
Subpixel level Pathtracing
How considering subpixels can increase the perceived resolution of a pathtracer

Jan C. de Munck

Supervisor(s): Elmar Eisemann, Michael Weinmann, Christoph Peters

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 20, 2025

Name of the student: Jan C. de Munck
Final project course: CSE3000 Research Project
Thesis committee: Michael Weinmann, Christoph Peters, Georgios Smaragdakis

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/


Abstract
In this paper, we propose techniques to increase the
effective resolution of a pathtracer without chang-
ing the resolution of the screen for which it is ren-
dered. These make use of the fact that displays
are made up of pixels, each of which is made up
of three distinct subpixels. By setting luminance
values for subpixels rather than colour values for
a full pixel, we can create a higher fidelity im-
age. This is already used in rendering text, but has
not yet been applied to a pathtracer. It is done in
three distinct ways; firstly we send three rays per
pixel, each centred at a subpixel to obtain a value
for every subpixel, the second method is using a
filter used for downscaling text. Lastly, we imple-
ment a technique that makes use of the aforemen-
tioned filter without increasing the number of sam-
ples needed. By sampling a random subpixels each
frame for each pixel and combining neighbouring
pixels proportional to the filter. We find that these
methods are quite effective at the goal of increasing
perceived resolution in high-contrast scenes.

1 Introduction
Having a high resolution is a desirable quality of a pathtraced
image; unfortunately the resolution of a display is fixed, but
what if there is a way to increase their effective resolution?
Physical displays are made up of many pixels, and each pixel
is made up of several subpixels. LCDs commonly use a
striped RGB pattern where each pixel is made up of a red,
green, and blue subpixel in that order from left to right. We
can exploit the fact that each subpixel is individually address-
able to effectively triple the horizontal resolution of a display.
The increased horizontal resolution does come at the cost of
colour accuracy, however this is often a worthwhile trade-off
since human eyes are more sensitive to luminance than colour
[1].

Subpixel level rendering is already used, primarily in ren-
dering text, like Microsoft’s ClearType [2]. However it is not
yet used in 3D pathtracers. While those could also benefit
from the increased resolution. In this paper, three techniques
will be implemented and evaluated. The first one traces three
rays per pixel rather than one. Each ray is centred at a sub-
pixel and is only responsible for the colour of that subpixel.
Intuitively it seems like this would be very accurate as each
subpixel is exactly the brightness the centre of that subpixel
should be, however, it does not take the colour artefacts into
account at all. The second technique is to render an image at
triple the width and downscale it using the optimal filter de-
scribed by John C. Platt [3]. This filter takes the way people
perceive colour into account, and therefore should have less
noticeable colour fringing. Both of these techniques require
tracing three times more rays than a normal renderer for an
image of the same resolution. The third technique traces one
ray per pixel, but offsets this to be centred at a random sub-
pixel, rather than always being centred at the full pixel. Then
it combines neighbouring samples using the same filter as the
second technique.

We show that all these techniques outperform traditional
anti-aliasing, with the full filter being the best, followed by
the built-in filter with random offsets, which in turn is bet-
ter than the per-subpixel tracer. In terms of speed the full fil-
ter and per-subpixel pathtracer impose a massive performance
penalty as they require tracing three times as many rays. So
the built-in filter with random offsets provides a good balance
between a low error and a fast execution.

Related works
This paper relies heavily on John C. Platt’s paper ”Op-
timal Filtering for Patterned Displays” [3]. Which is
the basis of Microsoft’s ClearType. Here, the optimal
filter for downscaling an image to make use of subpixels
is described. It also introduces a simple error function
that is much easier to minimize than half-toning proce-
dures requiring error loops, as was done previously [4; 5;
6]. These older methods require the repeated evaluation in
a loop, whereas Platt’s method is a linear filter. We make
use of this error function to evaluate all methods. The filter
itself is also one of the evaluated techniques, and serves as
the basis for another.

For more detail around the human perception of colour
“Foundations of vision” by Brian A. Wandell was conducted.
Specifically, chapter 9 “color” [1] goes into human colour
perception as well as different ways of organising colours.
This includes an explanation of opponent colour space. In
opponent colour space we have a brightness, a red-green,
and a blue-yellow channel, rather than the red, green, and
blue channels mostly used by computers. This opponent
colour space closely resembles human perception of colour,
therefore it is useful to consider the error in this colourspace
with proper weighting of the channels.

While pathtracing research was consulted for the imple-
mentation, the details of the pathtracer are not relevant for
the novel subpixel-level logic.

2 Methodology
We will now describe the problem more precisely. After that
we will go into the methodology of the evaluation of the dif-
ferent techniques.

Anti-aliasing
When the pixels on a screen are large enough to make out in-
dividually, what should be smooth lines will appear as jagged
edges. This is known as aliasing, and anti-aliasing techniques
to mitigate this exist, but none that make use of subpixel-level
logic are used in pathtracers. Conventional anti-aliasing tech-
niques work by averaging many samples taken within one
pixel, that way the jagged edges become gradients and the
aliasing becomes less noticeable. This does not increase the
resolution of the display, while it is possible to effectively
triple the resolution of many LCDs.

By leveraging the fact that each pixel is made up of three
distinct subpixels, and that human vision is much more sen-
sitive to luminance than colour [1], we propose three meth-



ods that effectively triple the display resolution, at the cost of
slight colour fringing.

Evaluation
The techniques will be evaluated using the error function min-
imized by the optimal filter [3], this function compares the
image to a higher resolution image by first converting both
into opponent colourspace, which is how people perceive
colour [1], and then weighting it such that low-frequency
changes, and the brightness channel get weighted higher than
high-frequency changes, and red-green or blue-yellow chan-
nels. The goal is to minimize this error.

For the evaluation, we produce six images, three that are
made by the new techniques, one that uses conventional anti-
aliasing, one reference that does not use any subpixel-level
logic or anti-aliasing and is of the same size as the ones being
tested, and one that does not use any subpixel-level logic or
anti-aliasing and is three times the width. The extra wide
image is used in the error function to compare the techniques.

3 The techniques in detail
First, we develop a CPU pathtracer capable of rendering an
image. This will be adapted for the subpixel level rendering
techniques.

Per subpixel pathtracer
The first approach is to trace rays per subpixel, without doing
any sort of anti-aliasing. This is a relatively straightforward
procedure. At the start of the program, when initializing the
camera, the width is tripled. The field of view is not changed
so the same part of the scene is visible. This means that the
density of rays will triple. When writing the image (either
to screen or to disk) three neighbouring pixels are combined
into a single pixel, each contributing one colour to one sub-
pixel. Figure 1 illustrates how sending three rays per pixel can
achieve more detail. A more precise algorithm is outlined in
pseudocode below.

colours← pathtrace() ▷ pathtrace will return a 2D array
of colours; each colour is a vector of length three with the
RGB values.
for y ← 0 to height do

for x← 0 to outputWidth do
for c← 0 to 3 do

outColours[y][x][c]← colours[y][3x+ c][c]
end for

end for
end for

This way each subpixel is exactly the value that the centre of
that subpixel should be. However, this still leaves aliasing,
just at a smaller scale, and the colour fringing it introduces
is in no way measured against human perception, can we do
better?

Optimal filter
On top of the subpixel level pathtracer, we have also imple-
mented the optimal filter described in [3]. In that work they
have γkd as the starting image, with k as the position in pixels
and d as the colour channel, and αk as the output with k as

(a) The normal pathtracer sends one ray per pixel. This ray returns
white so all three subpixel turn on

(b) The per-subpixel pathtracer has three rays per pixel; The red
one misses while the green and blue both return white, so only the
green and blue subpixels turn on

Figure 1: An illustration of the per-subpixel pathtracer

the position in subpixels. They find the following objective
function:

2
∑
c,n,j

Wcn(αjMcj−
∑
d

Ccdγjd)Mck cos

(
2π(k − j)n

N

)
= 0

(1)
This can be rewritten as:

∑
c,n,j

WcnMcjMck cos

(
2π(k − j)n

N

)
αj =

∑
c,n,j

WcnMck cos

(
2π(k − j)n

N

)∑
d

Ccdγjd (2)

Here N is the width of the input image in pixels, Ccd is a 3x3
matrix that transforms γjd into opponent colour space, simi-
larly Mck is a 3xN matrix that does the same for αk. Wcn is a
low-pass weighting model that attributes more weight to low
frequency changes and the brightness channel, while attribut-
ing less weight to high frequency changes and the red-green
or blue-yellow channels. A precise definition of all identifiers
can be found in the original paper [3].
Applying a little algebra shows that (2) is equivalent to solv-



ing a linear system Ax = b with:

Akj =
∑
c,n

WcnMcjMck cos

(
2π(k − j)n

N

)
(3)

b′j,3k+d =
∑
c,n

WcnCcdMck cos

(
2π(k − j)n

N

)
(4)

γ′
3j+d = γjd (5)

b = b′γ′ (6)
Now γ′ is a flattened version of γ, and αk is the solution to
Ax = b′γ′, this can be rewritten as αk = A−1b′γ′. Applying
the filter is now just a single matrix vector multiplication, per
row.

The matrix (A−1b′) can be seen as 9 individual filters. Each
row is responsible for one subpixel in the output image. Row i
is responsible for a red subpixel iff i%3 = 0, a green subpixel
iff i%3 = 1 and a blue subpixel iff i%3 = 2. Since the
filter applied is the same everywhere, all rows responsible for
the same colour are identical, apart from being offset to be
centred at the correct subpixel. Each column of the matrix
corresponds to one input colour with column j being a weight
for a red subpixel of the input iff j%3 = 0 and green and blue
correspond to j%3 = 1 and j%3 = 2 respectively. Now the
9 filters can be extracted as follows:

RGB R←Matrix.row(0)
RGB G←Matrix.row(1)
RGB B ←Matrix.row(2)
for i← 0 to N do

R R[i]← RGB R[(3 ∗ i) + 0]
G R[i]← RGB R[(3 ∗ i) + 1]
B R[i]← RGB R[(3 ∗ i) + 2]
R G[i]← RGB G[(3 ∗ i) + 0]
B G[i]← RGB G[(3 ∗ i) + 1]
G G[i]← RGB G[(3 ∗ i) + 2]
R B[i]← RGB B[(3 ∗ i) + 0]
G B[i]← RGB B[(3 ∗ i) + 1]
B B[i]← RGB B[(3 ∗ i) + 2]

end for
Now R R is the filter from red to red, R G is from red to
green, etc. The filters can be seen in Figure 2. The reason to
extract these filters rather than keeping it as a matrix multi-
plication is to be able to compute the filter application in the
frequency domain, which is much faster. The matrix multi-
plication is equivalent to the following convolution:

y[n] =
∑
k

x[k]h[(k − n)%N ] (7)

Where y is the output, x is the input, h is the filter, and N is
the width. This is slightly different from a normal convolu-
tion, which works like so:

y[n] =
∑
k

x[k]h[(n− k)%N ] (8)

So in order to keep the frequency-domain filter application
equivalent as the matrix multiplication, we must first reverse
the filters, as well as circularly shifting them so that they are
centred on index 0. The following shows the computation of
the discrete Fourier transforms of all filters:

▷ Get the Discrete Fourier Transforms of the filters, this
has to be done once.
filters← [R R,G R,B R,R G,G G,B G,R B,
G B,B B]
for i← 0 to 9 do

current← filters[i]
current.shift(−(floor(i/3) + 1))
current.reverse()
filter dfts[i]← dft(current) ▷ dft() computes the

discrete Fourier transform
end for

Since the filters do not rely on the input image, only on the
width, these dfts can be stored and reused whenever the filters
are applied to a different image of the same width.
Below is the application of the filters assuming that all filter
dfts are precomputed.

▷ Applying the filters, this has to be done once for every
row in the image.
for i← 0 to N do

In Red[i]← In[3 ∗ i+ 0]
In Green[i]← In[3 ∗ i+ 1]
In Blue[i]← In[3 ∗ i+ 2]

end for
In Red dft← dft(In Red)
In Green dft← dft(In Green)
In Blue dft← dft(In Blue)
for i← 0 to N do

Out Red dft[i]← R R dft[i] ∗ In Red dft[i]
Out Red dft[i]+ = G R dft[i] ∗ In Green dft[i]
Out Red dft[i]+ = B R dft[i] ∗ In Blue dft[i]
Out Green dft[i]← R G dft[i] ∗ In Red dft[i]
Out Green dft[i]+ = G G dft[i] ∗ In Green dft[i]
Out Green dft[i]+ = B G dft[i] ∗ In Blue dft[i]
Out Blue dft[i]← R B dft[i] ∗ In Red dft[i]
Out Blue dft[i]+ = G B dft[i] ∗ In Green dft[i]
Out Blue dft[i]+ = B B dft[i] ∗ In Blue dft[i]

end for
▷ idft() computes the inverse discrete Fourier transform

Out Red← idft(Out Red dft)
Out Green← idft(Out Green dft)
Out Blue← idft(Out Blue dft)
RGB ← [Out Red,Out Green,Out Blue]
for i← 0 to N do

Out[i]← RGB[i%3][i]
end for

Built-in filter with random offsets
Lastly, an implementation of the filter within the pathtracer
was made. The idea behind this is that the subpixel level path-
tracer requires three times as many rays to be traced for the
same size image, and similarly the filter downsizes an image
by 3x horizontally, so it also needs an image to be rendered
at 3x the width for its output to be the same size. This means
that using either of these techniques will slow the pathtracer
down by a factor of 3 at least (before considering overhead).
But what if there were a way to get similar subpixel level pre-
cision while still only tracing one ray per pixel per frame? In
the next technique we sample one ray per pixel, but we ran-



Figure 2: The 9 filters, each offset vertically so they are visible over
each other. The vertical lines are the centers of the red, green, and
blue subpixels.

domly offset it so that it is centred at a random subpixel. Then
the final value of a subpixel is determined by combining the
horizontal neighbours proportional to the filter. We make use
of the previously computed filters, which can also be seen in
Figure 2.

As the filters are now applied with three times fewer sam-
ples (one per pixel rather than one per subpixel) the result
of filter application is multiplied by three to get the final re-
sult. Since for each pixel the subpixels which is sampled is
randomized each frame, it is expected that eventually all sub-
pixels are sampled a few times and a good image is produced.

In the pseudocode below filtSize is the size of one of the
filters, in our implementation we always used filters the size
of trice the width of the image (so the size of the image when
measured in subpixels) that way it is as similar as possible to
the full filter. Smaller filters can be used for a slightly higher
error, but faster computation.

filters← [R R,G R,B R,R G,G G,B G,R B,
G B,B B]
for y ← 0 to height do

for x← 0 to width do
for idx← 0 to width do

offset← rays[y ∗width+ idx].offset ▷ get
the subpixel that this ray was centred at, −1 means it was
centered at the red subpixel, 0 for green and +1 for blue

offset+ = 3(idx− x)
offset = (offset+ filtSize)%filtSize
for f ← 0 to 9 do

outColours[y][x][floor(f/3)]+ =
colours[y][idx][f%3] ∗ filters[f ][offset]

end for
end for
outColours[y][x][0]∗ = 3
outColours[y][x][1]∗ = 3
outColours[y][x][2]∗ = 3

end for
end for

(a) The full image, the red outlined part is shown below for all
methods

(b) No anti-aliasing at all (c) Standard anti-aliasing
without subpixel level logic

(d) One ray per subpixel
pathtracer

(e) Optimal filter on full wide
render

(f) Optimal filter in renderer
with random offsets

Figure 3: Zoomed in versions of the different techniques. (printing
introduces artefacts, best viewed on a screen rather than paper)



technique Scene 1 Scene 2 Scene 3 Scene 4
Control 270.021 1763.13 2124.14 2279.34
Conventional anti aliasing 250.24 1349.65 2033.83 1858.76
Per-subpixel pathtracer 230.811 1261.36 2004.73 1737.18
Full filter 190.538 857.625 1620.45 1199.39
built-in filter with random offsets 213.369 1048.99 1846.92 1393.57

Table 1: RMSe of all methods across 4 scenes

technique Scene 1 Scene 2 Scene 3 Scene 4
Control 105.952 103.766 105.465 103.137
Conventional anti aliasing 121.243 118.779 121.495 119.048
Per-subpixel pathtracer 312.947 312.111 321.859 316.299
Full filter 312.824* 311.408* 321.913* 315.107*
built-in filter with random offsets 149.241 146.728 150.084 147.32

Table 2: Time in ms for all methods across 4 scenes

4 Experimental Setup and Results

After the implementation of all techniques, they were tested
by each rendering several scenes for enough frames to con-
verge. These renders are then compared to a render 3x
wider using the error function from [3]. As this func-
tion returns an error per row of the image, the RMS of
the errors of all rows is taken to get one error value per
image per technique. The implementation was made in
c++. The pathtracer makes use of the tinyBVH library
(https://github.com/jbikker/tinybvh), and the filter and er-
ror rely on the Eigen library (https://eigen.tuxfamily.org/
index.php?title=Main Page) for the Fourier transform, and
linear algebra. The full implementation can be found
at https://gitlab.ewi.tudelft.nl/cjppeters/realistic rendering/-/
tree/Jan main?ref type=heads. All tests were run with
400x225px images on an AMD Ryzen 5 5600H. This reso-
lution was chosen because it is a large enough image to get a
pleasing image, while being small enough to allow rendering
for thousands of frames to eliminate noise. If too much noise
is present, the noise will play a large role in the error, so the
error would not be reflective of the quality of the subpixel-
level anti-aliasing.

A tool was developed to better visualise the renders, as
zooming in on the renders themselves will show pixels of the
same size but different colours, rather than showing the in-
creased fidelity achieved by the subpixel level logic. In Fig-
ure 3 the cropped output of this tool can be seen for all tech-
niques. Some qualitative information can be inferred from
these. Namely that while the optimal filter does minimize the
error, and looks really good on the edge, it also introduces
artefacts next to the edge. Some ghosting is visible next to
the edge, which should show the black background. This is
expected as we can see from the filters in Figure 2 that a sub-
pixel’s value is influenced by the value of pixels several pixels
over.

Quantitative results
The RMS error for every scene can be seen in Table 1. The
full filter consistently has the lowest error, followed by the
built-in filter with random offsets. In third place comes the
pathtracer that traces a ray for every subpixel, and conven-
tional anti-aliasing does a little better than doing nothing.

Performance was also measured as a secondary metric.
In Table 2 are the average times for generating a frame for
every scene and every technique.
For the full filter this is just the mean time of generating one
frame of the full-width image. Applying the filter took on
average 32.857ms. This is measured separately because the
filter only needs to be applied to the final accumulated frame.
The longer you let the renderer converge before applying the
filter, the smaller portion of the total time filter application
will be.

5 Discussion
It is not surprising that the full filter has the lowest error; it is
specifically designed to minimize the error, so was expected
to do well. What is notable is how much better the full filter
performs compared to the renderer which applies the filter to
randomly sampled subpixels. The difference can also be seen
in Figure 3, where applying the filter on the full-width image
leaves a lot more ghosting than applying it with random sub-
pixels. The randomness and having fewer samples mean that
the built-in filter with random offsets will have a larger error
than applying the filter once to a full-width image.

As expected, not doing any subpixel level logic or anti
aliasing performs worst, followed by normal anti aliasing
without considering subpixels. This shows that considering
subpixel level logic is indeed a improvement over existing
anti-aliasing rendering techniques. The simple subpixel level
pathtracer scored right in the middle, still a big improvement

https://github.com/jbikker/tinybvh
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://gitlab.ewi.tudelft.nl/cjppeters/realistic_rendering/-/tree/Jan_main?ref_type=heads
https://gitlab.ewi.tudelft.nl/cjppeters/realistic_rendering/-/tree/Jan_main?ref_type=heads


over doing nothing, or conventional anti-aliasing, but not as
good as the filter. This also makes a lot of sense, as it still
has aliasing, just at a smaller scale, and the colour artefacts it
produces are not controlled for by a weighting model like in
the filter.

When it comes to performance, it is no surprise that the
per-subpixel pathtracer and full filter application are approx-
imately three times slower than the control, while conven-
tional anti-aliasing and the built-in filter with random offsets
have less impact on performance. But they do both slow
the renderer down somewhat, a reason contributing to both
conventional anti-aliasing and the built-in filter with random
offsets is that for every frame for every pixel a new random
offset is chosen and therefore the full ray needs to be traced
again. In the methods without random offsets the rays from
the camera to the scene are computed once and reused if the
camera has not moved between frames (which it never does
in the tests). In the case of the built-in filter the filter appli-
cation itself is also responsible for some of the performance
decrease.

6 Conclusions and Future Work
Our work has shown that subpixel-level logic can vastly im-
prove the quality of pathtracers. For the best results, the opti-
mal filter from John. C. Platt [3] is used. But this introduces
a large performance penalty. A good balance between a low
error and a fast execution can be achieved by using the fil-
ter within a pathtracer which samples random subpixels. De-
pending on whether or not the pathtracer needs to work in
real-time, a developer can choose between these options.

Future work
In the future more research can be done in applying this logic
to other subpixel layouts. This paper focused entirely on the
striped RGB layout of most LCD displays, and this is easily
adapted to BGR, vRGB, or vBGR but some other layouts [7]
could prove more challenging. Layouts exist where not every
pixel has the same arrangement of subpixels, or even where
pixels share subpixels. Algorithms for these layouts would
create images that have to be shown in a specific place on
the screen, as moving it by a single pixel would mean an im-
age pixel computed for arrangement A is now displayed on a
physical pixel with arrangement B.

Another aspect future research can look into is doing user
studies to see to what extent people actually prefer the im-
ages with a lower error. It is entirely possible that the error
function shows large differences between images, while for
people looking at a screen the differences are hard to notice.
Finding this point of diminishing returns would be very valu-
able in considering which technique (if any) to implement.
After all; the target audience of any graphics application is
people, not any error function.

7 Responsible Research
Due to the nature of this paper the main concern regarding
responsible research pertains to reproducibility. As all novel
algorithms are described in the paper and the sourcecode

is available at https://gitlab.ewi.tudelft.nl/cjppeters/realistic
rendering/-/tree/Jan main?ref type=heads, the research is
highly reproducible. In picking scenes to test we made scenes
with a black background and a bright object to create high-
contrast areas, with a sharp division between black and bright
areas. The anti-aliasing that is essentially performed is more
useful in sharp lines than with gradients. In low-contrast sce-
narios there is not much aliasing present and therefore no
need for anti-aliasing techniques. This means that our results
will show a greater improvement over the baseline than the
average case. In low-contrast scenes the baseline of doing no
subpixel level logic or anti-aliasing will already have a small
error, so no technique can meaningfully improve on it.

References
[1] Brian A Wandell. Foundations of vision., chapter 9:

Color. Sinauer Associates, 1995.
[2] Microsoft. Microsoft cleartype overview. online arti-

cle, 2022. https://learn.microsoft.com/en-us/typography/
cleartype/.

[3] John.C. Platt. Optimal filtering for patterned displays.
IEEE Signal Processing Letters, 7(7):179–181, 2000.

[4] Bernd W. Kolpatzik and Charles A. Bouman. Optimized
error diffusion for high quality image display. 1992.

[5] Jeffrey Mulligan and Albert Ahumada. Principled
halftoning based on human vision models. 02 1970.

[6] David L. Neuhoff, Thrasyvoulos N. Pappas, and Nambi
Seshadri. One-dimensional least-squares model-based
halftoning. Journal of the Optical Society of America A:
Optics and Image Science, and Vision, 14(8):1707–1723,
August 1997.

[7] Agatha Mallet. Subpixel zoo: A catalog of subpixel ge-
ometry. online article. https://geometrian.com/resources/
subpixelzoo/.

https://gitlab.ewi.tudelft.nl/cjppeters/realistic_rendering/-/tree/Jan_main?ref_type=heads
https://gitlab.ewi.tudelft.nl/cjppeters/realistic_rendering/-/tree/Jan_main?ref_type=heads
https://learn.microsoft.com/en-us/typography/cleartype/
https://learn.microsoft.com/en-us/typography/cleartype/
https://geometrian.com/resources/subpixelzoo/
https://geometrian.com/resources/subpixelzoo/

	Introduction
	Methodology
	The techniques in detail
	Experimental Setup and Results
	Discussion
	Conclusions and Future Work
	Responsible Research

