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Measuring transfer functions of track structures in a test rig with 
laser Doppler vibrometer and accelerometers on a moving vehicle 
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A B S T R A C T   

A transfer function (TF) is an effective representation of the load-response relationship of railway 
track structures. To fill the gap in measuring track structure TFs over a wide frequency range from 
a moving vehicle, we develop a TF measurement system and the associated TF estimation 
methodology. Accelerometers are utilized to estimate the dynamic vehicle load to track struc-
tures, and a laser Doppler vibrometer (LDV) is used to scan track structures and measure their 
vibration response. First, operational modal analysis is applied to vehicle impact response over 
joints to identify its modal parameters, which support the estimation of dynamic wheel-rail forces 
from vehicle vibrations. This combination eliminates the need to pre-define the vehicle stiffness, 
vehicle damping, and vehicle body mass and enables the vehicle parameters to be updated under 
operational conditions. Meanwhile, a signal processing method is applied to LDV signals to reduce 
speckle noise and compensate for the effect of vehicle vibration. Then, a continuous track 
structure is segmented into distributed sections, and a TF is estimated for each track section using 
the estimated wheel-rail force as input and the extracted track vibration as output. We validate 
the methodology in a vehicle-track test rig on different track sections (with or without joints) and 
at different speeds (from 8 km/h to 16 km/h). The results are further compared with trackside 
measurements and hammer tests. We demonstrate that the track vibrations extracted from the 
LDV signals are consistent with those measured by trackside accelerometers. The shapes and 
resonance frequencies of the estimated TFs are in good agreement with those measured from the 
hammer tests in the frequency range of 200–800 Hz. The developed system captures differences in 
the TFs between different track sections, suggesting its potential to be used for structural health 
monitoring of railway tracks.   

1. Introduction 

In structural dynamics, a transfer function (TF) or a frequency response function (FRF) generally refers to the frequency-domain 
relationship between the input and output of a structure [1]. The input is usually the load or excitation applied to the structure, 
while the output is usually the dynamic response of the structure, such as its displacement, velocity, and acceleration. A TF or FRF 
enables the dynamic properties of a structure to be characterized over a wide range of frequencies, thus being useful in the design, 
identification, monitoring, and control of mechanical and civil structures [1]. 
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Railway tracks are important infrastructure to support train traffic with increasing speeds and axle loads. The dynamic properties of 
track structures are essential for the safety and ride quality of train operations. A TF or FRF of a railway track structure is an effective 
representation of its dynamic properties, which is often defined in terms of the load on rails as input and the vibration response of rails 
or sleepers as output [2,3]. It can be used for parameter identification [4,5] and damage detection [6,7] of railway tracks, thus 
allowing for structural health monitoring and condition-based maintenance of railway tracks. In the literature, there are two main 
approaches to (partially) measure railway track TFs or FRFs.  

• FRFs of railway tracks can be measured through impact modal testing [4–9]. In such a test, impacts are usually generated manually 
on the railhead by a hammer with a force transducer, and the track response is measured by accelerometers at locations of interest, 
usually on rails or sleepers. This approach has the advantages of low noise and high repeatability. However, such tests are usually 
conducted under conditions without train loads, and different frequency ranges require hammers of different weights and tips 
[4,5]. Meanwhile, this approach is labor-intensive and time-consuming and requires temporary operation shutdown, so it is mostly 
applied only in hot spots.  

• Specialized vehicles can be deployed to excite track structures with a controlled load from an oscillating mass and measure the track 
response [10,11]. This approach allows the dynamic stiffness (the reciprocal of reacceptance) of railway tracks to be measured on a 
moving train but only at a single frequency (below 50 Hz [10]) in one run. 

There is still a lack of technology for measuring track structure TFs over a wide frequency range from a moving vehicle. The major 
challenges are summarized below.  

(1) Obtain dynamic vehicle loads (input) to track structures. Track structures are loaded by wheels through wheel-rail contact 
forces, which are broadband in frequency due to irregularities of wheels and tracks. Such loads can be obtained by measurement 
or estimation. In practice, the instrumentation and calibration of sensors on a vehicle for wheel-rail force measurement are 
complicated [12,13]. Since static wheel-rail loads are not a major concern for TF estimation, an alternative solution is to es-
timate dynamic wheel-rail forces from vehicle vibrations. Many methods have been developed on this topic [14–17], most of 
which require a vehicle model with all parameters known. This may be difficult or expensive to achieve in real life because of 
changes and degradation of vehicle parameters, such as changes in vehicle body mass due to changes in passenger or good loads 
and degradation of springs or dampers.  

(2) Measure dynamic responses (output) of track structures. Dynamic responses of track structures are usually obtained through 
vibration measurement. Laser sensing technology enables non-contact structural vibration measurements. For example, a laser 
Doppler vibrometer (LDV) can measure the vibration velocity of a target based on the Doppler effect [18,19]. An LDV can be 
mounted on a vehicle to target its laser spot on track structures and directly measure track vibrations as the vehicle moves [20]. 
In a simulation study [21], train-borne LDVs measure a bridge to identify its mode shapes. In experimental studies [22,23], 
train-borne LDVs are used to measure railhead to identify rail bending modes and detect welds. However, speckle noise has been 
reported to be a major source of noise for an LDV that continuously scans structural surfaces, especially at high scanning speeds 
[19,20]. It appears as random and irregular spikes in the time domain and becomes a noise floor when transformed into the 
frequency domain. Speckle noise needs to be mitigated to improve the quality of measured responses. Only a few signal pro-
cessing methods have been proposed to reduce speckle noise for LDV measurements at high scanning speeds [20,24,25].  

(3) Estimate track structure TFs with moving load and response. Conventionally, a TF or FRF is defined based on load and response 
at fixed locations. When measuring track structure TFs from a running vehicle, the locations of both load and response move and 
the input–output relationship varies. Therefore, proper segmentation is needed to divide a continuous track structure into 
distributed sections and estimate an average input–output relationship from measurements on each track section. We inves-
tigate its feasibility through simulations [26], in which a TF is estimated for each sleeper using the segmented wheel-rail force 
and sleeper vibration. It is found that the TFs estimated with the moving load and response are close to those from simulated 
hammer tests at fixed locations. The vehicle speed and sleeper width affect the length of signals measured on each sleeper and 
further affect the frequency resolution of the estimated TFs. However, this simulation study neglects nonlinear track stiffness, 
force estimation errors, and measurement noise. 

To tackle the above challenges, we develop in this paper a novel track structure TF measurement system on a moving vehicle and 
validate the associated TF estimation methodology in a vehicle-track test rig. We are not aware of existing research on such a tech-
nology. The main contributions of this paper are summarized as follows.  

• The system utilizes an LDV on a moving vehicle to scan the track structure and directly measure its vibration. It is combined with 
accelerometers on the vehicle to estimate the load-response relationship of the track structure, i.e., a TF for each track section using 
the dynamic wheel-rail force as the input and the track vibration as the output. The system can continuously measure the TFs of the 
track structure under loaded conditions. 

• We combine operational modal identification of a vehicle passing over joints with wheel-rail force estimation from vehicle vi-
brations, which eliminates the need to pre-define vehicle stiffness, vehicle damping, and vehicle body mass for wheel-rail force 
estimation and enables the vehicle modal parameters to be updated regularly under operational conditions. 
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• The proposed methodology is validated in a vehicle-track test rig at different locations (with or without joints) and speeds (8–16 
km/h). The extracted track vibration is consistent with trackside accelerometer measurements, and the estimated TFs show good 
agreement in terms of the shapes and resonance frequencies with the FRFs measured from the hammer tests at 200–800 Hz. 

The remainder of this paper is organized as follows. Section 2 presents the methodology for estimating track structure TFs using 
LDV and accelerometer measurement. Section 3 conducts experiments in the vehicle-track test rig to validate the proposed method-
ology. Section 4 concludes this paper with an outlook on future research. 

2. Methodology 

Fig. 1 shows the proposed methodology for estimating track structure TFs using LDV and accelerometer measurement on a moving 
vehicle. Accelerometers are mounted on the main masses of the vehicle, and the laser spot of the LDV can be targeted at track 
components of interest, such as rails or sleepers. First, the impact response of the vehicle when passing over a joint is captured from the 
accelerometer measurement and then used to identify the modal parameters of the vehicle (natural frequencies, damping ratios, mode 
shape vectors, and modal masses). Based on these parameters, the dynamic wheel-rail force is then estimated from vehicle vibrations 
during vehicle running, denoted as w(t), with t denoting time. Meanwhile, the vibration of track structures is extracted from the LDV 
measurement by reducing the speckle noise and compensating for the effect of vehicle vibration, denoted as u(t). Finally, a TF of each 
track section H(f), with f denoting frequency, is estimated using the segmented wheel-rail force w(t) as input and the segmented track 
vibration u(t) as output. 

2.1. Input: Modal identification and force estimation 

The dynamics of a vehicle system (with n degrees of freedom) is usually characterized by the following equation of motion, 

Mẍ(t) + Kx(t) + Cẋ(t) = w(t) (1)  

where M, K, and C are the mass, stiffness, and damping matrices, respectively; x(t) is the displacement vector; w(t) is the external force 
vector, including wheel-rail forces. Eq. (1) can be converted to modal coordinate as follows under the assumption of modal damping, 

M*q̈(t) + K*q(t) + C*q̇(t) = p(t) (2)  

where M*, K*, and C* are the modal mass, stiffness, and damping matrices, respectively; q(t) and p(t) are the modal displacement and 
force vectors, respectively. From Eq. (1) to Eq. (2), the following transformation holds, 

M* = ΦTMΦ K* = ΦTKΦ C* = ΦTCΦ x = Φq p = ΦTw (3)  

where Φ is the mode shape matrix, consisting of mode shape vectors φ1, …, φn, and M*, K*, C* are diagonal matrices with the diagonal 
terms of modal mass m1*, …, mn*, modal stiffness k1*, …, kn*, and modal damping c1*, …, cn*, respectively. 

Eq. (2) is equivalent to n single-degree-of-freedom systems as follows (i = 1, …, n), 

q̈i(t)+ω2
i qi(t)+ 2ωiξiq̇i(t) =

pi(t)
m*

i
(4)  

where qi(t) and pi(t) are the i-th components of q(t) and p(t), respectively, ωi and ξi are the undamped natural frequency and damping 
ratio of the i-th mode, respectively. 

As introduced in Section 1, existing wheel-rail force estimation methods usually assume that vehicle parameters M, K, and C are 

Fig. 1. Flowchart of the proposed methodology.  
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known, but this requirement is often difficult or expensive to fulfill. Therefore, we identify modal parameters (natural frequencies, 
damping ratios, mode shape vectors, and modal masses) of the vehicle under operational conditions so as to eliminate the need to 
define the vehicle parameters. 

2.1.1. Operational modal identification 
Insulated joints are widely present in railway tracks to provide electrical isolation between two rail circuits [8], and the passage of a 

wheel over a joint induces a significant impact force on the vehicle. Such impact can excite the vehicle modes over a wide range of 
frequencies, so the impact response measured by the accelerometers carries the dynamic characteristics of the vehicle. Other types of 
rail local irregularities can be used as alternative sources, such as degraded welds, switches and crossings, and rail surface defects. We 
employ the enhanced frequency domain decomposition [27,28] to extract these characteristics, and the main steps are given as 
follows. 

A.1 Estimate the power spectrum density (PSD) matrix of measured impact response using Welch’s averaged periodogram method 
[29]. Considering the decay pattern of impact response, using an exponential window in this procedure is recommended. 

A.2 Apply singular value decomposition to the PSD matrix at each discrete frequency f to obtain a diagonal matrix containing 
singular values and a unitary matrix containing singular vectors corresponding to the singular values [27]. 

A.3 Plot the spectrum of leading singular values and pick up resonance peaks in the frequency range of interest, which indicate the 
possible existence of vehicle modes. Multiple levels of leading singular values can be used in cases of closely spaced modes [27]. 

A.4 For each resonance peak, compare the singular vectors of adjacent frequencies, for example, using the modal assurance cri-
terion [30]. If they are of high similarity, a vehicle mode can be confirmed. 

A.5 For the i-th vehicle mode, create an auto PSD using only the singular values of frequencies near the peak and apply inverse 
Fourier transform to the auto PSD to obtain an autocorrelation function. Then, estimate the damped natural frequency ωdi and the 
logarithmic decrement δi using the zero crossings and extremes of the autocorrelation function, respectively [28]. Further, calculate 
the undamped natural frequency ωi and the damping ratio ξi as follows [28]. 

ξi =
δi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ2
i + 4π2

√ (5)  

ωi =
ωdi
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
i

√ (6) 

A.6 For the i-th vehicle mode, normalize each singular vector at frequencies near the peak and rotate each complex component to 0◦

(or 180◦) if its phase lies in the first or fourth (or the second or third) quadrant [30]. Average all these real-valued vectors to obtain the 
mode shape vector of the i-th vehicle mode, denoted as φi. 

A.7 Construct the mode shape matrix Φ with all φi. Construct the mass matrix M with at least one known mass, such as the mass of 
an axle box. Determine the unknown masses by making ΦTMΦ a diagonal matrix, thus ensuring the diagonal property of M*. Calculate 
the modal mass matrix M* that contains all mi* by M* = ΦTMΦ. 

The above method can produce the natural frequencies ωi and ωdi, damping ratio ξi, mode shape vector φi, and modal mass mi* of 
the n vehicle modes (i = 1, …, n). This eliminates the need to pre-define the vehicle stiffness, vehicle damping, and part of the vehicle 
masses (e.g., the vehicle body mass) for wheel-rail force estimation. The modal identification results can be averaged over multiple 
passages of different joints, and the vehicle modal parameters can then be updated regularly and used for estimating the wheel-rail 
force w(t) from measured vehicle vibrations ẍ(t). This helps reduce force estimation errors due to variations and uncertainties in 
the vehicle parameters. 

2.1.2. Time-domain force estimation 
Based on the vehicle modal parameters identified in Section 2.1.1, the wheel-rail force on the vehicle w(t) can be estimated from 

measured vehicle vibrations ẍ(t) through the following steps. This method is adapted from the time-domain method proposed in [17]. 
Since wheel-rail contact forces are applied on wheels, only the elements in w(t) corresponding to forces on wheels are estimated, and 
the rest are constrained to zero in the estimation process. The derivation of the following equations can be found in the Appendix. 

B.1 At the s-th time step, convert the measured acceleration ẍ(ts) to modal acceleration q̈(ts) according to Eq. (3). For the i-th mode, 
estimate the i-th element of the modal force vector pd(ts-1) as follows using the current modal acceleration q̈i(ts) and the previous modal 
displacement and velocity qi(ts− 1), q̇i(ts− 1) [17]. Use zero initial condition when s = 1, i.e.,qi(t0) = 0 and q̇i(t0) = 0. 

pdi(ts− 1) =

m*
i sin(ωdiΔt)

(
(
2ω2

i ξ2
i − ω2

i

)
q̇i(ts− 1) + ω3

i ξiqi(ts− 1)

)

ωiξisin(ωdiΔt) − ωdicos(ωdiΔt)
+

m*
i ωdicos(ωdiΔt)

(

− ω2
i qi(ts− 1) − 2ωiξiq̇i(ts− 1)

)

− m*
i ωdieωiξiΔt q̈i(ts)

ωiξisin(ωdiΔt) − ωdicos(ωdiΔt)
(7) 

B.2 Convert the calculated modal force vector pd(ts-1) to a force vector wd(ts-1) according to Eq. (3). Constrain the elements of wd(ts- 
1) without wheel-rail forces to zero, denoted as w(ts-1). Then, convert the corrected force w(ts-1) back to the modal force p(ts-1) ac-
cording to Eq. (3). 

B.3 Calculate the modal displacement and velocity at the current step qi(ts), q̇i(ts) as follows, using the corrected modal force pi(ts-1) 
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[17]. 

qi(ts) = e− ωiξiΔtsin(ωdiΔt)

⎛

⎝
q̇i(ts− 1) + ωiξiqi(ts− 1)

ωdi
−

ξipi(ts− 1)

m*
i ωiωdi

⎞

⎠+ e− ωiξiΔtcos(ωdiΔt)
(

qi(ts− 1) −
pi(ts− 1)

m*
i ω2

i

)

+
pi(ts− 1)

m*
i ω2

i
(8)  

q̇i(ts) = e− ωiξiΔtsin(ωdiΔt)

((
1 − ξ2

i

)
pi(ts− 1)

m*
i ωdi

− ωdiqi(ts− 1)

)

+ e− ωiξiΔtcos(ωdiΔt)
(

q̇i(ts− 1) + ωiξiqi(ts− 1) −
ξipi(ts− 1)

m*
i ωi

)

− ωiξiqi(ts)

+
ξipi(ts− 1)

m*
i ωi

(9) 

B.4 Increase s by a time step and repeat the above process till reaching the signal end. 
B.5 Detrend the estimated force w(t) by filtering it with a high-pass filter. 

2.2. Output: Despeckle and compensation 

In the proposed methodology, the vibration response of track components is continuously measured by an LDV on the moving 
vehicle. Speckle noise is inevitable due to the significant in-plane motion of the laser spot on the track surface, and the characteristics of 
speckle noise vary with the vehicle speed [20]. In this paper, we reduce speckle noise in a raw LDV signal ur(t) using a signal processing 
method that is capable of working effectively at different speeds [25]. Meanwhile, the vibrations of the LDV and other optical com-
ponents along the laser beam affect the relative velocity between the laser head and the target. These vibrations are measured and 
denoted as ẋc1 (t), ẋc2 (t), ..., and their effect on the LDV signal is compensated for. The despeckle and compensation steps are given as 
follows. 

C.1 Perform one-level Haar wavelet decomposition and reconstruction to ur(t) and calculate spike indicators r(t) as follows [20], 

d(t) = DWTD[ur(t) ] (10)  

r(t) = |IDWTD[d(t) ] | (11)  

where DWTD[·] and IDWTD[·] represent forward and inverse discrete wavelet transforms, respectively, and d(t) denotes the detail 
coefficients. Label P% locations in ur(t) with the largest spike indicators r(t) as spikes. 

C.2 Define an autoregressive integrated moving average (ARIMA) model with an autoregressive order pA, a moving average order 
qA, and a differencing order dA. Train the ARIMA model with ur(t) along the forward direction and replace the labeled points 
sequentially with predictions from the ARIMA model [20]. This process is called imputation in [20]. Repeat the above training and 
replacement process along the backward direction, and then average the forward and backward replacements as the reconstructed 
signal up(t). 

C.3 Subtract ẋc1 (t), ẋc2 (t), ... from the reconstructed signal up(t) as follows. 

ut(t) = up(t) −
∑

j
ẋcj (t) (12) 

C.4 Apply a band-pass filter with the cut-off frequency of fL and fH to ut(t), resulting in the extracted structural vibration u(t). 
The effectiveness of the above method requires a proper selection of its parameters. Based on the previous research [20,25], we 

recommend using dA = 1, qA = 1 and setting fL and fH to the lowest and highest frequencies of interest for track vibrations, respectively. 
The parameters P% and pA should be tuned considering the despeckle performance and the computational cost at different speeds, 
which can be achieved either quantitatively based on simulated signals or qualitatively through trial and observation based on 
measured signals [25]. Once these parameters are defined, the method can be applied to LDV measurements without adjusting its 
parameters for different vehicle speeds. 

2.3. Transfer function estimation 

A railway track is a continuous structure. When measuring its TFs from a running vehicle, the load and response locations move, 
and the input–output relationship varies. Considering the variation in track dynamic properties between different locations, we divide 
track structures into distributed sections and estimate a TF using measurements on each track section, representing the average 
input–output relationship for the track section. Each track section should not be too long; otherwise, we cannot capture the variation 
within it. It should also not be too short; otherwise, insufficient data points can cause large errors and poor frequency resolution. Once 
the track section length is defined, the estimated wheel-rail force w(t) and the measured track vibration u(t) can be cut for each track 
section, which can be used as the input and output for TF estimation, respectively. 

Non-parametric methods for estimating a TF from the input and output signals of a system have been studied for decades [31–34]. 
Essentially, they smooth the ratio of the output spectrum to the input spectrum using different strategies, such as windowing and 
averaging, for the purpose of reducing errors caused by noise, transient, and leakage [32–34]. In this paper, assuming that the noise is 
uncorrelated with the excitation, we use the so-called H1 estimator to calculate the TF of a track section. The main steps are given as 
follows. 

Y. Zeng et al.                                                                                                                                                                                                           
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D.1 For each track section, divide w(t) and u(t) into overlapping segments and taper each segment with a window function. 
D.2 Estimate the cross PSD of w(t) and u(t), denoted as Puw(f), and the auto PSD of w(t), denoted as Pww(f), again using Welch’s 

averaged periodogram method [29]. 
D.3 Calculate the TF in terms of a receptance function with the input of the wheel-rail force and the output of the track 

displacement, as follows [31,32]. 

H(f ) =
Puw(f )

2πf ⋅ Pww(f )
(13) 

Fig. 2 presents the flowchart of all the steps described above for estimating track structure TFs, which essentially details Steps A–D 
in Fig. 1. The proposed methodology will be tested and validated in the next section. 

3. Laboratory Validation 

3.1. Experimental setup 

We validate the proposed methodology in a vehicle-track test rig of TU Delft named V-Track [35], as shown in Fig. 3. The scaled 
track structure consists of rails, sleepers, and track slabs. The rails are supported by the sleepers through fasteners and rail pads, and the 
sleepers are assembled on the track slabs through bolts and sleeper pads. Joints are used to connect different rail pieces. The vehicle 
system consists of a vehicle body suspended on an axle box with a wheel. The suspension provides not only stiffness and damping but 
also a static wheel load. There are two such vehicle systems (Vehicle A and Vehicle B) assembled symmetrically at the ends of a rotating 
beam. As the beam rotates, the vehicles move forward, and the wheels roll along the rails. In our measurements, the wheels are cy-
lindrical to replicate tread-rail head contact, and the angle of attack of the wheels with respect to the rails is zero so that the wheels run 
along the tangent of the track. Additionally, the vehicles cannot move laterally or tilt due to the constraint of the beam. Therefore, we 
validate the proposed methodology under conditions more similar to straight tracks. 

As shown in Fig. 3(a), we instrument the moving platform of V-Track with an LDV and accelerometers. A Polytec RSV-150 LDV is 
mounted on the center of the beam, and a mirror is fixed at the end of the beam to direct the laser downward onto the track with a fixed 
offset from the wheel. As the vehicle moves, the laser spot scans along the track and measures the vertical track vibration excited by the 
moving vehicle. As mentioned in Section 2.2, the vibrations of the LDV and other optical components can affect the LDV signal. Since 
the LDV is mounted horizontally on the center of the beam, it has little vibration along the laser beam direction and, thereby, little 
effect on the LDV signal. In contrast, the mirror mounted on the vehicle vibrates significantly, so an accelerometer is mounted on the 
mirror to compensate for its effect on the LDV signal. This setup resembles both the scanning and vibration of an LDV installed on a 
train. Meanwhile, four PCB 356B21 accelerometers are mounted on the upper and the lower masses of the vehicle to estimate the 
dynamic wheel-rail forces. Additionally, the angular position of the rotating beam is measured to determine the position of the wheels. 
As shown in Fig. 3(b), we instrument some track sections with accelerometers to measure their vertical vibrations for comparisons. 

Fig. 2. Flowchart of the proposed steps.  
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3.2. Modal identification and force estimation 

We use the model in Fig. 3(c) to represent the vertical dynamics of the vehicle in V-Track. Each of the two masses has one degree of 
freedom of bouncing. The spring and damper between them represent the suspension, and those on top represent the combined 
stiffness and damping from both the connection of the vehicle body on the rotating beam and the flexibility of the rotating beam. A 
force is applied on the lower mass, representing the contact force on the wheel. For Vehicles A and B, the lower mass represents the 
wheel and axle box with their total mass known (m2 = 40 kg), while the upper mass represents the combination of the vehicle body 
mass and part of the rotating beam mass, so the total mass m1 is unknown. All the stiffness and damping are also unknown. 

3.2.1. Modal identification 
According to Section 2.1.1, we use the impact response of each vehicle to identify its modal parameters. Fig. 4(a) and 4(b) show the 

vibrations of Vehicles A and B when passing over a joint at 4 km/h, respectively. The impact response caused by the passage of the joint 

Fig. 3. Experiment setup and vehicle model. (a) V-Track test rig and the instrumentation; (b) Trackside sensors; (c) Model of the vehicle system.  

Fig. 4. Vehicle vibrations and singular value spectra. (a) Impact response of Vehicle A; (b) Impact response of Vehicle B; (c) Spectra of Vehicle A; (d) 
Spectra of Vehicle B. 
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can be clearly observed. Both masses show attenuated bouncing motions at relatively low frequencies, while the response of the lower 
mass contains more high-frequency components. 

In order to reduce the effect of pitching motion and noise, we average the signals of the two sensors on each mass. Then, for each 
vehicle, we apply Steps A.1–A.3 to the averaged signals, and a singular value spectrum can be obtained for each passage over a joint. 
Fig. 4(c) and 4(d) plot such spectra calculated from different laps of measurements (at the same speed) for the two vehicles. The results 
show high repeatability between the different laps and also similarity between the two vehicles. For each vehicle, two dominant peaks 
below 150 Hz are confirmed through Step A.4. 

The modal parameters corresponding to these two peaks are further identified through Steps A.5–A.7. After averaging over 
different speeds (2 km/h, 4 km/h, 6 km/h, 8 km/h), different joints, and different laps, we obtain the result in Table 1. It shows that the 
two peaks correspond to the in-phase and anti-phase bouncing motions of the two masses, respectively. Despite the identical design, 
the identified modal parameters of the two vehicles deviate slightly, highlighting the value of modal identification under operational 
conditions. 

3.2.2. Force estimation 
Before applying the time-domain force estimation method to estimate the wheel-rail force from measured vehicle vibrations, we 

first conduct a simulation case study to validate the force estimation method. Based on the vehicle model in Fig. 3(c), an artificial load 
is applied to the lower mass, and the accelerations of the two masses are obtained by solving the equations of motion of the model. The 
simulated accelerations are then superposed with randomly generated Gaussian noise to resemble the disturbance of measurement 
noise. The contaminated accelerations are shown in Fig. 5(a), and they are used to estimate the force on the lower mass through Steps 
B.1–B.5. The result is further compared with the applied force in Fig. 5(b). It can be observed that the force estimation method 
accurately estimates the applied force in both the transient phase and the stationary phase. 

According to Section 2.1.2, the identified modal parameters in Table 1 are further used to estimate dynamic wheel-rail force 
through Steps B.1–B.5. Fig. 6(a) and 6(b) show the estimated forces using the accelerations of Vehicle A over a joint at different speeds. 
The results contain both positive and negative forces since static wheel loads are not included. Some residual drifts can also be 
observed but have little effect on the dynamic components and the TF estimation. High-frequency P1 force and low-frequency P2 force 
can be observed, and their amplitudes become larger as the vehicle speed increases. 

Fig. 6(c) and 6(d) plot the estimated wheel-rail forces of Vehicle A using measurements on a normal track section. The low- 
frequency components are considered to be related to the vertical alignment of the track, while the high-frequency components are 
considered to be related to the local roughness of the wheel and rail. Meanwhile, the amplitude of the dynamic wheel-rail force be-
comes larger when the vehicle speed is higher. 

3.3. Despeckle and compensation 

In this section, we validate the despeckle and compensation method in Section 2.2. We divide the track structure of V-Track into 
overlapping track sections centered at each sleeper, and each track section has a length of around two sleeper spacings. Such seg-
mentation enables the track structure to be characterized as a distributed system so that the estimated TF describes the track dynamic 
properties near each sleeper. Fig. 7 shows the measurement configurations of Vehicle A on two typical track sections. Considering the 
laser-wheel offset Δx, the wheel passes over the joint when the LDV measures Track section ①, while the wheel runs on a normal track 
section when the LDV measures Track section ④. For comparison, we mount three accelerometers (J1–J3 and T2–T4) on each track 
section. 

First, measurements on Track section ① at different speeds are studied. We use P% = 30%, pA = 30, fL = 50 Hz, and fH = 1000 Hz in 
Steps C.1–C.4. The despeckle and compensation results are shown in Fig. 8. The upper two plots compare the raw LDV signal, the 
reconstructed signal (after Step C.2), and the mirror vibration (after integration from acceleration to velocity). It shows that spikes are 
detected and replaced with reasonable predictions. The mirror vibration is dominant at low frequencies, so its effect must be 
compensated for. The lower two plots compare the LDV signal after despeckle and compensation (Steps C.1–C.4) with those measured 
by the trackside sensors (after integration from acceleration to velocity), which shows good agreement in the impact response phase as 
well as before and after the impact. 

Fig. 9 presents the despeckle and compensation results for measurements on Track section ④. Although their amplitudes are 
generally lower than those on Track section ①, the proposed method is still effective in reducing speckle noise and providing results 

Table 1 
Identified modal parameters of the two vehicles.  

Modes Averaged modal parameters Vehicle A Vehicle B 

Peak 1 (in-phase bounce) Undamped natural frequency f1 62.0 Hz 62.6 Hz 
Damping ratio ξ1 0.15 0.11 
Normalized mode shape vector φ1 [0.83 1]T [0.74 1]T 

Modal mass m1* 170.9 187.8 
Peak 2 (anti-phase bounce) Undamped natural frequency f2 98.5 Hz 111.7 Hz 

Damping ratio ξ2 0.09 0.14 
Normalized mode shape vector φ2 [-0.25 1]T [-0.2 1]T 

Modal mass m2* 52.5 50.8  
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consistent with the trackside measurements. The above results demonstrate the effectiveness of the despeckle and compensation 
method at different speeds. Slight deviations between the LDV and trackside signals can be observed, caused by imperfect despeckle or 
compensation and spatial deviations between the laser spot and the accelerometers. 

Additionally, it can be seen from Figs. 8 and 9 that the vibrations of the sleeper (J2 or T3) and the track slab (J1, J3 or T2, T4) are 
very close in the frequency range we are concerned with, as a consequence of the high sleeper pad stiffness in V-Track. This reflects the 
rationale for combining measurements on the sleeper and track slab (within one track section) for TF estimation, which provides more 
data points than using only measurement on a scaled sleeper. 

Fig. 5. Validation of the force estimation method with a simulation case. (a) Simulated vehicle vibrations; (b) Comparison between the estimated 
force and the applied force. 

Fig. 6. Estimated dynamic wheel-rail forces of Vehicle A. (a) Passing over a joint at 8 km/h; (b) Passing over a joint at 16 km/h; (c) Running on a 
normal track section at 8 km/h; (d) Running on a normal track section at 16 km/h. 

Fig. 7. LDV and trackside measurement on two track sections. (a) Track section ① with a joint; (b) Track section ④ without joints.  
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Fig. 8. Despeckle, compensation, and comparison with trackside measurements on Track section ①. (a) 8 km/h; (b) 16 km/h.  

Fig. 9. Despeckle, compensation, and comparison with trackside measurements on Track section ④. (a) 8 km/h; (b) 16 km/h.  

Fig. 10. Measurement and hammer tests on track sections with a joint.  
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3.4. Transfer function estimation and comparison 

Based on the measured track vibration and the estimated wheel-rail force on each track section, a TF of the track structure can be 
estimated according to Section 2.3. We take several track sections as examples to showcase the estimation performance. In Step D.1, 
each signal is divided into three overlapping segments of 90 % of the section length. In Step D.2, a Hanning window is used. The 
estimated TFs hold the physical meaning (receptance) that is consistent with the conventional definition of track structure TFs or FRFs. 
This allows the TF measurement system on the moving vehicle to be validated using conventional trackside technology. Therefore, we 
perform hammer tests on these track sections using a PCB 086C03 hammer and the trackside accelerometers to obtain their FRFs. It is 
worth noting that we focus mainly on the shapes and resonance frequencies of the estimated TFs and the measured FRFs in this paper, 
rather than the absolute amplitude or phase characteristics. 

3.4.1. Track sections with a joint 
Fig. 10 shows the measurement configuration on Track sections ① and ②. Since Vehicles A and B have different laser-wheel offsets, 

they measure different track sections when passing over the joint. For Vehicle A (or Vehicle B), the laser spot is behind (or ahead of) the 
wheel and thereby measures Track section ① (or ②) when the wheel passes over the joint. Additionally, hammer tests are performed, 
with the impact locations denoted as I1–I3 and the trackside sensors denoted as J1–J4. 

Fig. 11 (or Fig. 12) shows the TFs of Track section ① (or ②) estimated from the measurements on Vehicle A (or B) at two different 
speeds, in which the solid black line and the shaded area represent the mean and stand deviation of the estimates from different laps, 
respectively. We focus on the frequency range of 200–800 Hz as it belongs to the rigid-body motions (bouncing and rolling) of the 
sleepers under the wheel passage in V-Track [5], which are more related to the properties of the track structure, such as the support 
stiffness. Meanwhile, the small hammer used in the hammer tests can effectively excite the track modes in this frequency range. It can 
be seen that the frequency resolution decreases at a higher speed due to the shorter signal length. At frequencies below 600 Hz, the 
standard deviation is small, indicating good repeatability at different laps, while at higher frequencies, the standard deviation becomes 
larger. The frequency range of small standard deviations is broader at the higher speed, mainly because the vehicle moving at a higher 
speed generates larger excitations at higher frequencies. 

The colored solid lines in Fig. 11(a) and 11(b) represent the average TFs estimated using signals from the trackside sensors instead 
of the LDV signal. The results of using the LDV and the trackside sensors are close to each other since the LDV signals after despeckle 
and compensation are very close to the trackside signals. This further demonstrates the accuracy of the track vibration measurement 
using the LDV on the moving vehicle. 

Further, we compare the estimated TFs with FRFs from the hammer tests, where the impact and sensor locations correspond to the 
wheel-laser offset. A good agreement in their shapes and resonance frequencies can be observed, especially below 500 Hz, demon-
strating the effectiveness of TF estimation on different vehicles and at different speeds. The two resonance peaks at 300–400 Hz in the 
FRFs are effectively captured by the estimated TFs from the moving vehicle. At frequencies above 500 Hz, the FRFs deviate from each 
other, representing different dynamic properties for different impact and sensor locations. Consequently, the estimated TFs show large 
standard deviations as the positions of the wheel and laser spot are moving, and the resonance frequencies of the estimated TFs deviate 
more from those of the FRFs. Additionally, the FRFs are smoother than the estimated TFs due to less noise and higher frequency 
resolution. 

3.4.2. Track sections without joints 
Similar measurements and comparisons are performed on three track sections without joints, as illustrated in Fig. 13. The TF 

estimates of Vehicles A and B on Track section ③ are shown in Figs. 14 and 15, respectively. By comparing them with the FRFs from the 

Fig. 11. TF estimation and comparison on Track section ① (Vehicle A). (a) 8 km/h; (b) 16 km/h; (c) Hammer tests.  
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hammer tests, we can see good agreement in their shapes and resonance frequencies at different speeds. As the vehicle speed increases, 
their deviation increases at low frequencies and decreases at high frequencies, which is consistent with the simulation result in [26]. 
Additionally, the differences between the TF estimates on Vehicles A and B are caused by the different positions of the wheels when 
measuring this track section. 

Fig. 12. TF estimation and comparison on Track section ② (Vehicle B). (a) 8 km/h; (b) 16 km/h.  

Fig. 13. Measurement and hammer tests on track sections without joints.  

Fig. 14. TF estimation and comparison on Track section ③ (Vehicle A). (a) 8 km/h; (b) 10 km/h; (c) 14 km/h; (d) 16 km/h; (e) Hammer tests.  
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By comparing Figs. 14 and 15 with Figs. 11 and 12, we can see that there is one dominant peak in the frequency range of 300–400 
Hz on the track section without joints whereas there are two on the track sections with a joint. This difference reflects the variation in 
track dynamic properties between these sections. Additionally, the standard deviations of the estimates on the track sections with the 
joint are generally smaller than those without joints. This confirms that excitations with large amplitude and broad frequency bands 
improve the TF estimation performance. 

The TF estimation results on Track sections ④ and ⑤ are shown in Figs. 16 and 17, respectively. The estimated TFs are in good 
agreement with the measured FRFs and capture the dominant resonance peaks. As the vehicle speed increases, their deviation at high 
frequencies becomes smaller, whereas that at low frequencies becomes larger. The results demonstrate the effectiveness of TF esti-
mation on normal track structures at different speeds. 

In this paper, we focus on the shapes and the resonance frequencies of the TFs and FRFs since they depend strongly on the track 
dynamic properties, such as the track stiffness, thus being useful for structural health monitoring. Nevertheless, deviations in both 
frequency and amplitude can be observed, and the possible reasons are discussed as follows. 

Fig. 15. TF estimation and comparison on Track section ③ (Vehicle B). (a) 8 km/h; (b) 10 km/h; (c) 14 km/h; (d) 16 km/h.  

Fig. 16. TF estimation and comparison on Track section ④ (Vehicle A). (a) 8 km/h; (b) 10 km/h; (c) 14 km/h; (d) 16 km/h; (e) Hammer tests.  
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• The track properties, such as stiffness and damping, can differ from unloaded conditions to loaded conditions due to the nonlin-
earity of track components. The developed system on the moving vehicle has the advantage of measuring the TFs under loaded 
conditions, whereas the hammer tests measure the FRFs without vehicle loads.  

• Errors in the vehicle model for wheel-rail force estimation are considered to be the main source of errors in the TF estimation since 
the accuracy of the track response measurement and the force estimation method has been verified. Errors in the vehicle parameters 
can be reduced by regularly updating the vehicle model through the operational modal identification.  

• Vehicles A and B are assembled symmetrically on the rotating beam, which affects each other primarily through the rotating beam 
and secondarily through the track structure. This paper assumes a single input for each vehicle and a single input for the track 
structure, so each vehicle is an additional excitation source for the other vehicle and the track structure, thus affecting the force and 

Fig. 17. TF estimation and comparison on Track section ⑤ (Vehicle B). (a) 8 km/h; (b) 10 km/h; (c) 14 km/h; (d) 16 km/h; (e) Hammer tests.  

Fig. 18. Simulation study on a bogie. (a) Bogie model; (b) Singular value spectra; (c) Comparison between the estimated forces and the 
applied forces. 
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TF estimation. Our vibration measurements show that such influence is negligible, so decoupling the two vehicles in the TF 
estimation is still reasonable. 

4. Discussions 

This paper demonstrates the TF measurement system on a scaled test rig in our laboratory. While its application in real fields is 
beyond the scope of this paper, this section aims to discuss the potential applicability of the methodology when faced with challenges 
closer to real fields. 

A simulation study of a bogie with two wheels is considered, as shown in Fig. 18(a). It has four degrees of freedom (zb, βb, zw1, zw2) 
and two input forces on the two wheels (fw1, fw2). The forces are assumed to be identical, but there is a time delay due to the distance 
between the two wheels. Four accelerometers are used to measure the vibration response. This bogie model is used to investigate the 
applicability of the modal identification and force estimation methods (in Section 2.1) to vehicles with multiple wheels and modes of 
similar frequencies. 

This bogie has four modes – two rigid motions at 0 Hz (due to insufficient constraints) and the bouncing and pitching of the bogie 
relative to the wheels at two respective frequencies. To resemble the case of closely spaced modes, the mass and stiffness parameters of 
the bogie are adjusted to overlap the bouncing and pitching frequencies. Then, as shown in Fig. 18(a), impact forces are applied to the 
two wheels to simulate their passage over a joint, and the accelerations at the four sensor locations are obtained. According to Section 
2.1.1, the first two levels of leading singular values are calculated and plotted in Fig. 18(b). Each level exhibits one resonance peak, and 
the modal parameters of the two peaks are identified and presented in Table 2. Meanwhile, the theoretical results of the bogie modes 
are derived through eigenvalue analysis and compared in Table 2. Despite the very close frequencies of the two modes, the method 
effectively identifies their modal parameters, demonstrating the applicability of the modal identification method to distinguish be-
tween closely spaced modes. 

Further, forces similar to that in Fig. 5 are applied to the two wheels, and the accelerations at the sensor locations are computed 
using the bogie model. The simulated accelerations are superposed with Gaussian noise and then used to estimate the dynamic forces 
on the two wheels according to Section 2.1.2. The modal parameters identified above are used for the force estimation. The estimated 
forces are compared with the applied forces in Fig. 18(c), and their agreement demonstrates the applicability of the force estimation 
method to multiple wheels. The estimation error for one wheel becomes pronounced when the other wheel is subject to a large impact 
force, reflecting the mutual interference between the two wheels on the bogie. The estimated wheel-rail dynamic forces can be further 
combined with track vibrations measured by an LDV to estimate track structure TFs with multiple inputs. 

5. Conclusions 

This paper develops a novel track structure TF measurement system and the associated TF estimation methodology based on LDV 
and accelerometer on a moving vehicle. Enhanced frequency domain decomposition is applied to vehicle impact response over a joint 
to obtain its modal parameters, which further support the estimation of dynamic wheel-rail forces from vehicle vibrations using a 
Duhamel integral-based method. A despeckle and compensation method is applied to LDV signals to reduce speckle noise and extract 
track vibrations. A TF is then estimated for each track section using the estimated wheel-rail force as input and the measured track 
vibrations as output. This methodology is validated on different sections of a scaled vehicle-track test rig at different speeds through 
comparisons with trackside measurements and hammer tests. The main conclusions are summarized as follows.  

(1) The modal identification method eliminates the need to pre-define the vehicle stiffness, vehicle damping, and vehicle body mass 
for wheel-rail force estimation and enables the vehicle modal parameters to be updated under operational conditions. 

(2) The LDV and accelerometer measurements provide TF estimates that are in good agreement in terms of the shapes and reso-
nance frequencies with the FRFs measured from hammer tests at 200–800 Hz. Such effectiveness holds for the whole vehicle 
speed range tested, from 8 km/h to 16 km/h.  

(3) The standard deviation of the TF estimates becomes larger at high frequencies due to the variation of track dynamics when the 
wheel and laser spot are moving. Among the speeds tested, a higher vehicle speed yields smaller standard deviations of the 
estimated TFs over different laps and also smaller deviations between the estimated TFs and the measured FRFs at high 
frequencies. 

Table 2 
Comparison between the identified modal parameters and the theoretical results.  

Modes Averaged modal parameters Identification Theory (neglect damping) 

Peak 1 (bogie pitching) Undamped natural frequency 9.04 Hz 9.04 Hz 
Damping ratio 0.03 / 
Normalized mode shape vector [1 -0.76 -0.09 0.84]T [1 -1 0 0.75]T 

Peak 2 (bogie bouncing) Undamped natural frequency 8.71 Hz 8.72 Hz 
Damping ratio 0.03 / 
Normalized mode shape vector [0.89 1 -0.78 -0.21]T [1 1 -0.8 0]T  
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(4) Unlike conventional hammer tests that can only be applied at one location at a time, usually without vehicle loads, the proposed 
TF measurement system can continuously scan track structures and measure their TFs under loaded conditions.  

(5) The differences in the shapes and resonance frequencies of the estimated TFs between different track sections reflect the 
variation of track dynamic properties, suggesting that the system has the potential to be used for structural health monitoring of 
railway tracks. 

To further reduce errors in wheel-rail force estimation, the proposed method will be improved in the robustness to model errors. 
Different TF estimators with different smoothing strategies will also be investigated to improve the accuracy and robustness of TF 
estimation. Moreover, field measurements will be conducted to further test the proposed methodology, both on straight tracks and 
curved tracks. The goal is to achieve track TF measurements at normal train operating speeds so that large-scale monitoring of track 
dynamic properties can be conducted efficiently. 
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Appendix 1 

The following derivation based on the time-domain method in [17] is presented below to support Eqs. (7)–(9) in Section 2.1.2. 
According to the Duhamel integral, the i-th modal displacement is expressed as follows. 

qi(t) = e− ωiξi t

⎛

⎝
q̇i(0) + ωiξiqi(0)

ωdi
sin(ωdit) + qi(0)cos(ωdit)

⎞

⎠+
e− ωiξi t

m*
i ωdi

∫ t

0
eωiξiτpi(τ)sin(ωdi(t − τ) )dτ (A1)  

where pi(0) and q̇i(0) are the initial modal displacement and velocity, respectively. 
By taking the first-order and second-order derivatives of Eq. (A1) with respect to t, the modal velocity and acceleration can be 

obtained, respectively. Then, the modal displacement, velocity, and acceleration are discretized in the time step from s-1 to s (Δt = ts-ts- 
1, s = 1, 2, …) as follows. 

qi(ts) = e− ωiξiΔt

⎛

⎝
q̇i(ts− 1) + ωiξiqi(ts− 1)

ωdi
sin(ωdiΔt) + qi(ts− 1)cos(ωdiΔt)

⎞

⎠+
e− ωiξiΔt

m*
i ωdi

∫ Δt

0
eωiξiτpi(τ)sin(ωdi(Δt − τ) )dτ (A2)  

q̇i(ts) = e− ωiξiΔt
((

q̇i(ts− 1) + ωiξiqi(ts− 1)

)

cos(ωdiΔt) − ωdiqi(ts− 1)sin(ωdiΔt)
)

+
e− ωiξiΔt

m*
i ωdi

d
dt

∫ Δt

0
eωiξiτpi(τ)sin(ωdi(Δt − τ) )dτ

− ωiξiqi(ts) (A3)  
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q̈i(ts) =

(
(
2ω2

i ξ2
i − ω2

i

)
q̇i(ts− 1) + ω3

i ξiqi(ts− 1)

)
e− ωiξiΔtsin(ωdiΔt)

ωdi
−

(

ω2
i qi(ts− 1) + 2ωiξiq̇i(ts− 1)

)

e− ωiξiΔtcos(ωdiΔt) +
e− ωiξiΔt

m*
i ωdi

(

ω2
i ξ2

i

− 2ωiξi
d
dt

+
d2

dt2

)∫ Δt

0
eωiξiτpi(τ)sin(ωdi(Δt − τ) )dτ

(A4) 

The following integrals can be obtained when the modal force is assumed constant within the time step from s-1 to s. 
∫ Δt

0
eωiξiτpi(τ)sin(ωdi(Δt − τ) )dτ =

pi(ts− 1)

ω2
i

(
ωdieωiξiΔt − ωdicos(ωdiΔt) − ωiξisin(ωdiΔt)

)
(A5)  

d
dt

∫ Δt

0
eωiξiτpi(τ)sin(ωdi(Δt − τ) )dτ =

pi(ts− 1)

ωi

(
ωdiξieωiξiΔt + ωi

(
1 − ξ2

i

)
sin(ωdiΔt) − ωdiξicos(ωdiΔt)

)
(A6)  

d2

dt2

∫ Δt

0
eωiξiτpi(τ)sin(ωdi(Δt − τ) )dτ = pi(ts− 1)

(
ωdiξ2

i eωiξiΔt + ωdi
(
1 − ξ2

i

)
cos(ωdiΔt) + ωiξi

(
1 − ξ2

i

)
sin(ωdiΔt)

)
(A7) 

Eqs. (7)–(9) can then be obtained by substituting Eqs. (A5)–(A7) to Eqs. (A2)–(A4). 
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