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a b s t r a c t

Reinforcement learning (RL) is promising for complicated stochastic nonlinear control problems.
Without using a mathematical model, an optimal controller can be learned from data evaluated by
certain performance criteria through trial-and-error. However, the data-based learning approach is
notorious for not guaranteeing stability, which is the most fundamental property for any control
system. In this paper, the classic Lyapunov’s method is explored to analyze the uniformly ultimate
boundedness stability (UUB) solely based on data without using a mathematical model. It is further
shown how RL with UUB guarantee can be applied to control dynamic systems with safety constraints.
Based on the theoretical results, both off-policy and on-policy learning algorithms are proposed
respectively. As a result, optimal controllers can be learned to guarantee UUB of the closed-loop system
both at convergence and during learning. The proposed algorithms are evaluated on a series of robotic
continuous control tasks with safety constraints. In comparison with the existing RL algorithms, the
proposed method can achieve superior performance in terms of maintaining safety. As a qualitative
evaluation of stability, our method shows impressive resilience even in the presence of external
disturbances.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The recent progress in reinforcement learning (RL) (Sutton,
arto, & Williams, 1992) has produced many interesting and im-
ressive results in control problems and proves to be effective in
inding optimal controllers for nonlinear stochastic systems mod-
led by Markov decision process (MDP), for which the traditional
ontrol methods are hardly applicable. However, the learning
ethods are notorious for not guaranteeing stability. Given a
ontrol system, stability is one of the most important properties,
ecause an unstable system is typically useless and potentially
angerous. This presents a major bottleneck for the broad control
ngineering applications. Stability analysis has a long history in
ontrol engineering, in which Lyapunov’s method plays a central
ole (Sastry, 2013; Slotine, Li, et al., 1991; Vidyasagar, 2002).
owever, the classical control methods rely on the full or partial
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knowledge of the system dynamics to design controllers and
are largely limited to systems with simple dynamics. Thus, it is
a natural move to combine RL with control theory to develop
learning control methods with a stability guarantee (Busoniu,
de Bruin, Tolic, Kober, & Palunko, 2018; Han, Tian, Zhang, Wang,
& Pan, 2019; Han, Zhang, Wang, & Pan, 2020).

Among various definitions of stability, uniformly ultimate
boundedness stability (UUB) has been extensively studied for
dynamic systems (Corless & Leitmann, 1981; Jain & Bhasin, 2017).
UUB generally says that the trajectories will enter the neigh-
borhood of the equilibrium within finite time and never escape
from this set thereafter (see the trajectory in Fig. 1). Intuitively,
this property is consistent with the requirement of many control
tasks with constraints on the states, where the states are required
to stay in a certain region which is safe. Thus in this paper, as
an application scenario, the controller with UUB guarantee is
learned to solve control tasks with safety constraints. In terms
of learning a controller, UUB is well known in the context of
adaptive dynamic programming (ADP) on (1) UUB of the states
or tracking error in uncertain systems (Mu, Ni, Sun, & He, 2016;
Shih, Kaul, Jagannathan, & Drallmeier, 2007; Yang, Liu, Wei, &
Wang, 2016) and (2) UUB of the estimation error of critic function
and controller (Luo, Yang, Liu, & Wu, 2019; Shih et al., 2007;
Wang, Liao, & Dong, 2018). However, in ADP, the model structure,
not necessarily the model parameters, should be known a prior.
And the input structure of the nonlinear system is often assumed
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Conceptual illustration of UUB in the state space and the relation among
the starting set Γ , the edge set ∆ and the inner set B. For trajectories starting
rom the set Γ : {s|∥s∥ ≤ b}, the state will eventually enter and stay inside the
inner set B : {s|∥s∥ ≤ η} after T time steps..

to be affine. However, the UUB analysis for the general class of
nonlinear stochastic systems by solely using data has not been
addressed and remains as an open problem (Busoniu et al., 2018;
Gorges, 2017).

The control tasks with safety constraints on the state have
been extensively studied in model predictive control (MPC) lit-
erature (Mayne, 2001; Mayne, Rawlings, Rao, & Scokaert, 2000)
and the results are applied in various industrial processes (Garcia,
Prett, & Morari, 1989; Scattolini, 2009). In the context of RL,
control problems with safety constraints are also well studied.
In Achiam, Held, Tamar, and Abbeel (2017), the authors pro-
posed a safety constrained policy optimization (CPO) approach
based on the trust region method, which guarantees the con-
straint satisfaction with a safe initial policy, but it is restricted
to the on-policy algorithms and suffers from the low sample
efficiency. In Chow, Nachum, Duenez-Guzman, and Ghavamzadeh
(2018), a Lyapunov-based approach for solving constrained con-
trol tasks is proposed with a novel way of constructing the Lya-
punov function through linear programming. In Chow, Nachum,
Faust, Ghavamzadeh, and Duenez-Guzman (2019), the above re-
sult is further generalized to continuous control tasks. However,
the above results can only guarantee that the cumulative sum
of a designed constraint function being kept under a threshold.
Moreover, none of these results provides stability guarantees
of any kind. Since the property of attraction is missing, simply
satisfying the safety constraints does not imply stability, and the
agent may easily violate constraints in the presence of slight
disturbances.

To apply machine learning algorithms to control constrained
dynamic systems is advancing recently. In Berkenkamp, Turchetta,
Schoellig, and Krause (2017), a model-based RL method is pro-
posed to deal with Lipschitz continuous deterministic nonlinear
systems. Nevertheless, safety is ensured by validating the stability
condition on discretized points in the subset of state space with
the help of a learned model, limiting its application to rather
simple and low-dimensional systems. The combination between
RL with control barrier functions (CBF) has raised many attentions
in recent years (Cheng, Orosz, Murray, & Burdick, 2019; Choi,
Castañeda, Tomlin, & Sreenath, 2020). The general idea is to
incorporate the RL controller with a model-based controller using
CBFs. Cheng et al. (2019) exploit the nominal model to design a
CBF-based controller to ensure safety, then the unknown dynamic
is learned using the Gaussian process and the RL controller
further improves the return performance. In Choi et al. (2020),
based on the controller designed using the nominal model, RL

is exploited to solve the safe control problems in control affine

2

nonlinear systems under model uncertainty. Another common
way of solving constrained control tasks is to incorporate MPC
with online model-learning techniques, such as Ostafew, Schoel-
lig, and Barfoot (2016), Thananjeyan et al. (2020) and Zanon and
Gros (2020). Saunders, Sastry, Stuhlmueller, and Evans (2018)
propose an RL framework that can exploit expert knowledge to
safely improve control performance without violating safety con-
straints. Different from these approaches, in this paper, neither
the nominal model nor expert knowledge is needed to learn a
safe controller.

In this paper, a novel data-based UUB theorem without using a
mathematical model is proposed. Based on the theoretical result,
an off-policy based on an actor–critic algorithm and a policy
optimization algorithm are developed respectively to learn con-
trollers with the UUB guarantee. The contributions of this paper
can be summarized as follows:

• A novel and principled method is proposed to construct
Lyapunov functions based on data to analyze the closed-
loop stability of stochastic nonlinear systems characterized
by MDP.
• The classical definition of UUB is generalized to deal with

control tasks with safety constraints on the states.
• Practical algorithms are designed to search for the optimal

safe policy with UUB guarantee while safety is guaranteed
both during learning and exploitation.

In a series of high-dimensional continuous control tasks with
safety constraints such as locomotion for legged robots and ma-
nipulators, as well as a quadrotor, the proposed algorithms out-
perform the existing (safe) RL algorithms (Achiam et al., 2017;
Chow et al., 2019) in terms of both performance and safety.
Besides, it is empirically shown that the controller with the UUB
guarantee is more capable of dealing with perturbations and
disturbances in comparison with those without such guarantees.

The remainder of this paper is organized as follows: the pre-
liminaries and problem formulation are introduced in Section 2;
the main theoretical result is presented in Section 3; an off-
policy algorithm and a policy optimization algorithm with the
UUB guarantee are described in Section 4; the experiments that
validate the proposed algorithms are presented in Section 5;
Section 6 concludes this work.

2. Preliminaries

In RL, a dynamical system is often characterized by a Markov
decision process (MDP) in which the next state only depends
on the current state and action. In MDPs, st ∈ S ⊆ Rn is
the state vector at time t , S denotes the state space. The agent
then takes an action at ∈ A ⊆ Rm according to a stochastic
policy/controller1 π (at |st ), resulting in the next state st+1. The
transition of the state is dominated by the transition probabil-
ity density function p(st+1|st , at ), which denotes the probability
density of the next state st+1. In MDP, a reward function r(st , at )
is used to measure the immediate performance of a state–action
pair (st , at ). The goal is to find π which can maximize the ob-
jective function/return J(π ) ≜

∑
∞

t=1 Est ,at γ
t r(st , at ). Additionally,

for control problems with safety constraints, a continuous non-
negative constraint function c(st , at ) is introduced to measure
how safe a state–action pair is. The state–action pair can be
viewed as safe if c(st , at ) is lower than a designed threshold.

Next, the notation of this paper will be introduced in two
parts. First, the concept and definition of UUB studied in this
paper are introduced. Then the constrained control problems
or so-called constrained Markov decision process (CMDP) are
described as a particular application scene of UUB.

1 We use controller throughout the paper.
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Fig. 2. An illustration of the concept of UUB in time domain.

.1. Uniformly Ultimate Boundedness (UUB) stability

First, the classical definition of UUB stability is given as fol-
ows.

efinition 1 (Thowsen, 1983). A system is said to be uniformly
ultimately bounded with ultimate bound η, if there exist positive
constants b, η, ∀ϵ < b, there exists T (ϵ, η), such that ∥st0∥ <
H⇒ ∥st∥ < η, ∀t > t0 + T . If this holds for arbitrary large ϵ,

hen it is globally uniformly ultimately bounded.

The classical definition of UUB generally says that for trajec-
ories starting from a point where the norm of the state less than
, the state will eventually enter and stay inside the set where
s∥ ≤ η after T time steps.
However, the above definition is of limited use for the general

lass of control tasks with safety constraints, where the con-
traint functions c(st , at ) are not necessarily the norm of the state,
.e., ∥s∥. For example, safety-critical applications like autonomous
ehicles may use the distance from the working area or central
ane as the safety constraint; altitude control of a drone may re-
uire that sinusoid of an angle to be less than a certain threshold.
herefore, the classical definition of UUB is extended to the more
eneral case as follows.

efinition 2. A system is said to be uniformly ultimately
ounded with respect to cπ (·), if there exist positive constants η,
, ∀ϵ < b, there exists T (ϵ, η), such that cπ (s1) ≤ ϵ H⇒ cπ (st ) ≤
,∀t ≥ T .

Where cπ (s) ≜ Ea∼π c(s, a) denotes the constraint function
nder the controller π . In the rest of this paper, UUB refers to
he property defined above.

The difference between Definition 1 and Definition 2 is merely
n the substitution of the norm of states with a constraint func-
ion. The general idea of UUB in Definition 2 is demonstrated in
igs. 1 and 2 in the state space and time domain respectively.
ith the proper choice of c(s, a), UUB in terms of the constraint

function implies recoverability from danger within finite time. For
example, a vehicle will recover to the road within finite time if
it is accidentally disturbed and run into a risky area; a motor can
recover to normal status within finite time if the kinetic energy
or torque accidentally exceeds a dangerous threshold.

2.2. Control of constrained dynamic system

In this section, the control problems with safety constraints
will be formulated. It will be further shown how safety con-
straints can be ensured as a consequence of the UUB guarantee.

The safety constraints are measured by a continuous non-
negative constraint function c(st , at ). In the safety constrained
control tasks, the objective is to find a controller π which not
3

only maximizes J(π ) but also satisfy the expectation of the safety
constraint Est cπ (st ) ≤ d,∀t ∈ [1,∞), i.e.,

max
π

J(π ) s.t. Est cπ (st ) ≤ d,∀t ∈ [1,∞). (1)

An MDP with such safety constraints is called constrained Markov
decision process (CMDP) (Altman, 1999).

If the system is UUB in terms of the constraint function with
an ultimate bound η < d, the value of the constraint function is
guaranteed to converge and stay under η after T time steps. To
further ensure safety during the T time steps, it is also needed to
ensure that the expectation of the constraint function to be lower
than d. Later it will be shown that this is an inherent property
of the system being UUB. Thus solving the control problem (1)
is equivalent to finding an optimal controller that ensures the
closed-loop system is UUB.

Before proceeding, some notations are introduced. The action-
value function Qπ (s, a) ≜

∑
∞

t=1 Est ,at [γ
t r(st , at )|s1 = s, a1 =

a] denotes the subsequent return under the controller π after
taking action a at the state s. The value function with respect to
constraint function V c

π (s) ≜
∑
∞

t=1 Est ,at [γ
tc(st , at )|s1 = s] denotes

the discounted sum of constraint function starting from the state
s under the controller π . ρ(s1) denotes the probability density
function of starting states, which is a continuous function and
takes positive values on the starting set Γ ≜ {s|cπ (s) ≤ b}.
The closed-loop transition probability is denoted as pπ (s′|s) ≜∫
A π (a|s)p(s′|s, a)da. Also note that the closed-loop state distri-

bution at a certain instant t as p(s|ρ, π, t), which can be defined
iteratively: p(s′|ρ, π, t+1) =

∫
S pπ (s′|s)p(s|ρ, π, t)ds,∀t ∈ Z[1,∞)

and p(s|ρ, π, 1) = ρ(s).
Two important sets are exploited in this paper, as shown in

Fig. 1. First, the edge set ∆ ≜ {s|cπ (s) ≥ η} is composed of states
that are unsafe. Conversely, the inner set B ≜ {s|cπ (s) < η} is the
et of absolutely safe states and B ∪∆ = S.

. Theoretical results

In this section, the main assumptions and a novel data-based
UB theorem for stochastic systems are proposed. The UUB the-
rem enables analyzing the UUB of the system through a data-
ased manner, which further enables policy learning in the next
ection.
First, we made the following assumption:

ssumption 1. The constraint function c(s, a) is non-negative
nd there exists an integrable function g(s, a) such that c(s, a) ≤

g(s, a), ∀(s, a) ∈ S × A.

This assumption easily holds with the typical choices of con-
straint function in practice, such as kinetic energy, altitude, etc.
It is also assumed that the Markov chain induced by policy π is
ergodic with a unique stationary distribution qπ ,

qπ (s) = lim
t→∞

p(s|ρ, π, t),

hich is a common assumption for the optimal control of a
arkov decision process (Bhandari, Russo, & Singal, 2018; Korda
La, 2015; Sutton, Maei, & Szepesvári, 2009; Zou, Xu, & Liang,

019).
Our approach utilizes the Lyapunov function to prove the

tability condition. Lyapunov’s method has long been used in
ontrol theory for stability analysis and controller design (Boukas
Liu, 2000), but mostly exploited along with a known model of a
ynamic system, whether deterministic or probabilistic (Corless
Leitmann, 1981; Huang, Han, Cai, & Liu, 2011; Thowsen, 1983).
In this paper, instead of using a model, we will present the

ollowing theorem as a sufficient condition for UUB solely based
n samples.
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heorem 1. If there exist a function L(s) : S → R+ and positive
onstants α1, α2, α3, η, such that

1cπ (s) ≤ L(s) ≤ α2cπ (s),∀s ∈ S (2)

and

Es∼µN

(
Es′∼Pπ L(s

′)1∆(s′)− L(s)1∆(s)
)

<− α3Es∼µN cπ (s)1∆(s)
(3)

where µN (s) denotes the average distribution of s over the finite N
time steps,

µN (s)
.
=

1
N

N∑
t=1

p(s|ρ, π, t)

is the maximum instant that the probability of being in the edge
et is greater than zero, N = max{t : P(s ∈ ∆|ρ, π, t) > 0};
= ∞ if for any δ there exists an instant t > δ such that

(s ∈ ∆|ρ, π, t) > 0. 1∆(s) denotes the function

∆(s) =
{

1 s ∈ ∆

0 s /∈ ∆

here ∆ = {s|cπ (s) ≥ η}.
Then one has the following holds: (i) the system is uniformly

ltimately bounded with ultimate bound η; (ii) the expectation
p(s|ρ,π,t)cπ (s) is bounded during the N time steps, Ep(s|ρ,π,t)cπ (s) <

α2b
α3
+ η,∀t ∈ [1,N].

Proof. The proof can be divided into two steps. First, we will
prove that N is finite based on the conditions and assumptions,
then prove the boundedness on the expectation of cπ during the
N steps. To show this, we will assume that N is infinity and prove
by contradiction.

In that case, the finite-horizon sampling distribution µN (s)
turns into the infinite-horizon sampling distribution

µ(s) = lim
N→∞

µN (s) = lim
N→∞

1
N

N∑
t=1

p(s|ρ, π, t)

The existence of µ(s) is guaranteed by the existence of qπ (s).
ince the sequence {p(s|ρ, π, t), t ∈ Z+} converges to qπ (s) as
approaches ∞, then by the Abelian theorem, the sequence

1
T

∑T
t=1 p(s|ρ, π, t), T ∈ Z+} also converges and µ(s) = qπ (s).

hen one naturally has that the sequence {µN (s)L(s)1∆(s), T ∈
+} converges pointwise to qπ (s)L(s)1∆(s).
Let gπ (s) denote Ea∼πg(s, a). According to Assumption 1 and

(2), L(s) ≤ α2cπ (s) ≤ α2gπ (s), which follows that

µN (s)L(s)1∆(s) ≤ α2µN (s)gπ (s)1∆(s)

According to the Lebesgue’s Dominated convergence theorem
(Royden, 1968), if a sequence fn(s) converges pointwise to a
function f and is dominated by some integrable function g in the
sense that,

|fn(s)| ≤ g(s),∀s ∈ S,∀n

then one has

lim
n→∞

∫
S
fn(s)ds =

∫
S

lim
n→∞

fn(s)ds

Applying this theorem to the first term in the left-hand-side
of (3)

Es∼µEs′∼pπ L(s
′)1∆(s′)

=

∫
lim

N→∞

1
N

N∑
p(s|ρ, π, t)(

∫
pπ (s′|s)L(s′)1∆(s′)ds′)ds
S t=1 S

4

= lim
N→∞

1
N

N∑
t=1

∫
S
L(s′)1∆(s′)

∫
S
pπ (s′|s)p(s|ρ, π, t)dsds′

lim
N→∞

1
N

N+1∑
t=2

Ep(s|ρ,π,t)L(s)1∆(s)

imilarly, Es∼µL(s) = limN→∞
1
N

∑N
t=1 Ep(s|ρ,π,t)L(s). It follows that

on the left-hand-side of (3),

Es∼µ(Es′∼pπ L(s
′)1∆(s′)− L(s)1∆(s))

lim
N→∞

1
N
(
N+1∑
t=2

Ep(s|ρ,π,t)L(s)1∆(s)−
N∑

t=1

Ep(s|ρ,π,t)L(s)1∆(s))

lim
N→∞

1
N
(Ep(s|ρ,π,N+1)L(s)1∆(s)− Eρ(s)L(s)1∆(s))

Since Eρ(s)L(s)1∆(s) is finite, thus the limitation value
imN→∞

1
N (Eρ(s)L(s)1∆(s)) = 0. The above equation equals

lim
N→∞

1
N
Ep(s|ρ,π,N+1)L(s)1∆(s)

≥ lim
N→∞

α1

N
Ep(s|ρ,π,N+1)cπ (s)1∆(s)

ote that cπ (s)1∆(s) is greater than η if s ∈ ∆ and equals zero if
/∈ ∆, which can be summarized as cπ (s)1∆(s) ≥ η1∆(s). Thus

lim
N→∞

1
N
Ep(s|ρ,π,N+1)L(s)1∆(s)

≥ lim
N→∞

α1η

N
Ep(s|ρ,π,N+1)1∆(s)

= lim
N→∞

α1η

N
P(s ∈ ∆|ρ, π,N + 1)

=0

(4)

Now let us look into the right-hand-side of (3). Since µ(s) =
π (s), the right-hand-side of (3) equals

− α3Es∼qπ cπ (s)1∆(s)

≤− α3Es∼qπ η1∆(s)

− α3η lim
t→∞

P(s ∈ ∆|ρ, π, t)

ombining the above inequality with (3) and (4), one has that
imt→∞ P(s ∈ ∆|ρ, π, t) < 0, which is contradictory with the fact
hat P(s ∈ ∆|ρ, π, t) is non-negative. Thus there exists a finite N
uch that P(s ∈ ∆|ρ, π, t) = 0 for all t > N , which concludes the
roof of UUB.
Additionally, it will be shown that the expectation of cπ (s) is

ounded by a finite value during the N time steps. As N is a finite
alue, (3) implies that

Ep(s|ρ,π,N+1)L(s)1∆(s)− Eρ(s)L(s)1∆(s)

− α3

N∑
t=1

Ep(s|ρ,π,t)cπ (s)1∆(s)

hen for any instant n ∈ [1,N], one has the following holds

Ep(s|ρ,π,n)cπ (s)1∆(s)

α2

α3
Eρ(s)cπ (s)−

N∑
t=n+1

Ep(s|ρ,π,t)cπ (s)1∆(s)

−

n−1∑
t=1

Ep(s|ρ,π,t)cπ (s)1∆(s)
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Note that the expectation of cπ (s) at instant n equals∫
S
p(s|ρ, π, n)cπ (s)ds∫

∆

p(s|ρ, π, n)cπ (s)ds+
∫
B
p(s|ρ, π, n)cπ (s)ds

=Ep(s|ρ,π,n)cπ (s)1∆(s)+
∫
B
p(s|ρ, π, n)cπ (s)ds

hen the bound of the expectation of cπ (s) at instant n is derived
s follows,

Ep(s|ρ,π,t)cπ (s)

≤
α2

α3
Eρ(s)cπ (s)−

N∑
t=n+1

Ep(s|ρ,π,t)cπ (s)1∆(s)

−

n−1∑
t=1

Ep(s|ρ,π,t)cπ (s)1∆(s)+
∫
B
p(s|ρ, π, n)cπ (s)ds

≤
α2b
α3
− η

N∑
t=n+1

P(s ∈ ∆|ρ, π, t)

− η

n−1∑
t=1

P(s ∈ ∆|ρ, π, t)+ ηP(s ∈ B|ρ, π, n)

<
α2b
α3
+ η

which concludes the proof. □

Some discussion and explanations are needed for the above
heorem. First, (2) confines the property that the Lyapunov func-
ion needs to satisfy. (3) is the data-based energy decreasing
ondition, of which the evaluation requires sampling data accord-
ng to sampling distribution µN (s). Although µN (s) is defined on
he state space S , the indication function 1∆(s) only takes the
on-zero value on the edge set ∆. Thus (3) requires the Lyapunov
alue to be decreasing on large in the edge set ∆ and eventually
ntering the inner set B.

emark 1. While results on UUB of various systems are well-
nown (Corless & Leitmann, 1981; Huang et al., 2011; Thowsen,
983), however, both of these results require the full knowledge
f the dynamic model of the system. On the contrary, the pro-
osed UUB theorem enables a data-based approach to analyze the
tability of the system, i.e. collecting lots of state transition pairs
nd evaluate the value of (3) through the Monte-Carlo method.
n the data-based stability analysis, the system can be a complete
lack-box, as long as its dynamic satisfies the Markov property.

Some connections are to be drawn between safety constrained
ontrol problems and the proposed UUB theorem. If the system
s UUB with ultimate bond α2b

α3
+η < d, then it is guaranteed that

he system satisfies the safety constraint in (1). These conditions
an be satisfied by choosing the hyperparameters α2, α3, and η.
3) is the condition that requires training of the control policy,
hich will be discussed in detail in the following section.

. Reinforcement learning algorithms with UUB stability guar-
ntee

In this section, combined with the theoretical result in
heorem 1, both an off-policy and an on-policy RL algorithm are
roposed respectively. First, based on the result in Theorem 1,
n actor–critic RL algorithm called Lyapunov-based soft actor–
ritic (LSAC) is given, where two critic functions are used. The
irst is the standard critic function Q (s, a) in the actor–critic RL
 L

5

algorithm, which is used to evaluate the performance in terms of
the cumulative return. The other critic function is introduced to
evaluate the UUB condition (3). We call the second critic function
as Lyapunov critic function Lc(s, a). Then a trust-region policy
optimization algorithm, Lyapunov-based constrained policy op-
timization (LCPO) is developed. LCPO ensures that at each update
step the UUB condition is satisfied and increases the cumulative
return monotonically so that the safety during training can also
be guaranteed. In both LSAC and LCPO, a Lyapunov function is
firstly specified to directly learn the controller and Lyapunov
function. The controller is then updated to ensure that the energy
decreasing UUB condition (3) holds for the learned Lyapunov
function.

4.1. Learning a Lyapunov critic function

In Theorem 1, the Lyapunov function L(s) is essential in the
stability analysis. However, it is not directly applicable in an ex-
isting actor–critic learning framework since the gradient of L with
respect to the controller π is unavailable. To enable the actor–
critic learning, the Lyapunov critic function Lc(s, a) is introduced
to prove the stability theorem therefore making sure the learned
controller π can guarantee the stability of the closed-loop system.
Lc depends on both the state s and the action a.2 Lc satisfies
L(s) = Ea∼πLc(s, a), such that it can be exploited by judging
the value of (3). In this paper, Lc is constructed by using a fully
connected deep neural network (DNN) parameterized by φ. A
ReLU activation function is used in the output layer of the DNN
to ensure positive output.

From a theoretical point of view, some functions, such as
the norm of state and value function, naturally satisfy the basic
requirement of Lyapunov function (2). These functions are re-
ferred to as Lyapunov candidate functions. However, Lyapunov
candidate functions are conceptual functions without any param-
eterization. Since their gradient with respect to the controller
is not tractable, they are not directly applicable in an actor–
critic learning process. In the proposed framework, the Lyapunov
candidate acts as a supervision signal during the training of Lc . Lc
is updated to approximate the target function Ltarget related to the
chosen Lyapunov candidate, minimizing the following objective
function simply using least square algorithm,

J(φ) = ED

[
1
2
(Lc(s, a)− Ltarget(s, a))2

]
(5)

here D = {(s, a, s′, r, c)} is the set of observed transition tuple
nder the controller π .
The choice of the Lyapunov candidate plays an important role

n learning a controller. In control theory, the sum of quadratic
olynomials, e.g., L(s) = s⊤Ps where P is a positive definite
atrix, is often used. Such Lyapunov functions can be efficiently
iscovered by using semi-definite programming (SDP) solvers
ith certain limited conservatism for control tasks. In the context
f RL (Berkenkamp et al., 2017; Chow et al., 2018), the value
unction V c

π is proved to be a valid Lyapunov candidate. In the
eantime, the constraint function cπ is also a valid Lyapunov can-
idate due to its nonnegativity. The value function and constraint
unction are chosen to be the Lyapunov candidate in this paper
hile other potential choices are left for future study.
With the value function chosen to be the Lyapunov candidate,

he target function Ltarget in (5) is

target(s, a) = c(s, a)+max
a′

γ L′c(s
′, a′) (6)

2 It should be noted that the Lyapunov critic function Lc is not a proper
yapunov function since it also depends on action a.
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here L′c is the network that has the same structure as Lc , but
arameterized by a different set φ′. These parameters of the neu-
al network are updated through exponentially moving average
ontrolled by a hyperparameter τ ∈ R(0,1), φ′k+1 ← τφk + (1 −
)φ′k, as typically used in actor–critic algorithms (Lillicrap et al.,
015). It should be noted that when the constraint function is
hosen to be the Lyapunov candidate, the target function Ltarget is
uch simpler by having Ltarget(s, a) = c(s, a), and the L′c network
nd moving average update are not needed.

emark 2. This remark will collectively summarize the Lyapunov
erms used in the section above for clarity. (i) L refers to the
yapunov function. (ii) Lyapunov candidates are functions that
otentially can be used as a Lyapunov function, such as value
unction and ∥s∥. (iii) The Lyapunov critic function Lc is a function
ependent on the state and action, and satisfies L = Ea∼πLc(s, a).
iv) The target function Ltarget refers to the supervision signal used
n the training of Lc , which takes different forms when different
yapunov candidates are chosen. (v) L′c is a network that shares
he same structure with Lc , but only the parameters are updated
y applying moving average to the parameter of Lc . This is a
ypical trick used in the RL literature, designed to improve the
tability of the learning process.

emark 3. In this paper, the Lyapunov functions are param-
terized using neural networks. It is also possible to choose
parameterization form that can be updated using SDP, such

s a quadratic of s and a. However, such a parameterization
ay result in a large approximation error when the constraint

unction involves multiple types of nonlinearities that cannot
e approximated using a single polynomial, e.g. the constraint
unctions with non-differentiable nonlinearities that will be used
ection 5. Alternatively, neural networks are powerful function
pproximators that can theoretically approximate any nonlinear
unctions in desired precision, thus we exploit neural networks to
how the general applicability of the proposed method, and leave
ther parameterizations for future studies.

.2. Lyapunov-Based safe off-policy RL algorithm

A novel off-policy RL algorithm based on the actor–critic algo-
ithm, i.e., Lyapunov Safe Actor–Critic (LSAC), is proposed to learn
he controller π that can maximize the return while guaranteeing
he UUB for the closed-loop system.

The controller πθ is parameterized by a DNN fθ (s, ϵ) depending
n s and a Gaussian noise ϵ. The goal is to learn θ that can
aximize J(π ) in (1), while satisfying the UUB condition (3)
imultaneously. In this paper, we build the actor–critic algorithm
ased on the maximum entropy framework (Haarnoja, Zhou,
bbeel, &, Levine, 2018), which can enhance the exploration of
he controller during learning and has been proven to substan-
ially improve the robustness of the learned controller (Haarnoja,
hou, Hartikainen, et al., 2018; Ma et al., 2020). The learning
roblem is summarized as follows,

ax
θ

EDQπθ
(s, a) (7)

s.t. (3) (8)

− ED logπθ (a|s) ≥ Ht (9)

here (9) sets the entropy of the controller to be larger than
designed threshold Ht . By exploiting the Lagrange method,

olving the above constrained optimization problem is equivalent
o minimizing the following objective function,

J(π ) =ED [−Q (s, fθ (s, ϵ))+ β logπθ (fθ (s, ϵ)|s)]
+ λED∆

[Lc(s′, fθ (s′, ϵ))1∆(s′) (10)

− (Lc(s, a)− α3c)1∆(s)]

6

where β and λ are positive Lagrangian multipliers. Both the val-
ues of β and λ are adjusted through the gradient descent/ascent
method. D∆ denotes the transition pairs collected from the sam-
pling distribution µN (s).

In our implementation, the double Q-learning technique
(Van Hasselt, Guez, & Silver, 2016) is exploited, where two Q-
functions {Q1,Q2} are parameterized by neural networks with
parameters ν1 ν2. The Q-function with the lower value is ex-
ploited in the learning process (Fujimoto, Hoof, & Meger, 2018),
which is useful in mitigating performance degradation caused by
the bias in the value estimation. Taking these techniques into
consideration, the gradient concerning θ is obtained as

∇θ J(π ) =ED[−min
i

Qi(s, a)∇θ fθ (s′, ϵ)

+ β∇θ log(πθ (a|s))+ β∇a logπθ (a|s)]
+ λED∆

[∇a′Lc(s′, a′)∇θ fθ (s′, ϵ)1∆(s′)]

(11)

The gradient is composed of two parts: (1) the gradient estimated
by the Q-function and the entropy of the controller based on the
samples from replay buffer D, and (2) the gradient estimated by
the Lyapunov critic based on the samples from the edge buffer
D∆. (11) is the basis of the actor–critic algorithm and enables the
update of controller with observed transition pairs.

In the actor–critic algorithm, the Q-function is updated by us-
ing gradient descent to minimize the following objective function

J(Qi) = ED
1
2

[
r + γQ ′i (s

′, fθ (s′, ϵ))− Qi(s, a)
]2

, i ∈ {1, 2}

here Q ′i is the target network that has the same structure with
i and parameterized by ν ′i but updated through moving average.
Finally, the values of Lagrange multipliers β and λ are ad-

justed by gradient ascent to maximize the following objectives,
respectively,

J(β) = βED[logπθ (a|s)+Ht ]

J(λ) = λED∆
[Lc(s′, fθ (s′, ϵ))1∆(s′)− (Lc(s, a)− α3c)1∆(s)]

The pseudocode of LSAC is summarized in Algorithm 1.

Algorithm 1 Lyapunov-based Safe Actor–Critic Algorithm (LSAC)
Set iteration index i← 0 and learning rate δ

repeat
Sample s1 according to ρ

for each time step do
Sample at from π (at |st ) and step forward

Observe and store (st , at , rt , ct , st+1) in D

end for
Record the largest instant N at which sN ∈ ∆

Store all tuples (st , at , rt , ct , st+1), t ≤ N in D∆

for each update step do
Sample mini-batches of transitions from D and D∆ and

update parameters with gradients,

θ ← θ − δ∇θ J(π )
φ← φ − δ∇φ J(Lc)
νi ← νi − δ∇νi J(Qi)
λ← λ+ δ∇λJ(λ)
β ← β + δ∇β J(β)

end for
i← i+ 1

until (3) is satisfied and i exceeds a designed threshold.
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.3. Lyapunov-Based on-policy RL algorithm

The off-policy algorithms can exploit the data collected under
different controller and update the controller much more fre-
uently than the on-policy algorithms, and thus is more favorable
n terms of data efficiency and convergence speed. However,
afety can be hardly guaranteed during the training process of
ff-policy algorithms (Chow et al., 2019). When the controller is
rained online in the real-world and data are collected directly
rom the physical systems, safety needs to be guaranteed even
uring training. To this end, an on-policy algorithm called Lya-
unov Constrained Policy Optimization (LCPO) is proposed for
hese safety-critical scenarios.

In comparison with LSAC (11), instead of approximating the
olicy gradient using the approximated critics, LCPO is a trust-
egion style method built upon the linearization of constraint and
bjective functions locally around the current parameter θ . In
rust-region methods, a local constrained optimization problem
s solved at each update step and the parameter updates a small
tep towards improving the objective while satisfying constraints.
his determines that the optimization of policy needs more sam-
les than the actor–critic methods to correctly approximate the
onstrained optimization problem, as well as more computation
ime in the line-search at each update (Achiam et al., 2017).
owever, on the other hand, this also guarantees the approximate
onotonic improvement of the performance and safety during

raining with an initial safe policy (Amodei et al., 2016; Moldovan
Abbeel, 2012). Following such a procedure, it is possible to

irectly train a controller on the real system with safety being
ssured. The update of the policy parameter θ at the kth iteration
an be formulated as follows

k+1 = argmax
θ

E s∼D
a∼π

Qπk (s, a) (12)

s.t. E s∼D∆
a∼π

[
L(s′)1∆(s′)− (L(s)− α3c) 1∆(s)

]
≤ 0 (13)

EDDKL (πθ |πk) ≤ δ (14)

ere, πk denotes the policy parameterized by θk at kth update.
n trust-region method, there is a local policy search constraint
14) to prevent the policy from taking unreasonably large update
teps, and ensure that post-update policy stays in the neighbor-
ood of the previous policy specified by δ. Here, DKL(p|q) denotes
he KL-divergence between two distributions p and q, DKL(p|q)

.
=

p log(p/q). The KL-divergence is a measure of the difference
etween two distributions and is commonly used in trust-region
ethods (Achiam et al., 2017; Schulman, Levine, Abbeel, Jordan,
Moritz, 2015). At each update step, the above constrained opti-
ization problem is solved analytically. Since the search of policy

s constrained around the previous policy πk by (14), it is possible
o linearize the objective function (12) and the safety constraint
13) around πk and approximate the local policy search constraint
14) using second-order expansion (Achiam et al., 2017). The
pproximated optimization problem is as follows,

θk+1 = argmax
θ

g⊤Q (θ − θk)

s.t. g⊤L (θ − θk)+ h ≤ 0
1
2

(θ − θk)
⊤ H (θ − θk) ≤ δ

(15)

here gQ and gL are gradients of the objective function and the
safety constraint function with respect to θ at θk, h is the value
f the safety constraint function at θk and H is the Hessian of the
L-divergence. Note that the Fisher information matrix H is guar-

anteed to be positive semi-definite, thus the above optimization
problem is convex and its dual is as follows,

max
1

(gT
QH
−1gQ − 2λZ + λ2N )+ λh−

βδ
(16)
λ,β≥0 2β 2
7

where Z = gT
QH
−1gL and N = gT

L H
−1gL. Suppose that the original

problem is feasible and λ∗ and β∗ are the solutions to (16), then
the optimal solution to the primal problem (15) is given by

θk+1 = θk +
1
β∗

H−1(gQ − λ∗gL) (17)

If the optimization problem (15) is not feasible, then a recovery
update step is needed. For safety constrained tasks, it is important
that the policy π recovers to a set of safe policies as soon as
possible. In the meantime, (14) needs to be satisfied as this is
the basis of local approximate optimization. The recovery step is
equivalent to solving the following optimization problem,

θk+1 = argmin
θ

g⊤L (θ − θk)+ h

s.t.
1
2

(θ − θk)
⊤ H (θ − θk) ≤ δ

(18)

The optimal solution to the above recovery optimization problem
is

θ∗ = θk −

√
2δ

g⊤L H−1gL
H−1gL (19)

In LCPO, the Lyapunov function L(s) is also a DNN parameterized
by φ. The Lyapunov critic function Lc is not needed since LCPO
does not involve critic–actor updates. Meanwhile, the Lyapunov
function candidates are still valid following a similar approxima-
tion procedure as LSAC. The pseudo-code of LCPO can be found
in Algorithm 2.

Algorithm 2 Lyapunov-based Constrained Policy Optimization
(LCPO)

for i = 1, 2, . . . do
Sample s1 according to ρ

for each time step do
Sample at from π (at |st ) and step forward
Observe and store (st , at , rt , ct , st+1) in D

end for
Record the largest instant N at which sN ∈ ∆

Store all tuples (st , at , rt , ct , st+1), t ≤ N in D∆

Estimate gQ , gL, h, H with D and D∆

if (15) is feasible then
Calculate the optimal λ∗ and β∗

Calculate the proposal θ∗ with (17)
else

Calculate θ∗ with (19)
end if
Update θk+1 by backtracking linesearch to satisfy the sample

estimate (13)
Clear D and D∆

end for

Remark 4. The comparison between LCPO and LSAC in terms
of data efficiency is to be made. As shown in the pseudo-code
Algorithm 1, LSAC updates multiple steps after a trajectory has
been sampled. It is even possible to update at every step after
observing a new state–action pair, though this is not adopted
in LSAC. In comparison, LCPO only proceeds one step after each
iteration of observing the trajectory. This is due to the nature of
on-policy algorithms: after one update of θ , the collected data
become off-policy data, i.e. the data generated by a different con-
troller, and cannot be used by the on-policy algorithms anymore.
Thus, at the end of each iteration, LCPO needs to empty the set
of transition pairs D and D∆. On the contrary, LSAC repeatedly
makes use of the data collected by different controllers. As a
result, LSAC possesses better data efficiency than LCPO.
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emark 5. Another distinguishing difference between LCPO and
LSAC is the safety guarantee during training, which is a key
consequence between off- and on-policy algorithms. LCPO is im-
plemented based on the trust-region optimization, solving an
approximated optimization problem locally and assuring that
every post-update policy is safe. If the initial policy is safe, the
safety will be ensured during learning. Otherwise, LCPO will try
to find a safe policy first using the recovery update in Eq. (19). In
comparison, LSAC does not hold this property but only can assure
safety at the end of the training. From a practical point of view,
LSAC is suitable for training a safe policy in a virtual environment
and then deployed to a real system; LCPO is directly applicable for
online training. Furthermore, a potential choice is to combine the
strengths of LSAC and LCPO: use LSAC to learn an initial policy in
the virtual environment then transfer to LCPO for further online
training.

4.4. Further discussion

Before proceeding to show the effectiveness of LSAC and LCPO
or various environments, we would like to further discuss the
ossible adverse effects of sample-based approximation and UUB
nalysis.
First, in both LSAC and LCPO, the safety constraint is evaluated

sing a sample estimate of the inequality (3), which unavoidably
ntroduces estimation error unless the number of samples is
nfinite. Therefore, a possible research direction is to establish a
uantitative relation between the reliability of the safety guar-
ntee and the number of samples. Furthermore, stronger safety
onstraints can be introduced by considering the estimation error.
Second, as both LSAC and LCPO rely on the sample-based

radient approximation in controller training, the learning al-
orithms may take update steps in undesirable directions tem-
orarily due to some approximation errors (such as reducing the
eturn or violating the safety constraints). Nevertheless, this effect
an be modified by choosing reasonable hyperparameters such as
earning rate and batch size such that the undesirable update does
ot affect the convergence of the learning process.
Finally, different from the classical model-based controller

esign methods, the proposed method does not need a dynamic
odel to design the controller. Instead, it is model-free which
eans only the data from the trial and error will be used to

earn the controller until a satisfactory one can be found. This
rocess is undoubtedly time-consuming and hardly applicable to
system in the real world. Thus in practice, it is favorable to

rain the controller virtually first, then transfer and fine-tune the
ontroller in the real world (Harrison et al., 2020; Tan et al., 2018;
u, Kumar, Turk, & Liu, 2019).

. Experiments

In our experiments, we would like to address the following
uestions:

• How does our approach perform compared with other ex-

isting safe RL algorithms for CMDP tasks?

8

• Can the algorithms converge with different parameter ini-
tializations and learn safe control policies in the presence of
function approximation error?
• Does the policy with UUB guarantee ensure the system

to recover to the inner set under perturbation and distur-
bance?
• Under what circumstances the Lyapunov-based safe RL al-

gorithms may fail?

5.1. Experiment setups

In the following, five CMDP tasks are set up ranging from sim-
ulated robot locomotion in the MuJoCo simulator (Todorov, Erez,
& Tassa, 2012) to motion planning of a simulated quadrotor (see
Fig. 3): (i) Cartpole-Safe: The agent is rewarded for sustaining the
pole vertically at a target position, while limited in a safe region;
(ii & iii) HalfCheetah-Safe (Chow et al., 2019) and Ant-safe: The
agent is rewarded for running while the speed is limited for
safety; (iv) Point-Circle (Achiam et al., 2017): The agent is re-
warded for following a circular trajectory while limited to stay in
a safe region |x| < x; (v) Quadrotor-Safe: The agent is rewarded
for tracking a spiral trajectory while constrained to stay under a
certain altitude. The details of the control tasks are described in
the following.

5.1.1. Cartpole-safe
In this experiment, the agent is expected to sustain the pole

vertically at a target position x = 6. This is a modified version
of CartPole with continuous action space (Brockman et al., 2016).
The action is the horizontal force F on the cart, F ∈ [−20, 20].
While tracking the target position, the safety constraint x < 4
needs to be ensured. The state space of x is [0, 10] and the
episodes end if the cart moves outside this region. The agent is
initialized randomly as x ∈ [0, 4]. The reward function is given by
r = 20×sign(1−|x− 6|)×(1−|x− 6|)2+sign( π/2−|θ |

π/2 )×( π/2−|θ |
π/2 )2.

he constraint function is given by c = max(|x| − 3.2, 0)2/5. The
pisodes are set at a length of 250.
It should be noted that the target position is outside the safe

egion. As a result, the optimal safe behavior is to sustain the pole
ertically at the edge of the safe region. This setup is deliberate in
rder to test whether safety can outweigh the return under the
ontrol of the trained agents.

.1.2. Point-circle
This task is borrowed from Achiam et al. (2017), where the

gent controls a mass point to run in a wide circle but limited to
tay in a safe region. The agent is initialized at (0, 0). The agent
s rewarded for moving the mass point counter-clockwise along
circle of radius 15m, r = −y×vx+x×vy

1+|
√

(x2+y2)−15|
. We constrain the

x-axis position to be less than 2.4, and the constraint function is:
c = max(|x| − 2.4, 0). The episodes are set at a length of 65.
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ndicates the total time steps in thousands. Return and the sum of constraint functions are shown in the first and the second row respectively. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
.1.3. Halfcheetah-safe
HalfCheetah-Safe is taken from Chow et al. (2019). The task

s to control a HalfCheetah (a 2-legged simulated robot with 17
egrees of freedom) to run as fast as possible with maximum
elocity limited for safety. The reward function is r = v − 0.1×
∥a∥2 where v is the forward speed of the HalfCheetah and a is the
control input. The constraint function is c = max(|v| − 2.7, 0)2.
The episodes are set at a length of 200.

5.1.4. Ant-Safe
In Ant-Safe, the agent controls an Ant (a quadrupedal simu-

lated robot) to run as fast as possible while satisfying the safety
constraint on forwarding speed, v < 2.7. The reward function is
r = v − 0.5 ∗

∑
a2 − costcontact + 1 where costcontact equals −1

f the robot touches the ground and 0 otherwise. The constraint
unction c = max(|v| − 2.7, 0)2. The episodes are set at a length
f 200. Reward function and other settings are the same with
he default setting in the OpenAI Gym. The episodes are set at
length of 200.

.1.5. Quadrotor-safe
This task is to control a drone to track a spiral trajectory

n 3D space. In the meantime, the altitude is limited to be
nder a threshold to avoid hitting the ceiling. The simulation
nvironment is modified from an open-source Crazyflie simu-
ator Matlab code3 into OpenAI Gym’s structure. The simula-
or has three parts, the CrazyFlies model parameters, the PD
ontroller, and the dynamic equations. The control proceeds as
ollows: The quadrotor simulator outputs the next state of the
uadrotor given the force, torques, and the current state. The
ontroller maps the observation of the current state to the de-
ired next step and the desired state equals the current state
dds the desired step. Last, the PD controller converts the cur-
ent state and desired state to force and torques, and the loop
ontinues. The state includes the quadrotor’s position, veloci-
ies, attitude, angular velocities and reference trajectory, st =
x, y, z, ẋ, ẏ, ż, p, q, r, ṗ, q̇, ṙ, xtarget , ytarget , ztarget ]. The policy out-
uts desired relative changes in position and velocity from cur-
ent state, at = [∆x, ∆y, ∆z, ∆ẋ, ∆ẏ, ∆ż]. And an episode ends

3 https://github.com/yrlu/quadrotor
9

when the current position is too far from the reference trajectory.
For this task, the reward is r = −∥d∥ + 1 where d is the
distance to the reference trajectory. The constraint function is
c = 100 ∗ max(|z| − 0.4, 0). For this experiment, the episodes
are set at a length of 2000.

5.2. Evaluation and comparison analysis

In this part, the performance of LSAC on the CMDP tasks is
evaluated and compared with the existing safe RL algorithm, safe
soft actor–critic (SSAC) (Chow et al., 2019) with optimized hy-
perparameters. SSAC is a safety constrained variant of the original
algorithms through the Lagrange relaxation procedure (Bertsekas,
1997). The soft actor–critic (SAC) (Haarnoja, Zhou, Hartikainen,
et al., 2018) is also included to show that the optimal behav-
iors are generally unsafe in the CMDP setting. In the meantime,
the performance of LCPO is compared with constrained policy
optimization (LCPO) (Achiam et al., 2017), a state-of-the-art trust-
region method for CMDP tasks. Since the trust-region methods
(LCPO, CPO) require large batch sizes and need more samples than
the gradient-based methods to reach convergence, thus, these
two classes of methods are compared separately. The sum of the
constraint function of episodes (safety cost) and the counts of
constraint violations is used as the measure of safety and the
return is used to evaluate performance. The goal is to suppress
these measures to zero while maximizing the return, i.e., the
expectation of constraint function at each time step and the
expectation of constraint violations are required to be zero.

5.2.1. Algorithm hyperparameters
The hyperparameters for the LSAC and LCPO can be found

in Appendix.
For LSAC, there are three networks: the policy network, the

Q network, and the Lyapunov network. For the policy network,
we use a fully-connected MLP with two hidden layers of 256
units, outputting the mean and standard deviations of a Gaussian
distribution. For the Q network and the Lyapunov network, we
use a fully-connected MLP with two hidden layers of 256 units,
outputting the Q value and the Lyapunov value. All the hidden
layers use Relu activation function and we adopt the same invert-

ible squashing function technique as Haarnoja, Zhou, Hartikainen,

https://github.com/yrlu/quadrotor
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Fig. 5. The average performance of CPO and LCPO, where the shaded areas show the 1-SD confidence intervals over 5 random seeds. The X-axis indicates the total
ime steps in thousands. The return (a), safety cost (b), and counts on constraint violations (c) are shown in each row respectively.
Fig. 6. The recovery rate of agents trained by LSAC, SSAC, and SAC in the presence of impulsive force F with different magnitudes in Cartpole-Safe (a) and Point-Circle
b). The x-axis denotes the magnitude of an instant force. The policies with 10 different initialization are evaluated equally for 500 episodes under each magnitude
f a force. The line indicates the average recovery rate of these policies and the shadowed region shows the 1-SD confidence interval.
t al. (2018) to the output layer of the policy network. The
yperparameters can found in Fig. 8.
For LCPO, there are three networks: the policy network, the

alue network, and the Lyapunov network. For the policy net-
ork, it has two hidden layers of sizes (64, 32) with tanh acti-
ation functions, outputting the mean and standard deviations
f a Gaussian distribution. For the value network, it has two
idden layers of sizes (256, 128) with Relu activation functions,
utputting the value. And for the Lyapunov network, it has two
idden layers of sizes (256, 256) with Relu activation functions,
utputting the Lyapunov value. The hyperparameters can found
n Fig. 9.

The implementation of all the algorithms is based on Tensor-
low (Abadi et al., 2016).

.2.2. Comparison with SSAC
As demonstrated in Fig. 4, though SSAC can maintain state

onstraint satisfaction on some of the tasks despite some
ajor violations during training (see HalfCheetah-Safe and Ant-
afe), on other tasks it fails to find safe policy both at convergence
r during training. On the other hand, our method (LSAC) quickly
onverges to safe policies across all the tasks (Fig. 4(a)–(e))
hile maintaining reasonable return. Besides, LSAC maintains

ow safety costs (almost zero) and constraint violation times
hroughout the training with low variance in all the tasks, even
hough all the policies are randomly initialized.
10
Fig. 7. The average return and constraint function of LSAC in Cartpole-Safe with
different constraints x.

5.2.3. Comparison with CPO
CPO and LCPO are compared on the safe environments as used

for the off-policy methods. As shown in Fig. 5, LCPO performs
stably in terms of both safety cost and constraint violation counts
in all of the environments, approximately achieving zero con-
straint violation during training and at convergence. In terms of
return, LCPO performs comparably with CPO on Point-Circle and
Quadrotor-Safe, while in other tasks CPO performs slightly better
than LCPO, however, at a cost that CPO violates the safety con-
straints a lot, as shown in Fig. 5(c). In CartPole and Point-Circle,
CPO is not safe both during training and at convergence, while
in other experiments it may violate constraints during training.
As discussed in Garcıa and Fernández (2015), the discounted-sum
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Fig. 9. LCPO Hyperparameters.

onstrained methods suffer from the tricky tuning of the safety
hreshold to handle the state constrained problems. To show this,
e tested different threshold settings for CPO on Halfcheetah
nd Ant. In the HalfCheetah-Safe task, CPO swings due to the
ifferent settings of the safety threshold. CPO either fails to find
he feasible policy or reaches convergence after being unsafe for
long period (more than 500,000 steps). One more thing to note

s that CPO requires additional cost shaping, by having a network
valuating the chance of constraint violation to achieve the best
erformance, while our approach does not need such techniques.

.3. Recoverability to inner set

As shown in Figs. 1 and 2, UUB assures that the system can
ecover to the inner set when it is wrongly initialized or acciden-
ally disturbed and appears in the edge set. Now we evaluate the
ecoverability of the agents trained by LSAC and baselines when
nterfered by an unseen exogenous disturbance in CartPole-Safe
nd Point-Circle. Impulsive forces are implemented on the robot
o push it outside the inner set and see whether it can recover
o the inner set. Their performance is measured by the recovery
ate, i.e., the probability of successful recovery after impulsive
isturbances. Under different impulse magnitudes, the policies
rained by LSAC and baselines are evaluated 500 times, and the
esults are shown in Fig. 6.

As observed in the figure, LSAC achieves the best performance
n terms of recoverability when interfered by forces with different

agnitudes, while SSAC is less possible to recover under the

11
same circumstances. Note that the agent cannot recover from
arbitrarily large disturbances since only local UUB is assured.

5.4. Ablation on constraints

We want to test how does the proposed algorithm trade-off
between performance and safety. In CartPole, the safety con-
straint is contradictory to the performance, i.e. being safer will
decrease the return. Thus, we gradually strengthen the constraint
and see how does LSAC reacts and when does it fail to find a
feasible policy. Specifically, the size of inner set {x|x ∈ [0, x]}
is reduced by assigning x with {0, 1, 2, 3, 4}. The performance
of LSAC in CartPole-Safe with different sizes of the inner set is
compared, see Fig. 7. As x approaches zero, the average return of
LSAC also decreases while safety is maintained. However, when
x = 0 and only the origin is safe, the agent fails to sustain the pole
and dies almost immediately. This implies that LSAC may fail in
the case that safety constraints are too strong.

6. Conclusion

In this paper, a novel data-based approach for analyzing the
uniformly ultimate bounded stability of a learning control system
is proposed. Based on the theoretical results, two model-free
reinforcement learning algorithms are developed, i.e., Lyapunov
safe actor–critic and Lyapunov constrained policy optimization.
The proposed algorithms are evaluated on a series of robotic
continuous control tasks with safety constraints. In comparison
with the existing RL algorithms, the proposed method can reliably
assure safety in various challenging continuous control tasks. As a
qualitative evaluation of stability, our method shows impressive
resilience even in the presence of external disturbances.

For future work, we would like to explore the following direc-
tions: (i) automating the design of constraint function;
(ii) extending the Lyapunov-based approach to model-based set-
ting; (iii) optimizing the performance upper bound while assuring
the stability guarantee.
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