers (with 4 X 4 kernels
each as well as 64 and 32 filter sizes, respectively). A final 3 X 3
convolutional layer with a filter-size of 1 and LeakyReLU activation
produces the 20 X 20 X 1 output matrix.

The discriminator mirrors this structure, as illustrated in figure 4.
It accepts a 20 X 20 X 1 input and processing it through two con-
volutional layers (using 4 x 4 kernels with 64 and 128 filter-sizes,
respectively), followed by flattening and a dense layer of 256 units,
and a final linear output.

2Created with PlotNeuralNet [10]
3Created with PlotNeuralNet [10]
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LeakyReLU activations are applied after each layer except the
final output. similarly, a stride of 2 is used for each convolutional or
deconvolutional layer. The model is trained using the Wasserstein
GAN loss with a gradient penalty coefficient of 10. Adam optimizers
are used for both generator and discriminator, with a learning rate of
0.001 and f; = 0.5. Synthetic samples are decoded by reversing the
nibble duplication and matrix packing, enabling direct evaluation
of protocol validity and statistical fidelity.

3 Evaluation Strategy

A rigorous, quantitative evaluation strategy is adopted to assess the
realism and utility of the synthetic packet header data generated
by TabularARGN and PAC-GAN. The evaluation is designed to
determine how closely the generated samples replicate the statisti-
cal, structural, and temporal properties of real 5G network traffic,
thereby addressing the central research question: Can generative
models produce synthetic packet headers that are statistically and
functionally faithful to genuine data?

Both models are trained using the same dataset split and are
tasked with generating synthetic samples equivalent in size to the
test set. The evaluation process then compares these synthetic
samples to the real data using a suite of metrics selected to capture
key aspects of fidelity, diversity, and validity.

3.1 Categorical & Numeric Fields

For the purposes of evaluation and analysis, a distinction was made
between categorical and numeric columns throughout the evalua-
tion metrics. Categorical fields are those fields that are either inher-
ently non-numeric, such as flags, or those where numeric distance
holds no meaning, such as tcp ports. Resulting in the categorical
fields: ip.id, tep.sport, tep.dport, tep.flags.FIN, -SYN, -RST, -PSH &
-ACK. And numeric fields: ip.ttl, ip.len, tcp.window, timedelta, ip.src,
ip.dst, tep.seq & tep.ack. The non-obvious choice of treating ip ad-
dresses as numerical fields was made because their 32-bit unsigned
integer representation preserves the logical structure and ordering
of the address space, enabling the use of quantitative distance-based
metrics to meaningfully capture distributional differences and simi-
larities between real and synthetic samples.

3.2 Evaluation Metrics

A selection of evaluation metrics will be used to evaluate the per-
formance of PAC-GAN compared to the TabularARGN model. The
performance is evaluated in three major dimensions: Validity, Mar-
ginal alignment, and joint distribution alignment.

o Validity metrics provide an insight into how well the mod-
els can adapt to the requirements and constraints associated
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with protocol formats. Providing an avenue through which
the feasibility of real packet generation can be evaluated.

e Marginal alignment metrics describe how much the over-
arching field-wise distribution aligns among the real and
generated data sets. Thus indicating the quality and fidelity
of the packet generation process.

o Joint distribution alignment metrics evaluate the extent
to which models capture higher-order dependencies span-
ning and intersecting multiple fields, characterizing the
alignment of cross-field dependencies between real and test
datasets.

3.2.1  Packet Validity metric. The packet validity is quantified by
calculating the packet validity ratio. The ratio of generated packet
headers adhering to protocol specifications:

#Valid_Packets
#Generated_Packets

It is computed by utilizing the scapy library [9] to parse generated
packets, where all successfully parsed packets are considered valid.
Prior to this computation, default values are overwritten for fields
that aren’t relevant for generation as discussed in Section ??. The
default values used are equivalent to the mode of each respective
field.

This method can be applied directly for the PAC-GAN model as
it generates byte-wise packet representations. The TabularARGN
output is first concatenated into a raw byte-wise packet form from
its field-wise tabular representation.

3.2.2  Marginal Distribution Metrics. We employ three complemen-
tary measures to evaluate per-field alignment between real and
synthetic datasets, each capturing a different aspect of marginal
similarity for both discrete and continuous features.

e Univariate Similarity. This metric was introduced by
Tiwald et al. [5], who proposed computing the average L;
similarity between real and synthetic histograms. Numeric
fields are divided into deciles, and categorical fields are
reduced to the ten most frequent categories. Scores close to
1 indicate that individual feature distributions are closely
matched, while lower values highlight the existence of fields
where the model exhibits mode collapse or distributional
drift.

e JSD for Categorical and EMD for Numeric Fields. Fol-
lowing the approach of Schoen et al. [2], Jensen-Shannon
Divergence (JSD) is used to assess the similarity between
categorical distributions, while Earth Mover’s Distance
(EMD) is applied to numeric fields. JSD quantifies the diver-
gence between real and synthetic categorical distributions
by averaging their Kullback-Leibler divergences to a mid-
point distribution:

+0

p
JSD(P [ Q) = 5D (P | M) + 2D (Q | M), M= 2

)

For numeric features, EMD measures the “earth-moving”
cost required to align real and synthetic distributions by in-
tegrating the absolute differences between their cumulative

distribution functions:

o)

EMD(P, 0) = / |Fp(x) — Fo ()] dx @)
This combination allows for sensitive detection of both cate-
gorical distribution shifts and subtle numeric discrepancies,
ensuring that both types of marginal statistics are faithfully
preserved in the synthetic data.

3.2.3 Joint Distribution Metrics. To capture dependencies that span
multiple header fields, both pairwise and manifold-based approaches
are employed, following the approaches in the literature [2, 5, 11].

(1) Bivariate Similarity. Tiwald et al. [5] proposed construct-
ing normalized contingency tables for every feature pair,
using the same binning strategies as in the univariate met-
ric, and computing the average L; similarity between real
and synthetic tables. High scores indicate that the model
faithfully preserves pairwise relationships, such as those
between packet size and flag settings, while lower scores
reveal unrealistic or implausible field combinations.

(2) Manifold-Based Metrics. Schoen et al. [2] adopt the met-
rics introduced by Naeem et al. [11] to perform the joint
distribution analysis for their synthetic traffic traces anal-
ysis. A set of four manifold-based metrics that provide a
thorough assessment of how synthetic samples inhabit the
real-data feature space:

o Coverage verifies that most real samples have at least
one synthetic neighbor within a chosen radius, expos-
ing mode dropping when coverage is low and confirm-
ing comprehensive span when high.

o Recall measures the fraction of real samples covered by
the synthetic manifold, reflecting the breadth of gener-
ative diversity. High recall denotes full representation
of real traffic patterns.

e Density measures how many real points fall within
neighborhoods around synthetic samples, indicating
whether generated points focus on dense, realistic re-
gions or drift into sparse areas.

e Precision calculates the fraction of synthetic points that
lie within the real-data support, directly assessing the
realism of generated packets; high precision means
few outliers.

Interpreting coverage alongside density distinguishes over-
dispersed generation (high coverage, low density) from
mode collapse (high density, low coverage), while the bal-
ance between precision and recall reveals whether the
model is conservative (high precision, low recall) or expan-
sive (high recall, low precision) in its generation behavior.

4 Results and Discussion

The results of the experiment provide a comprehensive comparison
between PAC-GAN and TabularARGN for the task of synthetic ip
& tcp packet header generation. Both models were trained until
their respective loss curves stabilized, as shown in Figures 5 & 6.
For PAC-GAN, the generator and discriminator losses converged
smoothly after approximately 150 epochs, with minimal divergence
between training and validation curves. This stability indicates



that the adversarial training process was well-regularized, avoiding
both underfitting and the notorious mode collapse or oscillatory
behavior sometimes observed in GAN-based models [12]. Similarly,
TabularARGN reached a plateau in training and validation loss
within 20 epochs, demonstrating rapid convergence and suggesting
that the model had fully captured the conditional dependencies
present in the tabular representation of packet headers. This rapid
convergence displayed by TabularARGN is one of the primary bene-
fits touted by its authors and is demonstrably accurate, even though
its generation performance may not match expectations. The ab-
sence of significant overfitting or loss spikes in both models further
confirms that the chosen architectures and training regimes were
well-suited to the data and task complexity.

= Discriminator Training Loss

10 Discriminator Validation Loss
—— Generator Training Loss
— Generator Validation Loss

J D e O

T T T T T T
0 25 50 75 100 125 150 175 200
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Figure 5: Loss Over Training Epochs for PAC-GAN

60 —— Training Loss
Validation Loss

Epochs
Figure 6: Loss Over Training Epochs for TabularARGN

Regarding the quantitative evaluation, Table 2 summarizes the
key metrics. TabularARGN achieves perfect validity (100%), a direct
consequence of its enforced data-type constraints and categori-
cal encoding. By design, this model cannot generate packets with
invalid field values or structurally inconsistent headers, as each
feature is discretized and sampled from a set of protocol-compliant
options. This property makes TabularARGN exceptionally robust
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for scenarios where strict protocol adherence is essential. In con-
trast, PAC-GAN attains a slightly lower validity score (96.89%),
reflecting its byte-level generative process: while it learns the joint
distribution of header fields through convolutional encodings, rare
invalid byte combinations may still occur. Nevertheless, the high
validity rate demonstrates that PAC-GAN’s adversarial learning
is highly effective at internalizing the structural rules of packet
headers.

Metric PAC-GAN TabularARGN

Validity T
EMD |

JsD |
Univariate T
Bi-Variate T
Coverage T
Recall T
Density T
Precision T

96.89%
0.0191

0.9843

Table 2: Evaluation Metrics Results

Beyond validity, the remaining metrics provide deeper insight
into the generative fidelity of both models. PAC-GAN outperforms
TabularARGN in univariate and bivariate similarity, indicating that
PAC-GAN more accurately preserves both individual feature distri-
butions and pairwise relationships, which is critical for generating
headers that are plausible in isolation and structurally coherent
as a whole. The convolutional architecture of PAC-GAN, which
processes headers as spatial matrices, likely contributes to its supe-
rior modeling of inter-field dependencies—an advantage that is less
pronounced in the permutation-invariant, column-wise training of
TabularARGN.

Manifold-based metrics further distinguish the two approaches.
PAC-GAN achieves substantially higher coverage and density, mean-
ing its synthetic samples span a broader region of the real data man-
ifold and cluster more closely around high-density areas. Precision
and recall metrics reinforce this observation: PAC-GAN balances
a high recall with a much higher precision than TabularARGN,
indicating that it generates a diverse set of realistic headers with-
out drifting into implausible or outlier regions. In contrast, Tabu-
larARGN’s extremely low coverage, density, and precision suggest
that while it samples exhaustively from valid field combinations,
it fails to capture the joint structure and diversity of real packet
distributions, resulting in over-dispersed and less realistic outputs.

Interestingly, TabularARGN’s best comparative performance is
in Earth Mover’s Distance (EMD), with a lower score on continu-
ous features. This is likely due to its binning and discretization of
numeric fields, which smooths out the distribution and simplifies
alignment with real data. However, this marginal advantage does
not compensate for its deficiencies in joint and structural metrics,
especially for applications where the interplay between multiple
header fields is crucial.

In summary, these results highlight the importance of archi-
tectural inductive bias in generative modeling for structured data.
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While TabularARGN’s tabular approach guarantees protocol valid-
ity and is well-suited to applications prioritizing strict compliance,
it lacks the capacity to model complex, higher-order dependencies.
PAC-GAN, on the other hand, leverages convolutional encodings
to achieve a more faithful reproduction of both the marginal and
joint statistics of real 5G packet headers, producing synthetic data
that is not only valid but also structurally and statistically realistic.
This balance makes PAC-GAN a compelling choice for scenarios
requiring both protocol adherence and high-fidelity traffic simula-
tion.

5 Responsible Research
5.1 Ethical Implications

The generation of synthetic network traffic data raises significant
ethical considerations regarding privacy preservation, data gov-
ernance, and potential misuse. While the original dataset from
Coldwell et al. was collected in a controlled simulation environ-
ment, the synthetic generation of realistic packet headers introduces
privacy risks if applied to real network traces containing person-
ally identifiable information or sensitive communication patterns.
This approach mitigates these concerns by focusing exclusively on
protocol-level header fields rather than payload content, generat-
ing valid and useful packets up to layer 4 of the OSI stack while
significantly limiting the potential for exposing sensitive source
data.

The generation of synthetic 5G network data holds significant
promise for democratizing access to high-fidelity datasets, enabling
researchers in resource-constrained institutions or regions to con-
duct rigorous analyses without relying on proprietary data. By
providing synthetic alternatives that preserve statistical properties
of real traffic, this approach aims to level the playing field for aca-
demic innovation in network optimization, security testing, and
protocol development.

5.2 Reproducibility

Reproducibility represents a cornerstone of this research methodol-
ogy, with all experimental parameters, model configurations, and
evaluation metrics documented to enable independent verification
of results. The TabularARGN implementation was utilized directly
from its published GitHub repository without modification, en-
suring that results reflect the model’s intended performance char-
acteristics rather than implementation-specific optimizations. For
PAC-GAN, the model architecture was reconstructed following the
original specifications by Cheng et al., with all hyperparameters
and training procedures explicitly documented in the methodology
section. The dataset preprocessing pipeline, including feature selec-
tion criteria and statistical transformations, has been thoroughly
described to support independent replication.

6 Conclusion and Future Work

6.1 Conclusion

The results of this study demonstrate that PAC-GAN almost always
outperforms TabularARGN in the generation of synthetic 5G packet
headers. PAC-GAN achieves high validity (96.89%), strong marginal

alignment, and superior joint distribution fidelity, making its out-
puts suitable for real-world applications that require realistic and
protocol-compliant traffic. The convolutional encoding of packet
fields in PAC-GAN enables robust modeling of inter-field dependen-
cies, resulting in synthetic headers that closely resemble genuine
5G traffic patterns. Thus answering the research question: How
can machine learning techniques be used to generate synthetic 5G
network traffic? What ML techniques are most suitable for this
task? PAC-GAN is the clear choice and is capable of generating
synthetic 5G network traffic with very little modification.

6.2 Future Work

Several promising directions for future research are identified:

e Explore More Models Future work should explore the
performance of additional generative models, such as Pack-
etCGAN, PcapGAN, TVAE, CTGAN, and REaLTabFormerm,
within the established evaluation framework. This would
provide a more holistic perspective on the state-of-the-art
in synthetic packet generation and help clarify the strengths
and limitations of each approach.

e Integration of Additional Protocol Headers Extending
the synthesis task to include 5G specific headers (such as
GPRS tunneling and NAS messages) could yield valuable
insights and enable the generation of complete 5G packets.
This would require an adaptation of the evaluation metrics
to accommodate the multi-layered nature of such packets.
However, the current PAC-GAN model, with its byte-level
representation, is well-suited to handle these extensions,
potentially enabling the generation of complete 5G packets,
including GPRS headers.

e Privacy-Preserving Generation: Investigating privacy-
preserving mechanisms, such as differential privacy, within
generative models would ensure that synthetic traces do
not leak sensitive information from real network captures,
supporting ethical data sharing and regulatory compliance.

By pursuing these directions, future work can further establish
synthetic traffic generation as a reliable tool for network research,
benchmarking, and security testing in the evolving 5G landscape.
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