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SUMMARY 
 

Nowadays, the main goal of  Energy World Council (2016) is to provide an affordable and stable energy system 

for the highest benefit of  all people. These goals could be achieved by using the Information and 

Communication Technology (ICT). The continuous digitalization of  energy sector with the implementation of  

ICT technologies in Smart Grid and also the use of  smart devices such as smart meter, which are interconnected 

by Internet, result to both advantages and disadvantages.  By using the new technologies the functional efficiency 

of  the Smart Grid is increased but at the same time leads to a more vulnerable system and makes the Smart Grid 

a potential target for cyber-attacks. In fact, cyber-attacks are becoming one of  the most serious threats in critical 

infrastructures. More than 80% of  energy companies dealt with a growth in the incidents of  successful cyber-

attacks in 2015 (Herring, 2016). These facts show the importance of  investigating the impacts caused by cyber-

attacks on the system, and the need for a systematic way to assess it. Here it is essential to highlight that 

investigating the impacts in design phase of  the system, could result in a more secure system against cyber-

attacks. 

 

In order to gain insights into the degree of  influence of  cyber-attacks regarding the energy prices and the power 

demand, the research objective of  this thesis is to shed light on the impact of  two types of  cyber-attacks, 

targeting the signals along the communication link, on the normal behavior of  the system and their indirect 

influence on the behavior of  consumers and utilities, when a price based Demand Response (DR) program is 

used. This research is important in order to deal with the increasing growth of  cyber-attack incidents in smart 

grid. The approach that is followed to investigate the research problem consists of  several parts.  

 

The research methodology is as follows. At the beginning, Smart Grid as a system and the DR programs that are 

implemented on it are described in details. Later, as critical infrastructure, Smart Grid‘s security objectives that 

should be retained secure and not violated from cyber-attacks are elaborated to see the most crucial that should 

be taken into account in this thesis. Based on the gained knowledge of  this part, a classification of  the attacks 

based on the most important objectives takes place. The results show that availability is one of  the main 

objectives, as it is vital for the consumers and utilities to have available up-to-date information without delays. At 

the same time, it is essential to ensure the integrity of  data regarding the energy consumption and the prices that 

are transferred through the system. Next, by combining the impact assessment model published by Federal 

Information Processing Standards (2004) and the failures scenarios of  NESCOR (2015), the possible impact of  

cyber-attacks is defined in a more conceptual and qualitative way.  

 

In the next part, agent-based simulation is used to model the communication between utility and consumers 

regarding the Demand Response program (Real Time Pricing mechanism (RTP) in particular) as well as the 

intrusion of  an attacker into the communication. The inputs of  the model include standard energy demand 

patterns per household type, attack type, duration of  attack, number of  consumers and number of  affected 

consumers. In order to simulate the RTP mechanism into the system, a distributed algorithm, that finds the 

optimal energy consumption for the consumers, the optimal price values that the utility server communicates 

and the optimal generating capacity for the utility server, is used. Default consumer profiles are generated based 



7 

 

on synthetic profiles and the annual energy demand by household type. Attacks are modeled based on attack 

type, duration and time of  occurrence, disrupting the stable state of  the RTP mechanism. The emergent 

behavior from the hourly interaction between utility and consumers and also the interference of  the attacks serve 

as an illustration of  the implications of  cyber-attacks on the DR program.  

 

Finally, the insights from the literature but also the findings from a set of  well-designed experiments are 

combined in order to understand the implications of  cyber-attacks in the priced based program of  DR. Results 

from the thesis conclude that a man-in-the-middle (MITM) attack can have severe impact on the price signal. 

Consumers receive false price signals from the utility and their decisions are based on wrong information. This 

leads to an increase of  energy consumption for the affected consumers during the peak hour as well as the 

decrease of  energy consumption for non-affected consumers that react to the higher prices. Additionally, a 

Denial of  Service (DoS) attacks results to no transmitted price on the system. Even though, there is no apparent 

solution when no price signals are available, the model is constructed based on the mitigation solution where the 

consumers are able to use the previous received price and schedule their demand based on that. This choice is 

taken in order to retain a value that is closer to the subsequent not transmitted signals. Because the price is 

updated in hourly basis the attack has low impact if  it has small duration or it does not take place during high 

peak hour. 

 

Moreover, during the development of  the model, rational decision-making process is followed for behavior of  

the consumers, which means that they make choices that maximize their benefits and minimize any cost for 

them. Thus, any other incentives for the consumers are not taken into account in this research. One main 

suggestion for further research could be to extend our model in order to give to consumers more incentives 

except from the cost, which can influence their energy consumption, such as the use of  eco-friendly appliances, 

which will contribute not only to the reduction of  their bills but also, to protection of  the environment. This 

could be implemented by adding additional component in the model (i.e. smart appliances) which will influence 

the total amount of  demand and the load will be better defined. Finally, the contribution of  this thesis could be 

useful for designing mechanisms on how to protect the system from the data manipulation (man-in the middle 

attack) and the availability of  DR resources (DoS attack) in communication network. 
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1 INTRODUCTION 

In the first part of this chapter, the research problem in the subject area Smart Grid cyber security is introduced. 

The research gap is presented, based on a thorough literature review. In the second, part of the introduction, 

research objective, research questions and methodology are formulated. 

1.1 Smart Grid Cyber security – Research problem 

A Smart Grid comprises of an automated, decentralized network characterized by two-way flows of electricity 

and information. The system is aimed at optimizing the balance of supply and demand in real-time by the use of 

advanced technology capable of measuring, controlling, monitoring and delivering (electrical) energy. Even 

though Smart Grids are an improvement compared to the traditional electric grid, it is also a more vulnerable 

system(Wang & Lu, 2013). Cyber-security threats pose a significant and growing challenge, because Smart Grids 

depend fundamentally on Information and Communication Technology (ICT) infrastructures, (Sgouras, Birda, & 

Labridis, 2014). In Smart Grids, several vulnerabilities exist, which could lead to undesired situations up to 

complete system failures. These vulnerabilities include but are not limited to: 

(1) Access to sensitive personal and business information collected from smart meters and other smart gird 

devices (Clements & Kirkham, 2010; Pearson, 2011) 

(2) Hazardous cyber-attacks  on critical system components through entry points of artificial intelligent 

components of Smart Grids (Pearson, 2011),  

(3) Exploitation of vulnerabilities of communications among components of control system for data spoofing 

(manipulation) (Clements & Kirkham, 2010),  

(4) Internet Protocol (IP) spoofing on internet-enabled devices and the use of Denial of Service (DoS) attacks, 

where the objective is to overload target with massive volume of traffic to take them down (Ghansah, 2009), 

(5) Cyber-attacks that physically damage critical infrastructure (Clements & Kirkham, 2010).  

It is of outmost importance to tackle these security issues and secure the reliability, availability and integrity of 

Smart Grids, since it is a critical infrastructure and a possible failure in the system may have negative effects for 

the society.  
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1.1.1 Security concerns 

Since the communication between components of Smart Grids is based on ICT (Figure 1), Smart Grids are 

inevitably vulnerable to cyber threats. A Demand Response (DR) system under attack is illustrated in Figure 2. 

An adversary agent performs a Denial-of-Service (DoS) attack on the server, making it unavailable to further 

request processing. It is also possible for the adversary to attack the communications between meters and server. 

These attacks impact the energy prices and demand load of the system, since the server is incapable of updating 

properly the customers with the changes of the energy price. Figure 3 indicates the hypothesized influence of an 

attack on load curves in a high peak period of a day. Since the meters are not aware of any price updates, users 

do not receive information to reduce their energy demand during high peak periods, and the load may shift 

towards that point. 

 

 
 

 

 

 

 

 

 

 

Figure 2 Illustration of  Demand response system under attack. A. DoS attack on the server. 
Multiple smart meters are affected by the attacker and send superfluous requests to the server resulting 
in its unavailability. B. Attack in the communication link between server and smart meter. This may 

lead to the manipulation of  the transferred data. 

Figure 1 Information flow in the smart grid. Smart meters send metering data to MDMS and receive DR 
signals (Bhatt et al., 2014). 
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The focus of this thesis is on the information that the customer receives about the energy prices, for cases in 

which dynamic pricing programs are in place. Because the pricing information is transferred electronically and 

many participants have access to this information the integrity of the pricing signal should be maintained  and 

protected from illegal manipulation of adversaries (Wang & Lu, 2013). Further, DR functions should assure 

information integrity and availability (California Energy Commission, 2014; Wang & Lu, 2013) since attacks can 

also result in manipulation of the information with various implications for both customers and utilities, and for 

the outcome of DR (Wang & Lu, 2013). 

Therefore, it is essential to investigate how cyber threats can reflect on Demand Response functionality and 

change its outcomes. Figure 4 shows a bow-tie diagram. Hazardous events, e.g. DoS attacks, which are triggered 

by adversary agents, can modify and affect the energy prices and load curves. The Smart Grid should be capable 

to prevent an attack by using specific control measures. Moreover, if an attack happens, the system should 

quickly recover in order to minimize its impact. 

Figure 4 Bow-tie diagram for a potential Denial of  service (DoS) attack. 

Figure 3 A load curve shift when the DR is under attack (own illustration) 
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1.1.2 Research gap 

Plenty of studies have focused on the basic behavior of the consumers and utilities in the DR. Douw et al. (2016) 

constructed an Agent Based Model (ABM) to examine how different price scenarios influence consumers‘ 

behavior. More specifically, the authors modeled both individuals‘ and social behavior to investigate the 

incentives that lead to better electricity consumption choices. In a master of science thesis, (Mahalingam, 2013) 

investigated how the different DR price-based policies could maximize the benefits for the consumers and the 

system in the context of the day-ahead electricity markets, specifically in the Netherlands. These studies found 

that the activation of DR pricing-based mechanisms affect the basic behavior of consumers and utilities in a 

good manner (Mahalingam, 2013). Most of the literature focused only on how the end-users/consumers could 

benefit by the DR pricing programs combining the technical network (electricity model) and the social network 

(behavioral model of ―friends‖) (Worm, Langley, & Becker, 2015). However, none of these approaches has taken 

into consideration how an adversarial agent will affect and may change the outcomes of DR. Therefore, there is a 

need to extend existing models with an adversary agent in order to investigate what could happen if an attacker 

modified the pricing signals transmitted to a set of smart meters, and to investigate how this attack would affect 

the DR energy prices and the power demand. This research gap is made explicit below. 

 

Research gap: Even though the available literature to some extent analyzed the DR pricing mechanisms as an 

important factor that influences consumers‘ energy consumption, it does not give any insights on how different 

types of cyber-attacks can influence indirectly the consumers‘ behavior and the price signals sent to the non-

compromised devices. 

 

1.2 Research definition 

In the following section, the identified research gap is translated into a clear and specific research design. First, 

the research objective is described. Second, the main research question and sub-questions are proposed to 

accomplish this research objective. Third, the research methods are specified. Finally, the scientific and practical 

contribution of this research is made explicit, and the structure of this document is laid out.  

1.2.1 Research Object and Scope 

Given the information described above, the main research objective of this project is to investigate how and in 

what scale different types of cyber-attacks reflect on the outcomes of DR regarding the energy prices and the 

power demand and how the consumers‘ and utilities‘ behaviors are influenced.  

Because existing research addressing this particular aim is rather limited, the scope of this research is exploratory. 

First, a baseline scenario without attack is analyzed, then several scenarios of the system under attack are 

investigated and the impact of cyber-attacks on the DR is assessed by comparing the model outcomes.  
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1.2.2 Research question 

The main research question for this research was formulated as follows: 

“What are the implications of integrity and availability cyber-attacks to price signal on DR programs and subsequently how does this 

affect the power demand in the Smart Grid?” 

To answer this research question, the following three sub-questions are formulated and each of them involves 

several research steps. 

1. “What is the effect of different types of cyber-attacks in the received price signal of the Real Time pricing (RTP) program?” 

DOS attacks: 

The effect of a DoS attack on the price signal is indirect. The target of a DoS attack is the server, which 

becomes unavailable during the attack. This unavailability leads to disruption of the resource access and 

violation of the timing requirements of critical message exchange. An attack during off-peak hours may 

result in delay of information exchange between consumers and server (mild impact). However, during 

peak hours a DoS attack may result into corruption of the system (severe impact), since the main 

objective of DR system on peak hours is to ensure the reliability of Smart Grid operation by signaling 

higher prices to consumers, in order to reduce their electricity consumption. If the consumers are not 

informed about the price changes during a critical time, then the system may exceed its limit and be 

corrupted. 

 

Man in the middle attack:  

One of the aims of this type of attack is to modify critical information. More specifically, the attacker 

gains access to information being exchanged and then manipulate pricing information transferred from 

the server to the consumers. 

2. “What is the impact of cyber attacks on consumers‟ energy consumption during peak hours when using the RTP program?” 

During peak hours, the energy consumption is higher than other periods of the day. So, the consumers 

benefit by using DR programs and specifically RTP. By receiving a new price several times throughout 

the day (e.g. every hour) they are able to alter their consumption. This may affect the reduction of the 

energy consumption in peak hours. In case of cyber attack incident, as above-mentioned the consumers 

are not correctly informed about the new prices to change their energy consumption to off-peak hours. 

This may lead to higher electricity bills and extra costs. 

 

3. “How do different magnitudes of an integrity attack affect the received price and the power demand?” 

Man-in-the-middle attack may affect a fraction of households in the Smart Grid. Different scales of such 

attacks may have different effect on the price signal as well as the energy consumption not only for the 

affected households but also for the non-affected directly by the attack. 

 

1.2.3 Research methodology 

In this research two main methods are applied in order to answer the research question and the sub questions 

and to gain insights to fill the research gap. The research methods that used to answer the aforementioned 
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research question and its sub-questions are explained in this section. The Figure 5 presents a flowchart of  this 

research. Then, table 1 depicts the research methods used for answering each research sub-question.  

 

 

Figure 5 Flowchart of  thesis' structure 

First, two systematic literature reviews were conducted in this study that were aligned with the scope of  the 

research. The first review was aimed to improve the researcher‘s understanding of  the problem situation and to 

enable the selection of  the method to develop the model. After that, the second review formed the basis for 

selecting the specific types of  cyber-attacks to be used in the model and studying how the DR programs may be 

affected by the attack on theoretical level. The literature for both reviews was retrieved by means of  systematic 

searches of  keywords in the engine Scopus and Google Scholar, such as Smart Grid, demand response, cyber 

security, cyber attacks, communication technologies, etc.. 

 

The second method that was used in order to answer the research question of  this thesis was the development 

of  an Agent Based Model (ABM). A definition for the ABM is the following: ―Situate an initial population of  

autonomous heterogeneous agents in a relevant spatial environment; allow them to interact according to simple local rules, and thereby 

generate – or „grow‟ – the macroscopic regularity from the bottom up.” (Epstein & Seely, 2006). This method of  

computational modeling was chosen to explore different system behavior and scenarios in an iterative process. 

The main limitation regarding the simulation model is that because most of  the data regarding DR programs and 
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the potential cyber-attacks and their consequences are private. So, we made some assumptions, which did not 

influence the validity of  the simulation model. 

 

Why Agent Based model? 

Seven aspects that make ABM unique according to Lättilä, Hilletofth, & Lin (2010): 

1. It studies individual agents and therefore, system heterogeneity 

2. Its unit of  analysis are agents‘ rules  

3. Its central mechanism is emergent behavior 

4. Its main components are agents, rules and interactions  

5. System structure can change during the simulation run 

6. It aims for exploratory analysis 

7. AB models can handle both discrete and continuous time, the latter at the cost of  high demand for 

computational capacity 

 

Sub-questions 
Literature 

review 

Simulation 

model 

What is the effect of  different kinds of  cyber-attacks in the 

received price signal of  the RTP program? 
  

What is the impact of  cyber attacks on consumers‘ energy 

consumption during peak hours when using the RTP 

program? 

  

How different scales of  an integrity attack affect the received 

price and the power demand? 
  

Table 1 List of  the research sub-questions that are answered using one or more research methods. Apparently, ticks indicate which 

method answers the questions. 
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1.2.4 Scientific and practical contribution 

The scientific contribution of this thesis is that we explore and analyze the behavior of DR program of Smart 

Grid infrastructure under certain conditions. More specifically, we analyze the impact of cyber-attack on DR. We 

focus on the communication of price signals and energy consumption in DR programs. Several cyber-attack 

scenarios on DR take place in order to analyze their impact on the outcome of DR and the other entities of the 

system. For the analysis of the behavior of the several entities, we design an Agent Based Model (ABM). This 

model is based on a baseline scenario with normal operating conditions. Adversary agents are carefully designed 

that disrupt the system. The innovative design of this factor is beneficial for the proper development of the 

future infrastructures. It indicates the impact of potential cyber-attacks and it helps to prioritize the security 

aspects more accurately. 

In practice, attacks have caused a series of problems such as economic losses, loss of load, even blackouts in 

electricity grid (Bhatt, Shah, & Jani, 2014). The design and the development of the communication unit of Smart 

Grid infrastructure are based on existing networking protocols. Inevitably, cyber-attacks come into the play. The 

proposed simulation model provides an effective and efficient tool to gain insights about the impact of these 

cyber-attacks in the DR system. It can be extended and applied in different conditions for other types of attacks 

or other price mechanisms in DR. 

1.3 Thesis structure 

This thesis is structured as follows: Chapter 1, introduction, describes the domain area and specific research 

problem. Further, the research questions that will be addressed are formulated and the methodology that was 

adopted to answer the research question is depicted. The remaining parts of  this thesis are organized as follows. 

Chapter 2 further elaborated on the DR approach, with a brief  introduction of  the main concept and the 

various types of  DR options that are relevant. In addition, the concept of  cyber security of  Smart Grids and its 

objectives are explained in greater detail in and the different types of  cyber-attacks and security issues described. 

In Chapter 3, we provide a detailed system description, which serves as the basis of  the computational model, as 

well as the main aspects of  the agent based model and the process of  modeling the problem is descripted. In 

Chapter 4, the results of  the analysis from the different modeling experiments and the impacts of  these results 

are examined. Finally, in Chapter 5 conclusions and recommendations for decision-makers are given based on 

the results and findings from the analysis. Last, in Chapter 6 suggestions for future research are set out.  
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2 THEORETICAL FRAMEWORK 

In this chapter, the concept of  the Smart Grid and its characteristics are introduced. After that, the Demand Side 

Management (DSM) and its connection with the Demand Response (DR) are explained. Further, DR programs 

in the context of  the Smart Grid are explained and price-based programs are described.  

2.1 Smart Grid 

At this point the current electricity grid no longer meets the requirements of  the growing demand for energy, 

and lacks of  effective integration of  renewable sources (Mwasilu, Justo, Kim, Do, & Jung, 2014). At the same 

time, the need for increasing network control and communication requirements created the need for a more 

‗intelligent‘ redesign of  the electrical network of  the 21st century (Gungor et al., 2013). To face these new 

challenges, the concept of the Smart Grid has been developed.  

 

The Smart Grid is considered a fundamental infrastructure for humankind and modern society with the potential 

to replace the current electricity grid (Flick & Morehouse, 2011). It consists of a more robust, efficient and 

flexible modernization of the existing power system, and has been defined as ―an electricity network which includes 

various features of operational and energy measures consisting of smart appliances, smart meters, renewable energy resources, and 

energy efficiency resources‖ (Federal Energy Regulatory Commission, 2008).  

 

Technically speaking, a Smart Grid is a complex system. It allows multi-directional power flow and exchange of 

information (Gungor, Lu, & Hancke, 2010). It uses communication and information technologies (ICT) to 

support monitoring and decision making software tools that enable the optimal transmission and distribution of 

electric power from utility to consumers (Wang & Lu, 2013). It depends on ICT-enabled devices (e.g. smart 

meter) and ICT infrastructures (e.g. Advanced Metering Infrastructure) since its components need to 

communicate between each other and with the utility (Wang & Lu, 2013).  

 

Figure 6 (next page) illustrates a basic conceptual model of the Smart Grid. This figure exemplifies how 

technologies of  communication and information will play a central role in all the different stages from 

production to consumption (giving the opportunity to the consumer to participate in production as prosumer), 

ensuring sustainability and quality services, distributed electricity production, processing information locally, 

storing the produced energy and smart measuring of  consumption.  

 

In the design of  Smart Grids, the following objectives needs to be taken into consideration (U.S. Department of  

Commerce, 2010): 

1. Reliability and quality of service (through the adoption of a distributed electricity model). 

2. Use of the existing infrastructure in a conservative way and introduction of renewable resources in order 

to reduce the environmental pollution and at the same time to meet the power demand. 

3. Flexible design that allows the system to self-healing in case of a serious damage. 

4. Active involvement of consumers in a try to save energy (through demand response programs and 

dynamic billing, in which the price of the kWh depending on the specific time of a day) 



17 

 

5. Ability to more accurate forecasting of demand by received data from smart meters  

 

2.1.1 Characteristics of Smart Grid 

The Smart Grid introduces a completely new, communication network between energy suppliers and consumers. 

With automated decision making the balance in the grid between demand and supply is constantly maintained. 

This allows the collection and analysis of  data at each level in real time and helps in production and demand 

balance. The various applications of  Smart Grid communication technology and their services are summarized 

in the table 2 below (Bhatt et al., 2014) 

 

Smart Grid applications Key Services 

 

 

Advanced metering infrastructure (AMI) 

Interval measurement  

Load control  

Pre-payment  

Tariff  flexibility 

 Communication and data security 

 

Home automation network (HAN) 

Local/remote control of  devices  

Overall consumer load management  

Energy efficiency 

Demand response (DR) Load adjustment 

 Dynamic pricing 

Supervisory control and data acquisition (SCADA) Automated control of  transmission and distribution 

Figure 6: NIST conceptual model for SG (Fang, Misra, Xue, & Yang, 2012) 
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system Substation automation 

Table  2 Smart Grid applications and their key services (Bhatt et al., 2014) 

2.1.2 Smart meters  

The smart meter is a main component of  the Smart Grid. It is a device that records consumption periodically 

and communicates that information back to the utility for monitoring and billing. An essential application of  

smart meters that is beneficial for the consumers and the utility companies is the real time pricing. Smart meters 

are able to measure and monitor the electricity consumption and to address the data on both consumers and 

utilities by providing statistical data in different programmed time periods. This information is more precise than 

the data of  manual meter reading.  

 

Through the use of  smart meters, utility companies could offer lower prices of  electricity during off-peak hours, 

and incentivize users to adjust their energy consumption on peak hours correspondingly. This, in turn, would 

provide utility companies with the opportunity to plan a more sophisticated energy production, since smart 

meters provide a digital representation of  the fluctuations in demand (Kalogridis, Efthymiou, Denic, Lewis, & 

Cepeda, 2010).  

 

By this time, many countries have successfully implemented smart meters. In France, more than 90% of  the 

electricity consumers have smart meters installed. Utility companies are obligated by the German government to 

provide consumers with time-of-use prices, since 2011. In Norway, users that consume above 100,000 units are 

required to deploy smart meters with hourly recording. In the UK, it has been decided to deploy smart meters in 

households until 2020. Till 2014, almost half  of  the US residential consumers had installed smart meters. 

Nowadays, more than 50 million smart meters have been deployed (Deconinck, Delvaux, De Craemer, Qui, & 

Belmans, 2017). 

 

2.1.3 Advanced Metering Infrastructure (AMI) 

Advanced Metering Infrastructure (AMI) provides a flexible, secure and more automated network infrastructure. 

It consists of two-way communications with smart meters, consumers, data collection bases and management 

systems. AMI gives the opportunity to consumers to reduce their energy consumption and pay lower electricity 

bills and to the utilities to operate a more robust electricity system. More specifically, the two-way 

communication channels allow interval data flow from smart meters to Meter Data Management Systems 

(MDMSs) about dynamic pricing and demand response programs (see next subsection). MDMSs store and 

manage smart meters‘ data aiming at providing useful information for billing and analysis (Cleveland, 2008; 

Wang & Lu, 2013). 
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2.2 Demand Response 

Demand Side Management (DSM) is a mechanism that includes the planned and implemented activities that aim 

to balance demand with supply by influencing consumers to change consumption (Gelazanskas & Gamage, 

2014; Gellings, 1985). There are two DSM schemes (Palensky & Dietrich, 2011); Demand Response (DR) and 

Energy Response (ER) as depicted in Figure 6. In this project, we focus on DR programs. According to the 

Federal Energy Regulatory Commission (2008), Demand Response is ―an action taken to reduce electricity demand in 

response to price, monetary incentives, or utility directives so as to maintain reliable electric services or avoid high electricity prices.‖ 

 

 

The Figure 7 shows the various ways that each consumer can adjust his electricity consumption applying the 

demand management measures (Mahalingam, 2013). The impact on load shape is described in the following 

lines. The horizontal axis represents the time during a day (0.00-23.59), whereas the level of  demand is given on 

the vertical axis. 

 

Peak Clipping: refers to the reduction of  the electricity consumption during the peak hours. As a result, when 

the load declines, the demand follows the same behavior in peak hours.  

Valley Filling: The load increases during off-peak periods to eliminate the large differences between on-peak 

and off-peak hours, which in turn improves the system load factor, i.e. the ratio between peak and minimum 

loads. 

Load Shifting: combines the advantages of  the peak clipping and the valley shifting by shifting the existing load 

from peak to off-peak periods, which means from high energy price periods to low ones. Also, the customer may 

postpone some high demand activities during the peak hours and gain economic benefits by buying cheaper 

electricity.  

Figure 7 Demand Side Management schemes. 
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More specifically, DR programs and tariffs contribute to the reduction of the energy use during the peak hours 

as well as on specific high energy price events (i.e. congestion and market conditions that increase the energy 

costs) (California Energy Commission, 2014), which leads to lower costs and electricity loads. DR is about 

keeping the same amount of the total consumption, but shifting it to another specific time. Its main purpose is to 

properly inform consumers about the energy price in order for them to be able to react on events regarding the 

change of electricity price and to gain more economic benefits (Gelazanskas & Gamage, 2014).  

 

2.2.1 DR programs 

The applied DR programs are divided in two main categories, the price-based DR and the incentive-based DR 

(Albadi & El-Saadany, 2007; Wissner, 2011), each of them has its own subcategories (Figure 9). The price-based 

DR refers to changes that consumers make regarding modifications on the price of electricity, which include real 

time pricing, critical peak pricing and time of use pricing (Albadi & El-Saadany, 2007). If the billing divergence 

between periods of use is significant, consumers may compromise with the existing pricing system but also may 

change radically the way they use electricity in order to decrease the cost. This can be achieved by taking 

advantage of the off-peak periods and/or consuming less during the on-peak periods (Gelazanskas & Gamage, 

2014). All the changes on electricity usage level made by the consumers are completely voluntary. 

 

 
Figure 9 Programs of  demand response in the electricity system by time scale (Wissner, 2011). 

Figure 8 Load shape impact of  Demand response (Gellings, 1985) 
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Price-based programs 

- Time-of-use (TOU): It is based on fixed prices on different seasonal or daily intervals. These intervals could 

be days in year, days in week, and months in year and hours in a day. Generally, the costs for electricity 

consumption are high on high electricity demand intervals whereas on lower electricity demand intervals the 

costs are lower. This condition motivates consumers to shift their loads to lower demand intervals in order to 

benefit from the lower prices. 

- Critical Peak Prices (CPP): It is a relatively newer version of  TOU pricing in which the prices for peak hours 

replaced with much higher. A CPP event is signaled under specified trigger conditions, such as unexpected 

situations in the network, compromising system reliability and extremely high electricity costs. 

- Real Time Pricing (RTP): RTP program reflects better the market price of  electricity. It is a flexible pricing 

program in which the price of  electricity fluctuates in small intervals (typically every hour) influencing the 

wholesale price of  electricity. The price that the customer is required to pay is the market clearing prices with 

some extra fees depending on the market that customer belongs to (intra-day or the day-ahead markets). 

Customers are not informed about the real time prices in advance and they should respond immediately in the 

price signals that received about the price changes day or hour after. As a result, in this program the customers 

are not protected by the price fluctuations. 

- Critical peak rebate (CPR): Consumers are rewarded according to the reduction of  the electricity 

consumption in high demand periods. This is a new program, which is in essence the inverse of  the CPP 

method.  

 

Figure 10 Price-based DR programs  

Incentive-based DR programs provide financial incentives to consumers, in order to help with their load 

reduction. Load reduction may be necessary in cases, where the system's stability is in danger or pricing is very 

high. Some DR programs include penalties for customers that participate, but fail to comply with their contracts 

with the company. 

 

Even though, Smart Grid applications facilitate the improvement of Smart Grid in terms of reliability, efficiency, 

and security, it may lead to new vulnerabilities and security issues (Hull, Khurana, Markham, & Staggs, 2012; 

Wang & Lu, 2013). The concepts of cyber security and main security objectives in Smart Grids are explained 

further in the next chapter. 
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2.3 Cyber security of Smart Grids  

The integration of  new technologies in the Smart Grid and their rapid spread, particularly those related to the 

Internet, might introduce new threats to the security of  the Smart Grid (Chambers & Gravely, 2012). The 

advanced technologies offer significant advantages and opportunities, but at the same time increase significantly 

the problems related to the protection and availability of  information into the system. Cyber-attacks may take 

advantage of  accessibility via communication network, trying to gain remote access and compromise or control 

various electronic devices or vital components of  the Smart Grid (Hull et al., 2012).  

 

Cyber security objectives 

The existence of  security in every form of  network is crucial since it may carry personal or confidential data. 

The security objectives, that Smart Grids should fulfill, in order to safeguard against threats vary. With the aim to 

keep Smart Grid in a secure manner it is important to understand the security objectives. Following there are 

three fundamental and most well document security objectives and two secondary objectives. For the aim of  this 

thesis, we will focus in availability and integrity (Hull et al., 2012) 

 

Fundamental Objective 1: Confidentiality  

Data confidentiality is the property that ensures that only authorized users have access to sensitive information. 

In other words, unauthenticated users are prevented to access confidential information. In a Smart Grid 

infrastructure, data confidentiality refers to privacy of  customer information, critical enterprises information, and 

electric market data. One usual method to achieve confidentiality is encryption. However, in some cases data 

aggregation coupled with differential privacy suit better regarding data confidentiality. 

Fundamental Objective 2: Integrity  

Data integrity is the property that ensures that there is no unauthorized modification to data and information. 

The recipient of  a package should be sure that no third person is able to alter the packet data without being 

detected. Integrity for Smart Grids applies to information such as sensor values and control commands. A lack 

of  integrity leads to disinformation which may cause security problems and may disrupt the operation of  the 

Smart Grid.  

Fundamental Objective 3: Availability  

Availability of  data is the property that ensures that services and information offered through the network are 

constantly available to authorized users. For Smart Grids, this relates to all cyber components of  the grid, for 

instance SCADA systems. A loss of  availability may result in both security problems and economics losses. In 

Smart Grid, the real-time systems have an expected maximum delay of  some msec. These systems constantly 

monitor the electricity network and a breakdown in the communications can cause power loss. 

Secondary Objective 1: Authorization 

Authorization is a property that ensures the rights of  each user in the Smart Grid and defines that any user will 

not be able to have access to levels beyond its own rights. A loss of  authorization may result in both security and 

privacy problems. Therefore, only authorized users should use the computer system or peripheral devices and 

only in accordance with a predetermined way. 
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Secondary Objective 2: Authentication 

Authentication is a property that certificates that a user in the system is actually the one that claims to be and that 

a message that the system sent by this, indeed sent it by this and no one else. 

 

The previous security objectives should play an important role when a cyber-security framework is designed, 

because in its step should provide ways to ensure their existence.   

 
Cyber security management frameworks 

There are many frameworks (e.g. ISO31000, ISO27005, NIST cyber security framework etc.) to study and 

improve cyber security. In the paper ―Cyber-Physical System Security for the Electric Power Grid‖ the risk 

methodology of  Figure 10 is proposed. This methodology aims to show explicitly the connection between the 

control functions of  the physical power system and the cyber infrastructures (e.g. communication links etc.) and 

to recognize the physical impact of  cyber-attacks. 

 

 

Figure 11 Risk assessment methodology (Sridhar, Hahn, & Govindarasu, 2012) 

 

According to the authors (Sridhar et al., 2012), the risk reduction measures can be divided into two main parts, 

risk analysis and risk mitigation. For the aim of  this thesis, we will focus on the first part. At first, each risk is 

defined by the probability of  an event to occur multiplied by the resulting impact. This probability is applied in 

the infrastructure vulnerability analysis step, which addresses the ability of  the cyber infrastructures to reduce the 

attacker‘s penetration into the control functions of  the physical power system. The next step is the application 

impact analysis. In this step, the possible impacts of  attacks, which are caused by the exploitation of  the previous 

vulnerabilities, are examined and the affected control functions and/or communication links are determined 

(Sridhar et al., 2012). After receiving the appropriate information about the impact of  the attacks, the physical 

system impact step takes place to evaluate and quantify the impact, such as loss of  load, economic losses etc., in 

the power system through simulation methods, more specifically this thesis focuses on the impact assessment. 
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The main idea of  this thesis is based on the following statement of  the authors. An attacker is able to take 

advantage of  the existing vulnerabilities along the communication links and launch attacks to the control signal 

along the links, by either jamming the transferred data (e.g., integrity attacks), or introducing a delay or denial in 

the communication (e.g., denial of  service (DoS), timing attacks)(Sridhar et al., 2012). It is essential to examine 

and investigate impacts of  such attacks on the system as they could undesirably affect its availability and integrity, 

as two of  the main security objectives (Chambers & Gravely, 2012).  

 

2.4 Attack classification based on the fundamental security objectives 

As a critical infrastructure, the Smart Grid is expected to be an attractive target for malicious attacks. A Smart 

Grid is characterized by an increasing number of  security issues mostly caused by cyber attackers via the 

communication network. The ultimate goal of  these attacks is to cause calamitous damage to power supplies and 

individual devices and widespread blackouts, which is strictly prohibited in Smart Grid (Sgouras et al., 2014).  

 

Started in 2004, Hacker‘s Profiling Project (HPP) (Chiesa, 2010) is an attempt to identify the hacker‘s profiling. 

Although, the term ―hacker‖ does not necessarily indicate harmful behavior (e.g. hackers protecting data and 

testing security on a system), in this report ―hacker‖ and ―attacker‖ are used interchangeably for the sake of  

simplicity because the majority of  hackers have deleterious behavior. The ultimate goal of  HPP is to analyze the 

phenomenon of  hacking.  They want to understand the different motivations and incentives of  hackers and to 

observe real criminal actions. They also apply their profiling approaches to the collected data and learn and 

distribute useful knowledge regarding hacking and cyber attacks to the public. In table 3, the detailed 

categorization for the different types of  hackers as described by the initiators of  this project is depicted. 

 

 Description Lonely or Group 
member 

Target Motivations 

Wannabe Lamer 
9-18 Years Old 

"wannabe a hacker 
but are not able to" 

Group Final Users For Fashion 

Script Kiddie 
10-18 Years Old, 

Script Kid 
Group 

PMI with unknown 
vulnerabilities 

To discharge anger 
and attract 
attention 

Cracker 
17-30 Years Old, 

The destroyer 
Lonely 

Private 
corporations 

To show power and 
attract attention 

Ethical Hacker 
15-50 Years Old, 

hacker per 
excellence 

Lonely (in a group 
for fun/research) 

Big Firms, complex 
systems, whereever 
there is a challenge 

For curiosity to 
learn improve the 

world 

Quiet, paranoid, 
Skilled Hacker 

16-40 Years Old, 
tacturnm paranoid 

and specialized 
hacker 

Lonely 
According to 

necessity 

For curiosity to 
learn, for egoism or 

specific 
motivations. 

Cyber Warrior 
18-50 Years Old 
The mercenary 

Lonely 

Symbolic 
corporations & 

organizations, final 
user 

For Profit 

Industrail Spy 
22-45 Years Old, 

The Industrial Spy 
Lonely 

Business 
companies, 

multinational 
For Profit 
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corporations 

Government Agent 

25-45 Years Old, 
The Government 

Agent (CIA, 
Mossad, FBI etc) 

Lonely or in a 
group 

Governments, 
terrorist suspects, 

strategic companies, 
individuals 

As a Job 
(espionage/ 

counterespionage/ 
activity monitoring) 

Military Hacker 
25-45 Years Old, 
Enlisted to fight 

"with a computer" 

Lonely or Group 
Member 

Governments, 
Strategic 

Companies 

As a job or for a 
cause (action to 

control / damage 
systems) 

Table 3 Classification of  hackers (Chiesa, 2010) 

The previous table is an extensive list of  hackers/attackers. It is apparent that attacks on an infrastructure like 

Smart Grid may be caused by capable attackers. Thus, their incentives are more serious and strong (e.g. profit). 

Flick & Morehouse (2011) identified a more generic classification regarding the attacker‘s incentives particularly 

for the Smart Grid: 

 

Personal gain: Some attackers try to exploit the capabilities of  the Smart Grid technologies for personal 

monetary gain. For example, an attacker can use different methods, such as a malware, which is ―a program that is 

inserted into a system, usually covertly, with the intent of  compromising the confidentiality, integrity, or availability of  the victim‟s 

data, applications, or operating system (OS) or of  otherwise annoying or disrupting the victim‖ to gain control of  the 

consumer‘s smart meter and to modify the data stored and disrupt the consumer‘s access to power. Then they 

ask a significant amount of  money from the consumer to repair the damage.  

 

Terrorism: There are many reasons and motives that lead to a terrorist attack. With the attack, terrorists can 

affect dramatically many people (by causing for example constant blackouts) and thereby shift the attention of  

the government and various public organizations on them.  

 

Revenge: A former employee of  a factory, who has been dismissed from his job, could be a representative 

example. He wants to take revenge from his employer. With the attack he can gain access to the smart meter of  

the factory and can interrupt the power supply for a period of  time. 

 

Types of Cyber Attacks 

Because it is very difficult to take into account all the potential attacks due to the high complexity of  the Smart 

Grid as a system, the types of  cyber-attacks based on the previous security objectives are classified as follows 

(Wang & Lu, 2013):  

 Attacks aiming at availability cause delays and jammed communication in the Smart Grid.  

 Attacks aiming at integrity modify or disrupt the data exchange between the components of the Smart 

Grid. 

 Attacks aiming at confidentiality have a purpose to gain illegally information from network resources of 

Smart Grid. 

Basic types of attacks 

Denial-of-Service (DoS) is the attack where the attacker (Bob) denies at the source (Alice) to have access in the 

destination (Mary) (Figure 12) (Queiroz, Mahmood, & Tari, 2011). A simple DoS attack tries to consume 
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resources to deny access by legitimate users. The DDoS (Distributed DoS) attack aims to destroy resource 

capacity, such as bandwidth, or to deny access to authorized users. This technique uses a network of  attack 

agents (bots) to accumulate a simultaneous attack of  messages on the specific target. The combination of  DoS 

with other attack makes the attacker able to gain unauthorized access to a system, to transmitted data, or even to 

the network. It is difficult to keep wireless networks in the AMI environment secure and their components are 

vulnerable to an attack (Wang & Lu, 2013). 

 

Man-in-the-middle-attack is when Bob masquerades as Mary (Figure 11), so he receives all messages from 

Alice. Bob can change the messages and forward them modified to Mary (Queiroz et al., 2011). The attacker 

disrupts a legitimate communication between two parties. The attacker controls the flow of  information in 

communication links and may distract or distort the information sent by one of  the original participants. The 

attacker pretends to be one of  the two participants and thus receives messages from the communication between 

them. Then, he is able to change their content and to send false messages to the receiver. For example, if  the 

receiver is an operator in the control center of  an electricity supply company, then the attacker can send him false 

data. This could force him to take specific actions when is not needed or make him think that everything is 

running smoothly on the network in order to avoid take action when action is required (NESCOR, 2015; Wang 

& Lu, 2013). 

 

Spoofing is the attack where Bob impersonates Alice so he can create and send messages to Mary. In this type 

of  attack the attacker pretends to be someone else in order to gain access to a system to limit the resources or 

gain access to sensitive information. This type of  attack can take various forms. At the level of  the electricity 

network, the data from sensors and smart meters are transmitted to the control center for further processing. If  

the attacker launches an attack on one device and simultaneously alters the data collected from it, then the 

operator will perceive a smooth network operation and so the attack would be unnoticed (Wang & Lu, 2013). 

 

Eavesdropping is the attack where Bob receives all messages sent by Alice to Mary, although Alice and Mary are 

not aware of  it (Queiroz et al., 2011). The attack can be launched with the use of  specific tools. These tools 

collect packages transferring through a network and depending on their quality, analyze the collected data. The 

main difference between "Eavesdropping" and "Man in the middle" attack is that in the first case, the receiver 

receives all messages sent by the sender without being modified in their content, i.e. attacker simply eavesdrops 

the conversation between them without them knowing it. On the contrary, in "Man in the middle" attack, the 

attacker pretends to be receiver and receives all messages sent from the sender and falsifies them in the way he 

wants (Wang & Lu, 2013). 
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Figure 12 Basic types of  attacks (Queiroz et al., 2011) 

 
Security Issues – Different Scenarios 

The aim of  this subsection is to examine two scenarios that might take place in certain components of  a Smart 

Grid, more specifically in Demand Response. Through this process an evaluation of  the most representative 

risks that threaten these components and their communication takes place.  In each scenario the certain impact 

that could be caused in a DR system and their potential level risk are defined. The assessment of  the risks is 

based on the impact assessment model published by the Federal Information Processing Standards (FIPS) of  the 

National Institute of  Standards and Technology (NIST), (2004). The degree of  impact will be assessed as low, 

moderate and high.  

 

The possible impact is assessed as low when the violation of  the security objectives causes limited harmful 

effects such as: 

 

1. Insignificant economic losses 

2. Limited damages to system‘s components 

3. Limited negative consequences for the involved stakeholders that interact with the system  

4. Reduction in the ability of a system to operate to an extent and the duration that still can perform its 

basic functions; but there is a visible reduction in efficiency of its functions. 

The probable impact is evaluated as moderate if  the violation of  the security objectives results in serious effects 

like: 

1. Significant economic losses 

2. Significant damages to system‘s components 
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3. Significant and serious consequences for the involved stakeholders that interact with the system which 

cannot cause loss of life or serious life threats 

4. Significant reduction in the ability of the system to operate an extent and duration that still can perform 

its basic functions; but there is an important reduction in the efficiency of its functions. 

The degree of  impact is characterized as high, when the violation in the security objectives has severe and 

catastrophic effects such as: 

1. Severe and extensive economic losses 

2. Extensive and severe damages to system‘s components 

3. Severe and catastrophic consequences for the involved stakeholders that interact with the system, which 

could cause loss of life or serious life threats 

4. Severe reduction or total loss in the ability of a system to operate to an extent and duration that it 

cannot perform even its basic functions 

Availability is one of  the main objectives as it is important for the consumers to have network access. Also, it is 

essential to ensure the data integrity and confidentiality because the sensitive information that transferred 

through the system. Therefore, cyber security for Smart Grid systems plays in important role and it has turn into 

necessary for utility companies to realize the most recent threats and to conduct detailed assessment concerning 

their systems.  

 

According to the NESCOR Failures scenarios (2015), the following scenarios are descripted and their potential 

risk is addressed based on the previous impact assessment model: 

 

Scenario 1: Messages are Modified or Spoofed on DRAS Communications Link 

An attacker gains access to the communications link between the demand response automation server (DRAS) 

and the customer DR system modifies on-going communications, inserts modified or wrong messages, or 

launches a DoS or a replay attack. The DRAS and the customer system could take an unauthorized message or a 

wrong message. Such a message may cause unfavorable behaviors of  these systems. 

Impact:  Low to Moderate 

A false message may deliver modified information indicating cheaper prices to consumers, which encourages 

them to increase power consumption during on-peak periods. This may lead to power loss and the utility may 

have economic losses.  

 

Scenario 2: Blocked DR Messages Result in Increased Prices or Blackouts 

An agent blocks communications between a demand response server (DRAS) and a customer (i.e. smart meters). 

This could be succeeded by flooding the communications link with other messages, or by altering the 

information in communications link. These activities could prevent legitimate DR messages from being received 

and transmitted. This can occur at the wired or the wireless part of  the communications link. 

Impact: Moderate to High  
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Blocked DR signals may result in higher prices for electricity for the utility, which results on financial losses for 

them and gains for parties selling electricity back to the utility company. Also, blocked signals may result in 

increased energy charges for the consumers. 

 

The previous scenarios aim to provide insights to the utility companies to conduct a detailed assessment for their 

systems and also to increase cyber security awareness throughout the different stages of  the DR procedures 

(NESCOR, 2015).  

 

On the other hand, the assessment of  the impact based on descriptive scenarios is mainly subjective. Thus, in 

this thesis we attempt to develop an accurate model based approach to assess the impact of  cyber-attacks into 

the DR system in a realistic and systematic way. This model based method has also more benefits compared to 

the descriptive scenarios because through a model we can run repeatability experiments and gain more 

information and valid results with less human effort.   
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3 AGENT BASED MODEL (ABM) 

In this chapter, we elaborate in the modeling process. The necessary information that is used for the model 

implementation is provided. Also, the main idea and the methods that are used in the model are described. 

 

3.1 System model - a detailed description 

The model of  the system that we focus (Figure 13) is based on several studies regarding the real time pricing 

(RTP) mechanism of  DR (Samadi, Mohsenian-Rad, Schober, Wong, & Jatskevich, 2010; Samadi, Mohsenian-

Rad, Schober, & Wong, 2012) ⁠⁠. The system consists of  a central utility server and a set of  subscribers (i.e. 

households). For each household it is assumed that there is an energy consumption controller (ECC) unit, which 

controls the user‘s power consumption, embedded in smart meter. These smart meters are connected to the 

utility server through communication links. The intended period for the system operation is divided into T time 

slots.  

 

 

 
Households 

Households are the consumers (or end-users) of  the Smart Grid and they are assumed to have smart meters 

installed. We model three representative household depending on the number of  members. Different household 

types have different annual demand (Nibud, 2017)⁠. Even though, the list of  household types is more extensive, 

types that have similar annual demand are grouped and the average annual demand is used instead. This value is 

used to calculate the basic demand profile (see next section) for each household for each period. Also, each type 

has a proportion of  occupancy in the Smart Grid (CBS, 2015) ⁠. This proportion is used as probability, when we 

initiate the system and randomly generate households.  

 

Table 3 indicates the household types with their corresponding values. As expected, households with single 

person need the least amount of  energy usage, whereas households with more four and more persons require 

the most. Also, the proportion of  the second type (two to three persons) is the larger in the modeled Smart Grid. 

 
 

Household type Annual demand (kW/h) Proportion on Smart Grid 

1 person 2000 0.37 

2-3 persons 3250 0.44 

4 and more persons 4500 0.19 

Table 4 Household types 

 

Figure 13 System model as indicated in (Samadi et al., 2012). 
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Let N be the set of  households. For each time slot 𝑘 ∈ 𝐾 , 𝑀𝑛
𝑘 and 𝑚𝑛

𝑘, denote the maximum and minimum 

power level of  the n-th household, respectively. The maximum power level may represent the total consumption 

of  household assuming that all appliances are on, whereas the minimum power level may represent the load 

from appliances which always need to be on during the day. 𝐸𝑛 denotes the total minimum energy requirement 

for a household n. In order to provide the required energy for each user, it is required that: 

 

∑ 𝑥𝑛
𝑘

𝑘 ∈𝐾

 ≥  𝐸𝑛 

 

where 𝑥𝑛
𝑘  is the demand of  household n for time slot k. So, the feasible energy consumption controlling for a 

household n is defined as: 

 

𝑥𝑛 =  {𝑥𝑛 ∶  ∑ 𝑥𝑛
𝑘  ≥  𝐸𝑛,

𝑘 ∈ 𝐾

 𝑚𝑛
𝑘  ≤  𝑥𝑛

𝑘  ≤  𝑀𝑛
𝑘  , ∀ 𝑘 ∈ 𝐾} 

 

The central idea is that the entities are independent decision makers pursuing their own satisfaction. The energy 

demand of  each household may vary based on different parameters. The different responses of  different 

households to various price scenarios can be modeled by using utility functions from microeconomics. Utility 

function represents the level of  satisfaction obtained as a function of  its total power consumption. For a 

household n, 𝑈(𝑥, 𝜔) denotes the utility function where x is the energy consumption and ω is a parameter 

which varies among the households representing the value of  electricity for each household. Quadratic utility 

functions corresponding to linear decreasing marginal benefit are considered for this model: 

 

𝑈(𝑥, 𝜔) = {

𝜔𝑥 −  
𝑎

2
𝑥2, 𝑖𝑓 0 ≤ 𝑥 ≤  

𝜔

𝛼
𝜔2

2𝑎
, 𝑖𝑓 𝑥 >  

𝜔

𝑎

  

 

where α is a pre-determined parameter. This utility function is based on the assumption that fulfills the following 

properties: 

 Utility functions are non-decreasing, i.e. users are always interested to consume more power if possible 

until they reach their maximum energy level. 

 The utility functions are concave and the level of satisfaction for households can gradually get saturated. 

 Households are ranked based on their utilities. In this formulation, it is assumed that for a fixed 

consumption level x, a larger ω implies a larger U (x, ω). 

 The general expectation that no power consumption brings no benefit is assumed. 

A household that consumes x kWh electricity during a designated number of  hours at a rate of  P dollars per 

kWh is charged Px dollars per hour. Hence, the welfare of  each user can simply be represented as 

 

𝑊(𝑥, 𝜔) = 𝑈(𝑥, 𝜔) − 𝑃𝑥, 
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where W(x, ω) is the household‘s welfare function, U(x, ω) is the utility function, Px is the cost for the energy 

consumption x. For each price, the household adjusts the consumption in order to maximize its welfare. Thus, 

the following function describes the demand update for each household at each time step k: 

 

𝑥𝑖
𝑘(𝑃𝑘) = argmax

𝑚𝑖
𝑘 ≤ 𝑥𝑖

𝑘 ≤ 𝑀𝑖
𝑘
{𝑈(𝑥𝑖

𝑘 , 𝜔) − 𝑃𝑘𝑥𝑖
𝑘} 

 

where 𝑥𝑖
𝑘(𝑃𝑘) is the consumption for the imposed price 𝑃𝑘 . 

 

 

Demand load profiles 

In order to produce demand profiles for a household we use synthetic load profiles. We have collected synthetic 

load profiles generated for the years 2015-2017 (APCS, 2017). These profiles are unitized over the year of  use; 

the aggregation of  all values for a year is 1 (or close to 1). In these data, each value represents the Profile 

Coefficient for a quarter of  an hour (the Settlement period). Profile Coefficient is an estimate of  the fraction of  

yearly consumption within the Settlement period. Thus, using the annual demand for each different household 

type, we can calculate the demand allocation for a Settlement period (15‘, an hour or a day, etc.). Because we do 

not use appliances to adjust the demand based on the price changes we set minimum and maximum demand. So, 

based on the demand profiles from the given data, we generate minimum and maximum load profiles. They 

represent the 70% and 110% of  load profiles respectively. These profiles are important as they are the necessary 

boundaries for the calculation of  the welfare for the consumers in simulations. 

 

Utility server 

For the utility server, its pursuit is to minimize its energy costs. Alternatively, its attempt is to maximize the 

available capacity at which the cost is minimal. A cost function 𝐶𝑘(𝐿𝑘)  denotes the cost of  providing 𝐿𝑘 units 

of  energy offered by the utility server in each time slot  𝑘 ∈ 𝐾 . The following quadratic cost functions are used 

in the model: 

 

𝐶𝑘(𝐿𝑘) =  𝑎𝑘𝐿𝑘
2 +  𝑏𝑘𝐿𝑘 +  𝑐𝑘 , 

 

where 𝑎𝑘 > 0  and 𝑏𝑘, 𝑐𝑘  ≥ 0are pre-determined parameters. 

 

The following function describes the Capacity update for the utility server: 

 

𝐿𝑘(𝑃𝑘) = argmax
𝐿𝑘

𝑚𝑖𝑛 ≤ 𝐿𝑘 ≤ 𝐿𝑘
𝑚𝑎𝑥

*𝑃𝑘𝐿𝑘 − 𝐶𝑘(𝐿𝑘)+ 

 

where 𝐿𝑘 is the available capacity,  𝑃𝑘 is the imposed price and  𝐿𝑘
𝑚𝑖𝑛, 𝐿𝑘

𝑚𝑎𝑥are the capacity boundaries for time 

step k. 
 

Real Time Price Mechanism 
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For real time price schema, the method derived from this study (Samadi et al., 2010) ⁠ is used. It is based on the 

dual decomposition approach of  the optimization problem they formulate in their work. The price is 

recalculated every constant time steps and it is based on the available energy capacity of  the utility server and the 

overall demand of  the households. The following function describes the real time price update: 

𝑃𝑡+1 =  [𝑃𝑡 + 𝛾 (∑ 𝑥𝑖
𝑘𝑃𝑡

𝑖 ∈𝑁
− 𝐿𝑘(𝑃𝑡))]

+

 

where γ is the step size. 

 

 

3.2 Description of modeling steps 
 

This section describes the research methodology that was followed and the ten steps that are used in the 

modeling process of  the agent based model are described (Dam, Nikolic, & Lukszo, 2013). This model helps us 

to find the appropriate answers to the research questions of  this thesis. 

 

The aim of  this technique is to gain valid insights with regards to the implications of  cyber-attacks on the DR 

program. Even though, essential information is retrieved from the literature, with the implementation of  ABM a 

more in-depth analysis is aimed to verify the initial hypothesis quantitatively. The outcomes of  the model include 

numerical deviations of  the aggregate demand that occur due to the cyber-attacks and through the two way 

communication of  price and demand signal between utility server and households. The amount of  flexibility of  

the value of  RTP program is based on the responses of  the individual households to the price signals. The 

aggregate demand is the total energy demand of  all the households in the system reacting to the price signals. 

The households behave independently as a result of  several rules and properties. New energy prices are 

calculated based on dynamic rules affected by the peak period, the current energy costs and capacity for the 

server and the aggregate demand of  the system. The interactions between the server and households and the 

penetration of  attacker evolve the overall behavior of  the system. Therefore, a bottom-up approach, in which all 

the interactions between the server and the households (i.e. aggregate demand) could be well represented by an 

agent-based model. 
 

Step 1 –  Problem formulation and actor identification  

Currently, there are insufficient insights regarding the impact of  cyber-attacks in DR programs. These insights 

could contribute to the development of  a more secure Smart Grid, which will retain its security objectives as a 

critical infrastructure system. It is already highlighted the benefits of  DR programs but there are no insights on 

how cyber-attacks affect and may change the outcomes of DR.  

 

The key actors of  the model are the consumers of  electricity in the form of  individual households. They have 

been chosen according to their household‘s annual demand, with the help of  retrieved data from the Nibud 

database (Nibud, 2017). They are classified in three main household types. Also, the utility is considered as an 

active player in the model since the implementation of  real time pricing policy translates to desirable 

consumption patterns. Moreover, attackers, who launch a cyber-attack in the communication link between 
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utilities and consumers, act between the consumers (active agents) and the utilities. Also, they are passive players 

in the model and are not clearly represented, but they are very important in the real-life world. 

 

In our model, the network consists of  different actors and is visualized in a comprehensive way as following: 

 

Figure 14 Actors representation of  the model 

The Figure 14 depicts the actors that are connected with the communication link through which the information 

is transferred. The link connects the utility with the households. In each different type of  household a smart 

meter is implemented. Finally, the attacker is connected to the communication link and launches the attacks into 

the network.   

 

The modeler‘ role is to build a precise model, which will introduce and examine the problem of  cyber-attacks in 

pricing based mechanism of  DR. It is important to highlight that all assumptions made with respect to the real 

word situation without changing the correctness of  the insights that are gained from the model. 

 

Step 2 –  System identification and decomposition  

In this step of  the modeling process, we identify the environment and the system with the individual 

components and their characteristics and variables. Figure 15 indicates the system, its components with their 

interactions and the physical boundaries among the entities. The system comprises of  a single utility server, an 

aggregator that collects the demand from the network, a regulator that regulates the levels of  demand on the 

network by applying a certain price program (RTP, etc), and a set of  households that have smart meters. These 

entities are connected through a two way communication link forming the network. The attacker is an additional 

entity that connects on the network. Since we focus on the transition of  the price-demand signal, we take out 

other physical connections, such as the electric grid. The communication between the entities includes price and 

demand signals. Normally, the regulator decides the DR price schema in order to achieve social welfare and 

reliable electricity network, and the aggregator collects the demand from each household and calculates the 

consumers aggregated demand for the following day. In this model, because the price depends on the function 

cost of  the server and the aggregate domestic demand and no market mechanism is used, aggregator and 

regulator can be represented as passive entities and their functions (i.e. aggregate demand, use of  price schema) 

are operations of  the server. Even though in real life cases these two entities are essential and have active role 

and cannot be excluded from the system. 
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The price signal is sent every instant of  time (every hour for example) from the regulator to the households. 

Households, calculate the current demand based on price values with the aim to maximize their welfare. The 

demand signal is sent from the households to the aggregator every instant of  time (every 15 minutes for 

example), which in turn sends the aggregated demand to the utility server. Based on current information on the 

network (overall demand, price) the utility server calculates the energy capacity with the aim to minimize the cost 

for the system and sends the optimal value to the regulator, which recalculates the price in order to regulate the 

demand on the network.  

 

Attacker‘s role is to disrupt this information flow. One of  the possible attacks is the man-in-the-middle attack. 

Attacker causes jamming on the price signal and sends false signal in order to trick the consumers. This 

interruption occurs in high-peak hours, in which the system is more prone to energy issues and failures. 

However, system blackouts or destructions are not considered possible in the model because there is always 

enough electricity in the network for the consumption. So, the data disruption leads in increasing energy demand 

from households, even if  the utility server is incapable to offer it. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
  

Figure 15 Information flow in model 
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Step 3 –  Concept formalization 

In this step, the identified concepts for the model are converted into computer readable format by means of  

defining the context and removing any ambiguity in the computational context. A method that facilitates the 

concept formalization is the class diagram structure. The several agents of  the system are ‗objectified‘, meaning 

that agents with their characteristics, behaviors and actions, and their in between interactions are converted into 

objects (or classes) with their respective variables and methods. Figure 13 shows the class diagram for the system.  

 

 

To simplify the software structure, the aggregator and regulator agents have been merged with the utility server. 

So, the UtilityServer class comprises the compound of  agents Utility server, aggregator and regulator. The 

attributes of  this class are:  

 the steps (or ticks) of  the system,  

 the overall_demand, which is the aggregate demand of  the system (aggregator‘s attribute) at each step,  

 the capacity, which is the capacity (server‘s attribute) of  the system at each step,  

 the price, which is the recalculated price (regulator‘s attribute) at each step 

 the cost_parameter, which is the parameter for the cost function. This parameter varies for different 

steps in the period. It has different value for off-peak, med-peak and high-peak time instances.  

The methods (or operations) of  this class are associated with the behaviors of  its entities: 

 calculate_capacity(): This method calculates the capacity of  the system at each step. The capacity value is 

the optimal value (argmax) for the minimization of  the cost of  the system for the current time instant. It 

depends on the current price, the overall demand of  the system and the peak (off, med, high → 

different paramater value).  

 calculate_price(): This method recalculates the price of  the energy for a time instance. It is enable for the 

RTP program and it calculates the new real price of  the energy given the capacity, the overall demand 

and the previous price on the system.  

Figure 16 Class diagram of  the system 
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 aggregate_demand(): This method sums the demand of  all households for a time instance. 

 send_price(): This method activates the network to transmit the price signal (i.e. the new price) to the 

households. 

 

Household class refer to the households of  the network. So, in the attributes and methods of  that class there are 

also elements for the smart meters. The attributes of  this class are: 

 the steps (or ticks) of  the system,  

 the electricity price, as it is received from the network for a time instance, 

 the annual_demand; this attribute is associated with the type of  household, different household type has 

different annual demand, 

 the load_profile, this attribute is randomly chosen at the beginning of  a new day and it is used to 

generate the boundaries of  the demand profile for the household, 

 the load_profile_min, which is the minimum demand profile for the household, 

 the load_profile_max, which is the maximum demand profile for the household, 

 parameters alpha and omega, these two parameters are used to calculate the maximum welfare for the 

user at each time step. 

The methods for the behavior as well as some initial steps for the objects are: 

 set_load_profile(): this is used at the initial step of  the simulation, and before every new day; it generates 

a daily load profile for a household. 

 set_household_type(): this method randomly chooses a household type and the attribute 

annual_demand is initialized.  

 set_omega_parameter(): this method randomly sets a value of  omega parameter from a pool of  integers. 

 calculate_demand(): this method returns the demand that maximizes the welfare for a household. 

 send_demand(): This method activates the network to transmit the demand signal (i.e. the household‘s 

demand) to the utility server. 

 

The Attacker class represents the potential threat of  the system. The attributes of  this class are: 

 the steps (or ticks) of  the system,  

 the type_of_attack, which annotates the type of  the attack at the current simulation, 

 the is_attacking, a boolean attribute that indicates whether the attacker is attacking at the current time 

instance. 

The attack() method shows the behavior of  the Attacker agent. When the attacker attacks this method is called 

and the system is affected accordingly. 

The Network Class groups the other classes. It is the communication link for the entities. This class is an 

additional class that facilitates the simplification of  the formalization of  the system. It contains a single 

UtilitiServer class, an Attacker and a set of  Households. The only operations for this class are the data 

transmissions (transmit_demand() and transmit_price()), which model the communication between the entities. 

The association links between the classes indicates that the network consists of  a single utility server, the 

potential attacker (may or may not be present), and a set of  households. 
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The RandomGenerator class is an additional class that contains data and operations that help the generation of  

data for the households. Its attributes are lists of  available data, such as load profiles, omega parameter and 

household types. With the method random_profile() it randomly generates a load profile based on the list of  

load profiles. With the method random_household_type()  it randomly generates the type for each household; 

different type have different probabilities of  occurrence. 

 

Step 4 –  Model formalization  

Narrative of  the model for a single day for a scenario with an integrity attack (man-in-the-middle). The main 

process operates for 96 ticks, so each tick represents 15 minutes of  an hour in the day. Initially, the random 

values are set. These values are the household type and the demand profiles for the households. For each tick, 

the utility server first collects the demand from the households. Based on this overall demand calculates the 

optimal energy capacity. If  it is time to set new price (every 4 (1 hour)), utility server calculates the new price 

based on the its capacity and the overall demand and communicates it to the households. In the case of  integrity 

attack, the attacker intervenes into the price signal and changes its value. This results for households in receiving 

different price than the one sent by the server. Finally, the households calculate the new demand based on the 

false price. It should be noted that the baseline scenario, where no attack event occurs, has the same narrative 

excluding the attacker‘s tasks and events. 

 

 

  
Figure 17 UML sequence diagram 
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The pseudo code that describes this narrative follows in Algorithm ―Process of  the day‖. As in the sequence 

diagram, the baseline scenario is realized when the attacker is not present. 

 

Step 5 –  Software implementation 

The model is implemented in Python 3(Perez, Granger, & Hunter, 2011) with the agent-based modeling tool 

Mesa (Kazil & Vērzemnieks, 2014). This tool is an alternative to other tools such as NetLogo (Wilensky, 1999) 

and Repast (North et al., 2013). The main difference is that it is written in the powerful language Python, which 

has a large community worldwide and allows for use of  several libraries to analyze the results of  the simulations. 

The initial idea was to use NetLogo, but it was quickly rejected, because it was less user-friendly as the 

implementation of  the several agents was time-consuming. Also the documentation was poor and there are no 

additional tools to quickly analyze the results from the simulations; additional analysis tools like Excel or Matlab 

are necessary. On the contrary, Mesa is based on Python3, so the model is modular and fully programmable. 

Apart from the built-in core components the user can customize many features, using object oriented techniques. 

Also, built-in data structures such as Pandas and Series facilitate the analysis of  the simulation results. Built-in 

python tools such as Matplotlib or NumPy are essential additions as they are powerful libraries for analysis and 

post-processing of  the results. Finally, the nature of  Object-oriented structure of  the model makes it 

customizable and extensible for future work. 

 

Step 6 –  Model verification  

The main goal of  this step is to investigate if  there are any structural mistakes in the code and to verify the 

technical correctness of  the model, aiming not to draw conclusions from a mistakenly working model. The main 

4 types of  verification are the following: 

 

1.  Recording and tracking agent behavior 

In this step, the agents were tested for input, state and output throughout the entire simulation cycle.  

Households acquire new demand profile every day randomly from the pool of  collected profiles and different 
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annual demands are set based on given probability for different household types. The initialization of  the 

parameter of  ω, which indicates the household‘s level of  satisfaction on energy consumption, was assessed in 

terms of  the variety of  resulting demands for the households. Also, the initialization of  other parameters was 

specific for each operation and agent and the scale of  parameters at every point in the program was monitored 

and tested for consistency and correctness. 

 

2.  Single agent testing 

In this step, the agents were tested individually whether they respond to signals from the system or other agents 

of  the system. The single agents test involves two parts (Dam et al., 2013): 

1. Testing theoretical predictions and sanity, in which it was observed if  agents behave as expected according to 

normal conditions. 

2. Break the agent tests, in which agents took extreme values in order to discover the boundaries of  normal 

behavior. 

More specifically, the households were assessed whether they respond to the price signal changes by monitoring 

the demand and its fluctuations. Also, in the same manner, the response of  the utility server to the overall 

demand and peaks of  a day was assessed by checking the capacity update at every time step. Subsequently, the 

attacker behavior, through price modifications, is tested accordingly.  

 

3.  Interaction testing 

In this step, the interactions between the agents are tested. The interactions between the agents consist of  three 

types: price signal, demand signal and false price signal. Hence, the interaction tests are based on the response of  

each agent on these interactions. This took place by running the model with only one of  each agent. The 

expected outputs for each interaction are assessed in terms of  whether the corresponding values are 

proportional or inversely proportional. For example, the decrease of  price value indicates the increase of  

demand for the households, whereas for utility server indicates the decrease of  energy capacity. Likewise, the 

imposed price by the attacker indicates the proportional increase/decrease of  the demand by the households.  

 

4.   Multi-agent testing 

In this step, the overall behavior of  the system is tested. This involves the interactions among all the agents and 

the behaviors of  resulting patterns. Two tests are performed in this step of  verification:  A variability test in 

which the variability of  various critical model outputs was assessed. Also, a timeline sanity test was performed 

with the aim to assess various outputs of  the model at the default parameter setting, and tried to foresee any 

unexpected modeling behavior. The aggregated demand on the system is assessed whether it follows the default 

demand profiles from the literature. Several runs of  the multi-agent test for the same set of  parameters were 

performed to test the stability of  the model and trace any unexpected errors. These tests were repeated for all 

possible scenarios (baseline scenario or with attacks) in order to check for bugs and verify the outputs from the 

system.  

 
Step 7 –  Experimentation 
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The research problem of  this thesis is answered through various scenarios in an ABM. The main focus of  this 

section is the design of  the experiments. Each of  these experiments aims to provide valid answers to the 

research questions. Three different experiments are designed for the simulation of  the agent based model.  Their 

results on the power demand and the price signal, concluded by the interaction of  the agents with the system, are 

consequently used for data analysis. 

 

General Experimentation setup 
 

Due to the nature of  the studied problem, the time intervals need to be chosen so that the given information 

from the experiments increases the accuracy of  the analysis. Also, the synthetic profiles have reporting values 

every 15 minutes, which leads us to simulate each tick to account for 15 minutes of  an hour. Hence, a single day 

is 96 ticks. In addition, the periodicity of  the real time pricing is chosen to be k = 4 ticks (i.e. every hour) in order 

to represent the real existing cases (intra-day) where consumers are informed for the price updates every hour. 

 

Intervals of  peak hours are derived by the patterns of  collected demands. Then the intervals are as following: 

1. [0, 27], [92, 96] are in the off peak hours 

2. [28, 35], [56, 71], [88, 91] are in the medium peak hours 

3. [36, 55], [72, 87] are in the high peak hours 

The number of  households is chosen to be 500 for two reasons. First, large number of  households is used in 

order to eliminate any possible deviation between the different demand patterns. Second, with the large number 

of  households it is possible to distinguish the different outcomes when choosing the different values for the 

fraction of  affected households (see below). 
 
For households 

 Each household is assigned the ω parameter randomly from interval [5, 15] with equal probability. 

 Each household is assigned the household type randomly with different probabilities as previously 

described. 

 For every day, each household is assigned a default load profile randomly generated as previously 

described. The demand load boundaries (min, max) for each tick are the 70% and 110% of  the default 

demand load profile respectively. 

 α parameter is the same for all households and equal to 0.5. 

For utility server 

 the parameter ak of  cost function is variable and depends on the daytime. For off-peak, med-peak and 

high-peak is 0.02, 0.1 and 0.2 respectively. 

For the Real time pricing 

 the step size γ for the pricing function is set to 0.15 

Scenarios 
 
Scenario 1: Baseline scenario: No attack occurs. Demand for all users with Real Time Pricing schema. 
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The system works properly. Price and demand signals are communicated to the agents of  the system. 

Households correspond to price changes and modify their demand accordingly. Also, utility server reacts to 

overall demand of  the system and adjusts the price of  the energy according to its energy costs. 

 

Scenario 2: Integrity attack scenario. 

This scenario aims to determine the overall energy consumption in peak hours using the RTP program under the 

integrity attack. During a certain time of  the day (high peak hours) an integrity attack is launched on the 

communication link of  the price signal. High peak period is the most critical for the infrastructure throughout a 

day. Through this scenario, the effect of  this cyber-attack and its implications on the power demand and the 

price signal is examined and compared to the baseline scenario. In addition, different cases with different fraction 

of  affected households are considered (5%, 50%, 90%, and 100%). These fractions are used in order to assess 

the implications when the attack occurs on different scale of  affected households. Low scale (5%), medium scale 

(50%) and large scale (90%, 100%) of  affected households are used. 

 

Scenario 3: DoS attack scenario. 

This scenario is designed to study the impact of  DoS attack on the system and the results are compared to the 

baseline scenario. This type of  attack is different from the previous one, as it makes the utility server unavailable 

for a certain period of  time. This attack scenario takes place in a smaller period of  time and starts during the 

high peak hours. As a result, the overall energy consumption in peak hours using the RTP program under the 

availability attack varies significantly.  

 

 

Step 8 –  Data Analysis  

 

For identifying the implications of  two types of  cyber-attacks in RTP mechanism of  the DR program and on the 

demand power and price signals, an agent based model was implemented with the use of  framework Mesa in 

Python3. Different experiments were designed and implemented in the developed model as described in the 

previous section. Several libraries of  Python3 were used to extract and analyze the data from the model. The 

findings from the different designed experiments are presented and discussed in chapter 5. 

 
Step 9 –  Validation  
 

While the step 6, the model verification emphases on verifying the outputs of  the model, the step 9, the model 

validation, has as a goal to investigate if  the model corresponds to the real world and behaves as it is expected to 

behave. There are four main different techniques to validate the model and to check if  the results and insights 

from previous steps are reliable. These four techniques are the following: 

 

1. Historic replay  

2. Expert consultation (face validation)  

3. Literature validation  

4. Model replication 
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The developed model validated with the aim understands if the model behavior represents as much as possible, 

with the available ―real‖ data, the real world behavior and if the interactions and the pricing mechanism 

characterized by correctness. Because there is no Smart Grid implementation with the demand response system 

applied on this model, it is impossible to validate the results of this model with a ground truth from real world. 

Also, the dynamic pricing mechanisms, such as the real time pricing, are not applied yet in the real world. Even 

though, some data may are available from pilot programs, these data all not open to the public, due to privacy 

protection of the sensitive information that are contain. So, for now without available data from the past, it is 

not able to use the historic data, as a validation method. 

 

The model was validated with two different approaches. From the data analysis section, as we can see the results 

show that the model represents the reality as much as possible. Unfortunately, not all the outputs of the analysis 

were validated through literature validation, because some of the concepts that were examined in this thesis are 

state of art and there are not applicable yet in the real world. 

In this case, expert consultation was used as a validation method. During the expert validation with the Professor 

D. Gritzalis from the section of  ICT Security of  the Laboratory of  Information & Communication Systems 

Security, Dept. of  Information and Communication Systems Engineering, School of  Engineering, Greece. An 

interview was conducted through Skype with the expert and the main steps of  the methodology, the results of  

the data analysis and the assumptions of  the model were discussed. On the other hand, some thoughts about the 

face validity concern the subjectivity of  this method.  It is so because face validity based on one expert opinion, 

who will gain only an abstract overview of  the main processes of  this research and even if  he is an expert in 

cyber security and critical infrastructures protection due to time limitations he only proposed that the model 

"looks accurate and corresponds to reality" rather than the stronger believe that the model "is correct and 

represents the reality". 

 

Due to the highly demanded time and the large workforce that are needed for the model replication and due to 

the time limitations during the thesis it was impossible to perform the model replication as a validation 

technique. After the completion of the step of the model validation, the confidence was grown that the model 

appropriately satisfies the aim of the research. 

 

Step 10 – Model Use 

In this step of  the thesis, the usability, feasibility and adaptability of  the previous developed and simulating model is 

described. 

 

Usability 

The main reason of  defining the usability of  the model is to understand to whom this model would be useful 

and why. Smart Grid is a complex infrastructure and multiple actors participate in the network. Its security is 

considered essential and the impacts of  potential cyber-attacks are not negligible. This model would be used for 

further research, either from researchers in ICT and Cyber security sections, who study the impact of  cyber-

attacks in the Smart Grid or researchers in Energy & Industry section, who study the vulnerabilities and the 

security of  critical infrastructures. By using this model, one will be able to understand how different households 
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correspond in the real time pricing mechanisms and also to assess the results of  an integrity and availability 

cyber-attack to the system. Also, nowadays, the Real time pricing mechanisms are only applicable in pilot 

programs. Hence, through this model, researchers or organizations could gain insights on the effectiveness of  

real implementation of  these mechanisms by considering the impact of  an attack and concluding whether is 

worth or not to implement it in real life or what necessary actions would need to be taken before the actual 

implementation.  

 

Feasibility 

In this section, an attempt to discuss the limitations and constraints of  the model takes place. Consumers 

(Households) always tend to change their consumption throughout a day (24 hours). Even though, this is true 

with the use of  smart metering system, modifications on the night are not corresponding to reality. Attacker‘s 

capability to penetrate the system is not modeled. So, it is not possible to assess the prevention of  potential 

attacks on the Smart Grid. The model is based on the demand response program, excluding any other 

connection among the agents, such as electric grid. This prevents the model from detecting other issues and 

destructions an attack may cause on the electric grid. The communication links are simple connections among 

the agents. Other aspects, such as connection delays and packets transmission are not modeled. This prevents the 

author from assessing the attacks on the size of  information transferred on the network and their effects in 

terms of  system overloads. Synthetic demand profiles are used instead of  real data or appliances‘ energy 

adjustments. Also, classification of  households is limited in 3 types based on the annual consumption. The 

combination of  the latter two assumptions narrows the space of  possible outcomes for the demand load profiles 

of  households in the model. 

 

Adaptability 

When this model was implemented, the adaptability was one of  the main aspects taken into consideration. It was 

really important to make the model adaptable in different conditions with the least effort.  The nature of  object-

oriented structure facilitates any attempt for agent extension. Appliances can be modeled as new Classes and 

replace the current demand load profiles for the households to expand the outcomes for the demand profiles for 

households. Also, the communication links can become more complex by adding methods and attributes on the 

Network Class in order to add additional assessments on attackers‘ penetration capability and Smart Grid‘s data 

flow size. The implementation of  other price programs such as TOU can be done effortlessly. Also, the attacker‘s 

behavior can be more sophisticated by adding probabilistic behavior models as methods of  the Attacker Class. 
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4 DATA ANALYSIS AND RESULTS 

In this section the results from the different designed experiments are elaborated and explained in order to 

investigate the impact of  the different types of  cyber-attacks in their energy consumption and the transmitted 

and received price signals, when consumers activate RTP program of  DR. Thus, the experiments, which were 

designed for the aim of  this study, were applied in the developed model, as described in the previous section. As 

a result, the outputs of  the model were analyzed in details in order to gain valuable insights that would provide 

sufficient answers to the research questions. 

 

Median curves for the simulation runs 

 

For the stability of  the results we extract the median plot for each value under study. Each scenario runs in 30 

replications and from the 30 replications the median plot is extracted.  Figure 18 and Figure 19 depict the plots 

for the aggregate demand of  10 and 500 smart meters respectively in the system.  

 

 

 

Figure 18 The aggregate demand for 500 smart meters of  30 replications of  the simulation. The grey area 
indicates the values covered by the 30 runs. The blue line is the median plot for these runs. 
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Figure 19 The aggregate demand for 10 smart meters of  30 replications of  the simulation. The grey lines indicate the values 
covered by the 30 runs. The blue line is the median plot for these runs. 

 

As expected, the curves for 10 smart meters are more variable compared to the corresponding curves of  500 

smart meters. This is normal since the demand profiles generated for the 500 smart meters are more possible to 

overlap compared to the 10 smart meters leading to less variable curves. Finally, in both cases the median curve 

is a good representative of  the sample. Therefore, for the following sections the median curves for the individual 

values are used.  

 

Aggregate demand of household in the system 

 

To investigate the outcome of  the real-time price program we run the simulation for the model for the baseline 

scenario. We compare the aggregate demand that the households computed based on the price signal to the 

default aggregate demand generated by the respective synthetic profiles. The scenario runs within one day and in 

30 replications. From the 30 replications the median plots are extracted. 
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Figure 20 shows the results of  the aggregate demand for the normal behavior of  the system. Compared to the 

default demand the aggregate demand of  the system is lower in high peak hours and higher in the off  peak 

hours. This shows that the households maximize their welfare with lower demand values where the price has its 

highest values throughout a day. In the same manner, the demand is increased insignificantly in the off  peak 

hours, where the price is lower. Overall, the household react on real time price values by changing their demand 

in order to maximize their welfare. The aggregate demand in off  peak hours differ insignificantly from the 

default profiles due to the fact that the cost of  the energy for the server is low, and hence the values of  the price 

are low. This leads households to maximize their welfare demanding the maximum possible energy. 

 

4.1 Effect of man-in-the-middle attack on price and demand 
 

To investigate the effect of  man-in-the-middle attack on the price signal and the aggregate demand we run the 

simulation for the model for the baseline scenario as well as the scenario under attack. Each scenario runs within 

one day and in 30 replications. From the 30 replications the median curves is extracted. The attack takes place in 

mid-peak and high-peak hours. Two different cases of  attack are considered with three different fractions of  

smart meters affected (100%, 50%, 5%): man-in-the-middle attack with halved price values (MITMh) and man-

in-the-middle attack extreme case (MITMx). We measure for price transmitted by the server (TP), price received 

by the smart meters (RP) and aggregate demand of  the system. 

 

 
Figure 20 Aggregate demand of  the system plot for a day. The x-axis indicate the day in 96 time steps whereas the y-axis 
indicate the aggregate demand. The yellow line indicates the baseline scenario. The green line indicates the default aggregate 

demand as extracted from the synthetic profiles. 
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Table 5 summarizes the results for the different scenarios. Overall, the values of  the different metrics correspond 

to the fraction of  affected smart meters. When a fraction of  5% of  smart meters is affected then the system is 

slightly affected. Except for the received price values for both cases, which is directly affected by the attacker, the 

other values change a little. However, when the fraction increases to 50% and 100%, the values change 

considerably. As expected, the worst case scenario is the extreme case with fraction of  100%, where the 

maximum aggregate demand, transmitted price and received price are the highest among all cases. It is worth 

noting that because of  the demand boundaries for the aggregate demand, the system is always capable of  

offering the demanded energy and thus, there is a maximum boundary for the transmitted price as well. This is 

the reason why the differences between the extreme cases and the halved price cases are not great.  

 

 
average 

TP 
Min 
TP 

Max 
TP 

average 
RP Min RP Max RP Demand 

Min 
Demand 

Max 
Demand 

Baseline 0.18 0.11 0.25 0.18 0.11 0.25 46.66 20.91 65.86 

MITMh100% 0.22 0.11 0.31 0.13 0.08 0.24 53.04 21.04 80.32 

MITMh 50% 0.19 0.11 0.28 0.12 0.08 0.19 49.67 20.88 71.92 

MITMh 5% 0.18 0.11 0.26 0.11 0.08 0.16 47.07 20.96 66.98 

MITMx 100% 0.24 0.11 0.34 0.05 0.0016 0.31 55.56 20.28 87.49 

MITMx 50% 0.2 0.11 0.29 0.05 0.0016 0.2 50.46 21.04 74.4 

MITMx 5% 0.18 0.11 0.26 0.04 0.0016 0.16 47.07 21.01 66.99 

Table 5 Results for the different scenarios 

The following figures indicate the aggregate demand of  500 households in a day for the different scenarios. 

Figure 21 indicates the aggregate demand when the man-in-the-middle attack with half  price occurs, whereas 

Figure 22 shows the aggregate demand with the attack in the extreme case. The percentages are the fraction of  

affected smart meters for each scenario.  The baseline scenario (yellow line) indicates the normal behavior of  the 

system. The Min and Max demand boundaries are also depicted with dotted lines.  

 
Figure 21 The Aggregate demand of  500 households in a day. Scenarios with half  price values on fractions of  5%, 50% and 100% 

of  smart meters are depicted. 
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Despite the fact that demand is analogous to the hours of  the day, households reduce their consumption during 

high peak hours. This indicates that when the price is high the households maximize their welfare with lower 

demand values and vice versa. Subsequently, when the attacks occur and the households receive falsely lower 

prices they tend to increase their demand. As expected, on the attack scenario with the half  price affecting the 

total smart meters of  the system, the demand is significantly increased especially in high-peak hours where 

demand has higher boundaries (and thus, the households are more willing to demand for more energy). Also, the 

fraction of  the affected smart meters affects the resulting demand curves. The 5% affected smart meters has 

negligible effect on the aggregate demand whereas the 50% increases it considerably. Generally, with the increase 

of  the affected smart meters in the system the aggregate demand also increases. 

 

For the extreme scenario, the demand reaches its maximum values as expected, as the price is nearly zero; the 

households maximize their welfare on the highest possible demand values. The fraction of  the affected smart 

meters plays an important role here as well. As the number of  affected smart meters increases the aggregate 

demand increases. Even though, this event is practically impossible, it is a good indicator for potential dangerous 

situations, where households tend to increase their demand, which may result in economic losses for them but 

also for equipment damages for the system. 

 

The following figures indicate the real time pricing in a day for the different scenarios under man-in -the-middle 

attack. Each set of  figures indicate the transmitted/received price when different fraction of  smart meters is 

affected in both half  price and extreme low price scenarios. The baseline scenario (blue line) indicates the normal 

behavior of  the system. Apparently, the transmitted and received price for the baseline is the same. 

 

The results show that the attack in these hours affect the price (Figures 23, 24, 25); the price is increased for the 

hours under attack. The effect is apparent during the attack, where the price reaches higher values compared to 

the baseline scenario. This may be partially affected by the households, which increase their consumption in 

 
Figure 22 Aggregate demand of  500 households in a day. Scenarios with extreme low price values on fractions of  5%, 50% and 

100% of  smart meters are depicted. 
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these hours as they receive false lower prices (yellow line). Overall, we observe that as the fraction of  affected 

smart meters increases the effect on the price becomes greater. When the attack occurs on the 5% of  smart 

meters the effect is negligible. However, for the larger fractions the effect is significantly higher. The highest 

values for the price are observed on the extreme attack scenario with fraction 100%. In addition, after the effect 

of  the attack, when the smart meters receive the actual real time price from the server, the price starts dropping. 

This indicates that the households decrease their demand once they receive higher price values. 

 

 

 

 

 

 

 
 

Figure 23: Real time price that server sends and meters receive for a day under man in the middle attack on the 
total number of  smart meters for both scenarios. 



51 

 

 

 
Figure 24: Real time price that server sends and meters receive for a day under man in the middle attack on the 

fraction of  50% of  smart meters for both scenarios. 
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It is worth noting the fact that in the worst case scenario (extreme scenario on 100% smart meters) the values of  

the price while the system is under attack are moderate and fluctuate around certain -higher than the baseline 

scenario- price. The expected behavior would be the one depicted in Figure 27, in which the price is steadily 

increasing throughout the period of  the attack. Our case can be explained by the fact that the server is always 

capable of  providing the demanded energy. This means that the maximum demand (upper demand boundary) 

can be provided with a certain price by the server; the price plot in Figure 23. On the other hand, the behavior in 

Figure 27, where the price is continuously increasing, can be derived by a system in which the server cannot 

provide the demanded energy. In this case, the server has lower capacity than the aggregated demand. Thus, 

when the meters demand higher energy than the server is able to provide, then the price is constantly increasing.  

 

 

 

 

 

 

 

 

 

Figure 25 Real time price that server sends and meters receive for a day under man in the middle attack on the fraction 
of  5% of  smart meters for both scenarios. 
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We are able to replicate this behavior by lowering the maximum capacity of  the server. We decrease the higher 

available capacity of  the server by 1/5 of  the maximum demand. The plots in Figure 26 confirm this behavior. 

When the aggregate demand is higher than the maximum capacity then the server increases the real time price in 

order to compensate the costs of  operation. However, because the households continue to demand more energy 

the price keeps increasing (Figure 27). 

 

 

 

Figure 27: Real time price that server sends and meters receive for a day under man in the middle attack 
extreme case, in which the server is incapable to serve the high demand of  the system. This may results in high 

energy costs for the system and subsequently higher costs for the individual households. 

  

Figure 26: Aggregate demand for the system under man-in-the-middle attack where the capacity of  the 

server is lower than the aggregate demand. 
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We also tested this case with the attack in smaller fraction of  smart meters. Figures 28, 29 indicate the results for 

demand and price for the system under man-in-the-middle attack on 50% and 5% of  the smart meters 

respectively. The results show that because the aggregate demand is not higher than the maximum capacity of  

the server, the price, even if  it is increased, it fluctuates around a certain price range and does not constantly 

increase. 

 
Figure 28: Price signal and aggregate demand for the system under man-in-the-middle attack where the 
capacity of  the server is lower than the aggregate demand. The fraction of  the affected smart meters is 5%. 

 
Figure 29 Price signal and aggregate demand for the system under man-in-the-middle attack where the capacity 

of  the server is lower than the aggregate demand. The fraction of  the affected smart meters is 50%. 
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4.2 Effect of DoS attack on price and demand 

To investigate the effect of  DoS attack on the price signal and the aggregate demand we run the simulation for 

the model for the baseline scenario as well as the scenario under attack. Each scenario runs within one day and in 

30 replications. From the 30 replications the median curve is extracted. The attack takes place in different times 

within a day and lasts for 2 hours. During the attacks households continue to demand energy using the latest 

received price. The DoS attacks are launched in low peak and high peak hour. 

 

 

 

 

 

 
Figure 30: Aggregate demand of  the system plot for a day under DoS attack. The x-axis indicates the day in 96 time steps 

whereas the y-axis indicate the aggregate demand. The yellow line indicates the baseline scenario.  The attack launches in high peak 
hour (green line). 

 
Figure 31: Price signal throughout a day under a Dos attack on high peak hour.  
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Overall, the results show that the attacks largely affect the system; during their occurrence the price signal is not 

transmitted/received (the transmitted and received prices have the same values) (Figures 31 and 33). 

Furthermore, the time for recovery of  the system is the same for both attacks. The price signal immediately 

returns to its normal state and follows the baseline scenario. Also, during the attack the households increase their 

demand as the price they have received before the attack is constant (Figures 30 and 32). Hence, this state could 

have serious implications for the system, due to the increased aggregate demand. The immediate recovery of  the 

server leads to the healthy state of  the system, because it forces households to reduce their demand. 

 

The assumption of  using last received price may affect the outcome of  these attacks. To check this, we consider 

additional scenarios where the DoS attack starts in several times of  the day. More specifically, we run ten 

independent scenarios under DoS attack in different times, starting from hour 2 till hour 20 with step 2. The 

results show that aggregate demand varies with regards to current received price. In cases where the last received 

price is smaller than the price households are supposed to receive, then the demand increases, whereas when the 

price is higher, then the demand lowers (Appendix I). This behavior indicates that the DoS attack is partially 

affected by the time of  the day and the subsequent values of  price compared to the last received price. 

 

 
Figure 32: Aggregate demand of  the system plot for a day under DoS attack. The x-axis indicate the day in 96 time steps 

whereas the y-axis indicate the aggregate demand. The yellow line indicates the baseline scenario.  The attack launches in low peak 
hour (green line). 



57 

 

 

 

4.3 Scale of Man-in-the-middle attack 

To investigate the effects of  different scales of  integrity attack on the price signal and the aggregate demand we 

run the simulation for the model for the scenario under attack. Each scenario runs within one day and in 30 

replications and different fraction of  affected households is used (5%, 50%, and 90%). From the 30 replications 

the median curves is extracted.  

 

When a fraction of  households are affected and receive the false price by the attacker the households that receive 

the proper price are affected implicitly. And this because the server calculates the price based on the aggregate 

demand of  the system, indicating that the higher demand of  the affected households increases the price 

transmitted to the other households. In Figure 34, the percentage of  the deviation from the received price in the 

baseline scenario of  the received price by non-affected users when the system is under attack is shown. The 

trend of  the plots supports the former statement. Ultimately, the fraction of  the affected households is a 

negative factor for the normal price the non-affected households receive.   

 
Figure 33 Price signal throughout a day under a Dos attack on low peak hour. 
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Depending on whether households are directly affected (receive false price) or not by the attack, they demand 

different values of  energy. The affected households tend to increase their consumption because they receive 

reduced price by the attacker. In particular, Figure 35 shows the average deviation of  the demand of  an 

individual smart meter in high peak hours from the baseline scenario. The individual smart meters are taken from 

six different scenarios where the effect (half  price, extreme) and the fraction (5%, 50%, 90%) of  affected smart 

meters vary. For each scenario we calculate the average deviation for affected and not affected households. We 

exclude the scenarios with fraction of  100% because the results are not indicative. The results show that two 

factors influence the deviations: the number of  affected households and the false price the attacker sends. With 

the increase of  the fraction, the demand of  not affected smart meters gradually drops. The not affected 

households are implicitly affected by the aggregate demand of  the system, which increases proportional to the 

number of  affected households. So, the server increases the real time price to succeed less aggregate demand, 

but only the not affected smart meters react on this. For the latter factor, the effect is more straightforward. 

Regardless of  the fraction of  the affected households, individual affected households increase their demand in 

accordance with the price they receive. Thus, lower prices result into higher demand values for the affected 

households. Consequently, these higher values of  demand lead to lower demand values for the not affected 

households. 

Figure 34 The percentage of  the deviation from the received price in the baseline scenario of  the received price 
by non-affected users when the system is under attack. 
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Figure 35 Deviation of  demand form baseline scenario for several MITM scenarios 
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5 CONCLUSIONS AND RECOMMENTATIONS 

In this chapter, the major conclusions and insights that were gained from the previous sections of  this thesis are 

summarized. Therefore, in first sections the research question and sub-questions are answered and the 

contribution is defined. Hereafter, the derived conclusions of  this thesis are used for formulating 

recommendations for decision-makers respectively for each key stakeholder of  the system. 

 

5.1 The fundamental goal: answering the research questions 

Nowadays, Smart Grid promises to replace the existing traditional power grid with the integration of  advanced 

communication technologies and providing a more effective and reliable next generation power grid. Due to the 

fact that most of  these technologies are based on ICT tools and many automated electronic devices (such as 

smart meters) are inter-connected via communication networks throughout critical resources of  Smart Grid, 

their integration makes the Smart Grid vulnerable to cyber-attacks. So, parts of  the Smart Grid communication 

network, such as heterogeneous electronic devices and network architecture could be vulnerable points for 

attackers. Cyber-attacks can have an instantaneous impact on basic security objectives of  such a critical 

infrastructure. Availability and integrity are two of  the main security objectives and constitute the basis of  

information security. Thus, their disruption could result in serious consequences for the Smart Grid. Thus, by 

recognizing the necessity for a secure critical infrastructure that will provide efficient and secure information 

delivery throughout the Smart Grid a deeper research on Cyber security is needed. There is a demand of  new 

researchers on cyber security, which is not fully deployment yet in Smart Grid and during the next years, can shed 

light in the research for Smart Grid security. 

 

As stated before, Smart Grids are vulnerable to numerous physical and cyber-attack as a result of  

communication and computation vulnerabilities engaged in the grid. The growth of  an efficient and secure 

Smart Grid requires a deeper understanding of  possible impacts resulting from effective cyber-attacks. This 

thesis examined two different types of  cyber-attacks on DR system of  Smart Grid communication and metering 

infrastructures. More specifically, in this thesis we studied two types of  cyber-attacks which target the integrity 

and the availability in Smart Grid by manipulating the data exchange between its main components. In the first 

case, the attacker alters the content of  the data and the integrity is violated. In the second type of  the examined 

cyber-attack, the attacker either blocks or delays the data delivery and the availability is violated.  In order to 

address how cyber-attacks can influence the outcomes of  DR, regarding the energy prices and the power 

demand a simulation model were constructed to test system behaviors under different conditions. The simulation 

results for the different scenarios provide insights in the implications of  cyber-attacks on power demand and 

price signals when DR programs are used in Smart Grid. 

 

The research work was conducted to answer the main research question, “What are the implications of  integrity and 

availability cyber-attacks to price signal on DR programs and subsequently how does this affect the power demand in the Smart 

Grid?”. 

 

1. “What is the effect of  different types of  cyber-attacks in the received price signal of  the Real Time pricing (RTP) program?” 

This research question was addressed, by the analysis of  the simulation results. During DoS attack, the price is 
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not transmitted, therefore, it is zero for that period. However, this behavior does not affect the system entirely, 

because households continue to demand energy based on the last received price. On the other hand during the 

man-in-the-middle attack, the received price deviates from the transmitted price at attacker's will, thus the 

affected households effect's degree depends solely on the attacker's will and ability. 

 

2. “What is the impact of  cyber-attacks on consumers‟ energy consumption during peak hours when using the RTP program?” 

This research question again is answered based on the simulations results of  the model. From the nature of  the 

Agent Based Model, and because each agent attempts to maximize their welfare at every simulation step, the 

balance among operation cost, real time price and demand during peak hours leads the demand and 

consequently the consumption of  the households in lower values compared to a fixed price program (e.g. the 

generated synthetic profiles). This can be explained by the fact that in high peak hours the operation costs for 

the utility are higher, due to higher aggregate energy consumption in general. Thus, in real price program server 

is able to update the price based on its current state. Server sets this price in order to maximize its welfare (i.e. 

minimize costs) in the future steps. Consequently, households adjust their consumption in accordance to the real 

price and their needs in order to maximize their welfare. We observe an average 17% reduction of  the 

consumption in high peak hours with the use of  RTP compared to the default generated profiles. This indicates 

that, with the RTP program the health of  the system can be sustained more efficiently.  

 

The scenarios for the system under DoS attack show that users increase their energy demand. During the attack 

the demand increased by an average of  9.6%. This indicates that since the real time price is not transmitted 

during the attack, the households further on kept the energy demand based on previously received price. In the 

model, we assume that the DoS attack does not brought down the entire system. Even though the server for 

demand response is unavailable, the flow of  energy do not stop (i.e. energy grid is not directly affected) and 

households continue to demand energy. Thus, a potential DoS attack may affect the consumption and 

households demand for more energy. On the other hand, the scenarios for the system under MITM attack 

indicate that households are highly affected by the attack. Depending on false received price value households 

increase their energy demand accordingly, resulting in higher costs for them.  

 

3. “How do different magnitudes of  an integrity attack affect the received price and the power demand?” 

When a fraction of  households are affected and receive the false price by the attacker, households that receive 

the proper price are affected implicitly. This because the server calculates the price based on the aggregate 

demand of  the system, indicating that the higher demand of  the affected households increases the price 

transmitted to the other households. The higher the fraction of  the affected households is the higher the effect 

on the received price is. Depending on whether they are directly affected (receive false price) or not by the attack, 

households demand different values of  energy. The affected households tend to increase their consumption 

because they receive reduced price signals by the attacker. Subsequently, these higher values of  demand lead to 

lower demand values for the not affected smart meters. 

 

Ultimately, from the insights gained from the previous sub-questions, we are able to answer the main research 

question of  the thesis. The conducted research indicates that integrity and availability cyber-attacks have great 
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impact on the price and demand signals when an RTP program is used. We observed that under the integrity 

attack the price changes at attacker‘s will, and apart from the directly affected households, a number of  

households is affected indirectly. The false price signals lead the affected households to demand more energy, 

which in turn affect the behavior of  the whole system leading to undesired situations, i.e. increasing energy price 

and fluctuations of  energy demand. Nevertheless, the magnitude of  the attack is an essential factor since the 

larger the number of  affected households, the larger the implication on the system. We observed an average 

demand increase of  25% for the affected households. The demand for the non-affected households reduced 

from 5% to 15% depending on the magnitude of  the attack, which affects the price, varying in range 12% and 

36% increase, except for the attack on the smallest fraction (5%), where the influence on the total price was 

negligible. In the case of  availability attack, the system is less affected compared to the integrity attack. This may 

partially be influenced by the mitigation schema we decided to use; households use the last received price in 

order to calculate their demand during the attack. With this mitigation schema and because the duration of  the 

attack is shorter compared to integrity attack, the system is affected only in specific hours of  the day; during high 

peak hours and more importantly in the transitions between the peaks. This is crucial because households would 

demand more energy in high peak hours while they use the lower price they received in the med-peak hour 

before the attack occurs. Even though, this attack is short we observed an increase demand up to 15% for a 

specific time where the last received price differed nearly 30% from the hypothetical price for that moment.  

 

5.2 Discussion of results 

 

In this thesis project, we explored the implications of  potential cyber-attacks on Smart Grid; a critical 

infrastructure. More specifically, we focus on the impact of  attacks on the RTP program and the communication 

between utility server and households; the price and the demand signals. Even though the available literature to 

some extent analyzed the DR pricing mechanisms as an important factor that influences consumers‘ energy 

consumption, it does not give any insights on how different types of  cyber-attacks can influence the outcomes 

of  DR and indirectly the consumers‘ behavior. So, we sought to cover this gap. 

 

To do so, we implemented an ABM to simulate the Smart Grid and the potential attacks. For modeling the cyber-

attack scenarios on the DR program, an agent-based modeling approach was chosen deliberately. This approach 

readily allowed to account for the heterogeneity of  the components of  the system. The Smart Grid components 

were modeled as individual agents with their autonomous decision patterns. The interaction of  agents with one 

another evolves the overall behavior of  the system. Since, the objective of  the model was to study consequences 

of  cyber-attacks on smart grid, the attacker's capabilities to penetrate the system was not explicitly modeled. This 

allowed to simplify the model and make it more focused on the for the study relevant system aspects. The Real 

Time Pricing (RTP) program is chosen as a part of  price based DR program, since its periodicity of  the signals 

among the different components of  the system facilitates the existence of  a potential cyber threat in the system 

that could largely affect the system. RTP is implemented based on a distributed algorithm that finds the optimal 

energy consumption for the households, the optimal price values that the utility server communicates and the 

optimal generating capacity for the utility server. So, in a normal situation, where households demand desired 

energy and server is capable to provide energy, the system is stable. To disrupt this stability, cyber-attacks come 
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into play. During the simulations, the communication of  price signal is affected by DoS and man-in-the-middle 

attacks.  

 

We found that the attacks largely affect the system. More specifically, during the DoS attack, the price is not 

transmitted; therefore, it is zero for that period. This behavior does not affect the system entirely.  On contrary 

to study by Asri Satin et al. (2015) where they assume that the system is brought down during the attack, here we 

assume that electricity grid and communication network are separate systems. So, the households continue to 

demand energy based on the last received price. In our simulations, this results into increasing energy demand by 

the households on specific hours during the day; for example, during the transitions between the different peaks 

in particular, we observe an increase up to 15%. In other hours we also observe demand reduction due to the 

price difference between last received and the hypothetical price for the same time. Other assumptions, for 

example the use of  a fixed price mechanism, may lead to different behaviors. During the man-in-the-middle 

attack, the received price deviates from the transmitted price at attacker's will, thus the effect degree on the 

affected households depends solely on the attacker's will and ability, although we do not model attacker‘s 

capability of  penetrating the system. It is worth noting that even when only a fraction of  households is affected, 

the households that receive the proper price are affected implicitly. This is because, in the simulations, the server 

calculates the price based on the aggregate demand of  the system, indicating that the increased demand of  the 

affected households increases the price transmitted to the non-affected households. Considering the demand, the 

man-in-the-middle attack effect depends on whether households are directly affected or not by the attack. The 

affected households tend to increase their consumption because they receive reduced price signals by the 

attacker. On the other hand, the non-affected smart meters are implicitly affected and tend to reduce their 

consumption, since they receive increased energy prices. 

 

The scale of  the man-in-the-middle attack, in terms of  number of  affected households, is a factor that affects 

the outcomes of  the simulations. The results indicate that the higher the fraction of  the affected households is, 

the higher the effect on the price and the demand is. With the increase of  the fraction, the demand of  non-

affected households drops. The non-affected households are implicitly affected by the aggregate demand of  the 

system, which increases proportional to the number of  affected households. So, the utility server increases the 

real time price to succeed less aggregate demand, but only the non-affected households react to it.  

 

Overall, our results confirm the initial hypothesized behavior of  the aggregate load during a cyber-attack (load 

shifting – see Figure 3). When the attack occurs the aggregate demand increases as households tend to increase 

their demand on lower prices. We observe an increase of  15% and ~30% on the demand during DoS and MITM 

attack respectively. The affected households shift their loads to the period that is most favor for them. However, 

the load shifting is not clear in our simulations. This happens because the load profiles are restricted to certain 

boundaries, so it is impossible to observe apparent shifts between different peak periods. Only after the attack 

there is a steep drop of  the demand which quickly returns to the normal state. 

 

Even though the findings of  this thesis have a scientific contribution, a number of  assumptions may limit the 

potential capabilities of  the simulation model. The energy consumption for the households is based on standard 
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demand profile patterns. So, the consumption of  the households is restricted and driven by certain consumption 

boundaries. A more realistic approach would be to model appliances for each household. In this way, households 

would be able to shift their demand by switching on and off  appliances. The minimum and maximum demand 

for a household would not follow a certain pattern for a set of  households, resulting in a more accurate 

heterogeneity of  the agents. However, due to time restrictions and the complexity of  such approach we decided 

to simplify the default demand patterns. Also, the results of  attacks were indicative even with the simplified 

approach. In addition, the use of  household types is constrained only to annual demand and the proportion of  

occupancy on the Smart Grid. Other assumptions, for example psychographics (such as lifestyle, personality, etc.) 

of  consumers, are not taken into account. These would lead to a more accurate heterogeneity of  the households 

as well. Finally, the distributed algorithm that used for the RTP mechanism considers that households always 

seek to maximize their satisfaction; consumers are price takers who receive price as fixed parameter. Samadi et al. 

(2012) argue this assumption is not valid for systems with built-in automated control units and they propose a 

solution where consumers can anticipate the impact of  their actions on price values. This approach would 

increase the complexity of  the model since a set of  parameters needs to be defined for the incentives of  the 

consumers. 
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5.3 Recommendations for stakeholders 

Finally, Smart Grid is a multi-actor system and different stakeholders are involved and affected when choosing 

the price-based program of  DR and a cyber-attack is launched into the system. Thus, after the conclusions of  

this thesis, recommendations for each of  the involved stakeholders are provided in the next section. 

 

Consumers: Consumers are residential, households and groups of  people, who should be able to make 

informed decisions about the adaptation of  time-varying rates such as price-based demand response. By using 

DR programs, consumers are able to analyze and decline their electricity consumption in order to gain benefits 

and minimizing their costs (Gasparin, 2013). The results shown that, consumers are influenced directly by the 

cyber-attacks, as they receive false price signals and they adapt their energy consumption based on them. They 

increase their energy demand when fake prices are transmitted to them due to cyber attacks, which results in 

extra costs for them. In addition, a number of  consumers are implicitly affected by the MITM attacks with large 

magnitude, where the price is increasing due to the increasing demand of  the affected consumers. Due to these 

results and the diversity of  consumers that are use smart meters better awareness is needed through training 

programs and seminars that will make consumers to understand better how to turn information into energy 

savings and at the same time protect their data from cyber-attacks. In addition, targeted training can provide 

information on how to respond immediately appropriately in a case of  an attack (Mayer & Rupy, 2015). 

Furthermore, consumer involvement with the smart ICT technologies is essential but also their cyber awareness 

about the risks of  cyber-attacks and how to avoid them are critical.  

 

Utilities: According to the main findings of  this thesis, utility companies are affected by cyber-attacks in a way 

that the stability of  Smart Grid is disrupted. In cases when the utility is incapable to provide the demanded 

energy due to a cyber-attack the whole system is unstable, as the utility miscommunicate with the smart meters 

(Figure 27). As it was already stated in the literature review, the exchange of  information between utilities and 

consumers about the amount of  consuming energy increased significantly the adoption of  the ICT technologies 

in Smart Grid. Utility companies should abide by government‘s security standards such as Critical Infrastructure 

Protection (CIP) with the aim to protect from cyber attacker the big amount of  information that transferred 

from and to smart meters (European Commission, 2016). Installation and the implementation of  technologies 

that will control and secure the communication links into the interconnected network and they authenticate the 

identity of  each smart meter in the system are obligatory.  Because we observed that even if  the half  of  the 

smart meters in the system is compromised by an attacker, this has an impact in the whole system. Finally, the 

system that utility companies will use should be developed under the umbrella of  cyber security and detection of  

cyber-attacks.  

 

Policy makers: Policy makers should develop and adopt the appropriate legal frameworks, cyber-security 

standards and protocols by adhering to the important goal of  ensuring Smart Grid cyber security. By 

implementing transparent and comprehensible protocols policy makers will make an essential contribution to the 

widespread acceptance of  demand response and other smart grid technologies. Further, establishing a register 

for monitoring cyber-attacks on Smart Grids would be an important step to raise awareness for the problem and 

disseminate best practices. Regular, existing processes and policies need to be reviewed and where needed 
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updated taking into account the findings for the impact of  cyber-attack in a critical infrastructure, such as the 

Smart Grid. According to the results of  this thesis, policy makers should develop the appropriate mitigation 

strategy in order to deal with the DoS attacks when RTP mechanism is implemented and no price signal is 

transmitted to smart meters. From the results we show that RTP policy is vulnerable to cyber attacks due to 

continuous up-to-date data that should be transferred through the Internet. Thus, it is important for the policy 

makers to examine if  this policy should be implemented in large scale in real world and if  yes, which strategies 

should be followed for its successful implementation. 

 

Technology providers/ICT companies: This thesis shows that a cyber-attack targeted at the information 

exchange in a Smart Grid, can disrupt the operation of  the system significantly and can have long-lasting 

negative effects. As a consequence, technology providers should protect themselves against cyber attacks and 

develop and deliver a system that is resilient to cyber-attacks and retain its core functions even in times of  a 

massive cyber-attack. More specifically, ICT companies should be to develop and deploy systems able to 

maintain the benefits of  demand response by implementing the mandatory security standards and other 

measurements against cyber-attacks. 

 

6 LIMITATIONS, FUTURE WORK AND REFLECTION 
 
LIMITATIONS 

Due to the fact that RTP mechanism is not yet implemented broadly and also because the data from cyber-

attacks are not available in public because of  privacy and reputation reasons there is a number of  limitations 

regarding this research work and the implemented simulation model. Thus, lack of  data accessibility and time 

limitations of  this research concluding in some limitations that are presented in this section. 

 
Limitations of this research work & simulation model: 

Due to the lack of  real data and the information privacy issues concerning RTP, for the analysis a synthetic 

profiles database is used. Even though the simulation results can be partly validated through literature review, 

further validation with historic data, when they will be provided, is still needed. Moreover, during the design of  

this model, time limitations drove us to simplify the simulation process with the use of  some assumptions. A 

more advanced implementation, with greater details, could be used with the aim to keep the efficiency of  the 

simulation results by exceeding the scope and purpose of  this work. For example, by adding more attributes to 

the agents (e.g. adding probabilistic behavior models in attackers). Also, the households could be classified in 

more than 3 different types based on various factors. In this thesis, a classification was made to represent 

sufficiently the real world. The three chosen households types (1 person, 2/3 persons and 4+ persons) was 

constructed for the purpose of  this research. However, every household should be of  a unique type, which 

means each of  the households' type have to be modeled individually which is not possible to happen. 

 

 

FUTURE WORK 

Taking into account the limitations of  the research work in this thesis, a number of  suggestions for future work 

are shown as following: 
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Firstly, due to the time limitations and the lack of  data due to privacy reasons the validation of  the model 

became only based on the literature review. So, a deeper validation could be succeeding with the use of  really 

data from companies applied the RTP mechanisms and are victims of  cyber-attacks that could be available after 

a privacy agreement in the future.  Other suggestion, as concern as the model, is the implementation of  different 

appliances such as refrigerators, kettles, TV, washing machines etc. for each household. Through this 

implementation, the total amount of  demand could be more accurate and the load could be well defined. In a 

case of  a cyber-attack, the consequences could be more apparent due to the scheduling of  the various appliances 

(when they will switch ON or OFF) due to a day. One more important suggestion for further research could be 

to extend our model in order to give to consumers more incentives expect of  the price signals, which can 

influence their energy consumption, such as the use eco-friendly devices which will consume less energy (so, 

lower demand) and will contribute to the reduction of  their bills and to protection of  the environment.  

 

In this thesis of  the implications that can be achieved by two different types of  cyber-attack on price signals and 

on demand curve are examined. Next step of  the research could be the investigation of  mechanisms on how to 

protect the system from the data manipulation (man-in the middle attack) and the availability of  DR 

properties/resources (DoS attack), which violate the security objectives integrity and availability in Smart Grid. 

For a more detailed analysis of  DR programs in Smart Grid and the consequences of  cyber-attacks on their 

processes, the use of  interviews, with households or utilities companies that are already victims of  these types of  

attacks, are recommended. A final idea for future research would be to use the adaptability of  the model and to 

extent it apart from the residential sector by adding more system components to commercial and industrial 

sector. Also, to add in the existing model other types of  cyber-attacks and to evaluate their impact and also to 

find out cyber security solutions for mitigating the attacks to communication network. 

 
REFLECTION  

At the beginning, everything was so vague in my mind. The only thing that I knew it was that I wanted to do 

something that it would be really helpful for researchers around the world. But at the same time, it was too 

difficult for me to narrow my thesis‘ scope and to understand that due to the time limitations it was not possible 

to do everything that I was willing. After my Kick off  meeting, and the advice from my committee I took the 

choices and I knew exactly what I was willing to do and how. That was the first time that I really felt relief  during 

this process.  

 

In the initial stage of  my thesis, my motto was ―the more you know the better for you‖. So, I read a huge amount 

of  papers to learn what I was able to learn about Smart Grids, cyber-attacks, simulation models and all the 

relevant topics. But after reading all these papers, I was lost and I did not know which information I would use in 

my thesis. This process caused a delay because I understood that it was necessary to read the most interesting 

papers again with a more critical view the in order to write my literature review and to continue to the next steps.  

 

However, the modeling process always takes time and I do not think that there is an easy way for someone to do 

it faster. I was starting to think which software I would use for the implementation of  my idea. It was really 



68 

 

important the chosen software to satisfy my research objectives. So, after a discussion with my first supervisor 

and some research, I concluded that the best way to achieve my research goal was to develop the model into a 

simulation model using Python3 in Mesa software. This was the most time consuming part of  the thesis and I 

was not always able to keep a good working flow. The step of  the data analysis was one of  the most interesting 

parts of  the thesis. I was really happy to realize that my work paid off  and the results of  my thesis recompense 

me and may provide valid insights for future work.  

 

One of  the main obstacles of  this thesis was to write the final report. Even if, I had all the information that I 

was needed and my model was done, it was so difficult for me to start writing my report. I was afraid that I was 

not able to write a clear and understandable report for the readers. I finally succeed it because I was really 

interested on the topic, that I chose, and also, because my supervisor gave me the opportunity to send him my 

draft parts of  the report and he always encouraged me.   

 

During the process of  my thesis, I regularly had meetings with my first supervisor. Through our discussions, I 

gained many valuable insights that they had a great impact on my work. Also, these meetings helped me a lot to 

find solutions when I was stuck through the process and to find again my motivation. Moreover, his advice and 

guidelines contribute to surpass any difficulties that I faced. I am honestly grateful for the effort my supervisor 

gave to these meetings. 

 

In conclusion, I can say that this thesis was the most important achievement in my whole life till now.  It was 

really interesting to work in the totally new fields of  the Energy and Cyber security and to gain so much 

knowledge on them. In my future plans, I will definitely use all the knowledge and experience that I gain to 

protect the critical infrastructures and to find a position in the Cyber security community. 
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Appendix I 
 
Time 
(tick) 

Price 
(%) 

Demand 
(%) 

 Time 
(tick) 

Price 
(%) 

Demand 
(%) 

 Time 
(tick) 

Price 
(%) 

Demand 
(%) 

Hour 2   Hour 4   Hour 6   

8 0,75 0,8 16 -1,48 -0,71 24 -4,37 0,95 

9 0,75 0,83 17 -1,48 -0,52 25 -4,37 0,92 

10 0,75 0,98 18 -1,48 -0,33 26 -4,37 1 

11 0,75 1,12 19 -1,48 -0,28 27 -4,37 0,96 

12 0,46 0,83 20 -6,77 0,8 28 -13 4,12 

13 0,46 0,8 21 -6,77 1,04 29 -13 4,22 

14 0,46 0,8 22 -6,77 0,84 30 -13 4,35 

15 0,46 0,76 23 -6,77 0,93 31 -13 4,46 

16 -1,03 0,65 24 -10,84 3,65 32 -25,34 10,37 

Hour 8   Hour 10   Hour 12   

32 -14,19 5,5 40 -1,16 0,43 48 -1,45 2,14 

33 -14,19 5,55 41 -1,16 0,35 49 -1,45 2,2 

34 -14,19 5,59 42 -1,16 0,23 50 -1,45 2,13 

35 -14,19 5,59 43 -1,16 0,05 51 -1,45 2 

36 -17,29 8,82 44 -5,11 -0,12 52 15,76 -4,13 

37 -17,29 8,83 45 -5,11 -0,23 53 15,76 -4,15 

38 -17,29 8,89 46 -5,11 -0,27 54 15,76 -4,14 

39 -17,29 9,01 47 -5,11 -0,4 55 15,76 -4,07 

40 -18,26 9,31 48 -6,49 1,27 56 26,25 -7,76 

Hour 14   Hour 16   Hour 18   

56 9,06 -3,93 64 -3,93 1,85 72 -10,98 5,37 

57 9,06 -3,79 65 -3,93 1,81 73 -10,98 5,39 

58 9,06 -3,63 66 -3,93 1,75 74 -10,98 5,33 

59 9,06 -3,52 67 -3,93 1,65 75 -10,98 5,23 

60 13,17 -5,62 68 -20,46 10,22 76 -13,52 5,73 

61 13,17 -5,49 69 -20,46 10,05 77 -13,52 5,47 

62 13,17 -5,35 70 -20,46 9,89 78 -13,52 5,1 

63 13,17 -5,24 71 -20,46 9,66 79 -13,52 4,76 

64 8,72 -3,94 72 -29,19 15,56 80 -5,24 2,75 

Hour 20     

80 9,57 -2,21 

81 9,57 -2,45 

82 9,57 -2,69 

83 9,57 -2,84 

84 28,77 -9,04 

85 28,77 -8,99 

86 28,77 -8,89 

87 28,77 -8,75 

88 47,67 -15,33 

Figure A 1: Results from ten independent DoS attack scenarios on different time during a day. The values for 
the price and the demand show the deviation from the values of  the baseline scenario. The general observation 
is that when the price percentage is negative (i.e. smaller than the baseline value) then the demand is positive 
(higher than the one of  the baseline scenario) and vice versa.  

 


