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In fully developed single-phase turbulent flow in straight pipes, it is known that mean
motions can occur in the plane of the pipe cross-section, when the cross-section is
non-circular, or when the wall roughness is non-uniform around the circumference of
a circular pipe. This phenomenon is known as secondary flow of the second kind and
is associated with the anisotropy in the Reynolds stress tensor in the pipe cross-section.
In this work, we show, using careful laser Doppler anemometry experiments, that
secondary flow of the second kind can also be promoted by a non-uniform non-
axisymmetric particle-forcing, in a fully developed turbulent flow in a smooth circular
pipe. In order to isolate the particle-forcing from other phenomena, and to prevent
the occurrence of mean particle-forcing in the pipe cross-section, which could promote
a different type of secondary flow (secondary flow of the first kind), we consider a
simplified well-defined situation: a non-uniform distribution of particles, kept at fixed
positions in the ‘bottom’ part of the pipe, mimicking, in a way, the particle or droplet
distribution in horizontal pipe flows. Our results show that the particles modify the
turbulence through ‘direct’ effects (associated with the wake of the particles) and
‘indirect’ effects (associated with the global balance of momentum and the turbulence
dynamics). The resulting anisotropy in the Reynolds stress tensor is shown to promote
four secondary flow cells in the pipe cross-section. We show that the secondary flow
is determined by the projection of the Reynolds stress tensor onto the pipe cross-
section. In particular, we show that the direction of the secondary flow is dictated by
the gradients of the normal Reynolds stresses in the pipe cross-section, ∂τrr/∂r and
∂τθθ/∂θ . Finally, a scaling law is proposed, showing that the particle-driven secondary
flow scales with the root of the mean particle-forcing in the axial direction, allowing
us to estimate the magnitude of the secondary flow.
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1. Introduction
Even in the case of a fully developed single-phase turbulent flow in a straight

pipe, it is possible to have a mean motion in the plane of the pipe cross-section,
perpendicular to the mean primary flow direction (figure 1). This mean flow in
the cross-section, or ‘secondary flow’, occurs, for example, in pipes of non-circular
cross-section (Brundrett & Baines 1964; Hinze 1973; Speziale 1982; Demuren & Rodi
1984; Nagata et al. 2011) or in pipes of circular cross-section with a circumferential
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(a) (b)

FIGURE 1. Secondary flow in the cross-section of a square pipe (a) and in the cross-section
of a horizontal circular pipe roughened at the bottom (b).

variation in the wall roughness (Darling & McManus 1968; Hinze 1973; Van’t
Westende et al. 2007). Another case where secondary flow occurs is in variable-density
buoyancy-driven flows in inclined pipes of circular cross-section (Hallez & Magnaudet
2009). However, in this paper we consider only constant-density flows.

In fully developed flows in straight pipes, secondary flow is driven by turbulence. It
has been referred to as secondary flow of the second kind, in contrast to secondary
flow of the first kind, which is promoted by pressure gradients or buoyancy forces in
the pipe cross-section, as, for example, in curved pipes. Secondary flow of the second
kind has been debated for a long time in the literature, because it can have a large
impact on practical engineering applications (secondary flow increases the heat and
mass transfer) and especially because the explanation for its occurrence is complex. It
is generally admitted now that the occurrence of secondary flow of the second kind is
associated with the anisotropy in the Reynolds stress tensor in the pipe cross-section
(Speziale 1982). In the case of squared pipes, the anisotropy is due to the non-circular
geometry, whereas in the case of circular pipes with a non-uniform roughness it is
produced by the non-uniform boundary conditions. In the case of variable-density
buoyancy-driven flows in inclined circular pipes, the anisotropy is generated by the
shear induced by the stratification, which is along the vertical midplane and breaks the
axisymmetry in the pipe.

Secondary flows occur also in two-phase flows. For example, in gas–liquid
horizontal stratified pipe flow exists a secondary flow in the gas layer and in the
liquid layer (Liné, Masbernat & Soualmia 1994; Nordsveen 2001). The secondary flow
in the gas layer is a secondary flow of the second kind and it can be explained by
the non-uniform roughness and the non-circular geometry, similarly to single-phase
flow. The secondary flow in the liquid layer is, on the other hand, generated by the
interaction between the waves and the mean flow in the liquid layer.

Another example, and the one that originally motivated the current work, is
horizontal gas–liquid annular flow. In gas–liquid annular flow, the liquid is distributed
partly as a thin film along the wall and partly as droplets in the turbulent gas core.
In horizontal pipes, because of the gravity, the film is thicker and rougher in the
bottom than in the top of the cross-section. Furthermore, the concentration of droplets
is also higher in the bottom than in the top. This break of the axisymmetry induces a
secondary flow in the gas core. The occurrence of secondary flow has been a subject
of debate in the literature, because it is believed that secondary flow is one of the
mechanisms which can maintain the film in the top of the cross-section against gravity.
Indeed, the circumferential variation in the film thickness leads to a circumferential
variation in the interface roughness, which promotes a secondary flow in the gas core
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with a direction such that it exerts a drag on the film from the bottom to the top of the
cross-section (Flores, Crowe & Griffith 1995), as shown in figure 1(b). However, there
exists some experimental evidence that the secondary flow reverses direction when the
amount of droplets in the bottom part of the gas core becomes important (Dykhno,
Williams & Hanratty 1994). A satisfactory explanation has not been provided for this
observation. However, it suggests that the interaction between the droplets and the flow
in the gas core may induce a secondary flow. The study of this effect in horizontal
annular flow is complicated because of the interaction between the gas core and the
liquid film. Therefore, in this study we focus only on particle-driven secondary flow,
noting that small droplets have a behaviour similar to solid particles. This not only
eliminates the complexities associated with the presence of the liquid film but, also,
makes the study more general, and not just applicable to gas–liquid horizontal annular
flow.

It is known that in particle-laden flows the forcing of the flow by the particles can
lead to large changes in the turbulence (Li et al. 2001). Therefore, a non-uniform
particle distribution (for example, promoted by the gravity in horizontal pipe flow) can
promote a non-uniform modification of the turbulence and lead to an anisotropy in the
Reynolds stresses in the cross-section. Hence, a non-uniform particle distribution can
induce a secondary flow of the second kind (Belt 2007).

The modification of the turbulence by particles can be due to (i) the momentum
exchange between the particles and the fluid, acting locally around the particles; (ii)
the disruption in the turbulence dynamics promoted by the presence of the particles;
and (iii) the global changes in the mean axial velocity and shear-stress profiles that are
required to compensate for the drag of the particles (Squires & Eaton 1990; Boivin,
Simonin & Squires 1998; Li et al. 2001). The first mechanism is a ‘direct’ effect,
associated with the local distortion of the flow field around the particles, whereas
the other two mechanisms are ‘indirect’ effects, associated with the global turbulence
dynamics and the balance of momentum. For small particles, the local distortion of
the velocity field occurs at scales smaller than the turbulence and it does not interact
with the turbulence scales. However, through the forcing, the particles can promote
significant ‘indirect’ changes in the turbulence, and, if the particles are distributed
non-uniformly, an anisotropy in the Reynolds stresses in the cross-section, promoting a
secondary flow.

It is noted that this mechanism is different from the explanations given for particle-
driven secondary flows of the first kind. Indeed, a forcing in the pipe cross-section
due to the particles can also introduce a secondary flow. This forcing can be due, for
example, to gravitational and buoyancy forces, but it can also have subtle causes. For
instance, using Eulerian–Lagrangian simulations, Huber & Sommerfeld (1998) showed
the existence of a secondary flow due to the forcing of the particles in an uniformly
rough horizontal pipe. According to Huber and Sommerfeld, the roughness leads to
a larger bouncing angle of the particles, and therefore to a transfer of momentum
by the particles from the axial to the wall-normal direction, which translates into a
mean forcing in the pipe cross-section. Due to the non-uniform particle distribution
promoted by gravity, this mean forcing is larger in the bottom than in the top of the
cross-section, therefore inducing a secondary flow of the first kind. Such a secondary
flow is not caused by the anisotropy in the Reynolds stresses (Huber and Sommerfeld
used a k − ε turbulence model, which is isotropic and unable to predict a secondary
flow; Speziale 1982); it is directly linked to the effect of the pipe roughness on the
particle-bouncing, and, as shown by Huber and Sommerfeld, is absent in the case of
smooth walls.
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In an actual particle-laden turbulent flow, the fundamental understanding of the
physics is complicated by the complex interplay between different phenomena: the
dispersion of the particles by the flow, the forcing of the flow by the particles, inter-
particle collisions, and particle–wall collisions. Therefore, in this study we consider
a simplified well-defined situation: a non-uniform distribution of particles, kept at
fixed positions in the ‘bottom’ part of the pipe, mimicking, in a way, the droplet
distribution in the gas core of horizontal annular flow. The main objective of this study
is to provide experimental evidence that the forcing of the flow by a non-uniform
non-axisymmetric particle distribution, and the consequent turbulence modification,
can promote secondary flow of the second kind in a fully developed turbulent pipe
flow, and to understand the essential mechanisms associated with it. By keeping the
particles fixed, the dispersion of the particles by the flow, inter-particle collisions
and particle–wall collisions are eliminated, and the only phenomenon that remains is
the forcing of the flow by the particles. Furthermore, with fixed particles, the only
existing force in the cross-section is related to non-linear drag. However, as we will
show below through an order of magnitude analysis, this force in the cross-section
is much smaller than the drag in the streamwise direction, and since the changes
in the Reynolds stresses in the cross-section are, to first-order, proportional to the
streamwise forcing, the secondary flow is mainly driven by the non-uniform turbulence
modification; as such, it is a secondary flow of the second kind.

Note that, although we are using a highly idealized configuration, it can represent
to a certain extent some aspects present in real particle-laden flows, since the inelastic
particle–wall collisions or the particle collisions with a rough wall lead, in real
particle-laden flows, to a mean forcing of the flow in the axial direction. Note also
that the droplets in horizontal annular flow break from the waves on the liquid film
in the bottom, and are accelerated from roughly the wave velocity to the gas velocity;
therefore, they induce a mean axial forcing of the flow in the bottom part of the gas
core.

The rest of the paper is organized as follows. First, we briefly recall the theory
regarding the driving mechanisms for secondary flow in fully developed turbulent
flows in straight pipes. Then, we formulate the idealized problem and present the
experimental set-up used to measure the particle-driven secondary flow. After, we
present the results, focusing on (i) the relation between the occurrence of secondary
flow and the turbulence modification caused by the non-uniform mean particle-forcing;
and on (ii) a scaling law for particle-driven secondary flow.

2. Theory
In this section, we briefly recall the theory for the occurrence of secondary flow

in single-phase flow (explained by Speziale 1982), and provide an extension for the
case of particle-laden pipe flows. In particular, we clarify, in the presence of particle-
forcing, which terms of the equations are associated with secondary flow of the first
kind and which terms are associated with secondary flow of the second kind.

We consider a general situation consisting of a fully developed turbulent flow in a
straight pipe of arbitrary cross-section, in a statistically steady situation (figure 2). By
definition, the secondary flow is formed by the projection of the mean velocity field
onto the pipe cross-section. Therefore, it is convenient to decompose the mean velocity
field, U , into a component parallel to the pipe cross-section, V , and a streamwise
component, W :

U ≡ V +W ; V ≡ Vxex + Vyey; W ≡Wez. (2.1)
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FIGURE 2. Fully-developed turbulent flow in a straight pipe of arbitrary cross-section.

The field V is by definition the secondary flow. Since we are considering a fully
developed flow, V is determined by the averaged continuity and Navier–Stokes
equations in the cross-section of the pipe, i.e. V is determined by the following
two-dimensional equations:

∇ ·V = 0, (2.2)

and

ρ
DV
Dt
=−∇P̄+ µ∇2V +∇ · τ̃ , (2.3)

where ρ is the density, µ is the viscosity, ∇P̄ is the projection of the gradient
of the mean pressure onto the pipe cross-section, and τ̃ is the projection of the
Reynolds stress tensor onto the pipe cross-section. Note that these are two-dimensional
equations, and all vector and tensor operations/definitions are for a two-dimensional
field. From (2.3), it is clear that the driving mechanism for the secondary flow is the
divergence of τ̃ .

By applying the curl to (2.3), we obtain the transport equation for the vorticity of V ,
ω (since V is a two-dimensional field, ω is a scalar):

ρ
Dω
Dt
= µ∇2ω +∇ × (∇ · τ̃ ). (2.4)

The secondary flow velocity, V , can be obtained from the axial vorticity, ω, using the
generalized Helmholtz decomposition for an incompressible flow in two dimensions
(with the no-slip condition for V at the wall):

V (x1)= 1
2π

∫
A

r (x1, x2)

r2 (x1, x2)
× ω (x2) ez dA(x2), (2.5)

where A is the area of the cross-section, x1 and x2 are position vectors in the cross-
section, and r (x1, x2) is the distance vector between x1 and x2 (i.e. r (x1, x2)= x2 − x1).
From (2.4), it is clear that ∇ × (∇ · τ̃ ) is the source term for ω; therefore, it follows
that a necessary and sufficient condition for the existence of a secondary flow of the
second kind in single-phase pipe flow is

∇ × (∇ · τ̃ ) 6= 0. (2.6)

Above, we did not consider any forcing of the flow, for example, by particles. If a
forcing is added, then (2.3) and (2.4) become

ρ
DV
Dt
=−∇P̄+ µ∇2V +∇ · τ̃ +Φ, (2.7)
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and

ρ
Dω
Dt
= µ∇2ω +∇ × (∇ · τ̃ )+∇ ×Φ, (2.8)

where Φ is the projection of the average forcing per unit of volume, 〈F〉, onto the
pipe cross-section:

Φ ≡ 〈F〉 − F̄z ez; F̄z ≡ 〈F〉 · ez. (2.9)

In order to analyse the relation between the forcing and the existence of secondary
flow, it is convenient to decompose Φ into two parts: one independent of the
secondary flow, Φo, and one dependent of the secondary flow, Φv, i.e. we define

Φv ≡Φ −Φo; Φo ≡Φ(V = 0). (2.10)

From (2.7) and (2.8), it becomes clear that Φo and ∇ · τ̃ are the driving mechanisms
for the secondary flow, and the necessary and sufficient condition for the existence of
secondary flow in particle-laden pipe flows is

∇ × (∇ · τ̃ )+∇ ×Φo 6= 0. (2.11)

In turbulent flows, it is possible to have a large forcing with zero Φo. For example,
if the forcing is proportional to the fluid velocity, which would be the case for a fixed
distribution of particles with linear drag. If Φo is equal to zero, then condition (2.6)
remains the necessary and sufficient condition for the existence of secondary flow. In
the case of moving particles and/or non-linear drag, Φo is not necessarily equal to
zero, and it can, in principle, induce a secondary flow.

In single-phase flow, it is usual to make a distinction between secondary flow of the
first kind and secondary flow of the second kind. A similar distinction can be made
for particle-laden flows. A secondary flow driven by ∇ ×Φo in (2.11) corresponds to
a secondary flow of the first kind. A secondary flow driven by ∇ × (∇ · τ̃ ) in (2.11),
promoted in this case ‘indirectly’ by the non-uniform particle-forcing, corresponds to a
secondary flow of the second kind.

3. Problem formulation
We would like to show that non-uniformly distributed particles in a turbulent pipe

flow can generate a secondary flow of the second kind, through the non-uniform
turbulence modification the particles induce. To do so, we consider a very simple and
well-defined test case: a non-uniform distribution of particles kept at fixed positions.
The distribution of the fixed particles in the measurements is shown in figure 3. This
idealized configuration allows us to isolate the effects of the axial forcing on the
turbulence, in order to better understand how this forcing can promote a secondary
flow of the second kind. With fixed particles, the only mean forcing in the cross-
section is due to non-linear drag.

Indeed, the particle Reynolds number, Rep, is quite high because the particles have
a finite size and are kept at fixed positions in our experiments. Therefore, the particle-
forcing on the flow is non-linear. Due to the turbulence velocity fluctuations, the
non-linear drag force results in a component in the cross-section, even in the absence
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FIGURE 3. Coordinate system and distribution of the fixed particles.

of secondary flow. This component, Φo, is proportional to the Reynolds shear-stresses
uxuz and uyuz, in the x and y directions, respectively. However, the forcing in the
cross-section due to non-linear drag is small compared with the axial forcing:

Φo

|F̄z|
∼
(

u∇
uB

)2

, (3.1)

where uB is the bulk velocity, and u∇ is the friction velocity based on the mean
pressure-gradient in the axial direction, −∇P̄z:

u∇ ≡
(−∇P̄z

ρ

D

4

)0.5

. (3.2)

We show in the results that the divergence of the Reynolds-stress tensor in the
cross-section, ∇ · τ̃ , scales with the particle-forcing in the axial direction; therefore,

Φo

|∇ · τ̃ | ∼
(

u∇
uB

)2

. (3.3)

Since the bulk velocity is much larger than the friction velocity, the particle-forcing in
the cross-section due to non-linear drag, Φo, has a negligible effect when compared
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‘Low’ ‘High’

ReB in LDA experiments with fixed particles 5494 10 864
ReB in LDA experiments without particles 5600 9745
ReB in DNS/LES simulations without particles 5300 10 600
D 0.05 m 0.05 m
Dp 1 mm 1 mm
Lt 4.4 mm 4.1 mm
Lk 218 µm 135 µm
Dp/D 0.02 0.02
Lt/D 0.09 0.08
Dp/Lt 0.23 0.24
Dp/Lk 4.6 7.4

TABLE 1. Flow conditions at the ‘low’ and ‘high’ bulk Reynolds numbers. Note that the
turbulence length scales are estimated at the bulk Reynolds number of the simulations.

with the effect of the turbulence modification promoted by the axial forcing; hence,
secondary flow of the first kind is negligible.

The influence of the particle-forcing on the flow is studied by considering two
bulk Reynolds numbers, ReB ≈ 5300 and ReB ≈ 10 600, which we denote by ‘low’
and ‘high’ bulk Reynolds numbers, respectively. Single-phase pipe flow experiments
(without particles) are also performed at approximately the same bulk Reynolds
numbers, in order to provide comparison data for the flow with and without particles.
Furthermore, the single-phase pipe flow experiments (without particles) are compared
with results of direct numerical simulation (DNS) and large-eddy simulation (LES), at
approximately the same bulk Reynolds numbers (DNS for the ‘low’ bulk Reynolds
number and LES for the ‘large’ bulk Reynolds number). The bulk Reynolds numbers
are shown in table 1. The values for the laser Doppler anemometry (LDA) experiments
are based on the mean mass flow-rate and the kinematic viscosity at the mean
temperature of the experiments. The DNS and LES are performed at a friction
Reynolds number, Re∇, of 360 and 660, for the ‘low’ and ‘high’ bulk Reynolds
numbers, respectively. Details on the DNS and LES can be found in Eggels et al.
(1994) and Portela, Cota & Oliemans (2002).

The fixed particles are distributed more or less uniformly in the bottom part of the
pipe, as sketched in figure 3. The distance between two neighbour particles in the
axial direction is Lz

p = 0.1D, with D being the pipe diameter. In the cross-section, the
particles are distributed in three layers, at 0.1D, 0.2D and 0.3D from the pipe bottom.
The three layers have, respectively, four, five and six particles in the cross-section
plane. The distance between two neighbour particles in the cross-section plane is equal
to Lc

p = 0.132D.
The different length scales are summarized in table 1. In the table, Dp is the particle

diameter, Lt = k3/2/ε is the length scale representative of the large turbulence scales
and Lk is the Kolmogorov length scale. In the calculation of the turbulence length
scales, ε is the average turbulence dissipation and it is computed using the Blasius
friction relation. It is important to note that the particle diameter is smaller than Lt,
but that it is larger than the Kolmogorov length scale, Lk. Therefore, ‘direct’ effects of
the particles on the turbulence modification can be expected in the experiments.
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120D

40D

TB

FIGURE 4. Experimental set-up. At T , the temperature is measured. At B, the mass flow rate
can be measured with a balance.

4. LDA experiments
4.1. Experimental set-up

The present experiments are done in a closed circuit water loop (figure 4). The main
part of the loop consists of a vertical cylindrical pipe made of Perspex, with an inner
diameter of D = 0.05 m and a length of roughly 9 m. Smooth entrance conditions are
made by feeding the pipe of water through an overflow vessel. At the entrance of the
pipe, water passes through a flow straightener in order to suppress large swirl motions,
after which it is tripped by a trip ring. The measurement section is approximately 6 m
downstream of the entrance, leaving roughly 120D for the turbulent flow to develop.
After the measurement section, approximately 2 m (40D) are left in order to avoid
exit effects in the measurement section. At the exit of the pipe, the water flows back
into a large reservoir, from which it is pumped back to the overflow vessel. The mass
flow rate is measured at the exit of the pipe using a bucket and a balance. The water
temperature is measured at the exit of the pipe. During each measurement set (i.e.
one Reynolds number, with or without fixed particles), the temperature variation was
less than 2.5 ◦C; therefore, the variations in the water density, ρ, and viscosity, µ,
were negligible in each measurement set. The values of ρ and µ were obtained from
handbook tables, at the mean temperature in the measurement set, which allowed us to
get an accurate estimation of the actual Reynolds number.

The curvature of the pipe wall, together with the difference in refractive index
between water, Perspex, and air, leads to difficulties in the positioning and alignment
of the LDA measurement volume along the x- and y-axes in the vicinity of the
wall (see figure 3 for the definition of the coordinate system). To solve this, the
measurement section is made of a circular Perspex pipe with a thin wall of 1 mm
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(a) (b)

FIGURE 5. Photos of the particles on lines in the pipe. A view from the ‘bottom’ (along the
y-axis) (a). A view at an angle between the ‘bottom’ and the ‘side’ (b).

thickness and with an inner diameter of exactly D = 0.05 m. Furthermore, a squared
box filled with water is placed over the measurement section.

In the particle-driven secondary flow experiments, the actual distribution of the fixed
particles is shown in figure 5. To keep the particles at their fixed positions, the lead
particles of 1 mm diameter are put every 5 mm on a 0.1 mm line. The lines are
attached on bars traversing the pipe below the trip ring, and are put under stress at
the pipe exit through a tightening mechanism, in order to maintain them at the desired
position. The maximum stress that could be put on the lines was sufficient to avoid
vibrations of the lines at the relatively low Reynolds numbers used in this study;
however, it did not allow us to go to higher Reynolds numbers, otherwise vibrations
would be observed.

Below, in the explanation of the results, we refer, for simplicity, to the region where
y < 0 as the bottom part of the pipe, and to the region where y > 0 as the top part of
the pipe.

4.2. LDA set-up

Velocity measurements are made using a standard two-component backscatter LDA
TSI-system (4 W Spectra-Physics AR+ laser, TSI 9201 colourburst beam separator
and TSI 9203 colourlink downmixer). The output signal from the LDA system is
processed using a TSI IFA-750 processor. The length and width of the measurement
volume are roughly equal to 250 and 40 µm, respectively. When comparing these
values with the Kolmogorov length scales in table 1, it can be seen that the velocity
of the smallest scales in the flow can be measured. The velocity signal is measured
for 300 s at the measurement location, giving on average a set of samples larger than
3 × 104 values in both directions. For the tracer particles, we used TSI spherical glass
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hollow beads, with a diameter of 8–12 µm and a density close to the water density
(≈1.05–1.15× 103 kg m−3).

The velocity components measured with LDA are in the plane of the laser beams
pair, and normal to the bisector of the two laser beams. Since the secondary flow
velocity is at least one order of magnitude smaller than the axial velocity, the
alignment of the laser beams plane along the x-, y- and z-axes is crucial, in order
to avoid a ‘leakage’ from the axial velocity component to the cross-sectional velocity
components. The alignment procedure consists of three steps, which allowed us to
measure the secondary flow with a good accuracy, as shown in the results. The LDA
probe is aligned by (i) aligning the plane of the laser beam pairs with the plane of
their reflections, (ii) aligning the plane of the laser beams pair for the axial velocity
component with the pipe wall, and (iii) checking that symmetric velocity components
in the cross-section are very small on the symmetry axis.

The LDA probe is mounted on a traversing system in all directions, within an
accuracy of ±5 µm. However, the absolute positioning of the measurement volume in
the pipe is not known with LDA, since the exact position of the wall is unknown. A
first guess of the wall position is obtained by traversing and searching at zero fluid
flow for a signal with a high noise level due to reflections of a scattering particle
on/in the wall. Then, the wall position, on the x- and y-axes in the single-phase
flow experiments and on the x-axis in the particle-driven secondary flow experiments,
is corrected for by computing the symmetry axis in the profiles of the mean or
root-mean-square (r.m.s.) velocity, knowing the exact value of the pipe diameter.

LDA data are subject to a variety of bias errors (Absil 1995; Tummers 1999; Van
Maanen 1999). The results presented in this study are corrected for the largest sources
of bias errors: (i) velocity bias, (ii) multiple validation, and (iii) noise. Velocity bias
results from the larger probability to sample the velocity of a tracer particle moving
with a large velocity through the measurement volume. Therefore, statistical quantities
computed as arithmetic averages will be erroneous. The inter-arrival time weighting is
used to compensate for the velocity bias, which is valid, since the criterion Ṅ ≈ 10/λT ,
where Ṅ is the mean data rate and λT the Taylor time scale, is met (Tummers 1999).
The velocity bias correction of the data is found to be small (≈1.5 % on average, with
a maximum correction close to the wall in the order of ≈5 %). Multiple validation
occurs when the burst generated by one tracer particle is detected as generated by
more than one tracer particle (Van Maanen 1999). This is corrected for by introducing
a ‘dead time’ after the detection of a tracer particle in the post-processing. It is verified
that multiple validation has been removed by considering the Poisson distribution of
the inter-arrival time probability distribution. Also, the multiple validation correction is
found to be negligible (�1 %, except very close to the wall, `/ 0.8 mm, where it can
be in the order of ≈3 %).

Noise in the experiments can contribute to the value of the velocity variance, since
the variance of noise, n2, is not equal to zero:

(u+ n)2 = u2 + n2. (4.1)

In our LDA system, operating in backscatter mode, noise can account for
approximately 10–20 % of the variance; therefore, it must be removed in the post-
processing. It is assumed that noise is uncorrelated in time. Therefore, noise has
only a contribution to the time autocorrelation function at zero time lag, and
the autocorrelation function does not tend to unity in the limit of zero time lag.
An extrapolation of the fit of the autocorrelation function at zero time lag gives
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an estimate for the noise-free part of the velocity variance. Due to the irregular
distribution in time of the velocity samples, the autocorrelation coefficient is estimated
using a local normalization fuzzy slotting technique with local time estimation
(Tummers 1999; Van Maanen 1999; Benedict, Nobach & Tropea 2000; Nobach
2002; Harteveld 2005). We use the model-based fit of the autocorrelation coefficient
proposed by Nobach (2002):

Rk = ac exp(−bk)− ab exp(−ck), (4.2)

where Rk is the autocorrelation coefficient with lag k, and a, b, and c are the model
parameters to fit. The model-based fit is verified to be adequate, and has the advantage
of giving an estimate of the Taylor time scale: λT = (2/(bc))0.5. The expression for
the variance of the autocorrelation coefficients, as proposed by Tummers (1999), is
used as weighting function in the fit. Details on the procedure in the estimation of the
noise-free variance can be found in Daalmans (2005).

The Reynolds shear stresses are measured by applying a simultaneity criterion
(through a coincidence window) on the time signal during post-processing. The
coincidence window is set to 200 and 350 µs, for the ‘high’ and ‘low’ Reynolds
numbers, respectively, which is smaller than the mean inter-arrival time and larger than
the mean transit time. Finally, the samples in the data set with a velocity larger/smaller
than the mean velocity ±5 times the standard deviation are considered as outliers and
are rejected. This correction did not influence much the statistical quantities (<1 %).
Other possible sources of bias errors are insignificant in our measurement set-up and
are not corrected for.

5. Results of single-phase turbulent pipe flow (without particles)
To ensure that we can measure with a reasonable accuracy the secondary flow

velocity and the Reynolds stresses in the cross-section, we compare in this section
reference measurements of single-phase turbulent pipe flow (without particles) with
DNS/LES at roughly the same Reynolds numbers. The actual bulk Reynolds numbers
are given in table 1. Although the values of the bulk Reynolds numbers are slightly
different in the LDA experiments and DNS/LES, we do not expect significant
differences in the turbulence properties when they are normalized with the friction
velocity, u∇.

As explained above, the centre of the pipe and the wall position are determined by
determining the symmetry axis in the profiles. Since the measured profiles are very
symmetric, we present in the results the average of the two halves of the profiles. The
results shown for the single-phase turbulent pipe flow are normalized by the friction
velocity, u∇. In the experiments, u∇ is determined from the mass flow rate obtained
from the LDA results and the Blasius relation.

The mean axial velocity profile is shown in figure 6. The experimental and
numerical results coincide very well all over the pipe, except very close to the wall
(for ` / 0.8 mm from the wall). The flow rate obtained by integration of the mean
axial velocity profile gives an error of roughly −2.5 %, when compared with the flow
rate measured with a balance.

The profiles of the experimentally measured radial and tangential mean velocities,
normalized with the local axial velocity, are shown in figure 7. The radial and
tangential velocities are very small compared with the local axial velocity, except
very close to the wall. Over a large part of the pipe cross-section, the ratio of the
cross-sectional velocity to the axial velocity is smaller than 0.2 %, which is one
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FIGURE 6. Mean axial velocity as a function of the distance to the wall (in wall units), for
the single-phase pipe flow experiments at the ‘low’ and ‘high’ bulk Reynolds numbers. The
symbols correspond to the experimental results (closed and open symbols for the ‘low’ and
‘high’ bulk Reynolds numbers, respectively), and the lines correspond to the simulation results
(solid and dashed lines for the ‘low’ and ‘high’ bulk Reynolds numbers, respectively).
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FIGURE 7. Cross-sectional velocities (in percentage of the mean local axial-velocity), as a
function of the pipe radius, for the single-phase pipe flow experiments. The closed and open
symbols correspond to the ‘low’ and ‘high’ bulk Reynolds numbers, respectively. The squares
and circles correspond to the mean tangential and radial velocities, respectively.

order of magnitude smaller than the expected secondary flow velocity promoted by
the particle-forcing. However, very close to the wall (i.e. for the first or second
measurement points from the wall), the mean axial velocity is also small, and the
error can be larger. In figure 7, these points are outside of the figure, and are not
shown for readability reasons. Consequently, the particle-driven secondary flow can be
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FIGURE 8. Velocity fluctuations (in wall units), as a function of the distance to the wall,
for the single-phase pipe flow at the ‘low’ (a) and ‘high’ (b) bulk Reynolds numbers. The
symbols correspond to the experiments (the squares, circles and triangles correspond to the
tangential, radial and axial velocity fluctuations, respectively) and the lines to the simulations
(DNS for the ‘low’ and LES for the ‘high’ bulk Reynolds number).

measured within a good accuracy in the major part of the cross-section. Furthermore,
the ratio of the cross-sectional velocity to the axial velocity is constant (except for the
radial one at the ‘low’ bulk Reynolds number), indicating that it is caused by a small
misalignment of the measurement volume, in the order of 0.1◦.

The profiles of the turbulence velocity fluctuations are shown in figure 8. The
velocity fluctuations in the experiments and simulations are in good agreement,
especially in the central region; the difference being less than 5 %. The cross-sectional
velocity fluctuations are more difficult to measure accurately close to the wall, where,
however, the trend and the order of magnitude is still correctly measured. Hence, with
the present results, we show that we can measure accurately the changes in the cross-
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FIGURE 9. Reynolds, viscous and total shear-stresses (in wall units), as a function of the
radial position, for the single-phase pipe flow at the ‘low’ (a) and ‘high’ (b) bulk Reynolds
numbers. The symbols correspond to the experiments (the circles, squares and triangles
correspond to the total shear stress, τ T

rz, Reynolds shear stress, τ R
rz, and viscous shear stress, τ V

rz ,
respectively) and the lines to the simulations (DNS for the ‘low’ and LES for the ‘high’ bulk
Reynolds number).

sectional velocity fluctuations due to particle-forcing, when the changes, compared
with single-phase pipe flow, are larger than roughly 7 % (≈√25 %) of the velocity
fluctuations.

The profiles of the viscous, Reynolds and total shear stresses are shown in figure 9.
Again, the agreement between experiments and simulations is good in the centre of
the pipe. The total stress is linear over all of the pipe, except close to the wall (for
r/D ' 0.4), where the discrepancy can be explained by non-overlapping measurement
volumes due to refraction at the curved wall. It can be observed that the slope of the
total shear stress is close to 2. This means that the normalization of the shear stresses
by the friction velocity squared, u2

∇, computed from the Blasius relation with the bulk
velocity, uB, obtained from the LDA measurements, is correctly predicted.
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FIGURE 10. Vector field of the secondary flow velocity for the ‘low’ (a) and ‘high’ (b) bulk
Reynolds numbers. The normalization of the vectors is the same in both figures. Note that the
missing vectors in the bottom part of the pipe are due to the blockage of the laser beams by
the fixed particles.

6. Particle-driven secondary flow
6.1. Secondary flow velocity

The particle-driven secondary flow measurements are shown in this section. They
are performed at roughly the same bulk Reynolds number as in the reference
measurements of single-phase turbulent pipe flow (without particles) presented in the
preceding section. The actual bulk Reynolds numbers are given in table 1.

The velocity vector field in the cross-section is shown in figure 10. We do
observe the occurrence of particle-driven secondary flow in figure 10, for the two
bulk Reynolds numbers. The secondary flow consists of (i) two large cells in the
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pipe bottom, which are perfectly symmetric with respect to the y-axis and of large
amplitude; and (ii) two elongated cells in the top of the cross-section, which are
symmetric with respect to the y-axis and of small amplitude. The two large cells in
the bottom flow downward along the wall and upward on the y-axis, whereas the
elongated cells in the top flow in the opposite direction, i.e. upward along the wall.
The presence of at least two secondary flow cells is explained by symmetry, since the
mean circumferential velocity must be zero on the y-axis, which is the symmetry axis
of the experimental set-up. Furthermore, we observe that the secondary flow pattern
is exactly the same at the ‘low’ and ‘high’ bulk Reynolds numbers, but the velocity
differs in amplitude. We can note that the direction of the two large cells in the bottom
is the same as that reported by Dykhno et al. (1994) in horizontal gas–liquid annular
flow when droplets are ejected from the liquid film.

The norm of the secondary flow velocity is shown in figure 11. We can see that
the magnitude of the secondary flow velocity is significant, with a maximum amplitude
up to 9 % of the bulk velocity, uB. Furthermore, we can see that the differences in
the norm of the secondary flow velocity between the ‘low’ and ‘high’ bulk Reynolds
numbers are small, when normalized with the bulk velocity, uB. This suggests that the
particle-driven secondary flow scales roughly with ReαB, with α in the order of one.
Such a scaling has also been suggested for secondary flow in non-circular pipes, where
it seems to scale with Re∇ (Brundrett & Baines 1964; Launder & Ying 1972), which,
in turn, scales globally with ReαB. The least-squares proportionality constant between
the secondary flow velocities at the ‘low’ and ‘high’ bulk Reynolds numbers is equal
to roughly 1.51, which corresponds to a value of α equal to 0.59. In § 7, we show that
the measured proportionality constant of 1.51 is close to that obtained from a scaling
law based on dimensional analysis.

The white contours in figure 11 correspond to values of the norm of the secondary
flow velocity lower than 0.5 % of the bulk velocity, which is an estimation of the
measurement error in the cross-sectional velocities in the case of the measurements
with particles (see the discussion below). The fact that a large part of the vectors in
figure 10 are larger than the measurement error confirms that we have four secondary
flow cells in the cross-section.

In fully developed flow, the net transport of mass by secondary flow through the x-
and y-axes must be equal to zero. We show in figures 12 and 13 the profiles of the
secondary flow velocity components in the y and x directions along the x- and y-axes,
respectively. Therefore, ideally, the net integral of the curves in figures 12 and 13 must
be equal to zero. We can see that, indeed, the net integral is small. Normalized with
the transport of mass by the mean axial flow on the same x- or y-axis, the net transport
of mass by secondary flow is less than 0.5 %, which gives an estimation of the
measurement error. This measurement error is slightly larger than in single-phase flow
(without particles). In single-phase flow, we verified the alignment a priori (by also
checking that the measured velocity in the cross-section was very small), which could
not be done for the measurements with particle-driven secondary flow. Moreover, in
figure 13, the secondary flow component Vx must be small, since the y-axis is an axis
of symmetry, if the fixed particles are perfectly positioned. It can be seen that, indeed,
Vx on the y-axis is much smaller than the maximum secondary flow velocity that was
measured. Therefore, below, we will use the y-axis as a true axis of symmetry.

6.2. Mean axial velocity and Reynolds shear stress
The contours of the mean axial velocity are shown in figure 14. They show that the
mean axial velocity has a good symmetry with respect to the y-axis, and that the
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FIGURE 11. Norm of the secondary flow velocity for the ‘low’ (a) and ‘high’ (b) bulk
Reynolds numbers, made dimensionless with the bulk velocity, uB. Note that in the bottom-
right part of the cross-section (x > 0 and y 6 −0.01 m) the grid in the measurements is quite
large, due to the blockage of the laser beams by the fixed particles; therefore, the contours in
the bottom-right part of the cross-section are rough.

particle-forcing produces a large shift of the maximum velocity toward the top of the
cross-section. This shift in the mean axial velocity is in the same direction as that of
the secondary flow velocity on the y-axis in the bottom part of the cross-section.

In the case of pipe flows with no internal forcing and uniform boundary conditions,
such as in pipes of non-circular cross-section, the shift in the mean axial velocity
gives the secondary flow direction. For instance, in a square pipe, it has been
observed that the iso-velocity lines are displaced toward the corners, which can
be explained with a simple balance of momentum in the axial direction. Due to
secondary flow, there is a net flow of momentum toward the corner, which needs
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with the bulk velocity, uB, for the ‘low’ (closed symbols) and ‘high’ (open symbols) bulk
Reynolds numbers.

to be balanced by an increase of the shear stress along the bisector line, which,
in turn, leads to an increase in the mean axial velocity in the corner. However, in
the case of internal forcing and/or non-uniform boundary conditions, the secondary
flow direction cannot be inferred directly from the shift in the mean axial velocity.
The internal forcing and/or non-uniform boundary conditions introduce changes in the
momentum balance in the axial direction, which are not related to the occurrence
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FIGURE 14. Contours of the mean axial velocity, normalized with the bulk velocity, uB, for
the ‘low’ (a) and ‘high’ (b) bulk Reynolds numbers.

of secondary flow, and which also lead to a modification of the mean axial velocity
pattern.

In the absence of secondary flow, or for a negligible flow of axial momentum due to
secondary flow, the balance of axial momentum on the y-axis gives

0=−∇P̄z + F̄z +
∂τ T

yz

∂y
, (6.1)

where −∇P̄z is the mean pressure gradient in the axial direction, F̄z is the mean
axial forcing (F̄z < 0 in our case), and τ T

yz is the total shear stress. We consider the
case of an internal forcing far from the wall in the bottom part of the cross-section,
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as in our experiments. In fully developed flow, the mean pressure gradient in the
axial direction is constant over the cross-section, therefore, the mean axial forcing
must be compensated by a decrease in the total shear-stress gradient, which, far from
the wall, is mostly equal to the Reynolds shear-stress gradient. Consequently, for the
non-uniform forcing, the Reynolds shear-stress gradient is lower in the bottom part,
when compared with the top part of the cross-section.

For a forcing far from the wall (in the outer layer), the turbulence dynamics close
to the wall (in the inner layer) remains unaffected. This corresponds to Townsend’s
Reynolds number similarity hypothesis (Townsend 1976), except that the forcing in our
case is in the outer layer, instead of in the inner layer as in the case of roughness.
Therefore, the turbulence close to the wall behaves irrespective of the forcing far from
the wall, with the only constraint being to match the Reynolds shear-stress gradient
far from the wall. Consequently, for the non-uniform forcing, the total shear-stress
gradient close to the bottom wall is lower than close to the top wall. Close to the
wall, the viscous shear stress contributes most of the total shear stress. Hence, for the
non-uniform forcing, the mean axial velocity is lower in the bottom of the pipe. This
is verified by the contours in figure 14. Below, this mechanism is referred to as the
‘blockage’ effect.

Figure 14 shows a large distortion of the mean axial velocity field. In the next
section, we see that this has a large impact on the production of turbulence kinetic
energy (TKE). Close to the wall, the gradient of the mean axial velocity in the
radial direction is decreased in the bottom part, when compared with the top part
of the cross-section. Farther from the wall, the gradient of the mean axial velocity
in the radial direction becomes larger in the bottom part than in the top part of
the cross-section, due to the shift of the mean axial velocity profile toward the top.
Figure 14 also shows the occurrence of gradients of the mean axial velocity in the
circumferential direction, in the bottom part of the cross-section.

The contours of the Reynolds shear stress, −ρ uruz, are shown in figure 15. It is
computed from

uruz = uxuz cos θ + uyuz sin θ, (6.2)

where uxuz and uyuz are the measured cross-correlations. Figure 15 shows that the
pattern of −ρ uruz, normalized by ρu2

B, is very similar for the ‘low’ and ‘high’ bulk
Reynolds numbers. It also shows that, in the top part of the cross-section, the pattern
of the Reynolds shear-stress is similar to that in single-phase flow (without particles),
with a local maximum close to the wall. In the bottom part, close to the wall,
according to the explanation given above on the ‘blockage’ effect, the Reynolds shear
stress is decreased. However, above the particle-forcing region (−0.01 m / y / 0), the
Reynolds shear stress is significantly increased, and it is larger than, for example, the
Reynolds shear stress close to the wall in the top of the cross-section. This increase
in the Reynolds shear stress can be explained by the ‘direct’ effects of the particle-
forcing. Since the particle Reynolds number, Rep, in our experiments is quite high, a
wake can develop downstream of the particles, which can increase the turbulence in
the particle region.

With the measured patterns of the Reynolds shear stress and the mean axial velocity,
we can investigate the effect of the particle-forcing on the production of TKE and the
turbulence velocity fluctuations in the cross-section.
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B, for the ‘low’ (a) and ‘high’ (b) bulk Reynolds numbers.

6.3. Turbulence kinetic energy
The changes promoted by the particle-forcing in the axial momentum balance lead to
changes in the production of turbulence from the mean flow. The production of TKE,
Pk, in Cartesian coordinates is given by

Pk =−uxuz
∂Uz

∂x
− uyuz

∂Uz

∂y
− uxux

∂Ux

∂x
− uyuy

∂Uy

∂y
− uxuy

(
∂Ux

∂y
+ ∂Uy

∂x

)
. (6.3)

The production of TKE is shown in figure 16. It is computed using the measured
Reynolds stresses and mean velocity gradients in the Cartesian coordinate system. In
the computation, we assumed that the fifth and sixth terms of (6.3) are negligible,
when compared with the third and fourth terms. We show in the Appendix that this



Experimental study of particle-driven secondary flow in turbulent pipe flows 23

x (m)

y 
(m

)
y 

(m
)

(a)

(b)

–0.02 –0.01 0 0.01 0.02

–0.02

–0.01

0

0.01

0.02

–0.02

–0.01

0

0.01

0.02

–0.02 –0.01 0 0.01 0.02

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

FIGURE 16. Contours of the production of TKE, Pk, normalized by u3
B/D, for the ‘low’ (a)

and ‘high’ (b) bulk Reynolds numbers. We note that, for the ‘high’ bulk Reynolds number,
the small production of TKE in the top of the cross-section (for −0.01 / x / 0.01 m and
0.02 / y 6 0.025 m) is probably a measurement error and a consequence of the determination
of the velocity gradients in a Cartesian coordinate system close to the wall.

assumption is likely to be correct, since uxuy predicted by a simple eddy-viscosity
model is an order of magnitude smaller than uxux and uyuy. This assumption was
necessary, since uxuy cannot be measured with our LDA system. Note also that the
spatial resolution in the cross-section is limited. Therefore, the calculation of the
velocity gradients close to the wall is imprecise, and the contours of the production of
TKE only provide a qualitative picture of the actual values close to the wall.

In figure 16, the low production of TKE in the bottom part of the cross-section
close to the wall is explained by the decrease of the Reynolds shear-stress and the
mean axial velocity gradients due to the ‘blockage’ effect. The large production of



24 R. J. Belt, A. C. L. M. Daalmans and L. M. Portela

TKE in the top part of the cross-section close to the wall results from shear, similarly
to single-phase turbulent pipe flows (without particles). The high production of TKE
around the fixed particles is due to the non-negligible mean axial velocity gradient and
the large Reynolds shear stress, which is probably caused by ‘direct’ effects in the
particle region.

It has been verified in the calculation of Pk that the secondary flow has only a
small contribution. This can be understood by considering the terms of (6.3). Globally,
uxuz, uyuz, uxux and uyuy are all of the same order of magnitude, and scale as u2

∇.
Consequently, the ratio of the third and fourth terms with respect to the first and
second terms is globally the ratio of the secondary flow velocity to the mean axial
velocity. Except very close to the wall, this ratio is roughly the ratio of the secondary
flow velocity to the bulk velocity, i.e. in the order of a few percent. Hence, the
production of TKE is mostly determined by the first and second terms in (6.3).

In figure 17, we show the TKE. In single-phase turbulent pipe flow (without
particles), the pattern of the TKE resembles that of the production of TKE. It is
also the case in the particle-driven secondary flow experiments: the pattern of TKE
shows a local maximum close to the wall in the top part of the cross-section, which is
not occurring in the bottom part, due to the ‘blockage’ effect, and a large value in and
above the particle region, which can be due to ‘direct’ particle effects.

6.4. Reynolds stresses in the cross-section
As shown in § 2, the secondary flow results from the divergence of the Reynolds
stresses in the cross-section and the mean pressure gradient in the cross-section. The
pressure field has not been measured in the experiments; however, it is a reactive force
to the irrotational part of ∇ · τ̃ . Therefore, it should be possible to infer the direction
of secondary flow from the gradients of the Reynolds stresses in the cross-section.

In cylindrical coordinates, the divergence of the Reynolds stress tensor in the cross-
section, in the er and eθ directions, is given, respectively, by

(∇ · τ̃ )r =
∂τrr

∂r
+ 1

r

∂τrθ

∂θ
+ τrr − τθθ

r
, (6.4)

and

(∇ · τ̃ )θ =
1
r

∂τθθ

∂θ
+ ∂τrθ

∂r
+ 2τrθ

r
, (6.5)

where

τθθ =−ρ uθuθ ; τrr =−ρ urur; τrθ =−ρ uruθ . (6.6)

The contours of the radial Reynolds stress, τrr, and of the circumferential Reynolds
stress, τθθ , are shown in figure 18 for the ‘low’ bulk Reynolds number. Those for the
‘high’ bulk Reynolds number are shown in figure 19. The normal Reynolds stresses
τrr and τθθ are obtained from the measured normal Reynolds stresses τxx and τyy,
with the assumption that the Cartesian-coordinates Reynolds shear stress in the cross-
section, τxy, is negligible compared with τxx and τyy. Justification for the assumption of
negligible τxy is given in the Appendix.

The Reynolds stresses in the cross-section are generated by redistribution of the
axial turbulence into the cross-sectional directions. The changes promoted by the
particle-forcing on the axial Reynolds stress are large, consequently small changes in
the redistribution mechanism due to the particle-forcing (Li et al. 2001) are likely to
play a minor role on the patterns of the Reynolds stresses in the cross-section, which,
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FIGURE 17. Contours of the TKE normalized with the bulk velocity squared, u2
B, for the

‘low’ (a) and ‘high’ (b) bulk Reynolds numbers. We note that, for the ‘low’ bulk Reynolds
number, the two large values at x ≈ 0.02 m and y≈±0.003 m (grid points denoted by +) are
probably measurement errors.

therefore, are expected to be similar to the patterns of the axial Reynolds stress. Hence,
the patterns of the Reynolds stresses in the cross-section are expected to be similar
to the patterns of the TKE. From figures 17, 18 and 19 we can see that, indeed, this
is the case. For example, inside and close to the particle-forcing region, the Reynolds
stresses in the cross-section τrr and τθθ have a maximum, similar to the maximum
in TKE. However, we also note differences. For example, the local maximum in τrr

and τθθ close to the wall, in the top part of the cross-section, is not very pronounced,
especially for the ‘low’ bulk Reynolds number and for the radial Reynolds stress.

In the Appendix, we show that the cylindrical-coordinates Reynolds shear stress
in the cross-section, τrθ , is much smaller than the cylindrical-coordinates normal
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FIGURE 18. Contours of the radial Reynolds stress −ρurur (a) and of the circumferential
Reynolds stress −ρuθuθ (b), normalized with ρu2

B, for the ‘low’ bulk Reynolds number.
We note that the two large peaks at x ≈ 0.02 m and y ≈ ±0.003 m in the contours of the
circumferential Reynolds stress (grid points denoted by +) are probably measurement errors.

Reynolds stresses in the cross-section, τrr and τθθ , and that the patterns of τrθ do not
show strong gradients. Apparently, the particle-forcing does not have a large impact
on τrθ , since in single-phase turbulent pipe flow (without particles) τrθ is exactly equal
to zero. We note that this is different from square pipes, where the gradients of the
Reynolds shear-stress in the cross-section play a major role in the determination of the
secondary flow (Demuren & Rodi 1984). Therefore, in our experiments, the radial and
circumferential components of ∇ · τ̃ are mainly determined by the Reynolds stresses
τrr and τθθ . Furthermore, figure 20 shows that the radial component, (∇ · τ̃ )r, is mainly
determined by the gradient of τrr with respect to the radial direction, since in (6.4) the
term (τθθ − τrr) /r represents at most ≈20 % of the term ∂τrr/∂r.
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FIGURE 19. Contours of the radial Reynolds stress −ρurur (a) and of the circumferential
Reynolds stress −ρuθuθ (b), normalized with ρu2

B, for the ‘large’ bulk Reynolds number.

Due to the symmetry with respect to the y-axis, there exist at least two secondary
flow cells. Due to this symmetry, we only need to consider in the left-hand side of the
cross-section (i) the gradient of τrr with respect to r and (ii) the gradient of τθθ with
respect to θ , to predict the secondary flow direction. This reasoning needs to be made
for only one bulk Reynolds number, since the patterns of the Reynolds stresses τrr and
τθθ are very similar for the two bulk Reynolds numbers.

Figures 18 and 19 show that, close to the wall, the gradient of the circumferential
Reynolds stress with respect to θ pushes the flow (i) in the eθ direction for θ between
π/2 and ≈3π/4, and strongly in that direction for θ between ≈7π/6 and 3π/2; and (ii)
in the −eθ direction for θ between ≈3π/4 and ≈7π/6 (see the arrows in figure 19).
The comparison with the secondary flow fields in figure 10 shows that, indeed, we
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FIGURE 20. Contours of the term (τθθ − τrr)/r compared with the term ∂τrr/∂r (in % and
in absolute value), in the driving force in the radial direction, (∇ · τ̃ )r, for the ‘low’ (a) and
‘high’ (b) bulk Reynolds numbers. Note that the values measured at the grid points denoted by
+ are not accounted for in the contours, since these values are abnormally high (mainly due to
the division by r close to r = 0).

have a strong secondary flow velocity close to the wall for θ between ≈7π/6 and
3π/2, and in the same direction as (∇ · τ̃ )θ between these angles. The elongated cell
of small amplitude in the top part of the cross-section flows in the same direction as
that of the driving force in the circumferential direction, (∇ · τ̃ )θ , for θ between 3π/4
and ≈7π/6, but in the opposite direction for θ between π/2 and 3π/4.

Figures 18 and 19 also show that the gradient of the radial Reynolds stress with
respect to the radial direction pushes the flow mostly in the er direction, except in
a small region in the top of the cross-section, between the local minimum close to
the wall and the local maximum in τrr, where the flow is weakly pushed in the
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−er direction (see the arrows in figure 19). The driving force in the radial direction,
(∇ · τ̃ )r, is strongest close to the wall at θ ≈ 7π/6, where it is in the er direction.
The secondary flow velocity fields in figure 10 show that, indeed, close to the wall at
θ ≈ 7π/6, the two cells in the left-hand side flow in the er direction.

The secondary flow results from the integral of ∇ · τ̃ in the cross-section. For the
large cell in the left-hand side of the bottom part of the cross-section, the integration
of (∇ · τ̃ )θ at a small distance `, from the wall, for θ from ≈7π/6 to 3π/2, is equal
to τθθ (θ = 3π/2) − τθθ (θ ≈ 7π/6), i.e. it leads to a positive contribution in the eθ
direction, which is also the direction of the secondary flow cell. The integration of
(∇ · τ̃ )r from the centre to `, at θ ≈ 7π/6, and back to the centre from that same
distance `, at θ = 3π/2, is equal to τrr (θ ≈ 7π/6)− τrr (θ = 3π/2), and it is a negative
contribution, in the opposite direction of the secondary flow cell. However, similarly to
single-phase flow, close to the wall τrr is smaller in amplitude than τθθ , which is due
to the no-flux condition through the wall for the radial velocity. This fact can also be
seen by comparing the contours of τrr and τθθ , in figures 18 and 19. Therefore, the
contribution in the circumferential direction is larger than that in the radial direction,
and it imposes the direction of the secondary flow. A similar reasoning can be made
for the elongated cell in the left-hand side of the top part of the cross-section, except
that, in this case, the direction is mainly imposed by the radial Reynolds stress, when
performing the integration of ∇ · τ̃ .

7. Scaling of the particle-driven secondary flow with the mean axial forcing
The occurrence of secondary flow is an inertial effect. Integrating the Reynolds-

averaged Navier–Stokes equations in the cross-section between two regions, one with
and one without particle-forcing, and neglecting the influence of the viscous forces, we
get

ρ1 |V |2 ∼1τ̃, (7.1)

where 1 |V |2 is the difference in the secondary flow velocity squared, between the
region with and the region without particle-forcing, and 1τ̃ is the difference in
the normal Reynolds stresses in the cross-section, between the same regions. The
secondary flow velocity, |V |, will be largest where the gradients in τ̃ are strongest, and
far from large gradients the secondary flow velocity will be small; therefore, 1 |V |2
will be roughly equal to the square of the maximum secondary flow velocity itself.
Consequently, we have

ρ |V |2 ∼1τ̃ . (7.2)

Hence, the prediction of the maximum secondary flow velocity requires the prediction
of the Reynolds stresses in the cross-section. In the region far from the particle-forcing,
the Reynolds stresses in the cross-section globally scale with the friction velocity
squared, u2

∇, based on the mean pressure-gradient in the axial direction. Hence, we
have

τ̃N ∼ ρu2
∇, (7.3)

where τ̃N are the Reynolds stresses in the cross-section far from the particle-forcing
region.

Because of the ‘blockage’ effect, the Reynolds stresses in the cross-section close to
the particle-forcing region scale globally with the effective pressure gradient, which is
the sum of the mean axial pressure gradient and the mean axial forcing. Hence, for the
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Reynolds stresses in the cross-section close to the particle-forcing region, τ̃F, we have

τ̃F ∼ ρu2
∇ +

F̄z

4/D
, (7.4)

with F̄z < 0.
From the difference between τN and τF, we obtain the scaling law for the maximum

secondary flow velocity, given by

ρ |V |2 ∼ |F̄z|
4/D

. (7.5)

We note here that the ‘direct’ effects promoted by the particle-forcing will probably
also scale with the mean axial forcing, giving the same result as in (7.5).

To derive a scaling, we assume that, at each fixed particle, the mean axial velocity is
equal to the bulk velocity uB. Then, the forcing, |F̄z|, can be written as

|F̄z| ∼ Np
1
2
ρu2

B

πD2
p

4
CD, (7.6)

where Np is the number particle density (Np ≈ 1.5 × 106 particles per cubic metre, in
our experiments) and CD is the drag coefficient, based here on the bulk velocity, uB.
Replacing (7.6) in (7.5), we obtain the scaling( |V |

uB

)2

∼ π
32

Np D2
p D CD. (7.7)

This scaling indicates that the ratio between the secondary flow velocity and the bulk
velocity is proportional to the number particle density and that it is constant at very
high Reynolds numbers, since in that case the drag coefficient would be a constant.
Unfortunately, it was not possible to verify this, because of the limited range in the
bulk Reynolds number and the constant number of fixed particles in our experimental
set-up.

In the conditions of our experiments, the particle Reynolds numbers are equal to
110 and 217, at the ‘low’ and ‘high’ bulk Reynolds numbers, respectively. For such
particle Reynolds numbers, CD can be expressed by the standard drag relation:

CD = 24
Rep

(
1+ 0.15Re0.687

p

)
. (7.8)

Consequently, the scaling law of the secondary flow velocity in our experimental
set-up is ( |V |

uB

)2

∼ 3π
4

Np Dp D2 1
ReB

(
1+ 0.15

(
Dp/D

)0.687
Re0.687

B

)
. (7.9)

Our experiments show a good scaling of the secondary flow with the bulk Reynolds
number; see figure 10. An increase of the bulk Reynolds number by a factor 1.98 led
to an increase of the secondary flow velocity by a factor 1.51. The scaling law in
(7.9) predicts an increase of 1.72 in the secondary flow velocity, which is reasonably
close to our experimental value of 1.51. Due to the low bulk Reynolds numbers in
the experiments, it is possible that viscous effects cannot be neglected, which could be
one explanation for the small overestimation. More measurements at larger Reynolds
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numbers would be useful: to check whether this is related, or not, to a Reynolds
number effect, and also to verify the scaling (since the results above are based on only
two Reynolds numbers). However, such measurements are not feasible in our set-up,
because the lines on which the particles are fixed start to vibrate at larger Reynolds
numbers.

We also note that a proportionality constant of 1 in (7.9) (i.e. ∼ replaced by =)
would lead to a secondary flow velocity of 8.9 % and 7.6 % of the bulk velocity, for
the ‘low’ and ‘high’ bulk Reynolds numbers, respectively. These values are close to
the measured values of the maximum secondary flow velocity; see figure 11. This
indicates that the approximations made in (7.1)–(7.9) are reasonable and that the
proportionality constant is effectively close to 1 in (7.9).

8. Conclusion
In the literature, it is known that secondary flow occurs in single-phase turbulent

flows in (i) pipes of non-circular cross-section and/or (ii) in pipes with non-uniform
boundary conditions, and that it is driven by the anisotropy in the Reynolds stresses
in the cross-section. In this work, we show that a non-uniform internal forcing,
for example the forcing on the flow by particles distributed non-uniformly in the
cross-section, can also promote a secondary flow. Indeed, in a turbulent pipe flow,
particle-forcing can promote changes in the turbulence, which, in the case of non-
uniformly distributed particles, results in an anisotropy in the Reynolds stresses in the
cross-section, which promotes secondary flow. Here, we provide experimental support
for the occurrence of particle-driven secondary flow in a fully developed turbulent pipe
flow of circular cross-section.

Laser Doppler anemometry experiments were performed to measure the secondary
flow velocity field promoted by a non-uniform distribution of particles. A well-
defined situation, in which the particles are kept at fixed positions in the pipe, was
chosen, in order to study the relation between the occurrence of secondary flow and
the turbulence modification. Using this configuration, other mechanisms that could
promote secondary flow (for example, a forcing in the cross-section) or obscure the
relation between secondary flow and turbulence modification (for example, particle
dispersion) are avoided. Our measurements show the occurrence of a particle-driven
secondary flow, which consists of four cells for our particle distribution, with the
required symmetry with respect to the symmetry axis, and which is of relatively large
magnitude (up to 9 % of the bulk velocity).

Particle-forcing in the axial direction can promote a turbulence modification due
to (i) ‘direct’ effects, which are associated with the local distortion of the flow field
around the particles; and (ii) ‘indirect’ effects, which are associated with the changes
the particles promote in the balance of momentum and in the global turbulence
dynamics. The measurements showed the occurrence of both the ‘indirect’ and ‘direct’
turbulence modification. Due to the balance of axial momentum, the drag force has
a ‘blockage’ effect, which reduces the mean axial velocity and the Reynolds shear
stress in the part of the pipe where the particles are located, which, in turn, reduces
the production of turbulence and the turbulence itself. However, in the proximity of
the particles, ‘direct’ or ‘wake’ effects are observed, which results in an increase of
the turbulence around the particles. ‘Wake’ effects could be observed due to the large
particle Reynolds numbers in the experiments.

The measurements showed that the divergence of the Reynolds stress tensor in the
cross-section can be used to predict the direction of the secondary flow. It appears
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that the gradients of the radial and circumferential Reynolds stresses, in the radial and
circumferential directions, respectively, are the dominant terms in the divergence of the
Reynolds stress tensor in the cross-section; and that they determine the secondary flow
pattern.

The experiments show a good scaling of the secondary flow velocity with the
bulk Reynolds number. Based on the ‘blockage’ mechanism, a scaling law has been
proposed, in which the secondary flow velocity scales with the root of the mean
particle-forcing (which is a function of the bulk Reynolds number). This scaling law
reproduces reasonably well the scaling observed in the experiments. Furthermore, the
scaling law also predicts correctly the magnitude of the secondary flow. However, due
to the limitations in our experimental set-up, we did not perform a full validation for a
larger range of Reynolds numbers.
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Appendix
In this appendix, we show that neglecting the Reynolds shear stress in the cross-

section is justified.
The cross-correlation uxuy cannot be measured with our LDA set-up. However,

τxy = −ρuxuy intervenes in the calculation of the cylindrical-coordinates components
of the Reynolds stress tensor in the cross-section (τrr, τθθ and τrθ ) from its Cartesian-
coordinates components (τxx, τyy and τxy). Since τxy cannot be measured, only the
measured normal Reynolds stresses τxx and τyy, are taken into account in our
calculations. Here, we compute τxy from an eddy-viscosity model, using the measured
LDA data, and show that neglecting τxy is justified.

The grid resolution in our experiments is too small to compute accurately τxy from
a Reynolds stress model. Furthermore, a Reynolds stress model is complicated by the
low Reynolds numbers at which the experiments are performed, and at which local
equilibrium cannot be assumed. Therefore, we use the simple explicit eddy-viscosity
model, which usually performs quite well for the Reynolds shear stress in a pipe:

uxuy =−νt

(
∂Ux

∂y
+ ∂Uy

∂x

)
, (A 1)

where νt is the eddy viscosity, which could be computed from, for example, a mixing-
length model. However, due to the low Reynolds number, an accurate model for
the eddy viscosity cannot be easily specified; instead, we calculate its value using
the above expression for the axial Reynolds shear stresses τxz and τyz, which are
measured. Both τxz and τyz gave a similar value of the eddy viscosity. It is checked
that this approach gives also a good estimate of τxy in the DNS of Belt (2007), except
very close to a zero gradient in the mean axial velocity, which does not exactly
correspond to a zero axial Reynolds shear stress (due to convection by secondary
flow), and, therefore, gives abnormally high values of the eddy viscosity. However, in
our experiments, the grid resolution is too low to obtain exactly a zero gradient in the
mean axial velocity, and the approach does not give rise to erroneous values of the
eddy viscosity.

The predicted Cartesian-coordinates Reynolds shear stress in the cross-section, τxy,
is shown in figure 21. The magnitude of τxy is, indeed, much smaller than that of τxx
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FIGURE 21. Contours of the predicted Cartesian-coordinates Reynolds shear-stress in the
cross-section, τxy, normalized with ρu2

B, for the ‘low’ (a) and ‘high’ (b) bulk Reynolds
numbers.

and τyy, meaning that the Reynolds stresses, τrr and τθθ are correctly predicted from τxx

and τyy when τxy is neglected.
The cylindrical-coordinates Reynolds shear stress in the cross-section, τrθ = −ρuruθ ,

and its gradients with respect to r and θ appear in the divergence of the Reynolds
stress tensor in the cross-section ((6.4) and (6.5)). However, since τrθ is strongly
related to τxy, we do not take into account τrθ and its gradients in the evaluation of
(∇ · τ̃ )r and (∇ · τ̃ )θ .

Indeed, the cross-correlation uruθ is given by

uruθ = uxuy (2cos2θ − 1)+ cos θ sin θ(uyuy − uxux). (A 2)
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Therefore, τrθ has two parts: (i) a part associated with τxy (the first term in (A 2)); and
(ii) a part associated with the difference between τyy and τxx (the second term in (A 2)).
The second part can be obtained from the measured values of τxx and τyy, and is shown
in figure 22; its magnitude is much smaller than the magnitude of τxx and τyy, and,
globally, is of the same order of the magnitude of the first part of τrθ (obtained from
the predicted values τxy).

From figures 21 and 22, is clear that τrθ is an order of magnitude smaller than the
radial and circumferential Reynolds stresses, and that it does not have strong gradients.
This confirms that the effect of τrθ on the divergence of the Reynolds stress tensor in
the cross-section is small. It is checked that in the DNS of Belt (2007) τrθ was also
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very small, and much smaller than τrr and τθθ . Apparently, the particle-forcing does
not have an impact on τrθ , since in single-phase turbulent pipe flow (without particles)
τrθ is exactly equal to zero.

From the results presented here, is clear that the influence of τxy and τrθ on the
secondary flow is small and that, indeed, is justified to neglect the Reynolds shear
stress in the cross-section.
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